1
|
Gong YY, Wu CZ, Wu YS, Alfieri A, Xiang YC, Shi DX, Duan S, Zhang MF, Li XX, Sun YC, Chao J, Tester M, Shang Z, Forde BG, Liu LH. A Glutamate Receptor-Like Gene AtGLR2.5 With Its Unusual Splice Variant Has a Role in Mediating Glutamate-Elicited Changes in Arabidopsis Root Architecture. PLANT, CELL & ENVIRONMENT 2025; 48:3778-3792. [PMID: 39817416 DOI: 10.1111/pce.15387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/18/2025]
Abstract
The occurrence of external L-glutamate at the Arabidopsis root tip triggers major changes in root architecture, but the mechanism of -L-Glu sensing is unknown. Members of the family of GLUTAMATE RECEPTOR-LIKE (GLR) proteins are known to act as amino acid-gated Ca2+-permeable channels and to have signalling roles in diverse plant processes. To investigate the possible role of GLRs in the root architectural response to L-Glu, we screened a collection of mutants with T-DNA insertions in each of the 20 AtGLR genes. Reduced sensitivity of root growth to L-Glu was found in mutants of one gene, GLR2.5. Interestingly, GLR2.5 was found to apparently produce four transcript variants encoding hypothetical proteins of 169-720 amino acids. One of these transcripts, GLR2.5c, encodes a truncated GLR protein lacking both the conserved amino-terminal domain and part of the ligand-binding domain. When a glr2.5 mutant was transformed with a construct constitutively expressing GLR2.5c, both L-Glu sensitivity of root growth and L-Glu-elicited Ca2+ currents in root tip protoplasts were restored. These results, along with homology modelling of the truncated ligand-binding domain of GLR2.5c, suggest that GLR2.5c has a regulatory or scaffolding role in heteromeric GLR complex(es) that may involve triggering the root architectural response to L-Glu.
Collapse
Affiliation(s)
- Yuan-Yong Gong
- College of Resources and Environmental Sciences, Department of Plant Nutrition, China Agricultural University, Beijing, Haidian, China
| | - Chang-Zheng Wu
- College of Resources and Environmental Sciences, Department of Plant Nutrition, China Agricultural University, Beijing, Haidian, China
| | - Yan-Sheng Wu
- College of Life Sciences, Hebei Normal University, Shijiazhuang, South Second Ring, China
| | - Andrea Alfieri
- Centro Grandi Strumenti, University of Pavia, Pavia, Italy
| | - Yu-Cheng Xiang
- College of Resources and Environmental Sciences, Department of Plant Nutrition, China Agricultural University, Beijing, Haidian, China
| | - Dong-Xue Shi
- College of Resources and Environmental Sciences, Department of Plant Nutrition, China Agricultural University, Beijing, Haidian, China
| | - Shuhui Duan
- Hunan Tobacco Research Institute (Changsha, Xiangxi), China National Tobacco Corporation Hunan Company, Changsha, Tianxin, China
| | - Ming-Fa Zhang
- Hunan Tobacco Research Institute (Changsha, Xiangxi), China National Tobacco Corporation Hunan Company, Changsha, Tianxin, China
| | - Xiao-Xu Li
- Tobacco Research, Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, Yuhua, China
| | - Yi-Chen Sun
- College of Resources and Environmental Sciences, Department of Plant Nutrition, China Agricultural University, Beijing, Haidian, China
| | - Jin Chao
- Hunan Tobacco Research Institute (Changsha, Xiangxi), China National Tobacco Corporation Hunan Company, Changsha, Tianxin, China
| | - Mark Tester
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Zhonglin Shang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, South Second Ring, China
| | - Brian G Forde
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Lai-Hua Liu
- College of Resources and Environmental Sciences, Department of Plant Nutrition, China Agricultural University, Beijing, Haidian, China
| |
Collapse
|
2
|
Montiel J, Dubrovsky JG. Amino acids biosynthesis in root hair development: a mini-review. Biochem Soc Trans 2024; 52:1873-1883. [PMID: 38984866 PMCID: PMC11668294 DOI: 10.1042/bst20231558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Metabolic factors are essential for developmental biology of an organism. In plants, roots fulfill important functions, in part due to the development of specific epidermal cells, called hair cells that form root hairs (RHs) responsible for water and mineral uptake. RH development consists in (a) patterning processes involved in formation of hair and non-hair cells developed from trichoblasts and atrichoblasts; (b) RH initiation; and (c) apical (tip) growth of the RH. Here we review how these processes depend on pools of different amino acids and what is known about RH phenotypes of mutants disrupted in amino acid biosynthesis. This analysis shows that some amino acids, particularly aromatic ones, are required for RH apical (tip) growth, and that not much is known about the role of amino acids at earlier stages of RH formation. We also address the role of amino acids in rhizosphere, inhibitory and stimulating effects of amino acids on RH growth, amino acids as N source in plant nutrition, and amino acid transporters and their expression in the RHs. Amino acids form conjugates with auxin, a hormone essential for RH growth, and respective genes are overviewed. Finally, we outline missing links and envision some perspectives in the field.
Collapse
Affiliation(s)
- Jesús Montiel
- Departamento de Genómica Funcional de Eucariotas, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Joseph G. Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| |
Collapse
|
3
|
Csorba C, Rodić N, Antonielli L, Sessitsch A, Vlachou A, Ahmad M, Compant S, Puschenreiter M, Molin EM, Assimopoulou AN, Brader G. Soil pH, developmental stages and geographical origin differently influence the root metabolomic diversity and root-related microbial diversity of Echium vulgare from native habitats. FRONTIERS IN PLANT SCIENCE 2024; 15:1369754. [PMID: 38984162 PMCID: PMC11232435 DOI: 10.3389/fpls.2024.1369754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/03/2024] [Indexed: 07/11/2024]
Abstract
Improved understanding of the complex interaction between plant metabolism, environmental conditions and the plant-associated microbiome requires an interdisciplinary approach: Our hypothesis in our multiomics study posited that several environmental and biotic factors have modulating effects on the microbiome and metabolome of the roots of wild Echium vulgare plants. Furthermore, we postulated reciprocal interactions between the root metabolome and microbiome. We investigated the metabolic content, the genetic variability, and the prokaryotic microbiome in the root systems of wild E. vulgare plants at rosette and flowering stages across six distinct locations. We incorporated the assessment of soil microbiomes and the measurement of selected soil chemical composition factors. Two distinct genetic clusters were determined based on microsatellite analysis without a consistent alignment with the geographical proximity between the locations. The microbial diversity of both the roots of E. vulgare and the surrounding bulk soil exhibited significant divergence across locations, varying soil pH characteristics, and within the identified plant genetic clusters. Notably, acidophilic bacteria were characteristic inhabitants of both soil and roots under acidic soil conditions, emphasizing the close interconnectedness between these compartments. The metabolome of E. vulgare significantly differed between root samples from different developmental stages, geographical locations, and soil pH levels. The developmental stage was the dominant driver of metabolome changes, with significantly higher concentrations of sugars, pyrrolizidine alkaloids, and some of their precursors in rosette stage plant roots. Our study featured the complex dynamics between soil pH, plant development, geographical locations, plant genetics, plant metabolome and microbiome, shedding light on existing knowledge gaps.
Collapse
Affiliation(s)
- Cintia Csorba
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, Tulln, Austria
| | - Nebojša Rodić
- Aristotle University of Thessaloniki, School of Chemical Engineering, Laboratory of Organic Chemistry and Center for Interdisciplinary Research and Innovation, Natural Products Research Centre of Excellence (NatPro-AUTh), Thessaloniki, Greece
| | - Livio Antonielli
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, Tulln, Austria
| | - Angela Sessitsch
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, Tulln, Austria
| | - Angeliki Vlachou
- Aristotle University of Thessaloniki, School of Chemical Engineering, Laboratory of Organic Chemistry and Center for Interdisciplinary Research and Innovation, Natural Products Research Centre of Excellence (NatPro-AUTh), Thessaloniki, Greece
| | - Muhammad Ahmad
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, Tulln, Austria
- Department of Forest Growth, Silviculture and Genetics, Austrian Research Centre for Forests (BFW), Vienna, Austria
| | - Stéphane Compant
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, Tulln, Austria
| | - Markus Puschenreiter
- Institute of Soil Research, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Eva M. Molin
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, Tulln, Austria
| | - Andreana N. Assimopoulou
- Aristotle University of Thessaloniki, School of Chemical Engineering, Laboratory of Organic Chemistry and Center for Interdisciplinary Research and Innovation, Natural Products Research Centre of Excellence (NatPro-AUTh), Thessaloniki, Greece
| | - Günter Brader
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, Tulln, Austria
| |
Collapse
|
4
|
Meng R, Li Z, Kang X, Zhang Y, Wang Y, Ma Y, Wu Y, Dong S, Li X, Gao L, Chu X, Yang G, Yuan X, Wang J. High Overexpression of SiAAP9 Leads to Growth Inhibition and Protein Ectopic Localization in Transgenic Arabidopsis. Int J Mol Sci 2024; 25:5840. [PMID: 38892028 PMCID: PMC11172308 DOI: 10.3390/ijms25115840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Amino acid permeases (AAPs) transporters are crucial for the long-distance transport of amino acids in plants, from source to sink. While Arabidopsis and rice have been extensively studied, research on foxtail millet is limited. This study identified two transcripts of SiAAP9, both of which were induced by NO3- and showed similar expression patterns. The overexpression of SiAAP9L and SiAAP9S in Arabidopsis inhibited plant growth and seed size, although SiAAP9 was found to transport more amino acids into seeds. Furthermore, SiAAP9-OX transgenic Arabidopsis showed increased tolerance to high concentrations of glutamate (Glu) and histidine (His). The high overexpression level of SiAAP9 suggested its protein was not only located on the plasma membrane but potentially on other organelles, as well. Interestingly, sequence deletion reduced SiAAP9's sensitivity to Brefeldin A (BFA), and SiAAP9 had ectopic localization on the endoplasmic reticulum (ER). Protoplast amino acid uptake experiments indicated that SiAAP9 enhanced Glu transport into foxtail millet cells. Overall, the two transcripts of SiAAP9 have similar functions, but SiAAP9L shows a higher colocalization with BFA compartments compared to SiAAP9S. Our research identifies a potential candidate gene for enhancing the nutritional quality of foxtail millet through breeding.
Collapse
Affiliation(s)
- Ru Meng
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
| | - Zhipeng Li
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
| | - Xueting Kang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
| | - Yujia Zhang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
| | - Yiru Wang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
| | - Yuchao Ma
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
| | - Yanfeng Wu
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
| | - Shuqi Dong
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Jinzhong 030801, China
| | - Xiaorui Li
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Jinzhong 030801, China
| | - Lulu Gao
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
| | - Xiaoqian Chu
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
| | - Guanghui Yang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
| | - Xiangyang Yuan
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Jinzhong 030801, China
| | - Jiagang Wang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
- Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
5
|
Svietlova N, Zhyr L, Reichelt M, Grabe V, Mithöfer A. Glutamine as sole nitrogen source prevents induction of nitrate transporter gene NRT2.4 and affects amino acid metabolism in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 15:1369543. [PMID: 38633457 PMCID: PMC11022244 DOI: 10.3389/fpls.2024.1369543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/14/2024] [Indexed: 04/19/2024]
Abstract
Plants assimilate inorganic nitrogen (N) to glutamine. Glutamine is the most abundant amino acid in most plant species, the N-supplying precursor of all N-containing compounds in the cell and the first organic nitrogen molecule formed from inorganic nitrogen taken up by the roots. In addition to its role in plant nutrition, glutamine most likely also has a function as a signaling molecule in the regulation of nitrogen metabolism. We investigated whether glutamine influences the high-affinity transporter system for nitrate uptake. Therefore, we analyzed the expression of the nitrate transporter NRT2.4, which is inducible by N deficiency, in Arabidopsis thaliana grown under different nitrogen starvation scenarios, comparing nitrate or glutamine as the sole nitrogen source. Using the reporter line ProNRT2.4:GFP and two independent knockout lines, nrt2.4-1 and nrt2.4-2, we analyzed gene expression and amino acid profiles. We showed that the regulation of NRT2.4 expression depends on available nitrogen in general, for example on glutamine as a nitrogen source, and not specifically on nitrate. In contrast to high nitrate concentrations, amino acid profiles changed to an accumulation of amino acids containing more than one nitrogen during growth in high glutamine concentrations, indicating a switch to nitrogen storage metabolism. Furthermore, we demonstrated that the nrt2.4-2 line shows unexpected effects on NRT2.5 gene expression and the amino acids profile in shoots under high glutamine supply conditions compared to Arabidopsis wild type and nrt2.4-1, suggesting non-NRT2.4-related metabolic consequences in this knockout line.
Collapse
Affiliation(s)
- Nataliia Svietlova
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Liza Zhyr
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Veit Grabe
- Microscopic Imaging Service Group, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
6
|
León-García F, García-Laynes F, Estrada-Tapia G, Monforte-González M, Martínez-Estevez M, Echevarría-Machado I. In Silico Analysis of Glutamate Receptors in Capsicum chinense: Structure, Evolution, and Molecular Interactions. PLANTS (BASEL, SWITZERLAND) 2024; 13:812. [PMID: 38592787 PMCID: PMC10975470 DOI: 10.3390/plants13060812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
Plant glutamate receptors (GLRs) are integral membrane proteins that function as non-selective cation channels, involved in the regulation of developmental events crucial in plants. Knowledge of these proteins is restricted to a few species and their true agonists are still unknown in plants. Using tomato SlGLRs, a search was performed in the pepper database to identify GLR sequences in habanero pepper (Capsicum chinense Jacq.). Structural, phylogenetic, and orthology analysis of the CcGLRs, as well as molecular docking and protein interaction networks, were conducted. Seventeen CcGLRs were identified, which contained the characteristic domains of GLR. The variation of conserved residues in the M2 transmembrane domain between members suggests a difference in ion selectivity and/or conduction. Also, new conserved motifs in the ligand-binding regions are reported. Duplication events seem to drive the expansion of the species, and these were located in the evolution by using orthologs. Molecular docking analysis allowed us to identify differences in the agonist binding pocket between CcGLRs, which suggest the existence of different affinities for amino acids. The possible interaction of some CcGLRs with proteins leads to suggesting specific functions for them within the plant. These results offer important functional clues for CcGLR, probably extrapolated to other Solanaceae.
