1
|
Vargas LCZ, Ortíz-Ortíz J, Martínez YA, Viguri GEC, Rojas FIT, Ávila-López PA. Identification of ZNF384 as a regulator of epigenome in leukemia. Leuk Res 2025; 153:107691. [PMID: 40250193 DOI: 10.1016/j.leukres.2025.107691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/19/2025] [Accepted: 04/01/2025] [Indexed: 04/20/2025]
Abstract
Leukemia is a complex hematologic cancer driven by genetic and epigenetic changes that impact gene expression. Understanding these molecular mechanisms is essential for improving leukemia diagnosis and prognosis. This study examines the role of the zinc finger protein ZNF384 in the epigenome and its influence on gene regulation in leukemia. We analyzed next-generation sequencing data from The Encyclopedia of DNA Elements (ENCODE), integrating datasets such as chromatin immunoprecipitation sequencing (ChIP-seq) of ZNF384 and regulatory histone marks, RNA sequencing (RNA-seq), and Hi-C data from K562 and GM12878 cells. Additionally, we used RNA-seq from K562 ZNF384 knock-down (KD) cells generated via CRISPR interference (CRISPRi) to validate our findings. This enabled us to explore the chromatin interaction patterns of ZNF384 and its regulatory impact. Our results demonstrate that ZNF384 associates with promoters and enhancers in K562 and GM12878 cells, facilitating increased transcription levels. We also found ZNF384 enriched at topologically associating domain (TAD) boundaries and chromatin loops, suggesting a role in three-dimensional (3D) chromatin organization. Furthermore, we identified a significant binding of ZNF384 at SINE-Alu elements in both K562 and GM12878 cells. In summary, this study highlights the regulatory role of ZNF384 in the leukemia epigenome and its impact on gene expression. Understanding the oncogenic implications of ZNF384 may improve leukemia diagnosis and prognosis.
Collapse
Affiliation(s)
- Laura C Zárraga Vargas
- Laboratorio de Biología de Células Troncales, Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico; Unidad de Diagnóstico y Medicina Molecular Dr. Ruy Pérez Tamayo, Hospital del Niño Morelense, Emiliano Zapata, Morelos, Mexico
| | - Julio Ortíz-Ortíz
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo, Guerrero 39090, Mexico; Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero. Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo, Guerrero 39090, Mexico
| | - Yamelie A Martínez
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, Mexico; Laboratorio de Inmunología y Biología Celular y Molecular, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Gabriela E Campos Viguri
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero 39090, Mexico; Centro de Investigación Sobre Enfermedades Infecciosas y Cáncer, Instituto Nacional de Salud Pública. Cuernavaca, Morelos 62100, Mexico
| | - Francisco I Torres Rojas
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero 39090, Mexico
| | - Pedro A Ávila-López
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado postal 14-740, Ciudad de México 07360, Mexico.
| |
Collapse
|
2
|
Gregoricchio S, Kojic A, Hoogstraat M, Schuurman K, Stelloo S, Severson TM, O'Mara TA, Droog M, Singh AA, Glubb DM, Wessels LFA, Vermeulen M, van Leeuwen FE, Zwart W. Endometrial tumorigenesis involves epigenetic plasticity demarcating non-coding somatic mutations and 3D-genome alterations. Genome Biol 2025; 26:124. [PMID: 40346709 PMCID: PMC12063248 DOI: 10.1186/s13059-025-03596-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 04/28/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND The incidence and mortality of endometrial cancer (EC) is on the rise. Eighty-five percent of ECs depend on estrogen receptor alpha (ERα) for proliferation, but little is known about its transcriptional regulation in these tumors. RESULTS We generate epigenomics, transcriptomics, and Hi-C datastreams in healthy and tumor endometrial tissues, identifying robust ERα reprogramming and profound alterations in 3D genome organization that lead to a gain of tumor-specific enhancer activity during EC development. Integration with endometrial cancer risk single-nucleotide polymorphisms and whole-genome sequencing data from primary tumors and metastatic samples reveals a striking enrichment of risk variants and non-coding somatic mutations at tumor-enriched ERα sites. Through machine learning-based predictions and interaction proteomics analyses, we identify an enhancer mutation which alters 3D genome conformation, impairing recruitment of the transcriptional repressor EHMT2/G9a/KMT1C, thereby alleviating transcriptional repression of ESR1 in EC. CONCLUSIONS In summary, we identify a complex genomic-epigenomic interplay in EC development and progression, altering 3D genome organization to enhance expression of the critical driver ERα.
Collapse
Affiliation(s)
- Sebastian Gregoricchio
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - Aleksandar Kojic
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Marlous Hoogstraat
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Karianne Schuurman
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Suzan Stelloo
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Geert Grooteplein Zuid 28, 6525GA, Nijmegen, The Netherlands
| | - Tesa M Severson
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Tracy A O'Mara
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Locked Bag 2000, Brisbane, QLD, 4029, Australia
| | - Marjolein Droog
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Abhishek A Singh
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Dylan M Glubb
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Locked Bag 2000, Brisbane, QLD, 4029, Australia
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Geert Grooteplein Zuid 28, 6525GA, Nijmegen, The Netherlands
- Division of Molecular Genetics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Flora E van Leeuwen
- Department of Epidemiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
| |
Collapse
|
3
|
Kim J, Wang H, Ercan S. Cohesin organizes 3D DNA contacts surrounding active enhancers in C. elegans. Genome Res 2025; 35:1108-1123. [PMID: 40210441 PMCID: PMC12047539 DOI: 10.1101/gr.279365.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 02/15/2025] [Indexed: 04/12/2025]
Abstract
In mammals, cohesin and CTCF organize the 3D genome into topologically associating domains (TADs) to regulate communication between cis-regulatory elements. Many organisms, including S. cerevisiae, C. elegans, and A. thaliana contain cohesin but lack CTCF. Here, we used C. elegans to investigate the function of cohesin in 3D genome organization in the absence of CTCF. Using Hi-C data, we observe cohesin-dependent features called "fountains," which have also been reported in zebrafish and mice. These are population average reflections of DNA loops originating from distinct genomic regions and are ∼20-40 kb in C. elegans Hi-C analysis upon cohesin and WAPL-1 depletion supports the idea that cohesin is preferentially loaded at sites bound by the C. elegans ortholog of NIPBL and loop extrudes in an effectively two-sided manner. ChIP-seq analyses show that cohesin translocation along the fountain trajectory depends on a fully intact complex and is extended upon WAPL-1 depletion. Hi-C contact patterns at individual fountains suggest that cohesin processivity is unequal on each side, possibly owing to collision with cohesin loaded from surrounding sites. The putative cohesin loading sites are closest to active enhancers, and fountain strength is associated with transcription. Compared with mammals, the average processivity of C. elegans cohesin is about 10-fold shorter, and the binding of NIPBL ortholog does not depend on cohesin. We propose that preferential loading and loop extrusion by cohesin is an evolutionarily conserved mechanism that regulates the 3D interactions of enhancers in animal genomes.
Collapse
Affiliation(s)
- Jun Kim
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
| | - Haoyu Wang
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
| | - Sevinç Ercan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
| |
Collapse
|
4
|
Galbraith K, Wu J, Sikkink K, Mohamed H, Reid D, Perez-Arreola M, Belton JM, Nomikou S, Melnyk S, Yang Y, Liechty BL, Jour G, Tsirigos A, Hermel DJ, Beck A, Sigal D, Dahl NA, Vibhakar R, Schmitt A, Snuderl M. Detection of Gene Fusions and Rearrangements in Formalin-Fixed, Paraffin-Embedded Solid Tumor Specimens Using High-Throughput Chromosome Conformation Capture. J Mol Diagn 2025; 27:346-359. [PMID: 40023492 PMCID: PMC12057137 DOI: 10.1016/j.jmoldx.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/02/2024] [Accepted: 01/28/2025] [Indexed: 03/04/2025] Open
Abstract
Chromosomal structural variants (SVs) are major contributors to cancer development. Although multiple methods exist for detecting SVs, they are limited in throughput, such as fluorescent in situ hybridization and targeted panels, and use RNA, which degrades in formalin-fixed, paraffin-embedded (FFPE) blocks and is unable to detect SVs that do not produce a fusion transcript. High-throughput chromosome conformation capture (Hi-C) is a DNA-based next-generation sequencing (NGS) method that preserves the spatial conformation of the genome, capturing long-range genetic interactions and SVs. Herein, a retrospective study analyzing 71 FFPE specimens from 10 different solid tumors was performed. Results showed high concordance (98%) with clinical fluorescent in situ hybridization and RNA NGS in detecting known SVs. Furthermore, Hi-C provided insight into the mechanism of SV formation, including chromothripsis and extrachromosomal DNA, and detected rearrangements between genes and regulatory regions, all of which are undetectable by RNA NGS. Lastly, SVs were detected in 71% of cases in which previous clinical methods failed to identify a driver. Of these, 14% were clinically actionable based on current medical guidelines, and an additional 14% were not in medical guidelines but involve targetable biomarkers. Current data suggest that Hi-C is a robust and accurate method for genome-wide SV analyses from FFPE tissue and can be incorporated into current clinical NGS workflows.
Collapse
Affiliation(s)
- Kristyn Galbraith
- Department of Pathology, NYU Langone Health, and NYU Grossman School of Medicine, New York, New York.
| | - Jamin Wu
- Department of Pathology, NYU Langone Health, and NYU Grossman School of Medicine, New York, New York
| | | | - Hussein Mohamed
- Department of Pathology, NYU Langone Health, and NYU Grossman School of Medicine, New York, New York
| | - Derek Reid
- Arima Genomics, Inc., Carlsbad, California
| | | | | | | | | | - Yiying Yang
- Department of Pathology, NYU Langone Health, and NYU Grossman School of Medicine, New York, New York
| | - Benjamin L Liechty
- Department of Pathology, Weill Cornell School of Medicine, New York, New York
| | - George Jour
- Department of Pathology, NYU Langone Health, and NYU Grossman School of Medicine, New York, New York
| | - Aristotelis Tsirigos
- Department of Pathology, NYU Langone Health, and NYU Grossman School of Medicine, New York, New York; Division of Precision Medicine, Department of Medicine, NYU School of Medicine, New York, New York; Applied Bioinformatics Laboratories, NYU School of Medicine, New York, New York
| | - David J Hermel
- Scripps Clinic/Scripps Cancer Center, La Jolla, California
| | - Alyssa Beck
- Moores Cancer Center, University of California San Diego, San Diego, California
| | - Darren Sigal
- Scripps Clinic/Scripps Cancer Center, La Jolla, California
| | - Nathan A Dahl
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Rajeev Vibhakar
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | | | - Matija Snuderl
- Department of Pathology, NYU Langone Health, and NYU Grossman School of Medicine, New York, New York; Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York; Department of Pathology, NYU Langone Health, and NYU Grossman School of Medicine, New York, New York.
| |
Collapse
|
5
|
Zuo Q, Wu RB, Sun LN, Ren TY, Fan Z, Wang LY, Tan B, Luo B, Irfan M, Huang Q, Shen YJ, Zhang ZS. Genomic and Methylomic Signatures Associated With the Maintenance of Genome Stability and Adaptive Evolution in Two Closely Allied Wolf Spiders. Mol Ecol Resour 2025; 25:e14071. [PMID: 39831349 DOI: 10.1111/1755-0998.14071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Pardosa spiders, belonging to the wolf spider family Lycosidae, play a vital role in maintaining the health of forest and agricultural ecosystems due to their function in pest control. This study presents chromosome-level genome assemblies for two allied Pardosa species, P. laura and P. agraria. Both species' genomes show a notable expansion of helitron transposable elements, which contributes to their large genome sizes. Methylome analysis indicates that P. laura has higher overall DNA methylation levels compared to P. agraria. DNA methylation may not only aids in transposable element-driven genome expansion but also positively affects the three-dimensional organisation of P. laura after transposon amplification, thereby potentially enhancing genome stability. Genes associated with hyper-differentially methylated regions in P. laura (compared to P. agraria) are enriched in functions related to mRNA processing and energy production. Furthermore, combined transcriptome and methylome profiling has uncovered a complex regulatory interplay between DNA methylation and gene expression, emphasising the important role of gene body methylation in the regulation of gene expression. Comparative genomic analysis shows a significant expansion of cuticle protein and detoxification-related gene families in P. laura, which may improve its adaptability to various habitats. This study provides essential genomic and methylomic insights, offering a deeper understanding of the relationship between transposable elements and genome stability, and illuminating the adaptive evolution and species differentiation among allied spiders.
Collapse
Affiliation(s)
- Qing Zuo
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Run-Biao Wu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Li-Na Sun
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Tian-Yu Ren
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Zheng Fan
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Lu-Yu Wang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Bing Tan
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Bin Luo
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Muhammad Irfan
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Qian Huang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Yan-Jun Shen
- Laboratory of Water Ecological Health and Environmental Safety, School of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Zhi-Sheng Zhang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
6
|
Wang J, Deng X, Jian T, Yin S, Chen L, Vergnes L, Li Z, Liu H, Lee R, Lim SY, Bahn JH, Xiao X, Zhu X, Hu G, Reue K, Liu Y, Fan G. DNA methyltransferase 1 modulates mitochondrial function through bridging m 5C RNA methylation. Mol Cell 2025:S1097-2765(25)00361-2. [PMID: 40328247 DOI: 10.1016/j.molcel.2025.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/25/2024] [Accepted: 04/15/2025] [Indexed: 05/08/2025]
Abstract
DNA methyltransferase 1 (DNMT1) is an enzyme known for DNA methylation maintenance. Point mutations in its replication focus targeting sequence (RFTS) domain lead to late-onset neurodegeneration, such as autosomal dominant cerebellar ataxia-deafness and narcolepsy (ADCA-DN) disorder. Here, we demonstrated that DNMT1 has the capability to bind to mRNA transcripts and facilitate 5-methylcytosine (m5C) RNA methylation by recruiting NOP2/Sun RNA methyltransferase 2 (NSUN2). RNA m5C methylation, in turn, promotes RNA stability for those genes modulating mitochondrial function. When the DNMT1 RFTS domain is mutated in mice, it triggers aberrant DNMT1-RNA interaction and significantly elevated m5C RNA methylation and RNA stability for a portion of metabolic genes. Consequently, increased levels of metabolic RNA transcripts contribute to cumulative oxidative stress, mitochondrial dysfunction, and neurological symptoms. Collectively, our results reveal a dual role of DNMT1 in regulating both DNA and RNA methylation, which further modulates mitochondrial function, shedding light on the pathogenic mechanism of DNMT1 mutation-induced neurodegeneration.
