1
|
Barreto-Gamarra C, Domenech M. Integrin stimulation by collagen I at the progenitor stage accelerates maturation of human iPSC-derived cardiomyocytes. J Mol Cell Cardiol 2025; 201:70-86. [PMID: 40023481 DOI: 10.1016/j.yjmcc.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
Cell manufacturing challenges have hampered effective preclinical evaluations of mature cardiac cells derived from human-induced pluripotent stem cells (hiPSCs). These challenges mainly stem from standard differentiation methods yielding cardiac cells of an immature phenotype, low cell yields and the need for extended culture for enhanced maturation. Although the intricate relationship between extracellular matrix (ECM) components and integrin expression levels plays a pivotal role during heart development, the impact of differentiation and maturation of cardiac cells on integrin behavior has not been thoroughly studied. This study postulates that cardiac cell maturation is significantly influenced by the timing of integrin stimulation via cell-matrix interactions. We profiled integrin expression levels throughout the differentiation process of cardiac cells and assessed the effects of utilizing defined ECM components as culture substrates on cell adhesion, proliferation, differentiation, and maturation. Our findings reveal that integrins facilitate hiPSC adhesion to ECM coated culture surfaces and underscores dynamic alterations in integrin expression during cardiac cell differentiation. Remarkably, we observed significant enrichments in α2 and β1 collagen integrin levels at the progenitor and differentiated stages. These shifts in collagen integrin levels were associated with enhanced cell seeding efficiency on collagen-type I surfaces and altered population doubling times. The stimulation of collagen integrins at the progenitor stage markedly boosted cardiac cell maturation, demonstrated by a significant (∼3-fold) increase in cardiac troponin I expression compared to the standard method after 15 days of culture. Enhanced maturation levels were further supported by significant increases in sarcomere development, maturation gene expression, morphological features, improved beating potency, and fatty acid metabolism dependency. Cardiac maturation driven by collagen was abrogated upon inhibition of collagen integrins targeted with selective pharmacological blockers, affirming their indispensable role in maturation without affecting cardiac differentiation levels. Our work confirms that stimulating collagen integrins at the progenitor stage is a potential strategy to achieve rapid maturation of hiPSC-derived cardiac cells. STATEMENT OF SIGNIFICANCE: This study offers a novel strategy guided by integrin expression levels for generating hiPSC-CMs with improved maturation features in a short culture period (<16 days). The improvements in cardiac cell maturation were achieved by stimulating collagen type 1 integrin at the progenitor stage. The potential benefits of this method for regenerative cardiac repair will pave the way for the preclinical examination of mature cardiac cells in tissues to advance cell manufacturing and cardiac toxicity studies.
Collapse
Affiliation(s)
- Carlos Barreto-Gamarra
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Call Box 9000, Mayagüez, PR 00681-9000, United States
| | - Maribella Domenech
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Call Box 9000, Mayagüez, PR 00681-9000, United States..
| |
Collapse
|
2
|
Smerdu V, Ugwoke CK, Šink Ž. Co-expression of MyHC-15 with other known isoforms in rat muscle spindles. Eur J Histochem 2025; 69:4192. [PMID: 40126372 PMCID: PMC11983093 DOI: 10.4081/ejh.2025.4192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025] Open
Abstract
Muscle spindles are skeletal muscle sensory receptors composed of intrafusal fibres, partially encapsulated by connective tissue capsule. This capsule encloses the central A and B regions while leaving the distal C region extracapsular. Several past studies in rat have shown that muscle spindles typically contain a single bag1 fibre, a single bag2 fibre, and two smaller chain fibres. Intrafusal fibres co-express multiple myosin heavy chain (MyHC) isoforms: -slow or -1, -slow-tonic, -α, -2a, -2b, -embryonic, and -neonatal. While MyHC-2x was previously thought absent, the recently discovered MyHC-15 isoform has been identified in the C region of rat bag fibres. Using antibodies specific for nine MyHC isoforms and analyzing four different rat skeletal muscles-soleus, extensor digitorum longus, and the lateral and medial heads of gastrocnemius-we aimed to further characterize the co-expression pattern of MyHC-15 with other known isoforms and to determine whether MyHC-2x is expressed in rat intrafusal fibres. While rodents are widely used as animal models in skeletal muscle research, notable species-specific differences in MyHC isoform expression exist. Our findings revealed that MyHC-15 expression in rat intrafusal fibres is less abundant than in human fibres. MyHC-15 was primarily observed in bag fibres but was not detected in the C region, contrary to previous reports in both rat and human. We confirmed the absence of MyHC-2x in rat intrafusal fibres. Similarly, MyHC-embryonic and -neonatal were not detected in the analyzed spindles, suggesting that previously used antibodies may have cross-reacted with MyHC-2a and -2b. While our results partially corroborate previous extensive studies, discrepancies suggest that MyHC expression in intrafusal fibres varies not only along the fibre length but also across muscles.
Collapse
Affiliation(s)
- Vika Smerdu
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Slovenia
| | | | | |
Collapse
|
3
|
Hoh JFY. Developmental, Physiological and Phylogenetic Perspectives on the Expression and Regulation of Myosin Heavy Chains in Craniofacial Muscles. Int J Mol Sci 2024; 25:4546. [PMID: 38674131 PMCID: PMC11050549 DOI: 10.3390/ijms25084546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
This review deals with the developmental origins of extraocular, jaw and laryngeal muscles, the expression, regulation and functional significance of sarcomeric myosin heavy chains (MyHCs) that they express and changes in MyHC expression during phylogeny. Myogenic progenitors from the mesoderm in the prechordal plate and branchial arches specify craniofacial muscle allotypes with different repertoires for MyHC expression. To cope with very complex eye movements, extraocular muscles (EOMs) express 11 MyHCs, ranging from the superfast extraocular MyHC to the slowest, non-muscle MyHC IIB (nmMyH IIB). They have distinct global and orbital layers, singly- and multiply-innervated fibres, longitudinal MyHC variations, and palisade endings that mediate axon reflexes. Jaw-closing muscles express the high-force masticatory MyHC and cardiac or limb MyHCs depending on the appropriateness for the acquisition and mastication of food. Laryngeal muscles express extraocular and limb muscle MyHCs but shift toward expressing slower MyHCs in large animals. During postnatal development, MyHC expression of craniofacial muscles is subject to neural and hormonal modulation. The primary and secondary myotubes of developing EOMs are postulated to induce, via different retrogradely transported neurotrophins, the rich diversity of neural impulse patterns that regulate the specific MyHCs that they express. Thyroid hormone shifts MyHC 2A toward 2B in jaw muscles, laryngeal muscles and possibly extraocular muscles. This review highlights the fact that the pattern of myosin expression in mammalian craniofacial muscles is principally influenced by the complex interplay of cell lineages, neural impulse patterns, thyroid and other hormones, functional demands and body mass. In these respects, craniofacial muscles are similar to limb muscles, but they differ radically in the types of cell lineage and the nature of their functional demands.
Collapse
Affiliation(s)
- Joseph Foon Yoong Hoh
- Discipline of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Schiaffino S, Hughes SM, Murgia M, Reggiani C. MYH13, a superfast myosin expressed in extraocular, laryngeal and syringeal muscles. J Physiol 2024; 602:427-443. [PMID: 38160435 DOI: 10.1113/jp285714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
MYH13 is a unique type of sarcomeric myosin heavy chain (MYH) first detected in mammalian extraocular (EO) muscles and later also in vocal muscles, including laryngeal muscles of some mammals and syringeal muscles of songbirds. All these muscles are specialized in generating very fast contractions while producing relatively low force, a design appropriate for muscles acting against a much lower load than most skeletal muscles inserting into the skeleton. The definition of the physiological properties of muscle fibres containing MYH13 has been complicated by the mixed fibre type composition of EO muscles and the coexistence of different MYH types within the same fibre. A major advance in this area came from studies on isolated recombinant myosin motors and the demonstration that the affinity of actin-bound human MYH13 for ADP is much weaker than those of fast-type MYH1 (type 2X) and MYH2 (type 2A). This property is consistent with a very fast detachment of myosin from actin, a major determinant of shortening velocity. The MYH13 gene arose early during vertebrate evolution but was characterized only in mammals and birds and appears to have been lost in some teleost fish. The MYH13 gene is located at the 3' end of the mammalian fast/developmental gene cluster and in a similar position to the orthologous cluster in syntenic regions of the songbird genome. MYH13 gene regulation is controlled by a super-enhancer in the mammalian locus and deletion of the neighbouring fast MYH1 and MYH4 genes leads to abnormal MYH13 expression in mouse leg muscles.
Collapse
Affiliation(s)
| | - Simon M Hughes
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College, London, UK
| | - Marta Murgia
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Science and Research Center Koper, Institute for Kinesiology Research, Koper, Slovenia
| |
Collapse
|
5
|
Yang G, Dai R, Ma X, Huang C, Ma X, Li X, La Y, Dingkao R, Renqing J, Guo X, Zhaxi T, Liang C. Proteomic Analysis Reveals the Effects of Different Dietary Protein Levels on Growth and Development of Jersey-Yak. Animals (Basel) 2024; 14:406. [PMID: 38338049 PMCID: PMC10854544 DOI: 10.3390/ani14030406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/09/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Jersey-yak is a hybrid offspring of Jersey cattle and yak (Bos grunniens). Changing the feeding system of Jersey-yak can significantly improve its growth performance. In this study, tandem mass tag (TMT) proteomics technology was used to determine the differentially expressed proteins (DEPs) of the longissimus lumborum (LL) muscle of Jersey-yak fed different protein levels of diet. The results showed that compared with the traditional grazing feeding, the growth performance of Jersey-yaks was significantly improved by crude protein supplementation after grazing. A total of 3368 proteins were detected in these muscle samples, of which 3365 were quantified. A total of 434 DEPs were identified. Through analyses, it was found that some pathways related to muscle growth and development were significantly enriched, such as Rap1 signaling pathway, mTOR signaling pathway, and TGF-beta signaling pathway. A number of DEPs enriched in these pathways are related to muscle cell development, differentiation, and muscle development, including integrin subunit alpha 7 (ITGA7), myosin heavy chain 8 (MYH8), and collagen type XII alpha 1 chain (COL12A1). In conclusion, the results of this study provide insights into the proteomics of different feeding patterns of Jersey-yak, providing a stronger basis for further understanding the biological mechanism of hybrid varieties.
Collapse
Affiliation(s)
- Guowu Yang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (G.Y.); (R.D.); (X.M.); (C.H.); (X.M.); (X.L.); (Y.L.); (X.G.)
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou 730106, China
| | - Rongfeng Dai
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (G.Y.); (R.D.); (X.M.); (C.H.); (X.M.); (X.L.); (Y.L.); (X.G.)
| | - Xiaoming Ma
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (G.Y.); (R.D.); (X.M.); (C.H.); (X.M.); (X.L.); (Y.L.); (X.G.)
| | - Chun Huang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (G.Y.); (R.D.); (X.M.); (C.H.); (X.M.); (X.L.); (Y.L.); (X.G.)
| | - Xiaoyong Ma
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (G.Y.); (R.D.); (X.M.); (C.H.); (X.M.); (X.L.); (Y.L.); (X.G.)
| | - Xinyi Li
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (G.Y.); (R.D.); (X.M.); (C.H.); (X.M.); (X.L.); (Y.L.); (X.G.)
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou 730106, China
| | - Yongfu La
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (G.Y.); (R.D.); (X.M.); (C.H.); (X.M.); (X.L.); (Y.L.); (X.G.)
| | - Renqing Dingkao
- Animal Husbandry Station, Gannan Tibetan Autonomous Prefecture, Hezuo 747099, China;
| | - Ji Renqing
- Zogemanma Town Animal Husbandry and Veterinary Station, Hezuo 747003, China;
| | - Xian Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (G.Y.); (R.D.); (X.M.); (C.H.); (X.M.); (X.L.); (Y.L.); (X.G.)
| | - Ta Zhaxi
- Qilian County Animal Husbandry Veterinary Workstation, Haibei Prefecture, Qilian 810400, China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (G.Y.); (R.D.); (X.M.); (C.H.); (X.M.); (X.L.); (Y.L.); (X.G.)
| |
Collapse
|
6
|
Smerdu V. Expression of MyHC-15 and -2x in human muscle spindles: An immunohistochemical study. J Anat 2023; 243:826-841. [PMID: 37420120 PMCID: PMC10557391 DOI: 10.1111/joa.13923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/09/2023] Open
Abstract
To build on the existing data on the pattern of myosin heavy chain (MyHC) isoforms expression in the human muscle spindles, we aimed to verify whether the 'novel' MyHC-15, -2x and -2b isoforms are co-expressed with the other known isoforms in the human intrafusal fibres. Using a set of antibodies, we attempted to demonstrate nine isoforms (15, slow-tonic, 1, α, 2a, 2x, 2b, embryonic, neonatal) in different regions of intrafusal fibres in the biceps brachii and flexor digitorum profundus muscles. The reactivity of some antibodies with the extrafusal fibres was also tested in the masseter and laryngeal cricothyreoid muscles. In both upper limb muscles, the expression of slow-tonic isoform was a reliable marker for differentiating positive bag fibres from negative chain fibres. Generally, bag1 and bag2 fibres were distinguished in isoform 1 expression; the latter consistently expressed this isoform over their entire length. Although isoform 15 was not abundantly expressed in intrafusal fibres, its expression was pronounced in the extracapsular region of bag fibres. Using a 2x isoform-specific antibody, this isoform was demonstrated in the intracapsular regions of some intrafusal fibres, particularly chain fibres. To the best of our knowledge, this study is the first to demonstrate 15 and 2x isoforms in human intrafusal fibres. However, whether the labelling with an antibody specific for rat 2b isoform reflects the expression of this isoform in bag fibres and some extrafusal ones in the specialised cranial muscles requires further evaluation. The revealed pattern of isoform co-expression only partially agrees with the results of previous, more extensive studies. Nevertheless, it may be inferred that MyHC isoform expression in intrafusal fibres varies along their length, across different muscle spindles and muscles. Furthermore, the estimation of expression may also depend on the antibodies utilised, which may also react differently with intrafusal and extrafusal fibres.
