1
|
Beltrami S, Rizzo S, Schiuma G, Cianci G, Narducci M, Baroni M, Di Luca D, Rizzo R, Bortolotti D. West Nile virus non-structural protein 1 promotes amyloid Beta deposition and neurodegeneration. Int J Biol Macromol 2025; 305:141032. [PMID: 39954900 DOI: 10.1016/j.ijbiomac.2025.141032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Recent observations highlight a notable surge in West Nile Virus (WNV) infections in Europe that can lead to neuroinvasive consequences associated with neurodegeneration, mainly triggered by WNV Non-Structural protein 1 (NS1). During viral replication, various protein-protein interactions take place, allowing viral proteins to interact with host factors. NS1 is actively secreted in the bloodstream by infected cells and is known to affect endothelial permeability and host immune response. Focusing on the recently discovered antimicrobial roles of Amyloid-Beta (Aβ) in the context Central Nervous System (CNS), we connected WNV late pathology to overlapping features encountered in neurodegenerative diseases. In fact, CNS viral infections, or presence of specific viral components, activate glial cells, which in turn increase Aβ expression as an antiviral mechanism, leading to Aβ accumulation and neuronal damage. Considering West Nile neuroinvasive disease (WNND) as a possible complication of WNV infection, we investigated the impact of soluble WNV (s)NS1 on glial and neuronal cells, in 2D and 3D in vitro models. We reported an increased Aβ deposition after WNV sNS1 treatment, particularly of Aβ-142 isoform, and increased glial activation with a subsequent neurotoxicity. These findings underscore the crucial role of sNS1 in CNS-related effects during WNV infection, suggesting a novel pathogenetic role.
Collapse
Affiliation(s)
- Silvia Beltrami
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara 44121, Italy.
| | - Sabrina Rizzo
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara 44121, Italy.
| | - Giovanna Schiuma
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara 44121, Italy.
| | - Giorgia Cianci
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara 44121, Italy.
| | - Marco Narducci
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara 44121, Italy; Temple University, Japan Campus, 1 Chome-14-29 Taishido, Setagaya City, Tokyo 154-0004, Japan.
| | - Marcello Baroni
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara 44121, Italy.
| | - Dario Di Luca
- Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy.
| | - Roberta Rizzo
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara 44121, Italy.
| | - Daria Bortolotti
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara 44121, Italy.
| |
Collapse
|
2
|
Reinhold-Larsson NV, Starnbach MN. Type I IFNs contribute to upregulation of PD-L1 during Chlamydia trachomatis infection. Infect Immun 2025; 93:e0004025. [PMID: 40071913 PMCID: PMC11977314 DOI: 10.1128/iai.00040-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 04/09/2025] Open
Abstract
Chlamydia trachomatis is an obligate intracellular bacterial pathogen that if left untreated can cause reproductive harm. Failure of natural adaptive immunity results in chronic and repeat infections. In efforts to understand the failure of adaptive immunity, we have previously discovered that CD8+ T cells, normally integral for controlling intracellular pathogen infections, are misprogrammed by PD-1/PD-L1 signaling during in vivo C. trachomatis infection and fail to mount a protective response. Seeking to uncover the pathways and host factors involved in PD-L1 upregulation that may lead to CD8+ T-cell inhibition, we discovered that C. trachomatis triggers the secretion of host type I interferons (IFNs) that are necessary and sufficient to upregulate PD-L1 in vitro. Additionally, secretion of type I IFNs is dependent on C. trachomatis development and its type III secretion system. We have also validated that type I IFNs contribute to upregulation of PD-L1 during C. trachomatis infection in vivo using a mouse model of infection. Overall, these findings reveal that C. trachomatis induction of this host pathway may contribute to adaptive immune evasion.
Collapse
|
3
|
Intonti S, Kokona D, Zinkernagel MS, Enzmann V, Stein JV, Conedera FM. Glia Modulates Immune Responses in the Retina Through Distinct MHC Pathways. Glia 2025; 73:822-839. [PMID: 39873321 PMCID: PMC11845847 DOI: 10.1002/glia.24656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/30/2025]
Abstract
Glia antigen-presenting cells (APCs) are pivotal regulators of immune surveillance within the retina, maintaining tissue homeostasis and promptly responding to insults. However, the intricate mechanisms underlying their local coordination and activation remain unclear. Our study integrates an animal model of retinal injury, retrospective analysis of human retinas, and in vitro experiments to gain insights into the crucial role of antigen presentation in neuroimmunology during retinal degeneration (RD), uncovering the involvement of various glial cells, notably Müller glia and microglia. Glial cells act as sentinels, detecting antigens released during degeneration and interacting with T-cells via MHC molecules, which are essential for immune responses. Microglia function as APCs via the MHC Class II pathway, upregulating key molecules such as Csf1r and cytokines. In contrast, Müller cells act through the MHC Class I pathway, exhibiting upregulated antigen processing genes and promoting a CD8+ T-cell response. Distinct cytokine signaling pathways, including TNF-α and IFN Type I, contribute to the immune balance. Human retinal specimens corroborate these findings, demonstrating glial activation and MHC expression correlating with degenerative changes. In vitro assays also confirmed differential T-cell migration responses to activated microglia and Müller cells, highlighting their role in shaping the immune milieu within the retina. In summary, our study emphasizes the involvement of retinal glial cells in modulating the immune response after insults to the retinal parenchyma. Unraveling the intricacies of glia-mediated antigen presentation in RD is essential for developing precise therapeutic interventions for retinal pathologies.
Collapse
Affiliation(s)
- Simona Intonti
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical ResearchUniversity of BernBernSwitzerland
| | - Despina Kokona
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical ResearchUniversity of BernBernSwitzerland
| | - Martin S. Zinkernagel
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical ResearchUniversity of BernBernSwitzerland
| | - Volker Enzmann
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical ResearchUniversity of BernBernSwitzerland
| | - Jens V. Stein
- Department of Oncology, Microbiology and ImmunologyUniversity of FribourgFribourgSwitzerland
| | - Federica M. Conedera
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical ResearchUniversity of BernBernSwitzerland
- Department of Oncology, Microbiology and ImmunologyUniversity of FribourgFribourgSwitzerland
| |
Collapse
|
4
|
Li J, Luo Y, Fu Q, Tang S, Zhang P, Frazer IH, Liu X, Wang T, Ni G. Caerin 1.1/1.9-mediated antitumor immunity depends on IFNAR-Stat1 signalling of tumour infiltrating macrophage by autocrine IFNα and is enhanced by CD47 blockade. Sci Rep 2025; 15:3789. [PMID: 39885296 PMCID: PMC11782643 DOI: 10.1038/s41598-025-87687-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025] Open
Abstract
Previously, we demonstrated that natural host-defence peptide caerin 1.1/caerin 1.9 (F1/F3) increases the efficacy of anti-PD-1 and therapeutic vaccine, in a HPV16 + TC-1 tumour model, but the anti-tumor mechanism of F1/F3 is still unclear. In this study, we explored the impact of F1/F3 on the tumor microenvironment in a transplanted B16 melanoma model, and further investigated the mechanism of action of F1/F3 using monoclonal antibodies to deplete relevant cells, gene knockout mice and flow cytometry. We show that F1/F3 is able to inhibit the growth of melanoma B16 tumour cells both in vitro and in vivo. Depletion of macrophages, blockade of IFNα receptor, and Stat1 inhibition each abolishes F1/F3-mediated antitumor responses. Subsequent analysis reveals that F1/F3 increases the tumour infiltration of inflammatory macrophages, upregulates the level of IFNα receptor, and promotes the secretion of IFNα by macrophages. Interestingly, F1/F3 upregulates CD47 level on tumour cells; and blocking CD47 increases F1/F3-mediated antitumor responses. Furthermore, F1/F3 intratumor injection, CD47 blockade, and therapeutic vaccination significantly increases the survival time of B16 tumour-bearing mice. These results indicate that F1/F3 may be effective to improve the efficacy of ICB and therapeutic vaccine-based immunotherapy for human epithelial cancers and warrants consideration for clinical trials.
Collapse
Affiliation(s)
- Junjie Li
- Key Laboratory of Cancer Immunotherapy of Guangdong Tertiary Education, Guangdong CAR-T Treatment Related Adverse Reaction Key Laboratory, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, China
- Zhongao Biomedical Technology (Guangdong) Co., Ltd, Zhongshan, 528403, Guangdong, China
| | - Yuandong Luo
- Medical School of Guizhou University, Guiyang, 550000, Guizhou, China
| | - Quanlan Fu
- Medical School of Guizhou University, Guiyang, 550000, Guizhou, China
| | - Shuxian Tang
- Cancer Research Institute, Foshan First People's Hospital, Foshan, 528000, Guangdong, China
| | - Pingping Zhang
- Cancer Research Institute, Foshan First People's Hospital, Foshan, 528000, Guangdong, China
| | - Ian H Frazer
- Diamantia Institute, Translational Research Institute, University of Queensland, Woolloongabba, Brisbane, QLD, 4002, Australia
| | - Xiaosong Liu
- Key Laboratory of Cancer Immunotherapy of Guangdong Tertiary Education, Guangdong CAR-T Treatment Related Adverse Reaction Key Laboratory, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, China
- Cancer Research Institute, Foshan First People's Hospital, Foshan, 528000, Guangdong, China
| | - Tianfang Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia.
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia.
| | - Guoying Ni
- Key Laboratory of Cancer Immunotherapy of Guangdong Tertiary Education, Guangdong CAR-T Treatment Related Adverse Reaction Key Laboratory, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, China.
- Cancer Research Institute, Foshan First People's Hospital, Foshan, 528000, Guangdong, China.
| |
Collapse
|
5
|
Vogiatzi I, Lama LM, Lehmann A, Rossignoli F, Gettemans J, Shah K. Allogeneic stem cells engineered to release interferon β and scFv-PD1 target glioblastoma and alter the tumor microenvironment. Cytotherapy 2024; 26:1217-1226. [PMID: 38852095 PMCID: PMC11427148 DOI: 10.1016/j.jcyt.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 06/10/2024]
Abstract
Highly malignant brain tumors, glioblastomas (GBM), are immunosuppressive, thereby limiting current promising immunotherapeutic approaches. In this study, we created interferon receptor 1 knockout allogeneic mesenchymal stem cells (MSC) to secrete dual-function pro-apoptotic and immunomodulatory interferon (IFN) β (MSCKO-IFNβ) using a single lentiviral vector CRISPR/Cas9 system. We show that MSCKO-IFNβ induces apoptosis in GBM cells and upregulates the cell surface expression of programmed death ligand-1 in tumor cells. Next, we engineered MSCKO to release a secretable single-chain variable fragment (scFv) to block programmed death (PD)-1 and show the ability of MSCKO-scFv-PD1 to enhance T-cell activation and T-cell-mediated tumor cell killing. To simultaneously express both immune modulators, we engineered MSCKO-IFNβ to co-express scFv-PD1 (MSCKO-IFNβ-scFv-PD1) and show the expression of both IFNβ and scFv-PD1 in vitro leads to T-cell activation and lowers the viability of tumor cells. Furthermore, to mimic the clinical scenario of GBM tumor resection and subsequent treatment, we show that synthetic extracellular matrix (sECM) encapsulated MSCKO-IFNβ-scFv-PD1 treatment of resected tumors results in the increase of CD4+ and CD8+ T cells, mature conventional dendritic cells type II and activation of microglia as compared to the control treatment group. Overall, these results reveal the ability of MSCKO-IFNβ-scFv-PD1 to shape the tumor microenvironment and enhance therapeutic outcomes in GBM.
Collapse
Affiliation(s)
- Ioulia Vogiatzi
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Lucia Moreno Lama
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Amelia Lehmann
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Filippo Rossignoli
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jan Gettemans
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Khalid Shah
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA.
| |
Collapse
|
6
|
Zhang A, Sun T, Yu D, Fu R, Liu X, Xue F, Liu W, Ju M, Dai X, Dong H, Gu W, Chen J, Chi Y, Li H, Wang W, Yang R, Chen Y, Zhang L. Multi-omics differences in the bone marrow between essential thrombocythemia and prefibrotic primary myelofibrosis. Clin Exp Med 2024; 24:154. [PMID: 38972952 PMCID: PMC11228008 DOI: 10.1007/s10238-024-01350-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/04/2024] [Indexed: 07/09/2024]
Abstract
Essential thrombocythemia (ET) and prefibrotic primary myelofibrosis (pre-PMF) are Philadelphia chromosome-negative myeloproliferative neoplasms. These conditions share overlapping clinical presentations; however, their prognoses differ significantly. Current morphological diagnostic methods lack reliability in subtype differentiation, underlining the need for improved diagnostics. The aim of this study was to investigate the multi-omics alterations in bone marrow biopsies of patients with ET and pre-PMF to improve our understanding of the nuanced diagnostic characteristics of both diseases. We performed proteomic analysis with 4D direct data-independent acquisition and microbiome analysis with 2bRAD-M sequencing technology to identify differential protein and microbe levels between untreated patients with ET and pre-PMF. Laboratory and multi-omics differences were observed between ET and pre-PMF, encompassing diverse pathways, such as lipid metabolism and immune response. The pre-PMF group showed an increased neutrophil-to-lymphocyte ratio and decreased high-density lipoprotein and cholesterol levels. Protein analysis revealed significantly higher CXCR2, CXCR4, and MX1 levels in pre-PMF, while APOC3, APOA4, FABP4, C5, and CFB levels were elevated in ET, with diagnostic accuracy indicated by AUC values ranging from 0.786 to 0.881. Microbiome assessment identified increased levels of Mycobacterium, Xanthobacter, and L1I39 in pre-PMF, whereas Sphingomonas, Brevibacillus, and Pseudomonas_E were significantly decreased, with AUCs for these genera ranging from 0.833 to 0.929. Our study provides preliminary insights into the proteomic and microbiome variations in the bone marrow of patients with ET and pre-PMF, identifying specific proteins and bacterial genera that warrant further investigation as potential diagnostic indicators. These observations contribute to our evolving understanding of the multi-omics variations and possible mechanisms underlying ET and pre-PMF.
