1
|
Sousa A, Kulkarni R, Johannessen M, Wohland T, Škalko-Basnet N, Obuobi S. Decoding interactions between biofilms and DNA nanoparticles. Biofilm 2025; 9:100260. [PMID: 40026394 PMCID: PMC11871490 DOI: 10.1016/j.bioflm.2025.100260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/20/2025] [Accepted: 02/06/2025] [Indexed: 03/05/2025] Open
Abstract
Biofilms present a great challenge in antimicrobial therapy due to their inherent tolerance to conventional antibiotics, promoting the need for advanced drug delivery strategies that improve therapy. While various nanoparticles (NPs) have been reported for this purpose, DNA-based NPs remain a largely unexploited resource against biofilm-associated infections. To fill this gap and to lay the groundwork for their potential therapeutic exploitation, we investigated the diffusion, penetration, and retention behaviors of three DNA-based nanocarriers -plain or modified-within P. aeruginosa biofilms. Watson-Crick base pairing or hydrophobic interactions mediated the formation of the plain NPs whilst electrostatic interaction enabled optimization of coated NPs via microfluidic mixing. We assessed the interactions of the nanocarriers with biofilm structures via Single Plane Illumination Microscopy - Fluorescence Correlation Spectroscopy (SPIM-FCS) and Confocal Laser Scanning Microscopy (CLSM). We demonstrate the impact of microfluidic parameters on the physicochemical properties of the modified DNA NPs and their subsequent distinct behaviors in the biofilm. Our results show that single stranded DNA micelles (ssDNA micelle) and tetrahedral DNA nanostructures (TDN) had similar diffusion and penetration profiles, whereas chitosan-coated TDN (TDN-Chit) showed reduced diffusion and increased biofilm retention. This is attributable to the relatively larger size and positive surface charge of the TDN-Chit NPs. The study shows first and foremost that DNA can be used as building block in drug delivery for antibiofilm therapeutics. Moreover, the overall behavioral findings are pivotal for the strategic selection of therapeutic agents to be encapsulated within these structures, possibly affecting the treatment efficacy. This research not only highlights the underexplored potential of DNA-based NPs in antibiofilm therapy but also advocates for further studies using different optimization strategies to refine these nanocarrier systems for targeted treatments in biofilm-related infections.
Collapse
Affiliation(s)
- Alexandra Sousa
- Drug Transport and Delivery Research Group, Department of Pharmacy, UIT The Arctic University of Norway, Tromsø, Norway
| | - Rutuparna Kulkarni
- Department of Biological Sciences, National University of Singapore, Singapore
- Centre for BioImaging Sciences, National University of Singapore, Singapore
| | - Mona Johannessen
- Host Microbe Interaction Research Group, Department of Medical Biology, UIT The Arctic University of Norway, Tromsø, Norway
| | - Thorsten Wohland
- Department of Biological Sciences, National University of Singapore, Singapore
- Centre for BioImaging Sciences, National University of Singapore, Singapore
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, UIT The Arctic University of Norway, Tromsø, Norway
| | - Sybil Obuobi
- Drug Transport and Delivery Research Group, Department of Pharmacy, UIT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
2
|
Peng Z, Latag GV, Tahara H, Yagi T, Hayashi T. Unraveling the time course of interaction between DNA nanopores and lipid bilayers using QCM-D: role of cholesterol anchors and bilayer supporting substrates. NANOSCALE 2025; 17:11668-11678. [PMID: 40260696 DOI: 10.1039/d5nr01299f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Lipid membranes are fundamental elements of cells, serving as barriers that protect the cell interior from the external environment. DNA nanostructures, which can engineer lipid membranes' signal transduction and substance exchange properties, attract interest for their potential applications in the biomedical field. The interaction between DNA nanostructures and lipid membranes is of scientific and technological interest. Here, we investigate the interaction between DNA nanopores (DNPs) and model supported lipid bilayers (SLBs) using real-time quartz crystal microbalance with energy dissipation monitoring (QCM-D). The long observation time and high temporal resolution enable us to visualize the time course of DNPs' interaction with SLBs, including their tethering and incorporating processes. Benefiting from the ability of QCM-D to obtain adsorbed layers' viscoelasticity profiles, we found that the DNPs with three cholesterol tags aggregate and form a rigid layer on the SLB surface during their tethering step. Moreover, our results reveal that the supporting substrates of SLBs impact the incorporation of DNPs, whereby separating the SLBs from the SiO2 sensor surface with poly(ethylene glycol) (PEG) polymer cushion results in faster incorporation. This study not only sheds light on the behavior of DNPs but also establishes QCM-D as an analytical platform for exploring the interactions of membrane-interacting DNA nanostructures, potentially accelerating advancements in DNA nanotechnology.
Collapse
Affiliation(s)
- Zugui Peng
- Department of Mechanical Engineering, School of Engineering, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Glenn Villena Latag
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 4259 Nagatsuta-Cho Midori-Ku, Yokohama, Kanagawa 226-8502, Japan.
| | - Hiroyuki Tahara
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 4259 Nagatsuta-Cho Midori-Ku, Yokohama, Kanagawa 226-8502, Japan.
| | - Tohru Yagi
- Department of Mechanical Engineering, School of Engineering, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Tomohiro Hayashi
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 4259 Nagatsuta-Cho Midori-Ku, Yokohama, Kanagawa 226-8502, Japan.
| |
Collapse
|
3
|
Büber E, Yaadav R, Schröder T, Franquelim HG, Tinnefeld P. DNA Origami Vesicle Sensors with Triggered Single-Molecule Cargo Transfer. Angew Chem Int Ed Engl 2024; 63:e202408295. [PMID: 39248369 PMCID: PMC11586697 DOI: 10.1002/anie.202408295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Interacting with living systems typically involves the ability to address lipid membranes of cellular systems. The first step of interaction of a nanorobot with a cell will thus be the detection of binding to a lipid membrane. Utilizing DNA origami, we engineered a biosensor with single-molecule Fluorescence Resonance Energy Transfer (smFRET) as transduction mechanism for precise lipid vesicle detection and cargo delivery. The system hinges on a hydrophobic ATTO647N modified single-stranded DNA (ssDNA) leash, protruding from a DNA origami nanostructure. In a vesicle-free environment, the ssDNA coils, ensuring high FRET efficiency. Upon vesicle binding to cholesterol anchors on the DNA origami, hydrophobic ATTO647N induces the ssDNA to stretch towards the lipid bilayer, reducing FRET efficiency. As the next step, the sensing strand serves as molecular cargo that can be transferred to the vesicle through a triggered strand displacement reaction. Depending on the number of cholesterols on the displacer strands, we either induce a diffusive release of the fluorescent load towards neighboring vesicles or a stoichiometric release of a single cargo-unit to the vesicle on the nanosensor. Ultimately, our multi-functional liposome interaction and detection platform opens up pathways for innovative biosensing applications and stoichiometric loading of vesicles with single-molecule control.
Collapse
Affiliation(s)
- Ece Büber
- Department of ChemistryCenter for NanoScienceLudwig-Maximilians-UniversityButenandtstraße 5–1381377MunichGermany
| | - Renukka Yaadav
- Department of ChemistryCenter for NanoScienceLudwig-Maximilians-UniversityButenandtstraße 5–1381377MunichGermany
| | - Tim Schröder
- Department of ChemistryCenter for NanoScienceLudwig-Maximilians-UniversityButenandtstraße 5–1381377MunichGermany
| | - Henri G. Franquelim
- Interfaculty Centre for Bioactive MatterLeipzig UniversityDeutscher Platz 5 (BBZ)04103LeipzigGermany
| | - Philip Tinnefeld
- Department of ChemistryCenter for NanoScienceLudwig-Maximilians-UniversityButenandtstraße 5–1381377MunichGermany
| |
Collapse
|
4
|
Samardak K, Bâcle J, Moriel-Carretero M. Behind the stoNE wall: A fervent activity for nuclear lipids. Biochimie 2024; 227:53-84. [PMID: 39111564 DOI: 10.1016/j.biochi.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/27/2024]
Abstract
The four main types of biomolecules are nucleic acids, proteins, carbohydrates and lipids. The knowledge about their respective interactions is as important as the individual understanding of each of them. However, while, for example, the interaction of proteins with the other three groups is extensively studied, that of nucleic acids and lipids is, in comparison, very poorly explored. An iconic paradigm of physical (and likely functional) proximity between DNA and lipids is the case of the genomic DNA in eukaryotes: enclosed within the nucleus by two concentric lipid bilayers, the wealth of implications of this interaction, for example in genome stability, remains underassessed. Nuclear lipid-related phenotypes have been observed for 50 years, yet in most cases kept as mere anecdotical descriptions. In this review, we will bring together the evidence connecting lipids with both the nuclear envelope and the nucleoplasm, and will make critical analyses of these descriptions. Our exploration establishes a scenario in which lipids irrefutably play a role in nuclear homeostasis.
Collapse
Affiliation(s)
- Kseniya Samardak
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM) UMR5237, Université de Montpellier, Centre National de La Recherche Scientifique, 34293 Montpellier Cedex 5, France
| | - Janélie Bâcle
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM) UMR5237, Université de Montpellier, Centre National de La Recherche Scientifique, 34293 Montpellier Cedex 5, France
| | - María Moriel-Carretero
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM) UMR5237, Université de Montpellier, Centre National de La Recherche Scientifique, 34293 Montpellier Cedex 5, France.
| |
Collapse
|
5
|
Chen X, Xu Z, Gao Y, Chen Y, Yin W, Liu Z, Cui W, Li Y, Sun J, Yang Y, Ma W, Zhang T, Tian T, Lin Y. Framework Nucleic Acid-Based Selective Cell Catcher for Endogenous Stem Cell Recruitment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406118. [PMID: 39543443 DOI: 10.1002/adma.202406118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/23/2024] [Indexed: 11/17/2024]
Abstract
Cell-surface engineering holds great promise in boosting endogenous stem cell attraction for tissue regeneration. However, challenges such as cellular internalization of ligand and the dynamic nature of cell membranes often complicate ligand-receptor interactions. The aim of this study is to harness the innovative potential of programmable tetrahedral framework nucleic acid (tFNA) to enable precise, tunable ligand-receptor interactions, thereby improving stem cell recruitment efficiency. This approach involves experimental screening and theoretical analysis using dissipative particle dynamics. The results demonstrate that altering the flexibility and topology of ligands on tFNA changes their cellular internalization and membrane binding efficiency. Furthermore, optimizing the distribution of the mesenchymal stem cell (MSC)-binding aptamer 19S (Apt19S) on the tFNA enhances the stem cell capture efficiency. Following successful in vitro MSC capture, Apt19S-modified tFNA is chemically linked to a hyaluronic acid hydrogel, forming an efficient "stem cell catcher" system. Subsequent in vivo experiments demonstrate that this system effectively promotes early stem cell recruitment and accelerates bone regeneration in different bone healing scenarios, including cranial and maxillary defects.