Collapse
Affiliation(s)
- Vika Smerdu
- Institute of Anatomy, Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| |
Collapse
|
7
|
Hoh JFY. Developmental, physiologic and phylogenetic perspectives on the expression and regulation of myosin heavy chains in mammalian skeletal muscles. J Comp Physiol B 2023:10.1007/s00360-023-01499-0. [PMID: 37277594 DOI: 10.1007/s00360-023-01499-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 06/07/2023]
Abstract
The kinetics of myosin controls the speed and power of muscle contraction. Mammalian skeletal muscles express twelve kinetically different myosin heavy chain (MyHC) genes which provides a wide range of muscle speeds to meet different functional demands. Myogenic progenitors from diverse craniofacial and somitic mesoderm specify muscle allotypes with different repertoires for MyHC expression. This review provides a brief synopsis on the historical and current views on how cell lineage, neural impulse patterns, and thyroid hormone influence MyHC gene expression in muscles of the limb allotype during development and in adult life and the molecular mechanisms thereof. During somitic myogenesis, embryonic and foetal myoblast lineages form slow and fast primary and secondary myotube ontotypes which respond differently to postnatal neural and thyroidal influences to generate fully differentiated fibre phenotypes. Fibres of a given phenotype may arise from myotubes of different ontotypes which retain their capacity to respond differently to neural and thyroidal influences during postnatal life. This gives muscles physiological plasticity to adapt to fluctuations in thyroid hormone levels and patterns of use. The kinetics of MyHC isoforms vary inversely with animal body mass. Fast 2b fibres are specifically absent in muscles involved in elastic energy saving in hopping marsupials and generally absent in large eutherian mammals. Changes in MyHC expression are viewed in the context of the physiology of the whole animal. The roles of myoblast lineage and thyroid hormone in regulating MyHC gene expression are phylogenetically the most ancient while that of neural impulse patterns the most recent.
Collapse
Affiliation(s)
- Joseph Foon Yoong Hoh
- Discipline of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.
- , PO Box 152, Killara, NSW, 2071, Australia.
| |
Collapse
|
8
|
Lee LA, Barrick SK, Buvoli AE, Walklate J, Stump WT, Geeves M, Greenberg MJ, Leinwand LA. Distinct effects of two hearing loss-associated mutations in the sarcomeric myosin MYH7b. J Biol Chem 2023; 299:104631. [PMID: 36963494 PMCID: PMC10141508 DOI: 10.1016/j.jbc.2023.104631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023] Open
Abstract
For decades, sarcomeric myosin heavy chain proteins were assumed to be restricted to striated muscle where they function as molecular motors that contract muscle. However, MYH7b, an evolutionarily ancient member of this myosin family, has been detected in mammalian nonmuscle tissues, and mutations in MYH7b are linked to hereditary hearing loss in compound heterozygous patients. These mutations are the first associated with hearing loss rather than a muscle pathology, and because there are no homologous mutations in other myosin isoforms, their functional effects were unknown. We generated recombinant human MYH7b harboring the D515N or R1651Q hearing loss-associated mutation and studied their effects on motor activity and structural and assembly properties, respectively. The D515N mutation had no effect on steady-state actin-activated ATPase rate or load-dependent detachment kinetics but increased actin sliding velocity because of an increased displacement during the myosin working stroke. Furthermore, we found that the D515N mutation caused an increase in the proportion of myosin heads that occupy the disordered-relaxed state, meaning more myosin heads are available to interact with actin. Although we found no impact of the R1651Q mutation on myosin rod secondary structure or solubility, we observed a striking aggregation phenotype when this mutation was introduced into nonmuscle cells. Our results suggest that each mutation independently affects MYH7b function and structure. Together, these results provide the foundation for further study of a role for MYH7b outside the sarcomere.
Collapse
Affiliation(s)
- Lindsey A Lee
- Molecular, Cellular, and Developmental Biology Department, Boulder, Colorado, USA; BioFrontiers Institute, Boulder, Colorado, USA
| | - Samantha K Barrick
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Ada E Buvoli
- Molecular, Cellular, and Developmental Biology Department, Boulder, Colorado, USA; BioFrontiers Institute, Boulder, Colorado, USA
| | - Jonathan Walklate
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - W Tom Stump
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Michael Geeves
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Leslie A Leinwand
- Molecular, Cellular, and Developmental Biology Department, Boulder, Colorado, USA; BioFrontiers Institute, Boulder, Colorado, USA.
| |
Collapse
|
9
|
Lee LA, Barrick SK, Meller A, Walklate J, Lotthammer JM, Tay JW, Stump WT, Bowman G, Geeves MA, Greenberg MJ, Leinwand LA. Functional divergence of the sarcomeric myosin, MYH7b, supports species-specific biological roles. J Biol Chem 2022; 299:102657. [PMID: 36334627 PMCID: PMC9800208 DOI: 10.1016/j.jbc.2022.102657] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/14/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
Myosin heavy chain 7b (MYH7b) is an evolutionarily ancient member of the sarcomeric myosin family, which typically supports striated muscle function. However, in mammals, alternative splicing prevents MYH7b protein production in cardiac and most skeletal muscles and limits expression to a subset of specialized muscles and certain nonmuscle environments. In contrast, MYH7b protein is abundant in python cardiac and skeletal muscles. Although the MYH7b expression pattern diverges in mammals versus reptiles, MYH7b shares high sequence identity across species. So, it remains unclear how mammalian MYH7b function may differ from that of other sarcomeric myosins and whether human and python MYH7b motor functions diverge as their expression patterns suggest. Thus, we generated recombinant human and python MYH7b protein and measured their motor properties to investigate any species-specific differences in activity. Our results reveal that despite having similar working strokes, the MYH7b isoforms have slower actin-activated ATPase cycles and actin sliding velocities than human cardiac β-MyHC. Furthermore, python MYH7b is tuned to have slower motor activity than human MYH7b because of slower kinetics of the chemomechanical cycle. We found that the MYH7b isoforms adopt a higher proportion of myosin heads in the ultraslow, super-relaxed state compared with human cardiac β-MyHC. These findings are supported by molecular dynamics simulations that predict MYH7b preferentially occupies myosin active site conformations similar to those observed in the structurally inactive state. Together, these results suggest that MYH7b is specialized for slow and energy-conserving motor activity and that differential tuning of MYH7b orthologs contributes to species-specific biological roles.
Collapse
Affiliation(s)
- Lindsey A. Lee
- Molecular, Cellular, and Developmental Biology Department, Boulder, Colorado, USA,BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Samantha K. Barrick
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Artur Meller
- The Center for Science and Engineering of Living Systems, Washington University in St Louis, St Louis, Missouri, USA
| | - Jonathan Walklate
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Jeffrey M. Lotthammer
- The Center for Science and Engineering of Living Systems, Washington University in St Louis, St Louis, Missouri, USA
| | - Jian Wei Tay
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - W. Tom Stump
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Gregory Bowman
- The Center for Science and Engineering of Living Systems, Washington University in St Louis, St Louis, Missouri, USA,Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael A. Geeves
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Leslie A. Leinwand
- Molecular, Cellular, and Developmental Biology Department, Boulder, Colorado, USA,BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA,For correspondence: Leslie A. Leinwand
| |
Collapse
|
10
|
Kirk EA, Castellani CA, Doherty TJ, Rice CL, Singh SM. Local and systemic transcriptomic responses from acute exercise induced muscle damage of the human knee extensors. Physiol Genomics 2022; 54:305-315. [PMID: 35723223 DOI: 10.1152/physiolgenomics.00146.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle is adaptable to a direct stimulus of exercise-induced muscle damage (EIMD). Local muscle gene networks and systemic circulatory factors respond to EIMD within days, mediating anti-inflammation and cellular proliferation. Here we show in humans that local EIMD of one muscle group is associated with a systemic response of gene networks that regulate muscle structure and cellular development in non-local homologous muscle not directly altered by EIMD. In the non-dominant knee-extensors of seven males, EIMD was induced through voluntary contractions against an electric motor that lengthened muscles. Neuromuscular assessments, vastus lateralis muscle biopsies and blood draws occurred at two days prior, and one and two days post the EIMD intervention. From the muscle and blood plasma samples, RNA-seq measured transcriptome changes of differential expression using bioinformatic analyses.Relative to the time of the EIMD intervention, local muscle that was mechanically damaged had 475 genes differentially expressed, as compared to 33 genes in the non-local homologous muscle. Gene and network analysis showed that activity of the local muscle was related to structural maintenance, repair, and energetic processes, whereas gene and network activity of the non-local muscle (that was not directly modified by the EIMD) were related to muscle cell development, stress response, and structural maintenance. Altered expression of two novel miRNAs related to the EIMD response supported that systemic factors were active. Together, these results indicate that the expression of genes and gene networks that control muscle contractile structure can be modified in response to non-local EIMD in humans.
Collapse
Affiliation(s)
- Eric A Kirk
- School of Kinesiology, Faculty of Health Sciences, Western University, London, Ontario, Canada.,Molecular Genetics Unit, Department of Biology, Western University, London, Ontario, Canada
| | - Christina A Castellani
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Timothy J Doherty
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of Physical Medicine and Rehabilitation, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Charles L Rice
- School of Kinesiology, Faculty of Health Sciences, Western University, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Shiva M Singh
- Molecular Genetics Unit, Department of Biology, Western University, London, Ontario, Canada
| |
Collapse
|
11
|
Circulating miR-499a-5p Is a Potential Biomarker of MYH7-Associated Hypertrophic Cardiomyopathy. Int J Mol Sci 2022; 23:ijms23073791. [PMID: 35409153 PMCID: PMC8998764 DOI: 10.3390/ijms23073791] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited myocardial disease with significant genetic and phenotypic heterogeneity. To search for novel biomarkers, which could increase the accuracy of HCM diagnosis and improve understanding of its phenotype formation, we analyzed the levels of circulating miRNAs—stable non-coding RNAs involved in post-transcriptional gene regulation. Performed high throughput sequencing of miRNAs in plasma of HCM patients and controls pinpointed miR-499a-5p as one of 35 miRNAs dysregulated in HCM. Further investigation on enlarged groups of individuals showed that its level was higher in carriers of pathogenic/likely pathogenic (P/LP) variants in MYH7 gene compared to controls (fold change, FC = 8.9; p < 0.0001). Just as important, carriers of variants in MYH7 gene were defined with higher miRNA levels than carriers of variants in the MYBPC3 gene (FC = 14.1; p = 0.0003) and other patients (FC = 4.1; p = 0.0008). The receiver operating characteristic analysis analysis showed the ability of miR-499a-5p to identify MYH7 variant carriers with the HCM phenotype with area under the curve value of 0.95 (95% confidence interval: 0.88−1.03, p = 0.0004); sensitivity and specificity were 0.86 and 0.91 (cut-off = 0.0014). Therefore, miR-499a-5p could serve as a circulating biomarker of HCM, caused by P/LP variants in MYH7 gene.