Collapse
Affiliation(s)
- Anqi Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Ting Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Dandan Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Rongfeng Fu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Xiaofan Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Feng Xue
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Wei Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Mankai Ju
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Xinyue Dai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Huan Dong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Wenjing Gu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Jia Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Ying Chi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Huiyuan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Wentian Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Renchi Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yunfei Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China.
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
7
|
Li C, Long L, Wang Y, Chi X, Zhang P, Zhang Y, Ji N. Constitutive type-1 interferons signaling activity in malignant gliomas. J Neurooncol 2024; 168:381-391. [PMID: 38789844 DOI: 10.1007/s11060-024-04601-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/07/2024] [Indexed: 05/26/2024]
Abstract
PURPOSE Recent studies revealed a pro-tumor effect of constitutive Type-1 interferons (IFN-I) production and the downstream signaling activity in several malignancies. In contrast, heterogeneity and clinical significance of the signaling activity in gliomas remain unknown. Thus, we aimed to depict the heterogeneity and clinical significance of constitutive Type-1 interferon (IFN-I) production and the downstream signaling activity in gliomas. METHODS We utilized multiplex immunofluorescence (mIF) on a 364 gliomas tissue microarray from our cohort. Moreover, we conducted bioinformatic analyses on the Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) databases to investigate the heterogeneity and clinical significance of constitutive IFN-I signaling activity in gliomas. RESULTS We observed high heterogeneity of the constitutive IFN-I signaling activity among glioma subtypes. Signaling increased with the WHO malignancy grade while decreasing in the gliomas with IDH mutations. Additionally, high IFN-I activity served as an independent predictor of unfavorable outcomes, and global DNA hypermethylation in IDH-mutant gliomas was associated with decreased IFN-I signaling activity. Positive correlations were observed between the IFN-I activity and glioma-associated inflammation, encompassing both anti-tumor and pro-tumor immune responses. Furthermore, the IFN-I activity varied significantly among tumor and immune cells in the glioma microenvironment (GME). Notably, a distinct pattern of IFN-I signaling activity distribution in GME cells was observed among glioma subtypes, and the pattern was independently associated with patient overall survival. CONCLUSIONS Constitutive IFN-I signaling activity varies significantly among glioma subtypes and represents a potential indicator for increased glioma inflammation and unfavorable clinical outcomes.
Collapse
Affiliation(s)
- Chunzhao Li
- Department of Neurosurgery, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, Nan Si Huan Xi Lu 119, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Lang Long
- Department of Neurosurgery, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, Nan Si Huan Xi Lu 119, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yi Wang
- Department of Neurosurgery, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, Nan Si Huan Xi Lu 119, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Xiaohan Chi
- Department of Neurosurgery, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, Nan Si Huan Xi Lu 119, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Peng Zhang
- Department of Neurosurgery, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, Nan Si Huan Xi Lu 119, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yang Zhang
- Department of Neurosurgery, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, Nan Si Huan Xi Lu 119, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Nan Ji
- Department of Neurosurgery, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, Nan Si Huan Xi Lu 119, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China.
| |
Collapse
|
8
|
Xian W, Asad M, Wu S, Bai Z, Li F, Lu J, Zu G, Brintnell E, Chen H, Mao Y, Zhou G, Liao B, Wu J, Wang E, You L. Distinct immune escape and microenvironment between RG-like and pri-OPC-like glioma revealed by single-cell RNA-seq analysis. Front Med 2024; 18:147-168. [PMID: 37955814 DOI: 10.1007/s11684-023-1017-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/24/2023] [Indexed: 11/14/2023]
Abstract
The association of neurogenesis and gliogenesis with glioma remains unclear. By conducting single-cell RNA-seq analyses on 26 gliomas, we reported their classification into primitive oligodendrocyte precursor cell (pri-OPC)-like and radial glia (RG)-like tumors and validated it in a public cohort and TCGA glioma. The RG-like tumors exhibited wild-type isocitrate dehydrogenase and tended to carry EGFR mutations, and the pri-OPC-like ones were prone to carrying TP53 mutations. Tumor subclones only in pri-OPC-like tumors showed substantially down-regulated MHC-I genes, suggesting their distinct immune evasion programs. Furthermore, the two subgroups appeared to extensively modulate glioma-infiltrating lymphocytes in distinct manners. Some specific genes not expressed in normal immune cells were found in glioma-infiltrating lymphocytes. For example, glial/glioma stem cell markers OLIG1/PTPRZ1 and B cell-specific receptors IGLC2/IGKC were expressed in pri-OPC-like and RG-like glioma-infiltrating lymphocytes, respectively. Their expression was positively correlated with those of immune checkpoint genes (e.g., LGALS33) and poor survivals as validated by the increased expression of LGALS3 upon IGKC overexpression in Jurkat cells. This finding indicated a potential inhibitory role in tumor-infiltrating lymphocytes and could provide a new way of cancer immune evasion.
Collapse
Affiliation(s)
- Weiwei Xian
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Mohammad Asad
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Shuai Wu
- Glioma Surgery Division, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zhixin Bai
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Fengjiao Li
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Junfeng Lu
- Glioma Surgery Division, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Gaoyu Zu
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Erin Brintnell
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Hong Chen
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Guomin Zhou
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Fudan University, Shanghai, 200040, China
| | - Bo Liao
- School of Mathematics and Statistics, Hainan Normal University, Haikou, 570100, China
| | - Jinsong Wu
- Glioma Surgery Division, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Edwin Wang
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada.
| | - Linya You
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
9
|
Srinivas N, Song L, Lei KC, Gravemeyer J, Furtmann F, Gambichler T, Becker JC, Sriram A. The HDAC inhibitor domatinostat induces type I interferon α in Merkel cell carcinoma by HES1 repression. J Cancer Res Clin Oncol 2023; 149:8267-8277. [PMID: 37071208 PMCID: PMC10374800 DOI: 10.1007/s00432-023-04733-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
BACKGROUND Class I selective histone deacetylase inhibitors (HDACi) have been previously demonstrated to not only increase major histocompatibility complex class I surface expression in Merkel cell carcinoma (MCC) cells by restoring the antigen processing and presentation machinery, but also exert anti-tumoral effect by inducing apoptosis. Both phenomena could be due to induction of type I interferons (IFN), as has been described for HDACi. However, the mechanism of IFN induction under HDACi is not fully understood because the expression of IFNs is regulated by both activating and inhibitory signaling pathways. Our own preliminary observations suggest that this may be caused by suppression of HES1. METHODS The effect of the class I selective HDACi domatinostat and IFNα on cell viability and the apoptosis of MCPyV-positive (WaGa, MKL-1) and -negative (UM-MCC 34) MCC cell lines, as well as, primary fibroblasts were assessed by colorimetric methods or measuring mitochondrial membrane potential and intracellular caspase-3/7, respectively. Next, the impact of domatinostat on IFNA and HES1 mRNA expression was measured by RT-qPCR; intracellular IFNα production was detected by flow cytometry. To confirm that the expression of IFNα induced by HDACi was due to the suppression of HES1, it was silenced by RNA interference and then mRNA expression of IFNA and IFN-stimulated genes was assessed. RESULTS Our studies show that the previously reported reduction in viability of MCC cell lines after inhibition of HDAC by domatinostat is accompanied by an increase in IFNα expression, both of mRNA and at the protein level. We confirmed that treatment of MCC cells with external IFNα inhibited their proliferation and induced apoptosis. Re-analysis of existing single-cell RNA sequencing data indicated that induction of IFNα by domatinostat occurs through repression of HES1, a transcriptional inhibitor of IFNA; this was confirmed by RT-qPCR. Finally, siRNA-mediated silencing of HES1 in the MCC cell line WaGa not only increased mRNA expression of IFNA and IFN-stimulated genes but also decreased cell viability. CONCLUSION Our results demonstrate that the direct anti-tumor effect of HDACi domatinostat on MCC cells is at least in part mediated via decreased HES1 expression allowing the induction of IFNα, which in turn causes apoptosis.
Collapse
Affiliation(s)
- Nalini Srinivas
- Department of Translational Skin Cancer Research (TSCR), German Cancer Consortium (DKTK), Partner Site Essen, University Medicine Essen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Lina Song
- Department of Translational Skin Cancer Research (TSCR), German Cancer Consortium (DKTK), Partner Site Essen, University Medicine Essen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kuan Cheok Lei
- Department of Translational Skin Cancer Research (TSCR), German Cancer Consortium (DKTK), Partner Site Essen, University Medicine Essen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Gravemeyer
- Department of Translational Skin Cancer Research (TSCR), German Cancer Consortium (DKTK), Partner Site Essen, University Medicine Essen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frauke Furtmann
- Department of Translational Skin Cancer Research (TSCR), German Cancer Consortium (DKTK), Partner Site Essen, University Medicine Essen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thilo Gambichler
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | - Jürgen C. Becker
- Department of Translational Skin Cancer Research (TSCR), German Cancer Consortium (DKTK), Partner Site Essen, University Medicine Essen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Ashwin Sriram
- Department of Translational Skin Cancer Research (TSCR), German Cancer Consortium (DKTK), Partner Site Essen, University Medicine Essen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
10
|
Mondal I, Das O, Sun R, Gao J, Yu B, Diaz A, Behnan J, Dubey A, Meng Z, Eskandar E, Xu B, Lu RO, Ho WS. PP2Ac Deficiency Enhances Tumor Immunogenicity by Activating STING-Type I Interferon Signaling in Glioblastoma. Cancer Res 2023; 83:2527-2542. [PMID: 37219874 PMCID: PMC10525036 DOI: 10.1158/0008-5472.can-22-3382] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/31/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Glioblastoma (GBM) is an immunologically "cold" tumor that does not respond to current immunotherapy. Here, we demonstrate a fundamental role for the α-isoform of the catalytic subunit of protein phosphatase-2A (PP2Ac) in regulating glioma immunogenicity. Genetic ablation of PP2Ac in glioma cells enhanced double-stranded DNA (dsDNA) production and cGAS-type I IFN signaling, MHC-I expression, and tumor mutational burden. In coculture experiments, PP2Ac deficiency in glioma cells promoted dendritic cell (DC) cross-presentation and clonal expansion of CD8+ T cells. In vivo, PP2Ac depletion sensitized tumors to immune-checkpoint blockade and radiotherapy treatment. Single-cell analysis demonstrated that PP2Ac deficiency increased CD8+ T-cell, natural killer cell, and DC accumulation and reduced immunosuppressive tumor-associated macrophages. Furthermore, loss of PP2Ac increased IFN signaling in myeloid and tumor cells and reduced expression of a tumor gene signature associated with worse patient survival in The Cancer Genome Atlas. Collectively, this study establishes a novel role for PP2Ac in inhibiting dsDNA-cGAS-STING signaling to suppress antitumor immunity in glioma. SIGNIFICANCE PP2Ac deficiency promotes cGAS-STING signaling in glioma to induce a tumor-suppressive immune microenvironment, highlighting PP2Ac as a potential therapeutic target to enhance tumor immunogenicity and improve response to immunotherapy.
Collapse
Affiliation(s)
- Isha Mondal
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Oishika Das
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Raymond Sun
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Jian Gao
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Bohyeon Yu
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Aaron Diaz
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Jinan Behnan
- The Leo M. Davidoff Department of Neurological Surgery, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Abhishek Dubey
- The Leo M. Davidoff Department of Neurological Surgery, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zhipeng Meng
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Emad Eskandar
- The Leo M. Davidoff Department of Neurological Surgery, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Rongze Olivia Lu
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Winson S. Ho
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
11
|
Schnöller LE, Piehlmaier D, Weber P, Brix N, Fleischmann DF, Nieto AE, Selmansberger M, Heider T, Hess J, Niyazi M, Belka C, Lauber K, Unger K, Orth M. Systematic in vitro analysis of therapy resistance in glioblastoma cell lines by integration of clonogenic survival data with multi-level molecular data. Radiat Oncol 2023; 18:51. [PMID: 36906590 PMCID: PMC10007763 DOI: 10.1186/s13014-023-02241-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023] Open
Abstract
Despite intensive basic scientific, translational, and clinical efforts in the last decades, glioblastoma remains a devastating disease with a highly dismal prognosis. Apart from the implementation of temozolomide into the clinical routine, novel treatment approaches have largely failed, emphasizing the need for systematic examination of glioblastoma therapy resistance in order to identify major drivers and thus, potential vulnerabilities for therapeutic intervention. Recently, we provided proof-of-concept for the systematic identification of combined modality radiochemotherapy treatment vulnerabilities via integration of clonogenic survival data upon radio(chemo)therapy with low-density transcriptomic profiling data in a panel of established human glioblastoma cell lines. Here, we expand this approach to multiple molecular levels, including genomic copy number, spectral karyotyping, DNA methylation, and transcriptome data. Correlation of transcriptome data with inherent therapy resistance on the single gene level yielded several candidates that were so far underappreciated in this context and for which clinically approved drugs are readily available, such as the androgen receptor (AR). Gene set enrichment analyses confirmed these results, and identified additional gene sets, including reactive oxygen species detoxification, mammalian target of rapamycin complex 1 (MTORC1) signaling, and ferroptosis/autophagy-related regulatory circuits to be associated with inherent therapy resistance in glioblastoma cells. To identify pharmacologically accessible genes within those gene sets, leading edge analyses were performed yielding candidates with functions in thioredoxin/peroxiredoxin metabolism, glutathione synthesis, chaperoning of proteins, prolyl hydroxylation, proteasome function, and DNA synthesis/repair. Our study thus confirms previously nominated targets for mechanism-based multi-modal glioblastoma therapy, provides proof-of-concept for this workflow of multi-level data integration, and identifies novel candidates for which pharmacological inhibitors are readily available and whose targeting in combination with radio(chemo)therapy deserves further examination. In addition, our study also reveals that the presented workflow requires mRNA expression data, rather than genomic copy number or DNA methylation data, since no stringent correlation between these data levels could be observed. Finally, the data sets generated in the present study, including functional and multi-level molecular data of commonly used glioblastoma cell lines, represent a valuable toolbox for other researchers in the field of glioblastoma therapy resistance.
