1
|
Husremović T, Meier V, Piëch L, Siess KM, Antonioli S, Grishkovskaya I, Kircheva N, Angelova SE, Wenzl K, Brandstätter A, Veis J, Miočić-Stošić F, Anrather D, Hartl M, Truebestein L, Cerron-Alvan LM, Leeb M, Žagrović B, Hann S, Bock C, Ogris E, Dudev T, Irwin NAT, Haselbach D, Leonard TA. PHLPP2 is a pseudophosphatase that lost activity in the metazoan ancestor. Proc Natl Acad Sci U S A 2025; 122:e2417218122. [PMID: 40168118 PMCID: PMC12002173 DOI: 10.1073/pnas.2417218122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
The phosphoinositide 3-kinase (PI3K) pathway is a major regulator of cell and organismal growth. Consequently, hyperactivation of PI3K and its downstream effector kinase, Akt, is observed in many human cancers. Pleckstrin homology domain leucine-rich repeat-containing protein phosphatases (PHLPP), two paralogous members of the metal-dependent protein phosphatase family, have been reported as negative regulators of Akt signaling and, therefore, tumor suppressors. However, the stoichiometry and identity of the bound metal ion(s), mechanism of action, and enzymatic specificity of these proteins are not known. Seeking to fill these gaps in our understanding of PHLPP biology, we unexpectedly found that PHLPP2 has no catalytic activity in vitro. Instead, we found that PHLPP2 is a pseudophosphatase with a single zinc ion bound in its catalytic center. Furthermore, we found that cancer genomics data do not support the proposed role of PHLPP1 or PHLPP2 as tumor suppressors. Phylogenetic analyses revealed an ancestral phosphatase that arose more than 1,000 Mya, but that lost activity at the base of the metazoan lineage. Surface conservation indicates that while PHLPP2 has lost catalytic activity, it may have retained substrate binding. Finally, using phylogenomics, we identify coevolving genes consistent with a scaffolding role for PHLPP2 on membranes. In summary, our results provide a molecular explanation for the inconclusive results that have hampered research on PHLPP and argue for a focus on the noncatalytic roles of PHLPP1 and PHLPP2.
Collapse
Affiliation(s)
- Tarik Husremović
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
| | - Vanessa Meier
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
| | - Lucas Piëch
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
- Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, ViennaA-1030, Austria
| | - Katharina M. Siess
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
| | - Sumire Antonioli
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
- Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, ViennaA-1030, Austria
| | - Irina Grishkovskaya
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna1030, Austria
| | - Nikoleta Kircheva
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, Sofia1113, Bulgaria
| | - Silvia E. Angelova
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, Sofia1113, Bulgaria
- University of Chemical Technology and Metallurgy, Sofia1756, Bulgaria
| | - Karoline Wenzl
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
| | - Andreas Brandstätter
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna1190, Austria
| | - Jiri Veis
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
| | - Fran Miočić-Stošić
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
- Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, ViennaA-1030, Austria
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna1030, Austria
| | - Dorothea Anrather
- Max Perutz Labs, Mass Spectrometry Facility, Vienna Biocenter Campus, Vienna1030, Austria
- Department of Biochemistry and Cell Biology, Center for Molecular Biology, University of Vienna, Vienna1030, Austria
| | - Markus Hartl
- Max Perutz Labs, Mass Spectrometry Facility, Vienna Biocenter Campus, Vienna1030, Austria
- Department of Biochemistry and Cell Biology, Center for Molecular Biology, University of Vienna, Vienna1030, Austria
| | - Linda Truebestein
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
| | - Luis M. Cerron-Alvan
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
- Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, ViennaA-1030, Austria
- Department of Microbiology, Immunobiology and Genetics, Center for Molecular Biology, University of Vienna, Vienna1030, Austria
| | - Martin Leeb
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
- Department of Microbiology, Immunobiology and Genetics, Center for Molecular Biology, University of Vienna, Vienna1030, Austria
| | - Bojan Žagrović
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna1030, Austria
| | - Stephan Hann
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna1190, Austria
| | - Christoph Bock
- Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna1090, Austria
- Center for Medical Data Science, Institute of Artificial Intelligence, Medical University of Vienna, Vienna1090, Austria
| | - Egon Ogris
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, Sofia1164, Bulgaria
| | - Nicholas A. T. Irwin
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna1030, Austria
| | - David Haselbach
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna1030, Austria
| | - Thomas A. Leonard
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
| |
Collapse
|
2
|
Yu S, Liu X, Xu Y, Pan L, Zhang Y, Li Y, Dong S, Tu D, Sun Y, Zhang Y, Zhou Z, Liang X, Huang Y, Chu J, Tu S, Liu C, Chen H, Chen W, Ge M, Zhang Q. m 6 A-mediated gluconeogenic enzyme PCK1 upregulation protects against hepatic ischemia-reperfusion injury. Hepatology 2025; 81:94-110. [PMID: 38085830 DOI: 10.1097/hep.0000000000000716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/06/2023] [Indexed: 02/29/2024]
Abstract
BACKGROUND AND AIMS Ischemia-reperfusion (I/R) injury frequently occurs during liver surgery, representing a major reason for liver failure and graft dysfunction after operation. The metabolic shift from oxidative phosphorylation to glycolysis during ischemia increased glucose consumption and accelerated lactate production. We speculate that donor livers will initiate gluconeogenesis, the reverse process of glycolysis in theory, to convert noncarbohydrate carbon substrates (including lactate) to glucose to reduce the loss of hepatocellular energy and foster glycogen storage for use in the early postoperative period, thus improving post-transplant graft function. APPROACH AND RESULTS By analyzing human liver specimens before and after hepatic I/R injury, we found that the rate-limiting enzyme of gluconeogenesis, PCK1, was significantly induced during liver I/R injury. Mouse models with liver I/R operation and hepatocytes treated with hypoxia/reoxygenation confirmed upregulation of PCK1 during I/R stimulation. Notably, high PCK1 level in human post-I/R liver specimens was closely correlated with better outcomes of liver transplantation. However, blocking gluconeogenesis with PCK1 inhibitor aggravated hepatic I/R injury by decreasing glucose level and deepening lactate accumulation, while overexpressing PCK1 did the opposite. Further mechanistic study showed that methyltransferase 3-mediated RNA N6-methyladinosine modification contributes to PCK1 upregulation during hepatic I/R injury, and hepatic-specific knockout of methyltransferase 3 deteriorates liver I/R injury through reducing the N6-methyladinosine deposition on PCK1 transcript and decreasing PCK1 mRNA export and expression level. CONCLUSIONS Our study found that activation of the methyltransferase 3/N6-methyladinosine-PCK1-gluconeogenesis axis is required to protect against hepatic I/R injury, providing potential intervention approaches for alleviating hepatic I/R injury during liver surgery.
Collapse
Affiliation(s)
- Shanshan Yu
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Cell-gene Therapy Translational Medicine Research Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiao Liu
- Department of Anesthesiology, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Xu
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Cell-gene Therapy Translational Medicine Research Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lijie Pan
- Cell-gene Therapy Translational Medicine Research Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yihan Zhang
- Department of Anesthesiology, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanli Li
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuai Dong
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dan Tu
- Department of Anesthesiology, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuetong Sun
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yiwang Zhang
- Department of Pathology, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhuowei Zhou
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoqi Liang
- Cell-gene Therapy Translational Medicine Research Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yiju Huang
- Cell-gene Therapy Translational Medicine Research Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiajie Chu
- Cell-gene Therapy Translational Medicine Research Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Silin Tu
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chang Liu
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huaxin Chen
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenjie Chen
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Cell-gene Therapy Translational Medicine Research Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mian Ge
- Department of Anesthesiology, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qi Zhang
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Cell-gene Therapy Translational Medicine Research Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Bo T, Fujii J. Primary Roles of Branched Chain Amino Acids (BCAAs) and Their Metabolism in Physiology and Metabolic Disorders. Molecules 2024; 30:56. [PMID: 39795113 PMCID: PMC11721030 DOI: 10.3390/molecules30010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Leucine, isoleucine, and valine are collectively known as branched chain amino acids (BCAAs) and are often discussed in the same physiological and pathological situations. The two consecutive initial reactions of BCAA catabolism are catalyzed by the common enzymes referred to as branched chain aminotransferase (BCAT) and branched chain α-keto acid dehydrogenase (BCKDH). BCAT transfers the amino group of BCAAs to 2-ketoglutarate, which results in corresponding branched chain 2-keto acids (BCKAs) and glutamate. BCKDH performs an oxidative decarboxylation of BCKAs, which produces their coenzyme A-conjugates and NADH. BCAT2 in skeletal muscle dominantly catalyzes the transamination of BCAAs. Low BCAT activity in the liver reduces the metabolization of BCAAs, but the abundant presence of BCKDH promotes the metabolism of muscle-derived BCKAs, which leads to the production of glucose and ketone bodies. While mutations in the genes responsible for BCAA catabolism are involved in rare inherited disorders, an aberrant regulation of their enzymatic activities is associated with major metabolic disorders such as diabetes, cardiovascular disease, and cancer. Therefore, an understanding of the regulatory process of metabolic enzymes, as well as the functions of the BCAAs and their metabolites, make a significant contribution to our health.
Collapse
Affiliation(s)
- Tomoki Bo
- Laboratory Animal Center, Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| |
Collapse
|
4
|
Cai W, Yao X, Liu G, Liu X, Zhao B, Shi P. RetSat stabilizes mitotic chromosome segregation in pluripotent stem cells. Cell Mol Life Sci 2024; 81:366. [PMID: 39172275 PMCID: PMC11342912 DOI: 10.1007/s00018-024-05413-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/04/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Chromosome stability is crucial for homeostasis of pluripotent stem cells (PSCs) and early-stage embryonic development. Chromosomal defects may raise carcinogenic risks in regenerative medicine when using PSCs as original materials. However, the detailed mechanism regarding PSCs chromosome stability maintenance is not fully understood. METHODS Mouse embryonic stem cells (line D3) and human embryonic stem cells (line H9) were cultured under standard conditions. To confirm the loading of RetSat protein on mitotic chromosomes of PSCs, immunostaining was performed in PSCs spontaneous differentiation assay and iPSC reprogramming assay from mouse embryonic fibroblasts (MEFs), respectively. In addition, qPCR, immunoprecipitation, LC-MS/MS and immunoblotting were used to study the expression of RetSat, and interactions of RetSat with cohesin/condensin components. RNA sequencing and teratoma formation assay was conducted to evaluate the carcinogenic risk of mouse embryonic stem cells with RetSat deletion. RESULTS We reported a PSC high-expressing gene, RetSat, plays key roles in chromosome stabilization. We identified RetSat protein localizing onto mitotic chromosomes specifically in stemness positive cells such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). We found dramatic chromosome instability, e.g. chromosome bridging, lagging and interphase micronuclei in mouse and human ESCs when down regulating RetSat. RetSat knock-out mouse ESCs upregulated cancer associated gene pathways, and displayed higher tumorigenic capacities in teratoma formation assay. Mechanistically, we confirmed that RetSat interacts with cohesin/condensin components Smc1a and Nudcd2. RetSat deletion impaired the chromosome loading dosage of Smc1a, Smc3 and Nudcd2. CONCLUSIONS In summary, we reported RetSat to be a key stabilizer of chromosome condensation in pluripotent stem cells. This highlights the crucial roles of RetSat in early-stage embryonic development, and potential value of RetSat as an effective biomarker for assessing the quality of pluripotent stem cells.
Collapse
Affiliation(s)
- Wanzhi Cai
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoqing Yao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Gaojing Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiuyun Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| | - Peng Shi
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
5
|
Kiefer MF, Meng Y, Yang N, Vahrenbrink M, Wulff S, Li C, Wowro SJ, Petricek KM, Sommerfeld M, Flores RE, Obermayer B, Piepelow K, Klaus S, Hartl K, Guillot A, Tacke F, Sigal M, Schupp M. Intestinal retinol saturase is implicated in the development of obesity and epithelial homeostasis upon injury. Am J Physiol Endocrinol Metab 2024; 327:E203-E216. [PMID: 38895981 DOI: 10.1152/ajpendo.00035.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Retinol saturase (RetSat) is an oxidoreductase involved in lipid metabolism and the cellular sensitivity to peroxides. RetSat is highly expressed in metabolic organs like the liver and adipose tissue and its global loss in mice increases body weight and adiposity. The regulation of RetSat expression and its function in the intestine are unexplored. Here, we show that RetSat is present in different segments of the digestive system, localizes to intestinal epithelial cells, and is upregulated by feeding mice high-fat diet (HFD). Intestine-specific RetSat deletion in adult mice did not affect nutrient absorption and energy homeostasis basally, but lowered body weight gain and fat mass of HFD-fed mice, potentially via increasing locomotor activity. Moreover, jejunal expression of genes related to β-oxidation and cholesterol efflux was decreased, and colonic cholesterol content was reduced upon RetSat deletion. In colitis, which we show to downregulate intestinal RetSat expression in humans and mice, RetSat ablation improved epithelial architecture of the murine colon. Thus, intestinal RetSat expression is regulated by dietary interventions and inflammation, and its loss reduces weight gain upon HFD feeding and alleviates epithelial damage upon injury.NEW & NOTEWORTHY Retinol saturase (RetSat) is an oxidoreductase with unknown function in the intestine. We found that RetSat localizes in intestinal epithelial cells and that its deletion reduced weight gain and fat mass in obese mice. In colitis, which decreased intestinal RetSat expression in humans and mice, RetSat ablation improved the epithelial architecture of the murine colon, presumably by decreasing ROS production, thus rendering RetSat a novel target for metabolic and inflammatory bowel disease.
