1
|
Wolf JVE, Schoene D, Kohl M, Kemmler W, Kiesswetter E. Effects of combined protein and exercise interventions on bone health in middle-aged and older adults - A systematic literature review and meta-analysis of randomized controlled trials. Osteoporos Int 2025; 36:609-625. [PMID: 39915336 PMCID: PMC12064458 DOI: 10.1007/s00198-025-07393-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 01/11/2025] [Indexed: 05/10/2025]
Abstract
PURPOSE Osteoporosis has become a global public health concern making prevention and treatment essential to reduce severe consequences for individuals and health systems. This systematic review with meta-analysis aimed to determine the effects of combined protein and exercise interventions compared to (a) exercise alone and (b) protein alone on bone mineral content (BMC) or density (BMD) in middle-aged and older adults. METHODS We systematically searched Medline, CINAHL, CENTRAL, Web of Science, and SPORTDiscus until 24th January 2023. Pairwise random-effects meta-analyses were performed to calculate weighted mean differences (WMD) with 95% confidence intervals (95% CI). We evaluated risk of bias (Cochrane RoB2) and certainty of evidence (CoE; GRADE). If pooling was not possible, the results were summarized descriptively. RESULTS For the comparison of combined protein supplementation and exercise vs. exercise alone, no meta-analysis for BMD (2 RCTs) was possible. For BMC, little to no intervention effect was found (WMD 0.03 kg; 95% CI - 0.00 to 0.05; 4 RCTs; IG = 97/CG = 98; I2 = 58.4%). In a sensitivity analysis, restricted to combined milk-protein supplementation and exercise, the result remained similar (0.01 kg; 95% CI - 0.01 to 0.03; 4 RCTs; IG = 71/CG = 71; I2 = 0.0%; low CoE). For the comparison of combined protein and exercise interventions vs. protein alone, no RCT on BMC was identified; the results on total or regional BMD (2 RCTs) were inconclusive. CONCLUSION Based on our findings, no robust conclusions can be drawn on whether combining protein and exercise interventions is more beneficial for bone health than one component alone. Sufficiently powered studies with longer duration are required to clarify these questions (CRD42022334026).
Collapse
Affiliation(s)
- Julia V E Wolf
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Daniel Schoene
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
- Department of Clinical Gerontology, Robert-Bosch-Hospital, Stuttgart, Germany
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Matthias Kohl
- Department of Medical and Life Sciences, University of Furtwangen, Schwenningen, Germany
| | - Wolfgang Kemmler
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Eva Kiesswetter
- Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany.
- Institute for Evidence in Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Huang F, Yang N, Zhang Q, Luo C, Wang J, Yang Y, Yue B, Chen P, Zhang X. Marine-Derived Enterococcus faecalis HY0110 as a Next-Generation Functional Food Probiotic: Comprehensive In Vitro and In Vivo Bioactivity Evaluation and Synergistic Fermentation of Periplaneta americana Extract Powder. Foods 2025; 14:1181. [PMID: 40238337 PMCID: PMC11988638 DOI: 10.3390/foods14071181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/23/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Addressing the escalating global burdens of inflammatory bowel disease and antimicrobial resistance demanded innovative food-based approaches to fortify gut health and suppress pathogens. We introduced a novel edible probiotic, Enterococcus faecalis HY0110, isolated from marine Thunnus thynnus. Through comprehensive in vitro, in vivo, and metabolomic analyses, we demonstrated its superior antibacterial effects compared to Lactobacillus rhamnosus GG, along with significantly enhanced antioxidant and free-radical scavenging capacities. Notably, elevated acetic acid production strongly correlated with its antimicrobial efficacy (R ≥ 0.999). HY0110 also exerted antiproliferative effects on HT-29 colorectal cancer cells by attenuating β-catenin and BCL-2 expression while upregulating pro-apoptotic markers P62 and c-PARP. In a DSS-induced colitis model, HY0110 alleviated inflammation, restored gut microbial homeostasis, and enhanced deterministic processes in community assembly dynamics. Furthermore, fermenting Periplaneta americana powder with HY0110 triggered extensive metabolic remodeling, notably a 668.73-fold rise in astragaloside A, plus increases in L-Leucyl-L-Alanine, S-lactoylglutathione, and 16,16-dimethyl prostaglandin A1. These shifts diminished harmful components and amplified essential amino acids and peptides to bolster immune modulation, redox balance, and anti-inflammatory responses. This work established a transformative paradigm for utilizing marine probiotics and novel entomological substrates in functional foods, presenting strategic pathways for precision nutrition and inflammatory disease management.
Collapse
Affiliation(s)
- Feiyun Huang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, China; (F.H.); (Q.Z.); (C.L.); (J.W.); (Y.Y.); (B.Y.)
| | - Nan Yang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610041, China;
| | - Qingqing Zhang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, China; (F.H.); (Q.Z.); (C.L.); (J.W.); (Y.Y.); (B.Y.)
| | - Cuiling Luo
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, China; (F.H.); (Q.Z.); (C.L.); (J.W.); (Y.Y.); (B.Y.)
| | - Jingheng Wang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, China; (F.H.); (Q.Z.); (C.L.); (J.W.); (Y.Y.); (B.Y.)
| | - Yu Yang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, China; (F.H.); (Q.Z.); (C.L.); (J.W.); (Y.Y.); (B.Y.)
| | - Bisong Yue
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, China; (F.H.); (Q.Z.); (C.L.); (J.W.); (Y.Y.); (B.Y.)
| | - Peng Chen
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Xiuyue Zhang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, China; (F.H.); (Q.Z.); (C.L.); (J.W.); (Y.Y.); (B.Y.)
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Mushtaq M, Ayoub A, Banday JA, Rashid A, Rasheed N, Gani A. Nano-reduction of whey protein using ultra-sonication as a novel approach to improve its applicability in food industry. ULTRASONICS SONOCHEMISTRY 2025; 114:107230. [PMID: 39954361 PMCID: PMC11872402 DOI: 10.1016/j.ultsonch.2025.107230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/29/2024] [Accepted: 01/11/2025] [Indexed: 02/17/2025]
Abstract
The present study was carried to evaluate the effect of size reduction using ultrasonication on functionality and bioactivity of whey protein isolate (WPI). The results showed that ultrasonication was able to reduce particle size of whey from 1.025 µm to 549 nm. The polydispersity index and zeta potential increased subsequently upon ultrasonication from 0.22 to 0.48 and -12 to -21 mV confirming narrow range of particle size distribution and enhanced colloidal stability. The SEM of non-treated whey showed dense spherical structure whereas upon ultrasonication the structure of protein granules changes to polygon. Size of granule was reduced and distortion in shape was observed. The ultrasonicated and native whey were characterized for functional properties viz. foaming, emulsifying, water and oil absorption capabilities. The solubility and hydrophobicity of whey before and after ultrasonication were determined. The WPI had higher hydrophobicity than ultrasonicated WPI which could be owed to the protein unfolding due to acoustic cavitation effect of ultrasonication. Water and oil absorption capacity of WPI were also affected by ultrasonication, water absorption capacity was decreased whereas oil absorption capacity was increased upon ultrasonication. The nutraceutical properties of WPI viz. antioxidant, antimicrobial, antihypertensive, antilipidemic, and antiproliferative activities were also found to increase significantly upon ultrasonication. Overall the study suggests that nanoreduction is a novel approach to improve the applicability of WPI in the emerging functional food industry as the ultra-sonication was profusely able to tailor the functionality and physiological implications of WPI.
Collapse
Affiliation(s)
- Mehvesh Mushtaq
- Department of Chemistry, National Institute of Technology, Srinagar 190006 India.
| | - Aneesa Ayoub
- Department of Food Science and Technology, University of Kashmir 190006 India
| | - Javid A Banday
- Department of Chemistry, National Institute of Technology, Srinagar 190006 India
| | - Asif Rashid
- Department of Chemistry, National Institute of Technology, Srinagar 190006 India
| | - Nowsheen Rasheed
- Department of Food Science and Technology, University of Kashmir 190006 India
| | - Adil Gani
- Department of Food Science and Technology, University of Kashmir 190006 India
| |
Collapse
|
4
|
Mbye M, Ali AH, Kamal-Eldin A, Banat F. The impact of camel milk and its products on diabetes mellitus management: A review of bioactive components and therapeutic potential. NFS JOURNAL 2025; 38:100204. [DOI: 10.1016/j.nfs.2024.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Muchut LC, Bustos LF, Hidalgo ME, Vasile FE. Nutritional Prehabilitation: Trends in Supplementation Based on Sustainable Dairy Protein Sources. Curr Nutr Rep 2025; 14:31. [PMID: 39932655 DOI: 10.1007/s13668-025-00623-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2025] [Indexed: 05/08/2025]
Abstract
PURPOSE OF REVIEW Prehabilitation is an emerging clinical practice that aims to improve the surgical recovery and quality of life of patients undergoing intensive treatments. This review intends to describe the state of the art in prehabilitation, highlighting the role of nutritional strategies and the current trends in supplements. RECENT FINDINGS Up-to-date studies have shown the importance of optimizing the nutritional status of patients to cope with the physical and metabolic demands of surgery and intensive treatments. In the context of nutritional prehabilitation, oral nutritional supplementation has emerged as a preferred strategy. The effectiveness of prehabilitation has been demonstrated in various clinical contexts. However, the lack of standardized protocols makes it hard to compare the outcomes. Despite the variability in this type of nutritional intervention found in reports, it has been shown that the most common oral nutritional supplements (ONS) contain dairy proteins. The use of whey proteins represents a promising approach from both a nutritional and a sustainability perspective.
Collapse
Affiliation(s)
- Luciana Cecilia Muchut
- Universidad Nacional del Chaco Austral and CONICET - Instituto de investigaciones en procesos tecnológicos avanzados (INIPTA), Presidencia Roque Sáenz Pena, Comandante Fernández 755, Chaco, 3700, Argentina
| | - Leandro Fabián Bustos
- Universidad Nacional del Chaco Austral and CONICET - Instituto de investigaciones en procesos tecnológicos avanzados (INIPTA), Presidencia Roque Sáenz Pena, Comandante Fernández 755, Chaco, 3700, Argentina
| | - María Eugenia Hidalgo
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Santa Fe, 2000, Argentina
| | - Franco Emanuel Vasile
- Universidad Nacional del Chaco Austral and CONICET - Instituto de investigaciones en procesos tecnológicos avanzados (INIPTA), Presidencia Roque Sáenz Pena, Comandante Fernández 755, Chaco, 3700, Argentina.
| |
Collapse
|
6
|
Sanjulián L, Fernández-Rico S, González-Rodríguez N, Cepeda A, Miranda JM, Fente C, Lamas A, Regal P. The Role of Dairy in Human Nutrition: Myths and Realities. Nutrients 2025; 17:646. [PMID: 40004974 PMCID: PMC11858442 DOI: 10.3390/nu17040646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/07/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Milk is a highly complex food that contains all the nutrients necessary for the development of mammalian offspring. For millennia, humans have included milk and milk products as major components of their diet. However, the effect of the consumption of dairy products on health has been a concern in recent years in terms of myths and realities. This review briefly describes the composition of bovine milk, the positive and negative effects that have been related to dairy products, and those aspects where the scientific evidence is still inconclusive. In addition to being nutritional, dairy products are a source of bioactive peptides, prebiotics and probiotics, fatty acids such as CLA, and fat globule membranes or have a protective effect against certain diseases. Negative effects include milk protein allergy or lactose intolerance. The effects of dairy products on certain cancers, such as prostate cancer, and their role in type II diabetes mellitus or weight gain are still inconclusive. Although the role of dairy products in cardiovascular risk is still inconclusive, recent meta-analyses have shown that dairy products may have a protective effect.
