1
|
Chen KS, Petrik CM, Asch RG, Thompson AR, Auth TD. Continuing Long-Term Shifts in Larval Fish Phenology in the Southern California Current Ecosystem Are Matched by Rapid Advances in the North. GLOBAL CHANGE BIOLOGY 2025; 31:e70141. [PMID: 40145632 PMCID: PMC11948448 DOI: 10.1111/gcb.70141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/13/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025]
Abstract
Changing environmental conditions are leading to shifts in the timing of seasonal events globally. In the ocean, environmental cues affecting larval fish (ichthyoplankton) abundance may not be synchronized with factors optimizing larval and juvenile survival, making the study of ichthyoplankton phenology in the context of a changing environment critical. In the southern California Current Ecosystem (CCE), a major eastern boundary current upwelling system, significant long-term shifts in larval fish phenology have been previously observed. To assess the stability of these estimates and extend them to the northern CCE, we evaluated multidecadal trends in ichthyoplankton abundance for 57 species from the California Cooperative Oceanic Fisheries Investigations (CalCOFI) and 25 species from the Newport Hydrographic Line (NH Line). We show that on average, larval fish phenology in the southern CCE has continued to advance with an estimated rate of -0.18 ± 0.05 day year-1 from 1951 to 2022, while phenology in the northern CCE has advanced at a rate of -0.48 ± 0.26 day year-1 from 1996 to 2023. Thirty-nine percent of species showed significant advancing phenology, 12% exhibited delayed phenology, and 49% showed no long-term linear change. A comparison analysis showed that species in these groups had similar rates of change between the two locations for the 1997-2017 period. Phenological shifts in the southern CCE tracked changes in the phenology of upper ocean temperature, zooplankton, and upwelling. These variables poorly explained shifts in the northern CCE, where short-term effects of the El Niño-Southern Oscillation and the 2014-2016 marine heatwave on ichthyoplankton phenology were observed for some species. This research highlights regional variability and continuing phenological shifts in one of the world's most productive marine ecosystems.
Collapse
Affiliation(s)
- Kathryn S. Chen
- Scripps Institution of OceanographyUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Colleen M. Petrik
- Scripps Institution of OceanographyUniversity of California San DiegoLa JollaCaliforniaUSA
| | | | - Andrew R. Thompson
- Southwest Fisheries Science CenterNational Oceanic and Atmospheric AdministrationLa JollaCaliforniaUSA
| | - Toby D. Auth
- Northwest Fisheries Science CenterNational Oceanic and Atmospheric AdministrationNewportOregonUSA
| |
Collapse
|
2
|
Diogoul N, Brehmer P, Kiko R, Perrot Y, Lebourges-Dhaussy A, Rodrigues E, Thiam A, Mouget A, El Ayoubi S, Sarré A. Estimating the copepod biomass in the North West African upwelling system using a bi-frequency acoustic approach. PLoS One 2024; 19:e0308083. [PMID: 39240850 PMCID: PMC11379317 DOI: 10.1371/journal.pone.0308083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/16/2024] [Indexed: 09/08/2024] Open
Abstract
The Canary Current Large Marine Ecosystem (CCLME) is one of the most productive Large Marine Ecosystems worldwide. Assessing the abundance, biomass and distribution of zooplankton in the southern part of this system, off the coast of West Africa, remains challenging due to limited sampling efforts and data availability. However, zooplankton is of primary importance for pelagic ecosystem functioning. We applied an inversion method with combined analysis of acoustic and biological data for copepod discrimination using a bi-frequency (38 and 120 kHz) approach. Large copepods with equivalent spherical radii > 0.5 mm were identified using differences in the mean volume backscattering strength (MVBS). Regarding abundance measured by net sampling, copepods strongly dominated the zooplankton community and the large fraction account for 18%. This estimate correlated significantly with MVBS values that were obtained using an inverse algorithm. We confirmed the utility of using 38 kHz for large copepod detection. An epipelagic biomass of large copepod was estimated at 120-850 mg m-2 in March during upwelling season. It is worth noting that this estimation likely underestimates the true biomass due to inherent uncertainties associated with the measurement method. We recommend future investigations in the interest of using only nighttime data to improve the sampling pattern, particularly on the upper part of the water column (< 10 m) as well as on the shallow part of the continental shelf (< 20 m depth) not covered by fisheries vessel. Nevertheless, such high copepod biomass supports high fish production underlining the key role of copepod in the CCLME. Our results open the way to the analysis of the fluctuation and trend of copepod biomass, along with three decades of fisheries acoustics data available in the region. This helps to determine ecosystem changes, particularly under climate change, and to investigate the role of copepods in the southern CCLME carbon pump at the fine scale.
