1
|
Rawat N, Sharma Y, Wang Y, Chen ZH, Singla-Pareek SL, Siddique KHM, Shabala S, Pareek A. Refining Osmosensing Mechanisms for Crop Resilience: Insights From Glycophytes and Halophytes. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40528663 DOI: 10.1111/pce.15669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/26/2025] [Accepted: 05/28/2025] [Indexed: 06/20/2025]
Abstract
Salinity and drought are major global challenges threatening crop productivity and ecosystem diversity, causing annual losses exceeding US$100 billion. These stresses share a common factor: osmotic stress imposed on plants. While extensive research has explored plant osmotic adjustment mechanisms, the processes underlying osmosensing in plant roots and how this sensing translates into adaptive responses remain poorly understood. This study aims to bridge this gap by examining the structure and function of various putative osmosensors (e.g., histidine kinases, mechanosensitive ion channels, phospholipase enzymes, and receptor-like kinases) across halophytes and glycophytes-two plant groups with contrasting salinity tolerance. We conducted a thorough bioinformatics analysis to explore the molecular evolution and structural diversity of these osmosensors in both plant groups. Our findings reveal that the evolution of putative osmosensors is highly conserved between glycophytes and halophytes, with notable divergence between monocot and dicot species within both groups. While halophytes do not exhibit distinct protein families during their evolutionary process, differences in conserved amino acids between glycophytes and halophytes may significantly influence osmosensing, signaling, and stress adaptation. Importantly, halophytes possess more copies of osmosensor-related genes compared to glycophytes. These findings offer valuable insights for breeding climate-resilient crops, highlighting potential pathways to enhance stress tolerance through genetic improvements.
Collapse
Affiliation(s)
- Nishtha Rawat
- Stress Physiology and Molecular Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Yogesh Sharma
- National Agri-Food and Biomanufacturing Institute, Mohali, Punjab, India
| | - Yuanyuan Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, NSW, Australia
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Sergey Shabala
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- National Agri-Food and Biomanufacturing Institute, Mohali, Punjab, India
| |
Collapse
|
2
|
Elsharawy H, Refat M. SAL1 gene: a promising target for improving abiotic stress tolerance in plants a mini review. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2025; 31:1-9. [PMID: 39901960 PMCID: PMC11787127 DOI: 10.1007/s12298-025-01549-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/08/2024] [Accepted: 01/07/2025] [Indexed: 02/05/2025]
Abstract
Global climate change poses a significant risk to agricultural productivity due to its diverse impacts on agricultural ecosystems, such as increased temperatures and altered precipitation patterns, all of which can adversely affect crop productivity. To overcome these challenges, plants have evolved intricate mechanisms to regulate stress responses and enhance stress tolerance. The SAL1 gene, which encodes a phosphatase enzyme, has emerged as a key player in plant stress responses. In this review, we provide an overview of the SAL1 gene, its functional significance, and its potential applications for improving stress tolerance in crops. To address the escalating global food demand amidst climate change challenges, it is imperative to pursue innovative strategies aimed at enhancing crop tolerance against abiotic stress.
Collapse
Affiliation(s)
- Hany Elsharawy
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Moath Refat
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi’an Jiaotong University, Xi’an, 710061 China
| |
Collapse
|
3
|
van Hooren M, Darwish E, Munnik T. Stress- and phospholipid signalling responses in Arabidopsis PLC4-KO and -overexpression lines under salt- and osmotic stress. PHYTOCHEMISTRY 2023; 216:113862. [PMID: 37734512 DOI: 10.1016/j.phytochem.2023.113862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 09/23/2023]
Abstract
Several drought and salt tolerant phenotypes have been reported when overexpressing (OE) phospholipase C (PLC) genes across plant species. In contrast, a negative role for Arabidopsis PLC4 in salinity stress was recently proposed, showing that roots of PLC4-OE seedlings were more sensitive to NaCl while plc4 knock-out (KO) mutants were more tolerant. To investigate this apparent contradiction, and to analyse the phospholipid signalling responses associated with salinity stress, we performed root growth- and phospholipid analyses on plc4-KO and PLC4-OE seedlings subjected to salinity (NaCl) or osmotic (sorbitol) stress and compared these with wild type (WT). Only very minor differences between PLC4 mutants and WT were observed, which even disappeared after normalization of the data, while in soil, PLC4-OE plants were clearly more drought tolerant than WT plants, as was found earlier when overexpressing Arabidopsis PLC2, -3, -5, -7 or -9. We conclude that PLC4 plays no opposite role in salt-or osmotic stress and rather behaves like the other Arabidopsis PLCs.
Collapse
Affiliation(s)
- Max van Hooren
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, PO Box 1210, 1000, BE, Amsterdam, the Netherlands
| | - Essam Darwish
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, PO Box 1210, 1000, BE, Amsterdam, the Netherlands
| | - Teun Munnik
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, PO Box 1210, 1000, BE, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Wang X, Deng Y, Gao L, Kong F, Shen G, Duan B, Wang Z, Dai M, Han Z. Series-temporal transcriptome profiling of cotton reveals the response mechanism of phosphatidylinositol signaling system in the early stage of drought stress. Genomics 2022; 114:110465. [PMID: 36038061 DOI: 10.1016/j.ygeno.2022.110465] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/15/2022]
Abstract
Plants are sessile organisms suffering severe environmental conditions. Drought stress is one of the major environmental issues that affect plant growth and productivity. Although complex regulatory gene networks of plants under drought stress have been analyzed extensively, the response mechanism in the early stage of drought stress is still rarely mentioned. Here, we performed transcriptome analyses on cotton samples treated for a short time (10 min, 30 min, 60 min, 180 min) using 10% PEG, which is used to simulate drought stress. The analysis of differently expressed genes (DEGs) showed that the number of DEGs in roots was obviously more than that in stems and leaves at the four time points and maintained >2000 FDEGs (DEGs appearing for the first time) from 10 min, indicating that root tissues of plants respond to drought stress quickly and continuously strongly. Gene ontology (GO) analysis showed that DEGs in roots were mainly enriched in protein modification and microtubule-based process. DEGs were found significantly enriched in phosphatidylinositol signaling system at 10 min through Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, implying the great importance of phosphatidylinositol signal in the early stage of drought stress. What was more, two co-expression modules, which were significantly positively correlated with drought stress, were found by Weighted Gene Co-expression Network Analysis (WGCNA). From one of the co-expression modules, we identified a hub-gene Gohir.A07G058200, which is annotated as "phosphatidylinositol 3- and 4-kinase" in phosphatidylinositol signaling system, and found this gene may interact with auxin-responsive protein. This result suggested that Gohir.A07G058200 may be involved in the crosstalk of phosphatidylinositol signal and auxin signal in the early stage of drought stress. In summary, through transcriptome sequencing, we found that phosphatidylinositol signaling system is an important signal transduction pathway in early stage in response to drought stress, and it may interact with auxin signal transduction through phosphatidylinositol 3- and 4-kinase.
Collapse
Affiliation(s)
- Xiaoge Wang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Jinan, Shandong 250100, PR China
| | - Yongsheng Deng
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Jinan, Shandong 250100, PR China
| | - Liying Gao
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Jinan, Shandong 250100, PR China
| | - Fanjin Kong
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Jinan, Shandong 250100, PR China
| | - Guifang Shen
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Jinan, Shandong 250100, PR China
| | - Bing Duan
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Jinan, Shandong 250100, PR China
| | - Zongwen Wang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Jinan, Shandong 250100, PR China
| | - Maohua Dai
- Dryland Farming Institute, Hebei Academy of Agricultural and Forestry Sciences, Hebei Key Laboratory of Crops Drought Resistance, Hengshui, Hebei 053000, PR China.
| | - Zongfu Han
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Jinan, Shandong 250100, PR China.
| |
Collapse
|
5
|
Helal NM, Khattab HI, Emam MM, Niedbała G, Wojciechowski T, Hammami I, Alabdallah NM, Darwish DBE, El-Mogy MM, Hassan HM. Improving Yield Components and Desirable Eating Quality of Two Wheat Genotypes Using Si and NanoSi Particles under Heat Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:1819. [PMID: 35890453 PMCID: PMC9316522 DOI: 10.3390/plants11141819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 01/07/2023]
Abstract
Global climate change is a significant challenge that will significantly lower crop yield and staple grain quality. The present investigation was conducted to assess the effects of the foliar application of either Si (1.5 mM) or Si nanoparticles (1.66 mM) on the yield and grain quality attributes of two wheat genotypes (Triticum aestivum L.), cv. Shandweel 1 and cv. Gemmeiza 9, planted at normal sowing date and late sowing date (heat stress). Si and Si nanoparticles markedly mitigated the observed decline in yield and reduced the heat stress intensity index value at late sowing dates, and improved yield quality via the decreased level of protein, particularly glutenin, as well as the lowered activity of α-amylase in wheat grains, which is considered a step in improving grain quality. Moreover, Si and nanoSi significantly increased the oil absorption capacity (OAC) of the flour of stressed wheat grains. In addition, both silicon and nanosilicon provoked an increase in cellulose, pectin, total phenols, flavonoid, oxalic acid, total antioxidant power, starch and soluble protein contents, as well as Ca and K levels, in heat-stressed wheat straw, concomitant with a decrease in lignin and phytic acid contents. In conclusion, the pronounced positive effects associated with improving yield quantity and quality were observed in stressed Si-treated wheat compared with Si nanoparticle-treated ones, particularly in cv. Gemmeiza 9.
Collapse
Affiliation(s)
- Nesma M. Helal
- Botany Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt; (N.M.H.); (H.I.K.); (M.M.E.)
| | - Hemmat I. Khattab
- Botany Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt; (N.M.H.); (H.I.K.); (M.M.E.)
| | - Manal M. Emam
- Botany Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt; (N.M.H.); (H.I.K.); (M.M.E.)
| | - Gniewko Niedbała
- Department of Biosystems Engineering, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland;
| | - Tomasz Wojciechowski
- Department of Biosystems Engineering, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland;
| | - Inès Hammami
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (I.H.); (N.M.A.)
| | - Nadiyah M. Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (I.H.); (N.M.A.)
| | - Doaa Bahaa Eldin Darwish
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35511, Egypt;
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 46429, Saudi Arabia
| | - Mohamed M. El-Mogy
- Vegetable Crops Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Heba M. Hassan
- Botany Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt; (N.M.H.); (H.I.K.); (M.M.E.)
| |
Collapse
|
6
|
Rodas-Junco BA, Racagni-Di-Palma GE, Canul-Chan M, Usorach J, Hernández-Sotomayor SMT. Link between Lipid Second Messengers and Osmotic Stress in Plants. Int J Mol Sci 2021; 22:2658. [PMID: 33800808 PMCID: PMC7961891 DOI: 10.3390/ijms22052658] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 01/04/2023] Open
Abstract
Plants are subject to different types of stress, which consequently affect their growth and development. They have developed mechanisms for recognizing and processing an extracellular signal. Second messengers are transient molecules that modulate the physiological responses in plant cells under stress conditions. In this sense, it has been shown in various plant models that membrane lipids are substrates for the generation of second lipid messengers such as phosphoinositide, phosphatidic acid, sphingolipids, and lysophospholipids. In recent years, research on lipid second messengers has been moving toward using genetic and molecular approaches to reveal the molecular setting in which these molecules act in response to osmotic stress. In this sense, these studies have established that second messengers can transiently recruit target proteins to the membrane and, therefore, affect protein conformation, activity, and gene expression. This review summarizes recent advances in responses related to the link between lipid second messengers and osmotic stress in plant cells.