Collapse
Affiliation(s)
- Xingyu Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Ziang Xu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Yang Gao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Ye Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Wumeng Yin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Weitong Cui
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Yong Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Jiafei Sun
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Yuting Yang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan, 610041, China
| |
Collapse
|
6
|
Yang L, Pecastaings G, Drummond C, Elezgaray J. Driving DNA Nanopore Membrane Insertion through Dipolar Coupling. NANO LETTERS 2024; 24:13481-13486. [PMID: 39432432 DOI: 10.1021/acs.nanolett.4c02302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
DNA nanopores appear to be a plausible alternative to the use of transmembrane proteins. The specificity and programmability of DNA interactions allow the design of synthetic channels that insert into lipid bilayers and can regulate the ionic transport across them. In this Communication, we investigate the dependence of insertion capabilities on the electrostatic properties of the nanopore and show that the presence of a permanent electric dipole is an important factor for the nanopore to insert into the membrane. On the contrary, in the absence of such a dipole, most DNA nanopores bind to the bilayer without channel formation. We also show that this modification does not hinder the possibility of triggering a measurable conformational change with a single short oligonucleotide.
Collapse
Affiliation(s)
- Luyan Yang
- Centre Paul Pascal, UMR 5031, CNRS, avenue Schweitzer, 33600 Pessac, France
| | - Gilles Pecastaings
- Centre Paul Pascal, UMR 5031, CNRS, avenue Schweitzer, 33600 Pessac, France
| | - Carlos Drummond
- Centre Paul Pascal, UMR 5031, CNRS, avenue Schweitzer, 33600 Pessac, France
| | - Juan Elezgaray
- Centre Paul Pascal, UMR 5031, CNRS, avenue Schweitzer, 33600 Pessac, France
| |
Collapse
|
7
|
Georgiou E, Cabello-Garcia J, Xing Y, Howorka S. DNA Origami - Lipid Membrane Interactions Controlled by Nanoscale Sterics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404720. [PMID: 39162223 DOI: 10.1002/smll.202404720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/04/2024] [Indexed: 08/21/2024]
Abstract
DNA nanostructures designed to interact with bilayer membranes are of fundamental interest as they mimic biological cytoskeletons and other membrane-associated proteins for applications in synthetic biology, biosensing, and biological research. Yet, there is limited insight into how the binary interactions are influenced by steric effects produced by 3D geometries of DNA structures and membranes. This work uses a 3D DNA nanostructure with membrane anchors in four different steric environments to elucidate the interaction with membrane vesicles of varying sizes and different local bilayer morphology. It is found that interactions are significantly affected by the steric environments of the anchors -often against predicted accessibility- as well as local nanoscale morphology of bilayers rather than on the usually considered global vesicle size. Furthermore, anchor-mediated bilayer interactions are co-controlled by weak contacts with non-lipidated DNA regions, as showcased by pioneering size discrimination between 50 and 200 nm vesicles. This study extends DNA nanotechnology to controlled bilayer interactions and can facilitate the design of nanodevices for vesicle-based diagnostics, biosensing, and protocells.
Collapse
Affiliation(s)
- Elena Georgiou
- Department of Chemistry, Institute of Structural Molecular Biology, University College London, London, WC1H 0AJ, UK
| | - Javier Cabello-Garcia
- Department of Chemistry, Institute of Structural Molecular Biology, University College London, London, WC1H 0AJ, UK
| | - Yongzheng Xing
- National Engineering Research Center for Colloidal Materials, Shandong University, Jinan, Shandong, 250100, China
| | - Stefan Howorka
- Department of Chemistry, Institute of Structural Molecular Biology, University College London, London, WC1H 0AJ, UK
| |
Collapse
|
8
|
Wong SH, Kopf SN, Caroprese V, Zosso Y, Morzy D, Bastings MMC. Modulating the DNA/Lipid Interface through Multivalent Hydrophobicity. NANO LETTERS 2024; 24:11210-11216. [PMID: 39054892 PMCID: PMC11403765 DOI: 10.1021/acs.nanolett.4c02564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Lipids and nucleic acids are two of the most abundant components of our cells, and both molecules are widely used as engineering materials for nanoparticles. Here, we present a systematic study of how hydrophobic modifications can be employed to modulate the DNA/lipid interface. Using a series of DNA anchors with increasing hydrophobicity, we quantified the capacity to immobilize double-stranded (ds) DNA to lipid membranes in the liquid phase. Contrary to electrostatic effects, hydrophobic anchors are shown to be phase-independent if sufficiently hydrophobic. For weak anchors, the overall hydrophobicity can be enhanced following the concept of multivalency. Finally, we demonstrate that structural flexibility and anchor orientation overrule the effect of multivalency, emphasizing the need for careful scaffold design if strong interfaces are desired. Together, our findings guide the design of tailored DNA/membrane interfaces, laying the groundwork for advancements in biomaterials, drug delivery vehicles, and synthetic membrane mimics for biomedical research and nanomedicine.
Collapse
Affiliation(s)
- Siu Ho Wong
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne 1015, Switzerland
| | - Sarina Nicole Kopf
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne 1015, Switzerland
| | - Vincenzo Caroprese
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne 1015, Switzerland
| | - Yann Zosso
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne 1015, Switzerland
| | - Diana Morzy
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne 1015, Switzerland
| | - Maartje M C Bastings
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne 1015, Switzerland
- Interfaculty Bioengineering Institute, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
9
|
Suryan V, Chandra NC. Cholesterol and Cytokines: Molecular Links to Atherosclerosis and Carcinogenesis. Cell Biochem Biophys 2024; 82:1837-1844. [PMID: 38943010 DOI: 10.1007/s12013-024-01383-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
An increase of cholesterol concentration within the artery obstructs arterial blood flow once it deposits alongside the arterial wall. This results in atherosclerosis. Carcinogenesis causes a quicker clearance of vascular cholesterol to meet the demands of tumour cell development. Both illnesses have an increased concentration of pro-inflammatory cytokines in the blood. To search the comparative characteristics of cholesterol and pro-inflammatory cytokines in the pathogenesis of atherosclerosis and carcinogenesis, a comprehensive online survey using MEDLINE, Scopus, PubMed, and Google Scholar was conducted for relevant journals with key search term cholesterol and cytokines in atherosclerotic and cancerous patients. According to reports, hypercholesterolaemia related dyslipidemia causes atherosclerosis in blood arteries and hypercholesterolaemia in cell nucleus is a reason for developing carcinogenesis. It is also noted that pro-inflammatory cytokines are involved in both of the aforementioned pathogenesis. Changes in anti-inflammatory cytokines are only the characteristic features of each kind. Thus, Cholesterol and pro-inflammatory cytokines are intensely interlinked in the genesis of atherosclerotic and carcinogenic consequences.
Collapse
Affiliation(s)
- Varsha Suryan
- Department of Biochemistry, Faculty of Medicine & Health Sciences, Shree Guru Gobind Singh Tricentenary University, Budhera, Gurugram (Delhi-NCR), Haryana, 122505, India
- Department of Paramedical Science, Faculty of Allied Health Sciences, Shree Guru Gobind Singh Tricentenary University, Budhera, Gurugram (Delhi-NCR), Haryana, 122505, India
| | - Nimai Chand Chandra
- Department of Biochemistry, Faculty of Medicine & Health Sciences, Shree Guru Gobind Singh Tricentenary University, Budhera, Gurugram (Delhi-NCR), Haryana, 122505, India.
| |
Collapse
|
10
|
Li C, Zhao W, Hu Z, Yu H. Cholesterol-Modified DNA Nanostructures Serve as Effective Non-Viral Carriers for Delivering siRNA to the Kidneys to Prevent Acute Kidney Injury. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311690. [PMID: 38377276 DOI: 10.1002/smll.202311690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/13/2024] [Indexed: 02/22/2024]
Abstract
With the emergence of gene therapy utilizing viral vectors, the potential risks associated with these vectors have prompted increased attention toward non-viral alternatives. DNA nanotechnology enables the assembly of specific oligonucleotide chains into nanostructures possessing defined spatial configurations. Due to their inherent characteristics, DNA nanostructures possess natural advantages as carriers for regulating gene expression in a non-viral manner. Cholesterol modification can convert DNA nanostructures from hydrophilic materials to amphiphilic materials, thereby extending their systemic circulation time. In this study, the high-dimensional design and cholesterol modification are shown to prolong the systemic circulation half-life of DNA nanostructures in mice. Specifically, the tetrahedron structure modified with three cholesterol molecules (TDN-3Chol) exhibit excellent circulation time and demonstrate a preference for renal uptake. The unique characteristics of TDN-3Chol can effectively deliver p53 siRNA to the mouse renal tubular tissue, resulting in successful knockdown of p53 and demonstrating its potential for preventing acute kidney injury. Furthermore, TDN-3Chol is not exhibited significant toxicity in mice, highlighting its promising role as a non-viral vector for targeted gene expression regulation in the kidneys. The designed non-viral vector as a prophylactic medication shows potential in addressing the current clinical challenges associated with nephrotoxic drugs.
Collapse
Affiliation(s)
- Chengxun Li
- School of Stomatology & Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Wenzhuo Zhao
- School of Stomatology & Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Zuojian Hu
- School of Stomatology & Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Hongxiu Yu
- School of Stomatology & Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| |
Collapse
|
11
|
Samanta A, Baranda Pellejero L, Masukawa M, Walther A. DNA-empowered synthetic cells as minimalistic life forms. Nat Rev Chem 2024; 8:454-470. [PMID: 38750171 DOI: 10.1038/s41570-024-00606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 06/13/2024]
Abstract
Cells, the fundamental units of life, orchestrate intricate functions - motility, adaptation, replication, communication, and self-organization within tissues. Originating from spatiotemporally organized structures and machinery, coupled with information processing in signalling networks, cells embody the 'sensor-processor-actuator' paradigm. Can we glean insights from these processes to construct primitive artificial systems with life-like properties? Using de novo design approaches, what can we uncover about the evolutionary path of life? This Review discusses the strides made in crafting synthetic cells, utilizing the powerful toolbox of structural and dynamic DNA nanoscience. We describe how DNA can serve as a versatile tool for engineering entire synthetic cells or subcellular entities, and how DNA enables complex behaviour, including motility and information processing for adaptive and interactive processes. We chart future directions for DNA-empowered synthetic cells, envisioning interactive systems wherein synthetic cells communicate within communities and with living cells.
Collapse
Affiliation(s)
- Avik Samanta
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz, Germany.