Collapse
Affiliation(s)
- Jing Wang
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Xiaoqian Deng
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Tianshen Jian
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Shanshan Yin
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Linzhi Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Laurent Vergnes
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhehao Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Huoyuan Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Ryan Lee
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sin Yee Lim
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jae Hoon Bahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Xianmin Zhu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Ganlu Hu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Guoping Fan
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; The Scintillon Institute, 6868 Nancy Ridge Drive, San Diego, CA 92121.
| |
Collapse
|
7
|
Lv Y, Li Y, Fang M, Liu Y, Wang Y, Yang Y, Zou Y, Shi Q, Mu X. Chromosome-level genome assembly reveals adaptive evolution of the invasive Amazon sailfin catfish (Pterygoplichthys pardalis). Commun Biol 2025; 8:616. [PMID: 40240788 PMCID: PMC12003874 DOI: 10.1038/s42003-025-08029-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Catfish represents a diverse lineage with variable number of chromosomes and complex relationships with humans. Although certain species pose significant invasive threats to native fish populations, comprehensive genomic investigations into the evolutionary adaptations that contribute to their invasion success are lacking. To address this gap, our study presents a high-quality genome assembly of the Amazon sailfin catfish (Pterygoplichthys pardalis), a member of the armored catfish family, along with a comprehensive comparative genomic analysis. By utilizing conserved genomic regions across different catfish species, we reconstructed the 29 ancestral chromosomes of catfish, including two microchromosomes (28 and 29) that show different fusion and breakage patterns across species. Our analysis shows that the Amazon sailfin catfish genome is notably larger (1.58 Gb) with more than 40,000 coding genes. The genome expansion was linked to early repetitive sequence expansions and recent gene duplications. Several expanded genes are associated with immune functions, including antigen recognition domains like the Ig-v-set domain and the tandem expansion of the CD300 gene family. We also identified specific insertions in CNEs (conserved non-coding elements) near genes involved in cellular processes and neural development. Additionally, rapidly evolving and positively selected genes in the Amazon sailfin catfish genome were found to be associated with collagen formation. Moreover, we identified multiple positively selected codons in hoxb9, which may lead to functional alterations. These findings provide insights into molecular adaptations in an invasive catfish that may underlie its widespread invasion success.
Collapse
Affiliation(s)
- Yunyun Lv
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Science, Neijiang Normal University, Neijiang, 641100, China.
| | - Yanping Li
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Science, Neijiang Normal University, Neijiang, 641100, China
| | - Miao Fang
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yi Liu
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yuanyuan Wang
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yexin Yang
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yuanchao Zou
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Science, Neijiang Normal University, Neijiang, 641100, China
| | - Qiong Shi
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Science, Neijiang Normal University, Neijiang, 641100, China.
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518067, China.
| | - Xidong Mu
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.
| |
Collapse
|
8
|
Do C, Jiang G, Cova G, Katsifis CC, Narducci DN, Sakellaropoulos T, Vidal R, Lhoumaud P, Tsirigos A, Regis FFD, Kakabadze N, Nora EP, Noyes M, Hansen AS, Skok JA. Binding domain mutations provide insight into CTCF's relationship with chromatin and its contribution to gene regulation. CELL GENOMICS 2025; 5:100813. [PMID: 40118069 PMCID: PMC12008812 DOI: 10.1016/j.xgen.2025.100813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/28/2024] [Accepted: 02/19/2025] [Indexed: 03/23/2025]
Abstract
Here we used a series of CTCF mutations to explore CTCF's relationship with chromatin and its contribution to gene regulation. CTCF's impact depends on the genomic context of bound sites and the unique binding properties of WT and mutant CTCF proteins. Specifically, CTCF's signal strength is linked to changes in accessibility, and the ability to block cohesin is linked to its binding stability. Multivariate modeling reveals that both CTCF and accessibility contribute independently to cohesin binding and insulation, but CTCF signal strength has a stronger effect. CTCF and chromatin have a bidirectional relationship such that at CTCF sites, accessibility is reduced in a cohesin-dependent, mutant-specific fashion. In addition, each mutant alters TF binding and accessibility in an indirect manner, changes which impart the most influence on rewiring transcriptional networks and the cell's ability to differentiate. Collectively, the mutant perturbations provide a rich resource for determining CTCF's site-specific effects.
Collapse
Affiliation(s)
- Catherine Do
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Guimei Jiang
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Giulia Cova
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Christos C Katsifis
- MIT Department of Biological Engineering, Cambridge, MA 02139, USA; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Domenic N Narducci
- MIT Department of Biological Engineering, Cambridge, MA 02139, USA; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Theodore Sakellaropoulos
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Raphael Vidal
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Priscillia Lhoumaud
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Aristotelis Tsirigos
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA; Applied Bioinformatics Laboratories, Office of Science & Research, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Faye Fara D Regis
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Nata Kakabadze
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Elphege P Nora
- Cardiovascular Research Institute, and Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Marcus Noyes
- Institute for Systems Genetics, Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Anders S Hansen
- MIT Department of Biological Engineering, Cambridge, MA 02139, USA; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Jane A Skok
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA.
| |
Collapse
|
9
|
Saw AK, Madhok A, Bhattacharya A, Nandi S, Galande S. Integrated promoter-capture Hi-C and Hi-C analysis reveals fine-tuned regulation of the 3D chromatin architecture in colorectal cancer. Front Genet 2025; 16:1553469. [PMID: 40225268 PMCID: PMC11985782 DOI: 10.3389/fgene.2025.1553469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/24/2025] [Indexed: 04/15/2025] Open
Abstract
Introduction Hi-C is a widely used technique for mapping chromosomal interactions within a 3D genomic framework, however, its resolution is often constrained by sequencing depth, making it challenging to detect fine-scale interactions. To overcome this limitation, Promoter-Capture Hi-C (PCHi-C), as it selectively enriches for promoter-associated interactions, was employed. This study integrates PCHi-C and Hi-C datasets from colorectal cancer (CRC) models investigate chromosomal interaction dynamics across various regulatory levels, from cis-regulatory elements to topologically associated domains (TADs). The primary goal is to examine how genomic structural alterations shape the epigenomic landscape in CRC and to assess their potential role in colorectal cancer susceptibility. Methods PCHi-C and Hi-C datasets from multiple colorectal cancer (CRC) studies were integrated to enhance the resolution of chromatin interaction mapping. The analysis focused on identifying fine-scale interactions within topologically associated domains (TADs) while incorporating histone modification landscapes (H3K27ac, H3K4me3) and transcriptomic signatures from CRC cell lines and the TCGA database. For experimental validation, ChIP-quantitative PCR was performed at the promoters of target genes using the highly malignant colorectal cell line HT29 and compared it to an embryonic cell line NT2D1. Results Our integrated analysis revealed significant genomic structural instability in CRC cells, closely associated with tumor-suppressive transcriptional programs. We identified nine dysregulated genes, including long non-coding RNAs (MALAT1, NEAT1, FTX, and PVT1), small nucleolar RNAs (SNORA26 and SNORA71A), and protein-coding genes (TMPRSS11D, TSPEAR, and DSG4), all of which exhibited a substantial increase in expression in CRC cell lines compared to human embryonic stem cells (hESCs). Additionally, we observed enriched activation-associated histone modifications (H3K27ac and H3K4me3) at the potential enhancer regions of these genes, indicating possible transcriptional activation. ChIP-quantitative PCRs conducted using in the highly malignant CRC cell line HT29, compared to the embryonic cell line NT2D1, further validated these findings, reinforcing the link between altered chromosomal interactions and gene dysregulation in CRC. Discussion This study sheds light on the dynamic 3D genome organization in CRC, highlighting critical structural changes associated with disease-associated loci. The identification of nine dysregulated genes points to potential biomarkers for colorectal cancer, with implications for diagnostic and therapeutic strategies. The combination of Hi-C and PCHi-C offers a refined approach for detecting chromosomal interactions at a higher resolution, laying the foundation for future studies on cancer-associated chromatin architecture.
Collapse
Affiliation(s)
- Ajay Kumar Saw
- Laboratory of Chromatin Biology and Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Ayush Madhok
- Laboratory of Chromatin Biology and Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Anupam Bhattacharya
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam, India
- Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, Assam, India
| | - Soumyadeep Nandi
- Data Sciences and Computational Biology Centre, Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurugram, Manesar, Haryana, India
| | - Sanjeev Galande
- Laboratory of Chromatin Biology and Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India
- Center of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, India
| |
Collapse
|
10
|
Wiggers CRM, Yüzügüldü B, Tadros NG, Heavican-Foral TB, Cho EY, Eisenbies ZC, Ozdemir M, Kulp SB, Chae YC, Gutierrez A, Lohr JG, Knoechel B. Genome-wide CRISPR screen identifies IRF1 and TFAP4 as transcriptional regulators of Galectin-9 in T cell acute lymphoblastic leukemia. SCIENCE ADVANCES 2025; 11:eads8351. [PMID: 40106574 PMCID: PMC11922064 DOI: 10.1126/sciadv.ads8351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/12/2025] [Indexed: 03/22/2025]
Abstract
Galectin-9 is overexpressed in a variety of cancers and associated with worse clinical outcome in some cancers. However, the regulators driving Galectin-9 expression are unknown. Here, we defined the transcriptional regulators and epigenetic circuitry of Galectin-9 in pediatric T cell acute lymphoblastic leukemia (T-ALL), as an example of a disease with strong Galectin-9 expression, in which higher expression was associated with lower overall survival. By performing a genome-wide CRISPR screen, we identified the transcription factors IRF1 and TFAP4 as key regulators for Galectin-9 expression by binding its regulatory elements. Whereas IRF1 was observed exclusively on the promoter, TFAP4 binding was detected at an enhancer solely in T-ALL cells associated with higher Galectin-9 levels. Together, our results show that IRF1 is responsible and indispensable for Galectin-9 expression and TFAP4 further fine-tunes its expression. Our approach, a flow-based genome-wide CRISPR screen complemented by transcription factor binding and enhancer mapping, creates innovative opportunities for understanding and manipulating epigenetic transcriptional regulation in cancer.
Collapse
Affiliation(s)
- Caroline R. M. Wiggers
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Burak Yüzügüldü
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Nathanial G. Tadros
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Tayla B. Heavican-Foral
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Eugene Y. Cho
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Merve Ozdemir
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Steffen B. Kulp
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yun-Cheol Chae
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Alejandro Gutierrez
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jens G. Lohr
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Birgit Knoechel
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA
| |
Collapse
|
11
|
Huang C, Ji B, Shi Z, Wang J, Yuan J, Yang P, Xu X, Jing H, Xu L, Fu J, Zhao L, Ren Y, Guo K, Li G. A comparative genomic analysis at the chromosomal-level reveals evolutionary patterns of aphid chromosomes. Commun Biol 2025; 8:427. [PMID: 40082663 PMCID: PMC11906883 DOI: 10.1038/s42003-025-07851-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 02/28/2025] [Indexed: 03/16/2025] Open
Abstract
Genomic rearrangements are primary drivers of evolution, promoting biodiversity. Aphids, an agricultural pest with high species diversity, exhibit rapid chromosomal evolution and diverse karyotypes. These variations have been attributed to their unique holocentric chromosomes and parthenogenesis, though this hypothesis has faced scrutiny. In this study, we generated a chromosomal-level reference genome assembly of the celery aphid (Semiaphis heraclei) and conducted comparative genomic analysis, revealing varying chromosomal evolution rates among aphid lineages, positively correlating with species diversity. Aphid X chromosomes have undergone frequent intra-chromosomal recombination, while autosomes show accelerated inter-chromosomal recombination. Moreover, considering both inter- and intra-chromosomal rearrangements, the increased autosomal rearrangement rates may be common across the Aphidomorpha. We identified that the expansion of DNA transposable elements and short interspersed nuclear elements (SINEs), coupled with gene loss and duplication associated with karyotypic instability (such as RIF1, BRD8, DMC1, and TERT), may play crucial roles in aphid chromosomal evolution. Additionally, our analysis revealed that the mutation and expansion of detoxification gene families in S. heraclei may be a key factor in adapting to host plant chemical defenses. Our results provide new insights into chromosomal evolutionary patterns and detoxification gene families evolution in aphids, aiding the understanding of species diversity and adaptive evolution.