Collapse
Affiliation(s)
- Beatriz A. Rodas-Junco
- CONACYT—Facultad de Ingeniería Química, Campus de Ciencias Exactas e Ingenierías, Universidad Autónoma de Yucatán (UADY), Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615 Chuburná de Hidalgo Inn, C.P. 97203 Mérida, Mexico
| | | | - Michel Canul-Chan
- Facultad de Ciencias Químicas, Universidad Veracruzana, Prolongación de Avenida Oriente 6 Num. 1009, Rafael Alvarado, C.P. 94340 Orizaba, Mexico;
| | - Javier Usorach
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán (CICY), Calle 43 No. 130, Col. Chuburná de Hidalgo, C.P. 97205 Mérida, Mexico;
| | - S. M. Teresa Hernández-Sotomayor
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán (CICY), Calle 43 No. 130, Col. Chuburná de Hidalgo, C.P. 97205 Mérida, Mexico;
| |
Collapse
|
7
|
Wang X, Liu Y, Li Z, Gao X, Dong J, Yang M. Expression and evolution of the phospholipase C gene family in Brachypodium distachyon. Genes Genomics 2020; 42:1041-1053. [PMID: 32712839 DOI: 10.1007/s13258-020-00973-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Phospholipase C (PLC) is an enzyme that hydrolyzes phospholipids and plays an important role in plant growth and development. The Brachypodium distachyon is a model plant of Gramineae, but the research on PLC gene family of Brachypodium has not been reported. OBJECTIVE This study was performed to identify the PLC family gene in Brachypodium and to determine the expression profiles of PLCs under the abiotic stress. METHODS Complete genome sequences and transcriptomes of Brachypodium were downloaded from the PLAZA. The hidden Markov model-based profile of the conserved PLC domain was submitted as a query to identify all potential PLC domain sequences with HMMER software. Expression profiles of BdPLCs were obtained based on the qRT-PCR analysis. RESULTS There were 8 PLC genes in Brachypodium (BdPI-PLCs 1-4 and BdNPCs 1-4). All members of BdPI-PLC had three conserved domains of X, Y, and C2, and no EF-hand was found. All BdNPCs contained a phosphatase domain. BdPI-PLC genes were distributed on Chr1, Chr2 and Chr4, with different types and numbers of cis-regulatory elements in their respective gene promoters. Phylogenetic analysis showed that the genetic relationship between Brachypodium and rice was closer than Arabidopsis. The expression patterns of BdPI-PLC gene under abiotic stresses (drought, low temperature, high temperature and salt stress) were up-regulated, indicated their important roles in response to low temperature, high temperature, drought and salt stresses. CONCLUSIONS This study provides comprehensive information for the study of Brachypodium PLC gene family and lays a foundation for further research on the molecular mechanism of Brachypodium stress adaptation.
Collapse
Affiliation(s)
- Xianguo Wang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yang Liu
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zheng Li
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiang Gao
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Jian Dong
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingming Yang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
8
|
Genome-Wide Identification and Expression Profile Analysis of the Phospholipase C Gene Family in Wheat ( Triticum aestivum L.). PLANTS 2020; 9:plants9070885. [PMID: 32668812 PMCID: PMC7412115 DOI: 10.3390/plants9070885] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/20/2022]
Abstract
Phospholipid-hydrolyzing enzymes include members of the phospholipase C (PLC) family that play important roles in regulating plant growth and responding to stress. In the present study, a systematic in silico analysis of the wheat PLC gene family revealed a total of 26 wheat PLC genes (TaPLCs). Phylogenetic and sequence alignment analyses divided the wheat PLC genes into 2 subfamilies, TaPI-PLC (containing the typical X, Y, and C2 domains) and TaNPC (containing a phosphatase domain). TaPLC expression patterns differed among tissues, organs, and under abiotic stress conditions. The transcript levels of 8 TaPLC genes were validated through qPCR analyses. Most of the TaPLC genes were sensitive to salt stress and were up-regulated rapidly, and some were sensitive to low temperatures and drought. Overexpression of TaPI-PLC1-2B significantly improved resistance to salt and drought stress in Arabidopsis, and the primary root of P1-OE was significantly longer than that of the wild type under stress conditions. Our results not only provide comprehensive information for understanding the PLC gene family in wheat, but can also provide a solid foundation for functional characterization of the wheat PLC gene family.
Collapse
|
9
|
AtSK11 and AtSK12 Mediate the Mild Osmotic Stress-Induced Root Growth Response in Arabidopsis. Int J Mol Sci 2020; 21:ijms21113991. [PMID: 32498390 PMCID: PMC7312642 DOI: 10.3390/ijms21113991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 05/31/2020] [Indexed: 11/30/2022] Open
Abstract
Although most osmotic stresses are harmful to plant growth and development, certain drought- or polyethylene glycol (PEG)-induced mild osmotic stresses promote plant root growth. The underlying regulatory mechanisms of this response remain elusive. Here, we report that the GLYCOGEN SYNTHASE KINASE 3 (GSK3) genes ARABIDOPSIS THALIANA SHAGGY-RELATED KINASE 11 (AtSK11) (AT5G26751) and AtSK12 (AT3G05840) are involved in the mild osmotic stress (−0.4 MPa) response in Arabidopsis thaliana. When grown on plant medium infused with different concentrations of PEG to mimic osmotic stress, both wild-type (WT) and atsk11atsk12 plants showed stimulated root growth under mild osmotic stress (−0.4 MPa) but repressed root growth under relatively strong osmotic stress (−0.5, −0.6, −0.7 MPa) as compared to the mock condition (−0.25 MPa). The root growth stimulation of atsk11atsk12 was more sensitive to −0.4 MPa treatment than was that of WT, indicating that AtSK11 and AtSK12 inhibit the mild stress-induced root growth response. RNA-seq analysis of WT and atsk11atsk12 plants under three water potentials (−0.25 MPa, −0.4 MPa, −0.6 MPa) revealed 10 differentially expressed candidate genes mainly involved in cell wall homeostasis, which were regulated by AtSK11 and AtSK12 to regulate root growth in response to the mild stress condition (−0.4 MPa). Promoter motif and transcription factor binding analyses suggested that the basic helix-loop-helix (bHLH) transcription factor bHLH69/LJRHL1-LIKE 2 (LRL2) may directly regulate the expression of most −0.4 MPa-responsive genes. These findings indicate that mild osmotic stress (−0.4 MPa) promotes plant growth and that the GSK3 family kinase genes AtSK11 and AtSK12 play a negative role in the induction of root growth in response to mild osmotic stress.
Collapse
|
10
|
Han G, Lu C, Guo J, Qiao Z, Sui N, Qiu N, Wang B. C2H2 Zinc Finger Proteins: Master Regulators of Abiotic Stress Responses in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:115. [PMID: 32153617 PMCID: PMC7044346 DOI: 10.3389/fpls.2020.00115] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/24/2020] [Indexed: 05/04/2023]
Abstract
Abiotic stresses such as drought and salinity are major environmental factors that limit crop yields. Unraveling the molecular mechanisms underlying abiotic stress resistance is crucial for improving crop performance and increasing productivity under adverse environmental conditions. Zinc finger proteins, comprising one of the largest transcription factor families, are known for their finger-like structure and their ability to bind Zn2+. Zinc finger proteins are categorized into nine subfamilies based on their conserved Cys and His motifs, including the Cys2/His2-type (C2H2), C3H, C3HC4, C2HC5, C4HC3, C2HC, C4, C6, and C8 subfamilies. Over the past two decades, much progress has been made in understanding the roles of C2H2 zinc finger proteins in plant growth, development, and stress signal transduction. In this review, we focus on recent progress in elucidating the structures, functions, and classifications of plant C2H2 zinc finger proteins and their roles in abiotic stress responses.
Collapse
Affiliation(s)
- Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Chaoxia Lu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jianrong Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Ziqi Qiao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Nianwei Qiu
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
11
|
Na JK, Metzger JD. A putative tomato inositol polyphosphate 5-phosphatase, Le5PT1, is involved in plant growth and abiotic stress responses. 3 Biotech 2020; 10:28. [PMID: 31950007 DOI: 10.1007/s13205-019-2023-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/20/2019] [Indexed: 12/16/2022] Open
Abstract
Based on sequence similarity to Arabidopsis inositol polyphosphate 5-phosphatases (5PTases) involved in abiotic stress responses and development, four tomato cDNAs (Le5PT1-4) encoding putative 5PTase proteins were identified. The predicted protein sequences of the Le5PTs include conserved catalytic domains required for 5PTase enzyme activity. Le5PT1, 2, and 3 showed high amino acid sequence identity with At5PTase2, At5PTase1 and At5PTase3, and At5PTase5 and At5PTase6, respectively. The expression of Le5PT1 was downregulated soon after initiation of dehydration and salt stress as well as exposure to polyethylene glycol (PEG) and NaCl, but not by exogenous ABA treatment. On the other hand, the expression of Le5PT2 gradually increased with time in all treatments. Transgenic tobacco plants overexpressing Le5PT1 exhibited reduced growth in height, leaf area, and dry weight compared to wild type plants. Transgenic plants also had lower water use efficiency (WUE) than wild type and the downregulation of the drought-responsive gene, NtERD10B. Together these results suggest that Le5PT1 may have a negative role in response to water deficit through the repression of drought-inducible genes that in turn affects plant growth and development.
Collapse
Affiliation(s)
- Jong-Kuk Na
- 1Depeatment of Controlled Agriculture, Kangwon National University, Chuncheon, Republic of Korea
- 2Department of Horticulture and Crop Science, Ohio State University, Columbus, OH 43210 USA
| | - James D Metzger
- 2Department of Horticulture and Crop Science, Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
12
|
Passricha N, Saifi SK, Kharb P, Tuteja N. Rice lectin receptor‐like kinase provides salinity tolerance by ion homeostasis. Biotechnol Bioeng 2019; 117:498-510. [DOI: 10.1002/bit.27216] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/18/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Nishat Passricha
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali MargNew Delhi India
| | - Shabnam K. Saifi
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali MargNew Delhi India
| | - Pushpa Kharb
- Department of Molecular Biology, Biotechnology and BioinformaticsCOBS&H, CCS Haryana Agricultural UniversityHisar Haryana India
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali MargNew Delhi India
| |
Collapse
|
13
|
Passricha N, Saifi SK, Kharb P, Tuteja N. Marker-free transgenic rice plant overexpressing pea LecRLK imparts salinity tolerance by inhibiting sodium accumulation. PLANT MOLECULAR BIOLOGY 2019; 99:265-281. [PMID: 30604324 DOI: 10.1007/s11103-018-0816-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 12/18/2018] [Indexed: 05/29/2023]
Abstract
KEY MESSAGE PsLecRLK overexpression in rice provides tolerance against salinity stress and cause upregulation of SOS1 pathway genes, which are responsible for extrusion of excess Na+ ion under stress condition. Soil salinity is one of the most devastating factors threatening cultivable land. Rice is a major staple crop and immensely affected by soil salinity. The small genome size of rice relative to wheat and barley, together with its salt sensitivity, makes it an ideal candidate for studies on salt stress response caused by a particular gene. Under stress conditions crosstalk between organelles and cell to cell response is imperative. LecRLK is an important family, which plays a key role under stress conditions and regulates the physiology of the plant. Here we have functionally validated the PsLecRLK gene in rice for salinity stress tolerance and hypothesized the model for its working. Salt stress sensitive rice variety IR64 was used for developing marker-free transgenic with modified binary vector pCAMBIA1300 overexpressing PsLecRLK gene. Comparison of transgenic and wild-type (WT) plants showed better physiological and biochemical results in transgenic lines with a low level of ROS, MDA and ion accumulation and a higher level of proline, relative water content, root/shoot ration, enzymatic activities of ROS scavengers and upregulation of stress-responsive genes. Based on the relative expression of stress-responsive genes and ionic content, the working model highlights the role of PsLecRLK in the extrusion of Na+ ion from the cell. This extrusion of Na+ ion is facilitated by higher expression of SOS1 (Na+/K+ channel) in transgenic plants as compared to WT plants. Altered expression of stress-responsive genes and change in biochemical and physiological properties of the cell suggests an extensive reprogramming of the stress-responsive metabolic pathways by PsLecRLK under stress condition, which could be responsible for the salt tolerance capability.