Collapse
Affiliation(s)
- Marie F Kiefer
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Yueming Meng
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Na Yang
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Madita Vahrenbrink
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sascha Wulff
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Chen Li
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sylvia J Wowro
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Konstantin M Petricek
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Manuela Sommerfeld
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Roberto E Flores
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Benedikt Obermayer
- Core Unit Bioinformatics, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Karolin Piepelow
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition (DIfE) Potsdam-Rehbrücke, Nuthetal, Germany
| | - Susanne Klaus
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition (DIfE) Potsdam-Rehbrücke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Kimberly Hartl
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Sigal
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Michael Schupp
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
6
|
Ding Z, Ge W, Xu X, Xu X, Sun Q, Xu X, Zhang J. A crucial role of adenosine deaminase in regulating gluconeogenesis in mice. J Biol Chem 2024; 300:107425. [PMID: 38823639 PMCID: PMC11231709 DOI: 10.1016/j.jbc.2024.107425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
Adenosine deaminase (ADA) catalyzes the irreversible deamination of adenosine (ADO) to inosine and regulates ADO concentration. ADA ubiquitously expresses in various tissues to mediate ADO-receptor signaling. A significant increase in plasma ADA activity has been shown to be associated with the pathogenesis of type 2 diabetes mellitus. Here, we show that elevated plasma ADA activity is a compensated response to high level of ADO in type 2 diabetes mellitus and plays an essential role in the regulation of glucose homeostasis. Supplementing with more ADA, instead of inhibiting ADA, can reduce ADO levels and decrease hepatic gluconeogenesis. ADA restores a euglycemic state and recovers functional islets in db/db and high-fat streptozotocin diabetic mice. Mechanistically, ADA catabolizes ADO and increases Akt and FoxO1 phosphorylation independent of insulin action. ADA lowers blood glucose at a slower rate and longer duration compared to insulin, delaying or blocking the incidence of insulinogenic hypoglycemia shock. Finally, ADA suppresses gluconeogenesis in fasted mice and insulin-deficient diabetic mice, indicating the ADA regulating gluconeogenesis is a universal biological mechanism. Overall, these results suggest that ADA is expected to be a new therapeutic target for diabetes.
Collapse
Affiliation(s)
- Zhao Ding
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Wenhao Ge
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Xiaogang Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Xiaodong Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Qi Sun
- Department of Physiology, Bengbu Medical University, Bengbu, China
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China.
| |
Collapse
|
7
|
Ji C, Chen L, Kaypaghian M. Effects of Combination of Ethanol With Ritonavir, Lopinavir or Darunavir on Expression and Localization of the ER-Associated Set Protein and Infection of HIV-1 Pseudovirus in Primary Human Cells. J Acquir Immune Defic Syndr 2024; 96:e6-e10. [PMID: 38771756 PMCID: PMC11110923 DOI: 10.1097/qai.0000000000003411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Affiliation(s)
- Cheng Ji
- Department of Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA
| | | | | |
Collapse
|
8
|
Stallings CE, Das P, Athul SW, Ukagwu AE, Jensik PJ, Ellsworth BS. FOXO1 regulates expression of Neurod4 in the pituitary gland. Mol Cell Endocrinol 2024; 583:112128. [PMID: 38142853 PMCID: PMC10922409 DOI: 10.1016/j.mce.2023.112128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/26/2023]
Abstract
Pituitary gland function is regulated by the activity of various transcription factors that control cell fate decisions leading to cellular differentiation and hormone production. FOXO1 is necessary for normal somatotrope differentiation and function. Recent in vivo data implicate FOXO1 in the regulation of genes important for somatotrope differentiation including Gh1, Neurod4, and Pou1f1. In the current study, the somatotrope-like cell line GH3 was treated with a FOXO1 inhibitor, resulting in significant reduction in Neurod4 and Gh1 expression. Consistent with these findings, CRISPR/Cas9-mediated deletion of Foxo1 in GH3 cells significantly reduced expression of Gh1 and Neurod4. Chromatin immunoprecipitation sequencing identifies novel FOXO1 binding sites associated with the Neurod4, Gh1, and Pou1f1 genes. The FOXO1 binding site in the Neurod4 gene exhibits enhancer activity in somatotrope-like cells but not in gonadotrope-like cells. These data strongly suggest FOXO1 directly contributes to the transcriptional control of genes important for somatotrope differentiation.
Collapse
Affiliation(s)
| | - Pratyusa Das
- Department of Physiology, Southern Illinois University, Carbondale, IL, USA
| | - Sandria W Athul
- Department of Physiology, Southern Illinois University, Carbondale, IL, USA
| | - Arnold E Ukagwu
- Department of Physiology, Southern Illinois University, Carbondale, IL, USA
| | - Philip J Jensik
- Department of Physiology, Southern Illinois University, Carbondale, IL, USA
| | - Buffy S Ellsworth
- Department of Physiology, Southern Illinois University, Carbondale, IL, USA.
| |
Collapse
|
9
|
Allu PKR, Cardamone MD, Gomes AS, Dall'agnese A, Cederquist C, Pan H, Dreyfuss JM, Enerbäck S, Kahn CR. FoxK1 associated gene regulatory network in hepatic insulin action and its relationship to FoxO1 and insulin receptor mediated transcriptional regulation. Mol Metab 2023; 78:101825. [PMID: 37852413 PMCID: PMC10641274 DOI: 10.1016/j.molmet.2023.101825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023] Open
Abstract
OBJECTIVE Insulin acts on the liver via changes in gene expression to maintain glucose and lipid homeostasis. This study aimed to the Forkhead box protein K1 (FOXK1) associated gene regulatory network as a transcriptional regulator of hepatic insulin action and to determine its role versus FoxO1 and possible actions of the insulin receptor at the DNA level. METHODS Genome-wide analysis of FoxK1 binding were studied by chromatin immunoprecipitation sequencing and compared to those for IR and FoxO1. These were validated by knockdown experiments and gene expression analysis. RESULTS Chromatin immunoprecipitation (ChIP) sequencing shows that FoxK1 binds to the proximal promoters and enhancers of over 4000 genes, and insulin enhances this interaction for about 75% of them. These include genes involved in cell cycle, senescence, steroid biosynthesis, autophagy, and metabolic regulation, including glucose metabolism and mitochondrial function and are enriched in a TGTTTAC consensus motif. Some of these genes are also bound by FoxO1. Comparing this FoxK1 ChIP-seq data to that of the insulin receptor (IR) reveals that FoxK1 may act as the transcription factor partner for some of the previously reported roles of IR in gene regulation, including for LARS1 and TIMM22, which are involved in rRNA processing and cell cycle. CONCLUSION These data demonstrate that FoxK1 is an important regulator of gene expression in response to insulin in liver and may act in concert with FoxO1 and IR in regulation of genes in metabolism and other important biological pathways.
Collapse
Affiliation(s)
- Prasanna K R Allu
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | | | - Antonio S Gomes
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | | | - Carly Cederquist
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Hui Pan
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Jonathan M Dreyfuss
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Sven Enerbäck
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Kitamoto T, Accili D. Unraveling the mysteries of hepatic insulin signaling: deconvoluting the nuclear targets of insulin. Endocr J 2023; 70:851-866. [PMID: 37245960 DOI: 10.1507/endocrj.ej23-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/30/2023] Open
Abstract
Over 100 years have passed since insulin was first administered to a diabetic patient. Since then great strides have been made in diabetes research. It has determined where insulin is secreted from, which organs it acts on, how it is transferred into the cell and is delivered to the nucleus, how it orchestrates the expression pattern of the genes, and how it works with each organ to maintain systemic metabolism. Any breakdown in this system leads to diabetes. Thanks to the numerous researchers who have dedicated their lives to cure diabetes, we now know that there are three major organs where insulin acts to maintain glucose/lipid metabolism: the liver, muscles, and fat. The failure of insulin action on these organs, such as insulin resistance, result in hyperglycemia and/or dyslipidemia. The primary trigger of this condition and its association among these tissues still remain to be uncovered. Among the major organs, the liver finely tunes the glucose/lipid metabolism to maintain metabolic flexibility, and plays a crucial role in glucose/lipid abnormality due to insulin resistance. Insulin resistance disrupts this tuning, and selective insulin resistance arises. The glucose metabolism loses its sensitivity to insulin, while the lipid metabolism maintains it. The clarification of its mechanism is warranted to reverse the metabolic abnormalities due to insulin resistance. This review will provide a brief historical review for the progress of the pathophysiology of diabetes since the discovery of insulin, followed by a review of the current research clarifying our understanding of selective insulin resistance.
Collapse
Affiliation(s)
- Takumi Kitamoto
- Department of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba 260-8670, Japan
| | - Domenico Accili
- Department of Medicine and Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY 10032 USA
| |
Collapse
|
11
|
Zhang K, Yang C, Zhou X, Liang J, Guo J, Li M, Zhang Y, Shao S, Sun P, Li K, Huang J, Chen F, Liang X, Su D. TRIM21 ameliorates hepatic glucose and lipid metabolic disorders in type 2 diabetes mellitus by ubiquitination of PEPCK1 and FASN. Cell Mol Life Sci 2023; 80:168. [PMID: 37249651 DOI: 10.1007/s00018-023-04820-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 05/31/2023]
Abstract
Hepatic glucose and lipid metabolism disorders promote the development and progression of type 2 diabetes mellitus (T2DM), yet the underlying mechanisms are not fully understood. Here, we identify tripartite motif-containing protein 21 (TRIM21), a class IV TRIM family member, as a pivotal regulator of hepatic metabolism in T2DM for the first time. Bioinformatic analysis suggests that TRIM21 expression is significantly reduced in T2DM patients. Intriguingly, in a mouse model of obese diabetes, TRIM21 expression is predominantly reduced in the liver rather than in other metabolic organs. It is further demonstrated that hepatic overexpression of TRIM21 significantly ameliorates glucose intolerance, insulin resistance, hepatic steatosis, and dyslipidemia in obese diabetic mice. In contrast, the knockdown of TRIM21 promotes glucose intolerance, insulin resistance, and triglyceride accumulation. Mechanistically, both phosphoenolpyruvate carboxykinase 1 (PEPCK1) and fatty acid synthase (FASN) are the hepatic targets of TRIM21. We revealed that TRIM21 promotes the degradation of PEPCK1 and FASN through a direct protein-protein interaction mediated K48-linked ubiquitination. Notably, overexpression of PEPCK1 and FASN essentially abolished the beneficial effects achieved by TRIM21 overexpression in obese diabetic mice. Overall, our data demonstrate that TRIM21 is a novel regulator of hepatic metabolic disorder, and suggest TRIM21 as a promising therapeutic target for T2DM.
Collapse
Affiliation(s)
- Kaini Zhang
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China
| | - Chen Yang
- Department of Pathology, Nanjing Medical University, Nanjing, 211166, China
| | - Xin Zhou
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China
| | - Jin Liang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China
| | - Jianjin Guo
- Department of General Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Department of General Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Min Li
- Department of Pathology, Nanjing Medical University, Nanjing, 211166, China
| | - Yi Zhang
- Department of Pathology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, 211800, China
| | - Shulin Shao
- Department of Laboratory, Nanjing Pukou Hospital of Traditional Chinese Medicine, Nanjing, 211800, China
| | - Peng Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China
| | - Kai Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China
| | - Jingjing Huang
- Department of Geriatrics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 211166, China
| | - Fang Chen
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China.
| | - Xiubin Liang
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China.
| | - Dongming Su
- Department of Pathology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
12
|
Yadav AS, Isoherranen N, Rubinow KB. Vitamin A homeostasis and cardiometabolic disease in humans: lost in translation? J Mol Endocrinol 2022; 69:R95-R108. [PMID: 35900842 PMCID: PMC9534526 DOI: 10.1530/jme-22-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
Vitamin A (retinol) is an essential, fat-soluble vitamin that plays critical roles in embryonic development, vision, immunity, and reproduction. Severe vitamin A deficiency results in profound embryonic dysgenesis, blindness, and infertility. The roles of bioactive vitamin A metabolites in regulating cell proliferation, cellular differentiation, and immune cell function form the basis of their clinical use in the treatment of dermatologic conditions and hematologic malignancies. Increasingly, vitamin A also has been recognized to play important roles in cardiometabolic health, including the regulation of adipogenesis, energy partitioning, and lipoprotein metabolism. While these roles are strongly supported by animal and in vitro studies, they remain poorly understood in human physiology and disease. This review briefly introduces vitamin A biology and presents the key preclinical data that have generated interest in vitamin A as a mediator of cardiometabolic health. The review also summarizes clinical studies performed to date, highlighting the limitations of many of these studies and the ongoing controversies in the field. Finally, additional perspectives are suggested that may help position vitamin A metabolism within a broader biological context and thereby contribute to enhanced understanding of vitamin A's complex roles in clinical cardiometabolic disease.
Collapse
Affiliation(s)
- Aprajita S Yadav
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Katya B Rubinow
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
13
|
Tu Q, Liu X, Yao X, Li R, Liu G, Jiang H, Li K, Chen Q, Huang X, Chang Q, Xu G, Zhu H, Shi P, Zhao B. RETSAT associates with DDX39B to promote fork restarting and resistance to gemcitabine based chemotherapy in pancreatic ductal adenocarcinoma. J Exp Clin Cancer Res 2022; 41:274. [PMID: 36109793 PMCID: PMC9476698 DOI: 10.1186/s13046-022-02490-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/07/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Severe hypoxia is a prominent character of pancreatic ductal adenocarcinoma (PDAC) microenvironment. In the process of gemcitabine based chemotherapy, PDAC cells are insulted from replication stresses co-induced by hypoxia and gemcitabine. However, PDAC cells get outstanding abilities to resist to such harsh conditions and keep proliferating, causing a major obstacle for current therapy. RETSAT (Retinol Saturase) is defined as a hypoxia convergent gene recently, with high expression in PDAC hypoxic sectors. This study aimed to explore the roles of RETSAT in replication stress resistance and hypoxia adaptation in PDAC cells, and decipher the underlying mechanism.
Methods
The expression of RETSAT was examined in TCGA (The Cancer Genome Atlas), human pancreatic cancer microarray, clinical specimens and cell lines. Functions of RETSAT were studied by means of DNA fiber assay and comet assay in monolayer cultured PDAC cell lines, three dimensional spheroids, patient derived organoids and cell derived xenograft mouse models. Mechanism was investigated by using iPOND (isolate proteins on nascent DNA) combined with mass spectrometry, immunoprecipitation and immunoblotting.