Collapse
Affiliation(s)
- Chen Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Bingru Ji
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Zhaohui Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Jiangyue Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Jiaqing Yuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Peng Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiao Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Haohao Jing
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Lulu Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Jing Fu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Le Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., School of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong, 723000, P.R. China
| | - Yandong Ren
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| | - Kun Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| | - Gang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
12
|
Britton JC, Somogyi-Leatigaga A, Watson BA, Haro E, Mulder CG, Kennedy KD, Cooper AM, Whitley KL, Yeboah RL, Kim J, Yu MC, Campos JD, Amoah J, Kawauchi S, Kim E, Pira CU, Oberg KC. Evidence for Fgf and Wnt regulation of Lhx2 during limb development via two limb-specific Lhx2-associated cis-regulatory modules. Front Cell Dev Biol 2025; 13:1552716. [PMID: 40052149 PMCID: PMC11882541 DOI: 10.3389/fcell.2025.1552716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 01/22/2025] [Indexed: 03/09/2025] Open
Abstract
Introduction In vertebrate limb morphogenesis, wingless-related integration site (Wnt) proteins and fibroblast growth factors (Fgfs) secreted from the apical ectodermal ridge (AER) coordinate proximodistal outgrowth. Fgfs also sustain sonic hedgehog (Shh) in the zone of polarizing activity (ZPA). Shh directs anteroposterior patterning and expansion and regulates AER-Fgfs, establishing a positive regulatory feedback loop that is vital in sustaining limb outgrowth. The transcription factor LIM homeodomain 2 (Lhx2) is expressed in the distal mesoderm and coordinates AER and ZPA signals that control cellular proliferation, differentiation, and shaping of the developing limb. Yet how Lhx2 is transcriptionally regulated to support such functions has only been partially characterized. Methods/Results We have identified two limb-specific cis-regulatory modules (CRMs) active within the Lhx2 expression domain in the limb. Chromatin conformation analysis of the Lhx2 locus in mouse embryonic limb bud cells predicted CRMs-Lhx2 promoter interactions. Single-cell RNA-sequencing analysis of limb bud cells revealed co-expression of several Fgf-related Ets and Wnt-related Tcf/Lef transcripts in Lhx2-expressing cells. Additionally, disruption of Ets and Tcf/Lef binding sites resulted in loss of reporter-driven CRM activity. Finally, binding of β-catenin to both Lhx2-associated CRMs supports the associated binding of Tcf/Lef transcription factors. Discussion These results suggest a role for Ets and Tcf/Lef transcription factors in the regulation of Lhx2 expression through these limb-specific Lhx2-associated CRMs. Moreover, these CRMs provide a mechanism for Fgf and Wnt signaling to localize and maintain distal Lhx2 expression during vertebrate limb development.
Collapse
Affiliation(s)
- Jessica C. Britton
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA, United States
| | - Anett Somogyi-Leatigaga
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA, United States
| | - Billy A. Watson
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA, United States
| | - Endika Haro
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA, United States
| | - Cassidy G. Mulder
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA, United States
| | - Kari D. Kennedy
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA, United States
| | - Allen M. Cooper
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA, United States
| | - Kristen L. Whitley
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA, United States
| | - Ruth-Love Yeboah
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA, United States
| | - Jeanyoung Kim
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA, United States
| | - Micah C. Yu
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA, United States
- School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Jairo D. Campos
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA, United States
- School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Japhet Amoah
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA, United States
- School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Shimako Kawauchi
- UC Irvine Transgenic Mouse Facility, University of Irvine, Irvine, CA, United States
| | - Eunyoung Kim
- UC Irvine Transgenic Mouse Facility, University of Irvine, Irvine, CA, United States
| | - Charmaine U. Pira
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA, United States
| | - Kerby C. Oberg
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA, United States
| |
Collapse
|
13
|
Do C, Jiang G, Cova G, Katsifis CC, Narducci DN, Sakellaropoulos T, Vidal R, Lhoumaud P, Tsirigos A, Regis FFD, Kakabadze N, Nora EP, Noyes M, Hansen AS, Skok JA. Binding domain mutations provide insight into CTCF's relationship with chromatin and its contribution to gene regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.01.11.575070. [PMID: 38370764 PMCID: PMC10871189 DOI: 10.1101/2024.01.11.575070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Here we used a series of CTCF mutations to explore CTCF's relationship with chromatin and its contribution to gene regulation. CTCF's impact depends on the genomic context of bound sites and the unique binding properties of WT and mutant CTCF proteins. Specifically, CTCF's signal strength is linked to changes in accessibility, and the ability to block cohesin is linked to its binding stability. Multivariate modelling reveals that both CTCF and accessibility contribute independently to cohesin binding and insulation, however CTCF signal strength has a stronger effect. CTCF and chromatin have a bidirectional relationship such that at CTCF sites, accessibility is reduced in a cohesin-dependent, mutant specific fashion. In addition, each mutant alters TF binding and accessibility in an indirect manner, changes which impart the most influence on rewiring transcriptional networks and the cell's ability to differentiate. Collectively, the mutant perturbations provide a rich resource for determining CTCF's site-specific effects.
Collapse
|
14
|
Ma N, Li X, Ci D, Zeng HY, Zhang C, Xie X, Zhong C, Deng XW, Li D, He H. Chromatin Topological Domains Associate With the Rapid Formation of Tandem Duplicates in Plants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408861. [PMID: 39731323 PMCID: PMC11831494 DOI: 10.1002/advs.202408861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/25/2024] [Indexed: 12/29/2024]
Abstract
In eukaryotes, chromatin is compacted within nuclei under the principle of compartmentalization. On top of that, condensin II establishes eukaryotic chromosome territories, while cohesin organizes the vertebrate genome by extruding chromatin loops and forming topologically associating domains (TADs). Thus far, the formation and roles of these chromatin structures in plants remain poorly understood. This study integrates Hi-C data from diverse plant species, demonstrating that nuclear DNA content influences large-scale chromosome conformation and affects the finer details of compartmental patterns. These contrasting compartmental patterns are distinguished by gene-to-gene loops and validated through cytological observations. Additionally, a novel chromatin domain type associated with tandem duplicate gene clusters is identified. These domains are independent of H3K27me3-mediated chromatin compartmentalization and exhibit evolutionary conservation across species. Gene pairs within TAD-like domains are younger and show higher levels of coexpression. These domains potentially promote the formation of tandem duplicates, a property appears unique to the Actinidia family. Overall, this study reveals functional chromatin domains in plants and provides evidence for the role of three-dimensional chromatin architecture in gene regulation and genome evolution.
Collapse
Affiliation(s)
- Ni Ma
- School of Advanced Agriculture Sciences and School of Life Sciences, Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Protein and Plant Gene ResearchPeking UniversityBeijing100871China
- Peking University Institute of Advanced Agricultural SciencesShandong Laboratory of Advanced Agricultural Sciences in WeifangShandong261325China
| | - Xiaopeng Li
- Peking University Institute of Advanced Agricultural SciencesShandong Laboratory of Advanced Agricultural Sciences in WeifangShandong261325China
| | - Dong Ci
- School of Advanced Agriculture Sciences and School of Life Sciences, Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Protein and Plant Gene ResearchPeking UniversityBeijing100871China
- Peking University Institute of Advanced Agricultural SciencesShandong Laboratory of Advanced Agricultural Sciences in WeifangShandong261325China
| | - Hai Yue Zeng
- School of Advanced Agriculture Sciences and School of Life Sciences, Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Protein and Plant Gene ResearchPeking UniversityBeijing100871China
- Peking University Institute of Advanced Agricultural SciencesShandong Laboratory of Advanced Agricultural Sciences in WeifangShandong261325China
| | - Congxiao Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical GardenThe Chinese Academy of SciencesWuhanHubei430074China
| | - Xiaodong Xie
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical GardenThe Chinese Academy of SciencesWuhanHubei430074China
| | - Caihong Zhong
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical GardenThe Chinese Academy of SciencesWuhanHubei430074China
| | - Xing Wang Deng
- School of Advanced Agriculture Sciences and School of Life Sciences, Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Protein and Plant Gene ResearchPeking UniversityBeijing100871China
- Peking University Institute of Advanced Agricultural SciencesShandong Laboratory of Advanced Agricultural Sciences in WeifangShandong261325China
| | - Dawei Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical GardenThe Chinese Academy of SciencesWuhanHubei430074China
| | - Hang He
- School of Advanced Agriculture Sciences and School of Life Sciences, Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Protein and Plant Gene ResearchPeking UniversityBeijing100871China
- Peking University Institute of Advanced Agricultural SciencesShandong Laboratory of Advanced Agricultural Sciences in WeifangShandong261325China
| |
Collapse
|
15
|
Yi L, Bao H, Wu Y, Mu Y, Du C, Peng J, Yan X, Chen Y, Yu H. Chromosome-level genome assemblies of sunflower oilseed and confectionery cultivars. Sci Data 2025; 12:24. [PMID: 39774125 PMCID: PMC11707268 DOI: 10.1038/s41597-024-04097-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/06/2024] [Indexed: 01/11/2025] Open
Abstract
The sunflower (Helianthus annuus L.), belonging to the Asteraceae family, is the world's fourth most important oil crop. Sunflower cultivars are categorized into oilseed and confectionery types. Here, we present chromosome-level genome assemblies of two Chinese sunflower cultivars-oilseed and confectionery-using PacBio HiFi and Hi-C sequencing. The oilseed cultivar, OXS, has a genome assembly spanning 3.03 Gb with 99.58% of sequences anchored to 17 chromosomes and a contig N50 length of 154.78 Mb. The first published confectionery cultivar genome, YDS, mirrors this closely with a 3.02 Gb assembly, contig N50 length of 153.87 Mb and 99.40% of sequences mapped similarly. Gene completeness reached 98.2% for OXS and 98.4% for YDS, with LTR Assembly Index scores of 24.73 and 25.85, respectively. Comparative genomics identified rapidly evolving gene families linked to synthesis, growth, and stress defense. Additionally, we found high collinearity between the YDS and OXS genomes, despite three significant inversions, and detected 15,056 large deletions and insertions. These findings lay a robust foundation for advanced genomic research and breeding innovations in sunflowers.
Collapse
Affiliation(s)
- Liuxi Yi
- Agricultural college, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010019, China
| | - Haizhu Bao
- Agricultural college, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010019, China
| | - Yang Wu
- Agricultural college, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010019, China
| | - Yingnan Mu
- Institute of Crop Science, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, Inner Mongolia, 010031, China
| | - Chao Du
- Bayan Nur Institute of Agriculture and Animal Husbandry Science, Bayan Nur, Inner Mongolia, 015000, China
| | - Jingwen Peng
- Bayan Nur Institute of Agriculture and Animal Husbandry Science, Bayan Nur, Inner Mongolia, 015000, China
| | - Xuechun Yan
- Bayan Nur Institute of Agriculture and Animal Husbandry Science, Bayan Nur, Inner Mongolia, 015000, China
| | - Yongsheng Chen
- Agricultural college, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010019, China.
| | - Haifeng Yu
- Institute of Crop Science, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, Inner Mongolia, 010031, China.
| |
Collapse
|
16
|
Lee H, Seo PJ. Hi-GDT: A Hi-C-based 3D gene domain analysis tool for analyzing local chromatin contacts in plants. Gigascience 2025; 14:giaf020. [PMID: 40117178 PMCID: PMC11927400 DOI: 10.1093/gigascience/giaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/06/2025] [Accepted: 02/12/2025] [Indexed: 03/23/2025] Open
Abstract
BACKGROUND Three-dimensional (3D) chromatin organization is emerging as a key factor in gene regulation in eukaryotes. Recent studies using high-resolution Hi-C analysis have explored fine-scale local chromatin contact domains in plants, as exemplified by the basic contact domains established at accessible gene border regions in Arabidopsis (Arabidopsis thaliana). However, we lack effective tools to identify these contact domains and examine their structural dynamics. RESULTS We developed the Hi-C-based 3D Gene Domain analysis Tool (Hi-GDT) to identify fine-scale local chromatin contact domains in plants, with a particular focus on gene borders. Hi-GDT successfully identifies local contact domains, including single-gene and multigene domains, with high reproducibility. Hi-GDT can also be used to discover local contact domains that are differentially organized in association with differences in gene expression between tissue types, genotypes, or in response to environmental stimuli. CONCLUSIONS Hi-GDT is a valuable tool for identifying genes regulated by dynamic 3D conformational changes, expanding our understanding of the structural and functional relevance of local 3D chromatin organization in plants. Hi-GDT is publicly available at https://github.com/CDL-HongwooLee/Hi-GDT.
Collapse
Affiliation(s)
- Hongwoo Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
17
|
Villano DJ, Prahlad M, Singhal A, Sanbonmatsu KY, Landweber LF. Widespread 3D genome reorganization precedes programmed DNA rearrangement in Oxytricha trifallax. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630814. [PMID: 39803579 PMCID: PMC11722245 DOI: 10.1101/2024.12.31.630814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Genome organization recapitulates function, yet ciliates like Oxytricha trifallax possess highly-specialized germline genomes, which are largely transcriptionally silent. During post-zygotic development, Oxytricha's germline undergoes large-scale genome editing, rearranging precursor genome elements into a transcriptionally-active genome with thousands of gene-sized nanochromosomes. Transgenerationally-inherited RNAs, derived from the parental somatic genome, program the retention and reordering of germline fragments. Retained and eliminated DNA must be distinguished and processed separately, but the role of chromatin organization in this process is unknown. We developed tools for studying Oxytricha nuclei and apply them to map the 3D organization of precursor and developmental states using Hi-C. We find that the precursor conformation primes the germline for development, while a massive spatial reorganization during development differentiates retained from eliminated regions before DNA rearrangement. Further experiments suggest a role for RNA-DNA interactions and chromatin remodeling in this process, implying a critical role for 3D architecture in programmed genome rearrangement.
Collapse
Affiliation(s)
- Danylo J Villano
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY 10032, USA
| | - Manasa Prahlad
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY 10032, USA
- Department of Neurobiology & Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Ankush Singhal
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- New Mexico Consortium, Los Alamos, NM 87544
| | - Laura F Landweber
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY 10032, USA
| |
Collapse
|
18
|
Zhang Y, Chen K, Tang SC, Cai Y, Nambu A, See YX, Fu C, Raju A, Lebeau B, Ling Z, Chan JJ, Tay Y, Mutwil M, Lakshmanan M, Tucker-Kellogg G, Chng WJ, Tenen DG, Osato M, Tergaonkar V, Fullwood MJ. Super-silencer perturbation by EZH2 and REST inhibition leads to large loss of chromatin interactions and reduction in cancer growth. Nat Struct Mol Biol 2025; 32:137-149. [PMID: 39304765 PMCID: PMC11746141 DOI: 10.1038/s41594-024-01391-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/28/2024] [Indexed: 09/22/2024]
Abstract
Human silencers have been shown to regulate developmental gene expression. However, the functional importance of human silencers needs to be elucidated, such as whether they can form 'super-silencers' and whether they are linked to cancer progression. Here, we show two silencer components of the FGF18 gene can cooperate through compensatory chromatin interactions to form a super-silencer. Double knockout of two silencers exhibited synergistic upregulation of FGF18 expression and changes in cell identity. To perturb the super-silencers, we applied combinational treatment of an enhancer of zeste homolog 2 inhibitor GSK343, and a repressor element 1-silencing transcription factor inhibitor, X5050 ('GR'). Interestingly, GR led to severe loss of topologically associated domains and loops, which were associated with reduced CTCF and TOP2A mRNA levels. Moreover, GR synergistically upregulated super-silencer-controlled genes related to cell cycle, apoptosis and DNA damage, leading to anticancer effects in vivo. Overall, our data demonstrated a super-silencer example and showed that GR can disrupt super-silencers, potentially leading to cancer ablation.