Collapse
Affiliation(s)
- Ndague Diogoul
- IRD, CNRS, Ifremer, Lemar, SRFC, CSRP, University Brest, Dakar, Senegal
- IRD, CNRS, Ifremer, Lemar, DR Ouest, University Brest, Plouzané, France
- Institut Sénégalais de Recherches Agricoles, ISRA, Centre de Recherches Océanographiques de Dakar Thiaroye, CRODT, Dakar, Senegal
| | - Patrice Brehmer
- IRD, CNRS, Ifremer, Lemar, SRFC, CSRP, University Brest, Dakar, Senegal
- IRD, CNRS, Ifremer, Lemar, DR Ouest, University Brest, Plouzané, France
| | - Rainer Kiko
- Laboratoire d'Océanographie de Villefranche (LOV), Institut de la Mer de Villefranche (MEV), Villefranche-sur-Mer, France
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Yannick Perrot
- IRD, CNRS, Ifremer, Lemar, DR Ouest, University Brest, Plouzané, France
| | | | | | - Abou Thiam
- Institute of Environmental Science (ISE), University Cheikh Anta Diop UCAD, Dakar, Senegal
| | - Anne Mouget
- IRD, CNRS, Ifremer, Lemar, DR Ouest, University Brest, Plouzané, France
| | | | - Abdoulaye Sarré
- Institut Sénégalais de Recherches Agricoles, ISRA, Centre de Recherches Océanographiques de Dakar Thiaroye, CRODT, Dakar, Senegal
| |
Collapse
|
3
|
Kim S, Lee D, Kim M, Jang HK, Park S, Kim Y, Kim J, Park JW, Joo H, Lee SH. Seasonal patterns and bloom dynamics of phytoplankton based on satellite-derived chlorophyll-a in the eastern yellow sea. MARINE ENVIRONMENTAL RESEARCH 2024; 199:106605. [PMID: 38878346 DOI: 10.1016/j.marenvres.2024.106605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/17/2024] [Accepted: 06/11/2024] [Indexed: 07/01/2024]
Abstract
Satellite-derived chlorophyll-a concentration (Chl-a) is essential for assessing environmental conditions, yet its application in the optically complex waters of the eastern Yellow Sea (EYS) is challenged. This study refines the Chl-a algorithm for the EYS employing a switching approach based on normalized water-leaving radiance at 555 nm wavelength according to turbidity conditions to investigate phytoplankton bloom patterns in the EYS. The refined Chl-a algorithm (EYS algorithm) outperforms prior algorithms, exhibiting a strong alignment with in situ Chl-a. Employing the EYS algorithm, seasonal and bloom patterns of Chl-a are detailed for the offshore and nearshore EYS areas. Distinct seasonal Chl-a patterns and factors influencing bloom initiation differed between the areas, and the peak Chl-a during the bloom period from 2018 to 2020 was significantly lower than the average year in both areas. Specifically, bimodal and unimodal peak patterns in Chl-a were observed in the offshore and nearshore areas, respectively. By investigating the relationships between environmental factors and bloom parameters, we identified that major controlling factors governing bloom initiation were mixed layer depth (MLD) and suspended particulate matter (SPM) in the offshore and nearshore areas, respectively. Additionally, this study proposed that the recent decrease in the peak Chl-a might be caused by rapid environmental changes such as the warming trend of sea surface temperature (SST) and the limitation of nutrients. For example, external forcing, phytoplankton growth, and nutrient dynamics can change due to increased SST and limitation of nutrients, which can lead to a decrease in Chl-a. This study contributes to understanding phytoplankton dynamics in the EYS, highlighting the importance of region-specific considerations in comprehending Chl-a patterns and bloom dynamics.