Results
First, we found the converse relationship of RETSAT expression and PDAC chemotherapy. That is, PDAC patients with high RETSAT expression correlated with poor survival, while ones holding low RETSAT expression were benefitted more in Gemcitabine based chemotherapy. Second, we identified RETSAT as a novel replication fork associated protein. HIF-1α signaling promotes RETSAT expression under hypoxia. Functionally, RETSAT promoted fork restarting under replication stress and maintained genomic stability. Third, we uncovered the interaction of RETSAT and R-loop unwinding helicase DDX39B. RETSAT detained DDX39B on forks to resolve R-loops, through which avoided fork damage and CHK1 initiated apoptosis. Targeting DDX39B using chemical CCT018159 sensitized PDAC cells and organoids to gemcitabine induced apoptosis, highlighting the synergetic application of CCT018159 and gemcitabine in PDAC chemotherapy.
Conclusions
This study identified RETSAT as a novel replication fork protein, which functions through interacting with DDX39B mediated R-loop clearance to promote fork restarting, leading to cellular resistance to replication stresses co-induced by tumor environmental hypoxia and gemcitabine in pancreatic ductal adenocarcinoma.
Collapse
|
14
|
Oster M, Galhuber M, Krstic J, Steinhoff JS, Lenihan-Geels G, Wulff S, Kiefer MF, Petricek KM, Wowro SJ, Flores RE, Yang N, Li C, Meng Y, Reinisch I, Sommerfeld M, Weger S, Habisch H, Madl T, Schulz TJ, Prokesch A, Schupp M. Hepatic p53 is regulated by transcription factor FOXO1 and acutely controls glycogen homeostasis. J Biol Chem 2022; 298:102287. [PMID: 35868560 PMCID: PMC9399478 DOI: 10.1016/j.jbc.2022.102287] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/27/2022] Open
Abstract
The tumor suppressor p53 is involved in the adaptation of hepatic metabolism to nutrient availability. Acute deletion of p53 in the mouse liver affects hepatic glucose and triglyceride metabolism. However, long-term adaptations upon the loss of hepatic p53 and its transcriptional regulators are unknown. Here we show that short-term, but not chronic, liver-specific deletion of p53 in mice reduces liver glycogen levels, and we implicate the transcription factor forkhead box O1 protein (FOXO1) in the regulation of p53 and its target genes. We demonstrate that acute p53 deletion prevents glycogen accumulation upon refeeding, whereas a chronic loss of p53 associates with a compensational activation of the glycogen synthesis pathway. Moreover, we identify fasting-activated FOXO1 as a repressor of p53 transcription in hepatocytes. We show that this repression is relieved by inactivation of FOXO1 by insulin, which likely mediates the upregulation of p53 expression upon refeeding. Strikingly, we find that high-fat diet-induced insulin resistance with persistent FOXO1 activation not only blunted the regulation of p53 but also the induction of p53 target genes like p21 during fasting, indicating overlapping effects of both FOXO1 and p53 on target gene expression in a context-dependent manner. Thus, we conclude that p53 acutely controls glycogen storage in the liver and is linked to insulin signaling via FOXO1, which has important implications for our understanding of the hepatic adaptation to nutrient availability.
Collapse
Affiliation(s)
- Moritz Oster
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular Metabolic Renal (CMR)-Research Center, Berlin, Germany
| | - Markus Galhuber
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria
| | - Jelena Krstic
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria
| | - Julia S Steinhoff
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular Metabolic Renal (CMR)-Research Center, Berlin, Germany
| | - Georgia Lenihan-Geels
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition, Nuthetal, Germany
| | - Sascha Wulff
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular Metabolic Renal (CMR)-Research Center, Berlin, Germany
| | - Marie F Kiefer
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular Metabolic Renal (CMR)-Research Center, Berlin, Germany
| | - Konstantin M Petricek
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular Metabolic Renal (CMR)-Research Center, Berlin, Germany
| | - Sylvia J Wowro
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular Metabolic Renal (CMR)-Research Center, Berlin, Germany
| | - Roberto E Flores
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular Metabolic Renal (CMR)-Research Center, Berlin, Germany
| | - Na Yang
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular Metabolic Renal (CMR)-Research Center, Berlin, Germany
| | - Chen Li
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular Metabolic Renal (CMR)-Research Center, Berlin, Germany
| | - Yueming Meng
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular Metabolic Renal (CMR)-Research Center, Berlin, Germany
| | - Isabel Reinisch
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria
| | - Manuela Sommerfeld
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular Metabolic Renal (CMR)-Research Center, Berlin, Germany
| | - Stefan Weger
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Virology, Campus Benjamin Franklin, Berlin, Germany
| | - Hansjörg Habisch
- Institute of Molecular Biology and Biochemistry, Medical University Graz, Graz, Austria
| | - Tobias Madl
- Institute of Molecular Biology and Biochemistry, Medical University Graz, Graz, Austria
| | - Tim J Schulz
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Andreas Prokesch
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria
| | - Michael Schupp
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular Metabolic Renal (CMR)-Research Center, Berlin, Germany.
| |
Collapse
|
15
|
McKimpson WM, Kuo T, Kitamoto T, Higuchi S, Mills JC, Haeusler RA, Accili D. FOXO1 Is Present in Stomach Epithelium and Determines Gastric Cell Distribution. GASTRO HEP ADVANCES 2022; 1:733-745. [PMID: 36117550 PMCID: PMC9481069 DOI: 10.1016/j.gastha.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Stomach cells can be converted to insulin-producing cells by Neurog3, MafA, and Pdxl over-expression. Enteroendocrine cells can be similarly made to produce insulin by the deletion of FOXO1. Characteristics and functional properties of FOXO1-expressing stomach cells are not known. METHODS Using mice bearing a FOXO1-GFP knock-in allele and primary cell cultures, we examined the identity of FOXO1-expressing stomach cells and analyzed their features through loss-of-function studies with red-to-green fluorescent reporters. RESULTS FOXO1 localizes to a subset of Neurog3 and parietal cells. FOXO1 deletion ex vivo or in vivo using Neurog3-cre or Atp4b-cre increased numbers of parietal cells, generated insulin- and C-peptide-immunoreactive cells, and raised Neurog3 messenger RNA. Gene expression and ChIP- seq experiments identified the cell cycle regulator cyclin E1 (CCNE1) as a FOXO1 target. CONCLUSION FOXO1 is expressed in a subset of stomach cells. Its ablation increases parietal cells and yields insulin-immunoreactive cells, consistent with a role in lineage determination.
Collapse
Affiliation(s)
- Wendy M. McKimpson
- Division of Endocrinology, Department of Medicine, Columbia University, New York, New York
- Naomi Berrie Diabetes Center, Columbia University, New York, New York
| | - Taiyi Kuo
- Division of Endocrinology, Department of Medicine, Columbia University, New York, New York
- Naomi Berrie Diabetes Center, Columbia University, New York, New York
| | - Takumi Kitamoto
- Division of Endocrinology, Department of Medicine, Columbia University, New York, New York
- Naomi Berrie Diabetes Center, Columbia University, New York, New York
| | - Sei Higuchi
- Naomi Berrie Diabetes Center, Columbia University, New York, New York
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Jason C. Mills
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Rebecca A. Haeusler
- Naomi Berrie Diabetes Center, Columbia University, New York, New York
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Domenico Accili
- Division of Endocrinology, Department of Medicine, Columbia University, New York, New York
- Naomi Berrie Diabetes Center, Columbia University, New York, New York
| |
Collapse
|
16
|
Chung YJ, Salvi A, Kalailingam P, Alnawaz M, Tan SH, Pan JY, Tan NS, Thanabalu T. N-WASP Attenuates Cell Proliferation and Migration through ERK2-Dependent Enhanced Expression of TXNIP. BIOLOGY 2022; 11:biology11040582. [PMID: 35453780 PMCID: PMC9029996 DOI: 10.3390/biology11040582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/10/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Neural Wiskott–Aldrich Syndrome Protein (N-WASP) regulates actin cytoskeleton remodeling and can, it has been suggested, suppress several cancers. In this study, HSC-5 cells, a mammalian cell line with reduced N-WASP expression, were used to generate control cells and HSC-5 cells with increased N-WASP expression that is comparable to that of normal keratinocytes. The two cell lines were used to elucidate the regulation of cell proliferation and migration by N-WASP. Our findings suggest that N-WASP increases ERK2-dependent phosphorylation of FOXO1 and increases TXNIP expression, which reduces cell proliferation and migration. This study is the first to propose an antiproliferative role of N-WASP, which is mediated via ERK2, and it suggests new avenues for cancer therapeutic research and treatment. Abstract Neural Wiskott–Aldrich Syndrome Protein (N-WASP) regulates actin cytoskeleton remodeling. It has been known that reduced N-WASP expression in breast and colorectal cancers is associated with poor prognosis. Here, we found reduced N-WASP expression in squamous cell carcinoma (SCC) patient samples. The SCC cell line HSC-5 with reduced N-WASP expression was used to generate HSC-5CN (control) and HSC-5NW (N-WASP overexpression) cells. HSC-5NW cells had reduced cell proliferation and migration compared to HSC-5CN cells. HSC-5NW cells had increased phospho-ERK2 (extracellular signal-regulated kinase 2), phosphorylated Forkhead box protein class O1 (FOXO1) and reduced nuclear FOXO1 staining compared to HSC-5CN cells. Proteasome inhibition stabilized total FOXO1, however, not nuclear staining, suggesting that FOXO1 could be degraded in the cytoplasm. Inhibition of ERK2 enhanced nuclear FOXO1 levels and restored cell proliferation and migration of HSC-5NW to those of HSC-5CN cells, suggesting that ERK2 regulates FOXO1 activity. The expression of thioredoxin-interacting protein (TXNIP), a FOXO1 target that inhibits thioredoxin and glucose uptake, was higher in HSC-5NW cells than in HSC-5CN cells. Knockdown of TXNIP in HSC-5NW cells restored cell proliferation and migration to those of HSC-5CN cells. Thus, we propose that N-WASP regulates cell proliferation and migration via an N-WASP-ERK2-FOXO1-TXNIP pathway.
Collapse
Affiliation(s)
- Yat Joong Chung
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (Y.J.C.); (A.S.); (P.K.); (M.A.); (N.S.T.)
| | - Amrita Salvi
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (Y.J.C.); (A.S.); (P.K.); (M.A.); (N.S.T.)
| | - Pazhanichamy Kalailingam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (Y.J.C.); (A.S.); (P.K.); (M.A.); (N.S.T.)
| | - Myra Alnawaz
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (Y.J.C.); (A.S.); (P.K.); (M.A.); (N.S.T.)
| | - Suat Hoon Tan
- National Skin Centre, 1 Mandalay Road, Singapore 308205, Singapore; (S.H.T.); (J.Y.P.)
| | - Jiun Yit Pan
- National Skin Centre, 1 Mandalay Road, Singapore 308205, Singapore; (S.H.T.); (J.Y.P.)
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (Y.J.C.); (A.S.); (P.K.); (M.A.); (N.S.T.)
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore
| | - Thirumaran Thanabalu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (Y.J.C.); (A.S.); (P.K.); (M.A.); (N.S.T.)
- Correspondence: ; Tel.: +65-6316-2832; Fax: +65-6791-3856
| |
Collapse
|
17
|
Linton MF, Yancey PG, Leuthner ZM, Brown JD. The FoxOs are in the ApoM house. J Clin Invest 2022; 132:158471. [PMID: 35362476 PMCID: PMC8970665 DOI: 10.1172/jci158471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The prevalence of metabolic syndrome continues to increase globally and heightens the risk for cardiovascular disease (CVD). Insulin resistance is a core pathophysiologic mechanism that causes abnormal carbohydrate metabolism and atherogenic changes in circulating lipoprotein quantity and function. In particular, dysfunctional HDL is postulated to contribute to CVD risk in part via loss of HDL-associated sphingosine-1-phosphate (S1P). In this issue of the JCI, Izquierdo et al. demonstrate that HDL from humans with insulin resistance contained lower levels of S1P. Apolipoprotein M (ApoM), a protein constituent of HDL that binds S1P and controls bioavailability was decreased in insulin-resistant db/db mice. Gain- and loss-of-function mouse models implicated the forkhead box O transcription factors (FoxO1,3,4) in the regulation of both ApoM and HDL-associated S1P. These data have important implications for potential FoxO-based therapies designed to treat lipid and carbohydrate abnormalities associated with human metabolic disease and CVD.
Collapse
Affiliation(s)
- MacRae F Linton
- Department of Medicine, Atherosclerosis Research Unit, Division of Cardiovascular Medicine and.,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Patricia G Yancey
- Department of Medicine, Atherosclerosis Research Unit, Division of Cardiovascular Medicine and
| | - Zoe M Leuthner
- Department of Medicine, Atherosclerosis Research Unit, Division of Cardiovascular Medicine and
| | - Jonathan D Brown
- Department of Medicine, Atherosclerosis Research Unit, Division of Cardiovascular Medicine and
| |
Collapse
|
18
|
Ketzer F, Abdelrasoul H, Vogel M, Marienfeld R, Müschen M, Jumaa H, Wirth T, Ushmorov A. CCND3 is indispensable for the maintenance of B-cell acute lymphoblastic leukemia. Oncogenesis 2022; 11:1. [PMID: 35013097 PMCID: PMC8748974 DOI: 10.1038/s41389-021-00377-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/08/2021] [Accepted: 12/22/2021] [Indexed: 12/30/2022] Open
Abstract
The D-type cyclins (CCND1, CCND2, and CCND3) in association with CDK4/6 are known drivers of cell cycle progression. We reported previously that inactivation of FOXO1 confers growth arrest and apoptosis in B-ALL, partially mediated by subsequent depletion of CCND3. Given that previously the canonical MYC target CCND2 has been considered to play the major role in B-ALL proliferation, further investigation of the role of FOXO1 in CCND3 transcription and the role of CCND3 in B-ALL is warranted. In this study, we demonstrated that CCND3 is essential for the proliferation and survival of B-ALL, independent of the mutational background. Respectively, its expression at mRNA level exceeds that of CCND1 and CCND2. Furthermore, we identified FOXO1 as a CCND3-activating transcription factor in B-ALL. By comparing the effects of CCND3 depletion and CDK4/6 inhibition by palbociclib on B-ALL cells harboring different driver mutations, we found that the anti-apoptotic effect of CCND3 is independent of the kinase activity of the CCND3-CDK4/6 complex. Moreover, we found that CCND3 contributes to CDK8 transcription, which in part might explain the anti-apoptotic effect of CCND3. Finally, we found that increased CCND3 expression is associated with the development of resistance to palbociclib. We conclude that CCND3 plays an essential role in the maintenance of B-ALL, regardless of the underlying driver mutation. Moreover, downregulation of CCND3 expression might be superior to inhibition of CDK4/6 kinase activity in terms of B-ALL treatment.