Collapse
MESH Headings
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/genetics
- Calcium/metabolism
- Cell Death
- Cell Membrane/drug effects
- Cloning, Molecular
- Gene Expression Regulation, Plant/drug effects
- Gene Expression Regulation, Plant/genetics
- Genes, Plant
- Germination
- Homozygote
- Ions
- Oryza/genetics
- Oryza/metabolism
- Pisum sativum/genetics
- Pisum sativum/metabolism
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Protein Transport/drug effects
- Reactive Oxygen Species/metabolism
- Receptors, Mitogen/genetics
- Receptors, Mitogen/metabolism
- SOS1 Protein/genetics
- SOS1 Protein/metabolism
- Salinity
- Salt Tolerance/genetics
- Salt Tolerance/physiology
- Sodium/metabolism
- Sodium Chloride/metabolism
- Sodium Chloride/pharmacology
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
- Up-Regulation
Collapse
Affiliation(s)
- Nishat Passricha
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shabnam K Saifi
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pushpa Kharb
- Department of Molecular Biology, Biotechnology and Bioinformatics, COBS&H, CCS Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
14
|
Zhang Q, van Wijk R, Zarza X, Shahbaz M, van Hooren M, Guardia A, Scuffi D, García-Mata C, Van den Ende W, Hoffmann-Benning S, Haring MA, Laxalt AM, Munnik T. Knock-Down of Arabidopsis PLC5 Reduces Primary Root Growth and Secondary Root Formation While Overexpression Improves Drought Tolerance and Causes Stunted Root Hair Growth. PLANT & CELL PHYSIOLOGY 2018; 59:2004-2019. [PMID: 30107538 DOI: 10.1093/pcp/pcy120] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/14/2018] [Indexed: 05/12/2023]
Abstract
Phospholipase C (PLC) is a well-known signaling enzyme in metazoans that hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) to produce inositol 1,4,5-trisphosphate and diacylglycerol as second messengers involved in mutiple processes. Plants contain PLC too, but relatively little is known about its function there. The model system Arabidopsis thaliana contains nine PLC genes. Reversed genetics have implicated several roles for PLCs in plant development and stress signaling. Here, PLC5 is functionally addressed. Promoter-β-glucuronidase (GUS) analyses revealed expression in roots, leaves and flowers, predominantly in vascular tissue, most probably phloem companion cells, but also in guard cells, trichomes and root apical meristem. Only one plc5-1 knock-down mutant was obtained, which developed normally but grew more slowly and exhibited reduced primary root growth and decreased lateral root numbers. These phenotypes could be complemented by expressing the wild-type gene behind its own promoter. Overexpression of PLC5 (PLC5-OE) using the UBQ10 promoter resulted in reduced primary and secondary root growth, stunted root hairs, decreased stomatal aperture and improved drought tolerance. PLC5-OE lines exhibited strongly reduced phosphatidylinositol 4-monophosphate (PIP) and PIP2 levels and increased amounts of phosphatidic acid, indicating enhanced PLC activity in vivo. Reduced PIP2 levels and stunted root hair growth of PLC5-OE seedlings could be recovered by inducible overexpression of a root hair-specific PIP 5-kinase, PIP5K3. Our results show that PLC5 is involved in primary and secondary root growth and that its overexpression improves drought tolerance. Independently, we provide new evidence that PIP2 is essential for the polar tip growth of root hairs.
Collapse
Affiliation(s)
- Qianqian Zhang
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| | - Ringo van Wijk
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| | - Xavier Zarza
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| | - Muhammad Shahbaz
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| | - Max van Hooren
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| | - Aisha Guardia
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Denise Scuffi
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Carlos García-Mata
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, University of Leuven, Leuven, Belgium
| | - Susanne Hoffmann-Benning
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Michel A Haring
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| | - Ana M Laxalt
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Teun Munnik
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| |
Collapse
|
15
|
Zhang Q, van Wijk R, Shahbaz M, Roels W, Schooten BV, Vermeer JEM, Zarza X, Guardia A, Scuffi D, García-Mata C, Laha D, Williams P, Willems LAJ, Ligterink W, Hoffmann-Benning S, Gillaspy G, Schaaf G, Haring MA, Laxalt AM, Munnik T. Arabidopsis Phospholipase C3 is Involved in Lateral Root Initiation and ABA Responses in Seed Germination and Stomatal Closure. PLANT & CELL PHYSIOLOGY 2018; 59:469-486. [PMID: 29309666 DOI: 10.1093/pcp/pcx194] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/01/2017] [Indexed: 05/10/2023]
Abstract
Phospholipase C (PLC) is well known for its role in animal signaling, where it generates the second messengers, inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG), by hydrolyzing the minor phospholipid, phosphatidylinositol 4,5-bisphosphate (PIP2), upon receptor stimulation. In plants, PLC's role is still unclear, especially because the primary targets of both second messengers are lacking, i.e. the ligand-gated Ca2+ channel and protein kinase C, and because PIP2 levels are extremely low. Nonetheless, the Arabidopsis genome encodes nine PLCs. We used a reversed-genetic approach to explore PLC's function in Arabidopsis, and report here that PLC3 is required for proper root development, seed germination and stomatal opening. Two independent knock-down mutants, plc3-2 and plc3-3, were found to exhibit reduced lateral root densities by 10-20%. Mutant seeds germinated more slowly but were less sensitive to ABA to prevent germination. Guard cells of plc3 were also compromised in ABA-dependent stomatal closure. Promoter-β-glucuronidase (GUS) analyses confirmed PLC3 expression in guard cells and germinating seeds, and revealed that the majority is expressed in vascular tissue, most probably phloem companion cells, in roots, leaves and flowers. In vivo 32Pi labeling revealed that ABA stimulated the formation of PIP2 in germinating seeds and guard cell-enriched leaf peels, which was significantly reduced in plc3 mutants. Overexpression of PLC3 had no effect on root system architecture or seed germination, but increased the plant's tolerance to drought. Our results provide genetic evidence for PLC's involvement in plant development and ABA signaling, and confirm earlier observations that overexpression increases drought tolerance. Potential molecular mechanisms for the above observations are discussed.
Collapse
Affiliation(s)
- Qianqian Zhang
- Swammerdam Institute for Life Sciences, section Plant Physiology, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
- Swammerdam Institute for Life Sciences, section Plant Cell Biology, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Ringo van Wijk
- Swammerdam Institute for Life Sciences, section Plant Physiology, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
- Swammerdam Institute for Life Sciences, section Plant Cell Biology, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Muhammad Shahbaz
- Swammerdam Institute for Life Sciences, section Plant Physiology, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Wendy Roels
- Swammerdam Institute for Life Sciences, section Plant Physiology, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Bas van Schooten
- Swammerdam Institute for Life Sciences, section Plant Physiology, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Joop E M Vermeer
- Swammerdam Institute for Life Sciences, section Plant Physiology, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Xavier Zarza
- Swammerdam Institute for Life Sciences, section Plant Physiology, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
- Swammerdam Institute for Life Sciences, section Plant Cell Biology, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Aisha Guardia
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Denise Scuffi
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Carlos García-Mata
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Debabrata Laha
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, Bonn, Germany
| | - Phoebe Williams
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Leo A J Willems
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Wilco Ligterink
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Susanne Hoffmann-Benning
- Departement of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Glenda Gillaspy
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Gabriel Schaaf
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, Bonn, Germany
| | - Michel A Haring
- Swammerdam Institute for Life Sciences, section Plant Physiology, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Ana M Laxalt
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Teun Munnik
- Swammerdam Institute for Life Sciences, section Plant Physiology, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
- Swammerdam Institute for Life Sciences, section Plant Cell Biology, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| |
Collapse
|
16
|
Xia K, Wang B, Zhang J, Li Y, Yang H, Ren D. Arabidopsis phosphoinositide-specific phospholipase C 4 negatively regulates seedling salt tolerance. PLANT, CELL & ENVIRONMENT 2017; 40:1317-1331. [PMID: 28102910 DOI: 10.1111/pce.12918] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 05/20/2023]
Abstract
Previous physiological and pharmacological studies have suggested that the activity of phosphoinositide-specific phospholipase C (PI-PLC) plays an important role in regulating plant salt stress responses by altering the intracellular Ca2+ concentration. However, the individual members of plant PLCs involved in this process need to be identified. Here, the function of AtPLC4 in the salt stress response of Arabidopsis seedlings was analysed. plc4 mutant seedlings showed hyposensitivity to salt stress compared with Col-0 wild-type seedlings, and the salt hyposensitive phenotype could be complemented by the expression of native promoter-controlled AtPLC4. Transgenic seedlings with AtPLC4 overexpression (AtPLC4 OE) exhibited a salt-hypersensitive phenotype, while transgenic seedlings with its inactive mutant expression (AtPLC4m OE) did not exhibit this phenotype. Using aequorin as a Ca2+ indicator in plc4 mutant and AtPLC4 OE seedlings, AtPLC4 was shown to positively regulate the salt-induced Ca2+ increase. The salt-hypersensitive phenotype of AtPLC4 OE seedlings was partially rescued by EGTA. An analysis of salt-responsive genes revealed that the transcription of RD29B, MYB15 and ZAT10 was inversely regulated in plc4 mutant and AtPLC4 OE seedlings. Our findings suggest that AtPLC4 negatively regulates the salt tolerance of Arabidopsis seedlings, and Ca2+ may be involved in regulating this process.
Collapse
Affiliation(s)
- Keke Xia
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Bo Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiewei Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hailian Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dongtao Ren
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
17
|
Meijer HJG, van Himbergen JAJ, Musgrave A, Munnik T. Acclimation to salt modifies the activation of several osmotic stress-activated lipid signalling pathways in Chlamydomonas. PHYTOCHEMISTRY 2017; 135:64-72. [PMID: 28017365 DOI: 10.1016/j.phytochem.2016.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 05/12/2023]
Abstract
Osmotic stress rapidly activates several phospholipid signalling pathways in the unicellular alga Chlamydomonas. In this report, we have studied the effects of salt-acclimation on growth and phospholipid signalling. Growing cells on media containing 100 mM NaCl increased their salt-tolerance but did not affect the overall phospholipid content, except that levels of phosphatidylinositol phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] were reduced by one-third. When these NaCl-acclimated cells were treated with increasing concentrations of salt, the same lipid signalling pathways as in non-acclimated cells were activated. This was witnessed as increases in phosphatidic acid (PA), lyso-phosphatidic acid (L-PA), diacylglycerol pyrophosphate (DGPP), PI(4,5)P2 and its isomer PI(3,5)P2. However, all dose-dependent responses were shifted to higher osmotic-stress levels, and the responses were lower than in non-acclimated cells. When NaCl-acclimated cells were treated with other osmotica, such as KCl and sucrose, the same effects were found, illustrating that they were due to hyperosmotic rather than hyperionic acclimation. The results indicate that acclimation to moderate salt stress modifies stress perception and the activation of several downstream pathways.