Collapse
Affiliation(s)
| | | | | | | | | | - Ileana Echevarría-Machado
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, Calle 43, #130, x 32 and 34, Mérida 97205, Yucatán, Mexico; (F.L.-G.); (M.M.-G.); (M.M.-E.)
| |
Collapse
|
7
|
Hao J, Tan J, Zhang Y, Gu X, Zhu G, Wang S, Li J. Sewage sludge-derived nutrients and biostimulants stimulate rice leaf photosynthesis and root metabolism to enhance carbohydrate, nitrogen and antioxidants accumulation. CHEMOSPHERE 2024; 352:141335. [PMID: 38301837 DOI: 10.1016/j.chemosphere.2024.141335] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
The production of high quality liquid nitrogen fertilizer with both nutrient comprehensive and biostimulant properties by alkaline thermal hydrolysis of sewage sludge has shown great potential in agricultural production. However, little is known about the effects of sewage sludge-derived nutrients, and biostimulants (SS-NB) on leaf photosynthesis and root growth in rice. Phenotypic, metabolic and microbial analyses were used to reveal the mechanism of SS-NB on rice. Compared to NF treatment, phenotypic parameters (fresh/dry weight, soluble sugar, amino acid, protein) were increased by SS-NB in rice. SS-NB can enhance the photosynthesis of rice leaves by improving the photoconversion efficiency, chlorophyll content, ATP synthase activity, Rubisco and NADPH production. Meanwhile, SS-NB also increased antioxidant capacity (SOD, POD, CAT and proline) in rice leaf and root tissues. Metabolomics revealed that SS-NB application increased the expression levels of metabolites in root and leaf tissues, including carbohydrate, nitrogen and sulfur metabolism, amino acid metabolism, antioxidants, and phytohormone. Most importantly, the regulation of metabolites in rice root tissues is more sensitive than in leaf tissues, especially to the higher levels of antioxidants and phytohormones (IAA and GA) in rice root tissues. Furthermore, SS-NB increased the abundance of photosynthetic autotrophic, organic acids-degrading and denitrifying functional bacteria in rice roots and recruited plant growth-promoting bacteria (Azospirillum and norank_f_JG30-KF-CM45), while the NF treatment group resulted in an imbalance of the microbial community, leading to the dominance of pathogenic bacteria. The results showed that SS-NB had great application potential in crop growth and stress resistance improvement.
Collapse
Affiliation(s)
- Jiahou Hao
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Jiayi Tan
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Yue Zhang
- China Civil Engineering Society Water Industry Association, Beijing, 100082, China
| | - Xuejia Gu
- Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin, 150086, China
| | - Ge Zhu
- Wuxi Huilian Green Ecological Technology Co., LTD, Wuxi, 214100, China
| | - Shuo Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou, 215009, China.
| | - Ji Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou, 215009, China.
| |
Collapse
|
8
|
Turan M, Ekinci M, Argin S, Brinza M, Yildirim E. Drought stress amelioration in tomato ( Solanum lycopersicum L.) seedlings by biostimulant as regenerative agent. FRONTIERS IN PLANT SCIENCE 2023; 14:1211210. [PMID: 37662171 PMCID: PMC10469020 DOI: 10.3389/fpls.2023.1211210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023]
Abstract
Drought adversely affects many physiological and biochemical events of crops. This research was conducted to investigate the possible effects of biostimulants containing plant growth-promoting rhizobacteria (PGPR) on plant growth parameters, chlorophyll content, membrane permeability (MP), leaf relative water content (LRWC), hydrogen peroxide (H2O2), proline, malondialdehyde (MDA), hormone content, and antioxidant enzymes (catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD)) activity of tomato (Solanum lycopersicum L.) seedlings under different irrigation levels. This study was carried out under controlled greenhouse conditions with two irrigation levels (D0: 100% of field capacity and D1: 50% of field capacity) and three biostimulant doses (B0: 0, B1: 4 L ha-1, and B2: 6 L ha-1). The results of the study show that drought stress negatively influenced the growth and physiological characteristics of tomato seedlings while biostimulant applications ameliorated these parameters. Water deficit conditions (50% of field capacity) caused decrease in indole acetic acid (IAA), gibberellic acid (GA), salicylic acid (SA), cytokine, zeatin, and jasmonic acid content of tomato seedlings by ratios of 83%, 93%, 82%, 89%, 50%, and 57%, respectively, and shoot fresh weight, root fresh weight, shoot dry weight, root dry weight, plant height, stem diameter, and leaf area decreased by 43%, 19%, 39%, 29%, 20%, 18%, and 50%, respectively, compared to the control (B0D0). In addition, 21%, 16%, 21%, and 17% reductions occurred in LRWC, chlorophyll a, chlorophyll b, and total chlorophyll contents with drought compared to the control, respectively. Biostimulant applications restored the plant growth, and the most effective dose was 4 L ha-1 under drought condition. Amendment of biostimulant into the soil also enhanced organic matter and the total N, P, Ca, and Cu content of the experiment soil. In conclusion, 4 L ha-1 biostimulant amendment might be a promising approach to mitigate the adverse effects of drought stress on tomato.
Collapse
Affiliation(s)
- Metin Turan
- Department of Agricultural Trade and Management, Faculty of Economy and Administrative Sciences, Yeditepe University, Istanbul, Türkiye
| | - Melek Ekinci
- Department of Horticulture, Faculty of Agriculture, Atatürk University, Erzurum, Türkiye
| | - Sanem Argin
- Department of Agricultural Trade and Management, Faculty of Economy and Administrative Sciences, Yeditepe University, Istanbul, Türkiye
| | | | - Ertan Yildirim
- Department of Horticulture, Faculty of Agriculture, Atatürk University, Erzurum, Türkiye
- Atatürk University Plant Production Application and Research Center, Erzurum, Türkiye
| |
Collapse
|
9
|
Krzeszowiec W, Lewandowska A, Lyczakowski JJ, Bebko K, Scholz SS, Gabryś H. Two types of GLR channels cooperate differently in light and dark growth of Arabidopsis seedlings. BMC PLANT BIOLOGY 2023; 23:358. [PMID: 37442951 DOI: 10.1186/s12870-023-04367-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND GLutamate Receptor-like (GLR) channels are multimeric, ionotropic, ligand-gated plant transmembrane receptors. They are homologous to mammalian glutamate receptors, iGLuRs, which are critical to neuronal function. GLRs have been reported several times to play a role in photomorphogenesis. However, to date, no study has looked at the mechanism of their involvement in this process. Here we focused on examining the impact of GLRs on the regulation of early seedling growth in blue light, red light, and in the dark. RESULTS Wild type and six photoreceptor mutant seedlings were grown on media supplemented with known iGLuR/GLR channel antagonists: MK-801, which non-competitively blocks NMDA channels in mammalian cells, and CNQX, known for competitive blocking of AMPA channels in mammalian cells. The lengths of hypocotyls and roots were measured in seedlings of phyA, phyB, phot1, phot2, cry1, and cry2 mutants after 7 days of in vitro culture. Changes in growth parameters, both in light and in darkness upon application of chemical antagonists, show that both types of GLR channels, NMDA-like and AMPA-like, are involved in the regulation of seedling growth irrespective of light conditions. Analysis of seedling growth of photoreceptor mutants indicates that the channels are influenced by signaling from phot1, phot2, and cry1. To extend our analysis, we also evaluated the elicitation of a calcium wave, which is likely to be partially driven by GLRs, in Arabidopsis seedlings. The changes in cellobiose-induced calcium waves observed after applying GLR inhibitors suggest that both types of channels likely cooperate in shaping Arabidopsis seedling growth and development. CONCLUSIONS Our work provides the first experimental evidence that two types of GLR channels function in plants: NMDA-like and AMPA-like. We also demonstrate that the channels are involved in seedling growth and development, at least partially through modulation of calcium signaling, but they are unlikely to play a major role in photomorphogenesis.
Collapse
Affiliation(s)
- Weronika Krzeszowiec
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, Kraków, 30-387, Poland.
| | - Aleksandra Lewandowska
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, Kraków, 30-387, Poland
| | - Jan Jakub Lyczakowski
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, Kraków, 30-387, Poland
| | - Kateryna Bebko
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, Kraków, 30-387, Poland
| | - Sandra S Scholz
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Halina Gabryś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, Kraków, 30-387, Poland
| |
Collapse
|
10
|
Singh V, Gupta K, Singh S, Jain M, Garg R. Unravelling the molecular mechanism underlying drought stress response in chickpea via integrated multi-omics analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1156606. [PMID: 37287713 PMCID: PMC10242046 DOI: 10.3389/fpls.2023.1156606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/18/2023] [Indexed: 06/09/2023]
Abstract
Drought stress affects growth and productivity significantly in chickpea. An integrated multi-omics analysis can provide a better molecular-level understanding of drought stress tolerance. In the present study, comparative transcriptome, proteome and metabolome analyses of two chickpea genotypes with contrasting responses to drought stress, ICC 4958 (drought-tolerant, DT) and ICC 1882 (drought-sensitive, DS), was performed to gain insights into the molecular mechanisms underlying drought stress response/tolerance. Pathway enrichment analysis of differentially abundant transcripts and proteins suggested the involvement of glycolysis/gluconeogenesis, galactose metabolism, and starch and sucrose metabolism in the DT genotype. An integrated multi-omics analysis of transcriptome, proteome and metabolome data revealed co-expressed genes, proteins and metabolites involved in phosphatidylinositol signaling, glutathione metabolism and glycolysis/gluconeogenesis pathways, specifically in the DT genotype under drought. These stress-responsive pathways were coordinately regulated by the differentially abundant transcripts, proteins and metabolites to circumvent the drought stress response/tolerance in the DT genotype. The QTL-hotspot associated genes, proteins and transcription factors may further contribute to improved drought tolerance in the DT genotype. Altogether, the multi-omics approach provided an in-depth understanding of stress-responsive pathways and candidate genes involved in drought tolerance in chickpea.
Collapse
Affiliation(s)
- Vikram Singh
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Khushboo Gupta
- Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Shubhangi Singh
- Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Mukesh Jain
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rohini Garg
- Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India
| |
Collapse
|
11
|
Simon AA, Navarro-Retamal C, Feijó JA. Merging Signaling with Structure: Functions and Mechanisms of Plant Glutamate Receptor Ion Channels. ANNUAL REVIEW OF PLANT BIOLOGY 2023; 74:415-452. [PMID: 36854472 PMCID: PMC11479355 DOI: 10.1146/annurev-arplant-070522-033255] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plant glutamate receptor-like (GLR) genes encode ion channels with demonstrated roles in electrical and calcium (Ca2+) signaling. The expansion of the GLR family along the lineage of land plants, culminating in the appearance of a multiclade system among flowering plants, has been a topic of interest since their discovery nearly 25 years ago. GLRs are involved in many physiological processes, from wound signaling to transcriptional regulation to sexual reproduction. Emerging evidence supports the notion that their fundamental functions are conserved among different groups of plants as well. In this review, we update the physiological and genetic evidence for GLRs, establishing their role in signaling and cell-cell communication. Special emphasis is given to the recent discussion of GLRs' atomic structures. Along with functional assays, a structural view of GLRs' molecular organization presents a window for novel hypotheses regarding the molecular mechanisms underpinning signaling associated with the ionic fluxes that GLRs regulate. Newly uncovered transcriptional regulations associated with GLRs-which propose the involvement of genes from all clades ofArabidopsis thaliana in ways not previously observed-are discussed in the context of the broader impacts of GLR activity. We posit that the functions of GLRs in plant biology are probably much broader than anticipated, but describing their widespread involvement will only be possible with (a) a comprehensive understanding of the channel's properties at the molecular and structural levels, including protein-protein interactions, and (b) the design of new genetic approaches to explore stress and pathogen responses where precise transcriptional control may result in more precise testable hypotheses to overcome their apparent functional redundancies.
Collapse
Affiliation(s)
- Alexander A Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA;
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA;
| | - Carlos Navarro-Retamal
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA;
| | - José A Feijó
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA;
| |
Collapse
|
12
|
Yao X, Li H, Nie J, Liu H, Guo Y, Lv L, Yang Z, Sui X. Disruption of the amino acid transporter CsAAP2 inhibits auxin-mediated root development in cucumber. THE NEW PHYTOLOGIST 2023. [PMID: 37129077 DOI: 10.1111/nph.18947] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Amino acid transporters are the principal mediators of organic nitrogen distribution within plants and are essential for plant growth and development. Despite this importance, relatively few amino acid transporter genes have been explored and elucidated in cucumber (Cucumis sativus). Here, a total of 86 amino acid transporter genes were identified in the cucumber genome. We further identified Amino Acid Permease (AAP) subfamily members that exhibited distinct expression patterns in different tissues. We found that the CsAAP2 as a candidate gene encoding a functional amino acid transporter is highly expressed in cucumber root vascular cells. CsAAP2 knockout lines exhibited arrested development of root meristem, which then caused the delayed initiation of lateral root and the inhibition of root elongation. What is more, the shoot growth of aap2 mutants was strongly retarded due to defects in cucumber root development. Moreover, aap2 mutants exhibited higher concentrations of amino acids and lignin in roots. We found that the mutant roots had a stronger ability to acidize medium. Furthermore, in the aap2 mutants, polar auxin transport was disrupted in the root tip, leading to high auxin levels in roots. Interestingly, slightly alkaline media rescued their severely reduced root growth by stimulating auxin pathway.