Collapse
Affiliation(s)
- Franz Ketzer
- grid.6582.90000 0004 1936 9748Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Hend Abdelrasoul
- grid.410712.10000 0004 0473 882XInstitute of Immunology, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Mona Vogel
- grid.6582.90000 0004 1936 9748Institute of Molecular Medicine, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Ralf Marienfeld
- grid.410712.10000 0004 0473 882XInstitute of Pathology, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Markus Müschen
- grid.47100.320000000419368710Center of Molecular and Cellular Oncology, Yale School of Medicine, 300 George Street, 06520 New Haven, CT USA
| | - Hassan Jumaa
- grid.410712.10000 0004 0473 882XInstitute of Immunology, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Thomas Wirth
- grid.6582.90000 0004 1936 9748Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Alexey Ushmorov
- grid.6582.90000 0004 1936 9748Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
19
|
Kitamoto T, Kuo T, Okabe A, Kaneda A, Accili D. An integrative transcriptional logic model of hepatic insulin resistance. Proc Natl Acad Sci U S A 2021; 118:e2102222118. [PMID: 34732569 PMCID: PMC8609333 DOI: 10.1073/pnas.2102222118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2021] [Indexed: 12/27/2022] Open
Abstract
Abnormalities of lipid/lipoprotein and glucose metabolism are hallmarks of hepatic insulin resistance in type 2 diabetes. The former antedate the latter, but the latter become progressively refractory to treatment and contribute to therapeutic failures. It's unclear whether the two processes share a common pathogenesis and what underlies their progressive nature. In this study, we investigated the hypothesis that genes in the lipid/lipoprotein pathway and those in the glucose metabolic pathway are governed by different transcriptional regulatory logics that affect their response to physiologic (fasting/refeeding) as well as pathophysiologic cues (insulin resistance and hyperglycemia). To this end, we obtained genomic and transcriptomic maps of the key insulin-regulated transcription factor, FoxO1, and integrated them with those of CREB, PPAR-α, and glucocorticoid receptor. We found that glucose metabolic genes are primarily regulated by promoter and intergenic enhancers in a fasting-dependent manner, while lipid genes are regulated through fasting-dependent intron enhancers and fasting-independent enhancerless introns. Glucose genes also showed a remarkable transcriptional resiliency (i.e., the ability to compensate following constitutive FoxO1 ablation through an enrichment of active marks at shared PPAR-α/FoxO1 regulatory elements). Unexpectedly, insulin resistance and hyperglycemia were associated with a "spreading" of FoxO1 binding to enhancers and the emergence of unique target sites. We surmise that this unusual pattern correlates with the progressively intractable nature of hepatic insulin resistance. This transcriptional logic provides an integrated model to interpret the combined lipid and glucose abnormalities of type 2 diabetes.
Collapse
Affiliation(s)
- Takumi Kitamoto
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032;
- Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Taiyi Kuo
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Atsushi Okabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| | - Domenico Accili
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
20
|
Præstholm SM, Correia CM, Goitea VE, Siersbæk MS, Jørgensen M, Havelund JF, Pedersen TÅ, Færgeman NJ, Grøntved L. Impaired glucocorticoid receptor expression in liver disrupts feeding-induced gene expression, glucose uptake, and glycogen storage. Cell Rep 2021; 37:109938. [PMID: 34731602 DOI: 10.1016/j.celrep.2021.109938] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/08/2021] [Accepted: 10/13/2021] [Indexed: 10/19/2022] Open
Abstract
The transition from a fasted to a fed state is associated with extensive transcriptional remodeling in hepatocytes facilitated by hormonal- and nutritional-regulated transcription factors. Here, we use a liver-specific glucocorticoid receptor (GR) knockout (L-GRKO) model to investigate the temporal hepatic expression of GR target genes in response to feeding. Interestingly, in addition to the well-described fasting-regulated genes, we identify a subset of hepatic feeding-induced genes that requires GR for full expression. This includes Gck, which is important for hepatic glucose uptake, utilization, and storage. We show that insulin and glucocorticoids cooperatively regulate hepatic Gck expression in a direct GR-dependent manner by a 4.6 kb upstream GR binding site operating as a Gck enhancer. L-GRKO blunts preprandial and early postprandial Gck expression, which ultimately affects early postprandial hepatic glucose uptake, phosphorylation, and glycogen storage. Thus, GR is positively involved in feeding-induced gene expression and important for postprandial glucose metabolism in the liver.
Collapse
Affiliation(s)
- Stine M Præstholm
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Catarina M Correia
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Victor E Goitea
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Majken S Siersbæk
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Mathilde Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Jesper F Havelund
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | | | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Lars Grøntved
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark.
| |
Collapse
|
21
|
Stöhr O, Tao R, Miao J, Copps KD, White MF. FoxO1 suppresses Fgf21 during hepatic insulin resistance to impair peripheral glucose utilization and acute cold tolerance. Cell Rep 2021; 34:108893. [PMID: 33761350 PMCID: PMC8529953 DOI: 10.1016/j.celrep.2021.108893] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/22/2020] [Accepted: 03/02/2021] [Indexed: 12/28/2022] Open
Abstract
Fgf21 (fibroblast growth factor 21) is a regulatory hepatokine that, in pharmacologic form, powerfully promotes weight loss and glucose homeostasis. Although "Fgf21 resistance" is inferred from higher plasma Fgf21 levels in insulin-resistant mice and humans, diminished Fgf21 function is understood primarily via Fgf21 knockout mice. By contrast, we show that modestly reduced Fgf21-owing to cell-autonomous suppression by hepatic FoxO1-contributes to dysregulated metabolism in LDKO mice (Irs1L/L⋅Irs2L/L⋅CreAlb), a model of severe hepatic insulin resistance caused by deletion of hepatic Irs1 (insulin receptor substrate 1) and Irs2. Knockout of hepatic Foxo1 in LDKO mice or direct restoration of Fgf21 by adenoviral infection restored glucose utilization by BAT (brown adipose tissue) and skeletal muscle, normalized thermogenic gene expression in LDKO BAT, and corrected acute cold intolerance of LDKO mice. These studies highlight the Fgf21-dependent plasticity and importance of BAT function to metabolic health during hepatic insulin resistance.
Collapse
Affiliation(s)
- Oliver Stöhr
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Rongya Tao
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Ji Miao
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Kyle D Copps
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Morris F White
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
22
|
Zhang JL, Fu SJ, Chen SJ, Chen HH, Liu YL, Liu XY, Xu HJ. Vestigial mediates the effect of insulin signaling pathway on wing-morph switching in planthoppers. PLoS Genet 2021; 17:e1009312. [PMID: 33561165 PMCID: PMC7899339 DOI: 10.1371/journal.pgen.1009312] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/22/2021] [Accepted: 12/14/2020] [Indexed: 01/16/2023] Open
Abstract
Wing polymorphism is an evolutionary feature found in a wide variety of insects, which offers a model system for studying the evolutionary significance of dispersal. In the wing-dimorphic planthopper Nilaparvata lugens, the insulin/insulin-like growth factor signaling (IIS) pathway acts as a ‘master signal’ that directs the development of either long-winged (LW) or short-winged (SW) morphs via regulation of the activity of Forkhead transcription factor subgroup O (NlFoxO). However, downstream effectors of the IIS–FoxO signaling cascade that mediate alternative wing morphs are unclear. Here we found that vestigial (Nlvg), a key wing-patterning gene, is selectively and temporally regulated by the IIS–FoxO signaling cascade during the wing-morph decision stage (fifth-instar stage). RNA interference (RNAi)-mediated silencing of Nlfoxo increase Nlvg expression in the fifth-instar stage (the last nymphal stage), thereby inducing LW development. Conversely, silencing of Nlvg can antagonize the effects of IIS activity on LW development, redirecting wing commitment from LW to the morph with intermediate wing size. In vitro and in vivo binding assays indicated that NlFoxO protein may suppress Nlvg expression by directly binding to the first intron region of the Nlvg locus. Our findings provide a first glimpse of the link connecting the IIS pathway to the wing-patterning network on the developmental plasticity of wings in insects, and help us understanding how phenotypic diversity is generated by the modification of a common set of pattern elements. Many insects are capable of developing into either long-winged or short-winged adults, but the underlying molecular basis remains largely unknown. Pioneer studies showed that the insulin/insulin-like growth factor signaling pathway acts as a ‘master signal’ that directs wing buds to develop into long or short wings in the wing-dimorphic planthopper, Nilaparvata lugens. However, downstream effectors mediating the IIS pathway effects are unknown. Our findings highlight that vestigial, a key wing-patterning gene, is a main downstream effector that mediates the IIS activity on the development of alternative wing morphs during the wing-morph decision stage. The molecular mechanism of wing formation, including the function of vestigial, has been studied in great depth in the model insect Drosophila melanogaster. Our data provide a first glimpse of the link connecting the IIS pathway to the wing-patterning network in regulating developmental plasticity of wings in insects.
Collapse
Affiliation(s)
- Jin-Li Zhang
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Sheng-Jie Fu
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Sun-Jie Chen
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hao-Hao Chen
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yi-Lai Liu
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xin-Yang Liu
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hai-Jun Xu
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- State Key laboratory of Rice Biology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
23
|
Uchida Y, Ferdousi F, Zheng YW, Oda T, Isoda H. Global Gene Expression Profiling Reveals Isorhamnetin Induces Hepatic-Lineage Specific Differentiation in Human Amniotic Epithelial Cells. Front Cell Dev Biol 2020; 8:578036. [PMID: 33224947 PMCID: PMC7674172 DOI: 10.3389/fcell.2020.578036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Human amnion epithelial cells (hAECs), derived from discarded term placenta, is anticipated as a new stem cell resource because of their advantages over embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), such as no risk of tumorigenicity and minimal ethical issue. hAECs have been reported to differentiate into hepatic-like cells (HLCs) with variable functionalities suitable for cell-based therapy of end-stage liver diseases, drug screening, and drug toxicity tests. On the other hand, a new research stream has been evolving to use natural compounds as stimulants of stem cell differentiation because of their high availability and minimum side effects. Isorhamnetin is a naturally occurring flavonoid commonly found in fruits and vegetables and has been reported to improve hepatic fibrosis and steatosis. In this present study, we have screened the differentiation potential of isorhamnetin in hAECs. The cells were grown on 3D cell culture and were treated with 20 μM of synthesized isorhamnetin for 10 days without adding any additional growth factors. DNA microarray global gene expression analysis was conducted for differentially expressed genes between isorhamnetin-treated and untreated control cells, gene expression validation was carried out using RT-qPCR method, and finally, several hepatic functions were assessed. Microarray analysis showed that isorhamnetin could activate essential biological processes, molecular functions, and signaling pathways for hepatic differentiation. Hepatic progenitor markers, EPCAM and DLK1, were upregulated in the isorhamnetin-treated hAECs. AFP was downregulated, while ALB was upregulated on Day 10. Furthermore, isorhamnetin-treated cells could show increased CYP enzyme mRNA levels, ICG uptake and release, glycogen storage activity, and urea secretion. Additionally, isorhamnetin-treated cells did not show any trace of transdifferentiation evident by significant downregulation of several colon- and cholangiocyte-specific markers. However, longer treatment with isorhamnetin did not promote hepatic maturation. Altogether, our findings indicate that isorhamnetin has a promising effect on directing the hepatic-lineage specific differentiation in hAECs.
Collapse
Affiliation(s)
- Yoshiaki Uchida
- School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba, Japan
| | - Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
| | - Yun-Wen Zheng
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tatsuya Oda
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroko Isoda
- School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
24
|
Pfleger J, Coleman RC, Ibetti J, Roy R, Kyriazis ID, Gao E, Drosatos K, Koch WJ. Genomic Binding Patterns of Forkhead Box Protein O1 Reveal Its Unique Role in Cardiac Hypertrophy. Circulation 2020; 142:882-898. [PMID: 32640834 DOI: 10.1161/circulationaha.120.046356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Cardiac hypertrophic growth is mediated by robust changes in gene expression and changes that underlie the increase in cardiomyocyte size. The former is regulated by RNA polymerase II (pol II) de novo recruitment or loss; the latter involves incremental increases in the transcriptional elongation activity of pol II that is preassembled at the transcription start site. The differential regulation of these distinct processes by transcription factors remains unknown. Forkhead box protein O1 (FoxO1) is an insulin-sensitive transcription factor that is also regulated by hypertrophic stimuli in the heart. However, the scope of its gene regulation remains unexplored. METHODS To address this, we performed FoxO1 chromatin immunoprecipitation-deep sequencing in mouse hearts after 7 days of isoproterenol injections (3 mg·kg-1·mg-1), transverse aortic constriction, or vehicle injection/sham surgery. RESULTS Our data demonstrate increases in FoxO1 chromatin binding during cardiac hypertrophic growth, which positively correlate with extent of hypertrophy. To assess the role of FoxO1 on pol II dynamics and gene expression, the FoxO1 chromatin immunoprecipitation-deep sequencing results were aligned with those of pol II chromatin immunoprecipitation-deep sequencing across the chromosomal coordinates of sham- or transverse aortic constriction-operated mouse hearts. This uncovered that FoxO1 binds to the promoters of 60% of cardiac-expressed genes at baseline and 91% after transverse aortic constriction. FoxO1 binding is increased in genes regulated by pol II de novo recruitment, loss, or pause-release. In vitro, endothelin-1- and, in vivo, pressure overload-induced cardiomyocyte hypertrophic growth is prevented with FoxO1 knockdown or deletion, which was accompanied by reductions in inducible genes, including Comtd1 in vitro and Fstl1 and Uck2 in vivo. CONCLUSIONS Together, our data suggest that FoxO1 may mediate cardiac hypertrophic growth via regulation of pol II de novo recruitment and pause-release; the latter represents the majority (59%) of FoxO1-bound, pol II-regulated genes after pressure overload. These findings demonstrate the breadth of transcriptional regulation by FoxO1 during cardiac hypertrophy, information that is essential for its therapeutic targeting.