Collapse
Affiliation(s)
- Harold J G Meijer
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - John A J van Himbergen
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Alan Musgrave
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Teun Munnik
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Wang X, Shan X, Xue C, Wu Y, Su S, Li S, Liu H, Jiang Y, Zhang Y, Yuan Y. Isolation and functional characterization of a cold responsive phosphatidylinositol transfer-associated protein, ZmSEC14p, from maize (Zea may L.). PLANT CELL REPORTS 2016; 35:1671-86. [PMID: 27061906 DOI: 10.1007/s00299-016-1980-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/31/2016] [Indexed: 05/10/2023]
Abstract
A Sec14-like protein, ZmSEC14p , from maize was structurally analyzed and functionally tested. Overexpression of ZmSEC14p in transgenic Arabidopsis conferred tolerance to cold stress. Sec14-like proteins are involved in essential biological processes, such as phospholipid metabolism, signal transduction, membrane trafficking, and stress response. Here, we reported a phosphatidylinositol transfer-associated protein, ZmSEC14p (accession no. KT932998), isolated from a cold-tolerant maize inbred line using the cDNA-AFLP approach and RACE-PCR method. Full-length cDNA that consisted of a single open reading frame (ORF) encoded a putative polypeptide of 295 amino acids. The ZmSEC14p protein was mainly localized in the nucleus, and its transcript was induced by cold, salt stresses, and abscisic acid (ABA) treatment in maize leaves and roots. Overexpression of ZmSEC14p in transgenic Arabidopsis conferred tolerance to cold stress. This tolerance was primarily displayed by the increased germination rate, root length, plant survival rate, accumulation of proline, activities of antioxidant enzymes, and the reduction of oxidative damage by reactive oxygen species (ROS). ZmSEC14p overexpression regulated the expression of phosphoinositide-specific phospholipase C, which cleaves phosphatidylinositol 4,5-bisphosphate (PIP2) and generates second messengers (inositol 1,4,5-trisphosphate and 1,2-diacylglycerol) in the phosphoinositide signal transduction pathways. Moreover, up-regulation of some stress-responsive genes such as CBF3, COR6.6, and RD29B in transgenic plants under cold stress could be a possible mechanism for enhancing cold tolerance. Taken together, this study strongly suggests that ZmSEC14p plays an important role in plant tolerance to cold stress.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Xiaohui Shan
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Chunmei Xue
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Ying Wu
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Shengzhong Su
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Shipeng Li
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Hongkui Liu
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Yuan Jiang
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Yanfei Zhang
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Yaping Yuan
- College of Plant Science, Jilin University, Changchun, 130062, China.
| |
Collapse
|
19
|
Chen C, Sun X, Duanmu H, Zhu D, Yu Y, Cao L, Liu A, Jia B, Xiao J, Zhu Y. GsCML27, a Gene Encoding a Calcium-Binding Ef-Hand Protein from Glycine soja, Plays Differential Roles in Plant Responses to Bicarbonate, Salt and Osmotic Stresses. PLoS One 2015; 10:e0141888. [PMID: 26550992 PMCID: PMC4638360 DOI: 10.1371/journal.pone.0141888] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 10/14/2015] [Indexed: 01/29/2023] Open
Abstract
Calcium, as the most widely accepted messenger, plays an important role in plant stress responses through calcium-dependent signaling pathways. The calmodulin-like family genes (CMLs) encode Ca2+ sensors and function in signaling transduction in response to environmental stimuli. However, until now, the function of plant CML proteins, especially soybean CMLs, is largely unknown. Here, we isolated a Glycine soja CML protein GsCML27, with four conserved EF-hands domains, and identified it as a calcium-binding protein through far-UV CD spectroscopy. We further found that expression of GsCML27 was induced by bicarbonate, salt and osmotic stresses. Interestingly, ectopic expression of GsCML27 in Arabidopsis enhanced plant tolerance to bicarbonate stress, but decreased the salt and osmotic tolerance during the seed germination and early growth stages. Furthermore, we found that ectopic expression of GsCML27 decreases salt tolerance through modifying both the cellular ionic (Na+, K+) content and the osmotic stress regulation. GsCML27 ectopic expression also decreased the expression levels of osmotic stress-responsive genes. Moreover, we also showed that GsCML27 localized in the whole cell, including cytoplasm, plasma membrane and nucleus in Arabidopsis protoplasts and onion epidermal cells, and displayed high expression in roots and embryos. Together, these data present evidence that GsCML27 as a Ca2+-binding EF-hand protein plays a role in plant responses to bicarbonate, salt and osmotic stresses.
Collapse
Affiliation(s)
- Chao Chen
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Xiaoli Sun
- Agronomy College, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Huizi Duanmu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Dan Zhu
- College of Life Science, Qingdao Agricultural University, Qingdao, P.R. China
| | - Yang Yu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Lei Cao
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Ailin Liu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Bowei Jia
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Jialei Xiao
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Yanming Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| |
Collapse
|
20
|
Zhang X, Shen Z, Sun J, Yu Y, Deng S, Li Z, Sun C, Zhang J, Zhao R, Shen X, Chen S. NaCl-elicited, vacuolar Ca(2+) release facilitates prolonged cytosolic Ca(2+) signaling in the salt response of Populus euphratica cells. Cell Calcium 2015; 57:348-65. [PMID: 25840638 DOI: 10.1016/j.ceca.2015.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 02/24/2015] [Accepted: 03/09/2015] [Indexed: 10/23/2022]
Abstract
High environmental salt elicits an increase in cytosolic Ca(2+) ([Ca(2+)]cyt) in plants, which is generated by extracellular Ca(2+) influx and Ca(2+) release from intracellular stores, such as vacuole and endoplasmic reticulum. This study aimed to determine the physiological mechanisms underlying Ca(2+) release from vacuoles and its role in ionic homeostasis in Populus euphratica. In vivo Ca(2+) imaging showed that NaCl treatment induced a rapid elevation in [Ca(2+)]cyt, which was accompanied by a subsequent release of vacuolar Ca(2+). In cell cultures, NaCl-altered intracellular Ca(2+) mobilization was abolished by antagonists of inositol (1, 4, 5) trisphosphate (IP3) and cyclic adenosine diphosphate ribose (cADPR) signaling pathways, but not by slow vacuolar (SV) channel blockers. Furthermore, the NaCl-induced vacuolar Ca(2+) release was dependent on extracellular ATP, extracellular Ca(2+) influx, H2O2, and NO. In vitro Ca(2+) flux recordings confirmed that IP3, cADPR, and Ca(2+) induced substantial Ca(2+) efflux from intact vacuoles, but this vacuolar Ca(2+) flux did not directly respond to ATP, H2O2, or NO. Moreover, the IP3/cADPR-mediated vacuolar Ca(2+) release enhanced the expression of salt-responsive genes that regulated a wide range of cellular processes required for ion homeostasis, including cytosolic K(+) maintenance, Na(+) and Cl(-) exclusion across the plasma membrane, and Na(+)/H(+) and Cl(-)/H(+) exchanges across the vacuolar membrane.
Collapse
Affiliation(s)
- Xuan Zhang
- College of Biological Sciences and Technology, Beijing Forestry University (Box 162), Beijing 100083, People's Republic of China
| | - Zedan Shen
- College of Biological Sciences and Technology, Beijing Forestry University (Box 162), Beijing 100083, People's Republic of China
| | - Jian Sun
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, People's Republic of China.
| | - Yicheng Yu
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, People's Republic of China
| | - Shurong Deng
- College of Biological Sciences and Technology, Beijing Forestry University (Box 162), Beijing 100083, People's Republic of China
| | - Zongyun Li
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, People's Republic of China
| | - Cunhua Sun
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, People's Republic of China
| | - Jian Zhang
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, People's Republic of China
| | - Rui Zhao
- College of Biological Sciences and Technology, Beijing Forestry University (Box 162), Beijing 100083, People's Republic of China
| | - Xin Shen
- College of Biological Sciences and Technology, Beijing Forestry University (Box 162), Beijing 100083, People's Republic of China
| | - Shaoliang Chen
- College of Biological Sciences and Technology, Beijing Forestry University (Box 162), Beijing 100083, People's Republic of China.
| |
Collapse
|
21
|
Zhang K, Jin C, Wu L, Hou M, Dou S, Pan Y. Expression analysis of a stress-related phosphoinositide-specific phospholipase C gene in wheat (Triticum aestivum L.). PLoS One 2014; 9:e105061. [PMID: 25121594 PMCID: PMC4133336 DOI: 10.1371/journal.pone.0105061] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 07/17/2014] [Indexed: 11/18/2022] Open
Abstract
Plant phosphoinositide-specific phospholipases C (PI-PLCs) function in several essential plant processes associated with either development or environmental stress. In this report, we examined the expression patterns of TaPLC1 under drought and high salinity stress at the transcriptional and post-transcriptional levels. TaPLC1 mRNA was expressed in all wheat organs examined. U73122 and edelfosine, the PLC inhibitor, impaired seedling growth and enhanced seedling sensitivity to drought and high salinity stress. Though TaPLC1 expression in wheat was lowest at the seedling stage, it was strongly induced under conditions of stress. When 6-day-old wheat seedlings were treated with 200 mM NaCl or 20% (w/v) PEG 6000 for 6 or 12 h, respectively, the TaPLC1 transcript level increased by 16-fold compared to the control. Western blotting showed that the TaPLC protein concentration was also maintained at a high level from 24 to 48 h during stress treatment. Together, our results indicate the possible biological functions of TaPLC1 in regulating seedling growth and the response to drought and salinity stress.
Collapse
Affiliation(s)
- Ke Zhang
- College of Life Science, Agricultural University of Hebei, Baoding, China
| | - Congcong Jin
- College of Life Science, Agricultural University of Hebei, Baoding, China
| | - Lizhu Wu
- College of Life Science, Agricultural University of Hebei, Baoding, China
| | - Mingyu Hou
- College of Life Science, Agricultural University of Hebei, Baoding, China
| | - Shijuan Dou
- College of Life Science, Agricultural University of Hebei, Baoding, China
| | - Yanyun Pan
- College of Life Science, Agricultural University of Hebei, Baoding, China
| |
Collapse
|
22
|
Bu Y, Zhao M, Sun B, Zhang X, Takano T, Liu S. An efficient method for stable protein targeting in grasses (Poaceae): a case study in Puccinellia tenuiflora. BMC Biotechnol 2014; 14:52. [PMID: 24898217 PMCID: PMC4064272 DOI: 10.1186/1472-6750-14-52] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 05/26/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An efficient transformation method is lacking for most non-model plant species to test gene function. Therefore, subcellular localization of proteins of interest from non-model plants is mainly carried out through transient transformation in homologous cells or in heterologous cells from model species such as Arabidopsis. Although analysis of expression patterns in model organisms like yeast and Arabidopsis can provide important clues about protein localization, these heterologous systems may not always faithfully reflect the native subcellular distribution in other species. On the other hand, transient expression in protoplasts from species of interest has limited ability for detailed sub-cellular localization analysis (e.g., those involving subcellular fractionation or sectioning and immunodetection), as it results in heterogeneous populations comprised of both transformed and untransformed cells. RESULTS We have developed a simple and reliable method for stable transformation of plant cell suspensions that are suitable for protein subcellular localization analyses in the non-model monocotyledonous plant Puccinellia tenuiflora. Optimization of protocols for obtaining suspension-cultured cells followed by Agrobacterium-mediated genetic transformation allowed us to establish stably transformed cell lines, which could be maintained indefinitely in axenic culture supplied with the proper antibiotic. As a case study, protoplasts of transgenic cell lines stably transformed with an ammonium transporter-green fluorescent protein (PutAMT1;1-GFP) fusion were successfully used for subcellular localization analyses in P. tenuiflora. CONCLUSIONS We present a reliable method for the generation of stably transformed P. tenuiflora cell lines, which, being available in virtually unlimited amounts, can be conveniently used for any type of protein subcellular localization analysis required. Given its simplicity, the method can be used as reference for other non-model plant species lacking efficient regeneration protocols.