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, India.
| | | | - Marcos Masukawa
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz, Germany
| | - Andreas Walther
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz, Germany.
| |
Collapse
|
12
|
Chen Q, Xia X, Liang Z, Zuo T, Xu G, Wei F, Yang J, Hu Q, Zhao Z, Tang BZ, Cen Y. Self-Assembled DNA Nanospheres Driven by Carbon Dots for MicroRNAs Imaging in Tumor via Logic Circuit. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310728. [PMID: 38229573 DOI: 10.1002/smll.202310728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/26/2023] [Indexed: 01/18/2024]
Abstract
DNA nanostructures with diverse biological functions have made significant advancements in biomedical applications. However, a universal strategy for the efficient production of DNA nanostructures is still lacking. In this work, a facile and mild method is presented for self-assembling polyethylenimine-modified carbon dots (PEI-CDs) and DNA into nanospheres called CANs at room temperature. This makes CANs universally applicable to multiple biological applications involving various types of DNA. Due to the ultra-small size and strong cationic charge of PEI-CDs, CANs exhibit a dense structure with high loading capacity for encapsulated DNA while providing excellent stability by protecting DNA from enzymatic hydrolysis. Additionally, Mg2+ is incorporated into CANs to form Mg@CANs which enriches the performance of CANs and enables subsequent biological imaging applications by providing exogenous Mg2+. Especially, a DNAzyme logic gate system that contains AND and OR Mg@CANs is constructed and successfully delivered to tumor cells in vitro and in vivo. They can be specifically activated by endogenic human apurinic/apyrimidinic endonuclease 1 and recognize the expression levels of miRNA-21 and miRNA-155 at tumor sites by logic biocomputing. A versatile pattern for delivery of diverse DNA and flexible logic circuits for multiple miRNAs imaging are developed.
Collapse
Affiliation(s)
- Qiutong Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Xinyi Xia
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Zhigang Liang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Tongshan Zuo
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Guanhong Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Fangdi Wei
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Jing Yang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Qin Hu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Zheng Zhao
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| | - Ben Zhong Tang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| | - Yao Cen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| |
Collapse
|
13
|
Madhanagopal B, Rodriguez A, Cordones M, Chandrasekaran AR. Barium Concentration-Dependent Anomalous Electrophoresis of Synthetic DNA Motifs. ACS APPLIED BIO MATERIALS 2024; 7:2704-2709. [PMID: 38635922 PMCID: PMC11110055 DOI: 10.1021/acsabm.4c00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
The structural integrity, assembly yield, and biostability of DNA nanostructures are influenced by the metal ions used to construct them. Although high (>10 mM) concentrations of divalent ions are often preferred for assembling DNA nanostructures, the range of ion concentrations and the composition of the assembly products vary for different assembly conditions. Here, we examined the unique ability of Ba2+ to retard double crossover DNA motifs by forming a low mobility species, whose mobility on the gel is determined by the concentration ratio of DNA and Ba2+. The formation of this electrophoretically retarded species is promoted by divalent ions such as Mg2+, Ca2+, and Sr2+ when combined with Ba2+ but not on their own, while monovalent ions such as Na+, K+, and Li+ do not have any effect on this phenomenon. Our results highlight the complex interplay between the metal ions and DNA self-assembly and could inform the design of DNA nanostructures for applications that expose them to multiple ions at high concentrations.
Collapse
Affiliation(s)
- Bharath
Raj Madhanagopal
- The
RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Arlin Rodriguez
- The
RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Mireylin Cordones
- The
RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Arun Richard Chandrasekaran
- The
RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| |
Collapse
|
14
|
Livernois W, Cao PS, Saha S, Ding Q, Gopinath A, Anantram MP. Ion detection in a DNA nanopore FET device. NANOTECHNOLOGY 2024; 35:325202. [PMID: 38692268 DOI: 10.1088/1361-6528/ad460b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/01/2024] [Indexed: 05/03/2024]
Abstract
An ion detection device that combines a DNA-origami nanopore and a field-effect transistor (FET) was designed and modeled to determine sensitivity of the nanodevice to the local cellular environment. Such devices could be integrated into a live cell, creating an abiotic-biotic interface integrated with semiconductor electronics. A continuum model is used to describe the behavior of ions in an electrolyte solution. The drift-diffusion equations are employed to model the ion distribution, taking into account the electric fields and concentration gradients. This was matched to the results from electric double layer theory to verify applicability of the model to a bio-sensing environment. The FET device combined with the nanopore is shown to have high sensitivity to ion concentration and nanopore geometry, with the electrical double layer behavior governing the device characteristics. A logarithmic relationship was found between ion concentration and a single FET current, generating up to 200 nA of current difference with a small applied bias.
Collapse
Affiliation(s)
- William Livernois
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, United States of America
| | - Purunc Simon Cao
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, United States of America
| | - Soumyadeep Saha
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, CA, Canada
| | - Quanchen Ding
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, United States of America
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - Ashwin Gopinath
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - M P Anantram
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
15
|
Wang W, Chopra B, Walawalkar V, Liang Z, Adams R, Deserno M, Ren X, Taylor RE. Cell-Surface Binding of DNA Nanostructures for Enhanced Intracellular and Intranuclear Delivery. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15783-15797. [PMID: 38497300 PMCID: PMC10995898 DOI: 10.1021/acsami.3c18068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
DNA nanostructures (DNs) have found increasing use in biosensing, drug delivery, and therapeutics because of their customizable assembly, size and shape control, and facile functionalization. However, their limited cellular uptake and nuclear delivery have hindered their effectiveness in these applications. Here, we demonstrate the potential of applying cell-surface binding as a general strategy to enable rapid enhancement of intracellular and intranuclear delivery of DNs. By targeting the plasma membrane via cholesterol anchors or the cell-surface glycocalyx using click chemistry, we observe a significant 2 to 8-fold increase in the cellular uptake of three distinct types of DNs that include nanospheres, nanorods, and nanotiles, within a short time frame of half an hour. Several factors are found to play a critical role in modulating the uptake of DNs, including their geometries, the valency, positioning and spacing of binding moieties. Briefly, nanospheres are universally preferable for cell surface attachment and internalization. However, edge-decorated nanotiles compensate for their geometry deficiency and outperform nanospheres in both categories. In addition, we confirm the short-term structural stability of DNs by incubating them with cell medium and cell lysate. Further, we investigate the endocytic pathway of cell-surface bound DNs and reveal that it is an interdependent process involving multiple pathways, similar to those of unmodified DNs. Finally, we demonstrate that cell-surface attached DNs exhibit a substantial enhancement in the intranuclear delivery. Our findings present an application that leverages cell-surface binding to potentially overcome the limitations of low cellular uptake, which may strengthen and expand the toolbox for effective cellular and nuclear delivery of DNA nanostructure systems.
Collapse
Affiliation(s)
- Weitao Wang
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Bhavya Chopra
- Department
of Biomedical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Vismaya Walawalkar
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Zijuan Liang
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Rebekah Adams
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Markus Deserno
- Department
of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xi Ren
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Biomedical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Rebecca E. Taylor
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Biomedical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
16
|
Li C, Jia H, Wei X, Xue G, Xu J, Cheng R, Cheng Y, Song Q, Shen Z, Xue C. Single-Nucleotide-Specific Lipidic Nanoflares for Precise and Visible Detection of KRAS Mutations via Toehold-Initiated Self-Priming DNA Polymerization. Anal Chem 2024; 96:4205-4212. [PMID: 38433457 DOI: 10.1021/acs.analchem.3c05511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Accurate identification of single-nucleotide mutations in circulating tumor DNA (ctDNA) is critical for cancer surveillance and cell biology research. However, achieving precise and sensitive detection of ctDNAs in complex physiological environments remains challenging due to their low expression and interference from numerous homologous species. This study introduces single-nucleotide-specific lipidic nanoflares designed for the precise and visible detection of ctDNA via toehold-initiated self-priming DNA polymerization (TPP). This system can be assembled from only a single cholesterol-conjugated multifunctional molecular beacon (MMB) via hydrophobicity-mediated aggregation. This results in a compact, high-density, and nick-hidden arrangement of MMBs on the surface of lipidic micelles, thereby enhancing their biostability and localized concentrations. The assay commences with the binding of frequently mutated regions of ctDNA to the MMB toehold domain. This domain is the proximal holding point for initiating the TPP-based strand-displacement reaction, which is the key step in enabling the discrimination of single-base mutations. We successfully detected a single-base mutation in ctDNA (KRAS G12D) in its wild-type gene (KRAS WT), which is one of the most frequently mutated ctDNAs. Notably, coexisting homologous species did not interfere with signal transduction, and small differences in these variations can be visualized by fluorescence imaging. The limit of detection was as low as 10 amol, with the system functioning well in physiological media. In particular, this system allowed us to resolve genetic mutations in the KRAS gene in colorectal cancer, suggesting its high potential in clinical diagnosis and personalized medicine.
Collapse
Affiliation(s)
- Chan Li
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Haiyan Jia
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Xiaoling Wei
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Guohui Xue
- Department of Clinical Laboratory, Jiujiang No. 1 People's Hospital, Jiujiang 332000, Jiangxi, PR China
| | - Jianguo Xu
- Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Ruize Cheng
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Yinghao Cheng
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Qiufeng Song
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Zhifa Shen
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Chang Xue
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, PR China
| |
Collapse
|
17
|
Liu Z, Rong G, Dong H, Zhang Y, Xu M, Baoxian Ye, Zhou Y. Ratiometric electrochemical biosensor based on lateral movement of multi-pedal DNA tetrahedron machine on biomimetic interface. Talanta 2024; 269:125454. [PMID: 38029606 DOI: 10.1016/j.talanta.2023.125454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/13/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
In this work, a lateral moving multi-pedal DNA tetrahedron machine (MTM) is designed and coupled with dual-signal output system to construct a biomimetic electrochemical ratiometric strategy for ultrasensitive target DNA analysis. The tetrahedral structure provided rigid support for the pedal, ensuring efficient replacement of the rail chain modified with ferrocene. By conjugating cholesterol molecules to one vertex of MTM, it is decorated on a lipid bilayer. This molecular architecture confers lateral movement of MTM on an electrode surface while prevents its detachment from the system. The methylene blue tagged hairpin probe provides constant power to support MTM swim on lipid bilayer. Compared with the conventional motion mode, the lateral moving mechanism has the fastest reaction rate and the highest signal-to-noise ratio. Additionally, the dual-signal reporting system further improves the accuracy of target detection on the basis of ensuring motion efficiency. The work improved movement efficiency and shortened time fragment. A linear relationship between the ratio value of two reporters and target DNA concentration was observed from 0.5 fM to 50 pM with a detection limit of 28 aM. The lateral motion mode of DNA machine coalescing with ratiometric system made this sensing platform ultrasensitive and accurate, which holds new avenue of early diagnosis.
Collapse
Affiliation(s)
- Zi Liu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, PR China.
| | - Guoxiang Rong
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, PR China
| | - Hui Dong
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, PR China
| | - Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, PR China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, PR China
| | - Baoxian Ye
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yanli Zhou
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, PR China.
| |
Collapse
|
18
|
Ma X, Zhang Y, Huang K, Zhu L, Xu W. Multifunctional rolling circle transcription-based nanomaterials for advanced drug delivery. Biomaterials 2023; 301:122241. [PMID: 37451000 DOI: 10.1016/j.biomaterials.2023.122241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
As the up-and-comer in the development of RNA nanotechnology, RNA nanomaterials based on functionalized rolling circle transcription (RCT) have become promising carriers for drug production and delivery. This is due to RCT technology can self-produce polyvalent tandem nucleic acid prodrugs for intervention in intracellular gene expression and protein production. RNA component strands participating in de novo assembly enable RCT-based nanomaterials to exhibit good mechanical properties, biostability, and biocompatibility as delivery carriers. The biostability makes it to suitable for thermodynamically/kinetically favorable assembly, enzyme resistance and efficient expression in vivo. Controllable RCT system combined with polymers enables customizable and adjustable size, shape, structure, and stoichiometry of RNA building materials, which provide groundwork for the delivery of advanced drugs. Here, we review the assembly strategies and the dynamic regulation of RCT-based nanomaterials, summarize its functional properties referring to the bottom-up design philosophy, and describe its advancements in tumor gene therapy, synergistic chemotherapy, and immunotherapy. Last, we elaborate on the unique and practical value of RCT-based nanomaterials, namely "self-production and self-sale", and their potential challenges in nanotechnology, material science and biomedicine.