Collapse
Affiliation(s)
- Jessica Pfleger
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Ryan C Coleman
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Jessica Ibetti
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Rajika Roy
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Ioannis D Kyriazis
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Erhe Gao
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Konstantinos Drosatos
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Walter J Koch
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| |
Collapse
|
25
|
Buzelle SL, Przygodda F, Rossi-Valentim R, Ferreira GN, Garófalo MAR, Alves VM, Chaves VE, Navegantes LCC, Kettelhut IDC. Activation of adipose tissue glycerokinase contributes to increased white adipose tissue mass in mice fed a high-fat diet. Endocrine 2020; 69:79-91. [PMID: 32297203 DOI: 10.1007/s12020-020-02288-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/25/2020] [Indexed: 01/04/2023]
Abstract
PURPOSE Investigate the pathways of glycerol-3-P (G3P) generation for triacylglycerol (TAG) synthesis in retroperitoneal (RWAT) and epididymal (EWAT) white adipose tissues from high-fat diet (HFD)-fed mice. METHODS Mice were fed for 8 weeks a HFD and glycolysis, glyceroneogenesis and direct phosphorylation of glycerol were evaluated, respectively, by 2-deoxyglucose uptake, phosphoenolpyruvate carboxykinase (PEPCK-C) activity and pyruvate incorporation into TAG-glycerol, and glycerokinase activity and glycerol incorporation into TAG-glycerol in both tissues. RESULTS HFD increased body and adipose tissue mass and serum levels of glucose and insulin, which were accompanied by glucose intolerance. RWAT and EWAT from HFD-fed mice had increased rates of de novo fatty acid (FA) synthesis (52% and 255%, respectively). HFD increased lipoprotein lipase (LPL) activity and content in EWAT (107%), but decreased in RWAT (79%). HFD decreased the lipolytic response to norepinephrine (57%, RWAT and 25%, EWAT), β3-adrenoceptor content (50%), which was accompanied by a decrease in phosphorylated-hormone-sensitive lipase (~80%) and phosphorylated-adipocyte triacylglycerol lipase (~60%) in both tissues. HFD decreased the in vitro rates of glucose uptake (3.5- and 6-fold), as well as in glyceride-glycerol synthesis from pyruvate (~3.5-fold) without changes in PEPCK-C activity and content in RWAT and EWAT, but increased glycerokinase activity(~3-fold) and content (90 and 40%) in both tissues. CONCLUSION The data suggest that direct phosphorylation of glycerol by glycerokinase may be responsible for maintaining the supply of G3P for the existing rates of FA esterification and TAG synthesis in RWAT and EWAT from HFD-fed mice, contributing, along with a lower lipolytic response to norepinephrine, to higher adiposity.
Collapse
Affiliation(s)
- Samyra Lopes Buzelle
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Franciele Przygodda
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rafael Rossi-Valentim
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | - Vani Maria Alves
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Valéria Ernestânia Chaves
- Laboratory of Physiology, Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil.
| | | | - Isis do Carmo Kettelhut
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
26
|
Weber P, Flores RE, Kiefer MF, Schupp M. Retinol Saturase: More than the Name Suggests. Trends Pharmacol Sci 2020; 41:418-427. [PMID: 32345479 DOI: 10.1016/j.tips.2020.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022]
Abstract
Retinol saturase (RetSat) is an oxidoreductase that is expressed in metabolically active tissues and is highly regulated in conditions related to insulin resistance and type 2 diabetes. Thus far, RetSat has been implicated in adipocyte differentiation, hepatic glucose and lipid metabolism, macrophage function, vision, and the generation of reactive oxygen species (ROS). Although initially described to transform retinol to 13,14-dihydroretinol, a function it was named after, alternative enzymatic reactions may underlie some of these biological effects. We summarize recent findings and identify major obstacles standing in the way of its pharmacological exploitation, how we might overcome these, and discuss the therapeutic potential of modulating the activity of RetSat in alleviating human pathologies.
Collapse
Affiliation(s)
- Pamela Weber
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Center for Cardiovascular Research, 10115 Berlin, Germany
| | - Roberto E Flores
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Center for Cardiovascular Research, 10115 Berlin, Germany
| | - Marie F Kiefer
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Center for Cardiovascular Research, 10115 Berlin, Germany
| | - Michael Schupp
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Center for Cardiovascular Research, 10115 Berlin, Germany.
| |
Collapse
|
27
|
Schmitt-Ney M. The FOXO's Advantages of Being a Family: Considerations on Function and Evolution. Cells 2020; 9:E787. [PMID: 32214027 PMCID: PMC7140813 DOI: 10.3390/cells9030787] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/16/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
The nematode Caenorhabditis elegans possesses a unique (with various isoforms) FOXO transcription factor DAF-16, which is notorious for its role in aging and its regulation by the insulin-PI3K-AKT pathway. In humans, five genes (including a protein-coding pseudogene) encode for FOXO transcription factors that are targeted by the PI3K-AKT axis, such as in C. elegans. This common regulation and highly conserved DNA-binding domain are the pillars of this family. In this review, I will discuss the possible meaning of possessing a group of very similar proteins and how it can generate additional functionality to more complex organisms. I frame this discussion in relation to the much larger super family of Forkhead proteins to which they belong. FOXO members are very often co-expressed in the same cell type. The overlap of function and expression creates a certain redundancy that might be a safeguard against the accidental loss of FOXO function, which could otherwise lead to disease, particularly, cancer. This is one of the points that will be examined in this "family affair" report.
Collapse
Affiliation(s)
- Michel Schmitt-Ney
- Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| |
Collapse
|
28
|
Sasaki B, Uemoto S, Kawaguchi Y. Transient FOXO1 inhibition in pancreatic endoderm promotes the generation of NGN3+ endocrine precursors from human iPSCs. Stem Cell Res 2020; 44:101754. [PMID: 32179491 DOI: 10.1016/j.scr.2020.101754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/24/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
In the multi-step differentiation protocol used to generate pancreatic endocrine cells from human pluripotent stem cells, the induction of NGN3+ endocrine precursors from the PDX1+/NKX6.1+ pancreatic endoderm is crucial for efficient endocrine cell production. Here, we demonstrate that transient, not prolonged FOXO1 inhibition results in enhanced NGN3+ endocrine precursors and hormone-producing cell production. FOXO1 inhibition does not directly induce NGN3 expression but stimulates PDX1+/NKX6.1+ cell proliferation. NOTCH activity, whose suppression is important for Ngn3 expression, is not suppressed but Wnt signaling is stimulated by FOXO1 inhibition. Reversely, Wnt inhibition suppresses the effects of FOXO1 inhibitor. These findings indicate that FOXO1 and Wnt are involved in regulating the proliferation of PDX1+/NKX6.1+ pancreatic endoderm that gives rise to NGN3+ endocrine precursors.
Collapse
Affiliation(s)
- Ben Sasaki
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shinji Uemoto
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yoshiya Kawaguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
29
|
Abstract
Generation of the autacoid all-trans-retinoic acid (ATRA) from retinol (vitamin A) relies on a complex metabolon that includes retinol binding-proteins and enzymes from the short-chain dehydrogenase/reductase and aldehyde dehydrogenase gene families. Serum retinol binding-protein delivers all-trans-retinol (vitamin A) from blood to cells through two membrane receptors, Stra6 and Rbpr2. Stra6 and Rbpr2 convey retinol to cellular retinol binding-protein type 1 (Crbp1). Holo-Crbp1 delivers retinol to lecithin: retinol acyl transferase (Lrat) for esterification and storage. Lrat channels retinol directly into its active site from holo-Crbp1 by protein-protein interaction. The ratio apo-Crbp1/holo-Crbp1 directs flux of retinol into and out of retinyl esters, through regulating esterification vs ester hydrolysis. Multiple retinol dehydrogenases (Rdh1, Rdh10, Dhrs9, Rdhe2, Rdhe2s) channel retinol from holo-Crbp1 to generate retinal for ATRA biosynthesis. β-Carotene oxidase type 1 generates retinal from carotenoids, delivered by the scavenger receptor-B1. Retinal reductases (Dhrs3, Dhrs4, Rdh11) reduce retinal into retinol, thereby restraining ATRA biosynthesis. Retinal dehydrogenases (Raldh1, 2, 3) dehydrogenate retinal irreversibly into ATRA. ATRA regulates its own concentrations by inducing Lrat and ATRA degradative enzymes. ATRA exhibits hormesis. Its effects relate to its concentration as an inverted J-shaped curve, transitioning from beneficial in the "goldilocks" zone to toxicity, as concentrations increase. Hormesis has distorted understanding physiological effects of ATRA post-nataly using chow-diet fed, ATRA-dosed animal models. Cancer, immune deficiency and metabolic abnormalities result from mutations and/or insufficiency in Crbp1 and retinoid metabolizing enzymes.
Collapse
Affiliation(s)
- Joseph L Napoli
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, CA, United States.
| |
Collapse
|
30
|
Kilicarslan M, de Weijer BA, Simonyté Sjödin K, Aryal P, Ter Horst KW, Cakir H, Romijn JA, Ackermans MT, Janssen IM, Berends FJ, van de Laar AW, Houdijk AP, Kahn BB, Serlie MJ. RBP4 increases lipolysis in human adipocytes and is associated with increased lipolysis and hepatic insulin resistance in obese women. FASEB J 2020; 34:6099-6110. [PMID: 32167208 PMCID: PMC7317205 DOI: 10.1096/fj.201901979rr] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 12/18/2022]
Abstract
Retinol‐binding protein‐4 (RBP4) is elevated in serum and adipose tissue (AT) in obesity‐induced insulin resistance and correlates inversely with insulin‐stimulated glucose disposal. But its role in insulin‐mediated suppression of lipolysis, free fatty acids (FFA), and endogenous glucose production (EGP) in humans is unknown. RBP4 mRNA or protein levels were higher in liver, subcutaneous adipose tissue (SAT), and visceral adipose tissue (VAT) in morbidly obese subjects undergoing Roux‐en‐Y gastric bypass surgery compared to lean controls undergoing elective laparoscopic cholecystectomy. RBP4 mRNA expression in SAT correlated with the expression of several macrophage and other inflammation markers. Serum RBP4 levels correlated inversely with glucose disposal and insulin‐mediated suppression of lipolysis, FFA, and EGP. Mechanistically, RBP4 treatment of human adipocytes in vitro directly stimulated basal lipolysis. Treatment of adipocytes with conditioned media from RBP4‐activated macrophages markedly increased basal lipolysis and impaired insulin‐mediated lipolysis suppression. RBP4 treatment of macrophages increased TNFα production. These data suggest that elevated serum or adipose tissue RBP4 levels in morbidly obese subjects may cause hepatic and systemic insulin resistance by stimulating basal lipolysis and by activating macrophages in adipose tissue, resulting in release of pro‐inflammatory cytokines that impair lipolysis suppression. While we have demonstrated this mechanism in human adipocytes in vitro, and correlations from our flux studies in humans strongly support this, further studies are needed to determine whether this mechanism explains RBP4‐induced insulin resistance in humans.
Collapse
Affiliation(s)
- Murat Kilicarslan
- Department of Endocrinology & Metabolism, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Barbara A de Weijer
- Department of Endocrinology & Metabolism, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Kotryna Simonyté Sjödin
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Pratik Aryal
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kasper W Ter Horst
- Department of Endocrinology & Metabolism, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Hamit Cakir
- Department of Surgery, Northwest Clinics, Alkmaar, the Netherlands
| | - Johannes A Romijn
- Department of Endocrinology & Metabolism, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Mariëtte T Ackermans
- Clinical Chemistry, Laboratory of Endocrinology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Ignace M Janssen
- Department of Surgery, Rijnstate Hospital, Arnhem, the Netherlands
| | - Frits J Berends
- Department of Surgery, Rijnstate Hospital, Arnhem, the Netherlands
| | | | | | - Barbara B Kahn
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mireille J Serlie
- Department of Endocrinology & Metabolism, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| |
Collapse
|
31
|
Gu L, Ding X, Wang Y, Gu M, Zhang J, Yan S, Li N, Song Z, Yin J, Lu L, Peng Y. Spexin alleviates insulin resistance and inhibits hepatic gluconeogenesis via the FoxO1/PGC-1α pathway in high-fat-diet-induced rats and insulin resistant cells. Int J Biol Sci 2019; 15:2815-2829. [PMID: 31853220 PMCID: PMC6909969 DOI: 10.7150/ijbs.31781] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 09/23/2019] [Indexed: 01/19/2023] Open
Abstract
Objective: Recent studies demonstrate circulating serum spexin levels are reduced in obesity or type 2 diabetes mellitus (T2DM) patients and may play a role in glucose metabolism. The mechanism underlying is not known. In this study, we explore whether spexin has a role in insulin resistance and hepatic glucose metabolism. Methods: The correlation between serum spexin levels and the homeostasis model assessment of insulin resistance (HOMA-IR) was studied in newly diagnosed T2DM patients. After intraperitoneal injection of exogenous spexin for 8 weeks, the effect of spexin on exogenous glucose infusion rates (GIR), and hepatic glucose production (HGP) were assessed by extended hyperinsulinemic-euglycemic clamp in high-fat-diet (HFD)-induced rats. Glucose concentration with CRISPR/Cas9-mediated disruption of spexin expression in HepG2 cells culture was observed. Expression of transcription factors (Forkhead box O1, FoxO1 and peroxisome proliferator-activated receptor gamma coactivator 1-alpha, PGC-1α) and key enzymes (G-6-Pase and PEPCK) of gluconeogenesis pathway were observed in vitro and in vivo. Results: The serum spexin level was significantly low in newly diagnosed T2DM patients as compared with healthy patients and significantly negatively correlated with the HOMA-IR values. Exogenous spexin treatment resulted in weight loss and decrease of HOMA-IR value in high-fat-diet (HFD)-induced rats. The exogenous glucose infusion rates (GIR) were higher in the HFD + spexin group than that in the HFD group (358 ± 32 vs. 285 ± 24 μmol/kg/min, P < 0.05). Steady-state hepatic glucose production (HGP) was also suppressed by ~50% in the HFD + spexin group as compared with that in the HFD group. Furthermore, spexin inhibited gluconeogenesis in dose-dependent and time-dependent manner in the insulin-resistant cell model. CRISPR/Cas9-mediated knockdown of spexin in HepG2 cells activated gluconeogenesis. Moreover, spexin was shown regulating gluconeogenesis by inhibiting FoxO1/PGC-1α pathway, and key gluconeogenic enzymes, (PEPCK and G-6-Pase) in both HFD-induced rats and insulin-resistant cells. Conclusions: Spexin plays an important role in insulin resistance in HFD-induced rats and insulin-resistant cells. Regulation of the effects of spexin on insulin resistance may hold therapeutic value for metabolic diseases.