Collapse
Affiliation(s)
| | | | | | | | | | - Shenkui Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Hexing Road No, 26, Xiangfang District, Harbin City, Heilongjiang Province 150040, China.
| |
Collapse
|
23
|
PI-PLC: Phosphoinositide-Phospholipase C in Plant Signaling. SIGNALING AND COMMUNICATION IN PLANTS 2014. [DOI: 10.1007/978-3-642-42011-5_2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Djafi N, Vergnolle C, Cantrel C, Wietrzyñski W, Delage E, Cochet F, Puyaubert J, Soubigou-Taconnat L, Gey D, Collin S, Balzergue S, Zachowski A, Ruelland E. The Arabidopsis DREB2 genetic pathway is constitutively repressed by basal phosphoinositide-dependent phospholipase C coupled to diacylglycerol kinase. FRONTIERS IN PLANT SCIENCE 2013; 4:307. [PMID: 23964284 PMCID: PMC3737466 DOI: 10.3389/fpls.2013.00307] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/22/2013] [Indexed: 05/02/2023]
Abstract
Phosphoinositide-dependent phospholipases C (PI-PLCs) are activated in response to various stimuli. They utilize substrates provided by type III-Phosphatidylinositol-4 kinases (PI4KIII) to produce inositol triphosphate and diacylglycerol (DAG) that is phosphorylated into phosphatidic acid (PA) by DAG-kinases (DGKs). The roles of PI4KIIIs, PI-PLCs, and DGKs in basal signaling are poorly understood. We investigated the control of gene expression by basal PI-PLC pathway in Arabidopsis thaliana suspension cells. A transcriptome-wide analysis allowed the identification of genes whose expression was altered by edelfosine, 30 μM wortmannin, or R59022, inhibitors of PI-PLCs, PI4KIIIs, and DGKs, respectively. We found that a gene responsive to one of these molecules is more likely to be similarly regulated by the other two inhibitors. The common action of these agents is to inhibit PA formation, showing that basal PI-PLCs act, in part, on gene expression through their coupling to DGKs. Amongst the genes up-regulated in presence of the inhibitors, were some DREB2 genes, in suspension cells and in seedlings. The DREB2 genes encode transcription factors with major roles in responses to environmental stresses, including dehydration. They bind to C-repeat motifs, known as Drought-Responsive Elements that are indeed enriched in the promoters of genes up-regulated by PI-PLC pathway inhibitors. PA can also be produced by phospholipases D (PLDs). We show that the DREB2 genes that are up-regulated by PI-PLC inhibitors are positively or negatively regulated, or indifferent, to PLD basal activity. Our data show that the DREB2 genetic pathway is constitutively repressed in resting conditions and that DGK coupled to PI-PLC is active in this process, in suspension cells and seedlings. We discuss how this basal negative regulation of DREB2 genes is compatible with their stress-triggered positive regulation.
Collapse
Affiliation(s)
- Nabila Djafi
- Physiologie Cellulaire et Moléculaire des Plantes, CNRS EAC7180Paris, France
- Physiologie Cellulaire et Moléculaire des Plantes, UPMC-Univ Paris06 UR5Paris, France
| | - Chantal Vergnolle
- Physiologie Cellulaire et Moléculaire des Plantes, CNRS EAC7180Paris, France
- Physiologie Cellulaire et Moléculaire des Plantes, UPMC-Univ Paris06 UR5Paris, France
| | - Catherine Cantrel
- Physiologie Cellulaire et Moléculaire des Plantes, CNRS EAC7180Paris, France
- Physiologie Cellulaire et Moléculaire des Plantes, UPMC-Univ Paris06 UR5Paris, France
| | | | - Elise Delage
- Physiologie Cellulaire et Moléculaire des Plantes, CNRS EAC7180Paris, France
- Physiologie Cellulaire et Moléculaire des Plantes, UPMC-Univ Paris06 UR5Paris, France
| | - Françoise Cochet
- Physiologie Cellulaire et Moléculaire des Plantes, CNRS EAC7180Paris, France
- Physiologie Cellulaire et Moléculaire des Plantes, UPMC-Univ Paris06 UR5Paris, France
| | - Juliette Puyaubert
- Physiologie Cellulaire et Moléculaire des Plantes, CNRS EAC7180Paris, France
- Physiologie Cellulaire et Moléculaire des Plantes, UPMC-Univ Paris06 UR5Paris, France
| | - Ludivine Soubigou-Taconnat
- Unité de Recherche en Biologie Végétale, UMR INRA 1165, Université d'Evry Val d'Essonne, ERL CNRS 8196Evry Cedex, France
| | - Delphine Gey
- Unité de Recherche en Biologie Végétale, UMR INRA 1165, Université d'Evry Val d'Essonne, ERL CNRS 8196Evry Cedex, France
| | - Sylvie Collin
- Physiologie Cellulaire et Moléculaire des Plantes, CNRS EAC7180Paris, France
- Physiologie Cellulaire et Moléculaire des Plantes, UPMC-Univ Paris06 UR5Paris, France
| | - Sandrine Balzergue
- Unité de Recherche en Biologie Végétale, UMR INRA 1165, Université d'Evry Val d'Essonne, ERL CNRS 8196Evry Cedex, France
| | - Alain Zachowski
- Physiologie Cellulaire et Moléculaire des Plantes, CNRS EAC7180Paris, France
- Physiologie Cellulaire et Moléculaire des Plantes, UPMC-Univ Paris06 UR5Paris, France
| | - Eric Ruelland
- Physiologie Cellulaire et Moléculaire des Plantes, CNRS EAC7180Paris, France
- Physiologie Cellulaire et Moléculaire des Plantes, UPMC-Univ Paris06 UR5Paris, France
| |
Collapse
|
25
|
Pokotylo I, Kolesnikov Y, Kravets V, Zachowski A, Ruelland E. Plant phosphoinositide-dependent phospholipases C: variations around a canonical theme. Biochimie 2013; 96:144-57. [PMID: 23856562 DOI: 10.1016/j.biochi.2013.07.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 07/04/2013] [Indexed: 01/01/2023]
Abstract
Phosphoinositide-specific phospholipase C (PI-PLC) cleaves, in a Ca(2+)-dependent manner, phosphatidylinositol-4,5-bisphosphate (PI-4,5-P2) into diacylglycerol (DAG) and inositol triphosphate (IP3). PI-PLCs are multidomain proteins that are structurally related to the PI-PLCζs, the simplest animal PI-PLCs. Like these animal counterparts, they are only composed of EF-hand, X/Y and C2 domains. However, plant PI-PLCs do not have a conventional EF-hand domain since they are often truncated, while some PI-PLCs have no EF-hand domain at all. Despite this simple structure, plant PI-PLCs are involved in many essential plant processes, either associated with development or in response to environmental stresses. The action of PI-PLCs relies on the mediators they produce. In plants, IP3 does not seem to be the sole active soluble molecule. Inositol pentakisphosphate (IP5) and inositol hexakisphosphate (IP6) also transmit signals, thus highlighting the importance of coupling PI-PLC action with inositol-phosphate kinases and phosphatases. PI-PLCs also produce a lipid molecule, but plant PI-PLC pathways show a peculiarity in that the active lipid does not appear to be DAG but its phosphorylated form, phosphatidic acid (PA). Besides, PI-PLCs can also act by altering their substrate levels. Taken together, plant PI-PLCs show functional differences when compared to their animal counterparts. However, they act on similar general signalling pathways including calcium homeostasis and cell phosphoproteome. Several important questions remain unanswered. The cross-talk between the soluble and lipid mediators generated by plant PI-PLCs is not understood and how the coupling between PI-PLCs and inositol-kinases or DAG-kinases is carried out remains to be established.
Collapse
Affiliation(s)
- Igor Pokotylo
- Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Kiev, Ukraine.
| | | | | | | | | |
Collapse
|
26
|
Roychoudhury A, Paul S, Basu S. Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. PLANT CELL REPORTS 2013; 32:985-1006. [PMID: 23508256 DOI: 10.1007/s00299-013-1414-5] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 05/18/2023]
Abstract
Salinity, drought and low temperature are the common forms of abiotic stress encountered by land plants. To cope with these adverse environmental factors, plants execute several physiological and metabolic responses. Both osmotic stress (elicited by water deficit or high salt) and cold stress increase the endogenous level of the phytohormone abscisic acid (ABA). ABA-dependent stomatal closure to reduce water loss is associated with small signaling molecules like nitric oxide, reactive oxygen species and cytosolic free calcium, and mediated by rapidly altering ion fluxes in guard cells. ABA also triggers the expression of osmotic stress-responsive (OR) genes, which usually contain single/multiple copies of cis-acting sequence called abscisic acid-responsive element (ABRE) in their upstream regions, mostly recognized by the basic leucine zipper-transcription factors (TFs), namely, ABA-responsive element-binding protein/ABA-binding factor. Another conserved sequence called the dehydration-responsive element (DRE)/C-repeat, responding to cold or osmotic stress, but not to ABA, occurs in some OR promoters, to which the DRE-binding protein/C-repeat-binding factor binds. In contrast, there are genes or TFs containing both DRE/CRT and ABRE, which can integrate input stimuli from salinity, drought, cold and ABA signaling pathways, thereby enabling cross-tolerance to multiple stresses. A strong candidate that mediates such cross-talk is calcium, which serves as a common second messenger for abiotic stress conditions and ABA. The present review highlights the involvement of both ABA-dependent and ABA-independent signaling components and their interaction or convergence in activating the stress genes. We restrict our discussion to salinity, drought and cold stress.
Collapse
Affiliation(s)
- Aryadeep Roychoudhury
- Post Graduate Department of Biotechnology, St. Xavier's College Autonomous, 30, Mother Teresa Sarani, Kolkata 700016, West Bengal, India.
| | | | | |
Collapse
|
27
|
Liu X, Zhai S, Zhao Y, Sun B, Liu C, Yang A, Zhang J. Overexpression of the phosphatidylinositol synthase gene (ZmPIS) conferring drought stress tolerance by altering membrane lipid composition and increasing ABA synthesis in maize. PLANT, CELL & ENVIRONMENT 2013; 36:1037-55. [PMID: 23152961 DOI: 10.1111/pce.12040] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 10/29/2012] [Accepted: 11/07/2012] [Indexed: 05/18/2023]
Abstract
Phosphatidylinositol (PtdIns) synthase is a key enzyme in the phospholipid pathway and catalyses the formation of PtdIns. PtdIns is not only a structural component of cell membranes, but also the precursor of the phospholipid signal molecules that regulate plant response to environment stresses. Here, we obtained transgenic maize constitutively overexpressing or underexpressing PIS from maize (ZmPIS) under the control of a maize ubiquitin promoter. Transgenic plants were confirmed by PCR, Southern blotting analysis and real-time RT-PCR assay. The electrospray ionization tandem mass spectrometry (ESI-MS/MS)-based lipid profiling analysis showed that, under drought stress conditions, the overexpression of ZmPIS in maize resulted in significantly elevated levels of most phospholipids and galactolipids in leaves compared with those in wild type (WT). At the same time, the expression of some genes involved in the phospholipid metabolism pathway and the abscisic acid (ABA) biosynthesis pathway including ZmPLC, ZmPLD, ZmDGK1, ZmDGK3, ZmPIP5K9, ZmABA1, ZmNCED, ZmAAO1, ZmAAO2 and ZmSCA1 was markedly up-regulated in the overexpression lines after drought stress. Consistent with these results, the drought stress tolerance of the ZmPIS sense transgenic plants was enhanced significantly at the pre-flowering stages compared with WT maize plants. These results imply that ZmPIS regulates the plant response to drought stress through altering membrane lipid composition and increasing ABA synthesis in maize.