Collapse
Affiliation(s)
- Xuehui Yao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Hujian Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jing Nie
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Huan Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yicong Guo
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lijun Lv
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhen Yang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaolei Sui
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
13
|
Zeng F, Nazir MM, Ahmed T, Noman M, Ali S, Rizwan M, Alam MS, Lwalaba JLW, Zhang G. Calcium and L-glutamate present the opposite role in managing arsenic in barley. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 321:121141. [PMID: 36702433 DOI: 10.1016/j.envpol.2023.121141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/11/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Arsenic contamination in agricultural soils has posed tremendous threat to sustainable crop production and human health via food chain. Calcium and Glutamate have been well-documented in metal(loid)s detoxification, but it is poorly understood how they regulate arsenic-induced toxicity to plants. In this study, the effect of glutamate and calcium at high concentration on arsenic toxicity and accumulation in barley seedling was accessed in terms of plant growth, photosynthetic efficacy, arsenic uptake, translocation and accumulation, antioxidant defense, nutrient uptake and the expression of As transporters. Our results have demonstrated that calcium could effectively ameliorate arsenic toxicity to barley seedlings, which is mainly attributed to its beneficial effect on increasing nutrient uptake, reducing the aboveground arsenic accumulation and enhancing antioxidative defense capacity. However, it is unexpected that glutamate considerably exacerbated the arsenic toxicity to barley seedlings. More importantly, for the first time, glutamate was observed to tremendously facilitate the root-to-shoot translocation of arsenic by 41.8- to 60.8-fold, leading to 90% of the total amount of As accumulating in barley shoots. The reason of this phenomenon can be well explained by the glutamate-triggered enormous upregulation of genes involved in arsenic uptake (HvPHT1;1, HvPHR2 and HvNIP3;2), reduction (HvHAC1;1), translocation (HvABCC7, HvNIP1;1 and HvNIP3;3) and intracellular sequestration (HvABCC1). These findings suggest that calcium and glutamate function as the opposite player in managing arsenic, with calcium being an effective alleviator of arsenic stress to ensure the safe production of crops; while glutamate being a highly efficient phytoextraction agent for phytoremediation of arsenate-contaminated soils.
Collapse
Affiliation(s)
- Fanrong Zeng
- College of Agriculture, Yangtze University, Jingzhou, 434025, China; Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Muhammad Mudassir Nazir
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Temoor Ahmed
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Noman
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Mohammad Shah Alam
- College of Agriculture, Yangtze University, Jingzhou, 434025, China; Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jonas Lwalaba Wa Lwalaba
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
14
|
Changes in annual transcriptome dynamics of a clone of Japanese cedar (Cryptomeria japonica D. Don) planted under different climate conditions. PLoS One 2023; 18:e0277797. [PMID: 36795783 PMCID: PMC9934357 DOI: 10.1371/journal.pone.0277797] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/03/2022] [Indexed: 02/17/2023] Open
Abstract
Environmental responses are critical for plant growth and survival under different climate conditions. To elucidate the underlying biological mechanisms of environmental responses in Japanese cedar (Cryptomeria japonica D. Don), the annual transcriptome dynamics of common clonal trees (Godai1) planted at three different climate sites (Yamagata, Ibaraki, and Kumamoto Prefectures) were analyzed using microarrays. Both principal component analysis (PCA) and hierarchical clustering of the microarray data indicated the transition to dormant transcriptome status occurred earlier and the transition to active growth status later in the colder region. Interestingly, PCA also indicated that the transcriptomes of trees grown under three different conditions were similar during the growth period (June to September), whereas the transcriptomes differed between sites during the dormant period (January to March). In between-site comparisons, analyses of the annual expression profiles of genes for sites 'Yamagata vs. Kumamoto', 'Yamagata vs. Ibaraki', and 'Ibaraki vs. Kumamoto' identified 1,473, 1,137, and 925 targets exhibiting significantly different expression patterns, respectively. The total of 2,505 targets that exhibited significantly different expression patterns in all three comparisons may play important roles in enabling cuttings to adapt to local environmental conditions. Partial least-squares regression analysis and Pearson correlation coefficient analysis revealed that air temperature and day length were the dominant factors controlling the expression levels of these targets. GO and Pfam enrichment analyses indicated that these targets include genes that may contribute to environmental adaptation, such as genes related to stress and abiotic stimulus responses. This study provided fundamental information regarding transcripts that may play an important role in adaptation to environmental conditions at different planting sites.
Collapse
|
15
|
Tsuruda T, Yoshida R. l-Glutamate activates salicylic acid signaling to promote stomatal closure and PR1 expression in Arabidopsis. PHYSIOLOGIA PLANTARUM 2023; 175:e13858. [PMID: 36658465 DOI: 10.1111/ppl.13858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Glutamate (l-Glu), an animal neurotransmitter, plays an essential role in plant signaling and regulates various plant physiological responses. We previously showed that l-Glu regulates stomatal closure in Arabidopsis via the glutamate receptor-like 3.5 gene (GLR3.5). Here, we showed that l-Glu activates salicylic acid (SA) signaling in Arabidopsis. l-Glu not only promoted stomatal closure but also triggered the expression of the PR1 gene via GLR3.5. These l-Glu-dependent actions were strongly suppressed in SA-insensitive npr1-1 and SA-deficient sid2-2 mutants, indicating that SA is involved in l-Glu signaling. A loss-of-function mutant of the gene encoding the SRK2E/OST1 kinase, which plays a pivotal role in abscisic acid signaling, was insensitive to both l-Glu-induced stomatal closure and PR1 expression. The glr3.5 mutants did not alleviate SA-induced stomatal closure, indicating that SA may function downstream of GLR3.5. These results indicate that l-Glu activates SA signaling, and that SRK2E/OST1 may play pivotal roles in such signaling.
Collapse
Affiliation(s)
- Toshihiko Tsuruda
- Laboratory of Horticultural Science, Faculty of Agriculture, Kagoshima University, Kagoshima, Kagoshima, Japan
| | - Riichiro Yoshida
- Laboratory of Horticultural Science, Faculty of Agriculture, Kagoshima University, Kagoshima, Kagoshima, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Kagoshima, Japan
| |
Collapse
|
16
|
Ji H, Yang G, Zhang X, Zhong Q, Qi Y, Wu K, Shen T. Regulation of salt tolerance in the roots of Zea mays by L-histidine through transcriptome analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:1049954. [PMID: 36518514 PMCID: PMC9742451 DOI: 10.3389/fpls.2022.1049954] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/07/2022] [Indexed: 06/01/2023]
Abstract
Soil salinization is an important worldwide environmental problem and the main reason to reduce agricultural productivity. Recent findings suggested that histidine is a crucial residue that influences the ROS reduction and improves the plants' tolerance to salt stress. Herein, we conducted experiments to understand the underlying regulatory effects of histidine on maize root system under salt stress (100 mM NaCl solution system). Several antioxidant enzymes were determined. The related expressed genes (DEGs) with its pathways were observed by Transcriptome technologies. The results of the present study confirmed that histidine can ameliorate the adverse effects of salt stress on maize root growth. When the maize roots exposed to 100 mM NaCl were treated with histidine, the accumulation of superoxide anion radicals, hydrogen peroxide, and malondialdehyde, and the content of nitrate nitrogen and ammonium nitrogen were significantly reduced; while the activities of superoxide dismutase, peroxidase, catalase, nitrate reductase, glutamine synthetase, and glutamate synthase were significantly increased. Transcriptome analysis revealed that a total of 454 (65 up-regulated and 389 down-regulated) and 348 (293 up-regulated and 55 down-regulated) DEGs were observed when the roots under salt stress were treated with histidine for 12 h and 24 h, respectively. The pathways analysis of those DEGs showed that a small number of down-regulated genes were enriched in phytohormone signaling and phenylpropanoid biosynthesis at 12 h after histidine treatment, and the DEGs involved in the phytohormone signaling, glycolysis, and nitrogen metabolism were significantly enriched at 24 h after treatment. These results of gene expression and enzyme activities suggested that histidine can improve the salt tolerance of maize roots by enriching some DEGs involved in plant hormone signal transduction, glycolysis, and nitrogen metabolism pathways.
Collapse
|
17
|
Ma H, Li P, Xiao N, Xia T. Poly-γ-glutamic acid promoted maize root development by affecting auxin signaling pathway and the abundance and diversity of rhizosphere microbial community. BMC PLANT BIOLOGY 2022; 22:521. [PMID: 36352394 PMCID: PMC9647955 DOI: 10.1186/s12870-022-03908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The root systems of higher plants play an important role in plant growth and development. In our present study, it was found that poly-γ-glutamic acid (γ-PGA), an environmentally friendly biomacromolecule, significantly improved root development in maize. RESULTS After treatment with γ-PGA for 7 days, the fresh weight of maize roots was significantly increased and the differences between γ-PGA treated group and control group were mainly caused by the number (higher by 71.87% compared to the control) and length of lateral roots. RNAseq and RT-PCR analyses showed that γ-PGA treatment upregulated the expression of genes related to the synthesis of auxins and auxin signal in maize roots. In addition, γ-PGA promoted the accumulation of plant growth-promoting bacteria, such as Azospirillum, Azohydromonas, Ramlibacter, and Sphingobium (Proteobacteria), Streptomyces (Actinobacteria), Parasegetibacter (Bacteroidetes), and Gemmatimonas (Gemmatimonadetes) in rhizosphere soil and the secretion of auxins. The results of this study deepened our understanding of the effects and mechanism of γ-PGA on maize root development, and as well as highlighted the possibility of using γ-PGA to improve crop growth and soil environment. CONCLUSIONS γ-PGA promotes early growth and development of maize roots by inducing the secretion and accumulation of auxin in roots and in rhizosphere soil, and increasing the abundance of plant growth promoting bacteria.
Collapse
Affiliation(s)
- Haizhen Ma
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, PR China
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, PR China
| | - Panpan Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, PR China
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, PR China
| | - Ning Xiao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, PR China
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, PR China
| | - Tao Xia
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, PR China.
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, PR China.
| |
Collapse
|
18
|
Wang Y, Wang X, Sun S, Jin C, Su J, Wei J, Luo X, Wen J, Wei T, Sahu SK, Zou H, Chen H, Mu Z, Zhang G, Liu X, Xu X, Gram L, Yang H, Wang E, Liu H. GWAS, MWAS and mGWAS provide insights into precision agriculture based on genotype-dependent microbial effects in foxtail millet. Nat Commun 2022; 13:5913. [PMID: 36207301 PMCID: PMC9546826 DOI: 10.1038/s41467-022-33238-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 09/09/2022] [Indexed: 11/09/2022] Open
Abstract
Genetic and environmental factors collectively determine plant growth and yield. In the past 20 years, genome-wide association studies (GWAS) have been conducted on crops to decipher genetic loci that contribute to growth and yield, however, plant genotype appears to be insufficient to explain the trait variations. Here, we unravel the associations between genotypic, phenotypic, and rhizoplane microbiota variables of 827 foxtail millet cultivars by an integrated GWAS, microbiome-wide association studies (MWAS) and microbiome genome-wide association studies (mGWAS) method. We identify 257 rhizoplane microbial biomarkers associated with six key agronomic traits and validated the microbial-mediated growth effects on foxtail millet using marker strains isolated from the field. The rhizoplane microbiota composition is mainly driven by variations in plant genes related to immunity, metabolites, hormone signaling and nutrient uptake. Among these, the host immune gene FLS2 and transcription factor bHLH35 are widely associated with the microbial taxa of the rhizoplane. We further uncover a plant genotype-microbiota interaction network that contributes to phenotype plasticity. The microbial-mediated growth effects on foxtail millet are dependent on the host genotype, suggesting that precision microbiome management could be used to engineer high-yielding cultivars in agriculture systems.
Collapse
Grants
- Statens Naturvidenskabelige Forskningsrad (Danish National Science Foundation)
- This research was supported by the Funding of Joint Research on Agricultural Variety Improvement of Henan Province (No. 2022010401, H. Z.), the Major Science and Technology Projects of Yunnan Province (Digitalization, development and application of biotic resource, No. 860 202002AA100007, H. L.), the National Science Foundation (32088102, 31730103, 31825003, E. W.), the Specialty Industry for Key Research and Development Program in Shanxi Academy of Agricultural Sciences (No. YCX2019T01, Z. M.) and Key R&D Program of ShanXi Province (No. 201903D211003, Z. M.). This work was also supported by China National GeneBank (CNGB), Key Laboratory of Genomics, Ministry of Agriculture, BGI-Shenzhen.
Collapse
Affiliation(s)
- Yayu Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Xiaolin Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shuai Sun
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- BGI-Qingdao, Qingdao, 266555, China
| | - Canzhi Jin
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianmu Su
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Jinpu Wei
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Xinyue Luo
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiawen Wen
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Wei
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Hongfeng Zou
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Hongyun Chen
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Zhixin Mu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Gengyun Zhang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Xin Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Xun Xu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, 518083, China
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs, Lyngby, Denmark
| | - Huanming Yang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China.
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
19
|
Naz R, Khan A, Alghamdi BS, Ashraf GM, Alghanmi M, Ahmad A, Bashir SS, Haq QMR. An Insight into Animal Glutamate Receptors Homolog of Arabidopsis thaliana and Their Potential Applications-A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192580. [PMID: 36235446 PMCID: PMC9572488 DOI: 10.3390/plants11192580] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/19/2022] [Accepted: 08/26/2022] [Indexed: 06/01/2023]
Abstract
Most excitatory impulses received by neurons are mediated by ionotropic glutamate receptors (iGluRs). These receptors are located at the apex and play an important role in memory, neuronal development, and synaptic plasticity. These receptors are ligand-dependent ion channels that allow a wide range of cations to pass through. Glutamate, a neurotransmitter, activates three central ionotropic receptors: N-methyl-D-aspartic acid (NMDA), -amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA), and kainic acid (KA). According to the available research, excessive glutamate release causes neuronal cell death and promotes neurodegenerative disorders. Arabidopsis thaliana contains 20 glutamate receptor genes (AtGluR) comparable to the human ionotropic glutamate (iGluRs) receptor. Many studies have proved that AtGL-rec genes are involved in a number of plant growth and physiological activities, such as in the germination of seeds, roots, abiotic and biotic stress, and cell signaling, which clarify the place of these genes in plant biology. In spite of these, the iGluRs, Arabidopsis glutamate receptors (AtGluR), is associated with the ligand binding activity, which confirms the evolutionary relationship between animal and plant glutamate receptors. Along with the above activities, the impact of mammalian agonists and antagonists on Arabidopsis suggests a correlation between plant and animal glutamate receptors. In addition, these glutamate receptors (plant/animal) are being utilized for the early detection of neurogenerative diseases using the fluorescence resonance energy transfer (FRET) approach. However, a number of scientific laboratories and institutes are consistently working on glutamate receptors with different aspects. Currently, we are also focusing on Arabidopsis glutamate receptors. The current review is focused on updating knowledge on AtGluR genes, their evolution, functions, and expression, and as well as in comparison with iGluRs. Furthermore, a high throughput approach based on FRET nanosensors developed for understanding neurotransmitter signaling in animals and plants via glutamate receptors has been discussed. The updated information will aid in the future comprehension of the complex molecular dynamics of glutamate receptors and the exploration of new facts in plant/animal biology.