Collapse
Affiliation(s)
- Liping Gu
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoying Ding
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufan Wang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingyu Gu
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jielei Zhang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuai Yan
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na Li
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyi Song
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajing Yin
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Leilei Lu
- Shanghai Intertek Medical diagnostic Testing Center Co; Ltd, Shanghai 200436, China.,School of Pharmaceutical Engineering& Life Science, Changzhou University, Changzhou, 213164 China
| | - Yongde Peng
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Identification of C2CD4A as a human diabetes susceptibility gene with a role in β cell insulin secretion. Proc Natl Acad Sci U S A 2019; 116:20033-20042. [PMID: 31527256 DOI: 10.1073/pnas.1904311116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Fine mapping and validation of genes causing β cell failure from susceptibility loci identified in type 2 diabetes genome-wide association studies (GWAS) poses a significant challenge. The VPS13C-C2CD4A-C2CD4B locus on chromosome 15 confers diabetes susceptibility in every ethnic group studied to date. However, the causative gene is unknown. FoxO1 is involved in the pathogenesis of β cell dysfunction, but its link to human diabetes GWAS has not been explored. Here we generated a genome-wide map of FoxO1 superenhancers in chemically identified β cells using 2-photon live-cell imaging to monitor FoxO1 localization. When parsed against human superenhancers and GWAS-derived diabetes susceptibility alleles, this map revealed a conserved superenhancer in C2CD4A, a gene encoding a β cell/stomach-enriched nuclear protein of unknown function. Genetic ablation of C2cd4a in β cells of mice phenocopied the metabolic abnormalities of human carriers of C2CD4A-linked polymorphisms, resulting in impaired insulin secretion during glucose tolerance tests as well as hyperglycemic clamps. C2CD4A regulates glycolytic genes, and notably represses key β cell "disallowed" genes, such as lactate dehydrogenase A We propose that C2CD4A is a transcriptional coregulator of the glycolytic pathway whose dysfunction accounts for the diabetes susceptibility associated with the chromosome 15 GWAS locus.
Collapse
|
33
|
Hancock ML, Meyer RC, Mistry M, Khetani RS, Wagschal A, Shin T, Ho Sui SJ, Näär AM, Flanagan JG. Insulin Receptor Associates with Promoters Genome-wide and Regulates Gene Expression. Cell 2019; 177:722-736.e22. [PMID: 30955890 PMCID: PMC6478446 DOI: 10.1016/j.cell.2019.02.030] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/07/2019] [Accepted: 02/19/2019] [Indexed: 02/08/2023]
Abstract
Insulin receptor (IR) signaling is central to normal metabolic control and dysregulated in prevalent chronic diseases. IR binds insulin at the cell surface and transduces rapid signaling via cytoplasmic kinases. However, mechanisms mediating long-term effects of insulin remain unclear. Here, we show that IR associates with RNA polymerase II in the nucleus, with striking enrichment at promoters genome-wide. The target genes were highly enriched for insulin-related functions including lipid metabolism and protein synthesis and diseases including diabetes, neurodegeneration, and cancer. IR chromatin binding was increased by insulin and impaired in an insulin-resistant disease model. Promoter binding by IR was mediated by coregulator host cell factor-1 (HCF-1) and transcription factors, revealing an HCF-1-dependent pathway for gene regulation by insulin. These results show that IR interacts with transcriptional machinery at promoters and identify a pathway regulating genes linked to insulin's effects in physiology and disease.
Collapse
Affiliation(s)
- Melissa L. Hancock
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,Present address: John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge,
MA, USA
| | - Rebecca C. Meyer
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,These authors contributed equally
| | - Meeta Mistry
- Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA,These authors contributed equally
| | - Radhika S. Khetani
- Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA,These authors contributed equally
| | - Alexandre Wagschal
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA,Present address: Exonics Therapeutics, Cambridge, MA, USA
| | - Taehwan Shin
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Shannan J. Ho Sui
- Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Anders M. Näär
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA,Present address: Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA
94720, USA
| | - John G. Flanagan
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA,Lead Contact,Correspondence:
| |
Collapse
|
34
|
Shin DJ, Joshi P, Shin DG, Wang L. Genome-Wide Analysis for Identifying FOXO Protein-Binding Sites. Methods Mol Biol 2019; 1890:193-203. [PMID: 30414155 DOI: 10.1007/978-1-4939-8900-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Forkhead box O (FOXO) proteins comprise a superfamily of transcription factors that play important roles in controlling various biological processes. Transcriptional control constitutes a crucial component in regulating complex biological processes. The identification of cis-regulatory elements is essential to understand the regulatory mechanism of gene expression. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) is widely used to identify the cis-regulatory elements of transcription factors and other DNA-binding proteins on a genome-wide level. It is a powerful tool to analyze the regulatory networks underlying the biological processes. Here, we describe a detailed protocol for preparing ChIP-seq samples that are used for sequencing and subsequent data analyses.
Collapse
Affiliation(s)
- Dong-Ju Shin
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA.
| | - Pujan Joshi
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, USA
| | - Dong-Guk Shin
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, USA
| | - Li Wang
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
35
|
Lundell LS, Massart J, Altıntaş A, Krook A, Zierath JR. Regulation of glucose uptake and inflammation markers by FOXO1 and FOXO3 in skeletal muscle. Mol Metab 2018; 20:79-88. [PMID: 30502001 PMCID: PMC6358548 DOI: 10.1016/j.molmet.2018.09.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/05/2018] [Accepted: 09/10/2018] [Indexed: 01/02/2023] Open
Abstract
Objective Forkhead box class O (FOXO) transcription factors regulate whole body energy metabolism, skeletal muscle mass, and substrate switching. FOXO1 and FOXO3 are highly abundant transcription factors, but their precise role in skeletal muscle metabolism has not been fully elucidated. Methods To elucidate the role of FOXO in skeletal muscle, dominant negative (dn) constructs for FOXO1 (FOXO1dn) or FOXO3 (FOXO3dn) were transfected by electroporation into mouse tibialis anterior muscle and glucose uptake, signal transduction, and gene expression profiles were assessed after an oral glucose tolerance test. Results were compared against contralateral control transfected muscle. Results FOXO1dn and FOXO3dn attenuated glucose uptake (35%, p < 0.01 and 20%, p < 0.05), GLUT4 protein (40%, p < 0.05 and 10%, p < 0.05), and subunits of the oxidative phosphorylation cascade. Intramuscular glycogen content was decreased (20%, p < 0.05) by FOXO3dn, but not FOXO1dn. Transcriptomic analysis revealed major pathways affected by FOXO1dn or FOXO3dn revolve around metabolism and inflammation. FOXO1dn increased Akt protein (140%, p < 0.001), p-AktSer473 (720%, p < 0.05) and p-AktThr308 (570%, p < 0.01), whereas FOXO3dn was without effect. FOXO1dn and FOXO3dn increased mTOR protein content (170% and 190%, p < 0.05), and p-p70S6KThr389 (420%, p < 0.01 and 300%, p < 0.01), while p-mTORSer2448 (500%, p < 0.01), was only increased by FOXO1dn. Chemokines and immune cell markers were robustly upregulated in skeletal muscle following the FOXOdn transfections, but not after control transfection. Conclusions FOXO1 and FOXO3 regulate glucose metabolism and markers of inflammation in skeletal muscle, implicating transcriptional control governing “immunometabolic” dynamics. FOXO1 and FOXO3 transcriptional activity regulates glucose uptake and inflammation. Inhibiting FOXO1 transcriptional activity affects more genes compared to FOXO3. Inhibiting FOXO1 and FOXO3 leads to similar pathway enrichment.
Collapse
Affiliation(s)
- Leonidas S Lundell
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Julie Massart
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Ali Altıntaş
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna Krook
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
36
|
Schill D, Nord J, Cirillo LA. FoxO1 and FoxA1/2 form a complex on DNA and cooperate to open chromatin at insulin-regulated genes. Biochem Cell Biol 2018; 97:118-129. [PMID: 30142277 DOI: 10.1139/bcb-2018-0104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We have previously shown that cooperative, interdependent binding by the pioneer factors FoxO1 and FoxA1/2 is required for recruitment of RNA polymerase II and H3K27 acetylation to the promoters of insulin-regulated genes. However, the underlying mechanisms are unknown. In this study, we demonstrate that, in HepG2 cells, FoxO1 and FoxA2 form a complex on DNA that is disrupted by insulin treatment. Insulin-mediated phosphorylation of FoxO1 and FoxA2 does not impair their cooperative binding to mononucleosome particles assembled from the IGFBP1 promoter, indicating that direct disruption of complex formation by phosphorylation is not responsible for the loss of interdependent FoxO1:FoxA1/2 binding following insulin treatment. Since FoxO1 and FoxA1/2 binding is required for the establishment and maintenance of transcriptionally active chromatin at insulin-regulated genes, we hypothesized that cooperative FoxO1 and FoxA1/2 binding dictates the chromatin remodeling events required for the initial activation of these genes. In support of this idea, we demonstrate that FoxO1 and FoxA2 cooperatively open linker histone compacted chromatin templates containing the IGFBP1 promoter. Taken together, these results provide a mechanism for how interdependent FoxO1:FoxA1/2 binding is negatively impacted by insulin and provide a developmental context for cooperative gene activation by these factors.
Collapse
Affiliation(s)
- Daniel Schill
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Joshua Nord
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Lisa Ann Cirillo
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|
37
|
Li Z, Lai ZW, Christiano R, Gazos-Lopes F, Walther TC, Farese RV. Global Analyses of Selective Insulin Resistance in Hepatocytes Caused by Palmitate Lipotoxicity. Mol Cell Proteomics 2018; 17:836-849. [PMID: 29414761 DOI: 10.1074/mcp.ra117.000560] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/02/2018] [Indexed: 12/11/2022] Open
Abstract
Obesity is tightly linked to hepatic steatosis and insulin resistance. One feature of this association is the paradox of selective insulin resistance: insulin fails to suppress hepatic gluconeogenesis but activates lipid synthesis in the liver. How lipid accumulation interferes selectively with some branches of hepatic insulin signaling is not well understood. Here we provide a resource, based on unbiased approaches and established in a simple cell culture system, to enable investigations of the phenomenon of selective insulin resistance. We analyzed the phosphoproteome of insulin-treated human hepatoma cells and identified sites in which palmitate selectively impairs insulin signaling. As an example, we show that palmitate interferes with insulin signaling to FoxO1, a key transcription factor regulating gluconeogenesis, and identify altered FoxO1 cellular compartmentalization as a contributing mechanism for selective insulin resistance. This model system, together with our comprehensive characterization of the proteome, phosphoproteome, and lipidome changes in response to palmitate treatment, provides a novel and useful resource for unraveling the mechanisms underlying selective insulin resistance.
Collapse
Affiliation(s)
- Zhihuan Li
- From the ‡Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, 02115.,§Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115.,¶Broad Institute of Harvard and MIT, Cambridge, Massachusetts, 02124
| | - Zon Weng Lai
- From the ‡Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, 02115.,§Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115.,¶Broad Institute of Harvard and MIT, Cambridge, Massachusetts, 02124
| | - Romain Christiano
- From the ‡Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, 02115.,§Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115.,¶Broad Institute of Harvard and MIT, Cambridge, Massachusetts, 02124
| | - Felipe Gazos-Lopes
- ‖Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, 02115
| | - Tobias C Walther
- From the ‡Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, 02115; .,§Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115.,¶Broad Institute of Harvard and MIT, Cambridge, Massachusetts, 02124.,**Howard Hughes Medical Institute, Boston, Massachusetts, 02115
| | - Robert V Farese
- From the ‡Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, 02115.,§Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115.,¶Broad Institute of Harvard and MIT, Cambridge, Massachusetts, 02124
| |
Collapse
|
38
|
Yang D, Krois CR, Huang P, Wang J, Min J, Yoo HS, Deng Y, Napoli JL. Raldh1 promotes adiposity during adolescence independently of retinal signaling. PLoS One 2017; 12:e0187669. [PMID: 29095919 PMCID: PMC5667840 DOI: 10.1371/journal.pone.0187669] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/24/2017] [Indexed: 12/26/2022] Open
Abstract
All-trans-retinoic acid (RA) inhibits adipogenesis in established preadipocyte cell lines. Dosing pharmacological amounts of RA reduces weight gain in mice fed a high-fat diet, i.e. counteracts diet-induced obesity (DIO). The aldehyde dehydrogenase Raldh1 (Aldh1a1) functions as one of three enzymes that converts the retinol metabolite retinal into RA, and one of many proteins that contribute to RA homeostasis. Female Raldh1-ablated mice resist DIO. This phenotype contrasts with ablations of other enzymes and binding-proteins that maintain RA homeostasis, which gain adiposity. The phenotype observed prompted the conclusion that loss of Raldh1 causes an increase in adipose tissue retinal, and therefore, retinal functions independently of RA to prevent DIO. A second deduction proposed that low nM concentrations of RA stimulate adipogenesis, in contrast to higher concentrations. Using peer-reviewed LC/MS/MS assays developed and validated for quantifying tissue RA and retinal, we show that endogenous retinal and RA concentrations in adipose tissues from Raldh1-null mice do not correlate with the phenotype. Moreover, male Raldh1-null mice resist weight gain regardless of dietary fat content. Resistance to weight gain occurs during adolescence in both sexes. We show that RA concentrations as low as 1 nM, i.e. in the sub-physiological range, impair adipogenesis of embryonic fibroblasts from wild-type mice. Embryonic fibroblasts from Raldh1-null mice resist differentiating into adipocytes, but retain ability to generate RA. These fibroblasts remain sensitive to an RA receptor pan-agonist, and are not affected by an RA receptor pan-antagonist. Thus, the data do not support the hypothesis that retinal itself represses weight gain and adipogenesis independently of RA. Instead, the data indicate that Raldh1 functions as a retinal and atRA-independent promoter of adiposity during adolescence, and enhances adiposity through pre-adipocyte cell autonomous actions.