Collapse
Affiliation(s)
- Xuan Ma
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, 100083, China
| | - Yangzi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, 100083, China
| | - Kunlun Huang
- College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, 100083, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
19
|
Gubu A, Zhang X, Lu A, Zhang B, Ma Y, Zhang G. Nucleic acid amphiphiles: Synthesis, properties, and applications. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:144-163. [PMID: 37456777 PMCID: PMC10345231 DOI: 10.1016/j.omtn.2023.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Nucleic acid amphiphiles, referring to nucleic acids modified with large hydrophobic groups, have been widely used in programmable bioengineering. Since nucleic acids are intrinsically hydrophilic, the hydrophobic groups endow nucleic acid amphiphiles with unique properties, such as self-assembling, interactions with artificial or biological membranes, and transmembrane transport. Importantly, the hybridization or target binding capability of oligonucleotide itself supplies nucleic acid amphiphiles with excellent programmability. As a result, this type of molecule has attracted considerable attention in academic studies and has enormous potential for further applications. For a comprehensive understanding of nucleic acid amphiphiles, we review the reported research on nucleic acid amphiphiles from their molecular design to final applications, in which we summarize the synthetic strategies for nucleic acid amphiphiles and draw much attention to their unique properties in different contexts. Finally, a summary of the applications of nucleic acid amphiphiles in drug development, bioengineering, and bioanalysis are critically discussed.
Collapse
Affiliation(s)
- Amu Gubu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Aptacure Therapeutics Limited, Kowloon, Hong Kong SAR, China
| | - Xueli Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38 Xueyuan Road, Beijing, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong 999077, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen 518000, China
| | - Baoting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuan Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong 999077, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen 518000, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong 999077, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen 518000, China
| |
Collapse
|
20
|
Luo L, Manda S, Park Y, Demir B, Sanchez J, Anantram MP, Oren EE, Gopinath A, Rolandi M. DNA nanopores as artificial membrane channels for bioprotonics. Nat Commun 2023; 14:5364. [PMID: 37666808 PMCID: PMC10477224 DOI: 10.1038/s41467-023-40870-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023] Open
Abstract
Biological membrane channels mediate information exchange between cells and facilitate molecular recognition. While tuning the shape and function of membrane channels for precision molecular sensing via de-novo routes is complex, an even more significant challenge is interfacing membrane channels with electronic devices for signal readout, which results in low efficiency of information transfer - one of the major barriers to the continued development of high-performance bioelectronic devices. To this end, we integrate membrane spanning DNA nanopores with bioprotonic contacts to create programmable, modular, and efficient artificial ion-channel interfaces. Here we show that cholesterol modified DNA nanopores spontaneously and with remarkable affinity span the lipid bilayer formed over the planar bio-protonic electrode surface and mediate proton transport across the bilayer. Using the ability to easily modify DNA nanostructures, we illustrate that this bioprotonic device can be programmed for electronic recognition of biomolecular signals such as presence of Streptavidin and the cardiac biomarker B-type natriuretic peptide, without modifying the biomolecules. We anticipate this robust interface will allow facile electronic measurement and quantification of biomolecules in a multiplexed manner.
Collapse
Affiliation(s)
- Le Luo
- Department of Electrical and Computer Engineering, Jack Baskin School of Engineering, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Swathi Manda
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yunjeong Park
- Department of Electrical and Computer Engineering, Jack Baskin School of Engineering, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Busra Demir
- Bionanodesign Laboratory, Department of Biomedical Engineering, TOBB University of Economics and Technology, Ankara, 06560, Turkey
- Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Ankara, 06560, Turkey
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Jesse Sanchez
- Department of Electrical and Computer Engineering, Jack Baskin School of Engineering, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, 97331, USA
| | - M P Anantram
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Ersin Emre Oren
- Bionanodesign Laboratory, Department of Biomedical Engineering, TOBB University of Economics and Technology, Ankara, 06560, Turkey
- Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Ankara, 06560, Turkey
| | - Ashwin Gopinath
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, Jack Baskin School of Engineering, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA.
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA.
- Institute for the Biology of Stem Cells, University of California Santa Cruz, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
21
|
Sousa A, Borøy V, Bæverud A, Julin K, Bayer A, Strøm M, Johannessen M, Škalko-Basnet N, Obuobi S. Polymyxin B stabilized DNA micelles for sustained antibacterial and antibiofilm activity against P. aeruginosa. J Mater Chem B 2023; 11:7972-7985. [PMID: 37505112 DOI: 10.1039/d3tb00704a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Nucleic acid-based materials showcase an increasing potential for antimicrobial drug delivery. Although numerous reports on drug-loaded DNA nanoparticles outline their pivotal antibacterial activities, their potential as drug delivery systems against bacterial biofilms awaits further studies. Among different oligonucleotide structures, micellar nanocarriers derived from amphiphilic DNA strands are of particular interest due to their spontaneous self-assembly and high biocompatibility. However, their clinical use is hampered by structural instability upon cation depletion. In this work, we used a cationic amphiphilic antibiotic (polymyxin B) to stabilize DNA micelles destined to penetrate P. aeruginosa biofilms and exhibit antibacterial/antibiofilm properties. Our study highlights how the strong affinity of this antibiotic enhances the stability of the micelles and confirms that antibacterial activity of the novel micelles remains intact. Additionally, we show that PMB micelles can penetrate P. aeruginosa biofilms and impact their metabolic activity. Finally, PMB micelles were highly safe and biocompatible, highlighting their possible application against P. aeruginosa biofilm-colonized skin wounds.
Collapse
Affiliation(s)
- Alexandra Sousa
- Drug Transport and Delivery Research Group, Department of Pharmacy, UIT The Arctic University of Norway, Tromsø, Norway.
| | - Vegard Borøy
- Drug Transport and Delivery Research Group, Department of Pharmacy, UIT The Arctic University of Norway, Tromsø, Norway.
| | - Agnethe Bæverud
- Drug Transport and Delivery Research Group, Department of Pharmacy, UIT The Arctic University of Norway, Tromsø, Norway.
| | - Kjersti Julin
- Host Microbe Interaction Research Group, Department of Medical Biology, UIT The Arctic University of Norway, Tromsø, Norway
| | - Annette Bayer
- Department of Chemistry, University of Tromsø The Arctic University of Norway, Universitetsvegen 57, N-9037 Tromsø, Norway
| | - Morten Strøm
- Natural Products and Medicinal Chemistry Research Group, Department of Pharmacy, University of Tromsø The Arctic University of Norway, Universitetsvegen 57, N-9037 Tromsø, Norway
| | - Mona Johannessen
- Host Microbe Interaction Research Group, Department of Medical Biology, UIT The Arctic University of Norway, Tromsø, Norway
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, UIT The Arctic University of Norway, Tromsø, Norway.
| | - Sybil Obuobi
- Drug Transport and Delivery Research Group, Department of Pharmacy, UIT The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
22
|
Alexander S, Moghadam MG, Rothenbroker M, Y T Chou L. Addressing the in vivo delivery of nucleic-acid nanostructure therapeutics. Adv Drug Deliv Rev 2023; 199:114898. [PMID: 37230305 DOI: 10.1016/j.addr.2023.114898] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
DNA and RNA nanostructures are being investigated as therapeutics, vaccines, and drug delivery systems. These nanostructures can be functionalized with guests ranging from small molecules to proteins with precise spatial and stoichiometric control. This has enabled new strategies to manipulate drug activity and to engineer devices with novel therapeutic functionalities. Although existing studies have offered encouraging in vitro or pre-clinical proof-of-concepts, establishing mechanisms of in vivo delivery is the new frontier for nucleic-acid nanotechnologies. In this review, we first provide a summary of existing literature on the in vivo uses of DNA and RNA nanostructures. Based on their application areas, we discuss current models of nanoparticle delivery, and thereby highlight knowledge gaps on the in vivo interactions of nucleic-acid nanostructures. Finally, we describe techniques and strategies for investigating and engineering these interactions. Together, we propose a framework to establish in vivo design principles and advance the in vivo translation of nucleic-acid nanotechnologies.
Collapse
Affiliation(s)
- Shana Alexander
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | | | - Meghan Rothenbroker
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Leo Y T Chou
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.
| |
Collapse
|
23
|
Ahmad K, Javed A, Lanphere C, Coveney PV, Orlova EV, Howorka S. Structure and dynamics of an archetypal DNA nanoarchitecture revealed via cryo-EM and molecular dynamics simulations. Nat Commun 2023; 14:3630. [PMID: 37336895 DOI: 10.1038/s41467-023-38681-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/11/2023] [Indexed: 06/21/2023] Open
Abstract
DNA can be folded into rationally designed, unique, and functional materials. To fully realise the potential of these DNA materials, a fundamental understanding of their structure and dynamics is necessary, both in simple solvents as well as more complex and diverse anisotropic environments. Here we analyse an archetypal six-duplex DNA nanoarchitecture with single-particle cryo-electron microscopy and molecular dynamics simulations in solvents of tunable ionic strength and within the anisotropic environment of biological membranes. Outside lipid bilayers, the six-duplex bundle lacks the designed symmetrical barrel-type architecture. Rather, duplexes are arranged in non-hexagonal fashion and are disorted to form a wider, less elongated structure. Insertion into lipid membranes, however, restores the anticipated barrel shape due to lateral duplex compression by the bilayer. The salt concentration has a drastic impact on the stability of the inserted barrel-shaped DNA nanopore given the tunable electrostatic repulsion between the negatively charged duplexes. By synergistically combining experiments and simulations, we increase fundamental understanding into the environment-dependent structural dynamics of a widely used nanoarchitecture. This insight will pave the way for future engineering and biosensing applications.
Collapse
Affiliation(s)
- Katya Ahmad
- Centre for Computational Science, University College London, London, WC1H 0AJ, UK
| | - Abid Javed
- Department of Biological Sciences, Birkbeck, University of London, London, WC1E 7HX, UK
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Conor Lanphere
- Department of Chemistry, Institute for Structural and Molecular Biology, University College London, London, WC1H0AJ, UK
| | - Peter V Coveney
- Centre for Computational Science, University College London, London, WC1H 0AJ, UK.
- Advanced Research Computing Centre, University College London, London, WC1H 0AJ, UK.