Collapse
Affiliation(s)
| | | | | | | | - José Manuel Miranda
- Food Hygiene, Inspection and Control Laboratory (Lhica), Department of Analytical Chemistry, Nutrition and Bromatology, School of Veterinary Science, Campus Terra, University of Santiago de Compostela, 27002 Lugo, Spain; (L.S.); (S.F.-R.); (N.G.-R.); (A.C.); (C.F.); (A.L.); (P.R.)
| | | | | | | |
Collapse
|
7
|
Psarianos M, Aghababaei F, Schlüter OK. Bioactive compounds in edible insects: Aspects of cultivation, processing and nutrition. Food Res Int 2025; 203:115802. [PMID: 40022332 DOI: 10.1016/j.foodres.2025.115802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/03/2024] [Accepted: 01/18/2025] [Indexed: 03/03/2025]
Abstract
The increasing interest in edible insects, driven by projected global population growth and environmental concerns, has led to the exploration of their potential in the food sector. Edible insects are abundant in macronutrients, such as proteins, lipids and chitin, as well as micronutrients, such as minerals, vitamins and phenolic compounds. Considering their content of bioactive compounds, they offer a sustainable solution to meet future food demands while providing potential health benefits. This review identifies bioactive peptides, phenolic compounds, chitosan, and vitamins as major bioactive ingredients derived from insects. It discusses their presence in various edible insect species, their primary bioactive properties, and methods for production and isolation. Bioactive compounds sourced from edible insects exhibit antioxidant, antimicrobial, and disease-preventing properties. Insects also serve as rich sources of vitamins A, B2, B6, B12, D, and E, albeit with variations in content among species and life stages. However, the consumption of insects poses risks related to their biological and chemical contaminants, as well as their allergenicity. Managed diets in farm-bred insects ensure controlled nutrient levels, highlighting their potential as sustainable sources of bioactive compounds for human health. Adequate processing and labeling of insect-derived products can reduce the risk of insect consumption. In conclusion, the bioactive compound profile of edible insects complements their nutritional richness and highlights their potential to address future nutrition and food security.
Collapse
Affiliation(s)
- Marios Psarianos
- System Process Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam, Germany.
| | - Fatemeh Aghababaei
- Centre d'Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), TECNIO-UAB, XIA, Department de Ciència Animal i dels Aliments, UAB-Campus, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Oliver K Schlüter
- System Process Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam, Germany; University of Bologna, Department of Agricultural and Food Sciences, Piazza Goidanich 60, 47521 Cesena, Italy.
| |
Collapse
|
8
|
Tomczyńska-Mleko M, Sołowiej BG, Terpiłowski K, Wesołowska-Trojanowska M, Mleko S. Novel high-protein dairy product based on fresh white cheese and whey protein isolate. J Dairy Sci 2025; 108:272-281. [PMID: 39369896 DOI: 10.3168/jds.2024-25263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/15/2024] [Indexed: 10/08/2024]
Abstract
The aim of the study was to obtain hard dairy product similar to the rennet hard cheese starting from the fresh white cheese (low and full-fat). This was accomplished with adding a powdered whey protein isolate to the fresh white cheese and heating. Fresh white cheese was produced from full or skim milk and ground with the whey protein isolate powder. The obtained mixture was heated at different temperatures. The increased heating temperature resulted in a more compact product characterized by higher hardness and elasticity. The full-fat product had lower hardness and elasticity in comparison with the low-fat product. The product approved by the organoleptic analysis panel was obtained by heating the mixed fat white cheese and the powdered whey protein isolate at 80°C for 30 min. The most significant achievement was to obtain in ∼1 h a product similar to that produced in ∼2 yr that is the hard rennet cheese. It contained ∼39% wt/wt of protein and can be an interesting offer for dairy industry.
Collapse
Affiliation(s)
- M Tomczyńska-Mleko
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - B G Sołowiej
- Department of Dairy Technology and Functional Food, University of Life Sciences in Lublin, 20-704 Lublin, Poland
| | - K Terpiłowski
- Department of Interfacial Phenomena, Maria Curie Skłodowska University, 20-031 Lublin, Poland.
| | - M Wesołowska-Trojanowska
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 20-704 Lublin, Poland
| | - S Mleko
- Department of Dairy Technology and Functional Food, University of Life Sciences in Lublin, 20-704 Lublin, Poland
| |
Collapse
|
9
|
Guerin S, Henry G, Le Normand L, Cahu A, Hiolle M, Baniel A, Dupont D, Boudry G. Micellar casein and sodium caseinate supramolecular structure differently impacts subsequent food intake in pigs. Food Res Int 2025; 200:115465. [PMID: 39779120 DOI: 10.1016/j.foodres.2024.115465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 01/04/2025]
Abstract
Dietary protein reduces energy intake in following meals by signaling directly or indirectly to the brain. We recently observed differences in plasma amino acid kinetics and intra-gastric behavior between micellar casein (MC) and sodium caseinate (SC) in pigs, two factors that impact food intake. Our objective was to clarify whether the supramolecular structure of casein, given as a preload to pigs, impacts on subsequent food intake. Overnight fasted pigs were allowed to consume casein drinks differing in casein macromolecular structure (SC vs MC) within 5 min in a cross-over study. Ad libitum intake of their regular feed was assessed during 1 h, either 1 or 4 h after casein drink ingestion. To evaluate the potential mechanisms at play, gastric emptying of the casein drinks radiolabeled with 99Tc-colloïd was followed using gamma-scintigraphy while plasma kinetics of ghrelin, GLP-1, insulin and free amino acids were evaluated. The amount of feed consumed 1, but not 4 h, after SC ingestion was lower than the amount of feed consumed after MC ingestion (P = 0.03). Gastric emptying parameters, plasma ghrelin, GLP-1 and insulin kinetics after both types of casein ingestion were not significantly different (P > 0.05). However, plasma free amino acid concentrations, known to reduce food intake, increased after both SC and MC ingestion but was greater after SC than MC ingestion from 60 to 120 min (P = 0.009). In conclusion, casein supramolecular structure in a preload drink impacts differently subsequent energy intake, likely due to difference in amino acid bioavailability. Micellar casein exhibits less anorectic effect than sodium caseinate, a property that could benefit population with high protein need but low appetite such as elderly.
Collapse
Affiliation(s)
- Sylvie Guerin
- Institut Numecan, INSERM, INRAE, Univ Rennes, Rennes, France
| | | | | | - Armelle Cahu
- Institut Numecan, INSERM, INRAE, Univ Rennes, Rennes, France
| | | | | | | | - Gaëlle Boudry
- Institut Numecan, INSERM, INRAE, Univ Rennes, Rennes, France.
| |
Collapse
|
10
|
Jayamanna Mohottige MW, Juhász A, Nye-Wood MG, Farquharson KA, Bose U, Colgrave ML. Beyond nutrition: Exploring immune proteins, bioactive peptides, and allergens in cow and Arabian camel milk. Food Chem 2024; 467:142471. [PMID: 39705744 DOI: 10.1016/j.foodchem.2024.142471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/22/2024] [Accepted: 12/12/2024] [Indexed: 12/22/2024]
Abstract
Bovine milk has dominated the dairy segment, yet alternative milk sources are gaining attention due to perceived superior health benefits, with immune proteins and bioactive peptides (BPs) contributing to these benefits. Fractionation affects protein recovery and composition. Here, the cream fraction resulted in the highest yield of proteins, identifying 1143 camel and 851 cow proteins. The cream fraction contained a significantly higher concentration of immune system-related proteins. Straightforward filtration and protein precipitation methods achieved average BP detections of 170 and 177, compared to 31 by a solvent-solvent extraction method. Considering potentially allergenic proteins, 53 (camel) and 52 (cow) were identified. Of these, 62 % of the potential allergens in cow, had orthologous counterparts in camel milk. However, the major milk allergen β-lactoglobulin (β-Lg) was not detected in camel milk. Our results provide a comprehensive proteomic resource of camel and cow milk products, mapping potential allergens and BPs that affect health.
Collapse
Affiliation(s)
- Manujaya W Jayamanna Mohottige
- Edith Cowan University, School of Science, Joondalup, WA 6027, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia
| | - Angéla Juhász
- Edith Cowan University, School of Science, Joondalup, WA 6027, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia
| | - Mitchell G Nye-Wood
- Edith Cowan University, School of Science, Joondalup, WA 6027, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia
| | - Katherine A Farquharson
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia; Faculty of Science, The University of Sydney, School of Life and Environmental Sciences, Sydney, Australia
| | - Utpal Bose
- Edith Cowan University, School of Science, Joondalup, WA 6027, Australia; Commonwealth Scientific and Industrial Research Organisation, 306 Carmody Rd, St Lucia Agriculture and Food, Brisbane, QLD 4067, Australia
| | - Michelle L Colgrave
- Edith Cowan University, School of Science, Joondalup, WA 6027, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia; Commonwealth Scientific and Industrial Research Organisation, 306 Carmody Rd, St Lucia Agriculture and Food, Brisbane, QLD 4067, Australia.
| |
Collapse
|
11
|
Zhang D, Yuan Y, Xiong J, Zeng Q, Gan Y, Jiang K, Xie N. Anti-breast cancer effects of dairy protein active peptides, dairy products, and dairy protein-based nanoparticles. Front Pharmacol 2024; 15:1486264. [PMID: 39605907 PMCID: PMC11598434 DOI: 10.3389/fphar.2024.1486264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Breast cancer is the most frequently diagnosed and fatal cancer among women worldwide. Dairy protein-derived peptides and dairy products are important parts of the daily human diet and have shown promising activities in suppressing the proliferation, migration, and invasion of breast cancer cells, both in vitro and in vivo. Most of the review literature employs meta-analysis methods to explore the association between dairy intake and breast cancer risk. However, there is a lack of comprehensive summary regarding the anti-breast cancer properties of dairy protein-derived peptides, dairy products, and dairy protein-based nanoparticles as well as their underlying mechanisms of action. Therefore, the present study discussed the breast cancer inhibitory effects and mechanisms of active peptides derived from various dairy protein sources. Additionally, the characteristics, anti-breast cancer activities and active components of several types of dairy products, including fermented milk, yogurt and cheeses, were summarized. Furthermore, the preparation methods and therapeutic effects of various dairy protein-containing nanoparticle delivery systems for breast cancer therapy were briefly described. Lastly, this work also provided an overview of what is currently known about the anti-breast cancer effects of dairy products in clinical studies. Our review will be of interest to the development of natural anticancer drugs.
Collapse
Affiliation(s)
- Deju Zhang
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ying Yuan
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Juan Xiong
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qingdong Zeng
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yiming Gan
- Plant Science, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kai Jiang
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, China
| | - Ni Xie
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
12
|
Lou X, Shao W, Wu Y, Ma H, Chen H, Zheng N, Zhao Y. Peptidomic Analysis of Potential Bioactive Peptides in Mare Milk Under Different Heat Treatment Conditions. Foods 2024; 13:3592. [PMID: 39594008 PMCID: PMC11592959 DOI: 10.3390/foods13223592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Active peptides in mare milk have unique biological activities, but how the bioactive protein in mare's milk changes under the influence of temperature has not been fully studied. Therefore, in this study, the differential expression of bioactive peptides potentially present in horse milk under different heat treatment conditions was investigated for the first time using peptidomic and bioinformatic techniques. We collected a total of 15 samples. In this study, we divided the samples into five groups, specifically, 65 °C, 30 min; 72 °C, 15 min; 83 °C; 10 min; 95 °C, 5 min; and an untreated group as a control, which involved four different temperature treatments, in order to understand changes in bioactive peptides and to identify the sequence of bioactive peptides. In the experiment, a total of 2341 active peptides were identified. The amino acid composition of the potential active peptides remained stable across different temperatures, but their abundance varied with temperature. In all, 23 peptides from 20 different proteins were identified, with the highest number of active peptides identified at 72 °C. Through database searches, we found that a majority of these peptides were within β-lactoglobulin and immunoglobulin domain proteins, which are known for their potential biological activities. These findings provide a theoretical foundation for the development of peptides with different bioactivities as potential functional foods.