Collapse
|
12
|
Hasan S, Asakawa S, Watabe S, Kinoshita S. Regulation of the Expression of the Myosin Heavy Chain (MYH) Gene myh14 in Zebrafish Development. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:821-835. [PMID: 34490548 DOI: 10.1007/s10126-021-10066-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The human sarcomeric myosin heavy chain gene MYH14 contains an intronic microRNA, miR-499. Our previous studies demonstrated divergent genomic organization and expression patterns of myh14/miR-499 among teleosts; however, the regulatory mechanism is partly known. In this study, we report the regulation of myh14 expression in zebrafish, Danio rerio. Zebrafish myh14 has three paralogs, myh14-1, myh14-2, and myh14-3. Detailed promoter analysis suggested that a 5710-bp 5'-flanking region of myh14-1 and a 5641-bp region of myh14-3 contain a necessary regulatory region to recapitulate specific expression during embryonic development. The 5'-flanking region of zebrafish myh14-1 and its torafugu ortholog shared two distal and a single proximal conserved region. The two distal conserved regions had no effect on zebrafish myh14-1 expression, in contrast to torafugu expression, suggesting an alternative regulatory mechanism among the myh14 orthologs. Comparison among the 5'-flanking regions of the myh14 paralogs revealed two conserved regions. Deletion of these conserved regions significantly reduced the promoter activity of myh14-3 but had no effect on myh14-1, indicating different cis-regulatory mechanisms of myh14 paralogs. Loss of function of miR-499 resulted in a marked reduction in slow muscle fibers in embryonic development. Our study identified different cis-regulatory mechanisms controlling the expression of myh14/miR-499 and an indispensable role of miR-499 in muscle fiber-type specification in zebrafish.
Collapse
Affiliation(s)
- Sharmin Hasan
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan.
- Department of Biology and Chemistry, Texas A&M International University, 5201 University Blvd., Laredo, TX, 78041, USA.
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Shugo Watabe
- School of Marine Bioscience, Kitasato University, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Shigeharu Kinoshita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| |
Collapse
|
13
|
Lee LA, Broadwell LJ, Buvoli M, Leinwand LA. Nonproductive Splicing Prevents Expression of MYH7b Protein in the Mammalian Heart. J Am Heart Assoc 2021; 10:e020965. [PMID: 34227390 PMCID: PMC8483497 DOI: 10.1161/jaha.121.020965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background Although the roles of alpha‐myosin heavy chain (α‐MyHC) and beta‐myosin heavy chain (β‐MyHC) proteins in cardiac contractility have long been appreciated, the biological contribution of another closely related sarcomeric myosin family member, MYH7b (myosin heavy chain 7b), has become a matter of debate. In mammals, MYH7b mRNA is transcribed but undergoes non‐productive alternative splicing that prevents protein expression in a tissue‐specific manner, including in the heart. However, several studies have recently linked MYH7b variants to different cardiomyopathies or have reported MYH7b protein expression in mammalian hearts. Methods and Results By analyzing mammalian cardiac transcriptome and proteome data, we show that the vast majority of MYH7b RNA is subject to exon skipping and cannot be translated into a functional myosin molecule. Notably, we discovered a lag in the removal of introns flanking the alternatively spliced exon, which could retain the non‐coding RNA in the nucleus. This process could play a significant role in controlling MYH7b expression as well as the activity of other cardiac genes. Consistent with the negligible level of full‐length protein coding mRNA, no MYH7b protein expression was detected in adult mouse, rat, and human hearts by Western blot analysis. Furthermore, proteome surveys including quantitative mass spectrometry analyses revealed only traces of cardiac MYH7b protein and even then, only in a subset of individual samples. Conclusions The comprehensive analysis presented here suggests that previous studies showing cardiac MYH7b protein expression were likely attributable to antibody cross‐reactivity. More importantly, our data predict that the MYH7b disease‐associated variants may operate through the alternately spliced RNA itself.
Collapse
Affiliation(s)
- Lindsey A Lee
- Department of Molecular, Cellular, and Developmental Biology University of Colorado Boulder Boulder CO.,BioFrontiers InstituteUniversity of Colorado Boulder Boulder CO
| | - Lindsey J Broadwell
- BioFrontiers InstituteUniversity of Colorado Boulder Boulder CO.,Department of Biochemistry University of Colorado Boulder Boulder CO
| | - Massimo Buvoli
- Department of Molecular, Cellular, and Developmental Biology University of Colorado Boulder Boulder CO.,BioFrontiers InstituteUniversity of Colorado Boulder Boulder CO
| | - Leslie A Leinwand
- Department of Molecular, Cellular, and Developmental Biology University of Colorado Boulder Boulder CO.,BioFrontiers InstituteUniversity of Colorado Boulder Boulder CO
| |
Collapse
|
14
|
Broadwell LJ, Smallegan MJ, Rigby KM, Navarro-Arriola JS, Montgomery RL, Rinn JL, Leinwand LA. Myosin 7b is a regulatory long noncoding RNA (lncMYH7b) in the human heart. J Biol Chem 2021; 296:100694. [PMID: 33895132 PMCID: PMC8141895 DOI: 10.1016/j.jbc.2021.100694] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 03/29/2021] [Accepted: 04/20/2021] [Indexed: 11/01/2022] Open
Abstract
Myosin heavy chain 7b (MYH7b) is an ancient member of the myosin heavy chain motor protein family that is expressed in striated muscles. In mammalian cardiac muscle, MYH7b RNA is expressed along with two other myosin heavy chains, β-myosin heavy chain (β-MyHC) and α-myosin heavy chain (α-MyHC). However, unlike β-MyHC and α-MyHC, which are maintained in a careful balance at the protein level, the MYH7b locus does not produce a full-length protein in the heart due to a posttranscriptional exon-skipping mechanism that occurs in a tissue-specific manner. Whether this locus has a role in the heart beyond producing its intronic microRNA, miR-499, was unclear. Using cardiomyocytes derived from human induced pluripotent stem cells as a model system, we found that the noncoding exon-skipped RNA (lncMYH7b) affects the transcriptional landscape of human cardiomyocytes, independent of miR-499. Specifically, lncMYH7b regulates the ratio of β-MyHC to α-MyHC, which is crucial for cardiac contractility. We also found that lncMYH7b regulates beat rate and sarcomere formation in cardiomyocytes. This regulation is likely achieved through control of a member of the TEA domain transcription factor family (TEAD3, which is known to regulate β-MyHC). Therefore, we conclude that this ancient gene has been repurposed by alternative splicing to produce a regulatory long-noncoding RNA in the human heart that affects cardiac myosin composition.
Collapse
Affiliation(s)
- Lindsey J Broadwell
- Department of Biochemistry, CU Boulder, Boulder, Colorado, USA; BioFrontiers Institute, CU Boulder, Boulder, Colorado, USA
| | - Michael J Smallegan
- BioFrontiers Institute, CU Boulder, Boulder, Colorado, USA; Department of Molecular, Cellular, and Developmental Biology, CU Boulder, Boulder, Colorado, USA
| | | | - Jose S Navarro-Arriola
- Department of Molecular, Cellular, and Developmental Biology, CU Boulder, Boulder, Colorado, USA
| | | | - John L Rinn
- Department of Biochemistry, CU Boulder, Boulder, Colorado, USA; BioFrontiers Institute, CU Boulder, Boulder, Colorado, USA
| | - Leslie A Leinwand
- BioFrontiers Institute, CU Boulder, Boulder, Colorado, USA; Department of Molecular, Cellular, and Developmental Biology, CU Boulder, Boulder, Colorado, USA.
| |
Collapse
|
15
|
Chen P, Li Z, Nie J, Wang H, Yu B, Wen Z, Sun Y, Shi X, Jin L, Wang DW. MYH7B variants cause hypertrophic cardiomyopathy by activating the CaMK-signaling pathway. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1347-1362. [DOI: 10.1007/s11427-019-1627-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/27/2020] [Indexed: 12/12/2022]
|
16
|
Peter AK, Rossi AC, Buvoli M, Ozeroff CD, Crocini C, Perry AR, Buvoli AE, Lee LA, Leinwand LA. Expression of Normally Repressed Myosin Heavy Chain 7b in the Mammalian Heart Induces Dilated Cardiomyopathy. J Am Heart Assoc 2019; 8:e013318. [PMID: 31364453 PMCID: PMC6761648 DOI: 10.1161/jaha.119.013318] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background In mammals, muscle contraction is controlled by a family of 10 sarcomeric myosin motors. The expression of one of its members, MYH7b, is regulated by alternative splicing, and while the protein is restricted to specialized muscles such as extraocular muscles or muscle spindles, RNA that cannot encode protein is expressed in most skeletal muscles and in the heart. Remarkably, birds and snakes express MYH7b protein in both heart and skeletal muscles. This observation suggests that in the mammalian heart, the motor activity of MYH7b may only be needed during development since its expression is prevented in adult tissue, possibly because it could promote disease by unbalancing myocardial contractility. Methods and Results We have analyzed MYH7b null mice to determine the potential role of MYH7b during cardiac development and also generated transgenic mice with cardiac myocyte expression of MYH7b protein to measure its impact on cardiomyocyte function and contractility. We found that MYH7b null mice are born at expected Mendelian ratios and do not have a baseline cardiac phenotype as adults. In contrast, transgenic cardiac MYH7b protein expression induced early cardiac dilation in males with significantly increased left ventricular mass in both sexes. Cardiac dilation is progressive, leading to early cardiac dysfunction in males, but later dysfunction in females. Conclusions The data presented show that the expression of MYH7b protein in the mammalian heart has been inhibited during the evolution of mammals most likely to prevent the development of a severe cardiomyopathy that is sexually dimorphic.
Collapse
Affiliation(s)
- Angela K Peter
- Department of Molecular, Cellular and Developmental Biology Biofrontiers Institute University of Colorado Boulder CO
| | - Alberto C Rossi
- Department of Molecular, Cellular and Developmental Biology Biofrontiers Institute University of Colorado Boulder CO
| | - Massimo Buvoli
- Department of Molecular, Cellular and Developmental Biology Biofrontiers Institute University of Colorado Boulder CO
| | - Christopher D Ozeroff
- Department of Molecular, Cellular and Developmental Biology Biofrontiers Institute University of Colorado Boulder CO
| | - Claudia Crocini
- Department of Molecular, Cellular and Developmental Biology Biofrontiers Institute University of Colorado Boulder CO
| | - Amy R Perry
- Department of Molecular, Cellular and Developmental Biology Biofrontiers Institute University of Colorado Boulder CO
| | - Ada E Buvoli
- Department of Molecular, Cellular and Developmental Biology Biofrontiers Institute University of Colorado Boulder CO
| | - Lindsey A Lee
- Department of Molecular, Cellular and Developmental Biology Biofrontiers Institute University of Colorado Boulder CO
| | - Leslie A Leinwand
- Department of Molecular, Cellular and Developmental Biology Biofrontiers Institute University of Colorado Boulder CO
| |
Collapse
|
17
|
Kim H, Lim J, Bao H, Jiao B, Canon SM, Epstein MP, Xu K, Jiang J, Parameswaran J, Li Y, Moberg KH, Landers JE, Fournier C, Allen EG, Glass JD, Wingo TS, Jin P. Rare variants in MYH15 modify amyotrophic lateral sclerosis risk. Hum Mol Genet 2019; 28:2309-2318. [PMID: 30985904 PMCID: PMC6606848 DOI: 10.1093/hmg/ddz063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/14/2019] [Accepted: 03/21/2019] [Indexed: 11/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disorder characterized by progressive muscular atrophy and respiratory failure. The G4C2 repeat expansion in the C9orf72 gene is the most prevalent genetic risk for ALS. Mutation carriers (C9ALS) display variability in phenotypes such as age-at-onset and duration, suggesting the existence of additional genetic factors. Here we introduce a three-step gene discovery strategy to identify genetic factors modifying the risk of both C9ALS and sporadic ALS (sALS) using limited samples. We first identified 135 candidate genetic modifiers of C9ALS using whole-genome sequencing (WGS) of extreme C9ALS cases diagnosed ~30 years apart. We then performed an unbiased genetic screen using a Drosophila model of the G4C2 repeat expansion with the genes identified from WGS analysis. This genetic screen identified the novel genetic interaction between G4C2 repeat-associated toxicity and 18 genetic factors, suggesting their potential association with C9ALS risk. We went on to test if 14 out of the 18 genes, those which were not known to be risk factors for ALS previously, are also associated with ALS risk in sALS cases. Gene-based-statistical analyses of targeted resequencing and WGS were performed. These analyses together reveal that rare variants in MYH15 represent a likely genetic risk factor for ALS. Furthermore, we show that MYH15 could modulate the toxicity of dipeptides produced from expanded G4C2 repeat. Our study presented here demonstrates the power of combining WGS with fly genetics to facilitate the discovery of fundamental genetic components of complex traits with a limited number of samples.