- Informatics Institute, University of Amsterdam, Amsterdam, 1090 GH, The Netherlands.
| | - Elena V Orlova
- Department of Biological Sciences, Birkbeck, University of London, London, WC1E 7HX, UK.
| | - Stefan Howorka
- Department of Chemistry, Institute for Structural and Molecular Biology, University College London, London, WC1H0AJ, UK.
| |
Collapse
|
24
|
Kodr D, Kužmová E, Pohl R, Kraus T, Hocek M. Lipid-linked nucleoside triphosphates for enzymatic synthesis of hydrophobic oligonucleotides with enhanced membrane anchoring efficiency. Chem Sci 2023; 14:4059-4069. [PMID: 37063801 PMCID: PMC10094435 DOI: 10.1039/d2sc06718h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/19/2023] [Indexed: 03/22/2023] Open
Abstract
We designed and synthesized a series of 2'-deoxyribonucleoside triphosphates (dNTPs) bearing various lipid moieties. Fatty acid- and cholesterol-modified dNTPs proved to be substrates for KOD XL DNA polymerase in primer extension reactions. They were also mutually compatible for simultaneous multiple incorporations into the DNA strand. The methodology of enzymatic synthesis opened a pathway to diverse structurally unique lipid-ON probes containing one or more lipid units. We studied interactions of such probes with the plasma membranes of live cells. Employing a rational design, we found a series of lipid-ONs with enhanced membrane anchoring efficiency. The in-membrane stability of multiply modified ONs was superior to that of commonly studied ON analogues, in which a single cholesterol molecule is typically tethered to the thread end. Notably, some of the probes were detected at the cell surface even after 24 h upon removal of the probe solution. Such an effect was general to several studied cell lines.
Collapse
Affiliation(s)
- David Kodr
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo namesti 2 CZ-16610 Prague 6 Czech Republic
| | - Erika Kužmová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo namesti 2 CZ-16610 Prague 6 Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo namesti 2 CZ-16610 Prague 6 Czech Republic
| | - Tomáš Kraus
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo namesti 2 CZ-16610 Prague 6 Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo namesti 2 CZ-16610 Prague 6 Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague Hlavova 8 Prague-2 12843 Czech Republic
| |
Collapse
|
25
|
Zhan P, Peil A, Jiang Q, Wang D, Mousavi S, Xiong Q, Shen Q, Shang Y, Ding B, Lin C, Ke Y, Liu N. Recent Advances in DNA Origami-Engineered Nanomaterials and Applications. Chem Rev 2023; 123:3976-4050. [PMID: 36990451 PMCID: PMC10103138 DOI: 10.1021/acs.chemrev.3c00028] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Indexed: 03/31/2023]
Abstract
DNA nanotechnology is a unique field, where physics, chemistry, biology, mathematics, engineering, and materials science can elegantly converge. Since the original proposal of Nadrian Seeman, significant advances have been achieved in the past four decades. During this glory time, the DNA origami technique developed by Paul Rothemund further pushed the field forward with a vigorous momentum, fostering a plethora of concepts, models, methodologies, and applications that were not thought of before. This review focuses on the recent progress in DNA origami-engineered nanomaterials in the past five years, outlining the exciting achievements as well as the unexplored research avenues. We believe that the spirit and assets that Seeman left for scientists will continue to bring interdisciplinary innovations and useful applications to this field in the next decade.
Collapse
Affiliation(s)
- Pengfei Zhan
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Andreas Peil
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Qiao Jiang
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Dongfang Wang
- School
of Biomedical Engineering and Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Shikufa Mousavi
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Qiancheng Xiong
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
| | - Qi Shen
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
- Department
of Molecular Biophysics and Biochemistry, Yale University, 266
Whitney Avenue, New Haven, Connecticut 06511, United States
| | - Yingxu Shang
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Baoquan Ding
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Chenxiang Lin
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
- Department
of Biomedical Engineering, Yale University, 17 Hillhouse Avenue, New Haven, Connecticut 06511, United States
| | - Yonggang Ke
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Na Liu
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck
Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| |
Collapse
|
26
|
Mills A, Aissaoui N, Finkel J, Elezgaray J, Bellot G. Mechanical DNA Origami to Investigate Biological Systems. Adv Biol (Weinh) 2023; 7:e2200224. [PMID: 36509679 DOI: 10.1002/adbi.202200224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/25/2022] [Indexed: 12/15/2022]
Abstract
The ability to self-assemble DNA nanodevices with programmed structural dynamics that can sense and respond to the local environment can enable transformative applications in fields including mechanobiology and nanomedicine. The responsive function of biomolecules is often driven by alterations in conformational distributions mediated by highly sensitive interactions with the local environment. In this review, the current state-of-the-art in constructing complex DNA geometries with dynamic and mechanical properties to enable a molecular scale force measurement is first summarized. Next, an overview of engineering modular DNA devices that interact with cell surfaces is highlighted detailing examples of mechanosensitive proteins and the force-induced dynamic molecular interaction on the downstream biochemical signaling. Finally, the challenges and an outlook on this promising class of DNA devices acting as nanomachines to operate at a low piconewton range suitable for a majority of biological effects or as hybrid materials to achieve higher tension exertion required for other biological investigations, are discussed.
Collapse
Affiliation(s)
- Allan Mills
- Centre de Biologie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, 34090, France
| | - Nesrine Aissaoui
- Laboratoire CiTCoM, Faculté de Santé, Université Paris Cité, CNRS, Paris, 75006, France
| | - Julie Finkel
- Centre de Biologie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, 34090, France
| | - Juan Elezgaray
- CRPP, CNRS, UMR 5031, Université de Bordeaux, Pessac, 33600, France
| | - Gaëtan Bellot
- Centre de Biologie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, 34090, France
| |
Collapse
|
27
|
Langlois NI, Ma KY, Clark HA. Nucleic acid nanostructures for in vivo applications: The influence of morphology on biological fate. APPLIED PHYSICS REVIEWS 2023; 10:011304. [PMID: 36874908 PMCID: PMC9869343 DOI: 10.1063/5.0121820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/12/2022] [Indexed: 05/23/2023]
Abstract
The development of programmable biomaterials for use in nanofabrication represents a major advance for the future of biomedicine and diagnostics. Recent advances in structural nanotechnology using nucleic acids have resulted in dramatic progress in our understanding of nucleic acid-based nanostructures (NANs) for use in biological applications. As the NANs become more architecturally and functionally diverse to accommodate introduction into living systems, there is a need to understand how critical design features can be controlled to impart desired performance in vivo. In this review, we survey the range of nucleic acid materials utilized as structural building blocks (DNA, RNA, and xenonucleic acids), the diversity of geometries for nanofabrication, and the strategies to functionalize these complexes. We include an assessment of the available and emerging characterization tools used to evaluate the physical, mechanical, physiochemical, and biological properties of NANs in vitro. Finally, the current understanding of the obstacles encountered along the in vivo journey is contextualized to demonstrate how morphological features of NANs influence their biological fates. We envision that this summary will aid researchers in the designing novel NAN morphologies, guide characterization efforts, and design of experiments and spark interdisciplinary collaborations to fuel advancements in programmable platforms for biological applications.
Collapse
Affiliation(s)
- Nicole I. Langlois
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - Kristine Y. Ma
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
28
|
Walczak M, Brady RA, Leathers A, Kotar J, Di Michele L. Influence of hydrophobic moieties on the crystallization of amphiphilic DNA nanostructures. J Chem Phys 2023; 158:084501. [PMID: 36859089 DOI: 10.1063/5.0132484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Three-dimensional crystalline frameworks with nanoscale periodicity are valuable for many emerging technologies, from nanophotonics to nanomedicine. DNA nanotechnology has emerged as a prime route for constructing these materials, with most approaches taking advantage of the structural rigidity and bond directionality programmable for DNA building blocks. Recently, we have introduced an alternative strategy reliant on flexible, amphiphilic DNA junctions dubbed C-stars, whose ability to crystallize is modulated by design parameters, such as nanostructure topology, conformation, rigidity, and size. While C-stars have been shown to form ordered phases with controllable lattice parameter, response to stimuli, and embedded functionalities, much of their vast design space remains unexplored. Here, we investigate the effect of changing the chemical nature of the hydrophobic modifications and the structure of the DNA motifs in the vicinity of these moieties. While similar design variations should strongly alter key properties of the hydrophobic interactions between C-stars, such as strength and valency, only limited differences in self-assembly behavior are observed. This finding suggests that long-range order in C-star crystals is likely imposed by structural features of the building block itself rather than the specific characteristics of the hydrophobic tags. Nonetheless, we find that altering the hydrophobic regions influences the ability of C-star crystals to uptake hydrophobic molecular cargoes, which we exemplify by studying the encapsulation of antibiotic penicillin V. Besides advancing our understanding of the principles governing the self-assembly of amphiphilic DNA building blocks, our observations thus open up new routes to chemically program the materials without affecting their structure.
Collapse
Affiliation(s)
- Michal Walczak
- Department of Physics-Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Ryan A Brady
- Department of Chemistry, King's College London, London SE1 1DB, United Kingdom
| | - Adrian Leathers
- Department of Physics-Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Jurij Kotar
- Department of Physics-Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Lorenzo Di Michele
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| |
Collapse
|
29
|
Iwabuchi S, Nomura SIM, Sato Y. Surfactant-Assisted Purification of Hydrophobic DNA Nanostructures. Chembiochem 2023; 24:e202200568. [PMID: 36470849 DOI: 10.1002/cbic.202200568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Purification of functional DNA nanostructures is an essential step in achieving intended functions because misfolded structures and the remaining free DNA strands in a solution can interact and affect their behavior. However, due to hydrophobicity-mediated aggregation, it is difficult to purify DNA nanostructures modified with hydrophobic molecules by conventional methods. Herein, we report the purification of cholesterol-modified DNA nanostructures by using a novel surfactant-assisted gel extraction. The addition of sodium cholate (SC) to the sample solution before structure folding prevented aggregation; this was confirmed by gel electrophoresis. We also found that adding sodium dodecyl sulfate (SDS) to the sample inhibited structural folding. The cholesterol-modified DNA nanostructures prepared with SC were successfully purified by gel extraction, and their ability to bind to the lipid membrane surfaces was maintained. This method will facilitate the purification of DNA nanostructures modified with hydrophobic molecules and expand their applicability in the construction of artificial cell-like systems.
Collapse
Affiliation(s)
- Shoji Iwabuchi
- Department of Robotics, Tohoku University, 6-6-01 Aramaki Aoba-ku, Sendai, 980-0845, Japan
| | - Shin-Ichiro M Nomura
- Department of Robotics, Tohoku University, 6-6-01 Aramaki Aoba-ku, Sendai, 980-0845, Japan
| | - Yusuke Sato
- Department of Intelligent and Control Systems, Kyushu Institute of Technology, 680-4 kawazu, lizuka, 820-8502, Japan
| |
Collapse
|
30
|
Khmelinskaia A, Schwille P, Franquelim HG. Binding and Characterization of DNA Origami Nanostructures on Lipid Membranes. Methods Mol Biol 2023; 2639:231-255. [PMID: 37166721 DOI: 10.1007/978-1-0716-3028-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
DNA origami is an extremely versatile nanoengineering tool with widespread applicability in various fields of research, including membrane physiology and biophysics. The possibility to easily modify DNA strands with lipophilic moieties enabled the recent development of a variety of membrane-active DNA origami devices. Biological membranes, as the core barriers of the cells, display vital structural and functional roles. Therefore, lipid bilayers are widely popular targets of DNA origami nanotechnology for synthetic biology and biomedical applications. In this chapter, we summarize the typical experimental methods used to investigate the interaction of DNA origami with synthetic membrane models. Herein, we present detailed protocols for the production of lipid model membranes and characterization of membrane-targeted DNA origami nanostructures using different microscopy approaches.