Collapse
Affiliation(s)
- Leon Emanuel Schnöller
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany
| | - Daniel Piehlmaier
- Research Unit Radiation Cytogenetics (ZYTO), Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany
| | - Peter Weber
- Research Unit Radiation Cytogenetics (ZYTO), Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Nikko Brix
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany
| | - Daniel Felix Fleischmann
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander Edward Nieto
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany
| | - Martin Selmansberger
- Research Unit Radiation Cytogenetics (ZYTO), Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany
| | - Theresa Heider
- Research Unit Radiation Cytogenetics (ZYTO), Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany
| | - Julia Hess
- Research Unit Radiation Cytogenetics (ZYTO), Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Munich, Germany.,Bavarian Cancer Research Center (BKFZ), Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,German Cancer Consortium (DKTK), Munich, Germany.,Bavarian Cancer Research Center (BKFZ), Munich, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,German Cancer Consortium (DKTK), Munich, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics (ZYTO), Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany. .,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany.
| | - Michael Orth
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany.
| |
Collapse
|
12
|
Wang Z, Liu Z, Wang S, Bing X, Ji X, He D, Han M, Wei Y, Wang C, Xia Q, Yang J, Gao J, Yin X, Wang Z, Shang Z, Xu J, Xin T, Liu Q. Implantation of hydrogel-liposome nanoplatform inhibits glioblastoma relapse by inducing ferroptosis. Asian J Pharm Sci 2023. [DOI: 10.1016/j.ajps.2023.100800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
13
|
Blomberg E, Silginer M, Roth P, Weller M. Differential roles of type I interferon signaling in tumor versus host cells in experimental glioma models. Transl Oncol 2023; 28:101607. [PMID: 36571986 PMCID: PMC9800198 DOI: 10.1016/j.tranon.2022.101607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/11/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022] Open
Abstract
Despite multimodal treatment approaches including surgery, radiotherapy and chemotherapy, the median survival for patients with glioblastoma remains in the range of one year and thus poor. Type I interferons (IFN) are involved in immune responses to viral infection and exhibit anti-tumor activity in certain cancers. Here we explored the biological relevance of constitutive type I IFN signaling in murine glioma models in vitro and in vivo. CT-2A, GL-261, SMA-497, SMA-540 and SMA-560 murine glioma cells expressed IFN type I receptors IFNAR1 and IFNAR2 and were responsive to exogenous IFN stimulation. CRISPR/Cas9-mediated deletion of IFNAR1 decreased the baseline expression of type I IFN response genes in GL-261 cells, but neither in CT-2A nor in SMA-560 cells. IFNAR1 deletion slowed growth in GL-261 and SMA-560, but not in CT-2A cells. However, only the growth of IFNAR1-depleted GL-261 tumors and not that of SMA-560 tumors was delayed in vivo upon orthotopic tumor cell implantation into syngeneic mice. This survival gain was no longer detected when the IFNAR1-depleted GL-261 cells were inoculated into IFNAR1-deficient mice. Altogether these data suggest that constitutive type I IFN signaling in gliomas may be pro-tumorigenic, but only in a microenvironment that is proficient for type I IFN signaling in the host.
Collapse
Affiliation(s)
- Evelina Blomberg
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University of Zürich
| | - Manuela Silginer
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Patrick Roth
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University of Zürich; Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University of Zürich; Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
14
|
Zhang Z, Shen X, Tan Z, Mei Y, Lu T, Ji Y, Cheng S, Xu Y, Wang Z, Liu X, He W, Chen Z, Chen S, Lv Q. Interferon gamma-related gene signature based on anti-tumor immunity predicts glioma patient prognosis. Front Genet 2023; 13:1053263. [PMID: 36712869 PMCID: PMC9880184 DOI: 10.3389/fgene.2022.1053263] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023] Open
Abstract
Background: Glioma is the most common primary tumor of the central nervous system. The conventional glioma treatment strategies include surgical excision and chemo- and radiation-therapy. Interferon Gamma (IFN-γ) is a soluble dimer cytokine involved in immune escape of gliomas. In this study, we sought to identify IFN-γ-related genes to construct a glioma prognostic model to guide its clinical treatment. Methods: RNA sequences and clinicopathological data were downloaded from The Cancer Genome Atlas (TCGA) and the China Glioma Genome Atlas (CGGA). Using univariate Cox analysis and the Least Absolute Shrinkage and Selection Operator (LASSO) regression algorithm, IFN-γ-related prognostic genes were selected to construct a risk scoring model, and analyze its correlation with the clinical features. A high-precision nomogram was drawn to predict prognosis, and its performance was evaluated using calibration curve. Finally, immune cell infiltration and immune checkpoint molecule expression were analyzed to explore the tumor microenvironment characteristics associated with the risk scoring model. Results: Four out of 198 IFN-γ-related genes were selected to construct a risk score model with good predictive performance. The expression of four IFN-γ-related genes in glioma tissues was significantly increased compared to normal brain tissue (p < 0.001). Based on ROC analysis, the risk score model accurately predicted the overall survival rate of glioma patients at 1 year (AUC: The Cancer Genome Atlas 0.89, CGGA 0.59), 3 years (AUC: TCGA 0.89, CGGA 0.68), and 5 years (AUC: TCGA 0.88, CGGA 0.70). Kaplan-Meier analysis showed that the overall survival rate of the high-risk group was significantly lower than that of the low-risk group (p < 0.0001). Moreover, high-risk scores were associated with wild-type IDH1, wild-type ATRX, and 1P/19Q non-co-deletion. The nomogram predicted the survival rate of glioma patients based on the risk score and multiple clinicopathological factors such as age, sex, pathological grade, and IDH Status, among others. Risk score and infiltrating immune cells including CD8 T-cell, resting CD4 memory T-cell, regulatory T-cell (Tregs), M2 macrophages, resting NK cells, activated mast cells, and neutrophils were positively correlated (p < 0.05). In addition, risk scores closely associated with expression of immune checkpoint molecules such as PD-1, PD-L1, CTLA-4, LAG-3, TIM-3, TIGIT, CD48, CD226, and CD96. Conclusion: Our risk score model reveals that IFN-γ -associated genes are an independent prognostic factor for predicting overall survival in glioma, which is closely associated with immune cell infiltration and immune checkpoint molecule expression. This model will be helpful in predicting the effectiveness of immunotherapy and survival rate in patients with glioma.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Xiaoli Shen
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zilong Tan
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yuran Mei
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Tianzhu Lu
- Department of Radiation Oncology and Head and Neck Surgery, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Yulong Ji
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Sida Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yu Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zekun Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xinxian Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wei He
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhen Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shuhui Chen
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China,Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qiaoli Lv
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China,*Correspondence: Qiaoli Lv,
| |
Collapse
|
15
|
Shi M, Ge Q, Wang X, Diao W, Yang B, Sun S, Wang G, Liu T, Chan AML, Gao Z, Wang Y, Wang Y. Functional analysis of the short splicing variant encoded by CHI3L1/YKL-40 in glioblastoma. Front Oncol 2022; 12:910728. [PMID: 36408158 PMCID: PMC9666495 DOI: 10.3389/fonc.2022.910728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/10/2022] [Indexed: 12/04/2023] Open
Abstract
The glycoprotein YKL-40 has been well studied as a serum biomarker of prognosis and disease status in glioblastoma. YKL-40 is a chitinase-like protein with defective chitinase activity that plays an important role in promoting cell proliferation, migration, and metastasis in glioblastoma multiforme (GBM). The short variant (SV) of YKL-40, generated by an alternative splicing event that splices out exon 8, was reported in the early developing human musculoskeletal system, although its role in GBM is still unknown. Our results showed that individual glioblastoma cell lines displayed increased expression of the short variant of YKL-40 after low serum treatment. In addition, unlike the full-length (FL) version, which was localized to all cell compartments, the short isoform could not be secreted and was localized only to the cytoplasm. Functionally, FL YKL-40 promoted cell proliferation and migration, whereas SV YKL-40 suppressed them. Transcriptome analysis revealed that these opposing roles of the two isoforms may be modulated by differentially regulating several oncogenic-related pathways, including p53, the G2/M checkpoint, and MYC-related signaling. This study may provide new ideas for the development of targeted anti-YKL-40 therapy in GBM treatment.
Collapse
Affiliation(s)
- Mengqi Shi
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Qianyun Ge
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Xinrong Wang
- Community Healthcare Center, The Second People’s Hospital of Weifang, Weifang, China
| | - Wenbin Diao
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Ben Yang
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Sipeng Sun
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Guohui Wang
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Tian Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Andrew Man-Lok Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Zhiqin Gao
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Yi Wang
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Yubing Wang
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| |
Collapse
|
16
|
Umair M, Jabbar S, Zhaoxin L, Jianhao Z, Abid M, Khan KUR, Korma SA, Alghamdi MA, El-Saadony MT, Abd El-Hack ME, Cacciotti I, AbuQamar SF, El-Tarabily KA, Zhao L. Probiotic-Based Bacteriocin: Immunity Supplementation Against Viruses. An Updated Review. Front Microbiol 2022; 13:876058. [PMID: 36033850 PMCID: PMC9402254 DOI: 10.3389/fmicb.2022.876058] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Viral infections are a major cause of severe, fatal diseases worldwide. Recently, these infections have increased due to demanding contextual circumstances, such as environmental changes, increased migration of people and product distribution, rapid demographic changes, and outbreaks of novel viruses, including the COVID-19 outbreak. Internal variables that influence viral immunity have received attention along with these external causes to avert such novel viral outbreaks. The gastrointestinal microbiome (GIM), particularly the present probiotics, plays a vital role in the host immune system by mediating host protective immunity and acting as an immune regulator. Bacteriocins possess numerous health benefits and exhibit antagonistic activity against enteric pathogens and immunobiotics, thereby inhibiting viral infections. Moreover, disrupting the homeostasis of the GIM/host immune system negatively affects viral immunity. The interactions between bacteriocins and infectious viruses, particularly in COVID-19, through improved host immunity and physiology are complex and have not yet been studied, although several studies have proven that bacteriocins influence the outcomes of viral infections. However, the complex transmission to the affected sites and siRNA defense against nuclease digestion lead to challenging clinical trials. Additionally, bacteriocins are well known for their biofunctional properties and underlying mechanisms in the treatment of bacterial and fungal infections. However, few studies have shown the role of probiotics-derived bacteriocin against viral infections. Thus, based on the results of the previous studies, this review lays out a road map for future studies on bacteriocins for treating viral infections.
Collapse
Affiliation(s)
- Muhammad Umair
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, China
| | - Saqib Jabbar
- Food Science Research Institute (FSRI), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Lu Zhaoxin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhang Jianhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Abid
- Institute of Food and Nutritional Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Kashif-Ur R. Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Sameh A. Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mashail A. Alghamdi
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Ilaria Cacciotti
- Department of Engineering, INSTM RU, University of Rome “Niccolò Cusano”, Rome, Italy
| | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Liqing Zhao
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, China
| |
Collapse
|
17
|
Wang Y, Li C, Chi X, Huang X, Gao H, Ji N, Zhang Y. Low MxA Expression Predicts Better Immunotherapeutic Outcomes in Glioblastoma Patients Receiving Heat Shock Protein Peptide Complex 96 Vaccination. Front Oncol 2022; 12:865779. [PMID: 35903678 PMCID: PMC9321638 DOI: 10.3389/fonc.2022.865779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/16/2022] [Indexed: 01/08/2023] Open
Abstract
Heat shock protein peptide complex 96 (HSPPC-96) has been proven to be a safe and preliminarily effective therapeutic vaccine in treating newly diagnosed glioblastoma multiforme (GBM) (NCT02122822). However, the clinical outcomes were highly variable, rendering the discovery of outcome-predictive biomarkers essential for this immunotherapy. We utilized multidimensional immunofluorescence staining to detect CD4+ CD8+ and PD-1+ immune cell infiltration levels, MxA and gp96 protein expression in pre-vaccination GBM tissues of 19 patients receiving HSPPC-96 vaccination. We observed low MxA expression was associated with longer OS than high MxA expression (48 months vs. 20 months, p=0.038). Long-term survivors (LTS) exhibited significantly lower MxA expression than short-term survivors (STS) (p= 0.0328), and ROC curve analysis indicated MxA expression as a good indicator in distinguishing LTS and STS (AUC=0.7955, p=0.0318). However, we did not observe any significant impact of immune cell densities or gp96 expression on patient outcomes. Finally, we revealed the association of MxA expression with prognosis linked to a preexisting TCR clone (CDR3-2) but was independent of the peripheral tumor-specific immune response. Taken together, low MxA expression correlated with better survival in GBM patients receiving HSPPC-96 vaccination, indicating MxA as a potential biomarker for early recognition of responsive patients to this immunotherapy.Clinical Trial Registration: ClinicalTrials.gov (NCT02122822) http://www. chictr.org.cn/enindex.aspx (ChiCTR-ONC-13003309).