Collapse
Affiliation(s)
- Hyerim Kim
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
- Cancer Biology Program, Emory University, Atlanta, GA, USA
| | - Junghwa Lim
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Han Bao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Bin Jiao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Se Min Canon
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael P Epstein
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Keqin Xu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jie Jiang
- Department of Cell Biology, Emory University and Emory University School of Medicine, Atlanta, GA, USA
| | - Janani Parameswaran
- Department of Cell Biology, Emory University and Emory University School of Medicine, Atlanta, GA, USA
| | - Yingjie Li
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Kenneth H Moberg
- Department of Cell Biology, Emory University and Emory University School of Medicine, Atlanta, GA, USA
| | - John E Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Christina Fournier
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Division of Neurology, Atlanta VA Medical Center, Decatur, GA, USA
| | - Emily G Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathan D Glass
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Thomas S Wingo
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Division of Neurology, Atlanta VA Medical Center, Decatur, GA, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
18
|
López-Unzu MA, Durán AC, Soto-Navarrete MT, Sans-Coma V, Fernández B. Differential expression of myosin heavy chain isoforms in cardiac segments of gnathostome vertebrates and its evolutionary implications. Front Zool 2019; 16:18. [PMID: 31198434 PMCID: PMC6558913 DOI: 10.1186/s12983-019-0318-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 05/20/2019] [Indexed: 01/18/2023] Open
Abstract
Background Immunohistochemical studies of hearts from the lesser spotted dogfish, Scyliorhinus canicula (Chondrichthyes) revealed that the pan-myosin heavy chain (pan-MyHC) antibody MF20 homogeneously labels all the myocardium, while the pan-MyHC antibody A4.1025 labels the myocardium of the inflow (sinus venosus and atrium) but not the outflow (ventricle and conus arteriosus) cardiac segments, as opposed to other vertebrates. We hypothesized that the conventional pattern of cardiac MyHC isoform distribution present in most vertebrates, i.e. MYH6 in the inflow and MYH7 in the outflow segments, has evolved from a primitive pattern that persists in Chondrichthyes. In order to test this hypothesis, we conducted protein detection techniques to identify the MyHC isoforms expressed in adult dogfish cardiac segments and to assess the pan-MyHC antibodies reactivity against the cardiac segments of representative species from different vertebrate groups. Results Western and slot blot results confirmed the specificity of MF20 and A4.1025 for MyHC in dogfish and their differential reactivity against distinct myocardial segments. HPLC-ESI-MS/MS and ESI-Quadrupole-Orbitrap revealed abundance of MYH6 and MYH2 in the inflow and of MYH7 and MYH7B in the outflow segments. Immunoprecipitation showed higher affinity of A4.1025 for MYH2 and MYH6 than for MYH7 and almost no affinity for MYH7B. Immunohistochemistry showed that A4.1025 signals are restricted to the inflow myocardial segments of elasmobranchs, homogeneous in all myocardial segments of teleosts and acipenseriforms, and low in the ventricle of polypteriforms. Conclusions The cardiac inflow and outflow segments of the dogfish show predominance of fast- and slow-twitch MyHC isoforms respectively, what can be considered a synapomorphy of gnathostomes. The myocardium of the dogfish contains two isomyosins (MYH2 and MYH7B) not expressed in the adult heart of other vertebrates. We propose that these isomyosins lost their function in cardiac contraction during the evolution of gnathostomes, the later acquiring a regulatory role in myogenesis through its intronic miRNA. Loss of MYH2 and MYH7B expression in the heart possibly occurred before the origin of Osteichthyes, being the latter reacquired in polypteriforms. We raise the hypothesis that the slow tonic MYH7B facilitates the peristaltic contraction of the conus arteriosus of fish with a primitive cardiac anatomical design and of the vertebrate embryo.
Collapse
Affiliation(s)
- Miguel A López-Unzu
- 1Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, España.,2Instituto de Biomedicina de Málaga (IBIMA), Málaga, Spain
| | - Ana Carmen Durán
- 1Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, España.,2Instituto de Biomedicina de Málaga (IBIMA), Málaga, Spain
| | - María Teresa Soto-Navarrete
- 1Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, España.,2Instituto de Biomedicina de Málaga (IBIMA), Málaga, Spain
| | - Valentín Sans-Coma
- 1Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, España.,2Instituto de Biomedicina de Málaga (IBIMA), Málaga, Spain
| | - Borja Fernández
- 1Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, España.,2Instituto de Biomedicina de Málaga (IBIMA), Málaga, Spain.,CIBERCV Enfermedades Cardiovasculares, Málaga, Spain
| |
Collapse
|
19
|
Lee LA, Karabina A, Broadwell LJ, Leinwand LA. The ancient sarcomeric myosins found in specialized muscles. Skelet Muscle 2019; 9:7. [PMID: 30836986 PMCID: PMC6402096 DOI: 10.1186/s13395-019-0192-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/22/2019] [Indexed: 12/17/2022] Open
Abstract
Striated muscles express an array of sarcomeric myosin motors that are tuned to accomplish specific tasks. Each myosin isoform found in muscle fibers confers unique contractile properties to the fiber in order to meet the demands of the muscle. The sarcomeric myosin heavy chain (MYH) genes expressed in the major cardiac and skeletal muscles have been studied for decades. However, three ancient myosins, MYH7b, MYH15, and MYH16, remained uncharacterized due to their unique expression patterns in common mammalian model organisms and due to their relatively recent discovery in these genomes. This article reviews the literature surrounding these three ancient sarcomeric myosins and the specialized muscles in which they are expressed. Further study of these ancient myosins and how they contribute to the functions of the specialized muscles may provide novel insight into the history of striated muscle evolution.
Collapse
Affiliation(s)
- Lindsey A. Lee
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO USA
- BioFrontiers Institute, University of Colorado, Boulder, CO USA
| | - Anastasia Karabina
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO USA
- BioFrontiers Institute, University of Colorado, Boulder, CO USA
| | - Lindsey J. Broadwell
- BioFrontiers Institute, University of Colorado, Boulder, CO USA
- Department of Biochemistry, University of Colorado, Boulder, CO USA
| | - Leslie A. Leinwand
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO USA
- BioFrontiers Institute, University of Colorado, Boulder, CO USA
| |
Collapse
|
20
|
Kinoshita S, Ceyhun SB, Md A, Siddique BS, Akolkar DB, Asakawa S, Watabe S. Promoter analysis of the fish gene of slow/cardiac-type myosin heavy chain implicated in specification of muscle fiber types. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:679-691. [PMID: 29349631 DOI: 10.1007/s10695-018-0463-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 01/03/2018] [Indexed: 06/07/2023]
Abstract
Vertebrate skeletal muscles consist of heterogeneous tissues containing various types of muscle fibers, where specification of the fiber type is crucial for muscle development. Fish are an attractive experimental model to study the mechanisms of such fiber type specification because of the separated localization of slow and fast muscles in the trunk myotome. We examined regulation of expression of the torafugu gene of slow/cardiac-type myosin heavy chain, MYH M5 , and isolated an operational promoter in order to force its tissue-specific expression across different fish species via the transgenic approach in zebrafish and medaka. This promoter activity was observed in adaxial cell-derived superficial slow muscle fibers under the control of a hedgehog signal. We also uncovered coordinated expression of MYH M5 and Sox6b, which is an important transcriptional repressor for specification of muscle fiber types and participates in hedgehog signaling. Sequence comparison in the 5'-flanking region identified three conserved regions, CSR1-CSR3, between torafugu MYH M5 and its zebrafish ortholog. Analysis of deletion mutants showed that CSR1 significantly stimulates gene expression in slow muscle fibers. In contrast, deletion of CSR3 resulted in ectopic expression of a reporter gene in fast muscle fibers. CSR3 was found to contain a putative Sox family protein-binding site. These results indicate that the dual mechanism causing inhibition in fast muscle fibers and activation in slow muscle fibers is essential for slow muscle fiber-specific gene expression in fish.
Collapse
Affiliation(s)
- Shigeharu Kinoshita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan.
| | | | - Asaduzzamann Md
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Bhuiyan Sharmin Siddique
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Dadasaheb B Akolkar
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Shugo Watabe
- School of Marine Biosciences, Kitasato University, Minami, Sagamihara, Kanagawa, 252-0373, Japan
| |
Collapse
|
21
|
Abstract
Muscle cells are designed to generate force and movement. There are three types of mammalian muscles-skeletal, cardiac, and smooth. Skeletal muscles are attached to bones and move them relative to each other. Cardiac muscle comprises the heart, which pumps blood through the vasculature. Skeletal and cardiac muscles are known as striated muscles, because the filaments of actin and myosin that power their contraction are organized into repeating arrays, called sarcomeres, that have a striated microscopic appearance. Smooth muscle does not contain sarcomeres but uses the contraction of filaments of actin and myosin to constrict blood vessels and move the contents of hollow organs in the body. Here, we review the principal molecular organization of the three types of muscle and their contractile regulation through signaling mechanisms and discuss their major structural and functional similarities that hint at the possible evolutionary relationships between the cell types.
Collapse
Affiliation(s)
- H Lee Sweeney
- Department of Pharmacology and Therapeutics and the Myology Institute, University of Florida, College of Medicine, Gainesville, Florida 32610-0267
| | - David W Hammers
- Department of Pharmacology and Therapeutics and the Myology Institute, University of Florida, College of Medicine, Gainesville, Florida 32610-0267
| |
Collapse
|
22
|
Mead AF, Osinalde N, Ørtenblad N, Nielsen J, Brewer J, Vellema M, Adam I, Scharff C, Song Y, Frandsen U, Blagoev B, Kratchmarova I, Elemans CP. Fundamental constraints in synchronous muscle limit superfast motor control in vertebrates. eLife 2017; 6. [PMID: 29165242 PMCID: PMC5699865 DOI: 10.7554/elife.29425] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/29/2017] [Indexed: 12/12/2022] Open
Abstract
Superfast muscles (SFMs) are extremely fast synchronous muscles capable of contraction rates up to 250 Hz, enabling precise motor execution at the millisecond time scale. SFM phenotypes have been discovered in most major vertebrate lineages, but it remains unknown whether all SFMs share excitation-contraction coupling pathway adaptations for speed, and if SFMs arose once, or from independent evolutionary events. Here, we demonstrate that to achieve rapid actomyosin crossbridge kinetics bat and songbird SFM express myosin heavy chain genes that are evolutionarily and ontologically distinct. Furthermore, we show that all known SFMs share multiple functional adaptations that minimize excitation-contraction coupling transduction times. Our results suggest that SFM evolved independently in sound-producing organs in ray-finned fish, birds, and mammals, and that SFM phenotypes operate at a maximum operational speed set by fundamental constraints in synchronous muscle. Consequentially, these constraints set a fundamental limit to the maximum speed of fine motor control. Across animals, different muscle types have evolved to perform vastly different tasks at different speeds. For example, tortoise leg muscles move slowly over several seconds, while the flight muscles of a hummingbird move quickly dozens of times per second. The speed record holders among vertebrates are the so-called superfast muscles, which can move up to 250 times per second. Superfast muscles power the alarming rattle of rattlesnakes, courtship calls in fish, rapid echolocation calls in bats and the elaborate vocal gymnastics of songbirds. Thus these extreme muscles are all around us and are always involved in sound production. Did superfast muscles evolve from a common ancestor? And how do different superfast muscles achieve their extreme behavior? To answer these questions, Mead et al. studied the systems known to limit contraction speed in all currently known superfast muscles found in rattlesnakes, toadfish, bats and songbirds. This revealed that all the muscles share certain specific adaptations that allow superfast contractions. Furthermore, the three fastest examples – toadfish, songbird and bat – have nearly identical maximum speeds. Although this appears to support the idea that the adaptations all evolved from a shared ancestor, Mead et al. found evidence that suggests otherwise. Each of the three superfast muscles are powered by a different motor protein, which argues strongly in favor of the muscles evolving independently. The existence of such similar mechanisms and performance in independently evolved muscles raises the possibility that the fastest contraction rates measured by Mead et al. represent a maximum speed limit for all vertebrate muscles. Any technical failure in a racecar most likely will slow it down, while the same failure in a robustly engineered family car may not be so noticeable. Similarly in superfast muscle many cellular and molecular systems need to perform maximally. Therefore by understanding how these extreme muscles work, we also gain a better understanding of how normal muscles contract.
Collapse
Affiliation(s)
- Andrew F Mead
- Department of Biology, University of Vermont, Burlington, United States
| | - Nerea Osinalde
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Jonathan Brewer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Michiel Vellema
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Iris Adam
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | | | - Yafeng Song
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Ulrik Frandsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Irina Kratchmarova
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Coen Ph Elemans
- Department of Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
23
|
Korfage JAM, Koolstra JH, Langenbach GEJ, van Eijden TMGJ. Fiber-type Composition of the Human Jaw Muscles—(Part 1) Origin and Functional Significance of Fiber-type Diversity. J Dent Res 2016; 84:774-83. [PMID: 16109984 DOI: 10.1177/154405910508400901] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This is the first of two articles on the fiber-type composition of the human jaw muscles. The present article discusses the origin of fiber-type composition and its consequences. This discussion is presented in the context of the requirements for functional performance and adaptation that are imposed upon the jaw muscles. The human masticatory system must perform a much larger variety of motor tasks than the average limb or trunk motor system. An important advantage of fiber-type diversity, as observed in the jaw muscles, is that it optimizes the required function while minimizing energy use. The capacity for adaptation is reflected by the large variability in fiber-type composition among muscle groups, individual muscles, and muscle regions. Adaptive changes are related, for example, to the amount of daily activation and/or stretch of fibers. Generally, the number of slow, fatigue-resistant fibers is relatively large in muscles and muscle regions that are subjected to considerable activity and/or stretch.