Collapse
Affiliation(s)
- Sungjun Kim
- Department of Oceanography and Marine Research Institute, Pusan National University, Busan, 46241, South Korea.
| | - Dabin Lee
- Coastal Disaster and Safety Research Department, Korea Institute of Ocean Science and Technology, Yeongdo-gu, Busan, 49111, South Korea.
| | - Myeongseop Kim
- Department of Oceanography and Marine Research Institute, Pusan National University, Busan, 46241, South Korea.
| | - Hyo-Keun Jang
- Oceanic Climate and Ecology Research Division, National Institute of Fisheries Science, Busan, 46083, South Korea.
| | - Sanghoon Park
- Department of Oceanography and Marine Research Institute, Pusan National University, Busan, 46241, South Korea.
| | - Yejin Kim
- Department of Oceanography and Marine Research Institute, Pusan National University, Busan, 46241, South Korea.
| | - Jaesoon Kim
- Department of Oceanography and Marine Research Institute, Pusan National University, Busan, 46241, South Korea.
| | - Jung-Woo Park
- Faculty/Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611, Japan.
| | - Huitae Joo
- Oceanic Climate and Ecology Research Division, National Institute of Fisheries Science, Busan, 46083, South Korea.
| | - Sang-Heon Lee
- Department of Oceanography and Marine Research Institute, Pusan National University, Busan, 46241, South Korea.
| |
Collapse
|
4
|
Selden CR, LaBrie R, Ganley LC, Crocker DR, Peleg O, Perry DC, Reich HG, Sasaki M, Thibodeau PS, Isanta-Navarro J. Is our understanding of aquatic ecosystems sufficient to quantify ecologically driven climate feedbacks? GLOBAL CHANGE BIOLOGY 2024; 30:e17351. [PMID: 38837306 DOI: 10.1111/gcb.17351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
The Earth functions as an integrated system-its current habitability to complex life is an emergent property dependent on interactions among biological, chemical, and physical components. As global warming affects ecosystem structure and function, so too will the biosphere affect climate by altering atmospheric gas composition and planetary albedo. Constraining these ecosystem-climate feedbacks is essential to accurately predict future change and develop mitigation strategies; however, the interplay among ecosystem processes complicates the assessment of their impact. Here, we explore the state-of-knowledge on how ecological and biological processes (e.g., competition, trophic interactions, metabolism, and adaptation) affect the directionality and magnitude of feedbacks between ecosystems and climate, using illustrative examples from the aquatic sphere. We argue that, despite ample evidence for the likely significance of many, our present understanding of the combinatorial effects of ecosystem dynamics precludes the robust quantification of most ecologically driven climate feedbacks. Constraining these effects must be prioritized within the ecological sciences for only by studying the biosphere as both subject and arbiter of global climate can we develop a sufficiently holistic view of the Earth system to accurately predict Earth's future and unravel its past.
Collapse
Affiliation(s)
- Corday R Selden
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, USA
- Department of Earth and Planetary Sciences, Rutgers University, Piscataway, New Jersey, USA
| | - Richard LaBrie
- Interdisciplinary Environmental Research Centre, TU Bergakademie Freiberg, Freiberg, Germany
| | - Laura C Ganley
- Anderson Cabot Center for Ocean Life, New England Aquarium, Boston, Massachusetts, USA
| | - Daniel R Crocker
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Ohad Peleg
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Danielle C Perry
- Department of Natural Resources Science, University of Rhode Island, Kingston, Rhode Island, USA
| | - Hannah G Reich
- Department of Biological Sciences, Biological Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Matthew Sasaki
- Department of Marine Sciences, University of Connecticut, Mansfield, Connecticut, USA
| | - Patricia S Thibodeau
- School of Marine and Environmental Programs, University of New England, Biddeford, Maine, USA
| | | |
Collapse
|
5
|
Mondal M, Zhang T. Bloom dynamics under the effects of periodic driving forces. Math Biosci 2024; 372:109202. [PMID: 38692481 DOI: 10.1016/j.mbs.2024.109202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/26/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
Phytoplankton bloom received considerable attention for many decades. Different approaches have been used to explain the bloom phenomena. In this paper, we study a Nutrient-Phytoplankton-Zooplankton (NPZ) model consisting of a periodic driving force in the growth rate of phytoplankton due to solar radiation and analyse the dynamics of the corresponding autonomous and non-autonomous systems in different parametric regions. Then we introduce a novel aspect to extend the model by incorporating another periodic driving force into the growth term of the phytoplankton due to sea surface temperature (SST), a key point of innovation. Temperature dependency of the maximum growth rate (μmax) of the phytoplankton is modelled by the well-known Q10 formulation: [Formula: see text] , where μ0 is maximum growth at 0oC. Stability conditions for all three equilibrium points are expressed in terms of the new parameter ρ2, which appears due to the incorporation of periodic driving forces. System dynamics is explored through a detailed bifurcation analysis, both mathematically and numerically, with respect to the light and temperature dependent phytoplankton growth response. Bloom phenomenon is explained by the saddle point bloom mechanism even when the co-existing equilibrium point does not exist for some values of ρ2. Solar radiation and SST are modelled using sinusoidal functions constructed from satellite data. Our results of the proposed model describe the initiation of the phytoplankton bloom better than an existing model for the region 25-35° W, 40-45° N of the North Atlantic Ocean. An improvement of 14 days (approximately) is observed in the bloom initiation time. The rate of change method (ROC) is applied to predict the bloom initiation.