Collapse
Affiliation(s)
- Ying Zhang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Kaijing Chen
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Seng Chuan Tang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yichao Cai
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Akiko Nambu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Yi Xiang See
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Chaoyu Fu
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Anandhkumar Raju
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Benjamin Lebeau
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Zixun Ling
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jia Jia Chan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Yvonne Tay
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Manikandan Lakshmanan
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Greg Tucker-Kellogg
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Computational Biology Programme, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Centre for Translational Medicine, Singapore, Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), National University Health System (NUHS), Singapore, Singapore
| | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Harvard Stem Cells Institute, Harvard Medical School, Boston, MA, USA
| | - Motomi Osato
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Melissa Jane Fullwood
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
19
|
Tavallaee G, Orouji E. Mapping the 3D genome architecture. Comput Struct Biotechnol J 2024; 27:89-101. [PMID: 39816913 PMCID: PMC11732852 DOI: 10.1016/j.csbj.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/18/2025] Open
Abstract
The spatial organization of the genome plays a critical role in regulating gene expression, cellular differentiation, and genome stability. This review provides an in-depth examination of the methodologies, computational tools, and frameworks developed to map the three-dimensional (3D) architecture of the genome, focusing on both ligation-based and ligation-free techniques. We also explore the limitations of these methods, including biases introduced by restriction enzyme digestion and ligation inefficiencies, and compare them to more recent ligation-free approaches such as Genome Architecture Mapping (GAM) and Split-Pool Recognition of Interactions by Tag Extension (SPRITE). These techniques offer unique insights into higher-order chromatin structures by bypassing ligation steps, thus enabling the capture of complex multi-way interactions that are often challenging to resolve with traditional methods. Furthermore, we discuss the integration of chromatin interaction data with other genomic layers through multimodal approaches, including recent advances in single-cell technologies like sci-HiC and scSPRITE, which help unravel the heterogeneity of chromatin architecture in development and disease.
Collapse
Affiliation(s)
- Ghazaleh Tavallaee
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Elias Orouji
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Shu J, Sun L, Wang D, Yin X, Yang M, Yang Z, Gao Z, He Y, Calonje M, Lai J, Deng XW, He H, Zhou Y. EMF1 functions as a 3D chromatin modulator in Arabidopsis. Mol Cell 2024; 84:4729-4739.e6. [PMID: 39566504 DOI: 10.1016/j.molcel.2024.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/30/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024]
Abstract
It is well known that genome organizers, like mammalian CCCTC-binding factor (CTCF) or Drosophila architectural proteins CP190 and BEAF-32, contribute to the three-dimensional (3D) organization of the genome and ensure normal gene transcription. However, bona fide genome organizers have not been identified in plants. Here, we show that EMBRYONIC FLOWER1 (EMF1) functions as a genome modulator in Arabidopsis. EMF1 interacts with the cohesin component SISTER CHROMATIN COHESION3 (SCC3), and both proteins are enriched at compartment domain (CD) boundaries. Accordingly, emf1 and scc3 show a strength decrease at the CD boundary in which these proteins colocalize. EMF1 maintains CD boundary strength, either independently or in cooperation with histone modifications. Moreover, EMF1 is required to maintain gene-resolution interactions and to block long-range aberrant chromatin loops. These data unveil a key role of EMF1 in regulating 3D chromatin structure.
Collapse
Affiliation(s)
- Jiayue Shu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Linhua Sun
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Dingyue Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xiaochang Yin
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Minqi Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhijia Yang
- State Key Laboratory of Plant Physiology and Biochemistry & National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100183, China
| | - Zheng Gao
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuehui He
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China
| | - Myriam Calonje
- Institute of Plant Biochemistry and Photosynthesis (IBVF-CSIC), Avenida Américo Vespucio 49, Seville 41092, Spain
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry & National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100183, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China
| | - Hang He
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China.
| | - Yue Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
21
|
Cucinotta C, Dell R, Alavattam K, Tsukiyama T. Sir2 is required for the quiescence-specific condensed three-dimensional chromatin structure of rDNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.12.628092. [PMID: 39713455 PMCID: PMC11661206 DOI: 10.1101/2024.12.12.628092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Quiescence in Saccharomyces cerevisiae is a reversible G0 crucial for long-term survival under nutrient-deprived conditions. During quiescence, the genome is hypoacetylated and chromatin undergoes significant compaction. However, the 3D structure of the ribosomal DNA (rDNA) locus in this state is not well understood. Here, we report that the rDNA locus in quiescent cells forms a distinct condensed loop-like structure, different from structures observed during the mitotic cell cycle. Deletion of SIR2 disrupts this structure, causing it to collapse into a small dot and resulting in quiescence entry and exit defects. In contrast, Sir2 affects rDNA structure only modestly in G2/M phase. In the absence of Sir2, occupancy of both RNA Polymerase II and histone H3 increase at the rDNA locus during quiescence and through quiescence exit, further indicating gross defects in chromatin structure. Together, these results uncover a previously undescribed rDNA chromatin structure specific to quiescent cells and underscore the importance of Sir2 in facilitating the transition between cellular states.
Collapse
Affiliation(s)
- Christine Cucinotta
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Molecular Genetics, Ohio State University, Columbus, OH, 43210, USA
| | - Rachel Dell
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Kris Alavattam
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
22
|
Nagashima H, Shayne J, Jiang K, Petermann F, Pękowska A, Kanno Y, O'Shea JJ. Remodeling of Il4-Il13-Il5 locus underlies selective gene expression. Nat Immunol 2024; 25:2220-2233. [PMID: 39567762 DOI: 10.1038/s41590-024-02007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/08/2024] [Indexed: 11/22/2024]
Abstract
The type 2 cytokines, interleukin (IL)-4, IL-13 and IL-5 reside within a multigene cluster. Both innate (ILC2) and adaptive T helper 2 (TH2) lymphocytes secrete type 2 cytokines with diverse production spectra. Using transcription factor footprint and chromatin accessibility, we systemically cataloged regulatory elements (REs) denoted as SHS-I/II, KHS-I/II, +6.5kbIl13, 5HS-I(a, b, c, d, e), 5HS-II and 5HS-III(a, b, c) across the extended Il4-Il13-Il5 locus in mice. Physical proximities among REs were coordinately remodeled in three-dimensional space after cell activation, leading to divergent compartmentalization of Il4, Il13 and Il5 with varied combinations of REs. Deletions of REs revealed no single RE solely accounted for selective regulation of a given cytokine in vivo. Instead, individual RE differentially contribute to proper genomic positioning of REs and target genes. RE deletions resulted in context-dependent dysregulation of cytokine expression and immune response in tissue. Thus, signal-dependent remodeling of three-dimensional configuration underlies divergent cytokine outputs from the type 2 loci.
Collapse
Affiliation(s)
| | - Justin Shayne
- Lymphocyte Cell Biology Section, NIAMS, NIH, Bethesda, MD, USA
| | - Kan Jiang
- Biodata Mining and Discovery Section, NIAMS, NIH, Bethesda, MD, USA
| | - Franziska Petermann
- Lymphocyte Cell Biology Section, NIAMS, NIH, Bethesda, MD, USA
- NGS Core Facility, German Cancer Research Center, Heidelberg, Germany
| | - Aleksandra Pękowska
- Genomics and Immunity Section, NIAMS, NIH, Bethesda, MD, USA
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Yuka Kanno
- Lymphocyte Cell Biology Section, NIAMS, NIH, Bethesda, MD, USA
| | - John J O'Shea
- Lymphocyte Cell Biology Section, NIAMS, NIH, Bethesda, MD, USA.
| |
Collapse
|
23
|
Uchida Y, Kurimoto R, Chiba T, Matsushima T, Oda G, Onishi I, Takeuchi Y, Gotoh N, Asahara H. RNA binding protein ZCCHC24 promotes tumorigenicity in triple-negative breast cancer. EMBO Rep 2024; 25:5352-5382. [PMID: 39420119 PMCID: PMC11624195 DOI: 10.1038/s44319-024-00282-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/28/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Triple-negative breast cancer (TNBC) lacks the expression of hormone and HER2 receptors and is highly malignant with no effective therapeutic targets. In TNBC, the cancer stem-like cell (CSC) population is considered to be the main cause of resistance to treatment. Thus, the therapeutic targeting of this population could substantially improve patient survival. Here, we identify the RNA-binding protein ZCCHC24 as enriched in the mesenchymal-like TNBC population. ZCCHC24 promotes the expression of a set of genes related to tumorigenicity and treatment resistance by directly binding to the cis-element "UGUWHWWA" in their mRNAs, thereby stabilizing them. One of the ZCCHC24 targets, ZEB1, is a transcription factor that promotes the expression of cancer stemness genes and reciprocally induces ZCCHC24 expression. ZCCHC24 knockdown by siRNAs shows a therapeutic effect and reduces the mesenchymal-like cell population in TNBC patient-derived xenografts. ZCCHC24 knockdown also has additive effects with the BET inhibitor JQ1 in suppressing tumor growth in TNBC patient-derived xenografts.
Collapse
Affiliation(s)
- Yutaro Uchida
- Department of Systems Biomedicine, Institute of Science Tokyo, Tokyo, 113-8510, Japan
| | - Ryota Kurimoto
- Department of Systems Biomedicine, Institute of Science Tokyo, Tokyo, 113-8510, Japan
| | - Tomoki Chiba
- Department of Systems Biomedicine, Institute of Science Tokyo, Tokyo, 113-8510, Japan
| | - Takahide Matsushima
- Department of Systems Biomedicine, Institute of Science Tokyo, Tokyo, 113-8510, Japan
| | - Goshi Oda
- Department of Surgery, Breast Surgery, Institute of Science Tokyo, Tokyo, 113-8510, Japan
| | - Iichiroh Onishi
- Department of Comprehensive Pathology, Institute of Science Tokyo, Tokyo, 113-8510, Japan
| | - Yasuto Takeuchi
- Division of Cancer Cell Biology, Kanazawa University, Kanazawa, 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Noriko Gotoh
- Division of Cancer Cell Biology, Kanazawa University, Kanazawa, 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Hiroshi Asahara
- Department of Systems Biomedicine, Institute of Science Tokyo, Tokyo, 113-8510, Japan.
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, CA, 92037, USA.
| |
Collapse
|
24
|
Shen L, Bai X, Zhao L, Zhou J, Chang C, Li X, Cao Z, Li Y, Luan P, Li H, Zhang H. Integrative 3D genomics with multi-omics analysis and functional validation of genetic regulatory mechanisms of abdominal fat deposition in chickens. Nat Commun 2024; 15:9274. [PMID: 39468045 PMCID: PMC11519623 DOI: 10.1038/s41467-024-53692-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
Chickens are the most abundant agricultural animals globally, with controlling abdominal fat deposition being a key objective in poultry breeding. While GWAS can identify genetic variants associated with abdominal fat deposition, the precise roles and mechanisms of these variants remain largely unclear. Here, we use male chickens from two lines divergently selected for abdominal fat deposition as experimental models. Through the integration of genomic, epigenomic, 3D genomic, and transcriptomic data, we build a comprehensive chromatin 3D regulatory network map to identify the genetic regulatory mechanisms that influence abdominal fat deposition in chickens. Notably, we find that the rs734209466 variant functions as an allele-specific enhancer, remotely enhancing the transcription of IGFBP2 and IGFBP5 by the binding transcription factor IRF4. This interaction influences the differentiation and proliferation of preadipocytes, which ultimately affects phenotype. This work presents a detailed genetic regulatory map for chicken abdominal fat deposition, offering molecular targets for selective breeding.
Collapse
Affiliation(s)
- Linyong Shen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, PR China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, PR China
| | - Xue Bai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, PR China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, PR China
| | - Liru Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, PR China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, PR China
| | - Jiamei Zhou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, PR China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, PR China
| | - Cheng Chang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, PR China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, PR China
| | - Xinquan Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, PR China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, PR China
| | - Zhiping Cao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, PR China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, PR China
| | - Yumao Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, PR China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, PR China
| | - Peng Luan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, PR China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, PR China
| | - Hui Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, PR China.
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, PR China.
| | - Hui Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, PR China.
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, PR China.
| |
Collapse
|
25
|
Lou J, Deng Q, Zhang X, Bell C, Das A, Bediaga N, Zlatic C, Johanson T, Allan R, Griffin MW, Paradkar P, Harvey K, Dawson M, Hinde E. Heterochromatin protein 1 alpha (HP1α) undergoes a monomer to dimer transition that opens and compacts live cell genome architecture. Nucleic Acids Res 2024; 52:10918-10933. [PMID: 39193905 PMCID: PMC11472067 DOI: 10.1093/nar/gkae720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Our understanding of heterochromatin nanostructure and its capacity to mediate gene silencing in a living cell has been prevented by the diffraction limit of optical microscopy. Thus, here to overcome this technical hurdle, and directly measure the nucleosome arrangement that underpins this dense chromatin state, we coupled fluorescence lifetime imaging microscopy (FLIM) of Förster resonance energy transfer (FRET) between histones core to the nucleosome, with molecular editing of heterochromatin protein 1 alpha (HP1α). Intriguingly, this super-resolved readout of nanoscale chromatin structure, alongside fluorescence fluctuation spectroscopy (FFS) and FLIM-FRET analysis of HP1α protein-protein interaction, revealed nucleosome arrangement to be differentially regulated by HP1α oligomeric state. Specifically, we found HP1α monomers to impart a previously undescribed global nucleosome spacing throughout genome architecture that is mediated by trimethylation on lysine 9 of histone H3 (H3K9me3) and locally reduced upon HP1α dimerisation. Collectively, these results demonstrate HP1α to impart a dual action on chromatin that increases the dynamic range of nucleosome proximity. We anticipate that this finding will have important implications for our understanding of how live cell heterochromatin structure regulates genome function.