Collapse
Affiliation(s)
- J A M Korfage
- Department of Functional Anatomy, Academic Center for Dentistry Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
24
|
Yilmaz A, Kattamuri C, Ozdeslik RN, Schmiedel C, Mentzer S, Schorl C, Oancea E, Thompson TB, Fallon JR. MuSK is a BMP co-receptor that shapes BMP responses and calcium signaling in muscle cells. Sci Signal 2016; 9:ra87. [PMID: 27601729 DOI: 10.1126/scisignal.aaf0890] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bone morphogenetic proteins (BMPs) function in most tissues but have cell type-specific effects. Given the relatively small number of BMP receptors, this exquisite signaling specificity requires additional molecules to regulate this pathway's output. The receptor tyrosine kinase MuSK (muscle-specific kinase) is critical for neuromuscular junction formation and maintenance. Here, we show that MuSK also promotes BMP signaling in muscle cells. MuSK bound to BMP4 and related BMPs with low nanomolar affinity in vitro and to the type I BMP receptors ALK3 and ALK6 in a ligand-independent manner both in vitro and in cultured myotubes. High-affinity binding to BMPs required the third, alternatively spliced MuSK immunoglobulin-like domain. In myoblasts, endogenous MuSK promoted BMP4-dependent phosphorylation of SMADs and transcription of Id1, which encodes a transcription factor involved in muscle differentiation. Gene expression profiling showed that MuSK was required for the BMP4-induced expression of a subset of genes in myoblasts, including regulator of G protein signaling 4 (Rgs4). In myotubes, MuSK enhanced the BMP4-induced expression of a distinct set of genes, including transcripts characteristic of slow muscle. MuSK-mediated stimulation of BMP signaling required type I BMP receptor activity but was independent of MuSK tyrosine kinase activity. MuSK-dependent expression of Rgs4 resulted in the inhibition of Ca(2+) signaling induced by the muscarinic acetylcholine receptor in myoblasts. These findings establish that MuSK has dual roles in muscle cells, acting both as a tyrosine kinase-dependent synaptic organizing molecule and as a BMP co-receptor that shapes BMP transcriptional output and cholinergic signaling.
Collapse
Affiliation(s)
- Atilgan Yilmaz
- Department of Neuroscience, Brown University, Providence, RI 02912, USA. Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Chandramohan Kattamuri
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Rana N Ozdeslik
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Carolyn Schmiedel
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Sarah Mentzer
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Christoph Schorl
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Elena Oancea
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Justin R Fallon
- Department of Neuroscience, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
25
|
Siddique BS, Kinoshita S, Wongkarangkana C, Asakawa S, Watabe S. Evolution and Distribution of Teleost myomiRNAs: Functionally Diversified myomiRs in Teleosts. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:436-447. [PMID: 27262998 DOI: 10.1007/s10126-016-9705-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 05/05/2016] [Indexed: 06/05/2023]
Abstract
Myosin heavy chain (MYH) genes belong to a multigene family, and the regulated expression of each member determines the physiological and contractile muscle properties. Among these, MYH6, MYH7, and MYH14 occupy unique positions in the mammalian MYH gene family because of their specific expression in slow/cardiac muscles and the existence of intronic micro(mi) RNAs. MYH6, MYH7, and MYH14 encode miR-208a, miR-208b, and miR-499, respectively. These MYH encoded miRNAs are designated as myomiRs because of their muscle-specific expression and functions. In mammals, myomiRs and host MYHs form a transcription network involved in muscle fiber-type specification; thus, genomic positions and expression patterns of them are well conserved. However, our previous studies revealed divergent distribution and expression of MYH14/miR-499 among teleosts, suggesting the unique evolution of myomiRs and host MYHs in teleosts. Here, we examined distribution and expression of myomiRs and host MYHs in various teleost species. The major cardiac MYH isoforms in teleosts are an intronless gene, atrial myosin heavy chain (amhc), and ventricular myosin heavy chain (vmhc) gene that encodes an intronic miRNA, miR-736. Phylogenetic analysis revealed that vmhc/miR-736 is a teleost-specific myomiR that differed from tetrapoda MYH6/MYH7/miR-208s. Teleost genomes also contain species-specific orthologs in addition to vmhc and amhc, indicating complex gene duplication and gene loss events during teleost evolution. In medaka and torafugu, miR-499 was highly expressed in slow/cardiac muscles whereas the expression of miR-736 was quite low and not muscle specific. These results suggest functional diversification of myomiRs in teleost with the diversification of host MYHs.
Collapse
Affiliation(s)
- Bhuiyan Sharmin Siddique
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Shigeharu Kinoshita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan.
| | - Chaninya Wongkarangkana
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Shugo Watabe
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
- School of Marine Bioscience, Kitasato University, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| |
Collapse
|
26
|
Mascarello F, Toniolo L, Cancellara P, Reggiani C, Maccatrozzo L. Expression and identification of 10 sarcomeric MyHC isoforms in human skeletal muscles of different embryological origin. Diversity and similarity in mammalian species. Ann Anat 2016; 207:9-20. [PMID: 26970499 DOI: 10.1016/j.aanat.2016.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/15/2016] [Indexed: 10/22/2022]
Abstract
In the mammalian genome, among myosin heavy chain (MyHC) isoforms a family can be identified as sarcomeric based on their molecular structure which allows thick filament formation. In this study we aimed to assess the expression of the 10 sarcomeric isoforms in human skeletal muscles, adopting this species as a reference for comparison with all other mammalian species. To this aim, we set up the condition for quantitative Real Time PCR assay to detect and quantify MyHC mRNA expression in a wide variety of human muscles from somitic, presomitic and preotic origin. Specific patterns of expression of the following genes MYH1, MYH2, MYH3, MYH4, MYH6, MYH7, MYH8, MYH13, MYH14/7b and MYH15 were demonstrated in various muscle samples. On the same muscle samples which were analysed for mRNA expression, the corresponding MyHC proteins were studied with SDS PAGE and Western blot. The mRNA-protein comparison allowed the identification of 10 distinct proteins based on the electrophoretic migration rate. Three groups were formed based on the migration rate: fast migrating comprising beta/slow/1, alpha cardiac and fast 2B, slow migrating comprising fast 2X, fast 2A and two developmental isoforms (NEO and EMB), intermediate migrating comprising EO MyHC, slow B (product of MYH15), slow tonic (product of MYH14/7b). Of special interest was the demonstration of a protein band corresponding to 2B-MyHC in laryngeal muscles and the finding that all 10 isoforms are expressed in extraocular muscles. These latter muscles are the unique localization for extraocular, slow B (product of MYH15) and slow tonic (product of MYH14/7b).
Collapse
Affiliation(s)
- Francesco Mascarello
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università 16, Legnaro, 35020 Padova, Italy.
| | - Luana Toniolo
- Department of Biomedical Sciences, University of Padova Via Marzolo 3, 35131 Padova, Italy
| | - Pasqua Cancellara
- Department of Biomedical Sciences, University of Padova Via Marzolo 3, 35131 Padova, Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova Via Marzolo 3, 35131 Padova, Italy
| | - Lisa Maccatrozzo
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università 16, Legnaro, 35020 Padova, Italy
| |
Collapse
|
27
|
Hansel NN, Paré PD, Rafaels N, Sin DD, Sandford A, Daley D, Vergara C, Huang L, Elliott WM, Pascoe CD, Arsenault BA, Postma DS, Boezen HM, Bossé Y, van den Berge M, Hiemstra PS, Cho MH, Litonjua AA, Sparrow D, Ober C, Wise RA, Connett J, Neptune ER, Beaty TH, Ruczinski I, Mathias RA, Barnes KC. Genome-Wide Association Study Identification of Novel Loci Associated with Airway Responsiveness in Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 2015; 53:226-34. [PMID: 25514360 DOI: 10.1165/rcmb.2014-0198oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Increased airway responsiveness is linked to lung function decline and mortality in subjects with chronic obstructive pulmonary disease (COPD); however, the genetic contribution to airway responsiveness remains largely unknown. A genome-wide association study (GWAS) was performed using the Illumina (San Diego, CA) Human660W-Quad BeadChip on European Americans with COPD from the Lung Health Study. Linear regression models with correlated meta-analyses, including data from baseline (n = 2,814) and Year 5 (n = 2,657), were used to test for common genetic variants associated with airway responsiveness. Genotypic imputation was performed using reference 1000 Genomes Project data. Expression quantitative trait loci (eQTL) analyses in lung tissues were assessed for the top 10 markers identified, and immunohistochemistry assays assessed protein staining for SGCD and MYH15. Four genes were identified within the top 10 associations with airway responsiveness. Markers on chromosome 9p21.2 flanked by LINGO2 met a predetermined threshold of genome-wide significance (P < 9.57 × 10(-8)). Markers on chromosomes 3q13.1 (flanked by MYH15), 5q33 (SGCD), and 6q21 (PDSS2) yielded suggestive evidence of association (9.57 × 10(-8) < P ≤ 4.6 × 10(-6)). Gene expression studies in lung tissue showed single nucleotide polymorphisms on chromosomes 5 and 3 to act as eQTL for SGCD (P = 2.57 × 10(-9)) and MYH15 (P = 1.62 × 10(-6)), respectively. Immunohistochemistry confirmed localization of SGCD protein to airway smooth muscle and vessels and MYH15 to airway epithelium, vascular endothelium, and inflammatory cells. We identified novel loci associated with airway responsiveness in a GWAS among smokers with COPD. Risk alleles on chromosomes 5 and 3 acted as eQTLs for SGCD and MYH15 messenger RNA, and these proteins were expressed in lung cells relevant to the development of airway responsiveness.