Collapse
Affiliation(s)
- Yi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Chunzhao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaohan Chi
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | | | - Hua Gao
- Cure & Sure Biotech Co., LTD, Shenzhen, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
- *Correspondence: Yang Zhang, ; Nan Ji,
| | - Yang Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yang Zhang, ; Nan Ji,
| |
Collapse
|
18
|
Targeting the Axl and mTOR Pathway Synergizes Immunotherapy and Chemotherapy to Butylidenephthalide in a Recurrent GBM. JOURNAL OF ONCOLOGY 2022; 2022:3236058. [PMID: 35646111 PMCID: PMC9132698 DOI: 10.1155/2022/3236058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022]
Abstract
Background. The role of inherent tumor heterogeneity and an immunosuppressive microenvironment in therapeutic resistance has been determined to be of importance for the better management of glioblastoma multiforme (GBM). Some studies have suggested that combined drugs with divergent mechanisms may be promising in treating recurrent GBM. Methods. Intracranial sustained (Z)-n-butylidenephthalide [(Z)-BP] delivery through Cerebraca Wafers (CWs) to eliminate unresectable brain tumors was combined with the administration of temozolomide (TMZ), pembrolizumab, and cytokine-induced killer (CIK) cells for treating a patient with recurrent glioblastoma. Neurological adverse events and wound healing delay were monitored for estimating tolerance and efficacy. Response Assessment in Neuro-Oncology criteria were applied to evaluate progression-free survival (PFS); further, the molecular characteristics of GBM tissues were analyzed, and the underlying mechanism was investigated using primary culture. Results. Intracerebral (Z)-BP in residual tumors could not only inhibit cancer stem cells but also increase interferon gamma levels in serum, which then led to the regression of GBM and an immune-responsive microenvironment. Targeting receptor tyrosine kinases, including Axl and epidermal growth factor receptor (EGFR), and inhibiting the mechanistic target of rapamycin (mTOR) through (Z)-BP were determined to synergize CIK cells in the presence of pembrolizumab and TMZ in recurrent GBM. Therefore, this well-tolerated regimen could simultaneously block multiple cancer pathways, which allowed extended PFS and improved quality of life for 22 months. Conclusion. Given the several unique functions of (Z)-BP, greater sensitivity of chemotherapy and the synergism of pembrolizumab and CIK cells could have affected the excellent prognosis seen in this patient with recurrent GBM.
Collapse
|
19
|
Targeting PUS7 suppresses tRNA pseudouridylation and glioblastoma tumorigenesis. NATURE CANCER 2022; 2:932-949. [PMID: 35121864 PMCID: PMC8809511 DOI: 10.1038/s43018-021-00238-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/21/2021] [Indexed: 12/22/2022]
Abstract
Pseudouridine is the most frequent epitranscriptomic modification. However, its cellular functions remain largely unknown. Here we show that the pseudouridine synthase PUS7 is highly expressed in glioblastoma versus normal brain tissues, and high PUS7 expression levels are associated with worse survival in glioblastoma patients. The PUS7 expression and catalytic activity are required for glioblastoma stem cell (GSC) tumorigenesis. Mechanistically, we identified PUS7 targets in GSCs through small RNA pseudouridine sequencing, and showed that pseudouridylation of PUS7-regulated tRNA is critical for codon-specific translational control of key regulators of GSCs. Moreover, we identified chemical inhibitors for PUS7, and showed that these compounds prevented PUS7-mediated pseudouridine modification, suppressed tumorigenesis, and extended lifespan of tumor-bearing mice. Overall, we identified an epitranscriptomic regulatory mechanism in glioblastoma and provided preclinical evidence of a potential therapeutic strategy for glioblastoma.
Collapse
|
20
|
Sen A, Prager BC, Zhong C, Park D, Zhu Z, Gimple RC, Wu Q, Bernatchez JA, Beck S, Clark AE, Siqueira-Neto JL, Rich JN, McVicker G. Leveraging Allele-Specific Expression for Therapeutic Response Gene Discovery in Glioblastoma. Cancer Res 2021; 82:377-390. [PMID: 34903607 DOI: 10.1158/0008-5472.can-21-0810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 09/13/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022]
Abstract
Glioblastoma is the most prevalent primary malignant brain tumor in adults and is characterized by poor prognosis and universal tumor recurrence. Effective glioblastoma treatments are lacking, in part due to somatic mutations and epigenetic reprogramming that alter gene expression and confer drug resistance. To investigate recurrently dysregulated genes in glioblastoma we interrogated allele-specific expression (ASE), the difference in expression between two alleles of a gene, in glioblastoma stem cells (GSC) derived from 43 patients. A total of 118 genes were found with recurrent ASE preferentially in GSCs compared to normal tissues. These genes were enriched for apoptotic regulators, including schlafen family member 11 (SLFN11). Loss of SLFN11 gene expression was associated with aberrant promoter methylation and conferred resistance to chemotherapy and PARP inhibition. Conversely, low SLFN11 expression rendered GSCs susceptible to the oncolytic flavivirus Zika. This discovery effort based upon ASE revealed novel points of vulnerability in GSCs, suggesting a potential alternative treatment strategy for chemotherapy resistant glioblastoma.
Collapse
Affiliation(s)
- Arko Sen
- Salk Institute for Biological Studies
| | - Briana C Prager
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic
| | | | | | - Zhe Zhu
- Medicine, University of California, San Diego
| | | | - Qiulian Wu
- Medicine, University of California - San Diego School of Medicine
| | - Jean A Bernatchez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego
| | | | | | | | - Jeremy N Rich
- Department of Neurology, University of Pittsburgh Cancer Institute
| | | |
Collapse
|
21
|
Khan S, Mahalingam R, Sen S, Martinez-Ledesma E, Khan A, Gandy K, Lang FF, Sulman EP, Alfaro-Munoz KD, Majd NK, Balasubramaniyan V, de Groot JF. Intrinsic Interferon Signaling Regulates the Cell Death and Mesenchymal Phenotype of Glioblastoma Stem Cells. Cancers (Basel) 2021; 13:cancers13215284. [PMID: 34771447 PMCID: PMC8582372 DOI: 10.3390/cancers13215284] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 01/12/2023] Open
Abstract
Simple Summary Interferon signaling is mostly studied in the context of immune cells. However, its role in glioma cancer cells is unclear. This study aimed to investigate the role of cancer-cell-intrinsic IFN signaling in tumorigenesis in glioblastoma (GBM). We found that GSCs and GBM tumors exhibited differential cell-intrinsic type I and type II IFN signaling, and the high IFN/STAT1 signaling was associated with mesenchymal phenotype and poor survival in glioma patients. IFN-β exposure induced cell death in GSCs with intrinsically high IFN/STAT1 signaling, and this effect was abolished by inhibition of IFN/STAT1 signaling. A subset of GBM patients with high IFN/STAT1 may benefit from the IFN-β therapy. Abstract Interferon (IFN) signaling contributes to stemness, cell proliferation, cell death, and cytokine signaling in cancer and immune cells; however, the role of IFN signaling in glioblastoma (GBM) and GBM stem-like cells (GSCs) is unclear. Here, we investigated the role of cancer-cell-intrinsic IFN signaling in tumorigenesis in GBM. We report here that GSCs and GBM tumors exhibited differential cell-intrinsic type I and type II IFN signaling, and high IFN/STAT1 signaling was associated with mesenchymal phenotype and poor survival outcomes. In addition, chronic inhibition of IFN/STAT1 signaling decreased cell proliferation and mesenchymal signatures in GSCs with intrinsically high IFN/STAT1 signaling. IFN-β exposure induced apoptosis in GSCs with intrinsically high IFN/STAT1 signaling, and this effect was abolished by the pharmacological inhibitor ruxolitinib and STAT1 knockdown. We provide evidence for targeting IFN signaling in a specific sub-group of GBM patients. IFN-β may be a promising candidate for adjuvant GBM therapy.
Collapse
Affiliation(s)
- Sabbir Khan
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (S.K.); (S.S.); (E.M.-L.); (K.G.); (K.D.A.-M.); (N.K.M.)
| | - Rajasekaran Mahalingam
- Department of Symptom Research, MD Anderson Cancer Center, The University of Texas, Houston, TX 770030, USA;
| | - Shayak Sen
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (S.K.); (S.S.); (E.M.-L.); (K.G.); (K.D.A.-M.); (N.K.M.)
| | - Emmanuel Martinez-Ledesma
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (S.K.); (S.S.); (E.M.-L.); (K.G.); (K.D.A.-M.); (N.K.M.)
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, Mexico
| | - Arshad Khan
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA;
| | - Kaitlin Gandy
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (S.K.); (S.S.); (E.M.-L.); (K.G.); (K.D.A.-M.); (N.K.M.)
| | - Frederick F. Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA;
| | - Erik P. Sulman
- Department of Radiation Oncology, New York University, New York, NY 10016, USA;
| | - Kristin D. Alfaro-Munoz
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (S.K.); (S.S.); (E.M.-L.); (K.G.); (K.D.A.-M.); (N.K.M.)
| | - Nazanin K. Majd
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (S.K.); (S.S.); (E.M.-L.); (K.G.); (K.D.A.-M.); (N.K.M.)
| | - Veerakumar Balasubramaniyan
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (S.K.); (S.S.); (E.M.-L.); (K.G.); (K.D.A.-M.); (N.K.M.)
- Correspondence: (V.B.); (J.F.d.G.)
| | - John F. de Groot
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (S.K.); (S.S.); (E.M.-L.); (K.G.); (K.D.A.-M.); (N.K.M.)
- Department of Neuro-Oncology, University of California, San Francisco, CA 94143, USA
- Correspondence: (V.B.); (J.F.d.G.)
| |
Collapse
|
22
|
Xiao Z, Zhang W, Li G, Li W, Li L, Sun T, He Y, Liu G, Wang L, Han X, Wen H, Liu Y, Chen Y, Wang H, Li J, Fan Y, Zhang J. Multiomics Analysis Reveals the Prognostic Non-tumor Cell Landscape in Glioblastoma Niches. Front Genet 2021; 12:741325. [PMID: 34603399 PMCID: PMC8481948 DOI: 10.3389/fgene.2021.741325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/11/2021] [Indexed: 11/21/2022] Open
Abstract
A comprehensive characterization of non-tumor cells in the niches of primary glioblastoma is not fully established yet. This study aims to present an overview of non-malignant cells in the complex microenvironment of glioblastoma with detailed characterizations of their prognostic effects. We curate 540 gene signatures covering a total of 64 non-tumor cell types. Cell type-specific expression patterns are interrogated by normalized enrichment score across four large gene expression profiling cohorts of glioblastoma with a total number of 967 cases. The glioblastoma multiforms (GBMs) in each cohort are hierarchically clustered into negative or positive immune response classes with significantly different overall survival. Our results show that astrocytes, macrophages, monocytes, NKTs, and MSC are risk factors, while CD8 T cells, CD8 naive T cells, and plasma cells are protective factors. Moreover, we find that the immune system and organogenesis are uniformly enriched in negative immune response clusters, in contrast to the enrichment of nervous system in positive immune response clusters. Mesenchymal differentiation is also observed in the negative immune response clusters. High enrichment status of macrophages in negative immune response clusters is independently validated by analyzing scRNA-seq data from eight high-grade gliomas, revealing that negative immune response samples comprised 46.63 to 55.12% of macrophages, whereas positive immune response samples comprised only 1.70 to 8.12%, with IHC staining of samples from six short-term and six long-term survivors of GBMs confirming the results.
Collapse
Affiliation(s)
- Zixuan Xiao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Wei Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guanzhang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wendong Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Lin Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Ting Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yufei He
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Guang Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Lu Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiaohan Han
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Hao Wen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yong Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yifan Chen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Haoyu Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jing Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jing Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
23
|
Cheng Q, Duan W, He S, Li C, Cao H, Liu K, Ye W, Yuan B, Xia Z. Multi-Omics Data Integration Analysis of an Immune-Related Gene Signature in LGG Patients With Epilepsy. Front Cell Dev Biol 2021; 9:686909. [PMID: 34336837 PMCID: PMC8322853 DOI: 10.3389/fcell.2021.686909] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Background The tumor immune microenvironment significantly affects tumor occurrence, progression, and prognosis, but its impact on the prognosis of low-grade glioma (LGG) patients with epilepsy has not been reported. Hence, the purpose of this study is to explore its effect on LGG patients with epilepsy. Methods The data of LGG patients derived from the TCGA database. The level of immune cell infiltration and the proportion of 22 immune cells were evaluated by ESTIMATE and CIBERSORT algorithms, respectively. The Cox and LASSO regression analysis was adopted to determine the DEGs, and further established the clustering and risk score models. The association between genomic alterations and risk score was investigated using CNV and somatic mutation data. GSVA was adopted to identify the immunological pathways, immune infiltration and inflammatory profiles related to the signature genes. The Tumor Immune Dysfunction and Exclusion (TIDE) algorithm and GDSC database were used to predict the patient’s response to immunotherapy and chemotherapy, respectively. Results The prognosis of LGG patients with epilepsy was associated with the immune score. Three prognostic DEGs (ABCC3, PDPN, and INA) were screened out. The expression of signature genes was regulated by DNA methylation. The clustering and risk score models could stratify glioma patients into distinct prognosis groups. The risk score was an independent predictor in prognosis, with a high risk-score indicating a poor prognosis, more malignant clinicopathological and genomic aberration features. The nomogram had the better predictive ability. Patients at high risk had a higher level of macrophage infiltration and increased inflammatory activities associated with T cells and macrophages. While the higher percentage of NK CD56bright cell and more active inflammatory activity associated with B cell were present in the low-risk patients. The signature genes participated in the regulation of immune-related pathways, such as IL6-JAK-STAT3 signaling, IFN-α response, IFN-γ response, and TNFA-signaling-via-NFKB pathways. The high-risk patients were more likely to benefit from anti-PD1 and temozolomide (TMZ) treatment. Conclusion An immune-related gene signature was established based on ABCC3, PDPN, and INA, which can be used to predict the prognosis, immune infiltration status, immunotherapy and chemotherapy response of LGG patients with epilepsy.