Collapse
Affiliation(s)
- Milton Mondal
- Department of Mathematics, Swinburne University of Technology, John Street, Hawthorn, 3122, VIC, Australia; Department of Mathematics, Indian Institute Of Technology, Madras, Chennai, 600036, Tamil Nadu, India.
| | - Tonghua Zhang
- Department of Mathematics, Swinburne University of Technology, John Street, Hawthorn, 3122, VIC, Australia.
| |
Collapse
|
6
|
Thibodeau PS, Puggioni G, Strock J, Borkman DG, Rynearson TA. Long-term declines in chlorophyll a and variable phenology revealed by a 60-year estuarine plankton time series. Proc Natl Acad Sci U S A 2024; 121:e2311086121. [PMID: 38739806 PMCID: PMC11127012 DOI: 10.1073/pnas.2311086121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 03/16/2024] [Indexed: 05/16/2024] Open
Abstract
Long-term ecological time series provide a unique perspective on the emergent properties of ecosystems. In aquatic systems, phytoplankton form the base of the food web and their biomass, measured as the concentration of the photosynthetic pigment chlorophyll a (chl a), is an indicator of ecosystem quality. We analyzed temporal trends in chl a from the Long-Term Plankton Time Series in Narragansett Bay, Rhode Island, USA, a temperate estuary experiencing long-term warming and changing anthropogenic nutrient inputs. Dynamic linear models were used to impute and model environmental variables (1959 to 2019) and chl a concentrations (1968 to 2019). A long-term chl a decrease was observed with an average decline in the cumulative annual chl a concentration of 49% and a marked decline of 57% in winter-spring bloom magnitude. The long-term decline in chl a concentration was directly and indirectly associated with multiple environmental factors that are impacted by climate change (e.g., warming temperatures, water column stratification, reduced nutrient concentrations) indicating the importance of accounting for regional climate change effects in ecosystem-based management. Analysis of seasonal phenology revealed that the winter-spring bloom occurred earlier, at a rate of 4.9 ± 2.8 d decade-1. Finally, the high degree of temporal variation in phytoplankton biomass observed in Narragansett Bay appears common among estuaries, coasts, and open oceans. The commonality among these marine ecosystems highlights the need to maintain a robust set of phytoplankton time series in the coming decades to improve signal-to-noise ratios and identify trends in these highly variable environments.
Collapse
Affiliation(s)
| | - Gavino Puggioni
- Department of Computer Science and Statistics, University of Rhode Island, Kingston, RI02881
| | - Jacob Strock
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI02882
| | - David G. Borkman
- Rhode Island Department of Environmental Management, Office of Water Resources–Shellfish, Providence, RI02908
| | - Tatiana A. Rynearson
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI02882
| |
Collapse
|
7
|
Hedberg P, Olsson M, Höglander H, Brüchert V, Winder M. Climate change effects on plankton recruitment from coastal sediments. JOURNAL OF PLANKTON RESEARCH 2024; 46:117-125. [PMID: 38572122 PMCID: PMC10987100 DOI: 10.1093/plankt/fbad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/18/2023] [Indexed: 04/05/2024]
Abstract
In highly seasonal systems, the emergence of planktonic resting stages from the sediment is a key driver for bloom timing and plankton community composition. The termination of the resting phase is often linked to environmental cues, but the extent to which recruitment of resting stages is affected by climate change remains largely unknown for coastal environments. Here we investigate phyto- and zooplankton recruitment from oxic sediments in the Baltic Sea in a controlled experiment under proposed temperature and light increase during the spring and summer. We find that emergence of resting stage differs between seasons and the abiotic environment. Phytoplankton recruitment from resting stages were high in spring with significantly higher emergence rates at increased temperature and light levels for dinoflagellate and cyanobacteria than for diatoms, which had highest emergence under cold and dark conditions. In comparison, hatching of copepod nauplii was not affected by increased temperature and light levels. These results show that activation of plankton resting stages are affected to different degrees by increasing temperature and light levels, indicating that climate change affects plankton dynamics through processes related to resting stage termination with potential consequences for bloom timing, community composition and trophic mismatch.