Collapse
Affiliation(s)
- Di Yang
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Charles R. Krois
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Priscilla Huang
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Jinshan Wang
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Jin Min
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Hong Sik Yoo
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Yinghua Deng
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Joseph L. Napoli
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
39
|
Hatting M, Tavares CDJ, Sharabi K, Rines AK, Puigserver P. Insulin regulation of gluconeogenesis. Ann N Y Acad Sci 2017; 1411:21-35. [PMID: 28868790 DOI: 10.1111/nyas.13435] [Citation(s) in RCA: 353] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/16/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022]
Abstract
The coordinated regulation between cellular glucose uptake and endogenous glucose production is indispensable for the maintenance of constant blood glucose concentrations. The liver contributes significantly to this process by altering the levels of hepatic glucose release, through controlling the processes of de novo glucose production (gluconeogenesis) and glycogen breakdown (glycogenolysis). Various nutritional and hormonal stimuli signal to alter hepatic gluconeogenic flux, and suppression of this metabolic pathway during the postprandial state can, to a significant extent, be attributed to insulin. Here, we review some of the molecular mechanisms through which insulin modulates hepatic gluconeogenesis, thus controlling glucose production by the liver to ultimately maintain normoglycemia. Various signaling pathways governed by insulin converge at the level of transcriptional regulation of the key hepatic gluconeogenic genes PCK1 and G6PC, highlighting this as one of the focal mechanisms through which gluconeogenesis is modulated. In individuals with compromised insulin signaling, such as insulin resistance in type 2 diabetes, insulin fails to suppress hepatic gluconeogenesis, even in the fed state; hence, an insight into these insulin-moderated pathways is critical for therapeutic purposes.
Collapse
Affiliation(s)
- Maximilian Hatting
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Clint D J Tavares
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Kfir Sharabi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Amy K Rines
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
40
|
Retinol saturase coordinates liver metabolism by regulating ChREBP activity. Nat Commun 2017; 8:384. [PMID: 28855500 PMCID: PMC5577314 DOI: 10.1038/s41467-017-00430-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 06/28/2017] [Indexed: 11/09/2022] Open
Abstract
The liver integrates multiple metabolic pathways to warrant systemic energy homeostasis. An excessive lipogenic flux due to chronic dietary stimulation contributes to the development of hepatic steatosis, dyslipidemia and hyperglycemia. Here we show that the oxidoreductase retinol saturase (RetSat) is involved in the development of fatty liver. Hepatic RetSat expression correlates with steatosis and serum triglycerides (TGs) in humans. Liver-specific depletion of RetSat in dietary obese mice lowers hepatic and circulating TGs and normalizes hyperglycemia. Mechanistically, RetSat depletion reduces the activity of carbohydrate response element binding protein (ChREBP), a cellular hexose-phosphate sensor and inducer of lipogenesis. Defects upon RetSat depletion are rescued by ectopic expression of ChREBP but not by its putative enzymatic product 13,14-dihydroretinol, suggesting that RetSat affects hepatic glucose sensing independent of retinol conversion. Thus, RetSat is a critical regulator of liver metabolism functioning upstream of ChREBP. Pharmacological inhibition of liver RetSat may represent a therapeutic approach for steatosis.Fatty liver is one of the major features of metabolic syndrome and its development is associated with deregulation of systemic lipid and glucose homeostasis. Here Heidenreich et al. show that retinol saturase is implicated in hepatic lipid metabolism by regulating the activity of the transcription factor ChREBP.
Collapse
|
41
|
Ferreira GN, Rossi-Valentim R, Buzelle SL, Paula-Gomes S, Zanon NM, Garófalo MAR, Frasson D, Navegantes LCC, Chaves VE, Kettelhut IDC. Differential regulation of glyceroneogenesis by glucocorticoids in epididymal and retroperitoneal white adipose tissue from rats. Endocrine 2017; 57:287-297. [PMID: 28555305 DOI: 10.1007/s12020-017-1315-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/29/2017] [Indexed: 01/03/2023]
Abstract
PURPOSE Investigate the glycerol-3-phosphate generation pathways in epididymal (EPI) and retroperitoneal (RETRO) adipose tissues from dexamethasone-treated rats. METHODS Rats were treated with dexamethasone for 7 days. Glycerol-3-phosphate generation pathways via glycolysis, glyceroneogenesis and direct phosphorylation of glycerol were evaluated, respectively, by 2-deoxyglucose uptake, phosphoenolpyruvate carboxykinase (PEPCK-C) activity and pyruvate incorporation into triacylglycerol (TAG)-glycerol, and glycerokinase activity and glycerol incorporation into TAG-glycerol. RESULTS Dexamethasone treatment markedly decreased the body weight, but increased the weight and lipid content of EPI and RETRO and plasma insulin, glucose, non-esterified fatty acid and TAG levels. EPI and RETRO from dexamethasone-treated rats showed increased rates of de novo fatty acid synthesis (80 and 100%) and basal lipolysis (20%). In EPI, dexamethasone decreased the 2-deoxyglucose uptake (50%), as well as glyceroneogenesis, evidenced by a decrease of PEPCK-C activity (39%) and TAG-glycerol synthesis from pyruvate (66%), but increased the glycerokinase activity (50%) and TAG-glycerol synthesis from glycerol (72%) in this tissue. In spite of a similar reduction in 2-deoxyglucose uptake in RETRO, dexamethasone treatment increased glyceroneogenesis, evidenced by PEPCK activity (96%), and TAG-glycerol synthesis from pyruvate (110%), accompanied by a decrease in glycerokinase activity (50%) and TAG-glycerol synthesis from glycerol (50%). Dexamethasone effects on RETRO were accompanied by a decrease in p-Akt content and by lower insulin effects on the rates of glycerol release in the presence of isoproterenol and on the rates of glucose uptake in isolated adipocytes. CONCLUSION Our data demonstrated differential regulation of glyceroneogenesis and direct phosphorylation of glycerol by glucocorticoids in EPI and RETRO from rats.
Collapse
Affiliation(s)
- Graziella Nascimento Ferreira
- Departments of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rafael Rossi-Valentim
- Departments of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Samyra Lopes Buzelle
- Biochemistry-Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sílvia Paula-Gomes
- Biochemistry-Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Neusa Maria Zanon
- Departments of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Danúbia Frasson
- Latin American Institute of Life and Nature Science, Federal University of Latin American Integration, Foz do Iguaçu, Paraná, Brazil
| | | | - Valéria Ernestânia Chaves
- Laboratory of Physiology, Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil.
| | - Isis do Carmo Kettelhut
- Biochemistry-Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
42
|
Quattrocelli M, Barefield DY, Warner JL, Vo AH, Hadhazy M, Earley JU, Demonbreun AR, McNally EM. Intermittent glucocorticoid steroid dosing enhances muscle repair without eliciting muscle atrophy. J Clin Invest 2017; 127:2418-2432. [PMID: 28481224 DOI: 10.1172/jci91445] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/09/2017] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoid steroids such as prednisone are prescribed for chronic muscle conditions such as Duchenne muscular dystrophy, where their use is associated with prolonged ambulation. The positive effects of chronic steroid treatment in muscular dystrophy are paradoxical because these steroids are also known to trigger muscle atrophy. Chronic steroid use usually involves once-daily dosing, although weekly dosing in children has been suggested for its reduced side effects on behavior. In this work, we tested steroid dosing in mice and found that a single pulse of glucocorticoid steroids improved sarcolemmal repair through increased expression of annexins A1 and A6, which mediate myofiber repair. This increased expression was dependent on glucocorticoid response elements upstream of annexins and was reinforced by the expression of forkhead box O1 (FOXO1). We compared weekly versus daily steroid treatment in mouse models of acute muscle injury and in muscular dystrophy and determined that both regimens provided comparable benefits in terms of annexin gene expression and muscle repair. However, daily dosing activated atrophic pathways, including F-box protein 32 (Fbxo32), which encodes atrogin-1. Conversely, weekly steroid treatment in mdx mice improved muscle function and histopathology and concomitantly induced the ergogenic transcription factor Krüppel-like factor 15 (Klf15) while decreasing Fbxo32. These findings suggest that intermittent, rather than daily, glucocorticoid steroid regimen promotes sarcolemmal repair and muscle recovery from injury while limiting atrophic remodeling.
Collapse
|
43
|
Sobel JA, Krier I, Andersin T, Raghav S, Canella D, Gilardi F, Kalantzi AS, Rey G, Weger B, Gachon F, Dal Peraro M, Hernandez N, Schibler U, Deplancke B, Naef F, CycliX consortium. Transcriptional regulatory logic of the diurnal cycle in the mouse liver. PLoS Biol 2017; 15:e2001069. [PMID: 28414715 PMCID: PMC5393560 DOI: 10.1371/journal.pbio.2001069] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 03/10/2017] [Indexed: 12/11/2022] Open
Abstract
Many organisms exhibit temporal rhythms in gene expression that propel diurnal cycles in physiology. In the liver of mammals, these rhythms are controlled by transcription-translation feedback loops of the core circadian clock and by feeding-fasting cycles. To better understand the regulatory interplay between the circadian clock and feeding rhythms, we mapped DNase I hypersensitive sites (DHSs) in the mouse liver during a diurnal cycle. The intensity of DNase I cleavages cycled at a substantial fraction of all DHSs, suggesting that DHSs harbor regulatory elements that control rhythmic transcription. Using chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq), we found that hypersensitivity cycled in phase with RNA polymerase II (Pol II) loading and H3K27ac histone marks. We then combined the DHSs with temporal Pol II profiles in wild-type (WT) and Bmal1-/- livers to computationally identify transcription factors through which the core clock and feeding-fasting cycles control diurnal rhythms in transcription. While a similar number of mRNAs accumulated rhythmically in Bmal1-/- compared to WT livers, the amplitudes in Bmal1-/- were generally lower. The residual rhythms in Bmal1-/- reflected transcriptional regulators mediating feeding-fasting responses as well as responses to rhythmic systemic signals. Finally, the analysis of DNase I cuts at nucleotide resolution showed dynamically changing footprints consistent with dynamic binding of CLOCK:BMAL1 complexes. Structural modeling suggested that these footprints are driven by a transient heterotetramer binding configuration at peak activity. Together, our temporal DNase I mappings allowed us to decipher the global regulation of diurnal transcription rhythms in the mouse liver.
Collapse
Affiliation(s)
- Jonathan Aryeh Sobel
- The Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Irina Krier
- The Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Teemu Andersin
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Sunil Raghav
- The Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Donatella Canella
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Federica Gilardi
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Alexandra Styliani Kalantzi
- The Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Guillaume Rey
- The Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Benjamin Weger
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Frédéric Gachon
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Matteo Dal Peraro
- The Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nouria Hernandez
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Ueli Schibler
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Bart Deplancke
- The Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Felix Naef
- The Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
44
|
Vaziri-Gohar A, Zheng Y, Houston KD. IGF-1 Receptor Modulates FoxO1-Mediated Tamoxifen Response in Breast Cancer Cells. Mol Cancer Res 2017; 15:489-497. [PMID: 28096479 DOI: 10.1158/1541-7786.mcr-16-0176] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 12/02/2016] [Accepted: 12/21/2016] [Indexed: 11/16/2022]
Abstract
Tamoxifen is a common adjuvant treatment for estrogen receptor (ER)α-positive patients with breast cancer; however, acquired resistance abrogates the efficacy of this therapeutic approach. We recently demonstrated that G protein-coupled estrogen receptor 1 (GPER1) mediates tamoxifen action in breast cancer cells by inducing insulin-like growth factor-binding protein-1 (IGFBP-1) to inhibit IGF-1-dependent signaling. To determine whether dysregulation of IGFBP-1 induction is associated with tamoxifen resistance, IGFBP-1 transcription was measured in tamoxifen-resistant MCF-7 cells (TamR) after tamoxifen (Tam) treatment. IGFBP-1 transcription was not stimulated in tamoxifen-treated TamR cells whereas decreased expression of FoxO1, a known modulator of IGFBP-1, was observed. Exogenous expression of FoxO1 rescued the ability of tamoxifen to induce IGFBP-1 transcription in TamR cells. As decreased IGF-1R expression is observed in tamoxifen-resistant cells, the requirement for IGF-1R expression on tamoxifen-stimulated IGFBP-1 transcription was investigated. In TamR and SK-BR-3 cells, both characterized by low IGF-1R levels, exogenous IGF-1R expression increased FoxO1 levels and IGFBP-1 expression, whereas IGF-1R knockdown in MCF-7 cells decreased tamoxifen-stimulated IGFBP-1 transcription. Interestingly, both 17β-estradiol (E2)-stimulated ERα phosphorylation and progesterone receptor (PR) expression were altered in TamR. PR is a transcription factor known to modulate FoxO1 transcription. In addition, IGF-1R knockdown decreased FoxO1 protein levels in MCF-7 cells. Furthermore, IGF-1R or FoxO1 knockdown inhibited the ability of tamoxifen to induce IGFBP-1 transcription and tamoxifen sensitivity in MCF-7 cells. These data provide a molecular mechanistic connection between IGF-1R expression and the FoxO1-mediated mechanism of tamoxifen action in breast cancer cells.Implications: Loss of IGF-1R expression is associated with decreased tamoxifen efficacy in patients with breast cancer and the development of tamoxifen resistance. This contribution identifies potential molecular mechanisms of altered tamoxifen sensitivity in breast cancer cells resulting from decreased IGF-1R expression. Mol Cancer Res; 15(4); 489-97. ©2017 AACR.