Collapse
Affiliation(s)
- Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Weiwei Duan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Shiqing He
- Department of Neurosurgery, Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Chen Li
- Department of Rehabilitation Medicine, Hunan Provincial People's Hospital, Hunan Normal University, Changsha, China
| | - Hui Cao
- Department of Psychiatry, The Second People's Hospital of Hunan Province, The Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Kun Liu
- Department of Cerebrovascular Surgery, The Second People's Hospital of Hunan Province, The Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Weijie Ye
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Yuan
- Department of Cerebrovascular Surgery, The Second People's Hospital of Hunan Province, The Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Changsha Medical University, Changsha, China
| |
Collapse
|
24
|
Tang M, Tiwari SK, Agrawal K, Tan M, Dang J, Tam T, Tian J, Wan X, Schimelman J, You S, Xia Q, Rana TM, Chen S. Rapid 3D Bioprinting of Glioblastoma Model Mimicking Native Biophysical Heterogeneity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006050. [PMID: 33502104 PMCID: PMC8049977 DOI: 10.1002/smll.202006050] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/05/2020] [Indexed: 05/14/2023]
Abstract
Glioblastoma multiforme (GBM) is the most lethal primary brain tumor characterized by high cellular and molecular heterogeneity, hypervascularization, and innate drug resistance. Cellular components and extracellular matrix (ECM) are the two primary sources of heterogeneity in GBM. Here, biomimetic tri-regional GBM models with tumor regions, acellular ECM regions, and an endothelial region with regional stiffnesses patterned corresponding to the GBM stroma, pathological or normal brain parenchyma, and brain capillaries, are developed. Patient-derived GBM cells, human endothelial cells, and hyaluronic acid derivatives are used to generate a species-matched and biochemically relevant microenvironment. This in vitro study demonstrates that biophysical cues are involved in various tumor cell behaviors and angiogenic potentials and promote different molecular subtypes of GBM. The stiff models are enriched in the mesenchymal subtype, exhibit diffuse invasion of tumor cells, and induce protruding angiogenesis and higher drug resistance to temozolomide. Meanwhile, the soft models demonstrate enrichment in the classical subtype and support expansive cell growth. The three-dimensional bioprinting technology utilized in this study enables rapid, flexible, and reproducible patient-specific GBM modeling with biophysical heterogeneity that can be employed by future studies as a tunable system to interrogate GBM disease mechanisms and screen drug compounds.
Collapse
Affiliation(s)
- Min Tang
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, USA
| | - Shashi Kant Tiwari
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego, La Jolla, California 92093, USA
| | - Kriti Agrawal
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego, La Jolla, California 92093, USA
| | - Matthew Tan
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego, La Jolla, California 92093, USA
| | - Jason Dang
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego, La Jolla, California 92093, USA
| | - Trevor Tam
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Jing Tian
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Xueyi Wan
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Jacob Schimelman
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, USA
| | - Shangting You
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, USA
| | - Qinghui Xia
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, USA
| | - Tariq M. Rana
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego, La Jolla, California 92093, USA
| | - Shaochen Chen
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
25
|
Granqvist V, Holmgren C, Larsson C. Induction of interferon-β and interferon signaling by TRAIL and Smac mimetics via caspase-8 in breast cancer cells. PLoS One 2021; 16:e0248175. [PMID: 33770100 PMCID: PMC7996988 DOI: 10.1371/journal.pone.0248175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer prognosis is frequently good but a substantial number of patients suffer from relapse. The death receptor ligand TRAIL can in combination with Smac mimetics induce apoptosis in some luminal-like ER-positive breast cancer cell lines, such as CAMA-1, but not in MCF-7 cells. Here we show that TRAIL and the Smac mimetic LCL161 induce non-canonical NF-κB and IFN signaling in ER-positive MCF-7 cells and in CAMA-1 breast cancer cells when apoptosis is blocked by caspase inhibition. Levels of p52 are increased and STAT1 gets phosphorylated. STAT1 phosphorylation is induced by TRAIL alone in MCF-7 cells and is independent of non-canonical NF-κB since downregulation of NIK has no effect. The phosphorylation of STAT1 is a rather late event, appearing after 24 hours of TRAIL stimulation. It is preceded by an increase in IFNB1 mRNA levels and can be blocked by siRNA targeting the type I IFN receptor IFNAR1 and by inhibition of Janus kinases by Ruxolitinib. Moreover, downregulation of caspase-8, but not inhibition of caspase activity, blocks TRAIL-mediated STAT1 phosphorylation and induction of IFN-related genes. The data suggest that TRAIL-induced IFNB1 expression in MCF-7 cells is dependent on a non-apoptotic role of caspase-8 and leads to autocrine interferon-β signaling.
Collapse
Affiliation(s)
- Victoria Granqvist
- Lund University, Translational Cancer Research, Medicon Village, Lund, Sweden
| | - Christian Holmgren
- Lund University, Translational Cancer Research, Medicon Village, Lund, Sweden
| | - Christer Larsson
- Lund University, Translational Cancer Research, Medicon Village, Lund, Sweden
- * E-mail:
| |
Collapse
|
26
|
Hasanpour Segherlou Z, Nouri-Vaskeh M, Noroozi Guilandehi S, Baghbanzadeh A, Zand R, Baradaran B, Zarei M. GDF-15: Diagnostic, prognostic, and therapeutic significance in glioblastoma multiforme. J Cell Physiol 2021; 236:5564-5581. [PMID: 33580506 DOI: 10.1002/jcp.30289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/16/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is the commonest primary malignant brain tumor and has a remarkably weak prognosis. According to the aggressive form of GBM, understanding the accurate molecular mechanism associated with GBM pathogenesis is essential. Growth differentiation factor 15 (GDF-15) belongs to transforming growth factor-β superfamily with important roles to control biological processes. It affects cancer growth and progression, drug resistance, and metastasis. It also can promote stemness in many cancers, and also can stress reactions control, bone generation, hematopoietic growth, adipose tissue performance, and body growth, and contributes to cardiovascular disorders. The role GDF-15 to develop and progress cancer is complicated and remains unclear. GDF-15 possesses tumor suppressor properties, as well as an oncogenic effect. GDF-15 antitumorigenic and protumorigenic impacts on tumor development are linked to the cancer type and stage. However, the GDF-15 signaling and mechanism have not yet been completely identified because of no recognized cognate receptor.
Collapse
Affiliation(s)
| | - Masoud Nouri-Vaskeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Zand
- Department of Neurology, Geisinger Health System, Danville, Pennsylvania, USA
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Zarei
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
27
|
Zhan X, Guo S, Li Y, Ran H, Huang H, Mi L, Wu J, Wang X, Xiao D, Chen L, Li D, Zhang S, Yan X, Yu Y, Li T, Han Q, He K, Cui J, Li T, Zhou T, Rich JN, Bao S, Zhang X, Li A, Man J. Glioma stem-like cells evade interferon suppression through MBD3/NuRD complex-mediated STAT1 downregulation. J Exp Med 2020; 217:151561. [PMID: 32181805 PMCID: PMC7201922 DOI: 10.1084/jem.20191340] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 12/06/2019] [Accepted: 01/13/2020] [Indexed: 12/18/2022] Open
Abstract
Type I interferons (IFNs) are known to mediate antineoplastic effects during tumor progression. Type I IFNs can be produced by multiple cell types in the tumor microenvironment; however, the molecular mechanisms by which tumor cells evade the inhibition of immune microenvironment remain unknown. Here we demonstrate that glioma stem-like cells (GSCs) evade type I IFN suppression through downregulation of STAT1 to initiate tumor growth under inhospitable conditions. The downregulation of STAT1 is mediated by MBD3, an epigenetic regulator. MBD3 is preferentially expressed in GSCs and recruits NuRD complex to STAT1 promoter to suppress STAT1 expression by histone deacetylation. Importantly, STAT1 overexpression or MBD3 depletion induces p21 transcription, resensitizes GSCs to IFN suppression, attenuates GSC tumor growth, and prolongs animal survival. Our findings demonstrate that inactivation of STAT1 signaling by MBD3/NuRD provides GSCs with a survival advantage to escape type I IFN suppression, suggesting that targeting MBD3 may represent a promising therapeutic opportunity to compromise GSC tumorigenic potential.
Collapse
Affiliation(s)
- Xiaoyan Zhan
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China.,China Military Institute of Chinese Materia, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Saisai Guo
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Yuanyuan Li
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Haowen Ran
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Haohao Huang
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Lanjuan Mi
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Jin Wu
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Xinzheng Wang
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Dake Xiao
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Lishu Chen
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Da Li
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Songyang Zhang
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Xu Yan
- The First Hospital of Jilin University, Changchun, China
| | - Yu Yu
- The First Hospital of Jilin University, Changchun, China
| | - Tingting Li
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Qiuying Han
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Kun He
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Jiuwei Cui
- The First Hospital of Jilin University, Changchun, China
| | - Tao Li
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Tao Zhou
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Jeremy N Rich
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Shideng Bao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH.,Center for Cancer Stem Cell Research, Lerner Research Institute, Cleveland, OH.,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Xuemin Zhang
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, National Center of Biomedical Analysis, Beijing, China.,The First Hospital of Jilin University, Changchun, China
| | - Ailing Li
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China.,The First Hospital of Jilin University, Changchun, China
| | - Jianghong Man
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| |
Collapse
|
28
|
Roura AJ, Gielniewski B, Pilanc P, Szadkowska P, Maleszewska M, Krol SK, Czepko R, Kaspera W, Wojtas B, Kaminska B. Identification of the immune gene expression signature associated with recurrence of high-grade gliomas. J Mol Med (Berl) 2020; 99:241-255. [PMID: 33215304 DOI: 10.1007/s00109-020-02005-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022]
Abstract
High-grade gliomas (HGGs), the most common and aggressive primary brain tumors in adults, inevitably recur due to incomplete surgery or resistance to therapy. Intratumoral genomic and cellular heterogeneity of HGGs contributes to therapeutic resistance, recurrence, and poor clinical outcomes. Transcriptomic profiles of HGGs at recurrence have not been investigated in detail. Using targeted sequencing of cancer-related genes and transcriptomics, we identified single nucleotide variations, small insertions and deletions, copy number aberrations (CNAs), as well as gene expression changes and pathway deregulation in 16 pairs of primary and recurrent HGGs. Most of the somatic mutations identified in primary HGGs were not detected after relapse, suggesting a subclone substitution during the tumor progression. We found a novel frameshift insertion in the ZNF384 gene which may contribute to extracellular matrix remodeling. An inverse correlation of focal CNAs in EGFR and PTEN genes was detected. Transcriptomic analysis revealed downregulation of genes involved in messenger RNA splicing, cell cycle, and DNA repair, while genes related to interferon signaling and phosphatidylinositol (PI) metabolism are upregulated in secondary HGGs when compared to primary HGGs. In silico analysis of the tumor microenvironment identified M2 macrophages and immature dendritic cells as enriched in recurrent HGGs, suggesting a prominent immunosuppressive signature. Accumulation of those cells in recurrent HGGs was validated by immunostaining. Our findings point to a substantial transcriptomic deregulation and a pronounced infiltration of immature dendritic cells in recurrent HGG, which may impact the effectiveness of frontline immunotherapies in the GBM management. KEY MESSAGES: Most of the somatic mutations identified in primary HGGs were not detected after relapse. Focal CNAs in EGFR and PTEN genes are inversely correlated in primary and recurrent HGGs. Transcriptomic changes and distinct immune-related signatures characterize HGG recurrence. Recurrent HGGs are characterized by a prominent infiltration of immature dendritic and M2 macrophages.
Collapse
Affiliation(s)
| | | | - Paulina Pilanc
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | - Sylwia K Krol
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Ryszard Czepko
- Clinical Department of Neurosurgery, St. Raphael Hospital, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland
| | - Wojciech Kaspera
- Department of Neurosurgery, Regional Hospital, Medical University of Silesia, Sosnowiec, Poland
| | - Bartosz Wojtas
- Nencki Institute of Experimental Biology, Warsaw, Poland.
| | | |
Collapse
|
29
|
Gandalovičová A, Šůchová AM, Čermák V, Merta L, Rösel D, Brábek J. Sustained Inflammatory Signalling through Stat1/Stat2/IRF9 Is Associated with Amoeboid Phenotype of Melanoma Cells. Cancers (Basel) 2020; 12:cancers12092450. [PMID: 32872349 PMCID: PMC7564052 DOI: 10.3390/cancers12092450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 01/26/2023] Open
Abstract
Simple Summary Treatment of metastatic cancer is complicated by the ability of cancer cells to utilize various invasion modes when spreading through the body. Here, we studied the transition of melanoma cells between the round, amoeboid and elongated, mesenchymal invasion modes. Our results show that inflammatory signalling, which is commonly upregulated in the tumour microenvironment, is associated with the amoeboid phenotype of cancer cells. Treatment of melanoma cells with interferon beta promotes the amoeboid invasion modes and individual invasion. This suggests that inflammation associated signalling contributes to cancer cell invasion plasticity. Abstract The invasive behaviour of cancer cells underlies metastatic dissemination; however, due to the large plasticity of invasion modes, it is challenging to target. It is now widely accepted that various secreted cytokines modulate the tumour microenvironment and pro-inflammatory signalling can promote tumour progression. Here, we report that cells after mesenchymal–amoeboid transition show the increased expression of genes associated with the type I interferon response. Moreover, the sustained activation of type I interferon signalling in response to IFNβ mediated by the Stat1/Stat2/IRF9 complex enhances the round amoeboid phenotype in melanoma cells, whereas its downregulation by various approaches promotes the mesenchymal invasive phenotype. Overall, we demonstrate that interferon signalling is associated with the amoeboid phenotype of cancer cells and suggest a novel role of IFNβ in promoting cancer invasion plasticity, aside from its known role as a tumour suppressor.