Collapse
Affiliation(s)
- Xiaoxiao Lou
- Ministry of Agriculture and Rural Affairs-Laboratory of Quality and Safety Risk Assessment for Agro-Products, Agricultural Product Quality and Safety Risk Assessment Laboratory, Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (X.L.); (Y.W.); (H.M.); (H.C.); (N.Z.)
- Xinjiang Meat and Milk Herbivore Nutrition Laboratory, College of Animal Science, Urumqi 830052, China;
| | - Wei Shao
- Xinjiang Meat and Milk Herbivore Nutrition Laboratory, College of Animal Science, Urumqi 830052, China;
| | - Yating Wu
- Ministry of Agriculture and Rural Affairs-Laboratory of Quality and Safety Risk Assessment for Agro-Products, Agricultural Product Quality and Safety Risk Assessment Laboratory, Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (X.L.); (Y.W.); (H.M.); (H.C.); (N.Z.)
| | - Hongpeng Ma
- Ministry of Agriculture and Rural Affairs-Laboratory of Quality and Safety Risk Assessment for Agro-Products, Agricultural Product Quality and Safety Risk Assessment Laboratory, Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (X.L.); (Y.W.); (H.M.); (H.C.); (N.Z.)
- Xinjiang Meat and Milk Herbivore Nutrition Laboratory, College of Animal Science, Urumqi 830052, China;
| | - He Chen
- Ministry of Agriculture and Rural Affairs-Laboratory of Quality and Safety Risk Assessment for Agro-Products, Agricultural Product Quality and Safety Risk Assessment Laboratory, Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (X.L.); (Y.W.); (H.M.); (H.C.); (N.Z.)
| | - Nan Zheng
- Ministry of Agriculture and Rural Affairs-Laboratory of Quality and Safety Risk Assessment for Agro-Products, Agricultural Product Quality and Safety Risk Assessment Laboratory, Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (X.L.); (Y.W.); (H.M.); (H.C.); (N.Z.)
- Key Laboratory for Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Yankun Zhao
- Ministry of Agriculture and Rural Affairs-Laboratory of Quality and Safety Risk Assessment for Agro-Products, Agricultural Product Quality and Safety Risk Assessment Laboratory, Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (X.L.); (Y.W.); (H.M.); (H.C.); (N.Z.)
- Key Laboratory for Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing 100193, China
| |
Collapse
|
13
|
Liu L, McClements DJ, Liu X, Liu F. Overcoming Biopotency Barriers: Advanced Oral Delivery Strategies for Enhancing the Efficacy of Bioactive Food Ingredients. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401172. [PMID: 39361948 PMCID: PMC11600209 DOI: 10.1002/advs.202401172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/13/2024] [Indexed: 10/05/2024]
Abstract
Bioactive food ingredients contribute to the promotion and maintenance of human health and wellbeing. However, these functional ingredients often exhibit low biopotency after food processing or gastrointestinal transit. Well-designed oral delivery systems can increase the ability of bioactive food ingredients to resist harsh environments inside and outside the human body, as well as allow for controlled or triggered release of bioactives to specific sites in the gastrointestinal tract or other tissues and organs. This review presents the characteristics of common bioactive food ingredients and then highlights the barriers to their biopotency. It also discusses various oral delivery strategies and carrier types that can be used to overcome these biopotency barriers, with a focus on recent advances in the field. Additionally, the advantages and disadvantages of different delivery strategies are highlighted. Finally, the current challenges facing the development of food-grade oral delivery systems are addressed, and areas where future research can lead to new advances and industrial applications of these systems are proposed.
Collapse
Affiliation(s)
- Ling Liu
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | | | - Xuebo Liu
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | - Fuguo Liu
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| |
Collapse
|
14
|
Beckett EL, Cassettari T, Starck C, Fayet‐Moore F. Dairy milk: There are alternatives but no equivalents. Food Sci Nutr 2024; 12:8470-8482. [PMID: 39479642 PMCID: PMC11521685 DOI: 10.1002/fsn3.4301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 11/02/2024] Open
Abstract
Dairy milk is a core food in many food-based guides to healthy eating. However, plant-based milk alternatives are becoming increasingly available as substitutes. While these products serve a subset of the population unable or unwilling to consume milk, plant-based milk alternatives can be perceived by consumers as direct equivalents, or even more healthful alternatives to dairy milk. This commentary addresses the significant differences in nutrient content that may have implications for the intake of key nutrients in the case of direct substitutions. Furthermore, while there is a significant body of knowledge demonstrating the significant health benefits associated with dairy milk consumption and a small number of potentially negative associations, there is a paucity of data on the health benefits of plant-based milk alternatives directly. A "health halo" may exist based on matching individual nutrients through fortification, lower energy levels, and the health properties of the unprocessed raw characterizing ingredients of plant-based milk alternatives. This may mislead consumers regarding healthfulness. Similarly, environmental attributes based on volumes of production, without considering contribution to nutrients, may also skew consumer perception. Positioning of plant-based milk alternatives in food-based dietary guidelines, marketing, and personal recommendations should acknowledge the differences in nutritional, bioactive, and health properties between plant-based milk alternatives and dairy milk to ensure appropriate adaptations are made to account for shortfalls in nutrients.
Collapse
Affiliation(s)
- Emma L. Beckett
- FOODiQ GlobalSydneyNew South WalesAustralia
- School of Environmental and Life SciencesThe University of NewcastleCallaghanNew South WalesAustralia
- School of Health SciencesThe University of New South WalesSydneyNew South WalesAustralia
| | | | | | - Flávia Fayet‐Moore
- FOODiQ GlobalSydneyNew South WalesAustralia
- School of Environmental and Life SciencesThe University of NewcastleCallaghanNew South WalesAustralia
| |
Collapse
|
15
|
Longhi G, Lugli GA, Tarracchini C, Fontana F, Bianchi MG, Carli E, Bussolati O, van Sinderen D, Turroni F, Ventura M. From raw milk cheese to the gut: investigating the colonization strategies of Bifidobacterium mongoliense. Appl Environ Microbiol 2024; 90:e0124424. [PMID: 39150265 PMCID: PMC11409640 DOI: 10.1128/aem.01244-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
The microbial ecology of raw milk cheeses is determined by bacteria originating from milk and milk-producing animals. Recently, it has been shown that members of the Bifidobacterium mongoliense species may become transmitted along the Parmigiano Reggiano cheese production chain and ultimately may colonize the consumer intestine. However, there is a lack of knowledge regarding the molecular mechanisms that mediate the interaction between B. mongoliense and the human gut. Based on 128 raw milk cheeses collected from different Italian regions, we isolated and characterized 10 B. mongoliense strains. Comparative genomics allowed us to unveil the presence of enzymes required for the degradation of sialylated host-glycans in B. mongoliense, corroborating the appreciable growth on de Man-Rogosa-Sharpe (MRS) medium supplemented with 3'-sialyllactose (3'-SL) or 6'-sialyllactose (6'-SL). The B. mongoliense BMONG18 was chosen, due to its superior ability to utilize 3'-SL and mucin as representative strain, to investigate its behavior when co-inoculated with other bifidobacterial species. Conversely, members of other bifidobacterial species did not appear to benefit from the presence of BMONG18, highlighting a competitive scenario for nutrient acquisition. Transcriptomic data of BMONG18 reveal no significant differences in gene expression when cultivated in a gut simulating medium (GSM), regardless of whether cheese was included or not. Furthermore, BMONG18 was shown to exhibit high adhesion capabilities to HT29-MTX human cells, in line with its colonization ability of a human host.IMPORTANCEFermented foods are nourishments produced through controlled microbial growth that play an essential role in worldwide human nutrition. Research interest in fermented foods has increased since the 80s, driven by growing awareness of their potential health benefits beyond mere nutritional content. Bifidobacterium mongoliense, previously identified throughout the production process of Parmigiano Reggiano cheese, was found to be capable of establishing itself in the intestines of its consumers. Our study underscores molecular mechanisms through which this bifidobacterial species, derived from food, interacts with the host and other gut microbiota members.
Collapse
Affiliation(s)
- Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | | | - Elisa Carli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Ovidio Bussolati
- Department of Medicine and Surgery, Laboratory of General Pathology, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
16
|
Yuzbashian E, Berg E, de Campos Zani SC, Chan CB. Cow's Milk Bioactive Molecules in the Regulation of Glucose Homeostasis in Human and Animal Studies. Foods 2024; 13:2837. [PMID: 39272602 PMCID: PMC11395457 DOI: 10.3390/foods13172837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Obesity disrupts glucose metabolism, leading to insulin resistance (IR) and cardiometabolic diseases. Consumption of cow's milk and other dairy products may influence glucose metabolism. Within the complex matrix of cow's milk, various carbohydrates, lipids, and peptides act as bioactive molecules to alter human metabolism. Here, we summarize data from human studies and rodent experiments illustrating how these bioactive molecules regulate insulin and glucose homeostasis, supplemented with in vitro studies of the mechanisms behind their effects. Bioactive carbohydrates, including lactose, galactose, and oligosaccharides, generally reduce hyperglycemia, possibly by preventing gut microbiota dysbiosis. Milk-derived lipids of the milk fat globular membrane improve activation of insulin signaling pathways in animal trials but seem to have little impact on glycemia in human studies. However, other lipids produced by ruminants, including polar lipids, odd-chain, trans-, and branched-chain fatty acids, produce neutral or contradictory effects on glucose metabolism. Bioactive peptides derived from whey and casein may exert their effects both directly through their insulinotropic effects or renin-angiotensin-aldosterone system inhibition and indirectly by the regulation of incretin hormones. Overall, the results bolster many observational studies in humans and suggest that cow's milk intake reduces the risk of, and can perhaps be used in treating, metabolic disorders. However, the mechanisms of action for most bioactive compounds in milk are still largely undiscovered.