Collapse
Affiliation(s)
- Jieqiong Lou
- School of Physics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Qiji Deng
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Xiaomeng Zhang
- School of Physics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Charles C Bell
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Andrew B Das
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Naiara G Bediaga
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Courtney O Zlatic
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Timothy M Johanson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Rhys S Allan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - PrasadN Paradkar
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, 5 Portarlington Road, Geelong3220, Australia
| | - Kieran F Harvey
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Anatomy and Developmental Biology and Biomedicine Discovery Institute, Monash University, Clayton, VIC 3168, Australia
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Elizabeth Hinde
- School of Physics, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
26
|
Monteagudo-Sánchez A, Richard Albert J, Scarpa M, Noordermeer D, Greenberg MC. The impact of the embryonic DNA methylation program on CTCF-mediated genome regulation. Nucleic Acids Res 2024; 52:10934-10950. [PMID: 39180406 PMCID: PMC11472158 DOI: 10.1093/nar/gkae724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/23/2024] [Accepted: 08/21/2024] [Indexed: 08/26/2024] Open
Abstract
During mammalian embryogenesis, both the 5-cytosine DNA methylation (5meC) landscape and three dimensional (3D) chromatin architecture are profoundly remodeled during a process known as 'epigenetic reprogramming.' An understudied aspect of epigenetic reprogramming is how the 5meC flux, per se, affects the 3D genome. This is pertinent given the 5meC-sensitivity of DNA binding for a key regulator of chromosome folding: CTCF. We profiled the CTCF binding landscape using a mouse embryonic stem cell (ESC) differentiation protocol that models embryonic 5meC dynamics. Mouse ESCs lacking DNA methylation machinery are able to exit naive pluripotency, thus allowing for dissection of subtle effects of CTCF on gene expression. We performed CTCF HiChIP in both wild-type and mutant conditions to assess gained CTCF-CTCF contacts in the absence of 5meC. We performed H3K27ac HiChIP to determine the impact that ectopic CTCF binding has on cis-regulatory contacts. Using 5meC epigenome editing, we demonstrated that the methyl-mark is able to impair CTCF binding at select loci. Finally, a detailed dissection of the imprinted Zdbf2 locus showed how 5meC-antagonism of CTCF allows for proper gene regulation during differentiation. This work provides a comprehensive overview of how 5meC impacts the 3D genome in a relevant model for early embryonic events.
Collapse
Affiliation(s)
| | | | - Margherita Scarpa
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Daan Noordermeer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91998 Gif-sur-Yvette, France
| | | |
Collapse
|
27
|
Erjavec E, Angée C, Hadjadj D, Passet B, David P, Kostic C, Dodé E, Zanlonghi X, Cagnard N, Nedelec B, Crippa SV, Bole-Feysot C, Zarhrate M, Creuzet S, Castille J, Vilotte JL, Calvas P, Plaisancié J, Chassaing N, Kaplan J, Rozet JM, Fares Taie L. Congenital microcoria deletion in mouse links Sox21 dysregulation to disease and suggests a role for TGFB2 in glaucoma and myopia. Am J Hum Genet 2024; 111:2265-2282. [PMID: 39293448 PMCID: PMC11480854 DOI: 10.1016/j.ajhg.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/20/2024] Open
Abstract
Congenital microcoria (MCOR) is a rare hereditary developmental defect of the iris dilator muscle frequently associated with high axial myopia and high intraocular pressure (IOP) glaucoma. The condition is caused by submicroscopic rearrangements of chromosome 13q32.1. However, the mechanisms underlying the failure of iris development and the origin of associated features remain elusive. Here, we present a 3D architecture model of the 13q32.1 region, demonstrating that MCOR-related deletions consistently disrupt the boundary between two topologically associating domains (TADs). Deleting the critical MCOR-causing region in mice reveals ectopic Sox21 expression precisely aligning with Dct, each located in one of the two neighbor TADs. This observation is consistent with the TADs' boundary alteration and adoption of Dct regulatory elements by the Sox21 promoter. Additionally, we identify Tgfb2 as a target gene of SOX21 and show TGFΒ2 accumulation in the aqueous humor of an MCOR-affected subject. Accumulation of TGFB2 is recognized for its role in glaucoma and potential impact on axial myopia. Our results highlight the importance of SOX21-TGFB2 signaling in iris development and control of eye growth and IOP. Insights from MCOR studies may provide therapeutic avenues for this condition but also for glaucoma and high myopia conditions, affecting millions of people.
Collapse
Affiliation(s)
- Elisa Erjavec
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Université Paris Cité, Paris, France
| | - Clémentine Angée
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Université Paris Cité, Paris, France
| | - Djihad Hadjadj
- Institut Cochin, Inserm U1016, CNRS UMR8104, UFR de Pharmacie de Paris, Université Paris Cité, CARPEM, Paris, France
| | - Bruno Passet
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, Jouy-en-Josas, France
| | - Pierre David
- Transgenesis Platform, Laboratoire d'Expérimentation Animale et Transgenèse (LEAT), Imagine Institute, Structure Fédérative de Recherche Necker INSERM US24/CNRS UMS3633, Paris, France
| | - Corinne Kostic
- Group for Retinal Disorder Research, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Emmanuel Dodé
- Institut Ophtalmologique de L'Ouest-Clinique Jules VERNE, Nantes, France
| | - Xavier Zanlonghi
- Institut Ophtalmologique de L'Ouest-Clinique Jules VERNE, Nantes, France
| | - Nicolas Cagnard
- Université Paris Cité, Bioinformatics Core Facility, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Brigitte Nedelec
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Université Paris Cité, Paris, France
| | - Sylvain V Crippa
- Group for Retinal Disorder Research, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Christine Bole-Feysot
- Université Paris Cité, Genomics Platform, Imagine Institute, INSERM UMR 1163, INSERM US24/CNRS UAR3633, Paris, France
| | - Mohammed Zarhrate
- Université Paris Cité, Genomics Platform, Imagine Institute, INSERM UMR 1163, INSERM US24/CNRS UAR3633, Paris, France
| | - Sophie Creuzet
- Paris-Saclay Institute of Neuroscience, NeuroPSI, CNRS, Paris-Saclay University, Campus CEA Saclay, Bât 151, 151 Route de la Rotonde, 91400 Saclay, France
| | - Johan Castille
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, Jouy-en-Josas, France
| | - Jean-Luc Vilotte
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, Jouy-en-Josas, France
| | - Patrick Calvas
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU Toulouse, Toulouse, France
| | - Julie Plaisancié
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU Toulouse, Toulouse, France
| | - Nicolas Chassaing
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU Toulouse, Toulouse, France
| | - Josseline Kaplan
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Université Paris Cité, Paris, France
| | - Jean-Michel Rozet
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Université Paris Cité, Paris, France.
| | - L Fares Taie
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Université Paris Cité, Paris, France.
| |
Collapse
|
28
|
Kim J, Wang H, Ercan S. Cohesin organizes 3D DNA contacts surrounding active enhancers in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.18.558239. [PMID: 37786717 PMCID: PMC10541618 DOI: 10.1101/2023.09.18.558239] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
In mammals, cohesin and CTCF organize the 3D genome into topologically associated domains (TADs) to regulate communication between cis-regulatory elements. Many organisms, including S. cerevisiae, C. elegans, and A. thaliana contain cohesin but lack CTCF. Here, we used C. elegans to investigate the function of cohesin in 3D genome organization in the absence of CTCF. Using Hi-C data, we observe cohesin-dependent features called "fountains", which are also reported in zebrafish and mice. These are population average reflections of DNA loops originating from distinct genomic regions and are ~20-40 kb in C. elegans. Hi-C analysis upon cohesin and WAPL depletion support the idea that cohesin is preferentially loaded at NIPBL occupied sites and loop extrudes in an effectively two-sided manner. ChIP-seq analyses show that cohesin translocation along the fountain trajectory depends on a fully intact complex and is extended upon WAPL-1 depletion. Hi-C contact patterns at individual fountains suggest that cohesin processivity is unequal on each side, possibly due to collision with cohesin loaded from surrounding sites. The putative cohesin loading sites are closest to active enhancers and fountain strength is associated with transcription. Compared to mammals, average processivity of C. elegans cohesin is ~10-fold shorter and NIPBL binding does not depend on cohesin. We propose that preferential loading and loop extrusion by cohesin is an evolutionarily conserved mechanism that regulates the 3D interactions of enhancers in animal genomes.
Collapse
Affiliation(s)
- Jun Kim
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Haoyu Wang
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Sevinç Ercan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| |
Collapse
|
29
|
Yang H, Liu B, Ding H, Liu Z, Li X, He T, Wu Y, Zhang Y, Wang C, Leng L, Chen S, Song C. Genome-wide analysis of the ERF Family in Stephania japonica provides insights into the regulatory role in Cepharanthine biosynthesis. FRONTIERS IN PLANT SCIENCE 2024; 15:1433015. [PMID: 39297007 PMCID: PMC11408324 DOI: 10.3389/fpls.2024.1433015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/15/2024] [Indexed: 09/21/2024]
Abstract
Introduction Cepharanthine (CEP), a bisbenzylisoquinoline alkaloid (bisBIA) extracted from Stephania japonica, has received significant attention for its anti-coronavirus properties. While ethylene response factors (ERFs) have been reported to regulate the biosynthesis of various alkaloids, their role in regulating CEP biosynthesis remains unexplored. Methods Genome-wide analysis of the ERF genes was performed with bioinformatics technology, and the expression patterns of different tissues, were analyzed by transcriptome sequencing analysis and real-time quantitative PCR verification. The nuclear-localized ERF gene cluster was shown to directly bind to the promoters of several CEP-associated genes, as demonstrated by yeast one-hybrid assays and subcellular localization assays. Results In this work, 59 SjERF genes were identified in the S. japonica genome and further categorized into ten subfamilies. Notably, a SjERF gene cluster containing three SjERF genes was found on chromosome 2. Yeast one-hybrid assays confirmed that the SjERF gene cluster can directly bind to the promoters of several CEP-associated genes, suggesting their crucial role in CEP metabolism. The SjERFs cluster-YFP fusion proteins were observed exclusively in the nuclei of Nicotiana benthamiana leaves. Tissue expression profiling revealed that 13 SjERFs exhibit high expression levels in the root, and the qRT-PCR results of six SjERFs were consistent with the RNA-Seq data. Furthermore, a co-expression network analysis demonstrated that 24 SjERFs were highly positively correlated with the contents of various alkaloids and expression levels of CEP biosynthetic genes. Conclusion This study provides the first systematic identification and analysis of ERF transcription factors in the S.japonica genome, laying the foundation for the future functional research of SjERFs transcription factors.
Collapse
Affiliation(s)
- Hanting Yang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Baimei Liu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haiyan Ding
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhaoyu Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaodong Li
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Tianxing He
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya Wu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuxuan Zhang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Can Wang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liang Leng
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shilin Chen
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chi Song
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
30
|
Li Z, Sun L, Xu X, Liu Y, He H, Deng XW. Light control of three-dimensional chromatin organization in soybean. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2596-2611. [PMID: 38762905 PMCID: PMC11331798 DOI: 10.1111/pbi.14372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/24/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
Higher-order chromatin structure is critical for regulation of gene expression. In plants, light profoundly affects the morphogenesis of emerging seedlings as well as global gene expression to ensure optimal adaptation to environmental conditions. However, the changes and functional significance of chromatin organization in response to light during seedling development are not well documented. We constructed Hi-C contact maps for the cotyledon, apical hook and hypocotyl of soybean subjected to dark and light conditions. The resulting high-resolution Hi-C contact maps identified chromosome territories, A/B compartments, A/B sub-compartments, TADs (Topologically Associated Domains) and chromatin loops in each organ. We observed increased chromatin compaction under light and we found that domains that switched from B sub-compartments in darkness to A sub-compartments under light contained genes that were activated during photomorphogenesis. At the local scale, we identified a group of TADs constructed by gene clusters consisting of different numbers of Small Auxin-Upregulated RNAs (SAURs), which exhibited strict co-expression in the hook and hypocotyl in response to light stimulation. In the hypocotyl, RNA polymerase II (RNAPII) regulated the transcription of a SAURs cluster under light via TAD condensation. Our results suggest that the 3D genome is involved in the regulation of light-related gene expression in a tissue-specific manner.