Collapse
Affiliation(s)
- Nadia N Hansel
- 1 Department of Medicine, School of Medicine; and.,Departments of 2 Environmental Health Sciences
| | - Peter D Paré
- 3 Department of Pathology, Centre for Heart Lung Innovation, St. Paul's Hospital, Division of Respirology, University of British Columbia, Vancouver, British Columbia
| | | | - Don D Sin
- 3 Department of Pathology, Centre for Heart Lung Innovation, St. Paul's Hospital, Division of Respirology, University of British Columbia, Vancouver, British Columbia
| | - Andrew Sandford
- 3 Department of Pathology, Centre for Heart Lung Innovation, St. Paul's Hospital, Division of Respirology, University of British Columbia, Vancouver, British Columbia
| | - Denise Daley
- 3 Department of Pathology, Centre for Heart Lung Innovation, St. Paul's Hospital, Division of Respirology, University of British Columbia, Vancouver, British Columbia
| | | | - Lili Huang
- 1 Department of Medicine, School of Medicine; and
| | - W Mark Elliott
- 3 Department of Pathology, Centre for Heart Lung Innovation, St. Paul's Hospital, Division of Respirology, University of British Columbia, Vancouver, British Columbia
| | - Chris D Pascoe
- 3 Department of Pathology, Centre for Heart Lung Innovation, St. Paul's Hospital, Division of Respirology, University of British Columbia, Vancouver, British Columbia
| | - Bryna A Arsenault
- 3 Department of Pathology, Centre for Heart Lung Innovation, St. Paul's Hospital, Division of Respirology, University of British Columbia, Vancouver, British Columbia
| | - Dirkje S Postma
- Departments of 4 Pulmonary Diseases and.,5 Groningen Research Institute for Asthma and COPD Research Institute, University Medical Center Groningen, Groningen; and
| | - H Marike Boezen
- 6 Epidemiology, and.,5 Groningen Research Institute for Asthma and COPD Research Institute, University Medical Center Groningen, Groningen; and
| | - Yohan Bossé
- 7 Department of Molecular Medicine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Québec City, Québec, Canada
| | - Maarten van den Berge
- Departments of 4 Pulmonary Diseases and.,5 Groningen Research Institute for Asthma and COPD Research Institute, University Medical Center Groningen, Groningen; and
| | - Pieter S Hiemstra
- 8 Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Michael H Cho
- 9 Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Augusto A Litonjua
- 9 Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - David Sparrow
- 10 VA Normative Aging Study and Boston University School of Medicine, Boston, Massachusetts
| | - Carole Ober
- 11 Department of Human Genetics, University of Chicago, Chicago, Illinois
| | | | - John Connett
- 12 Division of Biostatistics, School of Public Health, University of Minnesota, St. Paul, Minnesota
| | | | | | - Ingo Ruczinski
- 14 Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | | | - Kathleen C Barnes
- 1 Department of Medicine, School of Medicine; and.,13 Epidemiology, and
| | | |
Collapse
|
28
|
Brundage EA, Biesiadecki BJ, Reiser PJ. Nucleotide and protein sequences for dog masticatory tropomyosin identify a novel Tpm4 gene product. J Muscle Res Cell Motil 2015; 36:339-347. [PMID: 26400443 DOI: 10.1007/s10974-015-9425-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/14/2015] [Indexed: 12/18/2022]
Abstract
Jaw-closing muscles of several vertebrate species, including members of Carnivora, express a unique, "masticatory", isoform of myosin heavy chain, along with isoforms of other myofibrillar proteins that are not expressed in most other muscles. It is generally believed that the complement of myofibrillar isoforms in these muscles serves high force generation for capturing live prey, breaking down tough plant material and defensive biting. A unique isoform of tropomyosin (Tpm) was reported to be expressed in cat jaw-closing muscle, based upon two-dimensional gel mobility, peptide mapping, and immunohistochemistry. The objective of this study was to obtain protein and gene sequence information for this unique Tpm isoform. Samples of masseter (a jaw-closing muscle), tibialis (predominantly fast-twitch fibers), and the deep lateral gastrocnemius (predominantly slow-twitch fibers) were obtained from adult dogs. Expressed Tpm isoforms were cloned and sequencing yielded cDNAs that were identical to genomic predicted striated muscle Tpm1.1St(a,b,b,a) (historically referred to as αTpm), Tpm2.2St(a,b,b,a) (βTpm) and Tpm3.12St(a,b,b,a) (γTpm) isoforms (nomenclature reflects predominant tissue expression ("St"-striated muscle) and exon splicing pattern), as well as a novel 284 amino acid isoform observed in jaw-closing muscle that is identical to a genomic predicted product of the Tpm4 gene (δTpm) family. The novel isoform is designated as Tpm4.3St(a,b,b,a). The myofibrillar Tpm isoform expressed in dog masseter exhibits a unique electrophoretic mobility on gels containing 6 M urea, compared to other skeletal Tpm isoforms. To validate that the cloned Tpm4.3 isoform is the Tpm expressed in dog masseter, E. coli-expressed Tpm4.3 was electrophoresed in the presence of urea. Results demonstrate that Tpm4.3 has identical electrophoretic mobility to the unique dog masseter Tpm isoform and is of different mobility from that of muscle Tpm1.1, Tpm2.2 and Tpm3.12 isoforms. We conclude that the unique Tpm isoform in dog masseter is a product of the Tpm4 gene and that the 284 amino acid protein product of this gene represents a novel myofibrillar Tpm isoform never before observed to be expressed in striated muscle.
Collapse
Affiliation(s)
- Elizabeth A Brundage
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Brandon J Biesiadecki
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Peter J Reiser
- Division of Biosciences, College of Dentistry, The Ohio State University, 305 West 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
29
|
Abstract
Humans have acquired many distinct evolutionary traits after the human-chimpanzee divergence. These phenotypes have resulted from genetic changes that occurred in the human genome and were retained by natural selection. Comparative primate genome analyses reveal that loss-of-function mutations are common in the human genome. Some of these gene inactivation events were revealed to be associated with the emergence of advantageous phenotypes and were therefore positively selected and fixed in modern humans (the "less-ismore" hypothesis). Representative cases of human gene inactivation and their functional implications are presented in this review. Functional studies of additional inactive genes will provide insight into the molecular mechanisms underlying acquisition of various human-specific traits.
Collapse
Affiliation(s)
| | | | | | - Yoonsoo Hahn
- Department of Life Science, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul 156-756, Korea
| |
Collapse
|
30
|
Neary MT, Neary JM, Lund GK, Holt TN, Garry FB, Mohun TJ, Breckenridge RA. Myosin heavy chain 15 is associated with bovine pulmonary arterial pressure. Pulm Circ 2015; 4:496-503. [PMID: 25621163 DOI: 10.1086/677364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/16/2014] [Indexed: 11/03/2022] Open
Abstract
Bovine pulmonary hypertension, brisket disease, causes significant morbidity and mortality at elevations above 2,000 m. Mean pulmonary arterial pressure (mPAP) is moderately heritable, with inheritance estimated to lie within a few major genes. Invasive mPAP measurement is currently the only tool available to identify cattle at risk of hypoxia-induced pulmonary hypertension. A genetic test could allow selection of cattle suitable for high altitude without the need for invasive testing. In this study we evaluated three candidate genes (myosin heavy chain 15 [MYH15], NADH dehydrogenase flavoprotein 2, and FK binding protein 1A) for association with mPAP in 166 yearling Angus bulls grazing at 2,182 m. The T allele (rs29016420) of MYH15 was linked to lower mPAP in a dominant manner (CC 47.2 ± 1.6 mmHg [mean ± standard error of the mean]; CT/TT 42.8 ± 0.7 mmHg; P = 0.02). The proportions of cattle with MYH15 CC, CT, and TT genotypes were 55%, 41%, and 4%, respectively. Given the high frequency of the deleterious allele, it is likely that the relative contribution of MYH15 polymorphisms to pulmonary hypertension is small, supporting previous predictions that the disease is polygenic. We evaluated allelic frequency of MYH15 in the Himalayan yak (Bos grunniens), a closely related species adapted to high altitude, and found 100% prevalence of T allele homozygosity. In summary, we identified a polymorphism in MYH15 significantly associated with mPAP. This finding may aid selection of cattle suitable for high altitude and contribute to understanding human hypoxia-induced pulmonary hypertension.
Collapse
Affiliation(s)
- Marianne T Neary
- Medical Research Council, National Institute for Medical Research, Mill Hill, London, United Kingdom ; These two authors contributed equally to the work
| | - Joseph M Neary
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA ; These two authors contributed equally to the work
| | - Gretchen K Lund
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Timothy N Holt
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Franklyn B Garry
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Timothy J Mohun
- Medical Research Council, National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Ross A Breckenridge
- Medical Research Council, National Institute for Medical Research, Mill Hill, London, United Kingdom ; Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
31
|
Foote AD, Liu Y, Thomas GWC, Vinař T, Alföldi J, Deng J, Dugan S, van Elk CE, Hunter ME, Joshi V, Khan Z, Kovar C, Lee SL, Lindblad-Toh K, Mancia A, Nielsen R, Qin X, Qu J, Raney BJ, Vijay N, Wolf JBW, Hahn MW, Muzny DM, Worley KC, Gilbert MTP, Gibbs RA. Convergent evolution of the genomes of marine mammals. Nat Genet 2015; 47:272-5. [PMID: 25621460 DOI: 10.1038/ng.3198] [Citation(s) in RCA: 302] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 12/29/2014] [Indexed: 12/13/2022]
Abstract
Marine mammals from different mammalian orders share several phenotypic traits adapted to the aquatic environment and therefore represent a classic example of convergent evolution. To investigate convergent evolution at the genomic level, we sequenced and performed de novo assembly of the genomes of three species of marine mammals (the killer whale, walrus and manatee) from three mammalian orders that share independently evolved phenotypic adaptations to a marine existence. Our comparative genomic analyses found that convergent amino acid substitutions were widespread throughout the genome and that a subset of these substitutions were in genes evolving under positive selection and putatively associated with a marine phenotype. However, we found higher levels of convergent amino acid substitutions in a control set of terrestrial sister taxa to the marine mammals. Our results suggest that, whereas convergent molecular evolution is relatively common, adaptive molecular convergence linked to phenotypic convergence is comparatively rare.
Collapse
Affiliation(s)
- Andrew D Foote
- 1] Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark. [2] Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Yue Liu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Gregg W C Thomas
- School of Informatics and Computing, Indiana University, Bloomington, Indiana, USA
| | - Tomáš Vinař
- Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
| | - Jessica Alföldi
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Jixin Deng
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Shannon Dugan
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | | | - Margaret E Hunter
- Sirenia Project, Southeast Ecological Science Center, US Geological Survey, Gainesville, Florida, USA
| | - Vandita Joshi
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Ziad Khan
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Christie Kovar
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Sandra L Lee
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Kerstin Lindblad-Toh
- 1] Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [2] Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Annalaura Mancia
- 1] Marine Biomedicine and Environmental Science Center, Medical University of South Carolina, Charleston, South Carolina, USA. [2] Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Rasmus Nielsen
- Center for Theoretical Evolutionary Genomics, University of California, Berkeley, Berkeley, California, USA
| | - Xiang Qin
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jiaxin Qu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Brian J Raney
- Center for Biomolecular Science and Engineering, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Nagarjun Vijay
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Jochen B W Wolf
- 1] Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden. [2] Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Matthew W Hahn
- 1] School of Informatics and Computing, Indiana University, Bloomington, Indiana, USA. [2] Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Kim C Worley
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - M Thomas P Gilbert
- 1] Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark. [2] Trace and Environmental DNA Laboratory, Department of Environment and Agriculture, Curtin University, Perth, Western Australia, Australia
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
32
|
Abstract
Physical working capacity decreases with age and also in microgravity. Regardless of age, increased physical activity can always improve the physical adaptability of the body, although the mechanisms of this adaptability are unknown. Physical exercise produces various mechanical stimuli in the body, and these stimuli may be essential for cell survival in organisms. The cytoskeleton plays an important role in maintaining cell shape and tension development, and in various molecular and/or cellular organelles involved in cellular trafficking. Both intra and extracellular stimuli send signals through the cytoskeleton to the nucleus and modulate gene expression via an intrinsic property, namely the "dynamic instability" of cytoskeletal proteins. αB-crystallin is an important chaperone for cytoskeletal proteins in muscle cells. Decreases in the levels of αB-crystallin are specifically associated with a marked decrease in muscle mass (atrophy) in a rat hindlimb suspension model that mimics muscle and bone atrophy that occurs in space and increases with passive stretch. Moreover, immunofluorescence data show complete co-localization of αB-crystallin and the tubulin/microtubule system in myoblast cells. This association was further confirmed in biochemical experiments carried out in vitro showing that αB-crystallin acts as a chaperone for heat-denatured tubulin and prevents microtubule disassembly induced by calcium. Physical activity induces the constitutive expression of αB-crystallin, which helps to maintain the homeostasis of cytoskeleton dynamics in response to gravitational forces. This relationship between chaperone expression levels and regulation of cytoskeletal dynamics observed in slow anti-gravitational muscles as well as in mammalian striated muscles, such as those in the heart, diaphragm and tongue, may have been especially essential for human evolution in particular. Elucidation of the intrinsic properties of the tubulin/microtubule and chaperone αB-crystallin protein complex systems is expected to provide valuable information for high-pressure bioscience and gravity health science.
Collapse
Affiliation(s)
- Yoriko Atomi
- 204 Research Center for Science and Technology, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo, 184-8588, Japan,
| |
Collapse
|
33
|
Bhuiyan SS, Kinoshita S, Wongwarangkana C, Asaduzzaman M, Asakawa S, Watabe S. Evolution of the myosin heavy chain gene MYH14 and its intronic microRNA miR-499: muscle-specific miR-499 expression persists in the absence of the ancestral host gene. BMC Evol Biol 2013; 13:142. [PMID: 24059862 PMCID: PMC3716903 DOI: 10.1186/1471-2148-13-142] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 06/13/2013] [Indexed: 12/17/2022] Open
Abstract
Background A novel sarcomeric myosin heavy chain gene, MYH14, was identified following the completion of the human genome project. MYH14 contains an intronic microRNA, miR-499, which is expressed in a slow/cardiac muscle specific manner along with its host gene; it plays a key role in muscle fiber-type specification in mammals. Interestingly, teleost fish genomes contain multiple MYH14 and miR-499 paralogs. However, the evolutionary history of MYH14 and miR-499 has not been studied in detail. In the present study, we identified MYH14/miR-499 loci on various teleost fish genomes and examined their evolutionary history by sequence and expression analyses. Results Synteny and phylogenetic analyses depict the evolutionary history of MYH14/miR-499 loci where teleost specific duplication and several subsequent rounds of species-specific gene loss events took place. Interestingly, miR-499 was not located in the MYH14 introns of certain teleost fish. An MYH14 paralog, lacking miR-499, exhibited an accelerated rate of evolution compared with those containing miR-499, suggesting a putative functional relationship between MYH14 and miR-499. In medaka, Oryzias latipes, miR-499 is present where MYH14 is completely absent in the genome. Furthermore, by using in situ hybridization and small RNA sequencing, miR-499 was expressed in the notochord at the medaka embryonic stage and slow/cardiac muscle at the larval and adult stages. Comparing the flanking sequences of MYH14/miR-499 loci between torafugu Takifugu rubripes, zebrafish Danio rerio, and medaka revealed some highly conserved regions, suggesting that cis-regulatory elements have been functionally conserved in medaka miR-499 despite the loss of its host gene. Conclusions This study reveals the evolutionary history of the MYH14/miRNA-499 locus in teleost fish, indicating divergent distribution and expression of MYH14 and miR-499 genes in different teleost fish lineages. We also found that medaka miR-499 was even expressed in the absence of its host gene. To our knowledge, this is the first report that shows the conversion of intronic into non-intronic miRNA during the evolution of a teleost fish lineage.