Collapse
Affiliation(s)
- Emad Yuzbashian
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Emily Berg
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | | - Catherine B Chan
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
17
|
Chen J, Pan Z, Li Q, Wu Y, Li X, Wang X, Hao D, Peng X, Pan L, Li W, Wang J, Li T, Fu F. The Aqueous Extract of Hemerocallis citrina Baroni Improves the Lactation-Promoting Effect in Bovine Mammary Epithelial Cells through the PI3K-AKT Signaling Pathway. Foods 2024; 13:2813. [PMID: 39272577 PMCID: PMC11395325 DOI: 10.3390/foods13172813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Insufficient milk supply is a widespread issue faced by women globally and associated with a higher risk of health problems in infants and mothers. Hemerocallis citrina Baron, commonly known as daylily, is a perennial edible plant often used in traditional Asian cuisine to promote lactation. However, the active compound(s) and mechanism of its lactation-promoting effect remain unclear. This study aimed to confirm the traditional use of daylily in promoting lactation and investigate its potential active components and underlying molecular mechanisms. Our results showed that the aqueous extracts of H. citrina Baroni (HAE) significantly enhanced milk production, and the serum levels of lactation-related hormones, and promoted mammary gland development in lactating rats, as well as increased the levels of milk components in bovine mammary epithelial cells (BMECs) (p < 0.05). UHPLC-Q-Exactive Orbitrap-MS analysis revealed that hexamethylquercetin (HQ) is the representative flavonoid component in HAE, accounting for 42.66% of the total flavonoids. An integrated network pharmacology and molecular docking analysis suggested that HQ may be the potential active flavonoid in HAE that promotes lactation, possibly supporting lactation by binding to key target proteins such as STAT5A, PIK3CA, IGF1R, TP53, CCND1, BCL2, INS, AR, and DLD. Cell experiments further demonstrated that HQ could promote cell proliferation and the synthesis of milk proteins, lactose, and milk fat in BMECs. Transcriptomic analysis combined with a quantitative reverse transcription polymerase chain reaction (RT-qPCR) revealed that both HAE and HQ exert a lactation-promoting function mainly through regulating the expression of key genes in the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Jiaxu Chen
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhaoping Pan
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Qili Li
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Key Laboratory of Dongting, Yuelushan Center for Industrial Innovation, Changsha 410125, China
| | - Yanyang Wu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xiaopeng Li
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xue Wang
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Dandan Hao
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xiaoyu Peng
- Ausnutria Dairy Co., Ltd., Changsha 410200, China
| | - Lina Pan
- Ausnutria Dairy Co., Ltd., Changsha 410200, China
| | - Wei Li
- Ausnutria Dairy Co., Ltd., Changsha 410200, China
| | - Jiaqi Wang
- Ausnutria Dairy Co., Ltd., Changsha 410200, China
| | - Tao Li
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Fuhua Fu
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Key Laboratory of Dongting, Yuelushan Center for Industrial Innovation, Changsha 410125, China
| |
Collapse
|
18
|
Kongpharm K, Nakklay P, Kongtong C, Tanapumchai P, Prapkree L, Rueangsri N, Singhato A. Impacts of people at-risk of either cow milk allergies or lactose intolerance on their daily calcium intake and bone mineral density. Front Nutr 2024; 11:1421275. [PMID: 39221165 PMCID: PMC11362075 DOI: 10.3389/fnut.2024.1421275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Background People who are at risk of either cow milk allergies or lactose intolerance may need to avoid consuming milk and milk products, which are well-known abundant sources of calcium (Ca). This limitation in calcium intake could affect bone health. Currently, there is limited knowledge on the impact of avoiding the consumption of milk and milk products on the daily Ca intake and bone mineral density (BMD) of people at risk of cow milk allergies. This study aimed to investigate the differences between the amount of Ca intake and BMD values between people who are at risk of cow milk allergies and those who are not. Methods A total of 80 participants were recruited, and further divided into two groups, the at-risk cow milk allergies (AR) group (n = 40) and the normal (NOR) group, using the cow milk allergies and lactose intolerance screening questionnaire. The anthropometric assessment, body composition analyses, 3-day dietary record, and bone mass density (wrist and ankle bones) measurement of all participants were collected using the dual x-ray absorptiometry (DEXA) technique to compare the differences of variables between the two groups. Results The participants in the AR group presented a significantly lower amount of Ca intake (317 mg/day) than those in the NOR group (623 mg/day) (p < 0.05). The bone mineral density (BMD) parameters indicated that the NOR group presented significantly higher T-scores and BMD values of the wrist (T-score = -0.27 and BMD = 0.57 g/cm2) and ankle (T-score = -0.01 and BMD = 0.59 g/cm2) bones when compared with the AR group (T-score = -1.96 and BMD = 0.48 g/cm2 for the wrist bone, and T-score = -1.18 and BMD = 0.47 g/cm2 for the ankle bone) (p < 0.05). In addition, the results indicated significantly positive correlations between the amount of Ca intake and the T-scores and BMD values of both the wrist and ankle bones among all participants (p < 0.05). Conclusion In this responding sample, participants at risk of cow milk allergies experienced a significantly negative impact on the amount of Ca intake and BMD values. Professionals in nutrition and dietetics should provide nutrition education and strategies that can enhance the Ca intake among this population to help them meet the daily Ca intake recommendation, ultimately leading to better bone health.
Collapse
Affiliation(s)
- Kornkanok Kongpharm
- Nutrition and Dietetics Division, Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | - Parinda Nakklay
- Nutrition and Dietetics Division, Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | - Chunhakan Kongtong
- Nutrition and Dietetics Division, Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | - Pichaya Tanapumchai
- Nutrition and Dietetics Division, Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | - Lukkamol Prapkree
- Sodexo at the University of Kansas Health System, Olathe, KS, United States
| | - Narisa Rueangsri
- Nutrition and Dietetics Division, Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | - Alongkote Singhato
- Nutrition and Dietetics Division, Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| |
Collapse
|
19
|
Liu R, Yang Y, Zhang Y, Sun Q, Zhu P, Xu H, Zheng W, Lu Y, Fu Q. Proteomic and antimicrobial peptide analyses of Buffalo colostrum and mature Milk whey: A comparative study. Food Chem 2024; 448:139119. [PMID: 38547703 DOI: 10.1016/j.foodchem.2024.139119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 04/24/2024]
Abstract
Buffalo colostrum is the initial mammary secretion after parturition, consisting of nutritional and bioactive components. In this study, we conducted a proteomic analysis of buffalo colostrum whey to identify bioactive proteins and peptides. A total of 107 differentially expressed proteins (DEPs) were identified in buffalo colostrum whey compared to those in mature milk. Gene Ontology analysis revealed that DEPs were primarily associated with immune response and tissue development. KEGG pathway enrichment suggested that colostrum actively enhances nascent immunity involved in interleukin and interferon signaling pathways. Furthermore, candidate antimicrobial peptides (AMPs) of whey protein hydrolysates from buffalo colostrum were characterized, which exhibits broad-spectrum activity against gram-positive and gram-negative pathogens. Overall, this study improves our understanding of protein variations in buffalo lactation, and contributes to the development of AMPs from buffalo colostrum.
Collapse
Affiliation(s)
- Runfeng Liu
- College of Animal Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresource, Guangxi University, Nanning 530004, China
| | - Yuan Yang
- College of Animal Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresource, Guangxi University, Nanning 530004, China
| | - Yue Zhang
- College of Animal Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresource, Guangxi University, Nanning 530004, China
| | - Qinqiang Sun
- College of Animal Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresource, Guangxi University, Nanning 530004, China
| | - Pingchuan Zhu
- College of Animal Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresource, Guangxi University, Nanning 530004, China
| | - Huiyan Xu
- College of Animal Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresource, Guangxi University, Nanning 530004, China
| | - Wei Zheng
- Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Yangqing Lu
- College of Animal Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresource, Guangxi University, Nanning 530004, China.
| | - Qiang Fu
- College of Animal Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresource, Guangxi University, Nanning 530004, China.
| |
Collapse
|
20
|
Tenenbaum M, Deracinois B, Dugardin C, Auger J, Baniel A, Boulier A, Flahaut C, Ravallec R, Cudennec B. Digested casein phosphopeptides impact intestinal calcium transport in vitro. Food Funct 2024; 15:8104-8115. [PMID: 39007353 DOI: 10.1039/d4fo01637h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Calcium is the most abundant mineral in the human body and is involved in critical physiological and cellular processes. It is essential for the development, maintenance, and integrity of bone tissue throughout life. Identifying new natural food-grade chelating agents to improve calcium uptake is of increasing interest. Casein phosphopeptides (CPPs), highly phosphorylated peptides obtained after enzymatic hydrolysis of caseins, represent promising calcium-chelating candidates. The aim of this study was to investigate, using cell culture models, the ability of a digested milk matrix enriched in CPPs to regulate calcium transport through the intestinal barrier and elucidate the involved mechanisms. To this end, a CPP-preparation underwent in vitro static digestion and was subsequently incubated with an intestinal barrier model to monitor calcium uptake and transport. Our results demonstrated that the digested CPP preparation enhanced the trans-epithelial calcium transport via paracellular pathways and that CPPs, identified by peptidomics, crossed the intestinal barrier in the same time.
Collapse
Affiliation(s)
- Mathie Tenenbaum
- UMR Transfronalière BioEcoAgro-INRae 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d'Opale, F-59000 Lille, France.
| | - Barbara Deracinois
- UMR Transfronalière BioEcoAgro-INRae 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d'Opale, F-59000 Lille, France.
| | - Camille Dugardin
- UMR Transfronalière BioEcoAgro-INRae 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d'Opale, F-59000 Lille, France.
| | - Julie Auger
- Ingredia S.A., 51 Av. Lobbedez - CS 60946, 62033 Arras Cedex, France
| | - Alain Baniel
- Ingredia S.A., 51 Av. Lobbedez - CS 60946, 62033 Arras Cedex, France
| | - Audrey Boulier
- Ingredia S.A., 51 Av. Lobbedez - CS 60946, 62033 Arras Cedex, France
| | - Christophe Flahaut
- UMR Transfronalière BioEcoAgro-INRae 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d'Opale, F-59000 Lille, France.
| | - Rozenn Ravallec
- UMR Transfronalière BioEcoAgro-INRae 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d'Opale, F-59000 Lille, France.
| | - Benoit Cudennec
- UMR Transfronalière BioEcoAgro-INRae 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d'Opale, F-59000 Lille, France.
| |
Collapse
|
21
|
Zhang Y, Zhu Y, Bao X, Dai Z, Shen Q, Wang L, Xue Y. Mining Bovine Milk Proteins for DPP-4 Inhibitory Peptides Using Machine Learning and Virtual Proteolysis. RESEARCH (WASHINGTON, D.C.) 2024; 7:0391. [PMID: 38887277 PMCID: PMC11182572 DOI: 10.34133/research.0391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/26/2024] [Indexed: 06/20/2024]
Abstract
Dipeptidyl peptidase-IV (DPP-4) enzyme inhibitors are a promising category of diabetes medications. Bioactive peptides, particularly those derived from bovine milk proteins, play crucial roles in inhibiting the DPP-4 enzyme. This study describes a comprehensive strategy for DPP-4 inhibitory peptide discovery and validation that combines machine learning and virtual proteolysis techniques. Five machine learning models, including GBDT, XGBoost, LightGBM, CatBoost, and RF, were trained. Notably, LightGBM demonstrated superior performance with an AUC value of 0.92 ± 0.01. Subsequently, LightGBM was employed to forecast the DPP-4 inhibitory potential of peptides generated through virtual proteolysis of milk proteins. Through a series of in silico screening process and in vitro experiments, GPVRGPF and HPHPHL were found to exhibit good DPP-4 inhibitory activity. Molecular docking and molecular dynamics simulations further confirmed the inhibitory mechanisms of these peptides. Through retracing the virtual proteolysis steps, it was found that GPVRGPF can be obtained from β-casein through enzymatic hydrolysis by chymotrypsin, while HPHPHL can be obtained from κ-casein through enzymatic hydrolysis by stem bromelain or papain. In summary, the integration of machine learning and virtual proteolysis techniques can aid in the preliminary determination of key hydrolysis parameters and facilitate the efficient screening of bioactive peptides.
Collapse
Affiliation(s)
- Yiyun Zhang
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
| | - Yiqing Zhu
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
| | - Xin Bao
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
| | - Zijian Dai
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
| | - Qun Shen
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry,
China Agricultural University, Haidian District, Beijing 100083, P.R. China
| | - Liyang Wang
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
- School of Clinical Medicine,
Tsinghua University, Beijing 100084, P.R. China
| | - Yong Xue
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry,
China Agricultural University, Haidian District, Beijing 100083, P.R. China
| |
Collapse
|
22
|
Bodor K, Tamási B, Keresztesi Á, Bodor Z, Csongor Orbán K, Szép R. A comparative analysis of the nutritional composition of several dairy products in the Romanian market. Heliyon 2024; 10:e31513. [PMID: 38841466 PMCID: PMC11152709 DOI: 10.1016/j.heliyon.2024.e31513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024] Open
Abstract
The aim of this study was to provide customers with additional information by analyzing and comparing the nutritional data of different dairy product varieties in Romania. Milk is an ideal source of nutrition because it contains a balanced combination of carbohydrates, proteins, fats, minerals, and vitamins. In this study, the nutritional constituents of dairy products from Romania were examined. In total, the nutritional characteristics of 143 dairy products: milk (N-42), sour cream (N-37), cheese (N-40) and butter (N-24) (energetic value, fat content, fat of which saturated fatty acids, carbohydrates, sugar, proteins, salt, calcium) were collected from the market and statistically analyzed. The average energy values of the studied dairy products were 188/261 kJ/100 ml for milk, 610/739/1091 kJ/100 g for sour cream, 2359/3022 kJ/100 g for butter and 1306 kJ/100 g for cheese. The fat concentration of the studied products was standardized. Based on the cluster analysis, some products whose characteristics differed significantly included Gordon milk (1.5%, 3.5%), Keresztúri and Szépvízi cheese.