Collapse
Affiliation(s)
- Ruphi Naz
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maimonah Alghanmi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Altaf Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | | | | |
Collapse
|
20
|
Grenzi M, Bonza MC, Costa A. Signaling by plant glutamate receptor-like channels: What else! CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102253. [PMID: 35780692 DOI: 10.1016/j.pbi.2022.102253] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/24/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Plant glutamate receptor-like channels (GLRs) are transmembrane proteins that allow the movement of several ions across membranes. In the model plant Arabidopsis, there are 20 GLR isoforms grouped in three clades and, since their discovery, it was hypothesized that GLRs were mainly involved in signaling processes. Indeed, in the last years, several pieces of evidence demonstrate different signaling roles played by GLRs, related to pollen development, sexual reproduction, chemotaxis, root development, regulation of stomatal aperture, and response to pathogens. Recently, GLRs have gained attention for their role in long-distance electric and calcium signaling. In this review, we resume the evidence about the role of GLRs in signaling processes. This role is mostly linked to the GLRs involvement in the regulation of ion fluxes across membranes and, in particular, of calcium, which represents a key second messenger in plant cell responses to both endogenous and exogenous stimuli.
Collapse
Affiliation(s)
- Matteo Grenzi
- Department of Biosciences, University of Milan, Via G. Celoria 26, 20133 Milano, Italy
| | - Maria Cristina Bonza
- Department of Biosciences, University of Milan, Via G. Celoria 26, 20133 Milano, Italy
| | - Alex Costa
- Department of Biosciences, University of Milan, Via G. Celoria 26, 20133 Milano, Italy; Institute of Biophysics, National Research Council of Italy (CNR), Via G. Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
21
|
Liao HS, Chung YH, Hsieh MH. Glutamate: A multifunctional amino acid in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111238. [PMID: 35351313 DOI: 10.1016/j.plantsci.2022.111238] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Glutamate (Glu) is a versatile metabolite and a signaling molecule in plants. Glu biosynthesis is associated with the primary nitrogen assimilation pathway. The conversion between Glu and 2-oxoglutarate connects Glu metabolism to the tricarboxylic acid cycle, carbon metabolism, and energy production. Glu is the predominant amino donor for transamination reactions in the cell. In addition to protein synthesis, Glu is a building block for tetrapyrroles, glutathione, and folate. Glu is the precursor of γ-aminobutyric acid that plays an important role in balancing carbon/nitrogen metabolism and various cellular processes. Glu can conjugate to the major auxin indole 3-acetic acid (IAA), and IAA-Glu is destined for oxidative degradation. Glu also conjugates with isochorismate for the production of salicylic acid. Accumulating evidence indicates that Glu functions as a signaling molecule to regulate plant growth, development, and defense responses. The ligand-gated Glu receptor-like proteins (GLRs) mediate some of these responses. However, many of the Glu signaling events are GLR-independent. The receptor perceiving extracellular Glu as a danger signal is still unknown. In addition to GLRs, Glu may act on receptor-like kinases or receptor-like proteins to trigger immune responses. Glu metabolism and Glu signaling may entwine to regulate growth, development, and defense responses in plants.
Collapse
Affiliation(s)
- Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Hsin Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan.
| |
Collapse
|
22
|
Zang L, Tarkowski ŁP, Morère-Le Paven MC, Zivy M, Balliau T, Clochard T, Bahut M, Balzergue S, Pelletier S, Landès C, Limami AM, Montrichard F. The Nitrate Transporter MtNPF6.8 Is a Master Sensor of Nitrate Signal in the Primary Root Tip of Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2022; 13:832246. [PMID: 35371178 PMCID: PMC8971838 DOI: 10.3389/fpls.2022.832246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/22/2022] [Indexed: 06/12/2023]
Abstract
Nitrate is not only an essential nutrient for plants, but also a signal involved in plant development. We have previously shown in the model legume Medicago truncatula, that the nitrate signal, which restricts primary root growth, is mediated by MtNPF6.8, a nitrate transporter. Nitrate signal also induces changes in reactive oxygen species accumulation in the root tip due to changes in cell wall peroxidase (PODs) activity. Thus, it was interesting to determine the importance of the role of MtNPF6.8 in the regulation of the root growth by nitrate and identify the POD isoforms responsible for the changes in POD activity. For this purpose, we compared in M. truncatula a npf6.8 mutant and nitrate insensitive line deficient in MtNPF6.8 and the corresponding wild and sensitive genotype for their transcriptomic and proteomic responses to nitrate. Interestingly, only 13 transcripts and no protein were differently accumulated in the primary root tip of the npf6.8-3 mutant line in response to nitrate. The sensitivity of the primary root tip to nitrate appeared therefore to be strongly linked to the integrity of MtNPF6.8 which acts as a master mediator of the nitrate signal involved in the control of the root system architecture. In parallel, 7,259 and 493 genes responded, respectively, at the level of transcripts or proteins in the wild type, 196 genes being identified by both their transcript and protein. By focusing on these 196 genes, a concordance of expression was observed for most of them with 143 genes being up-regulated and 51 being down-regulated at the two gene expression levels. Their ontology analysis uncovered a high enrichment in POD genes, allowing the identification of POD candidates involved in the changes in POD activity previously observed in response to nitrate.
Collapse
Affiliation(s)
- Lili Zang
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d’Angers, Angers, France
| | | | | | - Michel Zivy
- PAPPSO, GQE – Le Moulon, INRA, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Thierry Balliau
- PAPPSO, GQE – Le Moulon, INRA, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Thibault Clochard
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d’Angers, Angers, France
| | | | - Sandrine Balzergue
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d’Angers, Angers, France
| | - Sandra Pelletier
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d’Angers, Angers, France
| | - Claudine Landès
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d’Angers, Angers, France
| | - Anis M. Limami
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d’Angers, Angers, France
| | | |
Collapse
|
23
|
Han M, Xu M, Wang S, Wu L, Sun S, Su T. Effects of exogenous L-Glutamine as a sole nitrogen source on physiological characteristics and nitrogen use efficiency of poplar. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 172:1-13. [PMID: 35007889 DOI: 10.1016/j.plaphy.2021.12.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
L-Glutamine (Gln) is a proteinogenic amino acid, N transporter and NH3 carrier, engaging in diversified pathways for synthesizing many important molecules. However, the effects of exogenous Gln on plant growth and development remain largely unknown. In this study, different concentrations of Gln were supplemented in the poplar hybrid 'Nanlin895' culture medium as a sole N source. Their effects on poplar growth, photosynthesis, N metabolism-related enzymes and metabolites were elucidated. Strikingly, 0.5 mM Gln-fed poplars showed no considerable growth compromise compared to the inorganic N control (CK-N), even though their N supply level was only half that of the CK-N control. What's more, their NUE was enhanced. In addition, 0.5 mM Gln treatment significantly increased the contents of amino acids in coordination with soluble sugars in the roots, while marginal effects in the leaves were observed compared to CK-N. By contrast, applying a high level of Gln (>0.5 mM) resulted in larger accumulation of amino acids and starch, but lower level of soluble sugars, particularly in the roots, followed by adverse effects on poplar biomass, photosynthesis, enzyme activities and NUE; consequently, poplar growth was inhibited. Collectively, these findings allow us to deduce that poplar plants are competent to take up and utilize Gln as a sole N source. When applied at an appropriate level, Gln could promote a dynamic equilibrium of N and C, conferring sound growth performance and additional benefit for the environment as indicated by higher NUE, lower N input and higher biocompatible nature than the inorganic N.
Collapse
Affiliation(s)
- Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Mingyue Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Shizhen Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Liangdan Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Shuyue Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China; Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
24
|
Castro-Rodríguez V, Kleist TJ, Gappel NM, Atanjaoui F, Okumoto S, Machado M, Denyer T, Timmermans MCP, Frommer WB, Wudick MM. Sponging of glutamate at the outer plasma membrane surface reveals roles for glutamate in development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:664-674. [PMID: 34783104 DOI: 10.1111/tpj.15585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Plants use electrical and chemical signals for systemic communication. Herbivory, for instance, appears to trigger local apoplasmic glutamate accumulation, systemic electrical signals, and calcium waves that travel to report insect damage to neighboring leaves and initiate defense. To monitor extra- and intracellular glutamate concentrations in plants, we generated Arabidopsis lines expressing genetically encoded fluorescent glutamate sensors. In contrast to cytosolically localized sensors, extracellularly displayed variants inhibited plant growth and proper development. Phenotypic analyses of high-affinity display sensor lines revealed that root meristem development, particularly the quiescent center, number of lateral roots, vegetative growth, and floral architecture were impacted. Notably, the severity of the phenotypes was positively correlated with the affinity of the display sensors, intimating that their ability to sequester glutamate at the surface of the plasma membrane was responsible for the defects. Root growth defects were suppressed by supplementing culture media with low levels of glutamate. Together, the data indicate that sequestration of glutamate at the cell surface either disrupts the supply of glutamate to meristematic cells and/or impairs localized glutamatergic signaling important for developmental processes.
Collapse
Affiliation(s)
| | - Thomas J Kleist
- Institute for Molecular Physiology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Nicoline M Gappel
- Institute for Molecular Physiology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Fatiha Atanjaoui
- Institute for Molecular Physiology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Sakiko Okumoto
- Department of Soil and Crop Science, Texas A&M, College Station, TX, USA
| | - Mackenzie Machado
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Tom Denyer
- Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, Tübingen, 72076, Germany
| | - Marja C P Timmermans
- Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, Tübingen, 72076, Germany
| | - Wolf B Frommer
- Institute for Molecular Physiology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Michael M Wudick
- Institute for Molecular Physiology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
25
|
Toyama T, Mori K, Tanaka Y, Ike M, Morikawa M. Growth Promotion of Giant Duckweed Spirodela polyrhiza (Lemnaceae) by Ensifer sp. SP4 Through Enhancement of Nitrogen Metabolism and Photosynthesis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:28-38. [PMID: 34622686 DOI: 10.1094/mpmi-06-21-0157-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Duckweeds (Lemnaceae) are representative producers in fresh aquatic ecosystems and also yield sustainable biomass for animal feeds, human foods, and biofuels, and contribute toward effective wastewater treatment; thus, enhancing duckweed productivity is a critical challenge. Plant-growth-promoting bacteria (PGPB) can improve the productivity of terrestrial plants; however, duckweed-PGPB interactions remain unclear and no previous study has investigated the molecular mechanisms underlying duckweed-PGPB interaction. Herein, a PGPB, Ensifer sp. strain SP4, was newly isolated from giant duckweed (Spirodela polyrhiza), and the interactions between S. polyrhiza and SP4 were investigated through physiological, biochemical, and metabolomic analyses. In S. polyrhiza and SP4 coculture, SP4 increased the nitrogen (N), chlorophyll, and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) contents and the photosynthesis rate of S. polyrhiza by 2.5-, 2.5-, 2.7-, and 2.4-fold, respectively. Elevated photosynthesis increased the relative growth rate and biomass productivity of S. polyrhiza by 1.5- and 2.7-fold, respectively. Strain SP4 significantly altered the metabolomic profile of S. polyrhiza, especially its amino acid profile. N stable isotope analysis revealed that organic N compounds were transferred from SP4 to S. polyrhiza. These N compounds, particularly glutamic acid, possibly triggered the increase in photosynthetic and growth activities. Accordingly, we propose a new model for the molecular mechanism underlying S. polyrhiza growth promotion by its associated bacteria Ensifer sp. SP4, which occurs through enhanced N compound metabolism and photosynthesis. Our findings show that Ensifer sp. SP4 is a promising PGPB for increasing biomass yield, wastewater purification activity, and CO2 capture of S. polyrhiza.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Tadashi Toyama
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Kazuhiro Mori
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Yasuhiro Tanaka
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masaaki Morikawa
- Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Kita-10 Nishi-5, Kita-ku, Sapporo 060-0810, Japan
| |
Collapse
|
26
|
de Abreu LGF, Silva NV, Ferrari AJR, de Carvalho LM, Fiamenghi MB, Carazzolle MF, Fill TP, Pilau EJ, Pereira GAG, Grassi MCB. Metabolite profiles of energy cane and sugarcane reveal different strategies during the axillary bud outgrowth. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:504-516. [PMID: 34425395 DOI: 10.1016/j.plaphy.2021.08.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Commercial cultivation of sugarcane is usually carried out by planting culm segments (sett) carrying buds in their internodes. However, this is an inefficient practice due to high sprouting irregularity. In this work, we inspect the first stages of the physiological preparation of the culm for sprouting, trying to identify compounds that actively participate in this process. We compared, during the first 48 h, the metabolic profile of sugarcane against energy cane, a cultivar known to have higher sprouting speed and consistency. In fact, during this short period it was possible to observe that energy cane already had a higher physiological activity than sugarcane, with significant changes in the catabolism of amino acids, increased levels of reducing sugars, lipids and metabolic activity in the phenylpropanoid pathway. On the other hand, sugarcane samples had just begun their activity during this same period, with an increase in the level of glutamate as the most significant change, which may be linked to the strategy of these cultivars to develop their roots before leaves, opposite of what is seen for energy cane. These results contribute to the development of strategies for increasing the efficiency of sprouting in sugarcane.