Collapse
Affiliation(s)
- Alena Khmelinskaia
- Max Planck Institute of Biochemistry, Munich, Germany
- Institute of Protein Design, University of Washington, Seattle, WA, USA
- Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | | | - Henri G Franquelim
- Max Planck Institute of Biochemistry, Munich, Germany.
- Interfaculty Centre for Bioactive Matter (b-ACTmatter), Leipzig University, Leipzig, Germany.
| |
Collapse
|
31
|
Offenbartl‐Stiegert D, Rottensteiner A, Dorey A, Howorka S. A Light-Triggered Synthetic Nanopore for Controlling Molecular Transport Across Biological Membranes. Angew Chem Int Ed Engl 2022; 61:e202210886. [PMID: 36318092 PMCID: PMC10098474 DOI: 10.1002/anie.202210886] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Indexed: 11/06/2022]
Abstract
Controlling biological molecular processes with light is of interest in biological research and biomedicine, as light allows precise and selective activation in a non-invasive and non-toxic manner. A molecular process benefitting from light control is the transport of cargo across biological membranes, which is conventionally achieved by membrane-puncturing barrel-shaped nanopores. Yet, there is also considerable gain in constructing more complex gated pores. Here, we pioneer a synthetic light-gated nanostructure which regulates transport across membranes via a controllable lid. The light-triggered nanopore is self-assembled from six pore-forming DNA strands and a lid strand carrying light-switchable azobenzene molecules. Exposure to light opens the pore to allow small-molecule transport across membranes. Our light-triggered pore advances biomimetic chemistry and DNA nanotechnology and may be used in biotechnology, biosensing, targeted drug release, or synthetic cells.
Collapse
Affiliation(s)
- Daniel Offenbartl‐Stiegert
- Department of ChemistryInstitute for Structural and Molecular BiologyUniversity College LondonWC1H0AJLondonUK
| | - Alexia Rottensteiner
- Department of ChemistryInstitute for Structural and Molecular BiologyUniversity College LondonWC1H0AJLondonUK
| | - Adam Dorey
- Department of ChemistryInstitute for Structural and Molecular BiologyUniversity College LondonWC1H0AJLondonUK
| | - Stefan Howorka
- Department of ChemistryInstitute for Structural and Molecular BiologyUniversity College LondonWC1H0AJLondonUK
| |
Collapse
|
32
|
Qu Y, Shen F, Zhang Z, Wang Q, Huang H, Xu Y, Li Q, Zhu X, Sun L. Applications of Functional DNA Materials in Immunomodulatory Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45079-45095. [PMID: 36171537 DOI: 10.1021/acsami.2c13768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In recent years, nanoscale or microscale functional materials derived from DNA have shown great potential for immunotherapy as superior delivery carriers. DNA nanostructures with excellent programmability and addressability enable the precise assembly of molecules or nanoparticles. DNA hydrogels have predictable structures and adjustable mechanical strength, thus being advantageous in controllable release of cargos. In addition, utilizing systematic evolution of ligands by exponential enrichment technology, a variety of DNA aptamers have been screened for specific recognition of ions, molecules, and even cells. Moreover, a wide variety of chemical modifications can further enrich the function of DNA. The unique advantages of functional DNA materials make them extremely attractive in immunomodulation. Recently, functional DNA materials-based immunotherapy has shown great potential in fighting against many diseases like cancer, viral infection, and inflammation. Therefore, in this review, we focus on discussing the progress of the applications of functional DNA materials in immunotherapy; before that, we also summarize the characteristics of the functional DNA materials descried above. Finally, we discuss the challenges and future opportunities of functional DNA materials in immunomodulatory therapy.
Collapse
Affiliation(s)
- Yanfei Qu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Fengyun Shen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziyi Zhang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qi Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Hao Huang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yufei Xu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoli Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Lele Sun
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
33
|
Liu J, Chen L, Zhai T, Li W, Liu Y, Gu H. Programmable Assembly of Amphiphilic DNA through Controlled Cholesterol Stacking. J Am Chem Soc 2022; 144:16598-16603. [PMID: 36040192 DOI: 10.1021/jacs.2c06610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The excellent programmability and modifiability of DNA has enabled chemists to reproduce a series of specific molecular interactions in self-assembled synthetic systems. Among diverse modifications, cholesterol conjugation can turn DNA into an amphiphilic molecule (cholesterol-DNA), driving the formation of DNA assemblies through the cholesterol-endowed hydrophobic interaction. However, precise control of such an assembly process remains difficult because of the unbiased accumulation of cholesterol. Here, we report the serendipitous discovery of the favored tetramerization of cholesterol in cholesterol-DNA copolymers that carry the cholesterol modification at the blunt end of DNA. The discovery expands the repertoire of controllable molecular interactions by DNA and provides an effective way to precisely control the hydrophobic stacking of cholesterol for programmed cholesterol-DNA assembly.
Collapse
Affiliation(s)
- Jin Liu
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200433, China
| | - Liman Chen
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200433, China
| | - Tingting Zhai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Li
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200433, China
| | - Yuehua Liu
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200433, China
| | - Hongzhou Gu
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200433, China.,School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.,Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| |
Collapse
|
34
|
Wang SD, Zhang RB, Eriksson LA. Markov state models elucidate the stability of DNA influenced by the chiral 5S-Tg base. Nucleic Acids Res 2022; 50:9072-9082. [PMID: 35979954 PMCID: PMC9458442 DOI: 10.1093/nar/gkac691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/15/2022] [Accepted: 07/30/2022] [Indexed: 12/24/2022] Open
Abstract
The static and dynamic structures of DNA duplexes affected by 5S-Tg (Tg, Thymine glycol) epimers were studied using MD simulations and Markov State Models (MSMs) analysis. The results show that the 5S,6S-Tg base caused little perturbation to the helix, and the base-flipping barrier was determined to be 4.4 kcal mol-1 through the use of enhanced sampling meta-eABF calculations, comparable to 5.4 kcal mol-1 of the corresponding thymine flipping. Two conformations with the different hydrogen bond structures between 5S,6R-Tg and A19 were identified in several independent MD trajectories. The 5S,6R-Tg:O6HO6•••N1:A19 hydrogen bond is present in the high-energy conformation displaying a clear helical distortion, and near barrier-free Tg base flipping. The low-energy conformation always maintains Watson-Crick base pairing between 5S,6R-Tg and A19, and 5S-Tg base flipping is accompanied by a small barrier of ca. 2.0 KBT (T = 298 K). The same conformations are observed in the MSMs analysis. Moreover, the transition path and metastable structures of the damaged base flipping are for the first time verified through MSMs analysis. The data clearly show that the epimers have completely different influence on the stability of the DNA duplex, thus implying different enzymatic mechanisms for DNA repair.
Collapse
Affiliation(s)
- Shu-dong Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, South Street No. 5, Zhongguancun, Haidan District, 100081 Beijing, China
| | - Ru-bo Zhang
- Correspondence may also be addressed to Ru-bo Zhang.
| | - Leif A Eriksson
- To whom correspondence should be addressed. Tel: +46 31 786 9117;
| |
Collapse
|
35
|
Dhanasekar NN, Thiyagarajan D, Bhatia D. DNA origami in the quest for membrane piercing. Chem Asian J 2022; 17:e202200591. [PMID: 35947734 DOI: 10.1002/asia.202200591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/07/2022] [Indexed: 11/09/2022]
Abstract
The tool kit for label-free single-molecule sensing, nucleic acid sequencing (DNA, RNA and protein) and other biotechnological applications has been significantly broadened due to the wide range of available nanopore-based technologies. Currently, various sources of nanopores, including biological, fabricated solid-state, hybrid and recently de novo chemically synthesized ion-like channels have put in use for rapid single-molecule sensing of biomolecules and other diagnostic applications. At length scales of hundreds of nanometers, DNA nanotechnology, particularly DNA origami-based devices, enables the assembly of complex and dynamic 3-dimensional nanostructures, including nanopores with precise control over the size/shape. DNA origami technology has enabled to construct nanopores by DNA alone or hybrid architects with solid-state nanopore devices or nanocapillaries. In this review, we briefly discuss the nanopore technique that uses DNA nanotechnology to construct such individual pores in lipid-based systems or coupled with other solid-state devices, nanocapillaries for enhanced biosensing function. We summarize various DNA-based design nanopores and explore the sensing properties of such DNA channels. Apart from DNA origami channels we also pointed the design principles of RNA nanopores for peptide sensing applications.
Collapse
Affiliation(s)
- Naresh Niranjan Dhanasekar
- Johns Hopkins University, Chemical and Biomolecular Engineering, 3400 North Charles Street, 21218, Baltimore, UNITED STATES
| | - Durairaj Thiyagarajan
- Helmholtz-Zentrum fur Infektionsforschung GmbH, Pharmacy and Infections, 66123, Saarbrücken, GERMANY
| | - Dhiraj Bhatia
- Indian Institute of Technology Gandhinagar, Biological Engineering, 382355, Gandhi Nagar, INDIA
| |
Collapse
|
36
|
Liang C, Chen J, Li M, Ge Z, Fan C, Shen J. Probing the self-assembly process of amphiphilic tetrahedral DNA frameworks. Chem Commun (Camb) 2022; 58:8352-8355. [PMID: 35792065 DOI: 10.1039/d2cc03451d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we utilized the thermal hysteresis method to directly probe the self-assembly process of amphiphilic DNA nanostructures, with the use of an amphiphilic tetrahedral DNA framework (am-TDF) as a model system. The analysis of the reaction rate surfaces under different ionic strengths revealed that strands of amphiphilic DNA first formed metastable micelles via an entropy-driven process, which were then enthalpically transformed into am-TDF.
Collapse
Affiliation(s)
- Chengpin Liang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jielin Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Mingqiang Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zhilei Ge
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
37
|
Liang C, Chen J, Li M, Li Q, Fan C, Luo S, Shen J. Programming the self-assembly of amphiphilic DNA frameworks for sequential boolean logic functions. Chem Commun (Camb) 2022; 58:8786-8789. [PMID: 35838012 DOI: 10.1039/d2cc03150g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we examined the utilization of the orthogonal noncovalent interaction to program the self-assembly of amphiphilic DNA frameworks (am-FNAs). By finely controlling reaction parameters such as ionic strength, the length of amphiphilic DNA, and mechanical agitation, we constructed a series of amphiphilic DNA-based primary logic gates (NOT, AND, OR and INH) and a secondary logic gate (NOT-OR).