Collapse
Affiliation(s)
- Katalin Bodor
- Sapientia Hungarian University of Transylvania, Faculty of Economics, Socio-Human Sciences and Engineering, Department of Bioengineering, Libertății Sq. 1, 530104, Miercurea Ciuc, Romania
- University of Pécs, Faculty of Natural Sciences, Doctoral School of Chemistry, st. Ifjúság 6, 7624, Pécs, Hungary
- Research and Development Institute for Wildlife and Mountain Resources, Miercurea Ciuc, Romania, st. Progresului 35B, 530240, Miercurea Ciuc, Romania
| | - Borbála Tamási
- University of Pécs, Faculty of Natural Sciences, Doctoral School of Chemistry, st. Ifjúság 6, 7624, Pécs, Hungary
- Research and Development Institute for Wildlife and Mountain Resources, Miercurea Ciuc, Romania, st. Progresului 35B, 530240, Miercurea Ciuc, Romania
| | - Ágnes Keresztesi
- Sapientia Hungarian University of Transylvania, Faculty of Economics, Socio-Human Sciences and Engineering, Department of Bioengineering, Libertății Sq. 1, 530104, Miercurea Ciuc, Romania
- University of Pécs, Faculty of Natural Sciences, Doctoral School of Chemistry, st. Ifjúság 6, 7624, Pécs, Hungary
- Research and Development Institute for Wildlife and Mountain Resources, Miercurea Ciuc, Romania, st. Progresului 35B, 530240, Miercurea Ciuc, Romania
| | - Zsolt Bodor
- Sapientia Hungarian University of Transylvania, Faculty of Economics, Socio-Human Sciences and Engineering, Department of Bioengineering, Libertății Sq. 1, 530104, Miercurea Ciuc, Romania
- University of Pécs, Faculty of Natural Sciences, Doctoral School of Chemistry, st. Ifjúság 6, 7624, Pécs, Hungary
- Research and Development Institute for Wildlife and Mountain Resources, Miercurea Ciuc, Romania, st. Progresului 35B, 530240, Miercurea Ciuc, Romania
- "Costin D. Nenitescu" Institute of Organic and Supramolecular Chemistry, Romanian Academy, Spl.Independentei 202B, Bucharest, RO-060023, Romania
| | - Kálmán Csongor Orbán
- Sapientia Hungarian University of Transylvania, Faculty of Economics, Socio-Human Sciences and Engineering, Department of Bioengineering, Libertății Sq. 1, 530104, Miercurea Ciuc, Romania
- University of Pécs, Faculty of Natural Sciences, Doctoral School of Chemistry, st. Ifjúság 6, 7624, Pécs, Hungary
- Corax-Bioner Ceu S.A, 53017, Miercurea Ciuc, Romania
| | - Róbert Szép
- Sapientia Hungarian University of Transylvania, Faculty of Economics, Socio-Human Sciences and Engineering, Department of Bioengineering, Libertății Sq. 1, 530104, Miercurea Ciuc, Romania
- University of Pécs, Faculty of Natural Sciences, Doctoral School of Chemistry, st. Ifjúság 6, 7624, Pécs, Hungary
- Research and Development Institute for Wildlife and Mountain Resources, Miercurea Ciuc, Romania, st. Progresului 35B, 530240, Miercurea Ciuc, Romania
| |
Collapse
|
23
|
Wijesekara T, Abeyrathne EDNS, Ahn DU. Effect of Bioactive Peptides on Gut Microbiota and Their Relations to Human Health. Foods 2024; 13:1853. [PMID: 38928795 PMCID: PMC11202804 DOI: 10.3390/foods13121853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Bioactive peptides derived from both exogenous and endogenous origins have been studied extensively to use their beneficial effects in humans and animals. Bioactive peptides exhibit beneficial bodily functions and contribute to a healthy gastrointestinal system by influencing barrier functions, immune responses, and gut microbiota. Gut microbiota is a diverse microbial community that significantly influences the overall well-being and homeostasis of the body. Factors such as diet, age, lifestyle, medication, and environmental circumstances can affect the composition and diversity of the gut microbiota. The disturbances or imbalances in the gut microbiota have been associated with various health problems. The interplays between bioactive peptides and gut microbiota are not fully understood, but bioactive peptides hold promise as modulators of the gut microbiota to promote gut health. Almost all the bioactive research on human health, including the development of therapeutics and nutritional interventions, uses cell culture, even though their direct biofunctional activities can only occur when absorbed in the intestine and into the blood system. This review focuses on the current understanding of bioactive peptides in gut microbiota and their impact and mechanisms on gut and human health. The novelty of this review lies in its comprehensive analysis of the multifaceted interactions between bioactive peptides and gut microbiota, integrating knowledge from diverse disciplines between microbiology and nutrition. By elucidating the underlying mechanisms and identifying current research gaps, this review offers an outlook on the potential of bioactive peptides in promoting gut health and shaping future therapeutic and nutritional interventions.
Collapse
Affiliation(s)
- Tharuka Wijesekara
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada;
| | | | - Dong Uk Ahn
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
24
|
Ramani A, Hazra T, Mudgil S, Mudgil D. Emerging potential of whey proteins in prevention of cancer. FOOD AND HUMANITY 2024; 2:100199. [DOI: 10.1016/j.foohum.2023.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
25
|
Wang Y, Gong Y, Farid MS, Zhao C. Milk: A Natural Guardian for the Gut Barrier. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8285-8303. [PMID: 38588092 DOI: 10.1021/acs.jafc.3c06861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The gut barrier plays an important role in health maintenance by preventing the invasion of dietary pathogens and toxins. Disruption of the gut barrier can cause severe intestinal inflammation. As a natural source, milk is enriched with many active constituents that contribute to numerous beneficial functions, including immune regulation. These components collectively serve as a shield for the gut barrier, protecting against various threats such as biological, chemical, mechanical, and immunological threats. This comprehensive review delves into the active ingredients in milk, encompassing casein, α-lactalbumin, β-lactoglobulin, lactoferrin, the milk fat globular membrane, lactose, transforming growth factor, and glycopeptides. The primary focus is to elucidate their impact on the integrity and function of the gut barrier. Furthermore, the implications of different processing methods of dairy products on the gut barrier protection are discussed. In conclusion, this study aimed to underscore the vital role of milk and dairy products in sustaining gut barrier health, potentially contributing to broader perspectives in nutritional sciences and public health.
Collapse
Affiliation(s)
- Yanli Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yiyao Gong
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | | | - Changhui Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
26
|
Comerford K, Lawson Y, Young M, Knight M, McKinney K, Mpasi P, Mitchell E. The role of dairy food intake for improving health among black Americans across the life continuum: A summary of the evidence. J Natl Med Assoc 2024; 116:292-315. [PMID: 38378307 DOI: 10.1016/j.jnma.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/22/2024]
Abstract
Decades of health data show major health disparities occurring at every life stage between Black and White Americans. These disparities include greater mortality rates among Black mothers and their offspring, higher levels of malnutrition and obesity among Black children and adolescents, and a higher burden of chronic disease and lower life expectancy for Black adults. Although nutrition is only one of many factors that influence human health and well-being across the life continuum, a growing body of research continues to demonstrate that consuming a healthy dietary pattern is one of the most dominant factors associated with increased longevity, improved mental health, improved immunity, and decreased risk for obesity and chronic disease. Unfortunately, large percentages of Black Americans tend to consume inadequate amounts of several essential nutrients such as vitamin A, vitamin D, calcium, and magnesium; and simultaneously consume excessive amounts of fast foods and sugar-sweetened beverages to a greater degree than other racial/ethnic groups. Therefore, strategies that can help improve dietary patterns for Black Americans could make up a major public health opportunity for reducing nutrition-related diseases and health disparities across the life course. A key intervention strategy to improve diet quality among Black Americans is to focus on increasing the intake of nutrient-rich dairy foods, which are significantly underconsumed by most Black Americans. Compared to other food group, dairy foods are some of the most accessible and affordable sources of essential nutrients like vitamin A, D, and B12, calcium, magnesium, potassium, selenium, and zinc in the food supply, as well as being some of the primary sources of several health-promoting bioactive compounds, including polar lipids, bioactive proteins and peptides, oligosaccharides, and live and active cultures in fermented products. Given the complex relationships that many Black Americans have with dairy foods, due to issues with lactose intolerance, and/or negative perceptions about the health effects of dairy foods, there is still a need to examine the role that dairy foods play in the health and well-being of Black Americans of all ages and life stages. Therefore, the National Medical Association and its partners have produced multiple reports on the value of including adequate dairy in the diet of Black Americans. This present summary paper and its associated series of evidence reviews provide an examination of an immense amount of research focused on dairy intake and health outcomes, with an emphasis on evidence-based strategies for improving the health of Black Americans. Overall, the findings and conclusions from this body of research continue to indicate that higher dairy intake is associated with reduced risk for many of the most commonly occurring deficiencies and diseases impacting each life stage, and that Black Americans would receive significantly greater health benefits by increasing their daily dairy intake levels to meet the national recommendations than they would from continuing to fall short of these recommendations. However, these recommendations must be considered with appropriate context and nuance as the intake of different dairy products can have different impacts on health outcomes. For instance, vitamin D fortified dairy products and fermented dairy products like yogurt - which are low in lactose and rich in live and active cultures - tend to show the greatest benefits for improved health. Importantly, there are significant limitations to these research findings for Black Americans, especially as they relate to reproductive and child health, since most of the research on dairy intake and health has failed to include adequate representation of Black populations or to sufficiently address the role of dairy intake during the most vulnerable life stages, such as pregancy, lactation, fetal development, early childhood, and older age. This population and these life stages require considerably more research and policy attention if health equity is ever to be achieved for Black Americans. Sharing and applying the learnings from this summary paper and its associated series of evidence reviews will help inform and empower nutrition and health practitioners to provide more evidence-based dietary recommendations for improving the health and well-being of Black Americans across the life course.
Collapse
Affiliation(s)
- Kevin Comerford
- OMNI Nutrition Science, California Dairy Research Foundation, Davis, CA, United States.
| | - Yolanda Lawson
- Associate Attending, Baylor University Medical Center, Dallas, TX, United States
| | - Michal Young
- Emeritus, Department of Pediatrics and Child Health, Howard University College of Medicine, Washington D.C., United States
| | - Michael Knight
- The George Washington University School of Medicine and Health Sciences, Washington D.C., United States
| | - Kevin McKinney
- Department of Internal Medicine, Division of Endocrinology, University of Texas Medical Branch, Galveston, TX, United States
| | - Priscilla Mpasi
- ChristianaCare Health System, Assistant Clinical Director Complex Care and Community Medicine, Wilmington, DE, United States
| | - Edith Mitchell
- Sidney Kimmel Cancer at Jefferson, Philadelphia, PA, United States
| |
Collapse
|
27
|
Santos I, Silva M, Grácio M, Pedroso L, Lima A. Milk Antiviral Proteins and Derived Peptides against Zoonoses. Int J Mol Sci 2024; 25:1842. [PMID: 38339120 PMCID: PMC10855762 DOI: 10.3390/ijms25031842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Milk is renowned for its nutritional richness but also serves as a remarkable reservoir of bioactive compounds, particularly milk proteins and their derived peptides. Recent studies have showcased several robust antiviral activities of these proteins, evidencing promising potential within zoonotic viral diseases. While several publications focus on milk's bioactivities, antiviral peptides remain largely neglected in reviews. This knowledge is critical for identifying novel research directions and analyzing potential nutraceuticals within the One Health context. Our review aims to gather the existing scientific information on milk-derived antiviral proteins and peptides against several zoonotic viral diseases, and their possible mechanisms. Overall, in-depth research has increasingly revealed them as a promising and novel strategy against viruses, principally for those constituting a plausible pandemic threat. The underlying mechanisms of the bioactivity of milk's proteins include inhibiting viral entry and attachment to the host cells, blocking replication, or even viral inactivation via peptide-membrane interactions. Their marked versatility and effectiveness stand out compared to other antiviral peptides and can support future research and development in the post-COVID-19 era. Overall, our review helps to emphasize the importance of potentially effective milk-derived peptides, and their significance for veterinary and human medicines, along with the pharmaceutical, nutraceutical, and dairy industry.