Collapse
Affiliation(s)
- Aneta Gandalovičová
- Department of Cell Biology, Charles University, 12843 Prague, Czech Republic; (A.G.); (A.-M.Š.); (V.Č.); (L.M.); (D.R.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), 25242 Vestec, Czech Republic
| | - Anna-Marie Šůchová
- Department of Cell Biology, Charles University, 12843 Prague, Czech Republic; (A.G.); (A.-M.Š.); (V.Č.); (L.M.); (D.R.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), 25242 Vestec, Czech Republic
| | - Vladimír Čermák
- Department of Cell Biology, Charles University, 12843 Prague, Czech Republic; (A.G.); (A.-M.Š.); (V.Č.); (L.M.); (D.R.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), 25242 Vestec, Czech Republic
| | - Ladislav Merta
- Department of Cell Biology, Charles University, 12843 Prague, Czech Republic; (A.G.); (A.-M.Š.); (V.Č.); (L.M.); (D.R.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), 25242 Vestec, Czech Republic
| | - Daniel Rösel
- Department of Cell Biology, Charles University, 12843 Prague, Czech Republic; (A.G.); (A.-M.Š.); (V.Č.); (L.M.); (D.R.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), 25242 Vestec, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Charles University, 12843 Prague, Czech Republic; (A.G.); (A.-M.Š.); (V.Č.); (L.M.); (D.R.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), 25242 Vestec, Czech Republic
- Correspondence: or
| |
Collapse
|
30
|
Yang Z, Du J, Zhu J, Rong Y, Chen S, Yu L, Deng X, Zhang X, Sheng H, Yang L, Lu X, Li D, Yin B, Lin J. Allicin Inhibits Proliferation by Decreasing IL-6 and IFN-β in HCMV-Infected Glioma Cells. Cancer Manag Res 2020; 12:7305-7317. [PMID: 32884345 PMCID: PMC7443012 DOI: 10.2147/cmar.s259677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/10/2020] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Allicin, an extract of garlic, has antitumor effects in multiple tumor types. However, the efficacy of allicin for treating glioblastoma has not yet been examined. This study examined the antitumor effect of allicin on human cytomegalovirus (HCMV)-infected glioblastoma multiforme (GBM) and its role in cytokine signaling. MATERIALS AND METHODS HCMV-infected glioblastoma was modeled by transfection of U87MG glioblastoma cells with HMCV proteins. MTT assay was used to assess the effect of allicin on the proliferation of glioma cells. Western blot analysis was used to detect the effect of allicin on the expression of intermediate-early gene 2 (IE2) and p53. Reverse transcription-quantitative polymerase chain reaction was used to assess and the levels of interleukin (IL)-6 and interferon (IFN)-β. Single cell gel electrophoresis was used to analyze changes in radiotherapy-induced DNA damage. RESULTS Transfection of the IE2 protein led to decreased p53 expression and increased glioblastoma cell proliferation. Allicin inhibited this proliferation in a dose- and time-dependent manner. An inhibitory effect on cytokine release was observed in GBM cells treated with allicin. After treatment with allicin, p53 levels increased significantly, whereas expression of the inflammatory factors such as IL-6 and IFN-β decreased. U87MG cells treated with allicin and 10 Gy irradiation had increased intracellular DNA damage compared to either treatment alone. CONCLUSION Allicin inhibited proliferation of glioblastoma cells in vitro. Allicin also inhibited cytokine release, upregulated p53 activity, and increased the sensitivity of glioblastoma to radiotherapy. These results suggest that allicin is effective against HCMV-infected glioblastomas.
Collapse
Affiliation(s)
- Zelin Yang
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jizao Du
- Digestive Cancer Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jinjin Zhu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Yuxi Rong
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Shaohuai Chen
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Lisheng Yu
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xiangyang Deng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xiaojia Zhang
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Hansong Sheng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Liang Yang
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xiangqi Lu
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Dandong Li
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Bo Yin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jian Lin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China,Correspondence: Jian Lin The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, 109 Xueyuan Road, Wenzhou, Zhejiang, People’s Republic of ChinaTel +86 577 8800 2502Fax +86 577 8883 2693 Email
| |
Collapse
|
31
|
Delen E, Doğanlar O. The Dose Dependent Effects of Ruxolitinib on the Invasion and Tumorigenesis in Gliomas Cells via Inhibition of Interferon Gamma-Depended JAK/STAT Signaling Pathway. J Korean Neurosurg Soc 2020; 63:444-454. [PMID: 32492985 PMCID: PMC7365278 DOI: 10.3340/jkns.2019.0252] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/11/2020] [Indexed: 01/08/2023] Open
Abstract
Objective Glioblastoma multiforme (GBM) is the most aggressive for of brain tumor and treatment often fails due to the invasion of tumor cells into neighboring healthy brain tissues. Activation of the Janus kinase-signal transducer and activator of transcription (JAK/STAT) signaling pathway is essential for normal cellular function including angiogenesis, and has been proposed to have a pivotal role in glioma invasion. This study aimed to determine the dose-dependent effects of ruxolitinib, an inhibitor of JAK, on the interferon (IFN)-I/IFN-α/IFN-β receptor/STAT and IFN-γ/IFN-γ receptor/STAT1 axes of the IFN-receptor-dependent JAK/STAT signaling pathway in glioblastoma invasion and tumorigenesis in U87 glioblastoma tumor spheroids.
Methods We administered three different doses of ruxolitinib (50, 100, and 200 nM) to human U87 glioblastoma spheroids and analyzed the gene expression profiles of IFNs receptors from the JAK/STAT pathway. To evaluate activation of this pathway, we quantified the phosphorylation of JAK and STAT proteins using Western blotting.
Results Quantitative real-time polymerase chain reaction analysis demonstrated that ruxolitinib led to upregulated of the IFN-α and IFN-γ while no change on the hypoxia-inducible factor-1α and vascular endothelial growth factor expression levels. Additionally, we showed that ruxolitinib inhibited phosphorylation of JAK/STAT proteins. The inhibition of IFNs dependent JAK/STAT signaling by ruxolitinib leads to decreases of the U87 cells invasiveness and tumorigenesis. We demonstrate that ruxolitinib may inhibit glioma invasion and tumorigenesis through inhibition of the IFN-induced JAK/STAT signaling pathway.
Conclusion Collectively, our results revealed that ruxolitinib may have therapeutic potential in glioblastomas, possibly by JAK/STAT signaling triggered by IFN-α and IFN-γ.
Collapse
Affiliation(s)
- Emre Delen
- Department of Neurosurgery, Trakya University School of Medicine, Edirne, Turkey
| | - Oğuzhan Doğanlar
- Department of Medical Biology, Trakya University School of Medicine, Edirne, Turkey
| |
Collapse
|
32
|
Retained or altered expression of major histocompatibility complex class I in patient-derived xenograft models in breast cancer. Immunol Res 2020; 67:469-477. [PMID: 31900802 DOI: 10.1007/s12026-019-09109-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The expression of major histocompatibility complex class I (MHC I) in tumor cells is regulated by interferon signaling, and it is an important factor in the efficacy of cytotoxic T cell-dependent immunotherapy. To determine the impact of immune cells in MHC I expression on tumor cells, we compared the expression of MHC I in tumor cells derived from primary breast cancers and patient-derived xenograft (PDX) models. MHC I and myxovirus resistance gene A (MxA) expression were analyzed using immunohistochemistry in 23 cases of tumor tissue and corresponding primary and secondary PDXs. The median H score of MHC I was 210 (0-300) in patient tumor tissues, 197.5 (0-300) in primary PDX tumors, and 157.5 (5-300) in secondary PDX tumors. Cases were divided into four groups based on the difference in MHC I expression between the patient tumor tissues and secondary PDXs. Eleven cases constituted the high MHC I group, four constituted the low MHC I group, six comprised the decreased MHC I group, and two comprised the increased MHC I group. MHC I and MxA expressions in each tumor were weakly correlated within patients' tumors, while strongly correlated within PDX models. Retained or altered expression of MHC I in breast cancer PDXs reveals the presence of intrinsic and extrinsic interferon signaling pathways in tumor cells. Thus, considering MHC I expression in PDX is important when using PDX models to evaluate the efficacy of cancer immunotherapy in a preclinical setting.
Collapse
|
33
|
Lohmann B, Le Rhun E, Silginer M, Epskamp M, Weller M. Interferon-β sensitizes human glioblastoma cells to the cyclin-dependent kinase inhibitor, TG02. Oncol Lett 2020; 19:2649-2656. [PMID: 32218815 PMCID: PMC7068396 DOI: 10.3892/ol.2020.11362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023] Open
Abstract
Novel treatments for glioblastoma, the most common malignant primary brain tumor, are urgently required. Type I interferons (IFN) are natural cytokines primarily involved in the defense against viral infections, which may also serve a role in the control of cancer, notably in the suppression of the cancer stem cell phenotype. TG02 is a novel orally available cyclin-dependent kinase 9 inhibitor which induces glioma cell apoptosis without profound caspase activation, which is currently explored in early clinical trials in newly diagnosed and recurrent glioblastoma. In the present study, human glioma-initiating cell line models were used to explore whether IFN-β modulates the anti-glioma activity of TG02. The present study employed immunoblotting to assess protein levels, several viability assays and gene silencing strategies to assess gene function. Pre-exposure to IFN-β sensitized human glioma models to a subsequent exposure to TG02. Combination treatment was associated with increased DEVD-amc cleaving caspase activity that was blocked by the anti-apoptotic protein, BCL2. However, BCL2 did not protect from the synergistic effects of IFN and TG02 on glioma cell growth. Furthermore, although IFN strongly induced pro-apoptotic XIAP-associated factor (XAF) expression, disrupting XAF expression did not abrogate the synergy with TG02. Consistent with that, caspase 3 gene silencing did not abrogate the effects of TG02 or IFN-β alone or in combination. Finally, it was observed that IFN-β may indeed modulate the effects of TG02 upstream in the signaling cascade since inhibition of RNA polymerase II phosphorylation, a direct readout of the pharmacodynamic activity of TG02, was facilitated when glioma cells were pre-exposed to IFN-β. In summary, these data suggest that type I IFN may be combined with TG02 to limit glioblastoma growth, but that the well characterized effects of IFN and TG02 on apoptotic signaling are dispensable for synergistic tumor growth inhibition. Instead, exploring how IFN signaling primes glioma cells for TG02-mediated direct target inhibition may help to design novel and effective pharmacological approaches to glioblastoma.
Collapse
Affiliation(s)
- Birthe Lohmann
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, CH-8091 Zurich, Switzerland
| | - Emilie Le Rhun
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, CH-8091 Zurich, Switzerland
| | - Manuela Silginer
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, CH-8091 Zurich, Switzerland
| | - Mirka Epskamp
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, CH-8091 Zurich, Switzerland
| | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, CH-8091 Zurich, Switzerland
| |
Collapse
|
34
|
Ma H, Chang H, Yang W, Lu Y, Hu J, Jin S. A novel IFNα-induced long noncoding RNA negatively regulates immunosuppression by interrupting H3K27 acetylation in head and neck squamous cell carcinoma. Mol Cancer 2020; 19:4. [PMID: 31907020 PMCID: PMC6943933 DOI: 10.1186/s12943-019-1123-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/23/2019] [Indexed: 12/27/2022] Open
Abstract
Background Interferon alpha (IFNα) is a well-established regulator of immunosuppression in head and neck squamous cell carcinoma (HNSCC), while the role of long noncoding RNAs (lncRNAs) in immunosuppression remains largely unknown. Methods Differentially expressed lncRNAs were screened under IFNα stimulation using lncRNA sequencing. The role and mechanism of lncRNA in immunosuppression were investigated in HNSCC in vitro and in vivo. Results We identified a novel IFNα-induced upregulated lncRNA, lncMX1–215, in HNSCC. LncMX1–215 was primarily located in the cell nucleus. Ectopic expression of lncMX1–215 markedly inhibited expression of the IFNα-induced, immunosuppression-related molecules programmed cell death 1 ligand 1 (PD-L1) and galectin-9, and vice versa. Subsequently, histone deacetylase (HDAC) inhibitors promoted the expression of PD-L1 and galectin-9. Binding sites for H3K27 acetylation were found on PD-L1 and galectin-9 promoters. Mechanistically, we found that lncMX1–215 directly interacted with GCN5, a known H3K27 acetylase, to interrupt its binding to H3K27 acetylation. Clinically, negative correlations between lncMX1–215 and PD-L1 and galectin-9 expression were observed. Finally, overexpression of lncMX1–215 suppressed HNSCC proliferation and metastasis capacity in vitro and in vivo. Conclusions Our results suggest that lncMX1–215 negatively regulates immunosuppression by interrupting GCN5/H3K27ac binding in HNSCC, thus providing novel insights into immune checkpoint blockade treatment.
Collapse
Affiliation(s)
- Hailong Ma
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No 639, Zhizaoju Rd, Shanghai, 200011, China. .,National Clinical Research Center for Oral Diseases, Shanghai, 200011, China. .,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
| | - Hanyue Chang
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.,Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China
| | - Wenyi Yang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No 639, Zhizaoju Rd, Shanghai, 200011, China.,National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Yusheng Lu
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No 639, Zhizaoju Rd, Shanghai, 200011, China.,National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Jingzhou Hu
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No 639, Zhizaoju Rd, Shanghai, 200011, China. .,National Clinical Research Center for Oral Diseases, Shanghai, 200011, China. .,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
| | - Shufang Jin
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No 639, Zhizaoju Rd, Shanghai, 200011, China. .,National Clinical Research Center for Oral Diseases, Shanghai, 200011, China. .,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
| |
Collapse
|
35
|
Litak J, Mazurek M, Grochowski C, Kamieniak P, Roliński J. PD-L1/PD-1 Axis in Glioblastoma Multiforme. Int J Mol Sci 2019; 20:E5347. [PMID: 31661771 PMCID: PMC6862444 DOI: 10.3390/ijms20215347] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma (GBM) is the most popular primary central nervous system cancer and has an extremely expansive course. Aggressive tumor growth correlates with short median overall survival (OS) oscillating between 14 and 17 months. The survival rate of patients in a three-year follow up oscillates around 10%. The interaction of the proteins programmed death-1 (PD-1) and programmed cell death ligand (PD-L1) creates an immunoregulatory axis promoting invasion of glioblastoma multiforme cells in the brain tissue. The PD-1 pathway maintains immunological homeostasis and protects against autoimmunity. PD-L1 expression on glioblastoma surface promotes PD-1 receptor activation in microglia, resulting in the negative regulation of T cell responses. Glioblastoma multiforme cells induce PD-L1 secretion by activation of various receptors such as toll like receptor (TLR), epidermal growth factor receptor (EGFR), interferon alpha receptor (IFNAR), interferon-gamma receptor (IFNGR). Binding of the PD-1 ligand to the PD-1 receptor activates the protein tyrosine phosphatase SHP-2, which dephosphorylates Zap 70, and this inhibits T cell proliferation and downregulates lymphocyte cytotoxic activity. Relevant studies demonstrated that the expression of PD-L1 in glioma correlates with WHO grading and could be considered as a tumor biomarker. Studies in preclinical GBM mouse models confirmed the safety and efficiency of monoclonal antibodies targeting the PD-1/PD-L1 axis. Satisfactory results such as significant regression of tumor mass and longer animal survival time were observed. Monoclonal antibodies inhibiting PD-1 and PD-L1 are being tested in clinical trials concerning patients with recurrent glioblastoma multiforme.