Collapse
Affiliation(s)
- Luís Guilherme F de Abreu
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), Campinas, 13083-864, SP, Brazil
| | - Nicholas V Silva
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), Campinas, 13083-864, SP, Brazil
| | - Allan Jhonathan R Ferrari
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), Campinas, 13083-864, SP, Brazil; Center for Computing in Engineering and Sciences. Campinas State University (UNICAMP), 13083-861, Campinas, SP, Brazil
| | - Lucas M de Carvalho
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), Campinas, 13083-864, SP, Brazil; Center for Computing in Engineering and Sciences. Campinas State University (UNICAMP), 13083-861, Campinas, SP, Brazil
| | - Mateus B Fiamenghi
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), Campinas, 13083-864, SP, Brazil
| | - Marcelo F Carazzolle
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), Campinas, 13083-864, SP, Brazil
| | - Taícia P Fill
- Laboratory of Biology Chemical Microbial (LaBioQuiMi). Institute of Chemistry, Campinas State University (UNICAMP), 13083-970, Campinas, SP, Brazil
| | - Eduardo J Pilau
- Laboratory of Biomolecules and Mass Spectrometry (LabioMass). Department of Chemistry, State University of Maringá, Maringá, PR, Brazil
| | - Gonçalo Amarante G Pereira
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), Campinas, 13083-864, SP, Brazil.
| | - Maria Carolina B Grassi
- Laboratory of Genomics and BioEnergy (LGE), Institute of Biology, Department of Genetics, Evolution, and Bioagents, Campinas State University (UNICAMP), Campinas, 13083-864, SP, Brazil; Roundtable on Sustainable Biomaterials (RSB), Impact Hub Geneva, Rue Fendt 1, 1201, Geneva, Switzerland
| |
Collapse
|
27
|
Moe-Lange J, Gappel NM, Machado M, Wudick MM, Sies CSA, Schott-Verdugo SN, Bonus M, Mishra S, Hartwig T, Bezrutczyk M, Basu D, Farmer EE, Gohlke H, Malkovskiy A, Haswell ES, Lercher MJ, Ehrhardt DW, Frommer WB, Kleist TJ. Interdependence of a mechanosensitive anion channel and glutamate receptors in distal wound signaling. SCIENCE ADVANCES 2021; 7:eabg4298. [PMID: 34516872 PMCID: PMC8442888 DOI: 10.1126/sciadv.abg4298] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Glutamate has dual roles in metabolism and signaling; thus, signaling functions must be isolatable and distinct from metabolic fluctuations, as seen in low-glutamate domains at synapses. In plants, wounding triggers electrical and calcium (Ca2+) signaling, which involve homologs of mammalian glutamate receptors. The hydraulic dispersal and squeeze-cell hypotheses implicate pressure as a key component of systemic signaling. Here, we identify the stretch-activated anion channel MSL10 as necessary for proper wound-induced electrical and Ca2+ signaling. Wound gene induction, genetics, and Ca2+ imaging indicate that MSL10 acts in the same pathway as the glutamate receptor–like proteins (GLRs). Analogous to mammalian NMDA glutamate receptors, GLRs may serve as coincidence detectors gated by the combined requirement for ligand binding and membrane depolarization, here mediated by stretch activation of MSL10. This study provides a molecular genetic basis for a role of mechanical signal perception and the transmission of long-distance electrical and Ca2+ signals in plants.
Collapse
Affiliation(s)
- Jacob Moe-Lange
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Institute for Molecular Physiology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Department of Plant Biology, Carnegie Science, Stanford, CA 94305, USA
| | - Nicoline M. Gappel
- Institute for Molecular Physiology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Mackenzie Machado
- Department of Plant Biology, Carnegie Science, Stanford, CA 94305, USA
| | - Michael M. Wudick
- Institute for Molecular Physiology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Cosima S. A. Sies
- Institute for Molecular Physiology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Stephan N. Schott-Verdugo
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Centro de Bioinformática y Simulación Molecular (CBSM), Facultad de Ingeniería, Universidad de Talca, 2 Norte 685, CL-3460000 Talca, Chile
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Bioinformatics), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., 52425 Jülich, Germany
| | - Michele Bonus
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Swastik Mishra
- Computational Cell Biology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Thomas Hartwig
- Institute for Molecular Physiology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Margaret Bezrutczyk
- Institute for Molecular Physiology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Debarati Basu
- NSF Center for Engineering Mechanobiology, Department of Biology, Washington University in St. Louis, Box 1137, One Brookings Drive, St. Louis, MO 63130, USA
| | - Edward E. Farmer
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Bioinformatics), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., 52425 Jülich, Germany
| | - Andrey Malkovskiy
- Department of Plant Biology, Carnegie Science, Stanford, CA 94305, USA
| | - Elizabeth S. Haswell
- NSF Center for Engineering Mechanobiology, Department of Biology, Washington University in St. Louis, Box 1137, One Brookings Drive, St. Louis, MO 63130, USA
| | - Martin J. Lercher
- Computational Cell Biology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - David W. Ehrhardt
- Department of Plant Biology, Carnegie Science, Stanford, CA 94305, USA
| | - Wolf B. Frommer
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Institute for Molecular Physiology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
- Corresponding author.
| | - Thomas J. Kleist
- Institute for Molecular Physiology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
28
|
Vega A, Fredes I, O'Brien J, Shen Z, Ötvös K, Abualia R, Benkova E, Briggs SP, Gutiérrez RA. Nitrate triggered phosphoproteome changes and a PIN2 phosphosite modulating root system architecture. EMBO Rep 2021; 22:e51813. [PMID: 34357701 PMCID: PMC8447600 DOI: 10.15252/embr.202051813] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/13/2021] [Accepted: 06/23/2021] [Indexed: 01/04/2023] Open
Abstract
Nitrate commands genome‐wide gene expression changes that impact metabolism, physiology, plant growth, and development. In an effort to identify new components involved in nitrate responses in plants, we analyze the Arabidopsis thaliana root phosphoproteome in response to nitrate treatments via liquid chromatography coupled to tandem mass spectrometry. 176 phosphoproteins show significant changes at 5 or 20 min after nitrate treatments. Proteins identified by 5 min include signaling components such as kinases or transcription factors. In contrast, by 20 min, proteins identified were associated with transporter activity or hormone metabolism functions, among others. The phosphorylation profile of NITRATE TRANSPORTER 1.1 (NRT1.1) mutant plants was significantly altered as compared to wild‐type plants, confirming its key role in nitrate signaling pathways that involves phosphorylation changes. Integrative bioinformatics analysis highlights auxin transport as an important mechanism modulated by nitrate signaling at the post‐translational level. We validated a new phosphorylation site in PIN2 and provide evidence that it functions in primary and lateral root growth responses to nitrate.
Collapse
Affiliation(s)
- Andrea Vega
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile.,FONDAP Center for Genome Regulation, ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Isabel Fredes
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile.,FONDAP Center for Genome Regulation, ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - José O'Brien
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile.,FONDAP Center for Genome Regulation, ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Departamento de Fruticultura y Enología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Zhouxin Shen
- Cell and Developmental Biology, University of California San Diego. San Diego, CA, USA
| | - Krisztina Ötvös
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria.,Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Rashed Abualia
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Eva Benkova
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Steven P Briggs
- Cell and Developmental Biology, University of California San Diego. San Diego, CA, USA
| | - Rodrigo A Gutiérrez
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile.,FONDAP Center for Genome Regulation, ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| |
Collapse
|
29
|
Li F, Dong C, Yang T, Bao S, Fang W, Lucas WJ, Zhang Z. The tea plant CsLHT1 and CsLHT6 transporters take up amino acids, as a nitrogen source, from the soil of organic tea plantations. HORTICULTURE RESEARCH 2021; 8:178. [PMID: 34333546 PMCID: PMC8325676 DOI: 10.1038/s41438-021-00615-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/09/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
Organic tea is more popular than conventional tea that originates from fertilized plants. Amino acids inorganic soils constitute a substantial pool nitrogen (N) available for plants. However, the amino-acid contents in soils of tea plantations and how tea plants take up these amino acids remain largely unknown. In this study, we show that the amino-acid content in the soil of an organic tea plantation is significantly higher than that of a conventional tea plantation. Glutamate, alanine, valine, and leucine were the most abundant amino acids in the soil of this tea plantation. When 15N-glutamate was fed to tea plants, it was efficiently absorbed and significantly increased the contents of other amino acids in the roots. We cloned seven CsLHT genes encoding amino-acid transporters and found that the expression of CsLHT1, CsLHT2, and CsLHT6 in the roots significantly increased upon glutamate feeding. Moreover, the expression of CsLHT1 or CsLHT6 in a yeast amino-acid uptake-defective mutant, 22∆10α, enabled growth on media with amino acids constituting the sole N source. Amino-acid uptake assays indicated that CsLHT1 and CsLHT6 are H+-dependent high- and low-affinity amino-acid transporters, respectively. We further demonstrated that CsLHT1 and CsLHT6 are highly expressed in the roots and are localized to the plasma membrane. Moreover, overexpression of CsLHT1 and CsLHT6 in Arabidopsis significantly improved the uptake of exogenously supplied 15N-glutamate and 15N-glutamine. Taken together, our findings are consistent with the involvement of CsLHT1 and CsLHT6 in amino-acid uptake from the soil, which is particularly important for tea plants grown inorganic tea plantations.
Collapse
Affiliation(s)
- Fang Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunxia Dong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Tianyuan Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Shilai Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - William J Lucas
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, 95616, USA
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, 230036, China.
| |
Collapse
|
30
|
Liang T, Yuan Z, Fu L, Zhu M, Luo X, Xu W, Yuan H, Zhu R, Hu Z, Wu X. Integrative Transcriptomic and Proteomic Analysis Reveals an Alternative Molecular Network of Glutamine Synthetase 2 Corresponding to Nitrogen Deficiency in Rice ( Oryza sativa L.). Int J Mol Sci 2021; 22:ijms22147674. [PMID: 34299294 PMCID: PMC8304609 DOI: 10.3390/ijms22147674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/10/2021] [Accepted: 07/15/2021] [Indexed: 01/21/2023] Open
Abstract
Nitrogen (N) is an essential nutrient for plant growth and development. The root system architecture is a highly regulated morphological system, which is sensitive to the availability of nutrients, such as N. Phenotypic characterization of roots from LY9348 (a rice variety with high nitrogen use efficiency (NUE)) treated with 0.725 mM NH4NO3 (1/4N) was remarkable, especially primary root (PR) elongation, which was the highest. A comprehensive analysis was performed for transcriptome and proteome profiling of LY9348 roots between 1/4N and 2.9 mM NH4NO3 (1N) treatments. The results indicated 3908 differential expression genes (DEGs; 2569 upregulated and 1339 downregulated) and 411 differential abundance proteins (DAPs; 192 upregulated and 219 downregulated). Among all DAPs in the proteome, glutamine synthetase (GS2), a chloroplastic ammonium assimilation protein, was the most upregulated protein identified. The unexpected concentration of GS2 from the shoot to the root in the 1/4N treatment indicated that the presence of an alternative pathway of N assimilation regulated by GS2 in LY9348 corresponded to the low N signal, which was supported by GS enzyme activity and glutamine/glutamate (Gln/Glu) contents analysis. In addition, N transporters (NRT2.1, NRT2.2, NRT2.3, NRT2.4, NAR2.1, AMT1.3, AMT1.2, and putative AMT3.3) and N assimilators (NR2, GS1;1, GS1;2, GS1;3, NADH-GOGAT2, and AS2) were significantly induced during the long-term N-deficiency response at the transcription level (14 days). Moreover, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that phenylpropanoid biosynthesis and glutathione metabolism were significantly modulated by N deficiency. Notably, many transcription factors and plant hormones were found to participate in root morphological adaptation. In conclusion, our study provides valuable information to further understand the response of rice roots to N-deficiency stress.
Collapse
Affiliation(s)
- Ting Liang
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (T.L.); (Z.Y.); (L.F.); (M.Z.); (X.L.); (W.X.); (H.Y.); (R.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhengqing Yuan
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (T.L.); (Z.Y.); (L.F.); (M.Z.); (X.L.); (W.X.); (H.Y.); (R.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lu Fu
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (T.L.); (Z.Y.); (L.F.); (M.Z.); (X.L.); (W.X.); (H.Y.); (R.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Menghan Zhu
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (T.L.); (Z.Y.); (L.F.); (M.Z.); (X.L.); (W.X.); (H.Y.); (R.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoyun Luo
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (T.L.); (Z.Y.); (L.F.); (M.Z.); (X.L.); (W.X.); (H.Y.); (R.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wuwu Xu
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (T.L.); (Z.Y.); (L.F.); (M.Z.); (X.L.); (W.X.); (H.Y.); (R.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Huanran Yuan
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (T.L.); (Z.Y.); (L.F.); (M.Z.); (X.L.); (W.X.); (H.Y.); (R.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Renshan Zhu
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (T.L.); (Z.Y.); (L.F.); (M.Z.); (X.L.); (W.X.); (H.Y.); (R.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhongli Hu
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (T.L.); (Z.Y.); (L.F.); (M.Z.); (X.L.); (W.X.); (H.Y.); (R.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xianting Wu
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China; (T.L.); (Z.Y.); (L.F.); (M.Z.); (X.L.); (W.X.); (H.Y.); (R.Z.); (Z.H.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Crop Research Institute, Sichuan Academy of Agricultural Science, Chengdu 610000, China
- Correspondence: ; Tel.: +86-181-8061-4938
| |
Collapse
|
31
|
Nitrogen Uptake in Plants: The Plasma Membrane Root Transport Systems from a Physiological and Proteomic Perspective. PLANTS 2021; 10:plants10040681. [PMID: 33916130 PMCID: PMC8066207 DOI: 10.3390/plants10040681] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022]
Abstract
Nitrogen nutrition in plants is a key determinant in crop productivity. The availability of nitrogen nutrients in the soil, both inorganic (nitrate and ammonium) and organic (urea and free amino acids), highly differs and influences plant physiology, growth, metabolism, and root morphology. Deciphering this multifaceted scenario is mandatory to improve the agricultural sustainability. In root cells, specific proteins located at the plasma membrane play key roles in the transport and sensing of nitrogen forms. This review outlines the current knowledge regarding the biochemical and physiological aspects behind the uptake of the individual nitrogen forms, their reciprocal interactions, the influences on root system architecture, and the relations with other proteins sustaining fundamental plasma membrane functionalities, such as aquaporins and H+-ATPase. This topic is explored starting from the information achieved in the model plant Arabidopsis and moving to crops in agricultural soils. Moreover, the main contributions provided by proteomics are described in order to highlight the goals and pitfalls of this approach and to get new hints for future studies.