Collapse
Affiliation(s)
- Isabel Santos
- Faculty of Veterinary Medicine, Lusófona University, 376 Campo Grande, 1749-024 Lisbon, Portugal; (M.S.); (L.P.)
- CECAV—Centro de Ciência Animal e Veterinária, Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| | - Mariana Silva
- Faculty of Veterinary Medicine, Lusófona University, 376 Campo Grande, 1749-024 Lisbon, Portugal; (M.S.); (L.P.)
| | - Madalena Grácio
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal;
| | - Laurentina Pedroso
- Faculty of Veterinary Medicine, Lusófona University, 376 Campo Grande, 1749-024 Lisbon, Portugal; (M.S.); (L.P.)
- CECAV—Centro de Ciência Animal e Veterinária, Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| | - Ana Lima
- Faculty of Veterinary Medicine, Lusófona University, 376 Campo Grande, 1749-024 Lisbon, Portugal; (M.S.); (L.P.)
- CECAV—Centro de Ciência Animal e Veterinária, Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| |
Collapse
|
28
|
Liu B, Li X, Zhang JP, Li X, Yuan Y, Hou GH, Zhang HJ, Zhang H, Li Y, Mezzenga R. Protein Nanotubes as Advanced Material Platforms and Delivery Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307627. [PMID: 37921269 DOI: 10.1002/adma.202307627] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/22/2023] [Indexed: 11/04/2023]
Abstract
Protein nanotubes (PNTs) as state-of-the-art nanocarriers are promising for various potential applications both in the food and pharmaceutical industries. Derived from edible starting sources like α-lactalbumin, lysozyme, and ovalbumin, PNTs bear properties of biocompatibility and biodegradability. Their large specific surface area and hydrophobic core facilitate chemical modification and loading of bioactive substances, respectively. Moreover, their enhanced permeability and penetration ability across biological barriers such as intestinal mucus, extracellular matrix, and thrombus clot, make it promising platforms for health-related applications. Most importantly, their simple preparation processes enable large-scale production, supporting applications in the biomedical and nanotechnological fields. Understanding the self-assembly principles is crucial for controlling their morphology, size, and shape, and thus provides the ground to a multitude of applications. Here, the current state-of-the-art of PNTs including their building materials, physicochemical properties, and self-assembly mechanisms are comprehensively reviewed. The advantages and limitations, as well as challenges and prospects for their successful applications in biomaterial and pharmaceutical sectors are then discussed and highlighted. Potential cytotoxicity of PNTs and the need of regulations as critical factors for enabling in vivo applications are also highlighted. In the end, a brief summary and future prospects for PNTs as advanced platforms and delivery systems are included.
Collapse
Affiliation(s)
- Bin Liu
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
- Department of Nutrition and Health, China Agricultural University, Beijing, 100091, P. R. China
| | - Xing Li
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Ji Peng Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Xin Li
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Yu Yuan
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Guo Hua Hou
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Hui Juan Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Hui Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Yuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, Zürich, 8092, Switzerland
- Department of Materials, ETH Zurich, Zürich, 8092, Switzerland
| |
Collapse
|
29
|
Stastna M. Advances in separation and identification of biologically important milk proteins and peptides. Electrophoresis 2024; 45:101-119. [PMID: 37289082 DOI: 10.1002/elps.202300084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
Milk is a rich source of biologically important proteins and peptides. In addition, milk contains a variety of extracellular vesicles (EVs), including exosomes, that carry their own proteome cargo. EVs are essential for cell-cell communication and modulation of biological processes. They act as nature carriers of bioactive proteins/peptides in targeted delivery during various physiological and pathological conditions. Identification of the proteins and protein-derived peptides in milk and EVs and recognition of their biological activities and functions had a tremendous impact on food industry, medicine research, and clinical applications. Advanced separation methods, mass spectrometry (MS)-based proteomic approaches and innovative biostatistical procedures allowed for characterization of milk protein isoforms, genetic/splice variants, posttranslational modifications and their key roles, and contributed to novel discoveries. This review article discusses recently published developments in separation and identification of bioactive proteins/peptides from milk and milk EVs, including MS-based proteomic approaches.
Collapse
Affiliation(s)
- Miroslava Stastna
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
30
|
Rangel AHDN, Bezerra DAFVDA, Sales DC, Araújo EDOM, Lucena LMD, Porto ALF, Véras ÍVUM, Lacerda AF, Ribeiro CVDM, Anaya K. An Overview of the Occurrence of Bioactive Peptides in Different Types of Cheeses. Foods 2023; 12:4261. [PMID: 38231707 DOI: 10.3390/foods12234261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 01/19/2024] Open
Abstract
The search for improvements in quality of life has increasingly involved changes in the diet, especially the consumption of foods which, in addition to having good nutritional value, are characterized by offering health benefits. Among the molecules that trigger several beneficial responses are peptides, which are specific fragments of proteins known to produce positive effects on the human body. This review aimed to discuss the bioactive potential of peptides from cheeses. Studies show that the protein composition of some cheese varieties exhibits a potential for the release of bioactive peptides. The production of these peptides can be promoted by some technological procedures that affect the milk structure and constituents. The cheese maturation process stands out for producing bioactive peptides due to the action of enzymes produced by lactic acid bacteria. Thus, in addition to being proteins with high biological value due to their excellent amino acid profile, peptides from some types of cheeses are endowed with functional properties such as anti-hypertensive, antimicrobial, antioxidant, anticarcinogenic, opioid, and zinc-binding activities.
Collapse
Affiliation(s)
| | | | - Danielle Cavalcanti Sales
- Academic Unit Specialized in Agricultural, Federal University of Rio Grande do Norte (UFRN), Macaiba 59280000, Brazil
| | | | - Luis Medeiros de Lucena
- Academic Unit Specialized in Agricultural, Federal University of Rio Grande do Norte (UFRN), Macaiba 59280000, Brazil
| | - Ana Lúcia Figueiredo Porto
- Morfology and Animal Fisiology Departament, Rural Federal University of Pernambuco (UFRPE), Recife 55292901, Brazil
| | | | - Ariane Ferreira Lacerda
- Federal Institute of Education, Science and Technology (IFRN), Currais Novos 59380000, Brazil
| | | | - Katya Anaya
- Faculty of Health Sciences of Trairi, Federal University of Rio Grande do Norte (UFRN), Santa Cruz 59200000, Brazil
| |
Collapse
|
31
|
Chouraqui JP. Vegetarian diets and diets which restrict animal-source foods during childhood in high-income countries. Paediatr Int Child Health 2023; 43:57-82. [PMID: 37649436 DOI: 10.1080/20469047.2023.2245186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/21/2023] [Indexed: 09/01/2023]
Abstract
Increasing numbers of populations in the West are restricting their intake of meat and other animal products for reasons relating to health or ethics; in many countries, these restrictions are already common for cultural, religious, or socio-economic reasons. By following their parent's diet, children are exposed in parallel. This narrative review aims at assessing current data regarding vegetarian diets in children from birth to 18 years of age, which include, by increasing degree of restriction, flexitarian, lacto-ovo-vegetarian, lacto-vegetarian, pescatarian, vegan and macrobiotic diets. The 202 references include 45 studies in children. The more restrictive the diet and the younger the child, the greater the risk of nutritional deficiency. Of particular concern are vitamin B12, iron, zinc, calcium, n-3 long-chain polyunsaturated fatty acids, and protein and energy intake, especially in pregnant and nursing women, infants and young children. Providing an adequate lacto-ovo-vegetarian diet is relatively easy, whereas the maintenance of more restrictive diets may be challenging. The benefits and risks of vegetarian diets in adults are relatively well documented, but data for children are scarce. Vegan and macrobiotic diets should be discouraged in pregnant and lactating mothers as well as in young children, who, otherwise, should pay careful attention to ensuring nutritional adequacy, blood testing and appropriate supplementation. The health consequences of a chosen diet should be discussed with parents and adolescents to ensure the best possible adherence to advice and prescriptions. There is a need for well conducted studies in children but also for better knowledge of nutrition in healthcare professionals.Abbreviations: ALA: α-linolenic acid; ARA: arachidonic acid; ASF: animal source foods; BMC: bone mineral content; BMD: bone mineral density; DHA: docosahexaenoic acid; DRV: dietary reference value; EPA: eicosapentaenoic acid; FLD: flexitarian diet; LA: linoleic acid; LC-PUFA: long-chain polyunsaturated fatty acids; LOVD: lacto-ovo-vegetarian diet; LVD: lacto-vegetarian diet; MAD: macrobiotic diet; OMD: omnivorous diet; PSF: plant-source foods; SFA: saturated fatty acids; VGD: vegetarian diets; VND: vegan diet.
Collapse
Affiliation(s)
- Jean-Pierre Chouraqui
- Paediatric Division of Nutrition and Gastro-Enterology, Department of Paediatric, Grenoble-Alpes University Hospital (CHUGA), Grenoble, France
| |
Collapse
|
32
|
Agoni C, Stavropoulos I, Kirwan A, Mysior MM, Holton T, Kranjc T, Simpson JC, Roche HM, Shields DC. Cell-Penetrating Milk-Derived Peptides with a Non-Inflammatory Profile. Molecules 2023; 28:6999. [PMID: 37836842 PMCID: PMC10574647 DOI: 10.3390/molecules28196999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Milk-derived peptides are known to confer anti-inflammatory effects. We hypothesised that milk-derived cell-penetrating peptides might modulate inflammation in useful ways. Using computational techniques, we identified and synthesised peptides from the milk protein Alpha-S1-casein that were predicted to be cell-penetrating using a machine learning predictor. We modified the interpretation of the prediction results to consider the effects of histidine. Peptides were then selected for testing to determine their cell penetrability and anti-inflammatory effects using HeLa cells and J774.2 mouse macrophage cell lines. The selected peptides all showed cell penetrating behaviour, as judged using confocal microscopy of fluorescently labelled peptides. None of the peptides had an effect on either the NF-κB transcription factor or TNFα and IL-1β secretion. Thus, the identified milk-derived sequences have the ability to be internalised into the cell without affecting cell homeostatic mechanisms such as NF-κB activation. These peptides are worthy of further investigation for other potential bioactivities or as a naturally derived carrier to promote the cellular internalisation of other active peptides.
Collapse
Affiliation(s)
- Clement Agoni
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland (M.M.M.); (J.C.S.)
- School of Medicine, University College Dublin, Belfield, D04 W6F6 Dublin 4, Ireland
- Discipline of Pharmaceutical Sciences, University of KwaZulu Natal, Durban 4041, South Africa
| | - Ilias Stavropoulos
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland (M.M.M.); (J.C.S.)
- School of Medicine, University College Dublin, Belfield, D04 W6F6 Dublin 4, Ireland
| | - Anna Kirwan
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland (M.M.M.); (J.C.S.)
- School of Biology and Environmental Science, University College Dublin, Belfield, D04 N2E5 Dublin 4, Ireland
| | - Margharitha M. Mysior
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland (M.M.M.); (J.C.S.)
- Institute of Food and Health, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland
| | - Therese Holton
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland (M.M.M.); (J.C.S.)
- Institute of Food and Health, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland
| | - Tilen Kranjc
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland (M.M.M.); (J.C.S.)
- Institute of Food and Health, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland
| | - Jeremy C. Simpson
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland (M.M.M.); (J.C.S.)
- School of Biology and Environmental Science, University College Dublin, Belfield, D04 N2E5 Dublin 4, Ireland
| | - Helen M. Roche
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland (M.M.M.); (J.C.S.)
- Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK
| | - Denis C. Shields
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland (M.M.M.); (J.C.S.)