Collapse
Affiliation(s)
- Zhu Li
- National Key Laboratory of Wheat ImprovementPeking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at WeifangShandongChina
- School of Plant Science and Food SecurityTel Aviv UniversityTel AvivIsrael
| | - Linhua Sun
- National Key Laboratory of Wheat ImprovementPeking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at WeifangShandongChina
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene ResearchPeking UniversityBeijingChina
| | - Xiao Xu
- National Key Laboratory of Wheat ImprovementPeking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at WeifangShandongChina
| | - Yutong Liu
- National Key Laboratory of Wheat ImprovementPeking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at WeifangShandongChina
| | - Hang He
- National Key Laboratory of Wheat ImprovementPeking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at WeifangShandongChina
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene ResearchPeking UniversityBeijingChina
| | - Xing Wang Deng
- National Key Laboratory of Wheat ImprovementPeking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at WeifangShandongChina
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene ResearchPeking UniversityBeijingChina
| |
Collapse
|
31
|
Lainscsek X, Taher L. ENT3C: an entropy-based similarity measure for Hi-C and micro-C derived contact matrices. NAR Genom Bioinform 2024; 6:lqae076. [PMID: 38962256 PMCID: PMC11217677 DOI: 10.1093/nargab/lqae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/05/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024] Open
Abstract
Hi-C and micro-C sequencing have shed light on the profound importance of 3D genome organization in cellular function by probing 3D contact frequencies across the linear genome. The resulting contact matrices are extremely sparse and susceptible to technical- and sequence-based biases, making their comparison challenging. The development of reliable, robust and efficient methods for quantifying similarity between contact matrices is crucial for investigating variations in the 3D genome organization in different cell types or under different conditions, as well as evaluating experimental reproducibility. We present a novel method, ENT3C, which measures the change in pattern complexity in the vicinity of contact matrix diagonals to quantify their similarity. ENT3C provides a robust, user-friendly Hi-C or micro-C contact matrix similarity metric and a characteristic entropy signal that can be used to gain detailed biological insights into 3D genome organization.
Collapse
Affiliation(s)
- Xenia Lainscsek
- Institute of Biomedical Informatics, Graz University of Technology, Graz, Austria
| | - Leila Taher
- Institute of Biomedical Informatics, Graz University of Technology, Graz, Austria
| |
Collapse
|
32
|
Wu J, Liu F, Jiao J, Luo H, Fan S, Liu J, Wang H, Cui N, Zhao N, Qu Q, Kuraku S, Huang Z, Xu L. Comparative genomics illuminates karyotype and sex chromosome evolution of sharks. CELL GENOMICS 2024; 4:100607. [PMID: 38996479 PMCID: PMC11406177 DOI: 10.1016/j.xgen.2024.100607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/01/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024]
Abstract
Chondrichthyes is an important lineage to reconstruct the evolutionary history of vertebrates. Here, we analyzed genome synteny for six chondrichthyan chromosome-level genomes. Our comparative analysis reveals a slow evolutionary rate of chromosomal changes, with infrequent but independent fusions observed in sharks, skates, and chimaeras. The chondrichthyan common ancestor had a proto-vertebrate-like karyotype, including the presence of 18 microchromosome pairs. The X chromosome is a conversed microchromosome shared by all sharks, suggesting a likely common origin of the sex chromosome at least 181 million years ago. We characterized the Y chromosomes of two sharks that are highly differentiated from the X except for a small young evolutionary stratum and a small pseudoautosomal region. We found that shark sex chromosomes lack global dosage compensation but that dosage-sensitive genes are locally compensated. Our study on shark chromosome evolution enhances our understanding of shark sex chromosomes and vertebrate chromosome evolution.
Collapse
Affiliation(s)
- Jiahong Wu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Fujiang Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jie Jiao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Haoran Luo
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China; Key Laboratory of Ministry of Education for the Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shiyu Fan
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jiao Liu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Hongxiang Wang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ning Cui
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ning Zhao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China; Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qingming Qu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shigehiro Kuraku
- Molecular Life History Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Shizuoka, Japan; Department of Genetics, Sokendai (Graduate University for Advanced Studies), Mishima, Japan
| | - Zhen Huang
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
| | - Luohao Xu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
33
|
Rossini R, Oshaghi M, Nekrasov M, Bellanger A, Domaschenz R, Dijkwel Y, Abdelhalim M, Collas P, Tremethick D, Paulsen J. Loss of multi-level 3D genome organization during breast cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.26.568711. [PMID: 38076897 PMCID: PMC10705249 DOI: 10.1101/2023.11.26.568711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Breast cancer entails intricate alterations in genome organization and expression. However, how three-dimensional (3D) chromatin structure changes in the progression from a normal to a breast cancer malignant state remains unknown. To address this, we conducted an analysis combining Hi-C data with lamina-associated domains (LADs), epigenomic marks, and gene expression in an in vitro model of breast cancer progression. Our results reveal that while the fundamental properties of topologically associating domains (TADs) are overall maintained, significant changes occur in the organization of compartments and subcompartments. These changes are closely correlated with alterations in the expression of oncogenic genes. We also observe a restructuring of TAD-TAD interactions, coinciding with a loss of spatial compartmentalization and radial positioning of the 3D genome. Notably, we identify a previously unrecognized interchromosomal insertion event, wherein a locus on chromosome 8 housing the MYC oncogene is inserted into a highly active subcompartment on chromosome 10. This insertion is accompanied by the formation of de novo enhancer contacts and activation of MYC, illustrating how structural genomic variants can alter the 3D genome to drive oncogenic states. In summary, our findings provide evidence for the loss of genome organization at multiple scales during breast cancer progression revealing novel relationships between genome 3D structure and oncogenic processes.
Collapse
Affiliation(s)
- Roberto Rossini
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Mohammadsaleh Oshaghi
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Maxim Nekrasov
- Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Aurélie Bellanger
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Renae Domaschenz
- Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Yasmin Dijkwel
- Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Mohamed Abdelhalim
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - David Tremethick
- Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jonas Paulsen
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
34
|
Pacheco-Bernal I, Becerril-Pérez F, Bustamante-Zepeda M, González-Suárez M, Olmedo-Suárez MA, Hernández-Barrientos LR, Alarcón-Del-Carmen A, Escalante-Covarrubias Q, Mendoza-Viveros L, Hernández-Lemus E, León-Del-Río A, de la Rosa-Velázquez IA, Orozco-Solis R, Aguilar-Arnal L. Transitions in chromatin conformation shaped by fatty acids and the circadian clock underlie hepatic transcriptional reorganization in obese mice. Cell Mol Life Sci 2024; 81:309. [PMID: 39060446 PMCID: PMC11335233 DOI: 10.1007/s00018-024-05364-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
The circadian clock system coordinates metabolic, physiological, and behavioral functions across a 24-h cycle, crucial for adapting to environmental changes. Disruptions in circadian rhythms contribute to major metabolic pathologies like obesity and Type 2 diabetes. Understanding the regulatory mechanisms governing circadian control is vital for identifying therapeutic targets. It is well characterized that chromatin remodeling and 3D structure at genome regulatory elements contributes to circadian transcriptional cycles; yet the impact of rhythmic chromatin topology in metabolic disease is largely unexplored. In this study, we explore how the spatial configuration of the genome adapts to diet, rewiring circadian transcription and contributing to dysfunctional metabolism. We describe daily fluctuations in chromatin contacts between distal regulatory elements of metabolic control genes in livers from lean and obese mice and identify specific lipid-responsive regions recruiting the clock molecular machinery. Interestingly, under high-fat feeding, a distinct interactome for the clock-controlled gene Dbp strategically promotes the expression of distal metabolic genes including Fgf21. Alongside, new chromatin loops between regulatory elements from genes involved in lipid metabolism control contribute to their transcriptional activation. These enhancers are responsive to lipids through CEBPβ, counteracting the circadian repressor REVERBa. Our findings highlight the intricate coupling of circadian gene expression to a dynamic nuclear environment under high-fat feeding, supporting a temporally regulated program of gene expression and transcriptional adaptation to diet.
Collapse
Affiliation(s)
- Ignacio Pacheco-Bernal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Fernando Becerril-Pérez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Marcia Bustamante-Zepeda
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Mirna González-Suárez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Miguel A Olmedo-Suárez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Luis Ricardo Hernández-Barrientos
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Alejandro Alarcón-Del-Carmen
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Quetzalcoatl Escalante-Covarrubias
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Lucía Mendoza-Viveros
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
- Laboratorio de Cronobiología, Metabolismo y Envejecimiento, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados (CIE-CINVESTAV), Mexico City, México
- Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, Mexico
| | - Enrique Hernández-Lemus
- Department of Computational Genomics, Centro de Ciencias de La Complejidad (C3), Instituto Nacional de Medicina Genómica (INMEGEN), Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alfonso León-Del-Río
- Departamento de Medicina Genómica y Toxicología Ambiental, Programa Institucional de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Inti A de la Rosa-Velázquez
- Genomics Laboratory, Red de Apoyo a la Investigación-CIC, Universidad Nacional Autónoma de México, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14080, Mexico City, Mexico
- Next Generation Sequencing Core Facility, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr 1, 85754, Neuherberg, Germany
| | - Ricardo Orozco-Solis
- Laboratorio de Cronobiología, Metabolismo y Envejecimiento, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados (CIE-CINVESTAV), Mexico City, México
| | - Lorena Aguilar-Arnal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| |
Collapse
|
35
|
Do C, Jiang G, Cova G, Katsifis CC, Narducci DN, Yang J, Sakellaropoulos T, Vidal R, Lhoumaud P, Tsirigos A, Regis FFD, Kakabadze N, Nora EP, Noyes M, Cheng X, Hansen AS, Skok JA. Brain and cancer associated binding domain mutations provide insight into CTCF's relationship with chromatin and its ability to act as a chromatin organizer. RESEARCH SQUARE 2024:rs.3.rs-4670379. [PMID: 39070636 PMCID: PMC11275995 DOI: 10.21203/rs.3.rs-4670379/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Although only a fraction of CTCF motifs are bound in any cell type, and approximately half of the occupied sites overlap cohesin, the mechanisms underlying cell-type specific attachment and ability to function as a chromatin organizer remain unknown. To investigate the relationship between CTCF and chromatin we applied a combination of imaging, structural and molecular approaches, using a series of brain and cancer associated CTCF mutations that act as CTCF perturbations. We demonstrate that binding and the functional impact of WT and mutant CTCF depend not only on the unique properties of each protein, but also on the genomic context of bound sites. Our studies also highlight the reciprocal relationship between CTCF and chromatin, demonstrating that the unique binding properties of WT and mutant proteins have a distinct impact on accessibility, TF binding, cohesin overlap, chromatin interactivity and gene expression programs, providing insight into their cancer and brain related effects.
Collapse
Affiliation(s)
- Catherine Do
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Guimei Jiang
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Giulia Cova
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Christos C Katsifis
- MIT Department of Biological Engineering
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, 02139, USA
| | - Domenic N Narducci
- MIT Department of Biological Engineering
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, 02139, USA
| | - Jie Yang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Theodore Sakellaropoulos
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Raphael Vidal
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Priscillia Lhoumaud
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Aristotelis Tsirigos
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
- Applied Bioinformatics Laboratories, Office of Science & Research, NYU Grossman School of Medicine, New York, NY, USA
| | - Faye Fara D Regis
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Nata Kakabadze
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Elphege P Nora
- Cardiovascular Research Institute, and Department of Biochemistry and Biophysics, University of California San Francisco, CA, USA
| | - Marcus Noyes
- Institute for Systems Genetics, Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Anders S Hansen
- MIT Department of Biological Engineering
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, 02139, USA
| | - Jane A Skok
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| |
Collapse
|
36
|
Liu H, Ma W. DiffGR: Detecting Differentially Interacting Genomic Regions from Hi-C Contact Maps. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae028. [PMID: 39222712 PMCID: PMC12016564 DOI: 10.1093/gpbjnl/qzae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 06/19/2023] [Accepted: 10/01/2023] [Indexed: 09/04/2024]
Abstract
Recent advances in high-throughput chromosome conformation capture (Hi-C) techniques have allowed us to map genome-wide chromatin interactions and uncover higher-order chromatin structures, thereby shedding light on the principles of genome architecture and functions. However, statistical methods for detecting changes in large-scale chromatin organization such as topologically associating domains (TADs) are still lacking. Here, we proposed a new statistical method, DiffGR, for detecting differentially interacting genomic regions at the TAD level between Hi-C contact maps. We utilized the stratum-adjusted correlation coefficient to measure similarity of local TAD regions. We then developed a nonparametric approach to identify statistically significant changes of genomic interacting regions. Through simulation studies, we demonstrated that DiffGR can robustly and effectively discover differential genomic regions under various conditions. Furthermore, we successfully revealed cell type-specific changes in genomic interacting regions in both human and mouse Hi-C datasets, and illustrated that DiffGR yielded consistent and advantageous results compared with state-of-the-art differential TAD detection methods. The DiffGR R package is published under the GNU General Public License (GPL) ≥ 2 license and is publicly available at https://github.com/wmalab/DiffGR.
Collapse
Affiliation(s)
- Huiling Liu
- Department of Statistics, University of California Riverside, Riverside, CA 92521, USA
| | - Wenxiu Ma
- Department of Statistics, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
37
|
Jiang L, Chen S, Wang X, Sen L, Dong G, Song C, Liu Y. An improved genome assembly of Chrysanthemum nankingense reveals expansion and functional diversification of terpene synthase gene family. BMC Genomics 2024; 25:593. [PMID: 38867153 PMCID: PMC11170872 DOI: 10.1186/s12864-024-10498-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Terpenes are important components of plant aromas, and terpene synthases (TPSs) are the key enzymes driving terpene diversification. In this study, we characterized the volatile terpenes in five different Chrysanthemum nankingense tissues. In addition, genome-wide identification and expression analysis of TPS genes was conducted utilizing an improved chromosome-scale genome assembly and tissue-specific transcriptomes. The biochemical functions of three representative TPSs were also investigated. RESULTS We identified tissue-specific volatile organic compound (VOC) and volatile terpene profiles. The improved Chrysanthemum nankingense genome assembly was high-quality, including a larger assembled size (3.26 Gb) and a better contig N50 length (3.18 Mb) compared to the old version. A total of 140 CnTPS genes were identified, with the majority representing the TPS-a and TPS-b subfamilies. The chromosomal distribution of these TPS genes was uneven, and 26 genes were included in biosynthetic gene clusters. Closely-related Chrysanthemum taxa were also found to contain diverse TPS genes, and the expression profiles of most CnTPSs were tissue-specific. The three investigated CnTPS enzymes exhibited versatile activities, suggesting multifunctionality. CONCLUSIONS We systematically characterized the structure and diversity of TPS genes across the Chrysanthemum nankingense genome, as well as the potential biochemical functions of representative genes. Our results provide a basis for future studies of terpene biosynthesis in chrysanthemums, as well as for the breeding of improved chrysanthemum varieties.