Collapse
MESH Headings
- Abscisic Acid/biosynthesis
- Adaptation, Biological
- CDP-Diacylglycerol-Inositol 3-Phosphatidyltransferase/genetics
- CDP-Diacylglycerol-Inositol 3-Phosphatidyltransferase/metabolism
- Cell Membrane/genetics
- Cell Membrane/metabolism
- Crops, Agricultural/genetics
- Crops, Agricultural/metabolism
- Crops, Agricultural/physiology
- Droughts
- Flowers/genetics
- Flowers/metabolism
- Gene Expression Regulation, Plant
- Genes, Plant
- Membrane Lipids/genetics
- Membrane Lipids/metabolism
- Phospholipids/genetics
- Phospholipids/metabolism
- Plant Leaves/enzymology
- Plant Leaves/genetics
- Plant Leaves/physiology
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/physiology
- Signal Transduction
- Spectrometry, Mass, Electrospray Ionization
- Stress, Physiological
- Zea mays/enzymology
- Zea mays/genetics
- Zea mays/physiology
Collapse
Affiliation(s)
- Xiuxia Liu
- School of Life Science, Shandong University, 27 Shanda South Road, Jinan 250100, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Zhang WJ, Dewey RE, Boss W, Phillippy BQ, Qu R. Enhanced Agrobacterium-mediated transformation efficiencies in monocot cells is associated with attenuated defense responses. PLANT MOLECULAR BIOLOGY 2013; 81:273-286. [PMID: 23242917 DOI: 10.1007/s11103-012-9997-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 12/06/2012] [Indexed: 05/27/2023]
Abstract
Plant defense responses can lead to altered metabolism and even cell death at the sites of Agrobacterium infection, and thus lower transformation frequencies. In this report, we demonstrate that the utilization of culture conditions associated with an attenuation of defense responses in monocot plant cells led to highly improved Agrobacterium-mediated transformation efficiencies in perennial ryegrass (Lolium perenne L.). The removal of myo-inositol from the callus culture media in combination with a cold shock pretreatment and the addition of L-Gln prior to and during Agrobacterium-infection resulted in about 84 % of the treated calluses being stably transformed. The omission of myo-inositol from the callus culture media was associated with the failure of certain pathogenesis related genes to be induced after Agrobacterium infection. The addition of a cold shock and supplemental Gln appeared to have synergistic effects on infection and transformation efficiencies. Nearly 60 % of the stably transformed calluses regenerated into green plantlets. Calluses cultured on media lacking myo-inositol also displayed profound physiological and biochemical changes compared to ones cultured on standard growth media, such as reduced lignin within the cell walls, increased starch and inositol hexaphosphate accumulation, enhanced Agrobacterium binding to the cell surface, and less H(2)O(2) production after Agrobacterium infection. Furthermore, the cold treatment greatly reduced callus browning after infection. The simple modifications described in this report may have broad application for improving genetic transformation of recalcitrant monocot species.
Collapse
Affiliation(s)
- Wan-Jun Zhang
- Department of Grassland Science, China Agricultural University, Beijing 100193, China.
| | | | | | | | | |
Collapse
|
29
|
Gupta S, Bharalee R, Bhorali P, Bandyopadhyay T, Gohain B, Agarwal N, Ahmed P, Saikia H, Borchetia S, Kalita MC, Handique AK, Das S. Identification of drought tolerant progenies in tea by gene expression analysis. Funct Integr Genomics 2012; 12:543-63. [PMID: 22562548 DOI: 10.1007/s10142-012-0277-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 03/16/2012] [Accepted: 03/21/2012] [Indexed: 10/28/2022]
Abstract
Understanding the genes that govern tea plant (Camellia sinensis) architecture and response to drought stress is urgently needed to enhance breeding in tea with improved water use efficiency. Field drought is a slow mechanism and the plants go through an adaptive process in contrast to the drastic changes of rapid dehydration in case of controlled experiments. We identified a set of drought responsive genes under controlled condition using SSH, and validated the identified genes and their pattern of expression under field drought condition. The study was at three stages of water deficit stress viz., before wilting, wilting and recovery, which revealed a set of genes with higher expression at before wilting stage including dehydrin, abscissic acid ripening protein, glutathione peroxidase, cinnamoyl CoA reductase, calmodulin binding protein. The higher expression of these genes was related with increase tolerance character of DT/TS-463 before wilting, these five tolerant progenies could withstand drought stress and thus are candidates for breeding. We observed that physiological parameter like water use efficiency formed a close group with genes such as calmodulin related, DRM3, hexose transporter, hydrogen peroxide induced protein, ACC oxidase, lipase, ethylene responsive transcription factor and diaminopimelate decarboxylase, during wilting point. Our data provides valuable information for the gene components and the dynamics of gene expression in second and third leaf against drought stress in tea, which could be regarded as candidate targets potentially associated with drought tolerance. We propose that the identified five tolerant progenies on the basis of their drought tolerance can thus be utilised for future breeding programmes.
Collapse
Affiliation(s)
- Sushmita Gupta
- Department of Biotechnology, Plant Improvement Division, Tea Research Association, Tocklai, Jorhat, Assam, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ogawa Y, Sakurai N, Oikawa A, Kai K, Morishita Y, Mori K, Moriya K, Fujii F, Aoki K, Suzuki H, Ohta D, Saito K, Shibata D. High-throughput cryopreservation of plant cell cultures for functional genomics. PLANT & CELL PHYSIOLOGY 2012; 53:943-52. [PMID: 22437846 PMCID: PMC3345369 DOI: 10.1093/pcp/pcs038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 03/14/2012] [Indexed: 05/18/2023]
Abstract
Suspension-cultured cell lines from plant species are useful for genetic engineering. However, maintenance of these lines is laborious, involves routine subculturing and hampers wider use of transgenic lines, especially when many lines are required for a high-throughput functional genomics application. Cryopreservation of these lines may reduce the need for subculturing. Here, we established a simple protocol for cryopreservation of cell lines from five commonly used plant species, Arabidopsis thaliana, Daucus carota, Lotus japonicus, Nicotiana tabacum and Oryza sativa. The LSP solution (2 M glycerol, 0.4 M sucrose and 86.9 mM proline) protected cells from damage during freezing and was only mildly toxic to cells kept at room temperature for at least 2 h. More than 100 samples were processed for freezing simultaneously. Initially, we determined the conditions for cryopreservation using a programmable freezer; we then developed a modified simple protocol that did not require a programmable freezer. In the simple protocol, a thick expanded polystyrene (EPS) container containing the vials with the cell-LSP solution mixtures was kept at -30 °C for 6 h to cool the cells slowly (pre-freezing); samples from the EPS containers were then plunged into liquid nitrogen before long-term storage. Transgenic Arabidopsis cells were subjected to cryopreservation, thawed and then re-grown in culture; transcriptome and metabolome analyses indicated that there was no significant difference in gene expression or metabolism between cryopreserved cells and control cells. The simplicity of the protocol will accelerate the pace of research in functional plant genomics.
Collapse
Affiliation(s)
- Yoichi Ogawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818 Japan
- Present address: Honda Research Institute Japan, Kisarazu, 292-0818 Japan
| | - Nozomu Sakurai
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818 Japan
| | - Akira Oikawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, 599-8531 Japan
- Present address: Faculty of Agriculture, Yamagata University, Tsuruoka, 997-8555 Japan
| | - Kosuke Kai
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, 599-8531 Japan
- Present address: SYSMEX CORPORATION, Kobe, 651-0073 Japan
| | - Yoshihiko Morishita
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818 Japan
| | - Kumiko Mori
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818 Japan
| | - Kanami Moriya
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818 Japan
| | - Fumiko Fujii
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818 Japan
| | - Koh Aoki
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818 Japan
- Present address: Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, 599-8531 Japan
| | - Hideyuki Suzuki
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818 Japan
| | - Daisaku Ohta
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, 599-8531 Japan
| | - Kazuki Saito
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818 Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675 Japan
| | - Daisuke Shibata
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818 Japan
| |
Collapse
|
31
|
Molecular Analysis of Drought Tolerance in Tea by cDNA-AFLP Based Transcript Profiling. Mol Biotechnol 2012; 53:237-48. [DOI: 10.1007/s12033-012-9517-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
32
|
Khurana N, Chauhan H, Khurana P. Expression analysis of a heat-inducible, Myo-inositol-1-phosphate synthase (MIPS) gene from wheat and the alternatively spliced variants of rice and Arabidopsis. PLANT CELL REPORTS 2012; 31:237-51. [PMID: 21971746 DOI: 10.1007/s00299-011-1160-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 08/30/2011] [Accepted: 09/21/2011] [Indexed: 05/08/2023]
Abstract
Molecular dissection and a deeper analysis of the heat stress response mechanism in wheat have been poorly understood so far. This study delves into the molecular basis of action of TaMIPS, a heat stress-inducible enzyme that was identified through PCR-select subtraction technology, which is named here as TaMIPS2. MIPS (L-Myo-inositol-phosphate synthase) is important for the normal growth and development in plants. Expression profiling showed that TaMIPS2 is expressed during different developing seed stages upon heat stress. Also, the transcript levels increase in unfertilized ovaries and significant amounts are present during the recovery period providing evidence that MIPS is crucial for its role in heat stress recovery and flower development. Alternatively spliced forms from rice and Arabidopsis were also identified and their expression analysis revealed that apart from heat stress, some of the spliced variants were also inducible by drought, NaCl, Cold, ABA, BR, SA and mannitol. In silico promoter analysis revealed various cis-elements that could contribute for the differential regulation of MIPS in different plant systems. Phylogenetic analysis indicated that MIPS are highly conserved among monocots and dicots and TaMIPS2 grouped specifically with monocots. Comparative analyses was undertaken by different experimental approaches, i.e., semi-quantitative RT-PCR, quantitative RT-PCR, Genevestigator as a reference expression tool and motif analysis to predict the possible function of TaMIPS2 in regulating the different aspects of plant development under abiotic stress in wheat.
Collapse
Affiliation(s)
- Neetika Khurana
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | | | | |
Collapse
|
33
|
Ghars MA, Richard L, Lefebvre-De Vos D, Leprince AS, Parre E, Bordenave M, Abdelly C, Savouré A. Phospholipases C and D modulate proline accumulation in Thellungiella halophila/salsuginea differently according to the severity of salt or hyperosmotic stress. PLANT & CELL PHYSIOLOGY 2012; 53:183-92. [PMID: 22121247 DOI: 10.1093/pcp/pcr164] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Proline accumulation is one of the most common responses of plants to environmental constraints. Thellungiella halophila/salsuginea, a model halophyte, accumulates high levels of proline in response to abiotic stress and in the absence of stress. Recently, lipid signaling pathways have been shown to be involved in the regulation of proline metabolism in Arabidopsis thaliana. Here we investigated the relationship between lipid signaling enzymes and the level of proline in T. salsuginea. Inhibition of phospholipase C (PLC) enzymes by the specific inhibitor U73122 demonstrated that proline accumulation is negatively controlled by PLCs in the absence of stress and under moderate salt stress (200 mM NaCl). The use of 1-butanol to divert some of the phospholipase D (PLD)-derived phosphatidic acid by transphosphatidylation revealed that PLDs exert a positive control on proline accumulation under severe stress (400 mM NaCl or 400 mM mannitol) but have no effect on its accumulation in non-stress conditions. This experimental evidence shows that positive and negative lipid regulatory components are involved in the fine regulation of proline metabolism. These signaling pathways in T. salsuginea are regulated in the opposite sense to those previously described in A. thaliana, revealing that common signaling components affect the physiology of closely related glycophyte and salt-tolerant plants differently.