Collapse
|
32
|
Campos-García T, Molina-Torres J. Solanum lycopersicum Seedlings. Metabolic Responses Induced by the Alkamide Affinin. Metabolites 2021; 11:metabo11030143. [PMID: 33673570 PMCID: PMC7997251 DOI: 10.3390/metabo11030143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/04/2022] Open
Abstract
Alkamides have been observed to interact in different ways in several superior organisms and have been used in traditional medicine in many countries e.g., to relieve pain. Previous studies showed that affinin when applied to other plant species induces prominent changes in the root architecture and induces transcriptional adjustments; however, little is known about the metabolic pathways recruited by plants in response to alkamides. Previous published work with Arabidopsis seedlings treated in vitro with affinin at 50 µM significantly reduced primary root length. In tomato seedlings, that concentration did not reduce root growth but increase the number and length of lateral roots. Non-targeted metabolomic analysis by Gas Chromatography couplet to Mass Spectrometry (GC/EIMS) showed that, in tomato seedlings, affinin increased the accumulation of several metabolites leading to an enrichment of several metabolic pathways. Affinin at 100 µM alters the accumulation of metabolites such as organic acids, amino acids, sugars, and fatty acids. Finally, our results showed a response possibly associated with nitrogen, GABA shunt and serine pathways, in addition to a possible alteration in the mitochondrial electron transport chain (ETC), interesting topics to understand the molecular and metabolic mechanisms in response to alkamide in plants.
Collapse
|
33
|
Ötvös K, Marconi M, Vega A, O’Brien J, Johnson A, Abualia R, Antonielli L, Montesinos JC, Zhang Y, Tan S, Cuesta C, Artner C, Bouguyon E, Gojon A, Friml J, Gutiérrez RA, Wabnik K, Benková E. Modulation of plant root growth by nitrogen source-defined regulation of polar auxin transport. EMBO J 2021; 40:e106862. [PMID: 33399250 PMCID: PMC7849315 DOI: 10.15252/embj.2020106862] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/27/2020] [Accepted: 11/06/2020] [Indexed: 01/01/2023] Open
Abstract
Availability of the essential macronutrient nitrogen in soil plays a critical role in plant growth, development, and impacts agricultural productivity. Plants have evolved different strategies for sensing and responding to heterogeneous nitrogen distribution. Modulation of root system architecture, including primary root growth and branching, is among the most essential plant adaptions to ensure adequate nitrogen acquisition. However, the immediate molecular pathways coordinating the adjustment of root growth in response to distinct nitrogen sources, such as nitrate or ammonium, are poorly understood. Here, we show that growth as manifested by cell division and elongation is synchronized by coordinated auxin flux between two adjacent outer tissue layers of the root. This coordination is achieved by nitrate-dependent dephosphorylation of the PIN2 auxin efflux carrier at a previously uncharacterized phosphorylation site, leading to subsequent PIN2 lateralization and thereby regulating auxin flow between adjacent tissues. A dynamic computer model based on our experimental data successfully recapitulates experimental observations. Our study provides mechanistic insights broadening our understanding of root growth mechanisms in dynamic environments.
Collapse
Affiliation(s)
- Krisztina Ötvös
- Institute of Science and Technology (IST) AustriaKlosterneuburgAustria
- Bioresources UnitCenter for Health & BioresourcesAIT Austrian Institute of Technology GmbHTullnAustria
| | - Marco Marconi
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM‐INIA) Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)MadridSpain
| | - Andrea Vega
- Pontifical Catholic University of ChileSantiagoChile
| | - Jose O’Brien
- Pontifical Catholic University of ChileSantiagoChile
| | - Alexander Johnson
- Institute of Science and Technology (IST) AustriaKlosterneuburgAustria
| | - Rashed Abualia
- Institute of Science and Technology (IST) AustriaKlosterneuburgAustria
| | - Livio Antonielli
- Bioresources UnitCenter for Health & BioresourcesAIT Austrian Institute of Technology GmbHTullnAustria
| | | | - Yuzhou Zhang
- Institute of Science and Technology (IST) AustriaKlosterneuburgAustria
| | - Shutang Tan
- Institute of Science and Technology (IST) AustriaKlosterneuburgAustria
| | - Candela Cuesta
- Institute of Science and Technology (IST) AustriaKlosterneuburgAustria
| | - Christina Artner
- Institute of Science and Technology (IST) AustriaKlosterneuburgAustria
| | | | - Alain Gojon
- BPMPCNRSINRAEInstitut AgroUniv MontpellierMontpellierFrance
| | - Jirí Friml
- Institute of Science and Technology (IST) AustriaKlosterneuburgAustria
| | | | - Krzysztof Wabnik
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM‐INIA) Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)MadridSpain
| | - Eva Benková
- Institute of Science and Technology (IST) AustriaKlosterneuburgAustria
| |
Collapse
|
34
|
Ampofo JO, Ngadi M. Stimulation of the phenylpropanoid pathway and antioxidant capacities by biotic and abiotic elicitation strategies in common bean (Phaseolus vulgaris) sprouts. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.09.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Liu L, Bi XY, Sheng S, Gong YY, Pu WX, Ke J, Huang PJ, Liang YL, Liu LH. Evidence that exogenous urea acts as a potent cue to alleviate ammonium-inhibition of root system growth of cotton plant (Gossypium hirsutum). PHYSIOLOGIA PLANTARUM 2021; 171:137-150. [PMID: 32997341 DOI: 10.1111/ppl.13222] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 05/24/2023]
Abstract
Many plants grown with low-millimolar concentration of NH4 + as a sole nitrogen source develop NH4 + -toxicity symptoms. To date, crucial molecular identities and a practical approach involved in the improvement of plant NH4 + -tolerance remain largely unknown. By phenotyping of upland cotton grown on varied nitrogen forms, we came across a phenomenon that caused sub-millimolar concentrations of urea (e.g., up 50 μM) to repress the growth inhibition of roots and whole plant cultivated in a NH4 + -containing nutrient solution. A growth-recovery assay revealed that the relief in NH4 + -inhibited growth required only a short-term exposure (≧12 h) of the roots to urea, implying that urea could elicit an internal signaling and be involved in antagonizing NH4 + -sensitivity. Intriguingly, split-root experiments demonstrated that low urea occurrence in one root-half could efficaciously stimulate not only supplied root but also the root-half grown in NH4 + -solution without urea, indicating the existence of urea-triggered local and systemic long-distance signaling. In the split-root experiment we also observed high arginase activity, strong arginine reduction and remarkable upregulation of polyamine biosynthesis-related genes (ADC1/2, SPDS and SPMS). Therefore, we suggest that external urea might serve as an effective cue (signal molecule) in an arginine-/polyamine-related process for ameliorating NH4 + -suppressed root growth, providing a novel aspect for deeper exploring and understanding plant NH4 + -tolerance.
Collapse
Affiliation(s)
- Lu Liu
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Centre for Resources, Environment and Food Security, China Agricultural University, Beijing, China
| | - Xin-Yuan Bi
- Institute of Agricultural Resources and Economics, Shanxi Agricultural University, Taiyuan, China
| | - Song Sheng
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Centre for Resources, Environment and Food Security, China Agricultural University, Beijing, China
| | - Yuan-Yong Gong
- Biological and Chemical Engineering College, Panzhihua University, Panzhihua, China
| | - Wen-Xuan Pu
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Jie Ke
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Centre for Resources, Environment and Food Security, China Agricultural University, Beijing, China
| | - Ping-Jun Huang
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Yi-Long Liang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Lai-Hua Liu
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Centre for Resources, Environment and Food Security, China Agricultural University, Beijing, China
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| |
Collapse
|
36
|
Ravelo-Ortega G, López-Bucio JS, Ruiz-Herrera LF, Pelagio-Flores R, Ayala-Rodríguez JÁ, de la Cruz HR, Guevara-García ÁA, López-Bucio J. The growth of Arabidopsis primary root is repressed by several and diverse amino acids through auxin-dependent and independent mechanisms and MPK6 kinase activity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110717. [PMID: 33288023 DOI: 10.1016/j.plantsci.2020.110717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 05/14/2023]
Abstract
Amino acids serve as structural monomers for protein synthesis and are considered important biostimulants for plants. In this report, the effects of all 20-L amino acids in Arabidopsis primary root growth were evaluated. 15 amino acids inhibited growth, being l-leucine (l-Leu), l-lysine (l-Lys), l-tryptophan (l-Trp), and l-glutamate (l-Glu) the most active, which repressed both cell division and elongation in primary roots. Comparisons of DR5:GFP expression and growth of WT Arabidopsis seedlings and several auxin response mutants including slr, axr1 and axr2 single mutants, arf7/arf19 double mutant and tir1/afb2/afb3 triple mutant, treated with inhibitory concentrations of l-Glu, l-Leu, l-Lys and l-Trp revealed gene-dependent, specific changes in auxin response. In addition, l- isomers of Glu, Leu and Lys, but not l-Trp diminished the GFP fluorescence of pPIN1::PIN1:GFP, pPIN2::PIN2:GFP, pPIN3::PIN3:GFP and pPIN7::PIN7:GFP constructs in root tips. MPK6 activity in roots was enhanced by amino acid treatment, being greater in response to l-Trp while mpk6 mutants supported cell division and elongation at high doses of l-Glu, l-Leu, l-Lys and l-Trp. We conclude that independently of their auxin modulating properties, amino acids signals converge in MPK6 to alter the Arabidopsis primary root growth.
Collapse
Affiliation(s)
- Gustavo Ravelo-Ortega
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, CP 58030 Morelia, Michoacán, Mexico.
| | - Jesús Salvador López-Bucio
- CONACYT‑Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, CP 58030 Morelia, Michoacán, Mexico.
| | - León Francisco Ruiz-Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, CP 58030 Morelia, Michoacán, Mexico.
| | - Ramón Pelagio-Flores
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, CP 58030 Morelia, Michoacán, Mexico.
| | - Juan Ángel Ayala-Rodríguez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, CP 58030 Morelia, Michoacán, Mexico.
| | - Homero Reyes de la Cruz
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, CP 58030 Morelia, Michoacán, Mexico.
| | | | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, CP 58030 Morelia, Michoacán, Mexico.
| |
Collapse
|
37
|
Ke J, Pu WX, Wang H, Liu LH, Sheng S. Phenotypical evidence of effective amelioration of ammonium-inhibited plant (root) growth by exogenous low urea. JOURNAL OF PLANT PHYSIOLOGY 2020; 255:153306. [PMID: 33129078 DOI: 10.1016/j.jplph.2020.153306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 05/27/2023]
Abstract
Ammonium and nitrate are major soil inorganic-nitrogen sources for plant growth, but many species cultivated with even low millimolar NH4+ as a sole N form display a growth retardation. To date, critical biological components and applicable approaches involved in the effective enhancement of NH4+ tolerance remain to be thoroughly explored. Here, we report phenotypical traits of urea-dependent improvement of NH4+-suppressed plant/root growth. Urea at 0.1 mM was sufficient to remarkably stimulate NH4+ (3 mM)-fed cotton growth, showing a 2.5∼4-fold increase in shoot- and root-biomass and total root-length, 20 % higher GS activity, 18 % less NH4+-accumulation in roots, and a comparable plant total-N content compared to the control, implying a novel role for urea in cotton NH4+detoxification. A similar phenomenon was observed in tobacco and rice. Moreover, comparisons between twelve NH4+-grown Arabidopsis accessions revealed a great degree of natural variation in their root-growth response to low urea, with WAR and Blh-1 exhibiting the most significant increase in primary- and lateral-root length and numbers, and Sav-0 and Edi-0 being the most insensitive. Such phenotypical evidence suggests a common ability of plants to accommodate NH4+-stress by responding to exogenous urea, providing a novel aspect for further understanding the process of urea-dependent plant NH4+ tolerance.
Collapse
Affiliation(s)
- Jie Ke
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Centre for Resources, Environment and Food Security, China Agricultural University, Beijing 100193, China
| | - Wen-Xuan Pu
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha 410007, China
| | - Hui Wang
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Centre for Resources, Environment and Food Security, China Agricultural University, Beijing 100193, China
| | - Lai-Hua Liu
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Centre for Resources, Environment and Food Security, China Agricultural University, Beijing 100193, China.
| | - Song Sheng
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Centre for Resources, Environment and Food Security, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
38
|
Lapeikaite I, Pupkis V, Neniskis V, Ruksenas O, Kisnieriene V. Glutamate and NMDA affect cell excitability and action potential dynamics of single cell of macrophyte Nitellopsis obtusa. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:1032-1040. [PMID: 33213696 DOI: 10.1071/fp20074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
The effect of glutamate and N-methyl-d-aspartate (NMDA) on electrical signalling - action potentials (AP) and excitation current transients - was studied in intact macrophyte Nitellopsis obtusa (Characeaen) internodal cell. Intracellular glass electrode recordings of single cell in current clamp and two-electrode voltage clamp modes indicate that glutamate (Glu, 0.1-1.0 mM) and NMDA (0.01-1.0 mM) increase electrically induced AP amplitude by hyperpolarising excitation threshold potential (Eth) and prolong AP fast repolarisation phase. Amplitude of Cl- current transient, as well as its activation and inactivation durations were also increased. Both Glu and NMDA act in a dose-dependent manner. The effect of NMDA exceeds that of Glu. Ionotropic glutamate receptor inhibitors AP-5 (NMDA-type receptors) and DNQX (AMPA/Kainate-type) have no effect on Nitellopsis cell electrical signalling per se, yet robustly inhibit excitatory effect of NMDA. This study reinforces NMDA as an active component in glutamatergic signalling at least in some plants and stresses the elaborate fine-tuning of electrical signalling.