Collapse
Affiliation(s)
- Liping Jiang
- Department of Pharmacy, Wuhan No.1 Hospital (Wuhan Hospital of Traditional and Western Medicine), Wuhan, 430022, People's Republic of China
| | - Shi Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Xu Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Lin Sen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Gangqiang Dong
- Amway (China) Botanical R&D Center, Wuxi, 214115, P.R. China
| | - Chi Song
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, People's Republic of China.
| | - Yifei Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China.
- Hubei Provincial Key Laboratory of Chinese Medicine Resource and Chemistry, Hubei University of Chinese Medicine, Hubei, 430065, People's Republic of China.
| |
Collapse
|
38
|
Gao R, Yang G, Wang M, Xiao J, Yi S, Huang Y, Guo Z, Kang Y, Fu Q, Wang M, Xu B, Shen S, Zhu Q, Liu M, Wang L, Cui X, Yi S, Kou X, Zhao Y, Gu L, Wang H, Gao S, Jiang C, Chen J. Defining a TFAP2C-centered transcription factor network during murine peri-implantation. Dev Cell 2024; 59:1146-1158.e6. [PMID: 38574734 DOI: 10.1016/j.devcel.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/07/2023] [Accepted: 03/06/2024] [Indexed: 04/06/2024]
Abstract
Transcription factors (TFs) play important roles in early embryonic development, but factors regulating TF action, relationships in signaling cascade, genome-wide localizations, and impacts on cell fate transitions during this process have not been clearly elucidated. In this study, we used uliCUT&RUN-seq to delineate a TFAP2C-centered regulatory network, showing that it involves promoter-enhancer interactions and regulates TEAD4 and KLF5 function to mediate cell polarization. Notably, we found that maternal retinoic acid metabolism regulates TFAP2C expression and function by inducing the active demethylation of SINEs, indicating that the RARG-TFAP2C-TEAD4/KLF5 axis connects the maternal-to-zygotic transition to polarization. Moreover, we found that both genomic imprinting and SNP-transferred genetic information can influence TF positioning to regulate parental gene expressions in a sophisticated manner. In summary, we propose a ternary model of TF regulation in murine embryonic development with TFAP2C as the core element and metabolic, epigenetic, and genetic information as nodes connecting the pathways.
Collapse
Affiliation(s)
- Rui Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
| | - Guang Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China; Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Mengting Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Jing Xiao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Shanru Yi
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Yanxin Huang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Zhenxiang Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Yunzhe Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Qianzheng Fu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Mingzhu Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Ben Xu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Shijun Shen
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Qianshu Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Meng Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Liping Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Xinyu Cui
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Shanshan Yi
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Xiaochen Kou
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Yanhong Zhao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Liang Gu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Hong Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, Tongji University, Shanghai 200120, China.
| | - Cizhong Jiang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
| | - Jiayu Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
| |
Collapse
|
39
|
Qi X, Zhang L, Zhao Q, Zhou P, Zhang S, Li J, Zheng Z, Xiang Y, Dai X, Jin Z, Jian Y, Li X, Fu L, Zhao S. Hi-Tag: a simple and efficient method for identifying protein-mediated long-range chromatin interactions with low cell numbers. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1027-1034. [PMID: 38280143 DOI: 10.1007/s11427-023-2441-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/12/2023] [Indexed: 01/29/2024]
Abstract
Protein-mediated chromatin interactions can be revealed by coupling proximity-based ligation with chromatin immunoprecipitation. However, these techniques require complex experimental procedures and millions of cells per experiment, which limits their widespread application in life science research. Here, we develop a novel method, Hi-Tag, that identifies high-resolution, long-range chromatin interactions through transposase tagmentation and chromatin proximity ligation (with a phosphorothioate-modified linker). Hi-Tag can be implemented using as few as 100,000 cells, involving simple experimental procedures that can be completed within 1.5 days. Meanwhile, Hi-Tag is capable of using its own data to identify the binding sites of specific proteins, based on which, it can acquire accurate interaction information. Our results suggest that Hi-Tag has great potential for advancing chromatin interaction studies, particularly in the context of limited cell availability.
Collapse
Affiliation(s)
- Xiaolong Qi
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lu Zhang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiulin Zhao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peng Zhou
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - SaiXian Zhang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jingjin Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhuqing Zheng
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Xiang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xueting Dai
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhe Jin
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yaobang Jian
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinyun Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China.
| | - Liangliang Fu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| | - Shuhong Zhao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China.
| |
Collapse
|
40
|
Abdennur N, Fudenberg G, Flyamer IM, Galitsyna AA, Goloborodko A, Imakaev M, Venev SV. Pairtools: From sequencing data to chromosome contacts. PLoS Comput Biol 2024; 20:e1012164. [PMID: 38809952 PMCID: PMC11164360 DOI: 10.1371/journal.pcbi.1012164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/10/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
The field of 3D genome organization produces large amounts of sequencing data from Hi-C and a rapidly-expanding set of other chromosome conformation protocols (3C+). Massive and heterogeneous 3C+ data require high-performance and flexible processing of sequenced reads into contact pairs. To meet these challenges, we present pairtools-a flexible suite of tools for contact extraction from sequencing data. Pairtools provides modular command-line interface (CLI) tools that can be flexibly chained into data processing pipelines. The core operations provided by pairtools are parsing of.sam alignments into Hi-C pairs, sorting and removal of PCR duplicates. In addition, pairtools provides auxiliary tools for building feature-rich 3C+ pipelines, including contact pair manipulation, filtration, and quality control. Benchmarking pairtools against popular 3C+ data pipelines shows advantages of pairtools for high-performance and flexible 3C+ analysis. Finally, pairtools provides protocol-specific tools for restriction-based protocols, haplotype-resolved contacts, and single-cell Hi-C. The combination of CLI tools and tight integration with Python data analysis libraries makes pairtools a versatile foundation for a broad range of 3C+ pipelines.
Collapse
Affiliation(s)
- Open2C
- https://open2c.github.io/
| | - Nezar Abdennur
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Geoffrey Fudenberg
- Department of Computational and Quantitative Biology, University of Southern California, Los Angeles, California, United States of America
| | - Ilya M. Flyamer
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Aleksandra A. Galitsyna
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Anton Goloborodko
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Maxim Imakaev
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Sergey V. Venev
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
41
|
Guo R, Dong X, Chen F, Ji T, He Q, Zhang J, Sheng Y, Liu Y, Yang S, Liang W, Song Y, Fang K, Zhang L, Hu G, Yao H. TEAD2 initiates ground-state pluripotency by mediating chromatin looping. EMBO J 2024; 43:1965-1989. [PMID: 38605224 PMCID: PMC11099042 DOI: 10.1038/s44318-024-00086-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 02/26/2024] [Accepted: 03/03/2024] [Indexed: 04/13/2024] Open
Abstract
The transition of mouse embryonic stem cells (ESCs) between serum/LIF and 2i(MEK and GSK3 kinase inhibitor)/LIF culture conditions serves as a valuable model for exploring the mechanisms underlying ground and confused pluripotent states. Regulatory networks comprising core and ancillary pluripotency factors drive the gene expression programs defining stable naïve pluripotency. In our study, we systematically screened factors essential for ESC pluripotency, identifying TEAD2 as an ancillary factor maintaining ground-state pluripotency in 2i/LIF ESCs and facilitating the transition from serum/LIF to 2i/LIF ESCs. TEAD2 exhibits increased binding to chromatin in 2i/LIF ESCs, targeting active chromatin regions to regulate the expression of 2i-specific genes. In addition, TEAD2 facilitates the expression of 2i-specific genes by mediating enhancer-promoter interactions during the serum/LIF to 2i/LIF transition. Notably, deletion of Tead2 results in reduction of a specific set of enhancer-promoter interactions without significantly affecting binding of chromatin architecture proteins, CCCTC-binding factor (CTCF), and Yin Yang 1 (YY1). In summary, our findings highlight a novel prominent role of TEAD2 in orchestrating higher-order chromatin structures of 2i-specific genes to sustain ground-state pluripotency.
Collapse
Affiliation(s)
- Rong Guo
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaotao Dong
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- School of Basic Medical Science, Henan University, Kaifeng, China
| | - Feng Chen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Tianrong Ji
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qiannan He
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jie Zhang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yingliang Sheng
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yanjiang Liu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Shengxiong Yang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Weifang Liang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Yawei Song
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ke Fang
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Gongcheng Hu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Hongjie Yao
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China.
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
42
|
Tian H, Luan P, Liu Y, Li G. Tet-mediated DNA methylation dynamics affect chromosome organization. Nucleic Acids Res 2024; 52:3654-3666. [PMID: 38300758 DOI: 10.1093/nar/gkae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
DNA Methylation is a significant epigenetic modification that can modulate chromosome states, but its role in orchestrating chromosome organization has not been well elucidated. Here we systematically assessed the effects of DNA Methylation on chromosome organization with a multi-omics strategy to capture DNA Methylation and high-order chromosome interaction simultaneously on mouse embryonic stem cells with DNA methylation dioxygenase Tet triple knock-out (Tet-TKO). Globally, upon Tet-TKO, we observed weakened compartmentalization, corresponding to decreased methylation differences between CpG island (CGI) rich and poor domains. Tet-TKO could also induce hypermethylation for the CTCF binding peaks in TAD boundaries and chromatin loop anchors. Accordingly, CTCF peak generally weakened upon Tet-TKO, which results in weakened TAD structure and depletion of long-range chromatin loops. Genes that lost enhancer-promoter looping upon Tet-TKO showed DNA hypermethylation in their gene bodies, which may compensate for the disruption of gene expression. We also observed distinct effects of Tet1 and Tet2 on chromatin organization and increased DNA methylation correlation on spatially interacted fragments upon Tet inactivation. Our work showed the broad effects of Tet inactivation and DNA methylation dynamics on chromosome organization.
Collapse
Affiliation(s)
- Hao Tian
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics, Peking University, Beijing 100871, China
| | - Pengfei Luan
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yaping Liu
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Guoqiang Li
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics, Peking University, Beijing 100871, China
| |
Collapse
|
43
|
Pollex T, Marco-Ferreres R, Ciglar L, Ghavi-Helm Y, Rabinowitz A, Viales RR, Schaub C, Jankowski A, Girardot C, Furlong EEM. Chromatin gene-gene loops support the cross-regulation of genes with related function. Mol Cell 2024; 84:822-838.e8. [PMID: 38157845 DOI: 10.1016/j.molcel.2023.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/31/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Chromatin loops between gene pairs have been observed in diverse contexts in both flies and vertebrates. Combining high-resolution Capture-C, DNA fluorescence in situ hybridization, and genetic perturbations, we dissect the functional role of three loops between genes with related function during Drosophila embryogenesis. By mutating the loop anchor (but not the gene) or the gene (but not loop anchor), we disentangle loop formation and gene expression and show that the 3D proximity of paralogous gene loci supports their co-regulation. Breaking the loop leads to either an attenuation or enhancement of expression and perturbs their relative levels of expression and cross-regulation. Although many loops appear constitutive across embryogenesis, their function can change in different developmental contexts. Taken together, our results indicate that chromatin gene-gene loops act as architectural scaffolds that can be used in different ways in different contexts to fine-tune the coordinated expression of genes with related functions and sustain their cross-regulation.
Collapse
Affiliation(s)
- Tim Pollex
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Raquel Marco-Ferreres
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Lucia Ciglar
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Yad Ghavi-Helm
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Adam Rabinowitz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | | | - Christoph Schaub
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Aleksander Jankowski
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Charles Girardot
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Eileen E M Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany.
| |
Collapse
|
44
|
Zhang L, Zhao R, Liang J, Cai X, Zhang L, Guo H, Zhang Z, Wu J, Wang X. BL-Hi-C reveals the 3D genome structure of Brassica crops with high sensitivity. HORTICULTURE RESEARCH 2024; 11:uhae017. [PMID: 38464474 PMCID: PMC10923644 DOI: 10.1093/hr/uhae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/03/2024] [Indexed: 03/12/2024]
Abstract
High-throughput Chromatin Conformation Capture (Hi-C) technologies can be used to investigate the three-dimensional genomic structure of plants. However, the practical utility of these technologies is impeded by significant background noise, hindering their capability in detecting fine 3D genomic structures. In this study, we optimized the Bridge Linker Hi-C technology (BL-Hi-C) to comprehensively investigate the 3D chromatin landscape of Brassica rapa and Brassica oleracea. The Bouquet configuration of both B. rapa and B. oleracea was elucidated through the construction of a 3D genome simulation. The optimized BL-Hi-C exhibited lower background noise compared to conventional Hi-C methods. Taking this advantage, we used BL-Hi-C to identify FLC gene loops in Arabidopsis, B. rapa, and B. oleracea. We observed that gene loops of FLC2 exhibited conservation across Arabidopsis, B. rapa, and B. oleracea. While gene loops of syntenic FLCs exhibited conservation across B. rapa and B. oleracea, variations in gene loops were evident among multiple paralogs FLCs within the same species. Collectively, our findings highlight the high sensitivity of optimized BL-Hi-C as a powerful tool for investigating the fine 3D genomic organization.