Collapse
Affiliation(s)
- Chengpin Liang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jielin Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Mingqiang Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Shihua Luo
- Department of Traumatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
38
|
Roka-Moiia Y, Walawalkar V, Liu Y, Italiano JE, Slepian MJ, Taylor RE. DNA Origami-Platelet Adducts: Nanoconstruct Binding without Platelet Activation. Bioconjug Chem 2022; 33:1295-1310. [PMID: 35731951 DOI: 10.1021/acs.bioconjchem.2c00197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Objective. Platelets are small, mechanosensitive blood cells responsible for maintaining vascular integrity and activatable on demand to limit bleeding and facilitate thrombosis. While circulating in the blood, platelets are exposed to a range of mechanical and chemical stimuli, with the platelet membrane being the primary interface and transducer of outside-in signaling. Sensing and modulating these interface signals would be useful to study mechanochemical interactions; yet, to date, no methods have been defined to attach adducts for sensor fabrication to platelets without triggering platelet activation. We hypothesized that DNA origami, and methods for its attachment, could be optimized to enable nonactivating instrumentation of the platelet membrane. Approach and Results. We designed and fabricated multivalent DNA origami nanotile constructs to investigate nanotile hybridization to membrane-embedded single-stranded DNA-tetraethylene glycol cholesteryl linkers. Two hybridization protocols were developed and validated (Methods I and II) for rendering high-density binding of DNA origami nanotiles to human platelets. Using quantitative flow cytometry, we showed that DNA origami binding efficacy was significantly improved when the number of binding overhangs was increased from two to six. However, no additional binding benefit was observed when increasing the number of nanotile overhangs further to 12. Using flow cytometry and transmission electron microscopy, we verified that hybridization with DNA origami constructs did not cause alterations in the platelet morphology, activation, aggregation, or generation of platelet-derived microparticles. Conclusions. Herein, we demonstrate that platelets can be successfully instrumented with DNA origami constructs with no or minimal effect on the platelet morphology and function. Our protocol allows for efficient high-density binding of DNA origami to platelets using low quantities of the DNA material to label a large number of platelets in a timely manner. Nonactivating platelet-nanotile adducts afford a path for advancing the development of DNA origami nanoconstructs for cell-adherent mechanosensing and therapeutic agent delivery.
Collapse
Affiliation(s)
- Yana Roka-Moiia
- Department of Medicine, Sarver Heart Center, University of Arizona Health Sciences Center,University of Arizona, Tucson, Arizona 85721, United States
| | - Vismaya Walawalkar
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Ying Liu
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Joseph E Italiano
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Marvin J Slepian
- Department of Medicine, Sarver Heart Center, University of Arizona Health Sciences Center,University of Arizona, Tucson, Arizona 85721, United States.,Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Rebecca E Taylor
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.,Departments of Biomedical Engineering and Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
39
|
Abstract
Lipid-DNA conjugates have emerged as highly useful tools to modify the cell membranes. These conjugates generally consist of a lipid anchor for membrane modification and a functional DNA nanostructure for membrane analysis or regulation. There are several unique properties of these lipid-DNA conjugates, especially including their programmability, fast and efficient membrane insertion, and precise sequence-specific assembly. These unique properties have enabled a broad range of biophysical applications on live cell membranes. In this review, we will mainly focus on recent tremendous progress, especially during the past three years, in regulating the biophysical features of these lipid-DNA conjugates and their key applications in studying cell membrane biophysics. Some insights into the current challenges and future directions of this interdisciplinary field have also been provided.
Collapse
Affiliation(s)
| | | | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
40
|
Lee C, Do S, Lee JY, Kim M, Kim SM, Shin Y, Kim DN. Formation of non-base-pairing DNA microgels using directed phase transition of amphiphilic monomers. Nucleic Acids Res 2022; 50:4187-4196. [PMID: 35390157 PMCID: PMC9023257 DOI: 10.1093/nar/gkac232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/27/2022] [Accepted: 03/26/2022] [Indexed: 11/22/2022] Open
Abstract
Programmability of DNA sequences enables the formation of synthetic DNA nanostructures and their macromolecular assemblies such as DNA hydrogels. The base pair-level interaction of DNA is a foundational and powerful mechanism to build DNA structures at the nanoscale; however, its temperature sensitivity and weak interaction force remain a barrier for the facile and scalable assembly of DNA structures toward higher-order structures. We conducted this study to provide an alternative, non-base-pairing approach to connect nanoscale DNA units to yield micrometer-sized gels based on the sequential phase transition of amphiphilic unit structures. Strong electrostatic interactions between DNA nanostructures and polyelectrolyte spermines led to the formation of giant phase-separated aggregates of monomer units. Gelation could be initiated by the addition of NaCl, which weakened the electrostatic DNA-spermine interaction while attractive interactions between cholesterols created stable networks by crosslinking DNA monomers. In contrast to the conventional DNA gelation techniques, our system used solid aggregates as a precursor for DNA microgels. Therefore, in situ gelation could be achieved by depositing aggregates on the desired substrate and subsequently initiating a phase transition. Our approach can expand the utility and functionality of DNA hydrogels by using more complex nucleic acid assemblies as unit structures and combining the technique with top-down microfabrication methods.
Collapse
Affiliation(s)
- Chanseok Lee
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Korea
| | - Sungho Do
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Jae Young Lee
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Korea
| | - Minju Kim
- Department of Mechanical Engineering, Incheon National University, Incheon 22012, Korea
| | - Sang Moon Kim
- Department of Mechanical Engineering, Incheon National University, Incheon 22012, Korea
| | - Yongdae Shin
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Korea.,Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea.,Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Korea
| | - Do-Nyun Kim
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Korea.,Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea.,Institute of Engineering Research, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
41
|
Lanphere C, Ciccone J, Dorey A, Hagleitner-Ertuğrul N, Knyazev D, Haider S, Howorka S. Triggered Assembly of a DNA-Based Membrane Channel. J Am Chem Soc 2022; 144:4333-4344. [PMID: 35253434 PMCID: PMC8931747 DOI: 10.1021/jacs.1c06598] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Indexed: 01/01/2023]
Abstract
Chemistry is in a powerful position to synthetically replicate biomolecular structures. Adding functional complexity is key to increase the biomimetics' value for science and technology yet is difficult to achieve with poorly controlled building materials. Here, we use defined DNA blocks to rationally design a triggerable synthetic nanopore that integrates multiple functions of biological membrane proteins. Soluble triggers bind via molecular recognition to the nanopore components changing their structure and membrane position, which controls the assembly into a defined channel for efficient transmembrane cargo transport. Using ensemble, single-molecule, and simulation analysis, our activatable pore provides insight into the kinetics and structural dynamics of DNA assembly at the membrane interface. The triggered channel advances functional DNA nanotechnology and synthetic biology and will guide the design of controlled nanodevices for sensing, cell biological research, and drug delivery.
Collapse
Affiliation(s)
- Conor Lanphere
- Department
of Chemistry, Institute of Structural Molecular Biology, University College London, London WC1H 0AJ, United Kingdom
| | - Jonah Ciccone
- Department
of Chemistry, Institute of Structural Molecular Biology, University College London, London WC1H 0AJ, United Kingdom
| | - Adam Dorey
- Department
of Chemistry, Institute of Structural Molecular Biology, University College London, London WC1H 0AJ, United Kingdom
| | | | - Denis Knyazev
- Institute
of Applied Experimental Biophysics, Johannes
Kepler University, 4040 Linz, Austria
| | - Shozeb Haider
- Department
of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, London WC1N 1AX, United Kingdom
| | - Stefan Howorka
- Department
of Chemistry, Institute of Structural Molecular Biology, University College London, London WC1H 0AJ, United Kingdom
- Institute
of Applied Experimental Biophysics, Johannes
Kepler University, 4040 Linz, Austria
| |
Collapse
|
42
|
Abele T, Messer T, Jahnke K, Hippler M, Bastmeyer M, Wegener M, Göpfrich K. Two-Photon 3D Laser Printing Inside Synthetic Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106709. [PMID: 34800321 DOI: 10.1002/adma.202106709] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Toward the ambitious goal of manufacturing synthetic cells from the bottom up, various cellular components have already been reconstituted inside lipid vesicles. However, the deterministic positioning of these components inside the compartment has remained elusive. Here, by using two-photon 3D laser printing, 2D and 3D hydrogel architectures are manufactured with high precision and nearly arbitrary shape inside preformed giant unilamellar lipid vesicles (GUVs). The required water-soluble photoresist is brought into the GUVs by diffusion in a single mixing step. Crucially, femtosecond two-photon printing inside the compartment does not destroy the GUVs. Beyond this proof-of-principle demonstration, early functional architectures are realized. In particular, a transmembrane structure acting as a pore is 3D printed, thereby allowing for the transport of biological cargo, including DNA, into the synthetic compartment. These experiments show that two-photon 3D laser microprinting can be an important addition to the existing toolbox of synthetic biology.
Collapse
Affiliation(s)
- Tobias Abele
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, 69120, Heidelberg, Germany
| | - Tobias Messer
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, 76131, Karlsruhe, Germany
| | - Kevin Jahnke
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, 69120, Heidelberg, Germany
| | - Marc Hippler
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Martin Bastmeyer
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
- Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Martin Wegener
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, 76131, Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Kerstin Göpfrich
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
43
|
Xia Y, Chen T, Chen W, Chen G, Xu L, Zhang L, Zhang X, Sun W, Lan J, Lin X, Chen J. A dual-modal aptasensor based on a multifunctional acridone derivate for exosomes detection. Anal Chim Acta 2022; 1191:339279. [PMID: 35033266 DOI: 10.1016/j.aca.2021.339279] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/22/2021] [Accepted: 11/10/2021] [Indexed: 11/01/2022]
Abstract
Exosomes are promising biomarkers for cancer screening, but the development of a robust approach that can sensitively and accurately detect exosomes remains challenging. In the present study, an aptasensor based on the multifunctional signal probe 10-benzyl-2-amino-acridone (BAA) was developed for the colorimetric and photoelectrochemical detection and quantitation of exosomes. Exosomes are captured by cholesterol DNA anchor-modified magnetic beads (MBs) through hydrophobic interactions. This capture process can be monitored under a confocal fluorescence microscope using BAA as the fluorescent signal probe. The aptamer modified copper oxide nanoparticles (CuO NPs) then bind to mucin 1 (MUC1) on the surface of the exosomes to form a sandwich structure (MBs-Exo-CuO NPs). Finally, the MBs-Exo-CuO NPs are dissolved in nitric acid to generate Cu2+, which inhibits the visible-light-induced oxidase mimic activity and photoelectrochemical activity of BAA simultaneously. The changes in absorbance and photocurrent intensities are directly proportional to the concentration of exosomes. In this dual-modal aptasensor, the colorimetric assay can achieve rapid screening and identification, which is especially useful for point-of-care testing. The UV-vis absorbance and photocurrent assays then provide quantitative information, with a limit of detection of 1.09 × 103 particles μL-1 and 1.38 × 103 particles μL-1, respectively. The proposed aptasensor thus performs dual-modal detection and quantitation of exosomes. This aptasensor provides a much-needed toolset for exploring the biological roles of exosomes in specific diseases, particularly in the clinical setting.