Collapse
Affiliation(s)
- Per Hedberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- University of Helsinki, Tvärminne Zoological Station, 10900 Hanko, Finland
| | - Markus Olsson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Helena Höglander
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Volker Brüchert
- Department of Geological Sciences, Stockholm University, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Monika Winder
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| |
Collapse
|
8
|
Min J, Kim KY. Seasonal change and subniche dynamics of three Alexandrium species in the Korea Strait. HARMFUL ALGAE 2023; 125:102420. [PMID: 37220986 DOI: 10.1016/j.hal.2023.102420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 05/25/2023]
Abstract
Some members of the dinoflagellate genus Alexandrium produce toxins responsible for paralytic shellfish poisoning, which causes environmental impacts and large economic losses worldwide. The Outlying Mean Index (OMI) and the Within Outlying Mean Index (WitOMI) were used to examine the ecological niches of three Alexandrium species identifying factors affecting their population dynamics in the Korea Strait (KS). Species niches were divided into seasonal subniches based on species' temporal and spatial patterns, with A. catenella being highest in the spring, A. pacificum in the summer, and A. affine in the autumn. These shifts in abundance are likely due to changes in their habitat preferences and resource availability, as well as the effects of biological constraints. A subniche-based approach, which considers the interactions between the environment and the biological characteristics of a species, was useful in understanding the factors shaping the population dynamics of the individual species. Additionally, a species distribution model was used to predict the phenology and biogeography of the three Alexandrium species in the KS and their thermal niches on a larger scale. The model predicted that, in the KS, A. catenella exists on the warm side of the thermal niche, while A. pacificum and A. affine exist on the cold side, indicating that these species may respond differently to increases in water temperature. However, the predicted phenology was incongruent with the abundance of the species as measured by droplet digital PCR. Overall, the WitOMI analysis and species distribution model can provide valuable insights into how population dynamics are influenced by the integrated interplay of biotic and abiotic processes.
Collapse
Affiliation(s)
- Juhee Min
- Department of Oceanography, College of Natural Sciences, Chonnam National University, Gwangju, 61186, Korea
| | - Kwang Young Kim
- Department of Oceanography, College of Natural Sciences, Chonnam National University, Gwangju, 61186, Korea.
| |
Collapse
|
9
|
Lafeuille B, Tamigneaux É, Berger K, Provencher V, Beaulieu L. Variation of the Nutritional Composition and Bioactive Potential in Edible Macroalga Saccharina latissima Cultivated from Atlantic Canada Subjected to Different Growth and Processing Conditions. Foods 2023; 12:1736. [PMID: 37107531 PMCID: PMC10137355 DOI: 10.3390/foods12081736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Macroalgae are a new food source in the Western world. The purpose of this study was to evaluate the impact of harvest months and food processing on cultivated Saccharina latissima (S. latissima) from Quebec. Seaweeds were harvested in May and June 2019 and processed by blanching, steaming, and drying with a frozen control condition. The chemical (lipids, proteins, ash, carbohydrates, fibers) and mineral (I, K, Na, Ca, Mg, Fe) compositions, the potential bioactive compounds (alginates, fucoidans, laminarans, carotenoids, polyphenols) and in vitro antioxidant potential were investigated. The results showed that May specimens were significantly the richest in proteins, ash, I, Fe, and carotenoids, while June macroalgae contained more carbohydrates. The antioxidant potential of water-soluble extracts (Oxygen Radical Absorbance Capacity [ORAC] analysis-625 µg/mL) showed the highest potential in June samples. Interactions between harvested months and processing were demonstrated. The drying process applied in May specimens appeared to preserve more S. latissima quality, whereas blanching and steaming resulted in a leaching of minerals. Losses of carotenoids and polyphenols were observed with heating treatments. Water-soluble extracts of dried May samples showed the highest antioxidant potential (ORAC analysis) compared to other methods. Thus, the drying process used to treat S. latissima harvested in May seems to be the best that should be selected.
Collapse
Affiliation(s)
- Bétina Lafeuille
- Département de Science des Aliments, Faculté des Sciences de l’Agriculture et de l’Alimentation (FSAA), Université Laval, Québec, QC G1V 0A6, Canada;
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada; (É.T.); (V.P.)
- Centre Nutrition, Santé et Société (NUTRISS), Université Laval, Québec, QC G1V 0A6, Canada
| | - Éric Tamigneaux
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada; (É.T.); (V.P.)