Collapse
Affiliation(s)
- Sharmin Siddique Bhuiyan
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan.
| | | | | | | | | | | |
Collapse
|
34
|
Lee YK, Moon HJ. Reciprocal influence of masticatory apparatus, craniofacial structure and whole body homeostasis. Med Hypotheses 2012; 79:761-6. [PMID: 22981594 DOI: 10.1016/j.mehy.2012.08.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 06/07/2012] [Accepted: 08/21/2012] [Indexed: 11/15/2022]
Abstract
There are evidences that the evolution into Homo erectus was partially induced by masticatory muscular dystrophy caused by a gene mutation, which in turn increased brain capacity and led to bipedalism. It is generally accepted that the morphology and function of mammalian skull are partially controlled by epigenetic mechanisms. Archeologic evidences support that the masticatory apparatus have influenced the mechanical stress distribution in hominin skull, and consequently changed craniofacial morphology and function. Even after evolution into H. erectus, alterations in food properties by civilization and cultural preferences have caused modification of human masticatory pattern and accordingly craniofacial structure. Since there are evidences that prehuman and human masticatory apparatus has been influenced the craniofacial and whole body morphology and function, this apparatus in turn might influence whole body homeostasis. Plausible reciprocal influencing mechanisms of the masticatory apparatus on the whole body homeostasis might be (1) direct mechanical influence on the craniofacial structure, (2) distortion of cerebrospinal fluid circulation, and/or (3) several neural/humoral routes. Based on these backgrounds, the hypothesis of the present study is that the morphology and function of masticatory apparatus influence the whole body homeostasis and these interactions are reciprocal. Therefore, human masticatory apparatus, at the present time, should be kept in its physiological status to maintain the whole body homeostasis. We recommend basic and clinical approaches to confirm this hypothesis.
Collapse
Affiliation(s)
- Yong-Keun Lee
- ICPB and ETN Dental Clinic, Seoul, Republic of Korea.
| | | |
Collapse
|
35
|
Remarkable heterogeneity in myosin heavy-chain composition of the human young masseter compared with young biceps brachii. Histochem Cell Biol 2012; 138:669-82. [PMID: 22777345 DOI: 10.1007/s00418-012-0985-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2012] [Indexed: 10/28/2022]
Abstract
Adult human jaw muscles differ from limb and trunk muscles in enzyme-histochemical fibre type composition. Recently, we showed that the human masseter and biceps differ in fibre type pattern already at childhood. The present study explored the myosin heavy-chain (MyHC) expression in the young masseter and biceps muscles by means of gel electrophoresis (GE) and immuno-histochemical (IHC) techniques. Plasticity in MyHC expression during life was evaluated by comparing the results with the previously reported data for adult muscles. In young masseter, GE identified MyHC-I, MyHC-IIa MyHC-IIx and small proportions of MyHC-fetal and MyHC-α cardiac. Western blots confirmed the presence of MyHC-I, MyHC-IIa and MyHC-IIx. IHC revealed in the masseter six isomyosins, MyHC-I, MyHC-IIa, MyHC-IIx, MyHC-fetal, MyHC α-cardiac and a previously not reported isoform, termed MyHC-IIx'. The majority of the masseter fibres co-expressed two to four isoforms. In the young biceps, both GE and IHC identified MyHC-I, MyHC-IIa and MyHC-IIx. MyHC-I predominated in both muscles. Young masseter showed more slow and less-fast and fetal MyHC than the adult and elderly masseter. These results provide evidence that the young masseter muscle is unique in MyHC composition, expressing MyHC-α cardiac and MyHC-fetal isoforms as well as hitherto unrecognized potential spliced isoforms of MyHC-fetal and MyHC-IIx. Differences in masseter MyHC expression between young adult and elderly suggest a shift from childhood to adulthood towards more fast contractile properties. Differences between masseter and biceps are proposed to reflect diverse evolutionary and developmental origins and confirm that the masseter and biceps present separate allotypes of muscle.
Collapse
|
36
|
Cvetko E, Karen P, Janáček J, Kubínová L, Plasencia AL, Eržen I. Human masseter muscle fibers from the elderly express less neonatal Myosin than those of young adults. Anat Rec (Hoboken) 2012; 295:1364-72. [PMID: 22707480 DOI: 10.1002/ar.22512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 05/08/2012] [Accepted: 05/10/2012] [Indexed: 11/08/2022]
Abstract
In contrast to limb muscles where neonatal myosin (MyHC-neo) is present only shortly after birth, adult masseter muscles contain a substantial portion of MyHC-neo, which is coexpressed with mature MyHC isoforms. Changes in the numerical and area proportion of muscle fibers containing MyHC-neo in masseter muscle with aging could be expected, based on previously reported findings that (i) developmental MyHC-containing muscle fibers exhibit lower shortening velocities compared to fibers with exclusively fast MyHC isoforms and (ii) transformation toward faster phenotype occurs in elderly compared to young masseter muscle. In this study, we detected MyHC isoforms in the anterior superficial part of the human masseter muscle in a sufficiently large sample of young, middle-aged, and elderly subjects to reveal age-related changes in the coexpression of MyHC-neo with adult MyHC isoforms. MyHC isoforms were visualized with immunoperoxidase method and the results were presented by (i) the area proportion of fibers containing particular MyHC isoforms and (ii) the numerical proportion of fiber types defined by MyHC-1, -2a, -2x, and -neonatal isoform expression from a successive transverse sections. We found a lower numerical and area proportion of fibers expressing MyHC-neo as well as a lower area proportion of fibers containing MyHC-1 in elderly than in young subjects. We conclude that the diminished expression of MyHC-neo with age could point to a lower regeneration capacity of masseter muscle in the elderly.
Collapse
Affiliation(s)
- Erika Cvetko
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | | | | | | | | | | |
Collapse
|
37
|
Warkman AS, Whitman SA, Miller MK, Garriock RJ, Schwach CM, Gregorio CC, Krieg PA. Developmental expression and cardiac transcriptional regulation of Myh7b, a third myosin heavy chain in the vertebrate heart. Cytoskeleton (Hoboken) 2012; 69:324-35. [PMID: 22422726 DOI: 10.1002/cm.21029] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 02/23/2012] [Accepted: 03/09/2012] [Indexed: 11/08/2022]
Abstract
The mammalian heart expresses two myosin heavy chain (MYH) genes (Myh6 and Myh7), which are major components of the thick filaments of the sarcomere. We have determined that a third MYH, MYH7B, is also expressed in the myocardium. Developmental analysis shows Myh7b expression in cardiac and skeletal muscle of Xenopus, chick and mouse embryos, and in smooth muscle tissues during later stages of mouse embryogenesis. Myh7b is also expressed in the adult human heart. The promoter region of the Myh7b gene shows remarkable similarity between diverse species, suggesting that transcriptional control mechanisms have been conserved. Using luciferase reporter analysis in rat cardiomyocytes, it can be shown that MEF2, GATA, and E-box regulatory elements are essential for efficient expression of the Myh7b gene. In addition two conserved elements that do not correspond to consensus binding sites for known transcription factors are also essential for full transcriptional activity of the Myh7b reporter. Finally, the Myh7b gene shows a transcriptional response similar to Myh6 in response to cardiac hypertrophy.
Collapse
Affiliation(s)
- Andrew S Warkman
- Department of Cellular and Molecular Medicine, University of Arizona Health Sciences Center, Tucson, Arizona 85724, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
MicroRNAs (miRs) regulate protein expression by inhibiting translation of expressed mRNAs. Targeting by one or more miRs of multiple mRNA transcripts encoding proteins with common functions confers nodal control over cardiac development and stress response. Dynamic coregulation of miRs and their mRNA targets has complicated understanding their biology but also provides opportunities for clinical diagnostics and therapeutics. Here, the biology of miRs is reviewed as it relates to the cardiac system, recent findings are described that illuminate miR control of cardiac development and myofiber identity, and the clinical ramifications of miR expression profiling are illustrated.
Collapse
|
39
|
Takagaki Y, Yamagishi H, Matsuoka R. Factors Involved in Signal Transduction During Vertebrate Myogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 296:187-272. [DOI: 10.1016/b978-0-12-394307-1.00004-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Abstract
MicroRNAs (miRs) are transcriptionally regulated single-strand RNAs that depress protein expression through posttranscriptional mRNA silencing. A host of recent studies have established essential roles for miRs in cardiac development and cardiac health. Regulated myocardial miR expression is observed in a variety of cardiac syndromes, and serum miR levels are being evaluated as disease biomarkers. The manipulation of miR levels in mouse hearts using genetic techniques or engineered miR mimetics and antagonists is elucidating the roles of specific cardiac miRs in cardiac development, and in the cardiac response to injury or stress, and heart disease. The ability to target multiple factors within a single biological response pathway by a given miR has prompted the development of small miR-targeting molecules that can be readily delivered and have sustained in vivo effects. These advances establish a foundation for novel diagnostics and new therapeutic approaches for myocardial infarction, cardiac hypertrophy, and heart failure.
Collapse
Affiliation(s)
- Gerald W Dorn
- Center for Pharmacogenomics, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
41
|
Abstract
Ongoing synaptic function and rapid, bidirectional plasticity are both controlled by regulatory mechanisms within dendritic spines. Spine actin dynamics maintain synapse structure and function, and cytoskeletal rearrangements in these structures trigger structural and functional plasticity. Therefore, proteins that interact with actin filaments are attractive candidates to regulate synaptic actin dynamics and, thus, synapse structure and function. Here, we have cloned the rat isoform of class II myosin heavy chain MyH7B in brain. Unexpectedly, this isoform resembles muscle-type myosin II rather than the ubiquitously expressed nonmuscle myosin II isoforms, suggesting that a rich functional diversity of myosin II motors may exist in neurons. Indeed, reducing the expression of MyH7B in mature neurons caused profound alterations to dendritic spine structure and excitatory synaptic strength. Structurally, dendritic spines had large, irregularly shaped heads that contained many filopodia-like protrusions. Neurons with reduced MyH7B expression also had impaired miniature EPSC amplitudes accompanied by a decrease in synaptic AMPA receptors, which was linked to alterations of the actin cytoskeleton. MyH7B-mediated control over spine morphology and synaptic strength was distinct from that of a nonmuscle myosin, myosin IIb. Interestingly, when myosin IIb expression and MyH7B expression were simultaneously knocked-down in neurons, a third, more pronounced phenotype emerged. Together, our data provide evidence that distinct myosin II isoforms work together to regulate synapse structure and function in cultured hippocampal neurons. Thus, myosin II motor activity is emerging as a broad regulatory mechanism for control over complex actin networks within dendritic spines.
Collapse
|
42
|
Gundersen K. Excitation-transcription coupling in skeletal muscle: the molecular pathways of exercise. Biol Rev Camb Philos Soc 2010; 86:564-600. [PMID: 21040371 PMCID: PMC3170710 DOI: 10.1111/j.1469-185x.2010.00161.x] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Muscle fibres have different properties with respect to force, contraction speed, endurance, oxidative/glycolytic capacity etc. Although adult muscle fibres are normally post-mitotic with little turnover of cells, the physiological properties of the pre-existing fibres can be changed in the adult animal upon changes in usage such as after exercise. The signal to change is mainly conveyed by alterations in the patterns of nerve-evoked electrical activity, and is to a large extent due to switches in the expression of genes. Thus, an excitation-transcription coupling must exist. It is suggested that changes in nerve-evoked muscle activity lead to a variety of activity correlates such as increases in free intracellular Ca2+ levels caused by influx across the cell membrane and/or release from the sarcoplasmatic reticulum, concentrations of metabolites such as lipids and ADP, hypoxia and mechanical stress. Such correlates are detected by sensors such as protein kinase C (PKC), calmodulin, AMP-activated kinase (AMPK), peroxisome proliferator-activated receptor δ (PPARδ), and oxygen dependent prolyl hydroxylases that trigger intracellular signaling cascades. These complex cascades involve several transcription factors such as nuclear factor of activated T-cells (NFAT), myocyte enhancer factor 2 (MEF2), myogenic differentiation factor (myoD), myogenin, PPARδ, and sine oculis homeobox 1/eyes absent 1 (Six1/Eya1). These factors might act indirectly by inducing gene products that act back on the cascade, or as ultimate transcription factors binding to and transactivating/repressing genes for the fast and slow isoforms of various contractile proteins and of metabolic enzymes. The determination of size and force is even more complex as this involves not only intracellular signaling within the muscle fibres, but also muscle stem cells called satellite cells. Intercellular signaling substances such as myostatin and insulin-like growth factor 1 (IGF-1) seem to act in a paracrine fashion. Induction of hypertrophy is accompanied by the satellite cells fusing to myofibres and thereby increasing the capacity for protein synthesis. These extra nuclei seem to remain part of the fibre even during subsequent atrophy as a form of muscle memory facilitating retraining. In addition to changes in myonuclear number during hypertrophy, changes in muscle fibre size seem to be caused by alterations in transcription, translation (per nucleus) and protein degradation.