Collapse
Affiliation(s)
- Mohamed Ali Ghars
- UPMC Université Paris 06, UR5 EAC7180 CNRS, Physiologie Cellulaire et Moléculaire des Plantes, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The simple polyol, myo-inositol, is used as a building block of a cellular language that plays various roles in signal transduction. This review describes the terminology used to denote myo-inositol-containing molecules, with an emphasis on how phosphate and fatty acids are added to create second messengers used in signaling. Work in model systems has delineated the genes and enzymes required for synthesis and metabolism of many myo-inositol-containing molecules, with genetic mutants and measurement of second messengers playing key roles in developing our understanding. There is increasing evidence that molecules such as myo- inositol(1,4,5)trisphosphate and phosphatidylinositol(4,5)bisphosphate are synthesized in response to various signals plants encounter. In particular, the controversial role of myo-inositol(1,4,5)trisphosphate is addressed, accompanied by a discussion of the multiple enzymes that act to regulate this molecule. We are also beginning to understand new connections of myo-inositol signaling in plants. These recent discoveries include the novel roles of inositol phosphates in binding to plant hormone receptors and that of phosphatidylinositol(3)phosphate binding to pathogen effectors.
Collapse
Affiliation(s)
- Glenda E Gillaspy
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
35
|
Vollmer AH, Youssef NN, DeWald DB. Unique cell wall abnormalities in the putative phosphoinositide phosphatase mutant AtSAC9. PLANTA 2011; 234:993-1005. [PMID: 21698459 DOI: 10.1007/s00425-011-1454-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 05/25/2011] [Indexed: 05/31/2023]
Abstract
SAC9 is a putative phosphoinositide phosphatase in Arabidopsis thaliana involved in phosphoinositide signaling. sac9-1 plants have a constitutively stressed phenotype with shorter roots which notably accumulate phosphatidylinositol 4,5-bisphosphate and its hydrolysis product inositol trisphosphate. We investigated the primary roots of sac9-1 seedlings at the cytological and ultrastructural level to determine the structural basis for this altered growth. Despite the normal appearance of organelles and cytoplasmic elements, our studies reveal extreme abnormalities of cell wall and membrane structures in sac9-1 primary root cells, regardless of cell type, position within the meristematic area, and plane of section. Cell wall material was deposited locally and in a range of abnormal shapes, sometimes completely fragmenting the cell. Simple protuberances, broad flanges, diffuse patches, elaborate folds, irregular loops and other complex three-dimensional structures were found to extend randomly from the pre-existing cell wall. Abundant vesicles and excessive membrane material were associated with these irregular wall structures. We argue that a perturbed phosphoinositide metabolism most likely induces these observed abnormalities and hypothesize that a disorganized cytoskeleton and excessive membrane trafficking mediate the cell wall defects.
Collapse
Affiliation(s)
- Almut H Vollmer
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322-5305, USA.
| | | | | |
Collapse
|
36
|
Poot-Poot W, Teresa Hernandez-Sotomayor SM. Aluminum stress and its role in the phospholipid signaling pathway in plants and possible biotechnological applications. IUBMB Life 2011; 63:864-72. [DOI: 10.1002/iub.550] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 07/06/2011] [Indexed: 11/08/2022]
|
37
|
Vatsa P, Chiltz A, Luini E, Vandelle E, Pugin A, Roblin G. Cytosolic calcium rises and related events in ergosterol-treated Nicotiana cells. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:764-73. [PMID: 21530285 DOI: 10.1016/j.plaphy.2011.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 04/04/2011] [Indexed: 05/29/2023]
Abstract
The typical fungal membrane component ergosterol was previously shown to trigger defence responses and protect plants against pathogens. Most of the elicitors mobilize the second messenger calcium, to trigger plant defences. We checked the involvement of calcium in response to ergosterol using Nicotiana plumbaginifolia and Nicotiana tabacum cv Xanthi cells expressing apoaequorin in the cytosol. First, it was verified if ergosterol was efficient in these cells inducing modifications of proton fluxes and increased expression of defence-related genes. Then, it was shown that ergosterol induced a rapid and transient biphasic increase of free [Ca²⁺](cyt) which intensity depends on ergosterol concentration in the range 0.002-10 μM. Among sterols, this calcium mobilization was specific for ergosterol and, ergosterol-induced pH and [Ca²⁺](cyt) changes were specifically desensitized after two subsequent applications of ergosterol. Specific modulators allowed elucidating some events in the signalling pathway triggered by ergosterol. The action of BAPTA, LaCl₃, nifedipine, verapamil, neomycin, U73122 and ruthenium red suggested that the first phase was linked to calcium influx from external medium which subsequently triggered the second phase linked to calcium release from internal stores. The calcium influx and the [Ca²⁺](cyt) increase depended on upstream protein phosphorylation. The extracellular alkalinization and ROS production depended on calcium influx but, the ergosterol-induced MAPK activation was calcium-independent. ROS were not involved in cytosolic calcium rise as described in other models, indicating that ROS do not systematically participate in the amplification of calcium signalling. Interestingly, ergosterol-induced ROS production is not linked to cell death and ergosterol does not induce any calcium elevation in the nucleus.
Collapse
Affiliation(s)
- Parul Vatsa
- UMR CNRS/INRA/Université de Bourgogne, Plante-Microbe-Environnement, 17 Rue de Sully, BP 86510, 21065 Dijon Cedex, France
| | | | | | | | | | | |
Collapse
|
38
|
Mao X, Jia D, Li A, Zhang H, Tian S, Zhang X, Jia J, Jing R. Transgenic expression of TaMYB2A confers enhanced tolerance to multiple abiotic stresses in Arabidopsis. Funct Integr Genomics 2011; 11:445-65. [DOI: 10.1007/s10142-011-0218-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 02/22/2011] [Accepted: 02/23/2011] [Indexed: 11/29/2022]
|
39
|
Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo. Proc Natl Acad Sci U S A 2011; 108:1717-22. [PMID: 21220313 DOI: 10.1073/pnas.1018367108] [Citation(s) in RCA: 243] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Osmotic stress associated with drought or salinity is a major factor that limits plant productivity. Protein kinases in the SNF1-related protein kinase 2 (SnRK2) family are activated by osmotic stress, suggesting that the kinases are involved in osmotic stress signaling. However, due to functional redundancy, their contribution to osmotic stress responses remained unclear. In this report, we constructed an Arabidopsis line carrying mutations in all 10 members of the SnRK2 family. The decuple mutant snrk2.1/2/3/4/5/6/7/8/9/10 grew poorly under hyperosmotic stress conditions but was similar to the wild type in culture media in the absence of osmotic stress. The mutant was also defective in gene regulation and the accumulation of abscisic acid (ABA), proline, and inositol 1,4,5-trisphosphate under osmotic stress. In addition, analysis of mutants defective in the ABA-activated SnRK2s (snrk2.2/3/6) and mutants defective in the rest of the SnRK2s (snrk2.1/4/5/7/8/9/10) revealed that SnRK2s are a merging point of ABA-dependent and -independent pathways for osmotic stress responses. These results demonstrate critical functions of the SnRK2s in mediating osmotic stress signaling and tolerance.
Collapse
|
40
|
Zhang H, Mao X, Wang C, Jing R. Overexpression of a common wheat gene TaSnRK2.8 enhances tolerance to drought, salt and low temperature in Arabidopsis. PLoS One 2010; 5:e16041. [PMID: 21209856 PMCID: PMC3012728 DOI: 10.1371/journal.pone.0016041] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Accepted: 12/06/2010] [Indexed: 11/19/2022] Open
Abstract
Drought, salinity and low temperatures are major factors limiting crop productivity and quality. Sucrose non-fermenting1-related protein kinase 2 (SnRK2) plays a key role in abiotic stress signaling in plants. In this study, TaSnRK2.8, a SnRK2 member in wheat, was cloned and its functions under multi-stress conditions were characterized. Subcellular localization showed the presence of TaSnRK2.8 in the cell membrane, cytoplasm and nucleus. Expression pattern analyses in wheat revealed that TaSnRK2.8 was involved in response to PEG, NaCl and cold stresses, and possibly participates in ABA-dependent signal transduction pathways. To investigate its role under various environmental stresses, TaSnRK2.8 was transferred to Arabidopsis under control of the CaMV-35S promoter. Overexpression of TaSnRK2.8 resulted in enhanced tolerance to drought, salt and cold stresses, further confirmed by longer primary roots and various physiological characteristics, including higher relative water content, strengthened cell membrane stability, significantly lower osmotic potential, more chlorophyll content, and enhanced PSII activity. Meanwhile, TaSnRK2.8 plants had significantly lower total soluble sugar levels under normal growing conditions, suggesting that TaSnRK2.8 might be involved in carbohydrate metabolism. Moreover, the transcript levels of ABA biosynthesis (ABA1, ABA2), ABA signaling (ABI3, ABI4, ABI5), stress-responsive genes, including two ABA-dependent genes (RD20A, RD29B) and three ABA-independent genes (CBF1, CBF2, CBF3), were generally higher in TaSnRK2.8 plants than in WT/GFP controls under normal/stress conditions. Our results suggest that TaSnRK2.8 may act as a regulatory factor involved in a multiple stress response pathways.
Collapse
Affiliation(s)
- Hongying Zhang
- College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinguo Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengshe Wang
- College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
41
|
Salinas-Mondragon RE, Kajla JD, Perera IY, Brown CS, Sederoff HW. Role of inositol 1,4,5-triphosphate signalling in gravitropic and phototropic gene expression. PLANT, CELL & ENVIRONMENT 2010; 33:2041-55. [PMID: 20584147 DOI: 10.1111/j.1365-3040.2010.02204.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants sense light and gravity to orient their direction of growth. One common component in the early events of both phototropic and gravitropic signal transduction is activation of phospholipase C (PLC), which leads to an increase in inositol 1,4,5-triphosphate (InsP(3)) levels. The InsP(3) signal is terminated by hydrolysis of InsP(3) through inositolpolyphosphate-5-phosphatases (InsP 5-ptases). Arabidopsis plants expressing a heterologous InsP 5-ptase have low basal InsP(3) levels and exhibit reduced gravitropic and phototropic bending. Downstream effects of InsP(3)-mediated signalling are not understood. We used comparative transcript profiling to characterize gene expression changes in gravity- or light-stimulated Arabidopsis root apices that were manipulated in their InsP(3) metabolism either through inhibition of PLC activity or expression of InsP 5-ptase. We identified InsP(3)-dependent and InsP(3)-independent co-regulated gene sets in response to gravity or light stimulation. Inhibition of PLC activity in wild-type plants caused similar changes in transcript abundance in response to gravitropic and phototropic stimulation as in the transgenic lines. Therefore, we conclude that changes in gene expression in response to gravitropic and phototropic stimulation are mediated by two signal transduction pathways that vary in their dependence on changes in InsP(3).
Collapse
|
42
|
Chaouch S, Noctor G. Myo-inositol abolishes salicylic acid-dependent cell death and pathogen defence responses triggered by peroxisomal hydrogen peroxide. THE NEW PHYTOLOGIST 2010; 188:711-8. [PMID: 20807338 DOI: 10.1111/j.1469-8137.2010.03453.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
• Signalling between reactive oxygen species (ROS) and salicylic acid (SA)-dependent programmed cell death (PCD) and defence responses is complex and much remains to be discovered. Recent reports have implicated myo-inositol (MI) in defence responses, but the relationships between MI, ROS and SA remain to be elucidated. • This question was investigated in catalase-deficient Arabidopsis thaliana plants (cat2), in which a peroxisomal H(2) O(2) trigger induces SA-dependent lesion formation and a wide range of pathogen responses. • GC-MS analysis revealed that leaf MI contents were markedly decreased in cat2 independently of SA accumulation. Supplying MI to cat2 blocked lesion formation, SA accumulation and associated defence responses in a manner that closely mimicked the effect of genetically blocking SA synthesis through isochorismate synthase 1 (ICS1). The effects of MI were linked to repression of ICS1 transcripts but not decreased oxidative stress or signalling, and caused loss of resistance to virulent bacteria. The antagonistic effects of MI on lesion formation and resistance could be partly restored by supplying SA. • Our findings demonstrate a role for MI in cell death triggered by peroxisomal H(2) O(2) , and suggest that the tissue content of this compound is a key factor determining whether oxidative stress induces or opposes defence responses.