Collapse
Affiliation(s)
- Yaokun Xia
- Key Laboratory of the Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China
| | - Tingting Chen
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China
| | - Wenqian Chen
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China
| | - Guanyu Chen
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China
| | - Lilan Xu
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China
| | - Li Zhang
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China
| | - Xiaoling Zhang
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China
| | - Weiming Sun
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China
| | - Jianming Lan
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China
| | - Xu Lin
- Key Laboratory of the Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China.
| | - Jinghua Chen
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China.
| |
Collapse
|
44
|
Morzy D, Schaich M, Keyser UF. A Surfactant Enables Efficient Membrane Spanning by Non-Aggregating DNA-Based Ion Channels. Molecules 2022; 27:578. [PMID: 35056887 PMCID: PMC8779190 DOI: 10.3390/molecules27020578] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 11/17/2022] Open
Abstract
DNA nanotechnology makes use of hydrophobically modified constructs to create synthetic membrane protein mimics. However, nucleic acid structures exhibit poor insertion efficiency, leading to a low activity of membrane-spanning DNA protein mimics. It is suggested that non-ionic surfactants improve insertion efficiency, partly by disrupting hydrophobicity-mediated clusters. Here, we employed confocal microscopy and single-molecule transmembrane current measurements to assess the effects of the non-ionic surfactant octylpolyoxyethylene (oPOE) on the clustering behavior and membrane activity of cholesterol-modified DNA nanostructures. Our findings uncover the role of aggregation in preventing bilayer interactions of hydrophobically decorated constructs, and we highlight that premixing DNA structures with the surfactant does not disrupt the cholesterol-mediated aggregates. However, we observed the surfactant's strong insertion-facilitating effect, particularly when introduced to the sample separately from DNA. Critically, we report a highly efficient membrane-spanning DNA construct from combining a non-aggregating design with the addition of the oPOE surfactant.
Collapse
Affiliation(s)
| | | | - Ulrich F. Keyser
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK; (D.M.); (M.S.)
| |
Collapse
|
45
|
Ishizawa S, Tumurkhuu M, Gross EJ, Ohata J. Site-specific DNA functionalization through the tetrazene-forming reaction in ionic liquids. Chem Sci 2022; 13:1780-1788. [PMID: 35282632 PMCID: PMC8826848 DOI: 10.1039/d1sc05204g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/15/2022] [Indexed: 11/21/2022] Open
Abstract
Site-specific chemical modification of unprotected DNAs through a phosphine-mediated amine–azide coupling reaction in ionic liquid.
Collapse
Affiliation(s)
- Seiya Ishizawa
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Munkhtuya Tumurkhuu
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Elizabeth J. Gross
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Jun Ohata
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
46
|
Daljit Singh JK, Luu MT, Berengut JF, Abbas A, Baker MAB, Wickham SFJ. Minimizing Cholesterol-Induced Aggregation of Membrane-Interacting DNA Origami Nanostructures. MEMBRANES 2021; 11:membranes11120950. [PMID: 34940451 PMCID: PMC8707602 DOI: 10.3390/membranes11120950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022]
Abstract
DNA nanotechnology provides methods for building custom membrane-interacting nanostructures with diverse functions, such as shaping membranes, tethering defined numbers of membrane proteins, and transmembrane nanopores. The modification of DNA nanostructures with hydrophobic groups, such as cholesterol, is required to facilitate membrane interactions. However, cholesterol-induced aggregation of DNA origami nanostructures remains a challenge. Aggregation can result in reduced assembly yield, defective structures, and the inhibition of membrane interaction. Here, we quantify the assembly yield of two cholesterol-modified DNA origami nanostructures: a 2D DNA origami tile (DOT) and a 3D DNA origami barrel (DOB), by gel electrophoresis. We found that the DOT assembly yield (relative to the no cholesterol control) could be maximised by reducing the number of cholesterols from 6 to 1 (2 ± 0.2% to 100 ± 2%), optimising the separation between adjacent cholesterols (64 ± 26% to 78 ± 30%), decreasing spacer length (38 ± 20% to 95 ± 5%), and using protective ssDNA 10T overhangs (38 ± 20% to 87 ± 6%). Two-step folding protocols for the DOB, where cholesterol strands are added in a second step, did not improve the yield. Detergent improved the yield of distal cholesterol configurations (26 ± 22% to 92 ± 12%), but samples re-aggregated after detergent removal (74 ± 3%). Finally, we confirmed functional membrane binding of the cholesterol-modified nanostructures. These findings provide fundamental guidelines to reducing the cholesterol-induced aggregation of membrane-interacting 2D and 3D DNA origami nanostructures, improving the yield of well-formed structures to facilitate future applications in nanomedicine and biophysics.
Collapse
Affiliation(s)
- Jasleen Kaur Daljit Singh
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia; (J.K.D.S.); (M.T.L.); (J.F.B.)
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW 2006, Australia;
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Minh Tri Luu
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia; (J.K.D.S.); (M.T.L.); (J.F.B.)
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW 2006, Australia;
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Jonathan F. Berengut
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia; (J.K.D.S.); (M.T.L.); (J.F.B.)
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Ali Abbas
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW 2006, Australia;
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Matthew A. B. Baker
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia;
- CSIRO Synthetic Biology Future Science Platform, GPO Box 2583, Brisbane, QLD 4001, Australia
| | - Shelley F. J. Wickham
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia; (J.K.D.S.); (M.T.L.); (J.F.B.)
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia
- School of Physics, University of Sydney, Sydney, NSW 2006, Australia
- Correspondence:
| |
Collapse
|
47
|
Moriel-Carretero M. The Many Faces of Lipids in Genome Stability (and How to Unmask Them). Int J Mol Sci 2021; 22:12930. [PMID: 34884734 PMCID: PMC8657548 DOI: 10.3390/ijms222312930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Deep efforts have been devoted to studying the fundamental mechanisms ruling genome integrity preservation. A strong focus relies on our comprehension of nucleic acid and protein interactions. Comparatively, our exploration of whether lipids contribute to genome homeostasis and, if they do, how, is severely underdeveloped. This disequilibrium may be understood in historical terms, but also relates to the difficulty of applying classical lipid-related techniques to a territory such as a nucleus. The limited research in this domain translates into scarce and rarely gathered information, which with time further discourages new initiatives. In this review, the ways lipids have been demonstrated to, or very likely do, impact nuclear transactions, in general, and genome homeostasis, in particular, are explored. Moreover, a succinct yet exhaustive battery of available techniques is proposed to tackle the study of this topic while keeping in mind the feasibility and habits of "nucleus-centered" researchers.
Collapse
Affiliation(s)
- María Moriel-Carretero
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, CEDEX 5, 34293 Montpellier, France
| |
Collapse
|
48
|
Morzy D, Joshi H, Sandler SE, Aksimentiev A, Keyser UF. Membrane Activity of a DNA-Based Ion Channel Depends on the Stability of Its Double-Stranded Structure. NANO LETTERS 2021; 21:9789-9796. [PMID: 34767378 DOI: 10.1021/acs.nanolett.1c03791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
DNA nanotechnology has emerged as a promising method for designing spontaneously inserting and fully controllable synthetic ion channels. However, both insertion efficiency and stability of existing DNA-based membrane channels leave much room for improvement. Here, we demonstrate an approach to overcoming the unfavorable DNA-lipid interactions that hinder the formation of a stable transmembrane pore. Our all-atom MD simulations and experiments show that the insertion-driving cholesterol modifications can cause fraying of terminal base pairs of nicked DNA constructs, distorting them when embedded in a lipid bilayer. Importantly, we show that DNA nanostructures with no backbone discontinuities form more stable conductive pores and insert into membranes with a higher efficiency than the equivalent nicked constructs. Moreover, lack of nicks allows design and maintenance of membrane-spanning helices in a tilted orientation within the lipid bilayer. Thus, reducing the conformational degrees of freedom of the DNA nanostructures enables better control over their function as synthetic ion channels.
Collapse
Affiliation(s)
- Diana Morzy
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, United Kingdom
| | - Himanshu Joshi
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
| | - Sarah E Sandler
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, United Kingdom
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, United Kingdom
| |
Collapse
|
49
|
Singh JKD, Darley E, Ridone P, Gaston JP, Abbas A, Wickham SFJ, Baker MAB. Binding of DNA origami to lipids: maximizing yield and switching via strand displacement. Nucleic Acids Res 2021; 49:10835-10850. [PMID: 34614184 PMCID: PMC8565350 DOI: 10.1093/nar/gkab888] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/01/2021] [Accepted: 09/20/2021] [Indexed: 01/02/2023] Open
Abstract
Liposomes are widely used as synthetic analogues of cell membranes and for drug delivery. Lipid-binding DNA nanostructures can modify the shape, porosity and reactivity of liposomes, mediated by cholesterol modifications. DNA nanostructures can also be designed to switch conformations by DNA strand displacement. However, the optimal conditions to facilitate stable, high-yield DNA–lipid binding while allowing controlled switching by strand displacement are not known. Here, we characterized the effect of cholesterol arrangement, DNA structure, buffer and lipid composition on DNA–lipid binding and strand displacement. We observed that binding was inhibited below pH 4, and above 200 mM NaCl or 40 mM MgCl2, was independent of lipid type, and increased with membrane cholesterol content. For simple motifs, binding yield was slightly higher for double-stranded DNA than single-stranded DNA. For larger DNA origami tiles, four to eight cholesterol modifications were optimal, while edge positions and longer spacers increased yield of lipid binding. Strand displacement achieved controlled removal of DNA tiles from membranes, but was inhibited by overhang domains, which are used to prevent cholesterol aggregation. These findings provide design guidelines for integrating strand displacement switching with lipid-binding DNA nanostructures. This paves the way for achieving dynamic control of membrane morphology, enabling broader applications in nanomedicine and biophysics.
Collapse
Affiliation(s)
- Jasleen Kaur Daljit Singh
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia.,School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Esther Darley
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Pietro Ridone
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - James P Gaston
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Ali Abbas
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Shelley F J Wickham
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales, Australia.,School of Physics, The University of Sydney, Sydney, New South Wales, Australia
| | - Matthew A B Baker
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.,CSIRO Synthetic Biology Future Science Platform, Brisbane, Australia
| |
Collapse
|
50
|
Diederichs T, Tampé R. Membrane-Suspended Nanopores in Microchip Arrays for Stochastic Transport Recording and Sensing. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.703673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The transport of nutrients, xenobiotics, and signaling molecules across biological membranes is essential for life. As gatekeepers of cells, membrane proteins and nanopores are key targets in pharmaceutical research and industry. Multiple techniques help in elucidating, utilizing, or mimicking the function of biological membrane-embedded nanodevices. In particular, the use of DNA origami to construct simple nanopores based on the predictable folding of nucleotides provides a promising direction for innovative sensing and sequencing approaches. Knowledge of translocation characteristics is crucial to link structural design with function. Here, we summarize recent developments and compare features of membrane-embedded nanopores with solid-state analogues. We also describe how their translocation properties are characterized by microchip systems. The recently developed silicon chips, comprising solid-state nanopores of 80 nm connecting femtoliter cavities in combination with vesicle spreading and formation of nanopore-suspended membranes, will pave the way to characterize translocation properties of nanopores and membrane proteins in high-throughput and at single-transporter resolution.
Collapse
|