Collapse
Affiliation(s)
- Jakub Litak
- Department of Immunology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland.
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland.
| | - Marek Mazurek
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland.
| | - Cezary Grochowski
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland.
- Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland.
| | - Piotr Kamieniak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland.
| | - Jacek Roliński
- Department of Immunology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland.
| |
Collapse
|
36
|
Verver D, Poirier-Colame V, Tomasic G, Cherif-Rebai K, Grunhagen DJ, Verhoef C, Suciu S, Robert C, Zitvogel L, Eggermont AMM. Upregulation of intratumoral HLA class I and peritumoral Mx1 in ulcerated melanomas. Oncoimmunology 2019; 8:e1660121. [PMID: 31646109 DOI: 10.1080/2162402x.2019.1660121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 08/22/2019] [Indexed: 12/27/2022] Open
Abstract
Before the era of immune checkpoint blockade, a meta-analysis encompassing fifteen trials reported that adjuvant IFN-α significantly reduces the risk of relapse and improves survival of ulcerated melanoma (UM) with no benefit for higher doses compared to lower doses. IFNa2b affects many cell intrinsic features of tumor cells and modulates the host innate and cognate immune responses. To better understand the biological traits associated with ulceration that could explain the efficacy of prophylactic type 1 IFN, we performed immunohistochemical analysis of various molecules (major histocompatibility complex class I and class II, MX Dynamin Like GTPase 1 (MX1), inducible Nitric-Oxide Synthase (iNOS) or CD47) in two retrospective cohorts of melanoma patients, one diagnosed with a primary cutaneous melanoma (1995-2013, N = 172, among whom 49% were ulcerated melanoma (UM)) and a second one diagnosed with metastatic melanoma amenable to lymph node resection (EORTC 18952 and 18991 trials, N = 98, among whom 44% were UM). We found that primary and metastatic UM exhibit higher basal expression of MHC class I molecules, independently of Breslow thickness, histology and lymphocytic infiltration compared with NUM and that primary UM harbored higher constitutive levels of the antiviral protein Mx1 at the border of tumor beds than NUM. These findings suggest that UM expand in a tumor microenvironment where chronic exposure to type 1 IFN could favor a response to exogenous IFNs.
Collapse
Affiliation(s)
- Daniëlle Verver
- Department of Surgical Oncology, Erasmus MC Cancer Institute, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Vichnou Poirier-Colame
- Department of Immuno-Oncology, Gustave Roussy Cancer Campus Grand Paris, Villejuif, France
| | - Gorana Tomasic
- Department of Pathology, Gustave Roussy Cancer Campus Grand Paris, Villejuif, France
| | - Khadija Cherif-Rebai
- Department of Pathology, Gustave Roussy Cancer Campus Grand Paris, Villejuif, France
| | - Dirk J Grunhagen
- Department of Surgical Oncology, Erasmus MC Cancer Institute, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Cornelis Verhoef
- Department of Surgical Oncology, Erasmus MC Cancer Institute, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Stefan Suciu
- Department of Biostatistics, European Organisation for Research and Treatment of Cancer Headquarters, Brussels, Belgium
| | - Caroline Robert
- Department of Medicine, Service of Dermatology Gustave Roussy and University Paris-Sud
| | - Laurence Zitvogel
- INSERM U 1015, Gustave Roussy Cancer Campus Grand Paris, Villejuif, France
| | - Alexander M M Eggermont
- INSERM U 1015, Gustave Roussy Cancer Campus Grand Paris, Villejuif, France.,University Paris-Sud, Le Kremlin Bicetre, France
| |
Collapse
|
37
|
Zhu C, Zou C, Guan G, Guo Q, Yan Z, Liu T, Shen S, Xu X, Chen C, Lin Z, Cheng W, Wu A. Development and validation of an interferon signature predicting prognosis and treatment response for glioblastoma. Oncoimmunology 2019; 8:e1621677. [PMID: 31428519 DOI: 10.1080/2162402x.2019.1621677] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/24/2019] [Accepted: 05/14/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Interferon treatment, as an important approach of anti-tumor immunotherapy, has been implemented in multiple clinical trials of glioma. However, only a small number of gliomas benefit from it. Therefore, it is necessary to investigate the clinical role of interferons and to establish robust biomarkers to facilitate its application. Materials and methods: This study reviewed 1,241 glioblastoma (GBM) and 1,068 lower grade glioma (LGG) patients from six glioma cohorts. The transcription matrix and clinical information were analyzed using R software, GraphPad Prism 7 and Medcalc, etc. Immunohistochemical (IHC) staining were performed for validation in protein level. Results: Interferon signaling was significantly enhanced in GBM. An interferon signature was developed based on five interferon genes with prognostic significance, which could reflect various interferon statuses. Survival analysis showed the signature could serve as an unfavorable prognostic factor independently. We also established a nomogram model integrating the risk signature into traditional prognostic factors, which increased the validity of survival prediction. Moreover, high-risk group conferred resistance to chemotherapy and high IFNB1 expression levels. Functional analysis showed that the high-risk group was associated with overloaded immune response. Microenvironment analysis and IHC staining found that high-risk group occupied a disorganized microenvironment which was characterized by an enrichment of M0 macrophages and neutrophils, but less infiltration of activated nature killing (NK) cells and M1 type macrophages. Conclusion: This interferon signature was an independent indicator for unfavorable prognosis and showed great potential for screening out patients who will benefit from chemotherapy and interferon treatment.
Collapse
Affiliation(s)
- Chen Zhu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Cunyi Zou
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Gefei Guan
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qing Guo
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zihao Yan
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tianqi Liu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shuai Shen
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaoyan Xu
- Department of Pathophysiology, College of Basic Medicine Science, China Medical University, Shenyang, Liaoning, China
| | - Chen Chen
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China
| | - Zhiguo Lin
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Wen Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Anhua Wu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
38
|
Takashima Y, Kawaguchi A, Hayano A, Yamanaka R. CD276 and the gene signature composed of GATA3 and LGALS3 enable prognosis prediction of glioblastoma multiforme. PLoS One 2019; 14:e0216825. [PMID: 31075138 PMCID: PMC6510475 DOI: 10.1371/journal.pone.0216825] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/29/2019] [Indexed: 01/04/2023] Open
Abstract
Glioma is the most common type of primary brain tumor, accounting for 40% of malignant brain tumors. Although a single gene may not be a marker, an expression profiling and multivariate analyses for cancer immunotherapy must estimate survival of patients. In this study, we conducted expression profiling of immunotherapy-related genes, including those in Th1/2 helper T and regulatory T cells, and stimulatory and inhibitory checkpoint molecules associated with survival prediction in 571 patients with malignant and aggressive form of gliomas, glioblastoma multiforme (GBM). Expression profiling and Random forests analysis of 21 immunosuppressive genes and Kaplan-Meier analysis in 158 patients in the training data set suggested that CD276, also known as B7-H3, could be a single gene marker candidate. Furthermore, prognosis prediction formulas, composed of Th2 cell-related GATA transcription factor 3 (GATA3) and immunosuppressive galactose-specific lectin 3 (LGALS3), based on 67 immunotherapy-related genes showed poor survival with high scores in training data set, which was also validated in another 413 patients in the test data set. The CD276 expression helped distinguish survival curves in the test data set. In addition, inhibitory checkpoint genes, including T cell immunoreceptor with Ig and ITIM domains, V-set domain containing T cell activation inhibitor 1, T-cell immunoglobulin and mucin-domain containing 3, and tumor necrosis factor receptor superfamily 14, showed potential as secondary marker candidates. These results suggest that CD276 expression and the gene signature composed of GATA3 and LGALS3 are effective for prognosis in GBM and will help us understanding target pathways for immunotherapy in GBM.
Collapse
Affiliation(s)
- Yasuo Takashima
- Laboratory of Molecular Target Therapy for Cancer, Graduate School for Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atsushi Kawaguchi
- Center for Comprehensive Community Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Azusa Hayano
- Laboratory of Molecular Target Therapy for Cancer, Graduate School for Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryuya Yamanaka
- Laboratory of Molecular Target Therapy for Cancer, Graduate School for Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- * E-mail:
| |
Collapse
|
39
|
Peng H, Li Z, Fu J, Zhou R. Growth and differentiation factor 15 regulates PD-L1 expression in glioblastoma. Cancer Manag Res 2019; 11:2653-2661. [PMID: 31114328 PMCID: PMC6497826 DOI: 10.2147/cmar.s192095] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/20/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Gliomablastoma multiforme (GBM) is the most fatal form of all brain cancers in human with no successful treatment available. Programmed death-ligand 1 (PD-L1) is a coinhibitory ligand predominantly expressed by tumor cells. Growth differentiation factors (GDFs) are a subfamily of proteins belonging to the transforming growth factor beta superfamily that have functions predominantly in tissue development and cancer. Purpose: To investigat the expression of GDFs in GBMs, and explored the potential regulatory role of GDFs on PD-L1 expression in GBMs. Methods: GEO2R program were analyzed for the mRNA expression data of GDFs in GSE4290 dataset. Analysis of TCGA GBM datasets were further determined the relationship between GDFs and PD-L1. Western blot Western blot was used to detect the expression of PD-L1 in GBM cell lines. Results: GDFs displayed differential patterns of expression with GDF15 and myostatin (MSTN) highly enriched in GBM tissues. We also identified GDF15 as a novel regulator that induces PD-L1 expression in GBM cells. Consistently, GDF15 expression correlated with PD-L1 in TCGA GBM dataset. Further, GDF15 enhanced PD-L1 expression via Smad2/3 pathway in GBM cell line U87, U251 and SHG44, which was inhibited by Smad2/3 inhibitor SIS3. Knockdown of GDF15 attenuated Smad2/3 signaling and reduced PD-L1 expression in A172 and GIC6 glioma cells. Conclusion: GDF15 might be a novel regulator of PD-L1 expression in GBMs; targeting GDF15/PD-L1 pathway might be a promising therapeutic approach for GBM patients.
Collapse
Affiliation(s)
- Haiqin Peng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Zhanzhan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Jun Fu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| |
Collapse
|
40
|
Pećina-Šlaus N, Kafka A, Gotovac Jerčić K, Logara M, Bukovac A, Bakarić R, Borovečki F. Comparable Genomic Copy Number Aberrations Differ across Astrocytoma Malignancy Grades. Int J Mol Sci 2019; 20:ijms20051251. [PMID: 30871102 PMCID: PMC6429132 DOI: 10.3390/ijms20051251] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 01/13/2023] Open
Abstract
A collection of intracranial astrocytomas of different malignancy grades was analyzed for copy number aberrations (CNA) in order to identify regions that are driving cancer pathogenesis. Astrocytomas were analyzed by Array Comparative Genomic Hybridization (aCGH) and bioinformatics utilizing a Bioconductor package, Genomic Identification of Significant Targets in Cancer (GISTIC) 2.0.23 and DAVID software. Altogether, 1438 CNA were found of which losses prevailed. On our total sample, significant deletions affected 14 chromosomal regions, out of which deletions at 17p13.2, 9p21.3, 13q12.11, 22q12.3 remained significant even at 0.05 q-value. When divided into malignancy groups, the regions identified as significantly deleted in high grades were: 9p21.3; 17p13.2; 10q24.2; 14q21.3; 1p36.11 and 13q12.11, while amplified were: 3q28; 12q13.3 and 21q22.3. Low grades comprised significant deletions at 3p14.3; 11p15.4; 15q15.1; 16q22.1; 20q11.22 and 22q12.3 indicating their involvement in early stages of tumorigenesis. Significantly enriched pathways were: PI3K-Akt, Cytokine-cytokine receptor, the nucleotide-binding oligomerization domain (NOD)–like receptor, Jak-STAT, retinoic acid-inducible gene (RIG)-I-like receptor and Toll-like receptor pathways. HPV and herpex simplex infection and inflammation pathways were also represented. The present study brings new data to astrocytoma research amplifying the wide spectrum of changes that could help us identify the regions critical for tumorigenesis.
Collapse
Affiliation(s)
- Nives Pećina-Šlaus
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Šalata 12, 10000 Zagreb, Croatia.
- Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia.
| | - Anja Kafka
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Šalata 12, 10000 Zagreb, Croatia.
- Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia.
| | - Kristina Gotovac Jerčić
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb, School of Medicine and University Hospital Center Zagreb, Šalata 2, 10000 Zagreb, Croatia.
| | | | - Anja Bukovac
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Šalata 12, 10000 Zagreb, Croatia.
- Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia.
| | | | - Fran Borovečki
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb, School of Medicine and University Hospital Center Zagreb, Šalata 2, 10000 Zagreb, Croatia.