- School of Medicine, University College Dublin, Belfield, D04 W6F6 Dublin 4, Ireland
| |
Collapse
|
33
|
Cicchi C, Paoli P, Modesti A, Mannelli F, Scicutella F, Buccioni A, Fontanarosa C, Luti S, Pazzagli L. Effect of Bovine Milk Peptides on Cell Inflammation, Proliferation and Differentiation: Milk Potential Benefits Are Preserved in an Unconventional Cow Feeding Strategy. BIOLOGY 2023; 12:1162. [PMID: 37759562 PMCID: PMC10525111 DOI: 10.3390/biology12091162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023]
Abstract
Animal feeding through the reuse of agro-industrial by-products in one of the ultimate goals of sustainable agriculture. Olive oil pomace (OOP) produced as a waste product during olive oil milling has been used as an ingredient in the diet for Holstein lactating cows. Recent findings have shown no decrease in animal performance, feed intake or detrimental effect on rumen microbiota. In contrast, an improvement in C18 polyunsaturated fatty acids has been observed. In this work, the milk protein content from cows fed a commercial diet (CON) or an experimental one supplemented with OOP was determined and compared, and the peptides derived from the simulated gastrointestinal digestion of raw milk were analyzed. After fractionation via RP-HPLC, peptides were characterized for their biological activity on different cell lines. The ability to reduce both the intracellular ROS content and the expression of inflammatory markers, such as Cyclooxygenase, isoenzyme 2 (COX-2) and inducible Nitric Oxide Synthase (iNOS), as well as the remarkable properties to induce cell differentiation and to slow down the proliferation of human intestinal cancer cells, enable us to define them as bioactive peptides. In spite of there being no observed significant difference between the healthy activity of CON and OOP peptides, the results allow us to broaden the knowledge about the biological activity of these bioactive peptides and to confirm that agro-industrial by-products may be successfully incorporated into the feeding strategy of dairy cows.
Collapse
Affiliation(s)
- Costanza Cicchi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (C.C.); (P.P.); (A.M.); (L.P.)
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (C.C.); (P.P.); (A.M.); (L.P.)
| | - Alessandra Modesti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (C.C.); (P.P.); (A.M.); (L.P.)
| | - Federica Mannelli
- Department of Agricultural, Food, Environmental and Forestry Sciences and Technologies, University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy; (F.M.); (F.S.); (A.B.)
| | - Federica Scicutella
- Department of Agricultural, Food, Environmental and Forestry Sciences and Technologies, University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy; (F.M.); (F.S.); (A.B.)
| | - Arianna Buccioni
- Department of Agricultural, Food, Environmental and Forestry Sciences and Technologies, University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy; (F.M.); (F.S.); (A.B.)
| | - Carolina Fontanarosa
- Department of Chemical Sciences, University of Naples Federico II, 80138 Naples, Italy;
- Consorzio Interuniversitario I.N.B.B., Viale Medaglie D’Oro, 00136 Rome, Italy
| | - Simone Luti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (C.C.); (P.P.); (A.M.); (L.P.)
| | - Luigia Pazzagli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (C.C.); (P.P.); (A.M.); (L.P.)
| |
Collapse
|
34
|
Sørensen ES, Christensen B. Milk Osteopontin and Human Health. Nutrients 2023; 15:nu15112423. [PMID: 37299387 DOI: 10.3390/nu15112423] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Osteopontin (OPN) is a multifunctional protein found in all vertebrates. OPN is expressed in many different cell types, and is consequently found in most tissues and physiological secretions. OPN is involved in a multitude of biological processes, such as activation and regulation of the immune system; biomineralization; tissue-transformative processes, including growth and development of the gut and brain; interaction with bacteria; and many more. OPN is found in the highest concentrations in milk, where it is believed to initiate and regulate developmental, immunological and physiological processes in infants who consume milk. Processes for the isolation of bovine OPN for use in infant formula have been developed, and in recent years, many studies have investigated the effects of the intake of milk OPN. The purpose of this article is to review and compare existing knowledge about the structure and function of milk OPN, with a particular focus on the effects of milk OPN on human health and disease.
Collapse
Affiliation(s)
- Esben S Sørensen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Brian Christensen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| |
Collapse
|
35
|
Domingues Galli B, Nikoloudaki O, Tonini S, Helal A, Di Cagno R, Gobbetti M, Tagliazucchi D. How starter cultures affect the peptidomic profile and bioactive activities of the Asiago-PDO cheese throughout ripening. Food Res Int 2023; 167:112743. [PMID: 37087287 DOI: 10.1016/j.foodres.2023.112743] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Our study investigated the chemical, microbiological, and bioactive peptide profiles of Asiago Protected Designation of Origin (PDO) cheese from two dairies (Dairy I and II) produced over two consecutive days (batches) and analysed during three months of ripening. The effect of different starter cultures was evaluated. The microbiome varied between the dairies and batches, with curds post-salting dominated by the starter culture-associated genera. During ripening, there was an increasing trend in the Lactobacillus genus, especially for Dairy I, which used an industrial starter. Bioactive peptide intensities differed throughout ripening due to the extent of proteolysis, and their intensity or concentration evolved, modifying, and differentiating profiles. The industrial starter used in Dairy I had the highest relative intensity (average value 76.50%) of bioactive peptides after three months of ripening. In contrast, the cheeses made with natural milk starter (Dairy II) had lower total relative intensity (average value 47.75%) but produced ACE-inhibitory peptides through sub-dominant strains and non-starter lactic acid bacteria. The importance of autochthonous strains of each micro-region even within a delimited PDO production area was highlighted.
Collapse
|
36
|
Wan P, Cai B, Chen H, Chen D, Zhao X, Yuan H, Huang J, Chen X, Luo L, Pan J. Antidiabetic effects of protein hydrolysates from Trachinotus ovatus and identification and screening of peptides with α-amylase and DPP-IV inhibitory activities. Curr Res Food Sci 2023; 6:100446. [PMID: 36816000 PMCID: PMC9932700 DOI: 10.1016/j.crfs.2023.100446] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/15/2023] Open
Abstract
In the present study, the antidiabetic properties of Trachinotus ovatus protein hydrolysates (TOH) in streptozotocin-induced diabetic mice were investigated, and peptides with α-amylase (AAM) and dipeptidyl peptidase IV (DPP-IV) inhibitory activities were identified and screened. The results showed that TOH alleviated body weight loss, polyphagia, blood glucose elevation and insulin secretion decline in diabetic mice. After 4 weeks of TOH administration, random blood glucose (RBG) decreased significantly. The TOH groups showed a dose-dependent reduction in fasting blood glucose (FBG), especially in the high-dose TOH group, which reduced FBG by 58% versus the effect of metformin. Moreover, TOH exerted a remarkable protective effect on hepatorenal function, as evidenced by increased superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) and decreased serum urea levels. Histopathological studies confirmed that TOH can significantly protect the kidney and pancreas from histological changes, which was of great benefit for ensuring the normal secretion of insulin and preventing the occurrence of complications such as diabetic nephropathy. Two fractions with higher inhibitory activity against AAM and DPP-IV, F4 and F6, were obtained from the ultrafiltration of TOH-2 (≤3 kDa). A total of 19 potentially active peptides from F4 and 3 potentially active peptides from F6 were screened by LC‒MS/MS combined with bioinformatic analysis. These peptides are small molecular peptides composed of 2-6 amino acids, rich in characteristic amino acids such as proline, arginine, phenylalanine and asparagine, and contain high proportions of peptides (68% for F4, 67% for F6) with hydrophobicity ≥50%. They offer potent antidiabetic potential and could potentially bind to the active sites in the internal cavities of the target enzymes AAM and DPP-IV. In summary, this study revealed for the first time the antidiabetic effects of protein hydrolysates of Trachinotus ovatus and their derived peptides, which are promising natural ingredients with the potential to be used for the treatment or prevention of diabetes.
Collapse
Affiliation(s)
- Peng Wan
- Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Meteria Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, 572000, China
| | - Bingna Cai
- Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Meteria Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, China
| | - Hua Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Meteria Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, China
| | - Deke Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Meteria Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, China
| | - Xiangtan Zhao
- Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Meteria Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Huabiao Yuan
- Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Meteria Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jingtong Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Meteria Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xin Chen
- School of Environment and Chemical Engineering, Foshan University, Foshan, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Jianyu Pan
- Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Meteria Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, China
- Corresponding author. Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, Guangdong, China.
| |
Collapse
|
37
|
Wang C, Lu Y, He K, Zhao R, Cheng J, Jiang S, Guo M. Comparative proteomics analyses of whey proteins from breastmilk collected from two ethnic groups in northeast China. Food Chem X 2023; 17:100568. [PMID: 36845516 PMCID: PMC9945434 DOI: 10.1016/j.fochx.2023.100568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
The current study aims to investigate differences in whey protein of breastmilk of volunteered mother collected from two ethnic groups (Korean and Han) in China using data-independent acquisition (DIA) based proteomics technique. The total detected 624 proteins were principally allocated to cellular process of biological process (BP), cell and cell part of cell component (CC) and binding of molecular function (MF) according to Gene Ontology (GO) annotation; and carbohydrate metabolism of Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Among the 54 differently expressed proteins, 8 were related with immunity. Enrichment data showed that intracellular of GO functions and viral myocarditis of KEGG pathways were most significantly enriched (p < 0.05). Protein-protein interaction (PPI) network suggested that 40S ribosomal protein S27a and 60S ribosomal protein L10a which interacted most with other proteins ranked the top two hub proteins by MCC (Maximal Clique Centrality) method. This study may have guiding role for development of infant formula powder for specific infants of Han or Korean groups according to responding breastmilk composition.
Collapse
Affiliation(s)
- Cuina Wang
- Department of Food Science, Jilin University, Changchun, China
| | - Yingcong Lu
- Department of Food Science, Jilin University, Changchun, China
| | - Keyi He
- Department of Food Science, Jilin University, Changchun, China
| | - Ru Zhao
- Department of Food Science, Jilin University, Changchun, China
| | - Jianjun Cheng
- Department of Food Science, Northeast Agriculture University, Harbin, China
| | - Shilong Jiang
- R&D Center, Heilongjiang Feihe Dairy Co., Ltd, Beijing, China
| | - Mingruo Guo
- Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA,Corresponding author at: 109 Carrigan Drive, 351Marsh Life Science, The University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
38
|
Li QZ, Zhou ZR, Hu CY, Li XB, Chang YZ, Liu Y, Wang YL, Zhou XW. Recent advances of bioactive proteins/polypeptides in the treatment of breast cancer. Food Sci Biotechnol 2023; 32:265-282. [PMID: 36619215 PMCID: PMC9808697 DOI: 10.1007/s10068-022-01233-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/24/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023] Open
Abstract
Proteins do not only serve as nutrients to fulfill the demand for food, but also are used as a source of bioactive proteins/polypeptides for regulating physical functions and promoting physical health. Female breast cancer has the highest incidence in the world and is a serious threat to women's health. Bioactive proteins/polypeptides exert strong anti-tumor effects and exhibit inhibition of multiple breast cancer cells. This review discussed the suppressing effects of bioactive proteins/polypeptides on breast cancer in vitro and in vivo, and their mechanisms of migration and invasion inhibition, apoptosis induction, and cell cycle arrest. This may contribute to providing a basis for the development of bioactive proteins/polypeptides for the treatment of breast cancer. Graphical abstract
Collapse
Affiliation(s)
- Qi-Zhang Li
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Food and Biological Engineering, Hubei University of Technology, No.28, Nanli Road, Wuhan, 430068 Hubei People’s Republic of China
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Ze-Rong Zhou
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Food and Biological Engineering, Hubei University of Technology, No.28, Nanli Road, Wuhan, 430068 Hubei People’s Republic of China
| | - Cui-Yu Hu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Food and Biological Engineering, Hubei University of Technology, No.28, Nanli Road, Wuhan, 430068 Hubei People’s Republic of China
| | - Xian-Bin Li
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, Guangdong 510006 People’s Republic of China
| | - Yu-Zhou Chang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210 USA
| | - Yan Liu
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Yu-Liang Wang
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Xuan-Wei Zhou
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| |
Collapse
|
39
|
Gonçalves RF, Madalena DA, Fernandes JM, Marques M, Vicente AA, Pinheiro AC. Application of nanostructured delivery systems in food: From incorporation to detection and characterization. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Pinto A, Daly A, Rocha JC, Ashmore C, Evans S, Jackson R, Payne A, Hickson M, MacDonald A. Impact of Fruit and Vegetable Protein vs. Milk Protein on Metabolic Control of Children with Phenylketonuria: A Randomized Crossover Controlled Trial. Nutrients 2022; 14:nu14204268. [PMID: 36296952 PMCID: PMC9611310 DOI: 10.3390/nu14204268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
Fruits and vegetables containing phenylalanine ≤ 75 mg/100 g (except potatoes) have little impact on blood phenylalanine in phenylketonuria (PKU). In a randomized, controlled, crossover intervention trial, we examined the effect of increasing phenylalanine intake from fruits and vegetables, containing phenylalanine 76−100 mg /100 g, compared with milk protein sources on blood phenylalanine control. This was a five-phase study (4 weeks each phase). In Phase A, patients remained on their usual diet and then were randomly allocated to start Phase B and C (an additional phenylalanine intake of 50 mg/day, then 100 mg from fruits and vegetables containing phenylalanine 76−100 mg/100 g) or Phase D and E (an additional phenylalanine intake of 50 mg/day then 100 mg/day from milk sources). There was a 7-day washout with the usual phenylalanine-restricted diet between Phase B/C and D/E. Blood phenylalanine was measured on the last 3 days of each week. If four out of six consecutive blood phenylalanine levels were >360 μmol/L in one arm, this intervention was stopped. Sixteen patients (median age 10.5 y; range 6−12 y) were recruited. At baseline, a median of 6 g/day (range: 3−25) natural protein and 60 g/day (range: 60−80) protein equivalent from protein substitute were prescribed. Median phenylalanine levels were: Phase A—240 μmol/L; Phase B—260 μmol/L; Phase C—280 μmol/L; Phase D—270 μmol/L and Phase E—280 μmol/L. All patients tolerated an extra 50 mg/day of phenylalanine from fruit and vegetables, containing phenylalanine 76−100 mg/100 g, but only 11/16 (69%) tolerated an additional 100 mg /day. With milk protein, only 8/16 (50%) tolerated an extra 50 mg/day and only 5/16 (31%) tolerated an additional 100 mg/day of phenylalanine. Tolerance was defined as maintaining consistent blood phenylalanine levels < 360 μmol/L throughout each study arm. There was a trend that vegetable protein had less impact on blood phenylalanine control than milk protein, but overall, the differences were not statistically significant (p = 0.152). This evidence supports the PKU European Guidelines cutoff that fruit and vegetables containing 76−100 mg phenylalanine/100 g should be calculated as part of the phenylalanine exchange system. Tolerance of the ‘free use’ of these fruits and vegetables depends on inter-patient variability but cannot be recommended for all patients with PKU.