Collapse
Affiliation(s)
- Indre Lapeikaite
- Institute of Biosciences, Life Sciences Centre, Vilnius University, Sauletekio Avenue. 7, LT-10257 Vilnius, Lithuania; and Corresponding author.
| | - Vilmantas Pupkis
- Institute of Biosciences, Life Sciences Centre, Vilnius University, Sauletekio Avenue. 7, LT-10257 Vilnius, Lithuania
| | - Vladas Neniskis
- Institute of Biosciences, Life Sciences Centre, Vilnius University, Sauletekio Avenue. 7, LT-10257 Vilnius, Lithuania
| | - Osvaldas Ruksenas
- Institute of Biosciences, Life Sciences Centre, Vilnius University, Sauletekio Avenue. 7, LT-10257 Vilnius, Lithuania
| | - Vilma Kisnieriene
- Institute of Biosciences, Life Sciences Centre, Vilnius University, Sauletekio Avenue. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
39
|
Jia Z, von Wirén N. Signaling pathways underlying nitrogen-dependent changes in root system architecture: from model to crop species. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4393-4404. [PMID: 31970412 PMCID: PMC7382383 DOI: 10.1093/jxb/eraa033] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/22/2020] [Indexed: 05/16/2023]
Abstract
Among all essential mineral elements, nitrogen (N) is required in the largest amounts and thus is often a limiting factor for plant growth. N is taken up by plant roots in the form of water-soluble nitrate, ammonium, and, depending on abundance, low-molecular weight organic N. In soils, the availability and composition of these N forms can vary over space and time, which exposes roots to various local N signals that regulate root system architecture in combination with systemic signals reflecting the N nutritional status of the shoot. Uncovering the molecular mechanisms underlying N-dependent signaling provides great potential to optimize root system architecture for the sake of higher N uptake efficiency in crop breeding. In this review, we summarize prominent signaling mechanisms and their underlying molecular players that derive from external N forms or the internal N nutritional status and modulate root development including root hair formation and gravitropism. We also compare the current state of knowledge of these pathways between Arabidopsis and graminaceous plant species.
Collapse
Affiliation(s)
- Zhongtao Jia
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Stadt Seeland, OT Gatersleben, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Stadt Seeland, OT Gatersleben, Germany
- Correspondence:
| |
Collapse
|
40
|
Maghiaoui A, Bouguyon E, Cuesta C, Perrine-Walker F, Alcon C, Krouk G, Benková E, Nacry P, Gojon A, Bach L. The Arabidopsis NRT1.1 transceptor coordinately controls auxin biosynthesis and transport to regulate root branching in response to nitrate. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4480-4494. [PMID: 32428238 DOI: 10.1093/jxb/eraa242] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/13/2020] [Indexed: 05/21/2023]
Abstract
In agricultural systems, nitrate is the main source of nitrogen available for plants. Besides its role as a nutrient, nitrate has been shown to act as a signal molecule in plant growth, development, and stress responses. In Arabidopsis, the NRT1.1 nitrate transceptor represses lateral root (LR) development at low nitrate availability by promoting auxin basipetal transport out of the LR primordia (LRPs). Here we show that NRT1.1 acts as a negative regulator of the TAR2 auxin biosynthetic gene in the root stele. This is expected to repress local auxin biosynthesis and thus to reduce acropetal auxin supply to the LRPs. Moreover, NRT1.1 also negatively affects expression of the LAX3 auxin influx carrier, thus preventing the cell wall remodeling required for overlying tissue separation during LRP emergence. NRT1.1-mediated repression of both TAR2 and LAX3 is suppressed at high nitrate availability, resulting in nitrate induction of the TAR2 and LAX3 expression that is required for optimal stimulation of LR development by nitrate. Altogether, our results indicate that the NRT1.1 transceptor coordinately controls several crucial auxin-associated processes required for LRP development, and as a consequence that NRT1.1 plays a much more integrated role than previously expected in regulating the nitrate response of root system architecture.
Collapse
Affiliation(s)
- Amel Maghiaoui
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Eléonore Bouguyon
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Candela Cuesta
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Carine Alcon
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Gabriel Krouk
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Eva Benková
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Philippe Nacry
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Alain Gojon
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Liên Bach
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
41
|
Asim M, Ullah Z, Xu F, An L, Aluko OO, Wang Q, Liu H. Nitrate Signaling, Functions, and Regulation of Root System Architecture: Insights from Arabidopsis thaliana. Genes (Basel) 2020; 11:E633. [PMID: 32526869 PMCID: PMC7348705 DOI: 10.3390/genes11060633] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 01/07/2023] Open
Abstract
Root system architecture (RSA) is required for the acquisition of water and mineral nutrients from the soil. One of the essential nutrients, nitrate (NO3-), is sensed and transported by nitrate transporters NRT1.1 and NRT2.1 in the plants. Nitrate transporter 1.1 (NRT1.1) is a dual-affinity nitrate transporter phosphorylated at the T101 residue by calcineurin B-like interacting protein kinase (CIPKs); it also regulates the expression of other key nitrate assimilatory genes. The differential phosphorylation (phosphorylation and dephosphorylation) strategies and underlying Ca2+ signaling mechanism of NRT1.1 stimulate lateral root growth by activating the auxin transport activity and Ca2+-ANR1 signaling at the plasma membrane and the endosomes, respectively. NO3- additionally functions as a signal molecule that forms a signaling system, which consists of a vast array of transcription factors that control root system architecture that either stimulate or inhibit lateral and primary root development in response to localized and high nitrate (NO3-), respectively. This review elucidates the so-far identified nitrate transporters, nitrate sensing, signal transduction, and the key roles of nitrate transporters and its downstream transcriptional regulatory network in the primary and lateral root development in Arabidopsis thaliana under stress conditions.
Collapse
Affiliation(s)
- Muhammad Asim
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (M.A.); (Z.U.); (L.A.); (O.O.A.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Zia Ullah
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (M.A.); (Z.U.); (L.A.); (O.O.A.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Fangzheng Xu
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China;
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Lulu An
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (M.A.); (Z.U.); (L.A.); (O.O.A.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Oluwaseun Olayemi Aluko
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (M.A.); (Z.U.); (L.A.); (O.O.A.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Qian Wang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Haobao Liu
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (M.A.); (Z.U.); (L.A.); (O.O.A.)
| |
Collapse
|
42
|
Xu N, Yu B, Chen R, Li S, Zhang G, Huang J. OsNAR2.2 plays a vital role in the root growth and development by promoting nitrate uptake and signaling in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 149:159-169. [PMID: 32070909 DOI: 10.1016/j.plaphy.2020.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Plants in soil faces great fluctuations of external mineral nutrient availability, and they have developed sophisticated nutrient sensing systems to regulate their physiological responses to prevent nutrient deficiency. However, complete knowledge of the regulatory system is required to maximize inorganic nitrogen (N) uptake and utilization. In this study, we report a partner protein for high-affinity nitrate transport, OsNAR2.2. OsNAR2.2 was involved in the root growth in a nitrate-dependent manner in rice, and this process was closely associated with auxin. Expression analysis showed that OsNAR2.2 responded to nitrate and various plant hormone signals. Knockdown of OsNAR2.2 by T-DNA insertion not only significantly repressed the primary root elongation, but also severely reduced the number of lateral root and adventitious root. Further research indicated that the size of meristematic zone and epidermal cell length of mature zone in the primary root tip were remarkably reduced, and the formation of lateral root primordial was constrained in osnar2.2 mutant. Interestingly, the repression of root growth in osnar2.2 mutant was observed when NO3- but not NH4+ was used as N source in the medium. The NO3- content in osnar2.2 root was significantly reduced under NO3- conditions, in comparison with that of wild type. Meanwhile, the free IAA accumulation as well as the expression of auxin biosynthesis and transport genes was altered in osnar2.2 root, suggesting there might be a crosslink between the nitrate and auxin signaling. Together, OsNAR2.2 plays a vital role in rice root growth and development in a nitrate-dependent manner, which might be associated with auxin signaling.
Collapse
Affiliation(s)
- Ning Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, PR China
| | - Bo Yu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, PR China
| | - Rongrong Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, PR China
| | - Shuaiting Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, PR China
| | - Guochao Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, PR China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, PR China.
| |
Collapse
|
43
|
Madende M, Hayes M. Fish By-Product Use as Biostimulants: An Overview of the Current State of the Art, Including Relevant Legislation and Regulations within the EU and USA. Molecules 2020; 25:molecules25051122. [PMID: 32138206 PMCID: PMC7179184 DOI: 10.3390/molecules25051122] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 12/26/2022] Open
Abstract
Crop production systems have adopted cost-effective, sustainable and environmentally friendly agricultural practices to improve crop yields and the quality of food derived from plants. Approaches such as genetic selection and the creation of varieties displaying favorable traits such as disease and drought resistance have been used in the past and continue to be used. However, the use of biostimulants to promote plant growth has increasingly gained attention, and the market size for biostimulants is estimated to reach USD 4.14 billion by 2025. Plant biostimulants are products obtained from different inorganic or organic substances and microorganisms that can improve plant growth and productivity and abate the negative effects of abiotic stresses. They include materials such as protein hydrolysates, amino acids, humic substances, seaweed extracts and food or industrial waste-derived compounds. Fish processing waste products have potential applications as plant biostimulants. This review gives an overview of plant biostimulants with a focus on fish protein hydrolysates and legislation governing the use of plant biostimulants in agriculture.
Collapse
|
44
|
Hassan MU, Islam MM, Wang R, Guo J, Luo H, Chen F, Li X. Glutamine application promotes nitrogen and biomass accumulation in the shoot of seedlings of the maize hybrid ZD958. PLANTA 2020; 251:66. [PMID: 32065312 DOI: 10.1007/s00425-020-03363-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/09/2020] [Indexed: 05/21/2023]
Abstract
Glutamine (Gln) is an efficient nitrogen source in promoting aboveground nitrogen and biomass accumulation in ZD958 (an elite maize hybrid with great potential for further genetic improvement) seedlings when conditioning a smaller but adequate root system. Amino acids account for a significant part of nitrogen (N) resources in the soil. However, how amino acid-N affects crop growth remains to be further investigated. Here, glutamine (Gln) application (80% NH4NO3 + 20% Gln; mixed N) enhanced shoot growth of the maize hybrid ZD958. N concentration in the shoot increased, which is associated with favorable increases in SPAD values, GS/GOGAT activities, and accumulation of glutamate, asparagine, total free amino acids and soluble proteins in the shoot under mixed N. On the other hand, root growth was reduced when exposed to Gln as indicated by the significantly lower dry weight, root/shoot ratio, and primary, seminal, crown, and total root lengths, as well as unfavorable physiological alterations. Up-regulation of expression of ZmAMT1.3, ZmNRT2.1, and ZmAAP2 in the root and that of ZmAMT1.1, ZmAMT1.3, and ZmLHT1 in the shoot preconditioned N over-accumulation in the shoot and facilitated shoot growth, presumably via enhancing N translocation to the shoot, when Gln was supplied. Together, Gln is an efficient N source in promoting aboveground N and biomass accumulation in ZD958 seedlings when conditioning a smaller but adequate root system. Notably, ZD958's parental lines Z58 and Chang7-2 displayed a wide range of variations in Gln responses, which may be partially attributed to single nucleotide polymorphisms (SNPs) in cis-elements and coding regions revealed in this study and much larger quantities of unidentified genetic variations between Z58 and Chang7-2. Extensive genetic divergence of these two elite inbred lines implied large potentials for further genetic improvement of ZD958 in relation to organic N use efficiency.
Collapse
Affiliation(s)
- Mahmood Ul Hassan
- The Key Laboratory of Plant-Soil Interactions, MOE, Beijing, 100193, China
- Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China
| | - Md Monirul Islam
- The Key Laboratory of Plant-Soil Interactions, MOE, Beijing, 100193, China
- Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China
| | - Ruifeng Wang
- The Key Laboratory of Plant-Soil Interactions, MOE, Beijing, 100193, China
- Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China
| | - Jingyu Guo
- The Key Laboratory of Plant-Soil Interactions, MOE, Beijing, 100193, China
- Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China
| | - Huilan Luo
- The Key Laboratory of Plant-Soil Interactions, MOE, Beijing, 100193, China
- Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China
| | - Fanjun Chen
- The Key Laboratory of Plant-Soil Interactions, MOE, Beijing, 100193, China
- Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China
| | - Xuexian Li
- The Key Laboratory of Plant-Soil Interactions, MOE, Beijing, 100193, China.
- Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
45
|
Naulin PA, Armijo GI, Vega AS, Tamayo KP, Gras DE, de la Cruz J, Gutiérrez RA. Nitrate Induction of Primary Root Growth Requires Cytokinin Signaling in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2020; 61:342-352. [PMID: 31730198 DOI: 10.1093/pcp/pcz199] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 10/16/2019] [Indexed: 05/27/2023]
Abstract
Nitrate can act as a potent signal to control growth and development in plants. In this study, we show that nitrate is able to stimulate primary root growth via increased meristem activity and cytokinin signaling. Cytokinin perception and biosynthesis mutants displayed shorter roots as compared with wild-type plants when grown with nitrate as the only nitrogen source. Histological analysis of the root tip revealed decreased cell division and elongation in the cytokinin receptor double mutant ahk2/ahk4 as compared with wild-type plants under a sufficient nitrate regime. Interestingly, a nitrate-dependent root growth arrest was observed between days 5 and 6 after sowing. Wild-type plants were able to recover from this growth arrest, while cytokinin signaling or biosynthesis mutants were not. Transcriptome analysis revealed significant changes in gene expression after, but not before, this transition in contrasting genotypes and nitrate regimes. We identified genes involved in both cell division and elongation as potentially important for primary root growth in response to nitrate. Our results provide evidence linking nitrate and cytokinin signaling for the control of primary root growth in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Pamela A Naulin
- Departamento de Genética Molecular y Microbiología, FONDAP Center for Genome Regulation, Millennium Institute for Integrative Biology (iBio), Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Grace I Armijo
- Departamento de Genética Molecular y Microbiología, FONDAP Center for Genome Regulation, Millennium Institute for Integrative Biology (iBio), Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Andrea S Vega
- Departamento de Genética Molecular y Microbiología, FONDAP Center for Genome Regulation, Millennium Institute for Integrative Biology (iBio), Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Karem P Tamayo
- Departamento de Genética Molecular y Microbiología, FONDAP Center for Genome Regulation, Millennium Institute for Integrative Biology (iBio), Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Diana E Gras
- Departamento de Genética Molecular y Microbiología, FONDAP Center for Genome Regulation, Millennium Institute for Integrative Biology (iBio), Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Javiera de la Cruz
- Departamento de Genética Molecular y Microbiología, FONDAP Center for Genome Regulation, Millennium Institute for Integrative Biology (iBio), Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Rodrigo A Gutiérrez
- Departamento de Genética Molecular y Microbiología, FONDAP Center for Genome Regulation, Millennium Institute for Integrative Biology (iBio), Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| |
Collapse
|
46
|
Qiu XM, Sun YY, Ye XY, Li ZG. Signaling Role of Glutamate in Plants. FRONTIERS IN PLANT SCIENCE 2020; 10:1743. [PMID: 32063909 PMCID: PMC6999156 DOI: 10.3389/fpls.2019.01743] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 12/11/2019] [Indexed: 05/11/2023]
Abstract
It is well known that glutamate (Glu), a neurotransmitter in human body, is a protein amino acid. It plays a very important role in plant growth and development. Nowadays, Glu has been found to emerge as signaling role. Under normal conditions, Glu takes part in seed germination, root architecture, pollen germination, and pollen tube growth. Under stress conditions, Glu participates in wound response, pathogen resistance, response and adaptation to abiotic stress (such as salt, cold, heat, and drought), and local stimulation (abiotic or biotic stress)-triggered long distance signaling transduction. In this review, in the light of the current opinion on Glu signaling in plants, the following knowledge was updated and discussed. 1) Glu metabolism; 2) signaling role of Glu in plant growth, development, and response and adaptation to environmental stress; as well as 3) the underlying research directions in the future. The purpose of this review was to look forward to inspiring the rapid development of Glu signaling research in plant biology, particularly in the field of stress biology of plants.
Collapse
Affiliation(s)
- Xue-Mei Qiu
- School of Life Sciences, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Province, Yunnan Normal University, Kunming, China
| | - Yu-Ying Sun
- School of Life Sciences, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Province, Yunnan Normal University, Kunming, China
| | - Xin-Yu Ye
- School of Life Sciences, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Province, Yunnan Normal University, Kunming, China
| | - Zhong-Guang Li
- School of Life Sciences, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Province, Yunnan Normal University, Kunming, China
| |
Collapse
|
47
|
Sisharmini A, Apriana A, Khumaida N, Trijatmiko KR, Purwoko BS. Expression of a cucumber alanine aminotransferase2 gene improves nitrogen use efficiency in transgenic rice. J Genet Eng Biotechnol 2019; 17:9. [PMID: 31712914 PMCID: PMC6848643 DOI: 10.1186/s43141-019-0010-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022]
Abstract
Background Rice can absorb less than 40% of applied nitrogen fertilizer, whereas the unabsorbed nitrogen fertilizer may cause environmental problems, such as algal blooms in freshwater and increased production of nitrous oxide, a greenhouse gas which is 300 times more potent than carbon dioxide. Development of nitrogen use efficient (NUE) rice is essential for more environmentally friendly rice production. Recently, NUE rice has been developed by root-specific expression of alanine aminotransferase (AlaAT) gene from barley, a monocot plant. Therefore, we tested the efficacy of AlaAT gene from cucumber in transgenic rice, aiming to provide evidence for the conservation of AlaAT gene function in monocot and dicot. Results AlaAT gene from cucumber (CsAlaAT2) has been successfully cloned and constructed on pCAMBIA1300 plant expression vectors under the control of tissue-specific promoter OsAnt1. Agrobacterium tumefaciens-mediated transformation of Indonesian rice cv. Fatmawati using this construct produced 14 transgenic events. Pre-screening of T1 seedlings grown in the agar medium containing low nitrogen concentration identified selected events that were superior in the root dry weight. Southern hybridization confirmed the integration of T-DNA in the selected event genomes, each of them carried 1, 2, or 3 T-DNA insertions. Efficacy assay of three lead events in the greenhouse showed that in general transgenic events had increased biomass, tiller number, nitrogen content, and grain yield compared to WT. One event, i.e., FAM13, showed an increase in yield as much as 27.9% and higher plant biomass as much as 27.4% compared to WT under the low nitrogen condition. The lead events also showed higher absorption NUE, agronomical NUE, and grain NUE as compared to WT under the low nitrogen condition. Conclusions The results of this study showed that root-specific expression of cucumber alanine aminotransferase2 gene improved nitrogen use efficiency in transgenic rice, which indicate the conservation of function of this gene in monocot and dicot.
Collapse
Affiliation(s)
- Atmitri Sisharmini
- Plant Breeding and Biotechnology Study Program, Departement of Agronomy and Horticulture, IPB University (Bogor Agricultural University), Jl. Meranti, Kampus IPB Darmaga, Bogor, 16680, Indonesia.,Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development, Jl. Tentara Pelajar 3A, Bogor, 16111, Indonesia
| | - Aniversari Apriana
- Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development, Jl. Tentara Pelajar 3A, Bogor, 16111, Indonesia
| | - Nurul Khumaida
- Plant Breeding and Biotechnology Study Program, Departement of Agronomy and Horticulture, IPB University (Bogor Agricultural University), Jl. Meranti, Kampus IPB Darmaga, Bogor, 16680, Indonesia
| | - Kurniawan Rudi Trijatmiko
- Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development, Jl. Tentara Pelajar 3A, Bogor, 16111, Indonesia
| | - Bambang Sapta Purwoko
- Plant Breeding and Biotechnology Study Program, Departement of Agronomy and Horticulture, IPB University (Bogor Agricultural University), Jl. Meranti, Kampus IPB Darmaga, Bogor, 16680, Indonesia.
| |
Collapse
|
48
|
Li C, Yao W, Wang J, Wang J, Ai Y, Ma H, Zhang Y. A novel effect of glycine on the growth and starch biosynthesis of storage root in sweetpotato (Ipomoea batatas Lam.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:395-403. [PMID: 31629224 DOI: 10.1016/j.plaphy.2019.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Sweetpotato (Ipomoea batatas Lam.) plays an indispensable role in feed, starch-based industries and ethanol biofuel production. Few studies have investigated on how external amino acids affect the growth and production of sweetpotato. In the study, we evaluated morphological, physiological and molecular effects of external glycine (Gly) on the root growth and starch metabolism of sweetpotato, Xushu16. At morphological level, the Xushu16 with Gly stimuli had larger plant biomass than that under control condition. At physiological level, the photosynthesis strength of the Xushu16 with Gly treatments showed significant differences relative to those under control condition. The relative content of plant hormone and starch in storage roots was higher under Gly conditions than that under control condition. At molecular level, a total of 4836 differentially expression genes were identified in the storage roots with different Gly treatments by RNA-Seq. Among them, as many as 1830 genes were involved in carbohydrate metabolism, which held maximum proportion among all the DEGs. Further, a few genes involved in starch biosynthesis were proved to be Gly-induced significantly by RT-qPCR. All the results indicated extrinsic Gly promotes the growth of storage roots by strengthening photosynthesis and increasing plant hormone, and enhances starch biosynthesis of storage roots by accelerating carbohydrate metabolism and regulating the expression of starch-related genes.
Collapse
Affiliation(s)
- Chuanzhe Li
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences/Scientific Observation and Experimental Station of Arable Land Conservation of Jiangsu Province, Ministry of Agriculture, Nanjing, 210014, China
| | - Wenjing Yao
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute/College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Jianping Wang
- Department of Agronomy, University of Florida, 2033 Mowry Road, Gainesville, FL, 32610, USA
| | - Jidong Wang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences/Scientific Observation and Experimental Station of Arable Land Conservation of Jiangsu Province, Ministry of Agriculture, Nanjing, 210014, China
| | - Yuchun Ai
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences/Scientific Observation and Experimental Station of Arable Land Conservation of Jiangsu Province, Ministry of Agriculture, Nanjing, 210014, China
| | - Hongbo Ma
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences/Scientific Observation and Experimental Station of Arable Land Conservation of Jiangsu Province, Ministry of Agriculture, Nanjing, 210014, China.
| | - Yongchun Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences/Scientific Observation and Experimental Station of Arable Land Conservation of Jiangsu Province, Ministry of Agriculture, Nanjing, 210014, China.
| |
Collapse
|
49
|
Mur LAJ, Kumari A, Brotman Y, Zeier J, Mandon J, Cristescu SM, Harren F, Kaiser WM, Fernie AR, Gupta KJ. Nitrite and nitric oxide are important in the adjustment of primary metabolism during the hypersensitive response in tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4571-4582. [PMID: 31173640 DOI: 10.1093/jxb/erz161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
Nitrate and ammonia deferentially modulate primary metabolism during the hypersensitive response in tobacco. In this study, tobacco RNAi lines with low nitrite reductase (NiRr) levels were used to investigate the roles of nitrite and nitric oxide (NO) in this process. The lines accumulate NO2-, with increased NO generation, but allow sufficient reduction to NH4+ to maintain plant viability. For wild-type (WT) and NiRr plants grown with NO3-, inoculation with the non-host biotrophic pathogen Pseudomonas syringae pv. phaseolicola induced an accumulation of nitrite and NO, together with a hypersensitive response (HR) that resulted in decreased bacterial growth, increased electrolyte leakage, and enhanced pathogen resistance gene expression. These responses were greater with increases in NO or NO2- levels in NiRr plants than in the WT under NO3- nutrition. In contrast, WT and NiRr plants grown with NH4+ exhibited compromised resistance. A metabolomic analysis detected 141 metabolites whose abundance was differentially changed as a result of exposure to the pathogen and in response to accumulation of NO or NO2-. Of these, 13 were involved in primary metabolism and most were linked to amino acid and energy metabolism. HR-associated changes in metabolism that are often linked with primary nitrate assimilation may therefore be influenced by nitrite and NO production.
Collapse
Affiliation(s)
- Luis A J Mur
- Institute of Environmental and Rural Science, Aberystwyth University, Edward Llwyd Building, Aberystwyth, UK
| | - Aprajita Kumari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Yariv Brotman
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg, Golm-Potsdam, Germany
| | - Jurgen Zeier
- Institute of Plant Molecular Ecophysiology, Heinrich-Heine-Universität Universitätsstrasse, Düsseldorf, Germany
| | - Julien Mandon
- Radboud University, Life Science Trace Gas Facility, Molecular and Laser Physics, Institute for Molecules and Materials, GL Nijmegen, The Netherlands
| | - Simona M Cristescu
- Radboud University, Life Science Trace Gas Facility, Molecular and Laser Physics, Institute for Molecules and Materials, GL Nijmegen, The Netherlands
| | - Frans Harren
- Radboud University, Life Science Trace Gas Facility, Molecular and Laser Physics, Institute for Molecules and Materials, GL Nijmegen, The Netherlands
| | - Werner M Kaiser
- Julius-von-Sachs-Institut für Biowissenschaften; Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik; Julius-von-Sachs-Platz, Wuerzburg, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg, Golm-Potsdam, Germany
| | | |
Collapse
|
50
|
Reyes-Hernández BJ, Shishkova S, Amir R, Quintana-Armas AX, Napsucialy-Mendivil S, Cervantes-Gamez RG, Torres-Martínez HH, Montiel J, Wood CD, Dubrovsky JG. Root stem cell niche maintenance and apical meristem activity critically depend on THREONINE SYNTHASE1. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3835-3849. [PMID: 30972413 DOI: 10.1093/jxb/erz165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 03/22/2019] [Indexed: 05/23/2023]
Abstract
Indeterminate root growth depends on the stem cell niche (SCN) and root apical meristem (RAM) maintenance whose regulation permits plasticity in root system formation. Using a forward genetics approach, we isolated the moots koom1 ('short root' in Mayan) mutant that shows complete primary RAM exhaustion and abolished SCN activity. We identified that this phenotype is caused by a point mutation in the METHIONINE OVERACCUMULATOR2 (MTO2) gene that encodes THREONINE SYNTHASE1 and renamed the mutant as mto2-2. The amino acid profile showed drastic changes, most notorious of which was accumulation of methionine. In non-allelic mto1-1 (Arabidopsis thaliana cystathionine gamma-synthetase1) and mto3-1 (S-adenosylmethionine synthetase) mutants, both with an increased methionine level, the RAM size was similar to that of the wild type, suggesting that methionine overaccumulation itself did not cause RAM exhaustion in mto2 mutants. When mto2-2 RAM is not yet completely exhausted, exogenous threonine induced de novo SCN establishment and root growth recovery. The threonine-dependent RAM re-establishment in mto2-2 suggests that threonine is a limiting factor for RAM maintenance. In the root, MTO2 was predominantly expressed in the RAM. The essential role of threonine in mouse embryonic stem cells and in RAM maintenance suggests that common regulatory mechanisms may operate in plant and animal SCN maintenance.
Collapse
Affiliation(s)
- Blanca Jazmín Reyes-Hernández
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Svetlana Shishkova
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Rachel Amir
- Laboratory of Plant Science, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel
- Tel-Hai College, Upper Galilee, Israel
| | - Aranza Xhaly Quintana-Armas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Selene Napsucialy-Mendivil
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Rocio Guadalupe Cervantes-Gamez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Héctor Hugo Torres-Martínez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Jesús Montiel
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Christopher D Wood
- Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| |
Collapse
|