Collapse
Affiliation(s)
- Ali Vaziri-Gohar
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico
| | - Yan Zheng
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico
| | - Kevin D Houston
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico.
| |
Collapse
|
45
|
Roqueta-Rivera M, Esquejo RM, Phelan PE, Sandor K, Daniel B, Foufelle F, Ding J, Li X, Khorasanizadeh S, Osborne TF. SETDB2 Links Glucocorticoid to Lipid Metabolism through Insig2a Regulation. Cell Metab 2016; 24:474-484. [PMID: 27568546 PMCID: PMC5023502 DOI: 10.1016/j.cmet.2016.07.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/28/2016] [Accepted: 07/28/2016] [Indexed: 10/21/2022]
Abstract
Transcriptional and chromatin regulations mediate the liver response to nutrient availability. The role of chromatin factors involved in hormonal regulation in response to fasting is not fully understood. We have identified SETDB2, a glucocorticoid-induced putative epigenetic modifier, as a positive regulator of GR-mediated gene activation in liver. Insig2a increases during fasting to limit lipid synthesis, but the mechanism of induction is unknown. We show Insig2a induction is GR-SETDB2 dependent. SETDB2 facilitates GR chromatin enrichment and is key to glucocorticoid-dependent enhancer-promoter interactions. INSIG2 is a negative regulator of SREBP, and acute glucocorticoid treatment decreased active SREBP during refeeding or in livers of Ob/Ob mice, both systems of elevated SREBP-1c-driven lipogenesis. Knockdown of SETDB2 or INSIG2 reversed the inhibition of SREBP processing. Overall, these studies identify a GR-SETDB2 regulatory axis of hepatic transcriptional reprogramming and identify SETDB2 as a potential target for metabolic disorders with aberrant glucocorticoid actions.
Collapse
Affiliation(s)
- Manuel Roqueta-Rivera
- Sanford Burnham Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, FL 32827, USA
| | - Ryan M Esquejo
- Sanford Burnham Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, FL 32827, USA
| | - Peter E Phelan
- Sanford Burnham Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, FL 32827, USA
| | - Katalin Sandor
- Sanford Burnham Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, FL 32827, USA
| | - Bence Daniel
- Sanford Burnham Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, FL 32827, USA
| | - Fabienne Foufelle
- INSERM, UMR-S 872, Centre de Recherches des Cordeliers, 75006 Paris, France; Université Pierre et Marie Curie-Paris, 75005 Paris, France
| | - Jun Ding
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Boulevard, Orlando, FL 32827, USA
| | - Xiaoman Li
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Boulevard, Orlando, FL 32827, USA
| | - Sepideh Khorasanizadeh
- Sanford Burnham Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, FL 32827, USA
| | - Timothy F Osborne
- Sanford Burnham Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, FL 32827, USA.
| |
Collapse
|
46
|
Wang Q, Yu WN, Chen X, Peng XD, Jeon SM, Birnbaum MJ, Guzman G, Hay N. Spontaneous Hepatocellular Carcinoma after the Combined Deletion of Akt Isoforms. Cancer Cell 2016; 29:523-535. [PMID: 26996309 PMCID: PMC4921241 DOI: 10.1016/j.ccell.2016.02.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/12/2015] [Accepted: 02/16/2016] [Indexed: 02/07/2023]
Abstract
Akt is frequently hyperactivated in human cancers and is targeted for cancer therapy. However, the physiological consequences of systemic Akt isoform inhibition were not fully explored. We showed that while combined Akt1 and Akt3 deletion in adult mice is tolerated, combined Akt1 and Akt2 deletion induced rapid mortality. Akt2(-/-) mice survived hepatic Akt1 deletion but all developed spontaneous hepatocellular carcinoma (HCC), which is associated with FoxO-dependent liver injury and inflammation. The gene expression signature of HCC-bearing livers is similar to aggressive human HCC. Consistently, neither Akt1(-/-) nor Akt2(-/-) mice are resistant to diethylnitrosamine-induced hepatocarcinogenesis, and Akt2(-/-) mice display a high incidence of lung metastasis. Thus, in contrast to other cancers, hepatic Akt inhibition induces liver injury that could promote HCC.
Collapse
Affiliation(s)
- Qi Wang
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Wan-Ni Yu
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Xinyu Chen
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Xiao-Ding Peng
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Sang-Min Jeon
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Morris J Birnbaum
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Grace Guzman
- Department of Pathology, College of Medicine, Cancer Center, University of Illinois Hospital and Health Science Chicago, Chicago, IL 60612, USA
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA; Research & Development Section, Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
47
|
Yalley A, Schill D, Hatta M, Johnson N, Cirillo LA. Loss of Interdependent Binding by the FoxO1 and FoxA1/A2 Forkhead Transcription Factors Culminates in Perturbation of Active Chromatin Marks and Binding of Transcriptional Regulators at Insulin-sensitive Genes. J Biol Chem 2016; 291:8848-61. [PMID: 26929406 DOI: 10.1074/jbc.m115.677583] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Indexed: 01/04/2023] Open
Abstract
FoxO1 binds to insulin response elements located in the promoters of insulin-like growth factor-binding protein 1 (IGFBP1) and glucose-6-phosphatase (G6Pase), activating their expression. Insulin-mediated phosphorylation of FoxO1 promotes cytoplasmic translocation, inhibiting FoxO1-mediated transactivation. We have previously demonstrated that FoxO1 opens and remodels chromatin assembled from the IGFBP1 promoter via a highly conserved winged helix motif. This finding, which established FoxO1 as a "pioneer" factor, suggested a model whereby FoxO1 chromatin remodeling at regulatory targets facilitates binding and recruitment of additional regulatory factors. However, the impact of FoxO1 phosphorylation on its ability to bind chromatin and the effect of FoxO1 loss on recruitment of neighboring transcription factors at its regulatory targets in liver chromatin is unknown. In this study, we demonstrate that an amino acid substitution that mimics insulin-mediated phosphorylation of a serine in the winged helix DNA binding motif curtails FoxO1 nucleosome binding. We also demonstrate that shRNA-mediated loss of FoxO1 binding to the IGFBP1 and G6Pase promoters in HepG2 cells significantly reduces binding of RNA polymerase II and the pioneer factors FoxA1/A2. Knockdown of FoxA1 similarly reduced binding of RNA polymerase II and FoxO1. Reduction in acetylation of histone H3 Lys-27 accompanies loss of FoxO1 and FoxA1/A2 binding. Interdependent binding of FoxO1 and FoxA1/A2 possibly entails cooperative binding because FoxO1 and FoxA1/A2 facilitate one another's binding to IGFPB1 promoter DNA. These results illustrate how transcription factors can nucleate transcriptional events in chromatin in response to signaling events and suggest a model for regulation of hepatic glucose metabolism through interdependent FoxO/FoxA binding.
Collapse
Affiliation(s)
- Akua Yalley
- From the Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Daniel Schill
- From the Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Mitsutoki Hatta
- From the Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Nicole Johnson
- From the Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Lisa Ann Cirillo
- From the Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
48
|
Singh BK, Sinha RA, Zhou J, Tripathi M, Ohba K, Wang ME, Astapova I, Ghosh S, Hollenberg AN, Gauthier K, Yen PM. Hepatic FOXO1 Target Genes Are Co-regulated by Thyroid Hormone via RICTOR Protein Deacetylation and MTORC2-AKT Protein Inhibition. J Biol Chem 2016; 291:198-214. [PMID: 26453307 PMCID: PMC4697156 DOI: 10.1074/jbc.m115.668673] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/01/2015] [Indexed: 12/21/2022] Open
Abstract
MTORC2-AKT is a key regulator of carbohydrate metabolism and insulin signaling due to its effects on FOXO1 phosphorylation. Interestingly, both FOXO1 and thyroid hormone (TH) have similar effects on carbohydrate and energy metabolism as well as overlapping transcriptional regulation of many target genes. Currently, little is known about the regulation of MTORC2-AKT or FOXO1 by TH. Accordingly, we performed hepatic transcriptome profiling in mice after FOXO1 knockdown in the absence or presence of TH, and we compared these results with hepatic FOXO1 and THRB1 (TRβ1) ChIP-Seq data. We identified a subset of TH-stimulated FOXO1 target genes that required co-regulation by FOXO1 and TH. TH activation of FOXO1 was directly linked to an increase in SIRT1-MTORC2 interaction and RICTOR deacetylation. This, in turn, led to decreased AKT and FOXO1 phosphorylation. Moreover, TH increased FOXO1 nuclear localization, DNA binding, and target gene transcription by reducing AKT-dependent FOXO1 phosphorylation in a THRB1-dependent manner. These events were associated with TH-mediated oxidative phosphorylation and NAD(+) production and suggested that downstream metabolic effects by TH can post-translationally activate other transcription factors. Our results showed that RICTOR/MTORC2-AKT can integrate convergent hormonal and metabolic signals to provide coordinated and sensitive regulation of hepatic FOXO1-target gene expression.
Collapse
Affiliation(s)
- Brijesh K Singh
- From the Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program and
| | - Rohit A Sinha
- From the Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program and
| | - Jin Zhou
- From the Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program and
| | - Madhulika Tripathi
- From the Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program and the Stroke Trial Unit, National Neuroscience Institute Singapore, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Kenji Ohba
- From the Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program and
| | - Mu-En Wang
- From the Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program and the Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Inna Astapova
- the Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115, and
| | - Sujoy Ghosh
- From the Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program and Centre for Computational Biology, Duke-National University of Singapore Graduate Medical School, Singapore 169857, Singapore
| | - Anthony N Hollenberg
- the Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115, and
| | - Karine Gauthier
- the Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 46, Allée d'Italie 69364, Lyon Cedex 07, France
| | - Paul M Yen
- From the Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program and
| |
Collapse
|
49
|
Goldstein I, Hager GL. Transcriptional and Chromatin Regulation during Fasting - The Genomic Era. Trends Endocrinol Metab 2015; 26:699-710. [PMID: 26520657 PMCID: PMC4673016 DOI: 10.1016/j.tem.2015.09.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/10/2015] [Accepted: 09/12/2015] [Indexed: 12/21/2022]
Abstract
An elaborate metabolic response to fasting is orchestrated by the liver and is heavily reliant on transcriptional regulation. In response to hormones (glucagon, glucocorticoids) many transcription factors (TFs) are activated and regulate various genes involved in metabolic pathways aimed at restoring homeostasis: gluconeogenesis, fatty acid oxidation, ketogenesis, and amino acid shuttling. We summarize recent discoveries regarding fasting-related TFs with an emphasis on genome-wide binding patterns. Collectively, the findings we discuss reveal a large degree of cooperation between TFs during fasting that occurs at motif-rich DNA sites bound by a combination of TFs. These new findings implicate transcriptional and chromatin regulation as major determinants of the response to fasting and unravels the complex, multi-TF nature of this response.
Collapse
Affiliation(s)
- Ido Goldstein
- Laboratory of Receptor Biology and Gene Expression, The National Cancer Institute, The National institutes of Health, Bethesda, MD, 20892, USA.
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, The National Cancer Institute, The National institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
50
|
Kjær TN, Thorsen K, Jessen N, Stenderup K, Pedersen SB. Resveratrol ameliorates imiquimod-induced psoriasis-like skin inflammation in mice. PLoS One 2015; 10:e0126599. [PMID: 25965695 PMCID: PMC4428792 DOI: 10.1371/journal.pone.0126599] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/06/2015] [Indexed: 01/19/2023] Open
Abstract
Background The polyphenol resveratrol has anti-inflammatory effects in various cells, tissues, animals and human settings of low-grade inflammation. Psoriasis is a disease of both localized and systemic low-grade inflammation. The Sirtuin1 enzyme thought to mediate the effects of resveratrol is present in skin and resveratrol is known to down regulate NF-κB; an important contributor in the development of psoriasis. Consequently we investigated whether resveratrol has an effect on an Imiquimod induced psoriasis-like skin inflammation in mice and sought to identify candidate genes, pathways and interleukins mediating the effects. Methods The study consisted of three treatment groups: A control group, an Imiquimod group and an Imiquimod+resveratrol group. Psoriasis severity was assessed using elements of the Psoriasis Area Severity Index, skin thickness measurements, and histological examination. We performed an RNA microarray from lesional skin and afterwards Ingenuity pathway analysis to identify affected signalling pathways. Our microarray was compared to a previously deposited microarray to determine if gene changes were psoriasis-like, and to a human microarray to determine if findings could be relevant in a human setting. Results Imiquimod treatment induced a psoriasis-like skin inflammation. Resveratrol significantly diminished the severity of the psoriasis-like skin inflammation. The RNA microarray revealed a psoriasis-like gene expression-profile in the Imiquimod treated group, and highlighted several resveratrol dependent changes in relevant genes, such as increased expression of genes associated with retinoic acid stimulation and reduced expression of genes involved in IL-17 dependent pathways. Quantitative PCR confirmed a resveratrol dependent decrease in mRNA levels of IL-17A and IL-19; both central in developing psoriasis. Conclusions Resveratrol ameliorates psoriasis, and changes expression of retinoic acid stimulated genes, IL-17 signalling pathways, IL-17A and IL-19 mRNA levels in a beneficial manner, which suggests resveratrol, might have a role in the treatment of psoriasis and should be explored further in a human setting.
Collapse
Affiliation(s)
- Thomas Nordstrøm Kjær
- Department of Endocrinology and Internal medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- * E-mail:
| | - Kasper Thorsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Jessen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Karin Stenderup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Steen Bønløkke Pedersen
- Department of Endocrinology and Internal medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|