Collapse
Affiliation(s)
- Alex Pinto
- Dietetic Department, Birmingham Women’s and Children’s Hospital, Birmingham B4 6NH, UK
- Faculty of Health, Plymouth Institute of Health and Care Research, University of Plymouth, Plymouth PL6 8BH, UK
- Correspondence:
| | - Anne Daly
- Dietetic Department, Birmingham Women’s and Children’s Hospital, Birmingham B4 6NH, UK
| | - Júlio César Rocha
- NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- CINTESIS, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- Reference Centre of Inherited Metabolic Diseases, Centro Hospitalar Universitario de Lisboa Central, 1169-045 Lisboa, Portugal
| | - Catherine Ashmore
- Dietetic Department, Birmingham Women’s and Children’s Hospital, Birmingham B4 6NH, UK
| | - Sharon Evans
- Dietetic Department, Birmingham Women’s and Children’s Hospital, Birmingham B4 6NH, UK
| | - Richard Jackson
- Cancer Research UK Liverpool Cancer Trials Unit, University of Liverpool, Liverpool L69 3GL, UK
| | - Anne Payne
- Faculty of Health, Plymouth Institute of Health and Care Research, University of Plymouth, Plymouth PL6 8BH, UK
| | - Mary Hickson
- Faculty of Health, Plymouth Institute of Health and Care Research, University of Plymouth, Plymouth PL6 8BH, UK
| | - Anita MacDonald
- Dietetic Department, Birmingham Women’s and Children’s Hospital, Birmingham B4 6NH, UK
- Faculty of Health, Plymouth Institute of Health and Care Research, University of Plymouth, Plymouth PL6 8BH, UK
| |
Collapse
|
41
|
Das A, Giri K, Behera RN, Maity S, Ambatipudi K. BoMiProt 2.0: An update of the bovine milk protein database. J Proteomics 2022; 267:104696. [PMID: 35995382 DOI: 10.1016/j.jprot.2022.104696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
Abstract
Milk is a biofluid with various functions, containing carbohydrates, lipids, proteins, vitamins, and minerals. Owing to its importance and availability of vast proteomics information, our research group designed a database for bovine milk proteins (N = 3159) containing the primary and secondary information called BoMiProt. Due to the gaining interest and intensively published literature in the last three years, BoMiProt has been upgraded with newer identified proteins (N = 7459) from peer-reviewed journals, significantly expanding the database from different milk fractions (e.g., whey, fat globule membranes, and exosomes). Additionally, class, architecture, topology, and homology, structural classification of proteins, known and predicted disorder, predicted transmembrane helices, and structures have been included. Each protein entry in the database is thoroughly cross-referenced, including 1392 BoMiProt defined proteins provided with secondary information, such as protein function, biochemical properties, post-translational modifications, significance in milk, domains, fold, AlphaFold predicted models and crystal structures. The proteome data in the database can be retrieved using several search parameters using protein name, accession IDs, and FASTA sequence. Overall, BoMiProt represents an extensive compilation of newer proteins, including structural, functional, and hierarchical information, to help researchers better understand mammary gland pathophysiology, including their potential application in improving the nutritional quality of dairy products.
Collapse
Affiliation(s)
- Arpita Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Kuldeep Giri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Rama N Behera
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Sudipa Maity
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Kiran Ambatipudi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
42
|
Qi W, Tian Y, Lu D, Chen B. Detection of glutathione in dairy products based on surface-enhanced infrared absorption spectroscopy of silver nanoparticles. Front Nutr 2022; 9:982228. [PMID: 36046139 PMCID: PMC9421297 DOI: 10.3389/fnut.2022.982228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
In this paper, silver nanoparticles (AgNPs) were prepared as enhanced substrates for the detection of glutathione in dairy products by polyol reduction of silver nitrate. The infrared spectra were collected and analyzed by surface-enhanced infrared absorption spectroscopy (SEIRA) method of transmission mode using a cell of calcium fluoride window sheet immobilization solution for the study. The disappearance of the thiol (-SH) absorption peak in the infrared spectrum, and the shift of its characteristic absorption peak when glutathione was bound to AgNPs solvate indicated the Ag-S bond interaction and the aggregation of AgNPS. AgNPs accumulate to form "hot spots", resulting in enhanced electromagnetic fields and thus enhanced infrared signals of glutathione. The intensity of the characteristic absorption peak at 1,654 cm-1 (carbonyl C=O bond stretching) was used for the quantitative analysis of glutathione. After optimizing the conditions, glutathione content in pretreated pure milk and pure ewe's milk was determined using AgNPs in combination with SEIRA. Good linearity was obtained in the range of 0.02-0.12 mg/mL with correlation coefficients (R 2) of 0.9879 and 0.9833, respectively, and LOD of 0.02 mg/mL with average spiked recoveries of 101.3 and 92.5%, respectively. The results show that the method can be used for accurate determination of glutathione content in common dairy products.
Collapse
Affiliation(s)
- Wenliang Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yanlong Tian
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Beijing Jingyi Group Co., Ltd., Beijing, China.,Beijing Beifen-Ruili Analytical Instrument (Group) Co., Ltd., Beijing Engineering Research Center of Material Composition Analytical Instrument, Beijing Enterprise Technology Center, Beijing, China
| | - Daoli Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Bin Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
43
|
Kaur H, Kaur G, Ali SA. Dairy-Based Probiotic-Fermented Functional Foods: An Update on Their Health-Promoting Properties. FERMENTATION-BASEL 2022; 8:425. [DOI: 10.3390/fermentation8090425] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Numerous studies have shown a link between the consumption of fermented dairy foods and improved health outcomes. Since the early 2000s, especially probiotic-based fermented functional foods, have had a revival in popularity, mostly as a consequence of claims made about their health benefits. Among them, fermented dairy foods have been associated with obesity prevention and in other conditions such as chronic diarrhea, hypersensitivity, irritable bowel syndrome, Helicobacter pylori infection, lactose intolerance, and gastroenteritis which all are intimately linked with an unhealthy way of life. A malfunctioning inflammatory response may affect the intestinal epithelial barrier’s ability to function by interfering with the normal metabolic processes. In this regard, several studies have shown that fermented dairy probiotics products improve human health by stimulating the growth of good bacteria in the gut at the same time increasing the production of metabolic byproducts. The fermented functional food matrix around probiotic bacteria plays an important role in the survival of these strains by buffering and protecting them from intestinal conditions such as low pH, bile acids, and other harsh conditions. On average, cultured dairy products included higher concentrations of lactic acid bacteria, with some products having as much as 109/mL or g. The focus of this review is on fermented dairy foods and associated probiotic products and their mechanisms of action, including their impact on microbiota and regulation of the immune system. First, we discussed whey and whey-based fermented products, as well as the organisms associated with them. Followed by the role of probiotics, fermented-product-mediated modulation of dendritic cells, natural killer cells, neutrophils, cytokines, immunoglobulins, and reinforcement of gut barrier functions through tight junction. In turn, providing the ample evidence that supports their benefits for gastrointestinal health and related disorders.
Collapse
Affiliation(s)
- Harpreet Kaur
- Animal Biochemistry Division, Indian Council of Agricultural Research-National Dairy Research Institute (ICAR-NDRI), Karnal 132001, India
| | - Gurjeet Kaur
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia
- Mark Wainwright Analytical Centre, Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW 2052, Australia
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-NDRI, Karnal 132001, India
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
44
|
Jiménez-Montenegro L, Alfonso L, Mendizabal JA, Urrutia O. Worldwide Research Trends on Milk Containing Only A2 β-Casein: A Bibliometric Study. Animals (Basel) 2022; 12:ani12151909. [PMID: 35953898 PMCID: PMC9367265 DOI: 10.3390/ani12151909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/16/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022] Open
Abstract
Simple Summary A1 β-casein has been correlated with adverse health outcomes, and, as a consequence, milk containing only A2 β-casein has emerged on the market. There has been a relevant increase in publications in this area since 2010. Food Science Technology and Agriculture were the main research areas of this topic. The term β-casomorphin was the most frequently used. The USA, New Zealand, and Australia were the most productive countries, though the most productive research institutions were, in absolute terms, from India, France, and Germany. The majority of the most cited studies that refer to A2 β-casein and health were reviews, and a few clinical trials have also been published. Abstract The protein fraction of β-casein may play a key role in the manifestation of a new intolerance: milk protein intolerance. The most common forms of β-casein among dairy cattle breeds are A1 and A2 β-casein. During gastrointestinal digestion of A1 β-casein, an opioid called peptide β-casomorphin-7 (BCM-7) is more frequently released, which can lead to adverse health outcomes. For that reason, novel products labelled as “A2 milk” or “A1-free dairy products” have appeared on the market. In this context, a bibliometric analysis on A2 β-casein research was carried out through the Web of Science (WoS) database. The main objective of this work was to provide an overview of the state of the art in the field of β-casein A2 by analyzing the number of publications per year, trends in thematic content, the most frequently used terms, and the most important institutions and countries in the field. This bibliometric study showed that a greater effort is needed to determine the possible implications of this novel product for human health and the market.
Collapse
|
45
|
Calcium supplements and structure–activity relationship of peptide-calcium chelates: a review. Food Sci Biotechnol 2022; 31:1111-1122. [DOI: 10.1007/s10068-022-01128-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/30/2022] [Accepted: 06/28/2022] [Indexed: 11/04/2022] Open
|
46
|
The effect of fat replacement by whey protein microcoagulates on the physicochemical properties and microstructure of acid casein model processed cheese. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|