Collapse
Affiliation(s)
- Kristian Gundersen
- Department of Molecular Biosciences, University of Oslo, P.O. Box 1041, Blindern, N-0316 Oslo, Norway.
| |
Collapse
|
43
|
Uncoupling of expression of an intronic microRNA and its myosin host gene by exon skipping. Mol Cell Biol 2010; 30:1937-45. [PMID: 20154144 DOI: 10.1128/mcb.01370-09] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The ancient MYH7b gene, expressed in striated muscle and brain, encodes a sarcomeric myosin and the intronic microRNA miR-499. We find that skipping of an exon introduces a premature termination codon in the transcript that downregulates MYH7b protein production without affecting microRNA expression. Among other genes, endogenous miR-499 targets the 3' untranslated region of the transcription factor Sox6, which in turn acts as a repressor of MYH7b transcriptional activity. Thus, concerted transcription and alternative splicing uncouple the level of expression of MYH7b and miR-499 when their coexpression is not required.
Collapse
|
44
|
Ikeda D, Nihei Y, Ono Y, Watabe S. Three embryonic myosin heavy chain genes encoding different motor domain structures from common carp show distinct expression patterns in cranial muscles. Mar Genomics 2010; 3:1-9. [PMID: 21798191 DOI: 10.1016/j.margen.2009.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 12/06/2009] [Accepted: 12/17/2009] [Indexed: 01/30/2023]
Abstract
Three embryonic myosin heavy chain (MYH) genes >> (MYHs) including MYH(emb1), MYH(emb2) and MYH(emb3) and encoding a C-terminal part of MYH were previously cloned and demonstrated to be expressed transiently in this order during development of common carp Cyprinus carpio embryos. The present study determined the full-length cDNA nucleotide sequences encoding the motor domain of the three MYHs, suggesting the implication of loop 1 and loop 2 sequences for the differences in the motor functions. Phylogenetic analysis based on the full-length amino acid sequences showed that MYH(emb1) and MYH(emb2) both belong to the fast types, though clearly differ from fast-type MYHs expressed in adult fast muscle previously reported. In contrast, MYH(emb3) was in a clade containing slow/cardiac type. Whole-mount immunostaining and in situ hybridization showed that the transcripts of the three embryonic MYHs are localized in the same or different cranial muscles of common carp larvae, suggesting that the three MYHs function cooperatively or individually in various cranial muscles.
Collapse
Affiliation(s)
- Daisuke Ikeda
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Japan
| | | | | | | |
Collapse
|
45
|
Rossi AC, Mammucari C, Argentini C, Reggiani C, Schiaffino S. Two novel/ancient myosins in mammalian skeletal muscles: MYH14/7b and MYH15 are expressed in extraocular muscles and muscle spindles. J Physiol 2009; 588:353-64. [PMID: 19948655 PMCID: PMC2821527 DOI: 10.1113/jphysiol.2009.181008] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The mammalian genome contains three ancient sarcomeric myosin heavy chain (MYH) genes, MYH14/7b, MYH15 and MYH16, in addition to the two well characterized clusters of skeletal and cardiac MYHs. MYH16 is expressed in jaw muscles of carnivores; however the expression pattern of MYH14 and MYH15 is not known. MYH14 and MYH15 orthologues are present in frogs and birds, coding for chicken slow myosin 2 and ventricular MYH, respectively, whereas only MYH14 orthologues have been detected in fish. In all species the MYH14 gene contains a microRNA, miR-499. Here we report that in rat and mouse, MYH14 and miR-499 transcripts are detected in heart, slow muscles and extraocular (EO) muscles, whereas MYH15 transcripts are detected exclusively in EO muscles. However, MYH14 protein is detected only in a minor fibre population in EO muscles, corresponding to slow-tonic fibres, and in bag fibres of muscle spindles. MYH15 protein is present in most fibres of the orbital layer of EO muscles and in the extracapsular region of bag fibres. During development, MYH14 is expressed at low levels in skeletal muscles, heart and all EO muscle fibres but disappears from most fibres, except the slow-tonic fibres, after birth. In contrast, MYH15 is absent in embryonic and fetal muscles and is first detected after birth in the orbital layer of EO muscles. The identification of the expression pattern of MYH14 and MYH15 brings to completion the inventory of the MYH isoforms involved in sarcomeric architecture of skeletal muscles and provides an unambiguous molecular basis to study the contractile properties of slow-tonic fibres in mammals.
Collapse
Affiliation(s)
- Alberto C Rossi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | | | | | | |
Collapse
|
46
|
Rahnert JA, Sokoloff AJ, Burkholder TJ. Sarcomeric myosin expression in the tongue body of humans, macaques and rats. Cells Tissues Organs 2009; 191:431-42. [PMID: 19907142 DOI: 10.1159/000258678] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2009] [Indexed: 11/19/2022] Open
Abstract
Expression of developmental and unconventional myosin heavy chain (MHC) isoforms in some adult head and neck muscles is thought to reflect specific contractile demands of muscle fibers active during kinematically complex movements. Mammalian tongue muscles are active during oromotor behaviors that encompass a wide range of tongue movement speeds and tongue shape changes (e.g. respiration, oral transport, swallowing, rejection), but the extent to which tongue muscles express developmental and unconventional MHC is not known. Quantitative PCR was used to determine the mRNA content of conventional MHC-beta, MHC-2a, MHC-2b and MHC-2x, the developmental isoforms embryonic MHC and neonatal MHC and the unconventional isoforms atrial/cardiac-alpha MHC (MHC-alpha), extraocular MHC, masseter MHC and slow tonic MHC in tongue body muscles of the rat, macaque and human. In all species, conventional MHC isoforms predominate. MHC-2b and MHC-2x account for 98% of total MHC mRNA in the rat. MHC-2a, MHC-2x and MHC-beta account for 94% of total MHC mRNA in humans and 96% of total MHC mRNA in macaque. With the exception of MHC-alpha in humans (5%), developmental and unconventional MHC mRNA represents less than 0.3% of total MHC mRNA. We conclude that in these species, there is limited expression of developmental and unconventional MHC and that diversity of tongue body muscle fiber contractile properties is achieved primarily by MHC-beta, MHC-2a, MHC-2x and MHC-2b. Whether expression of MHC-alpha mRNA in tongue is unique to humans or present in other hominoids awaits further investigation.
Collapse
Affiliation(s)
- Jill A Rahnert
- School of Applied Physiology, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | |
Collapse
|
47
|
Luke MM, O'Meara ES, Rowland CM, Shiffman D, Bare LA, Arellano AR, Longstreth WT, Lumley T, Rice K, Tracy RP, Devlin JJ, Psaty BM. Gene variants associated with ischemic stroke: the cardiovascular health study. Stroke 2009; 40:363-8. [PMID: 19023099 PMCID: PMC2881155 DOI: 10.1161/strokeaha.108.521328] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 06/19/2008] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE The purpose of this study was to determine whether 74 single nucleotide polymorphisms (SNPs), which had been associated with coronary heart disease, are associated with incident ischemic stroke. METHODS Based on antecedent studies of coronary heart disease, we prespecified the risk allele for each of the 74 SNPs. We used Cox proportional hazards models that adjusted for traditional risk factors to estimate the associations of these SNPs with incident ischemic stroke during 14 years of follow-up in a population-based study of older adults: the Cardiovascular Health Study (CHS). RESULTS In white CHS participants, the prespecified risk alleles of 7 of the 74 SNPs (in HPS1, ITGAE, ABCG2, MYH15, FSTL4, CALM1, and BAT2) were nominally associated with increased risk of stroke (one-sided P<0.05, false discovery rate=0.42). In black participants, the prespecified risk alleles of 5 SNPs (in KRT4, LY6G5B, EDG1, DMXL2, and ABCG2) were nominally associated with stroke (one-sided P<0.05, false discovery rate=0.55). The Val12Met SNP in ABCG2 was associated with stroke in both white (hazard ratio, 1.46; 90% CI, 1.05 to 2.03) and black (hazard ratio, 3.59; 90% CI, 1.11 to 11.6) participants of CHS. Kaplan-Meier estimates of the 10-year cumulative incidence of stroke were greater among Val allele homozygotes than among Met allele carriers in both white (10% versus 6%) and black (12% versus 3%) participants of CHS. CONCLUSIONS The Val12Met SNP in ABCG2 (encoding a transporter of sterols and xenobiotics) was associated with incident ischemic stroke in white and black participants of CHS.
Collapse
|
48
|
Nasipak BT, Kelley DB. The genome of the diploid anuran Xenopus tropicalis contains a novel array of sarcoplasmic myosin heavy chain genes expressed in larval muscle and larynx. Dev Genes Evol 2008; 218:389-97. [PMID: 18551304 PMCID: PMC2925462 DOI: 10.1007/s00427-008-0225-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 04/21/2008] [Indexed: 11/26/2022]
Abstract
The sarcomeric myosin heavy chain (MyHC) proteins are a family of molecular motors responsible for the transduction of chemical energy into mechanical work in striated muscle. The vertebrate genome contains multiple copies of the MyHC gene, and expression of different isoforms correlates with differences in the physiological properties of muscle fibers. Most MyHC isoforms are found in two arrays, one containing the "fast-twitch" skeletal muscle isoforms and the other the "slow-twitch" or cardiac isoforms. To extend our understanding of MyHC evolution, we have examined the genome of the anuran Xenopus tropicalis. The X. tropicalis genome includes 15 full-length MyHC genes organized in seven genomic locations. One unique array of MyHC genes is similar to the mammalian fast-skeletal array, but is not found in amniotes. The isoforms in this array are expressed during larval stages and in muscles of the adult larynx. Duplication of the fast-skeletal MyHC array appears to have led to expression divergence of muscle proteins in the larval and adult stages of the anuran life cycle. A striking similarity of gene order between regions flanking X. tropicalis MyHC arrays and human arrays was evident; genomic organization of MyHC isoforms may thus be highly conserved across tetrapods.
Collapse
Affiliation(s)
- Brian T Nasipak
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | | |
Collapse
|
49
|
Perelygin AA, Zharkikh AA, Astakhova NM, Lear TL, Brinton MA. Concerted Evolution of Vertebrate CCR2 and CCR5 Genes and the Origin of a Recombinant Equine CCR5/2 Gene. J Hered 2008; 99:500-11. [DOI: 10.1093/jhered/esn029] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
50
|
Ikeda D, Ono Y, Snell P, Edwards YJK, Elgar G, Watabe S. Divergent evolution of the myosin heavy chain gene family in fish and tetrapods: evidence from comparative genomic analysis. Physiol Genomics 2007; 32:1-15. [PMID: 17940200 DOI: 10.1152/physiolgenomics.00278.2006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Myosin heavy chain genes (MYHs) are the most important functional domains of myosins, which are highly conserved throughout evolution. The human genome contains 15 MYHs, whereas the corresponding number in teleost appears to be much higher. Although teleosts comprise more than one-half of all vertebrate species, our knowledge of MYHs in teleosts is rather limited. A comprehensive analysis of the torafugu (Takifugu rubripes) genome database enabled us to detect at least 28 MYHs, almost twice as many as in humans. RT-PCR revealed that at least 16 torafugu MYH representatives (5 fast skeletal, 3 cardiac, 2 slow skeletal, 1 superfast, 2 smooth, and 3 nonmuscle types) are actually transcribed. Among these, MYH(M743-2) and MYH(M5) of fast and slow skeletal types, respectively, are expressed during development of torafugu embryos. Syntenic analysis reveals that torafugu fast skeletal MYHs are distributed across five genomic regions, three of which form clusters. Interestingly, while human fast skeletal MYHs form one cluster, its syntenic region in torafugu is duplicated, although each locus contains just a single MYH in torafugu. The results of the syntenic analysis were further confirmed by corresponding analysis of MYHs based on databases from Tetraodon, zebrafish, and medaka genomes. Phylogenetic analysis suggests that fast skeletal MYHs evolved independently in teleosts and tetrapods after fast skeletal MYHs had diverged from four ancestral MYHs.
Collapse
Affiliation(s)
- Daisuke Ikeda
- Laboratory of Aquatic Molecular Biology and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|