Collapse
Affiliation(s)
- Lupeng Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ranze Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianli Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xu Cai
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lei Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huiling Guo
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhicheng Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jian Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaowu Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
45
|
Leng L, Xu Z, Hong B, Zhao B, Tian Y, Wang C, Yang L, Zou Z, Li L, Liu K, Peng W, Liu J, An Z, Wang Y, Duan B, Hu Z, Zheng C, Zhang S, Li X, Li M, Liu Z, Bi Z, He T, Liu B, Fan H, Song C, Tong Y, Chen S. Cepharanthine analogs mining and genomes of Stephania accelerate anti-coronavirus drug discovery. Nat Commun 2024; 15:1537. [PMID: 38378731 PMCID: PMC10879537 DOI: 10.1038/s41467-024-45690-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
Cepharanthine is a secondary metabolite isolated from Stephania. It has been reported that it has anti-conronaviruses activities including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Here, we assemble three Stephania genomes (S. japonica, S. yunnanensis, and S. cepharantha), propose the cepharanthine biosynthetic pathway, and assess the antiviral potential of compounds involved in the pathway. Among the three genomes, S. japonica has a near telomere-to-telomere assembly with one remaining gap, and S. cepharantha and S. yunnanensis have chromosome-level assemblies. Following by biosynthetic gene mining and metabolomics analysis, we identify seven cepharanthine analogs that have broad-spectrum anti-coronavirus activities, including SARS-CoV-2, Guangxi pangolin-CoV (GX_P2V), swine acute diarrhoea syndrome coronavirus (SADS-CoV), and porcine epidemic diarrhea virus (PEDV). We also show that two other genera, Nelumbo and Thalictrum, can produce cepharanthine analogs, and thus have the potential for antiviral compound discovery. Results generated from this study could accelerate broad-spectrum anti-coronavirus drug discovery.
Collapse
Affiliation(s)
- Liang Leng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhichao Xu
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Bixia Hong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Binbin Zhao
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100730, China
| | - Ya Tian
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Can Wang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lulu Yang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhongmei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Lingyu Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Ke Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wanjun Peng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100730, China
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100730, China
| | - Zhoujie An
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yalin Wang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Zhigang Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Chuan Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Sanyin Zhang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaodong Li
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Maochen Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhaoyu Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zenghao Bi
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tianxing He
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Baimei Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Chi Song
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
46
|
Gao Z, Su Y, Chang L, Jiao G, Ou Y, Yang M, Xu C, Liu P, Wang Z, Qi Z, Liu W, Sun L, He G, Deng XW, He H. Increased long-distance and homo-trans interactions related to H3K27me3 in Arabidopsis hybrids. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:208-227. [PMID: 38326968 DOI: 10.1111/jipb.13620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024]
Abstract
In plants, the genome structure of hybrids changes compared with their parents, but the effects of these changes in hybrids remain elusive. Comparing reciprocal crosses between Col × C24 and C24 × Col in Arabidopsis using high-throughput chromosome conformation capture assay (Hi-C) analysis, we found that hybrid three-dimensional (3D) chromatin organization had more long-distance interactions relative to parents, and this was mainly located in promoter regions and enriched in genes with heterosis-related pathways. The interactions between euchromatin and heterochromatin were increased, and the compartment strength decreased in hybrids. In compartment domain (CD) boundaries, the distal interactions were more in hybrids than their parents. In the hybrids of CURLY LEAF (clf) mutants clfCol × clfC24 and clfC24 × clfCol , the heterosis phenotype was damaged, and the long-distance interactions in hybrids were fewer than in their parents with lower H3K27me3. ChIP-seq data revealed higher levels of H3K27me3 in the region adjacent to the CD boundary and the same interactional homo-trans sites in the wild-type (WT) hybrids, which may have led to more long-distance interactions. In addition, the differentially expressed genes (DEGs) located in the boundaries of CDs and loop regions changed obviously in WT, and the functional enrichment for DEGs was different between WT and clf in the long-distance interactions and loop regions. Our findings may therefore propose a new epigenetic explanation of heterosis in the Arabidopsis hybrids and provide new insights into crop breeding and yield increase.
Collapse
Affiliation(s)
- Zhaoxu Gao
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | - Yanning Su
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | - Le Chang
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | - Guanzhong Jiao
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | - Yang Ou
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | - Mei Yang
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | - Chao Xu
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | - Pengtao Liu
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | - Zejia Wang
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | - Zewen Qi
- College of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Wenwen Liu
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | - Linhua Sun
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | - Guangming He
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | - Xing Wang Deng
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang 261325, China
| | - Hang He
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang 261325, China
| |
Collapse
|
47
|
Xu X, Wang C, Xu C, Yuan J, Wang G, Wu Y, Huang C, Jing H, Yang P, Xu L, Peng S, Shan F, Xia X, Jin F, Hou F, Wang J, Mi D, Ren Y, Liu Y, Irwin DM, Li X, Chen W, Li G. Genomic evolution of island birds from the view of the Swinhoe's pheasant (Lophura swinhoii). Mol Ecol Resour 2024; 24:e13896. [PMID: 37955396 DOI: 10.1111/1755-0998.13896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
Island endemic birds account for the majority of extinct vertebrates in the past few centuries. To date, the evolutionary characteristics of island endemic bird's is poorly known. In this research, we de novo assembled a high-quality chromosome-level reference genome for the Swinhoe's pheasant, which is a typical endemic island bird. Results of collinearity tests suggest rapid ancient chromosome rearrangement that may have contributed to the initial species radiation within Phasianidae, and a role for the insertions of CR1 transposable elements in rearranging chromosomes in Phasianidae. During the evolution of the Swinhoe's pheasant, natural selection positively selected genes involved in fecundity and body size functions, at both the species and population levels, which reflect genetic variation associated with island adaptation. We further tested for variation in population genomic traits between the Swinhoe's pheasant and its phylogenetically closely related mainland relative the silver pheasant, and found higher levels of genetic drift and inbreeding in the Swinhoe's pheasant genome. Divergent demographic histories of insular and mainland bird species during the last glacial period may reflect the differing impact of insular and continental climates on the evolution of species. Our research interprets the natural history and population genetic characteristics of the insular endemic bird the Swinhoe's pheasant, at a genome-wide scale, provides a broader perspective on insular speciation, and adaptive evolution and contributes to the genetic conservation of island endemic birds.
Collapse
Affiliation(s)
- Xiao Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Chen Wang
- Guangzhou Zoo, Guangzhou, China
- Guangzhou Collaborative Innovation Center on Science-Tech of Ecology and Landscape, Guangzhou, China
| | - Chunzhong Xu
- Shanghai Wild Animal Park Development Co., Ltd, Shanghai, China
| | - Jiaqing Yuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Guiqiang Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yajiang Wu
- Guangzhou Zoo, Guangzhou, China
- Guangzhou Collaborative Innovation Center on Science-Tech of Ecology and Landscape, Guangzhou, China
| | - Chen Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Haohao Jing
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Peng Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Lulu Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Shiming Peng
- Guangzhou Zoo, Guangzhou, China
- Guangzhou Collaborative Innovation Center on Science-Tech of Ecology and Landscape, Guangzhou, China
| | - Fen Shan
- Guangzhou Zoo, Guangzhou, China
- Guangzhou Collaborative Innovation Center on Science-Tech of Ecology and Landscape, Guangzhou, China
| | - Xiaochao Xia
- Guangdong Wildlife Monitoring, Rescue and Conservation Center, Guangzhou, China
| | - Fuyuan Jin
- Guangdong Maoming Forest Park Administrative Office, Maoming, China
| | - Fanghui Hou
- Shanghai Wild Animal Park Development Co., Ltd, Shanghai, China
| | - Jinhong Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Da Mi
- Xi'an Haorui Genomics Technology Co., Ltd, Xi'an, China
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yandong Ren
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yang Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Xuejuan Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wu Chen
- Guangzhou Zoo, Guangzhou, China
- Guangzhou Collaborative Innovation Center on Science-Tech of Ecology and Landscape, Guangzhou, China
| | - Gang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
- Guangzhou Zoo, Guangzhou, China
| |
Collapse
|
48
|
Sun L, Zhou J, Xu X, Liu Y, Ma N, Liu Y, Nie W, Zou L, Deng XW, He H. Mapping nucleosome-resolution chromatin organization and enhancer-promoter loops in plants using Micro-C-XL. Nat Commun 2024; 15:35. [PMID: 38167349 PMCID: PMC10762229 DOI: 10.1038/s41467-023-44347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 12/10/2023] [Indexed: 01/05/2024] Open
Abstract
Although chromatin organizations in plants have been dissected at the scales of compartments and topologically associating domain (TAD)-like domains, there remains a gap in resolving fine-scale structures. Here, we use Micro-C-XL, a high-throughput chromosome conformation capture (Hi-C)-based technology that involves micrococcal nuclease (instead of restriction enzymes) and long cross-linkers, to dissect single nucleosome-resolution chromatin organization in Arabidopsis. Insulation analysis reveals more than 14,000 boundaries, which mostly include chromatin accessibility, epigenetic modifications, and transcription factors. Micro-C-XL reveals associations between RNA Pols and local chromatin organizations, suggesting that gene transcription substantially contributes to the establishment of local chromatin domains. By perturbing Pol II both genetically and chemically at the gene level, we confirm its function in regulating chromatin organization. Visible loops and stripes are assigned to super-enhancers and their targeted genes, thus providing direct insights for the identification and mechanistic analysis of distal CREs and their working modes in plants. We further investigate possible factors regulating these chromatin loops. Subsequently, we expand Micro-C-XL to soybean and rice. In summary, we use Micro-C-XL for analyses of plants, which reveal fine-scale chromatin organization and enhancer-promoter loops and provide insights regarding three-dimensional genomes in plants.
Collapse
Affiliation(s)
- Linhua Sun
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Shandong, 261000, China
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | - Jingru Zhou
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Shandong, 261000, China
| | - Xiao Xu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Shandong, 261000, China
| | - Yi Liu
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | - Ni Ma
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Shandong, 261000, China
- PKU-Tsinghua-NIBS Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yutong Liu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Shandong, 261000, China
| | - Wenchao Nie
- Wuhan Frasergen Bioinformatics Co., Ltd., Wuhan, 430075, China
| | - Ling Zou
- Wuhan Frasergen Bioinformatics Co., Ltd., Wuhan, 430075, China
| | - Xing Wang Deng
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Shandong, 261000, China.
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China.
| | - Hang He
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Shandong, 261000, China.
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
49
|
Mandal M, Maienschein-Cline M, Hu Y, Mohsin A, Veselits ML, Wright NE, Okoreeh MK, Yoon YM, Veselits J, Georgopoulos K, Clark MR. BRWD1 orchestrates small pre-B cell chromatin topology by converting static to dynamic cohesin. Nat Immunol 2024; 25:129-141. [PMID: 37985858 PMCID: PMC11542586 DOI: 10.1038/s41590-023-01666-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/29/2023] [Indexed: 11/22/2023]
Abstract
Lymphocyte development consists of sequential and mutually exclusive cell states of proliferative selection and antigen receptor gene recombination. Transitions between each state require large, coordinated changes in epigenetic landscapes and transcriptional programs. How this occurs remains unclear. Here we demonstrate that in small pre-B cells, the lineage and stage-specific epigenetic reader bromodomain and WD repeat-containing protein 1 (BRWD1) reorders three-dimensional chromatin topology to affect the transition between proliferative and gene recombination molecular programs. BRWD1 regulated the switch between poised and active enhancers interacting with promoters, and coordinated this switch with Igk locus contraction. BRWD1 did so by converting chromatin-bound static to dynamic cohesin competent to mediate long-range looping. ATP-depletion revealed cohesin conversion to be the main energetic mechanism dictating dynamic chromatin looping. Our findings provide a new mechanism of cohesin regulation and reveal how cohesin function can be dictated by lineage contextual mechanisms to facilitate specific cell fate transitions.
Collapse
Affiliation(s)
- Malay Mandal
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA.
| | | | - Yeguang Hu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Azam Mohsin
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Margaret L Veselits
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Nathaniel E Wright
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Michael K Okoreeh
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Young Me Yoon
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Jacob Veselits
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Katia Georgopoulos
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Marcus R Clark
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
50
|
Luo B, Zhang Z, Li B, Zhang H, Ma J, Li J, Han Z, Zhang C, Zhang S, Yu T, Zhang G, Ma P, Lan Y, Zhang X, Liu D, Wu L, Gao D, Gao S, Su S, Zhang X, Gao S. Chromatin remodeling analysis reveals the RdDM pathway responds to low-phosphorus stress in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:33-52. [PMID: 37731059 DOI: 10.1111/tpj.16468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023]
Abstract
Chromatin in eukaryotes folds into a complex three-dimensional (3D) structure that is essential for controlling gene expression and cellular function and is dynamically regulated in biological processes. Studies on plant phosphorus signaling have concentrated on single genes and gene interactions. It is critical to expand the existing signaling pathway in terms of its 3D structure. In this study, low-Pi treatment led to greater chromatin volume. Furthermore, low-Pi stress increased the insulation score and the number of TAD-like domains, but the effects on the A/B compartment were not obvious. The methylation levels of target sites (hereafter as RdDM levels) peaked at specific TAD-like boundaries, whereas RdDM peak levels at conserved TAD-like boundaries shifted and decreased sharply. The distribution pattern of RdDM sites originating from the Helitron transposons matched that of genome-wide RdDM sites near TAD-like boundaries. RdDM pathway genes were upregulated in the middle or early stages and downregulated in the later stages under low-Pi conditions. The RdDM pathway mutant ddm1a showed increased tolerance to low-Pi stress, with shortened and thickened roots contributing to higher Pi uptake from the shallow soil layer. ChIP-seq results revealed that ZmDDM1A could bind to Pi- and root development-related genes. Strong associations were found between interacting genes in significantly different chromatin-interaction regions and root traits. These findings not only expand the mechanisms by which plants respond to low-Pi stress through the RdDM pathway but also offer a crucial framework for the analysis of biological issues using 3D genomics.
Collapse
Affiliation(s)
- Bowen Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Ziqi Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Binyang Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Haiying Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Junchi Ma
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Jing Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Zheng Han
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Chong Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Shuhao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Ting Yu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Guidi Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Peng Ma
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
- Mianyang Academy of Agricultural Sciences, Mianyang, 621023, Sichuan, China
- Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Province, Mianyang, China
| | - Yuzhou Lan
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, P.O. Box 190, SE-23422, Lomma, Sweden
| | - Xiao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Dan Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Ling Wu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Duojiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Shiqiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Shunzong Su
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xuecai Zhang
- International Maize and Wheat Improvement Center, Texcoco, Mexico
| | - Shibin Gao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| |
Collapse
|