Collapse
Affiliation(s)
- Sejir Chaouch
- Institut de Biologie des Plantes, UMR8618 CNRS, Université de Paris sud, Orsay, France
| | | |
Collapse
|
43
|
Andreeva Z, Barton D, Armour WJ, Li MY, Liao LF, McKellar HL, Pethybridge KA, Marc J. Inhibition of phospholipase C disrupts cytoskeletal organization and gravitropic growth in Arabidopsis roots. PLANTA 2010; 232:1263-79. [PMID: 20803215 DOI: 10.1007/s00425-010-1256-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Accepted: 08/15/2010] [Indexed: 05/11/2023]
Abstract
The phospholipase protein superfamily plays an important role in hormonal signalling and cellular responses to environmental stimuli. There is also growing evidence for interactions between phospholipases and the cytoskeleton. In this report we used a pharmacological approach to investigate whether inhibiting a member of the phospholipase superfamily, phospholipase C (PLC), affects microtubules and actin microfilaments as well as root growth and morphology of Arabidopsis thaliana seedlings. Inhibiting PLC activity using the aminosteroid U73122 significantly inhibited root elongation and disrupted root morphology in a concentration-dependent manner, with the response being saturated at 5 μM, whereas the inactive analogue U73343 was ineffective. The primary root appeared to lose growth directionality accompanied by root waving and formation of curls. Immunolabelling of roots exposed to increasingly higher U73122 concentrations revealed that the normal transverse arrays of cortical microtubules in the elongation zone became progressively more disorganized or depolymerized, with the disorganization appearing within 1 h of incubation. Likewise, actin microfilament arrays also were disrupted. Inhibiting PLC using an alternative inhibitor, neomycin, caused similar disruptions to both cytoskeletal organization and root morphology. In seedlings gravistimulated by rotating the culture plates by 90°, both U73122 and neomycin disrupted the normal gravitropic growth of roots and etiolated hypocotyls. The effects of PLC inhibitors are therefore consistent with the notion that, as with phospholipases A and D, PLC likewise interacts with the cytoskeleton, alters growth morphology, and is involved in gravitropism.
Collapse
Affiliation(s)
- Zornitza Andreeva
- School of Biological Sciences, University of Sydney, Sydney, NSW, Australia
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Alcázar R, Planas J, Saxena T, Zarza X, Bortolotti C, Cuevas J, Bitrián M, Tiburcio AF, Altabella T. Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants over-expressing the homologous Arginine decarboxylase 2 gene. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:547-52. [PMID: 20206537 DOI: 10.1016/j.plaphy.2010.02.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 01/27/2010] [Accepted: 02/02/2010] [Indexed: 05/18/2023]
Abstract
In Arabidopsis, a model genus missing a functional ornithine decarboxylase pathway, most of the key genes involved in polyamine biosynthesis are duplicated. This gene redundancy has been related to the involvement of certain gene isoforms in the response to specific environmental stimuli. We have previously shown that drought stress induces Arginine decarboxlase 2 expression, while transcript levels for Arginine decarboxlase 1 remain constant. Accumulation of putrescine and increased arginine decarboxlase activity (EC 4.1.1.19) levels in response to different abiotic stresses have been reported in many different plant systems, but the biological meaning of this increase remains unclear. To get a new insight into these questions, we have studied the response to drought of transgenic Arabidopsis thaliana lines constitutively expressing the homologous Arginine decarboxlase 2 gene. These lines contain high levels of putrescine with no changes in spermidine and spermine content even under drought stress. Drought tolerance experiments indicate that the different degree of resistance to dehydration correlates with Put content. Although no significant differences were observed in the number of stomata between wild-type and transgenic plants, a reduction in transpiration rate and stomata conductance was observed in the ADC2 over-expressor lines. These results indicate that one of the mechanisms involved in the drought tolerance of transgenic plants over-producing Put is related to a reduction of water loss by transpiration.
Collapse
Affiliation(s)
- Rubén Alcázar
- Unitat de Fisiologia Vegetal, Facultat de Farmàcia, Universitat de Barcelona, Diagonal 643, 08028-Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zonia L. Spatial and temporal integration of signalling networks regulating pollen tube growth. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1939-57. [PMID: 20378665 DOI: 10.1093/jxb/erq073] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The overall function of a cell is determined by its contingent of active signal transduction cascades interacting on multiple levels with metabolic pathways, cytoskeletal organization, and regulation of gene expression. Much work has been devoted to analysis of individual signalling cascades interacting with unique cellular targets. However, little is known about how cells integrate information across hierarchical signalling networks. Recent work on pollen tube growth indicates that several key signalling cascades respond to changes in cell hydrodynamics and apical volume. Combined with known effects on cytoarchitecture and signalling from other cell systems, hydrodynamics has the potential to integrate and synchronize the function of the broader signalling network in pollen tubes. This review will explore recent work on cell hydrodynamics in a variety of systems including pollen, and discuss hydrodynamic regulation of cell signalling and function including exocytosis and endocytosis, actin cytoskeleton reorganization, cell wall deposition and assembly, phospholipid and inositol polyphosphate signalling, ion flux, small G-proteins, fertilization, and self-incompatibility. The combined data support a newly emerging model of pollen tube growth.
Collapse
Affiliation(s)
- Laura Zonia
- University of Amsterdam, Swammerdam Institute for Life Sciences, Section of Plant Physiology, Kruislaan 904, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
46
|
Kader MA, Lindberg S. Cytosolic calcium and pH signaling in plants under salinity stress. PLANT SIGNALING & BEHAVIOR 2010; 5:233-8. [PMID: 20037468 PMCID: PMC2881266 DOI: 10.4161/psb.5.3.10740] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Accepted: 11/23/2009] [Indexed: 05/18/2023]
Abstract
Calcium is one of the essential nutrients for growth and development of plants. It is an important component of various structures in cell wall and membranes. Besides some fundamental roles under normal condition, calcium functions as a major secondary-messenger molecule in plants under different developmental cues and various stress conditions including salinity stress. Also changes in cytosolic pH, pH(cyt), either individually, or in coordination with changes in cytosolic Ca(2+) concentration, [Ca(2+)](cyt), evoke a wide range of cellular functions in plants including signal transduction in plant-defense responses against stresses. It is believed that salinity stress, like other stresses, is perceived at cell membrane, either extra cellular or intracellular, which then triggers an intracellular-signaling cascade including the generation of secondary messenger molecules like Ca(2+) and protons. The variety and complexity of Ca(2+) and pH signaling result from the nature of the stresses as well as the tolerance level of the plant species against that specific stress. The nature of changes in [Ca(2+)](cyt) concentration, in terms of amplitude, frequency and duration, is likely very important for decoding the specific downstream responses for salinity stress tolerance in planta. It has been observed that the signatures of [Ca(2+)](cyt) and pH differ in various studies reported so far depending on the techniques used to measure them, and also depending on the plant organs where they are measured, such as root, shoot tissues or cells. This review describes the recent advances about the changes in [Ca(2+)](cyt) and pH(cyt) at both cellular and whole-plant levels under salinity stress condition, and in various salinity-tolerant and -sensitive plant species.
Collapse
Affiliation(s)
- Md Abdul Kader
- Department of Botany, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
47
|
|
48
|
|
49
|
Darwish E, Testerink C, Khalil M, El-Shihy O, Munnik T. Phospholipid signaling responses in salt-stressed rice leaves. PLANT & CELL PHYSIOLOGY 2009; 50:986-97. [PMID: 19369274 PMCID: PMC2682722 DOI: 10.1093/pcp/pcp051] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Salinity is one of the major environmental factors limiting growth and productivity of rice plants. In this study, the effect of salt stress on phospholipid signaling responses in rice leaves was investigated. Leaf cuts were radiolabeled with 32P-orthophosphate and the lipids extracted and analyzed by thin-layer chromatography, autoradiography and phosphoimaging. Phospholipids were identified by co-migration of known standards. Results showed that 32P(i) was rapidly incorporated into the minor lipids, phosphatidylinositol bisphosphate (PIP2) and phosphatidic acid (PA) and, interestingly, also into the structural lipids phosphatidylethanolamine (PE) and phosphatidylglycerol (PG), which normally label relatively slowly, like phosphatidylcholine (PC) and phosphatidylinositol (PI). Only very small amounts of PIP2 were found. However, in response to salt stress (NaCl), PIP2 levels rapidly (<30 min) increased up to 4-fold, in a time- and dose-dependent manner. PA and its phosphorylated product, diacylglycerolpyrophosphate (DGPP), also increased upon NaCl stress, while cardiolipin (CL) levels decreased. All other phospholipid levels remained unchanged. PA signaling can be generated via the combined action of phospholipase C (PLC) and diacylglycerol kinase (DGK) or directly via phospholipase D (PLD). The latter can be measured in vivo, using a transphosphatidylation assay. Interestingly, these measurements revealed that salt stress inhibited PLD activity, indicating that the salt stress-induced PA response was not due to PLD activity. Comparison of the 32P-lipid responses in salt-tolerant and salt-sensitive cultivars revealed no significant differences. Together these results show that salt stress rapidly activates several lipid responses in rice leaves but that these responses do not explain the difference in salt tolerance between sensitive and tolerant cultivars.
Collapse
Affiliation(s)
- Essam Darwish
- Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Plant Physiology Section, Botany Department, Faculty of Agriculture, Cairo University, Egypt
| | - Christa Testerink
- Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Mohamed Khalil
- Plant Physiology Section, Botany Department, Faculty of Agriculture, Cairo University, Egypt
| | - Osama El-Shihy
- Plant Physiology Section, Botany Department, Faculty of Agriculture, Cairo University, Egypt
| | - Teun Munnik
- Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- *Corresponding author: E-mail, ; fax, +31(0)20-5257934.
| |
Collapse
|
50
|
Wilson PB, Estavillo GM, Field KJ, Pornsiriwong W, Carroll AJ, Howell KA, Woo NS, Lake JA, Smith SM, Harvey Millar A, von Caemmerer S, Pogson BJ. The nucleotidase/phosphatase SAL1 is a negative regulator of drought tolerance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:299-317. [PMID: 19170934 DOI: 10.1111/j.1365-313x.2008.03780.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
An Arabidopsis thaliana drought-tolerant mutant, altered expression of APX2 (alx8), has constitutively increased abscisic acid (ABA) content, increased expression of genes responsive to high light stress and is reported to be drought tolerant. We have identified alx8 as a mutation in SAL1, an enzyme that can dephosphorylate dinucleotide phosphates or inositol phosphates. Previously identified mutations in SAL1, including fiery (fry1-1), were reported as being more sensitive to drought imposed by detachment of rosettes. Here we demonstrate that alx8, fry1-1 and a T-DNA insertional knockout allele all have markedly increased resistance to drought when water is withheld from soil-grown intact plants. Microarray analysis revealed constitutively altered expression of more than 1800 genes in both alx8 and fry1-1. The up-regulated genes included some characterized stress response genes, but few are inducible by ABA. Metabolomic analysis revealed that both mutants exhibit a similar, dramatic reprogramming of metabolism, including increased levels of the polyamine putrescine implicated in stress tolerance, and the accumulation of a number of unknown, potential osmoprotectant carbohydrate derivatives. Under well-watered conditions, there was no substantial difference between alx8 and Col-0 in biomass at maturity; plant water use efficiency (WUE) as measured by carbon isotope discrimination; or stomatal index, morphology or aperture. Thus, SAL1 acts as a negative regulator of predominantly ABA-independent and also ABA-dependent stress response pathways, such that its inactivation results in altered osmoprotectants, higher leaf relative water content and maintenance of viable tissues during prolonged water stress.
Collapse
Affiliation(s)
- Pip B Wilson
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Biochemistry and Molecular Biology, The Australian National University, Canberra, ACT 0200, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|