- Department of Neurology, University Hospital Center Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia.
| |
Collapse
|
41
|
Martikainen M, Essand M. Virus-Based Immunotherapy of Glioblastoma. Cancers (Basel) 2019; 11:E186. [PMID: 30764570 PMCID: PMC6407011 DOI: 10.3390/cancers11020186] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is the most common type of primary brain tumor in adults. Despite recent advances in cancer therapy, including the breakthrough of immunotherapy, the prognosis of GBM patients remains dismal. One of the new promising ways to therapeutically tackle the immunosuppressive GBM microenvironment is the use of engineered viruses that kill tumor cells via direct oncolysis and via stimulation of antitumor immune responses. In this review, we focus on recently published results of phase I/II clinical trials with different oncolytic viruses and the new interesting findings in preclinical models. From syngeneic preclinical GBM models, it seems evident that oncolytic virus-mediated destruction of GBM tissue coupled with strong adjuvant effect, provided by the robust stimulation of innate antiviral immune responses and adaptive anti-tumor T cell responses, can be harnessed as potent immunotherapy against GBM. Although clinical testing of oncolytic viruses against GBM is at an early stage, the promising results from these trials give hope for the effective treatment of GBM in the near future.
Collapse
Affiliation(s)
- Miika Martikainen
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, 75185 Uppsala, Sweden.
| | - Magnus Essand
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, 75185 Uppsala, Sweden.
| |
Collapse
|
42
|
Interferon-alpha promotes immunosuppression through IFNAR1/STAT1 signalling in head and neck squamous cell carcinoma. Br J Cancer 2018; 120:317-330. [PMID: 30555157 PMCID: PMC6353953 DOI: 10.1038/s41416-018-0352-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/30/2018] [Accepted: 11/14/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND An immunosuppressive microenvironment is critical for cancer initiation and progression. Whether interferon alpha (IFNα) can suppress immune and cancer cells and its involved mechanism still remain largely elusive. METHODS We examine the expression of interferon alpha/beta receptor-1 (IFNAR1), CD8, CD56 and programmed death ligand 1 (PDL1) in head and neck squamous cell carcinomas (HNSCC). The effect of IFNα on PDL1 and programmed cell death protein 1 (PD1) expression in tumour cells and immune cells was detected in vitro and in vivo. RESULTS Overexpression of IFNAR1, MX1 and signal transducer and activator of transcription 1 (Stat1) indicated the endogenous IFNα activation in tumour microenvironment, which correlated with immunosuppression status in HNSCC patients. Moreover, IFNα transcriptionally activated the expression of PDL1 through p-Stat1 (Tyr701) and promoted PD1 expression in immune cells through IFNAR1. The inhibition of IFNα signalling enhanced the cytotoxic activity of nature killer cells. At lastastly, we confirmed the upregulation of PDL1 and PD1 in response to IFNα treatment in both xenograft tumour models and patient-derived xenograft models. CONCLUSIONS Our findings demonstrate that IFNα-induced PDL1 and PD1 expression is a new mechanism of immunosuppression in HNSCC, suggesting that blocking IFNα signalling may enhance the efficacy of immune checkpoint blockade.
Collapse
|
43
|
Irradiation to Improve the Response to Immunotherapeutic Agents in Glioblastomas. Adv Radiat Oncol 2018; 4:268-282. [PMID: 31011672 PMCID: PMC6460102 DOI: 10.1016/j.adro.2018.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/07/2018] [Indexed: 12/29/2022] Open
Abstract
Purpose Glioblastoma (GBM) remains an incurable disease despite extensive treatment with surgical resection, irradiation, and temozolomide. In line with many other forms of aggressive cancers, GBM is currently under consideration as a target for immunotherapy. However, GBM tends to be nonimmunogenic and exhibits a microenvironment with few or no effector T cells, a relatively low nonsynonymous somatic mutational load, and a low predicted neoantigen burden. GBM also exploits a multitude of immunosuppressive strategies. Methods and Materials A number of immunotherapeutic approaches have been tested with disappointing results. A rationale exists to combine immunotherapy and radiation therapy, which can induce an immunogenic form of cell death with T-cell activation and tumor infiltration. Results Various immunotherapy agents, including immune checkpoint modulators, transforming growth factor beta receptor inhibitors, and indoleamine-2,3-dioxygenase inhibitors, have been evaluated with irradiation in preclinical GBM models, with promising results, and are being further tested in clinical trials. Conclusions This review aims to present the basic rationale behind this emerging complementary therapeutic approach in GBM, appraise the current preclinical and clinical data, and discuss the future challenges in improving the antitumor immune response.
Collapse
|
44
|
Chuang HC, Chou MH, Chien CY, Chuang JH, Liu YL. Triggering TLR3 pathway promotes tumor growth and cisplatin resistance in head and neck cancer cells. Oral Oncol 2018; 86:141-149. [PMID: 30409294 DOI: 10.1016/j.oraloncology.2018.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 07/13/2018] [Accepted: 09/13/2018] [Indexed: 10/28/2022]
Abstract
Over the last decades, significant advances in targeted therapies have helped provide more effective treatment for head and neck cancer patients. However, chemo-resistance to cisplatin significantly contributes to treatment failure in the clinical management of patients. In response to chemotherapeutic agents, certain molecules inside the cell are released or secreted from damaged or dead/dying cells, named damage-associated molecular patterns (DAMPs), thereby initiating an immune response through interaction with pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs). In present study, we investigated the link between cisplatin-induced DAMPs and TLR3 signaling. We found that cisplatin could be a potential activator of TLR3 and cisplatin treatment results in activation of PRRs' signaling and down-stream associated cytokine/chemokine, IFNβ, and CCL5 in TLR3High OC2 cells, but not in TLR3Low FaDu cells. Furthermore, knockdown of the TLR3 gene attenuates the expression of IFNβ and CCL5 mRNA and enhances the cytotoxicity of cisplatin in TLR3High OC2 cells. To determine whether TLR3 status affects the stress response of OC2 cells to cisplatin, we generated TLR3 knockdown OC2 cells (psi-TLR3 cells) with a psiRNA-hTLR3 plasmid containing shRNA to TLR3 and control OC2 cells (psi-NT cells) expressing non-silencing shRNA. OC2 cells were more sensitive to cisplatin treatment after TLR3 knockdown. In our animal model, OC2 psi-NT cells were more tumorigenic than were OC2 psi-TLR3 cells. Together, our in vitro and in vivo data imply TLR3 may contribute to tumor development and protect cisplatin-induced DNA damage response leading to cisplatin resistance in head and neck cancer cells.
Collapse
Affiliation(s)
- Hui-Ching Chuang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Ming-Huei Chou
- The Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan; Center for General Education, Cheng-Shiu University, Kaohsiung, Taiwan
| | - Chih-Yen Chien
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jiin-Haur Chuang
- Department of Surgery, Division of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Li Liu
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
45
|
Takashima Y, Kawaguchi A, Kanayama T, Hayano A, Yamanaka R. Correlation between lower balance of Th2 helper T-cells and expression of PD-L1/PD-1 axis genes enables prognostic prediction in patients with glioblastoma. Oncotarget 2018; 9:19065-19078. [PMID: 29721184 PMCID: PMC5922378 DOI: 10.18632/oncotarget.24897] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 03/06/2018] [Indexed: 12/18/2022] Open
Abstract
Common cancer treatments include radiation therapy, chemotherapy including molecular targeted drugs and anticancer drugs, and surgical treatment. Recent studies have focused on investigating the mechanisms by which immune cells attack cancer cells and produce immune tolerance-suppressing cytokines, as well as on their potential application in cancer immunotherapy. We conducted expression profiling of CD274 (PD-L1), GATA3, IFNG, IL12R, IL12RB2, IL4, PDCD1 (PD-1), PDCD1LG2 (PD-L2), and TBX21 (T-bet) using data of 158 glioblastoma multiforme (GBM) patients with clinical information available at The Cancer Genome Atlas. Principal component analysis of the expression profiling data was used to derive an equation for evaluating the status of Th1 and Th2 cells. GBM specimens were divided based on the median of the Th scores. The results revealed that Th1HighTh2Low and Th1LowTh2Low statuses indicated better prognosis than Th1HighTh2High, and were evaluated based on the downregulation of PD-L1, PD-L2, and PD-1. Furthermore, Th2Low divided based on the threshold, as well as CD274Low and PDCD1Low, were associated with good prognosis. In the Th2Low subgroup, 14 genes were identified as potential prognostic markers. Of these, SLC11A1Low, TNFRSF1BLow, and LTBRLow also indicated good prognosis. These results suggest that low Th2 balance and low activity of the PD-L1/PD-1 axis predict good prognosis in GBM. The set of genes identified in the present study could reliably predict survival in GBM patients and serve as useful molecular markers. Furthermore, this set of genes could prove to be novel targets for cancer immunotherapy.
Collapse
Affiliation(s)
- Yasuo Takashima
- Laboratory of Molecular Target Therapy for Cancer, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Atsushi Kawaguchi
- Center for Comprehensive Community Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Tomohiko Kanayama
- Laboratory of Molecular Target Therapy for Cancer, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Azusa Hayano
- Laboratory of Molecular Target Therapy for Cancer, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Ryuya Yamanaka
- Laboratory of Molecular Target Therapy for Cancer, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
46
|
Ma H, Jin S, Yang W, Zhou G, Zhao M, Fang S, Zhang Z, Hu J. Interferon-alpha enhances the antitumour activity of EGFR-targeted therapies by upregulating RIG-I in head and neck squamous cell carcinoma. Br J Cancer 2018; 118:509-521. [PMID: 29348488 PMCID: PMC5830595 DOI: 10.1038/bjc.2017.442] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 01/20/2023] Open
Abstract
Background: The epidermal growth factor receptor (EGFR)-targeted therapies have been tested in the clinic as treatments for head and neck squamous cell carcinoma (HNSCC). Owing to intrinsic or acquired resistance, EGFR-targeted therapies often lead to a low response rate and treatment failure. Interferon-alpha (IFNα) is a chemosensitising agent and multi-functional cytokine with a tumour inhibitory effect. However, the synergic effect of IFNα and EGFR-targeted therapies (erlotinib and nimotuzumab) and their mechanisms in HNSCC remain unclear. Methods: The interactions between IFNα, erlotinib, and nimotuzumab were evaluated in vitro in HNSCC cells. The synergistic effect of IFNα (20 000 IU per day, s.c.), erlotinib (50 mg kg−1 per day, i.g.) and nimotuzumab (10 mg kg−1 per day, i.p.) was further confirmed in vivo using HNSCC xenografts in nude mice. The upregulation of retinoic-acid inducible gene I (RIG-I) induced by IFNα and EGFR-targeted therapies and its mechanism were detected in vitro and in vivo. Results: IFNα enhances the antitumour effects of erlotinib and nimotuzumab on HNSCC cells both in vitro and in vivo. Importantly, both IFNα and EGFR-targeted therapies promote the expression of RIG-I by activating signal transducers and activators of transcription 1 (STAT1) in HNSCC cells. RIG-I knockdown reduced the sensitivity of HN4 and HN30 cells to IFNα, erlotinib, and nimotuzumab. Moreover, IFNα transcriptionally induced RIG-I expression in HNSCC cells through STAT1. Conclusions: IFNα enhances the effect of EGFR-targeted therapies by upregulating RIG-I, and its expression may represent a predictor of the effectiveness of a combination treatment including IFNα in HNSCC.
Collapse
Affiliation(s)
- Hailong Ma
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Shufang Jin
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Wenyi Yang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Ge Zhou
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mei Zhao
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sijie Fang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Zhiyuan Zhang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Jingzhou Hu
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| |
Collapse
|
47
|
Weiss T, Schneider H, Silginer M, Steinle A, Pruschy M, Polić B, Weller M, Roth P. NKG2D-Dependent Antitumor Effects of Chemotherapy and Radiotherapy against Glioblastoma. Clin Cancer Res 2017; 24:882-895. [PMID: 29162646 DOI: 10.1158/1078-0432.ccr-17-1766] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/12/2017] [Accepted: 11/15/2017] [Indexed: 11/16/2022]
Abstract
Purpose: NKG2D is a potent activating immune cell receptor, and glioma cells express the cognate ligands (NKG2DL). These ligands are inducible by cellular stress and temozolomide (TMZ) or irradiation (IR), the standard treatment of glioblastoma, could affect their expression. However, a role of NKG2DL for the efficacy of TMZ and IR has never been addressed.Experimental Design: We assessed the effect of TMZ and IR on NKG2DL in vitro and in vivo in a variety of murine and human glioblastoma models, including glioma-initiating cells, and a cohort of paired glioblastoma samples from patients before and after therapy. Functional effects were studied with immune cell assays. The relevance of the NKG2D system for the efficacy of TMZ and IR was assessed in vivo in syngeneic orthotopic glioblastoma models with blocking antibodies and NKG2D knockout mice.Results: TMZ or IR induced NKG2DL in vitro and in vivo in all glioblastoma models, and glioblastoma patient samples had increased levels of NKG2DL after therapy with TMZ and IR. This enhanced the immunogenicity of glioma cells in a NGK2D-dependent manner, was independent from cytotoxic or growth inhibitory effects, attenuated by O6-methylguanine-DNA-methyltransferase (MGMT), and required the DNA damage response. The survival benefit afforded by TMZ or IR relied on an intact NKG2D system and was decreased upon inhibition of the NKG2D pathway.Conclusions: The immune system may influence the activity of convential cancer treatments with particular importance of the NKG2D pathway in glioblastoma. Our data provide a rationale to combine NKG2D-based immunotherapies with TMZ and IR. Clin Cancer Res; 24(4); 882-95. ©2017 AACR.
Collapse
Affiliation(s)
- Tobias Weiss
- Department of Neurology and Brain Tumor Center, University Hospital Zurich and University of Zurich, Switzerland
| | - Hannah Schneider
- Department of Neurology and Brain Tumor Center, University Hospital Zurich and University of Zurich, Switzerland
| | - Manuela Silginer
- Department of Neurology and Brain Tumor Center, University Hospital Zurich and University of Zurich, Switzerland
| | | | - Martin Pruschy
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Switzerland
| | - Bojan Polić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Croatia
| | - Michael Weller
- Department of Neurology and Brain Tumor Center, University Hospital Zurich and University of Zurich, Switzerland
| | - Patrick Roth
- Department of Neurology and Brain Tumor Center, University Hospital Zurich and University of Zurich, Switzerland.
| |
Collapse
|