- École des Pêches et de L’aquaculture du Québec, Cégep de la Gaspésie et des Îles, Québec, QC G0C 1V0, Canada
- Merinov, Grande-Rivière, QC G0C 1V0, Canada;
| | | | - Véronique Provencher
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada; (É.T.); (V.P.)
- Centre Nutrition, Santé et Société (NUTRISS), Université Laval, Québec, QC G1V 0A6, Canada
- École de Nutrition, Faculté des Sciences de l’Agriculture et de l’Alimentation (FSAA), Université Laval, Québec, QC G1V 0A6, Canada
| | - Lucie Beaulieu
- Département de Science des Aliments, Faculté des Sciences de l’Agriculture et de l’Alimentation (FSAA), Université Laval, Québec, QC G1V 0A6, Canada;
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada; (É.T.); (V.P.)
- Québec-Océan, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
10
|
Ratnarajah L, Abu-Alhaija R, Atkinson A, Batten S, Bax NJ, Bernard KS, Canonico G, Cornils A, Everett JD, Grigoratou M, Ishak NHA, Johns D, Lombard F, Muxagata E, Ostle C, Pitois S, Richardson AJ, Schmidt K, Stemmann L, Swadling KM, Yang G, Yebra L. Monitoring and modelling marine zooplankton in a changing climate. Nat Commun 2023; 14:564. [PMID: 36732509 PMCID: PMC9895051 DOI: 10.1038/s41467-023-36241-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Zooplankton are major consumers of phytoplankton primary production in marine ecosystems. As such, they represent a critical link for energy and matter transfer between phytoplankton and bacterioplankton to higher trophic levels and play an important role in global biogeochemical cycles. In this Review, we discuss key responses of zooplankton to ocean warming, including shifts in phenology, range, and body size, and assess the implications to the biological carbon pump and interactions with higher trophic levels. Our synthesis highlights key knowledge gaps and geographic gaps in monitoring coverage that need to be urgently addressed. We also discuss an integrated sampling approach that combines traditional and novel techniques to improve zooplankton observation for the benefit of monitoring zooplankton populations and modelling future scenarios under global changes.
Collapse
Affiliation(s)
- Lavenia Ratnarajah
- Integrated Marine Observing System, Hobart, Tasmania, Australia. .,Global Ocean Observing System, International Oceanographic Commission, UNESCO, Paris, France.
| | - Rana Abu-Alhaija
- Cyprus Subsea Consulting and Services C.S.C.S. ltd, Lefkosia, Cyprus
| | - Angus Atkinson
- Plymouth Marine Laboratory, Prospect Place, The Hoe, PL1 3DH, Plymouth, UK
| | - Sonia Batten
- North Pacific Marine Science Organization (PICES), 9860 West Saanich Road, V8L 4B2, Sidney, BC, Canada
| | | | - Kim S Bernard
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 104 CEOAS Admin Bldg., Corvallis, OR, 97330, USA
| | - Gabrielle Canonico
- US Integrated Ocean Observing System (US IOOS), NOAA, Silver Spring, MD, USA
| | - Astrid Cornils
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Section Polar Biological Oceanography, Am Handelshafen 12, Bremerhaven, Germany
| | - Jason D Everett
- School of Mathematics and Physics, University of Queensland, St. Lucia, QLD, Australia.,CSIRO Oceans and Atmosphere, Queensland Biosciences Precinct, St Lucia, 4067, Australia.,Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Maria Grigoratou
- Gulf of Maine Research Institute, 350 Commercial St, Portland, ME, 04101, USA.,Mercator Ocean International, 2 Av. de l'Aérodrome de Montaudran, 31400, Toulouse, France
| | - Nurul Huda Ahmad Ishak
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.,Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - David Johns
- The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Fabien Lombard
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire d'Océanographie de Villefranche (LOV), Villefranche-sur-Mer, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016, Paris, France.,Institut Universitaire de France, 75231, Paris, France
| | - Erik Muxagata
- Universidade Federal de Rio Grande - FURG - Laboratório de Zooplâncton - Instituto de Oceanografia, Av. Itália, Km 8 - Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Clare Ostle
- The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Sophie Pitois
- Centre for Environment, Fisheries and Aquaculture Centre (Cefas), Pakefield Road, Lowestoft, NR330HT, UK
| | - Anthony J Richardson
- School of Mathematics and Physics, University of Queensland, St. Lucia, QLD, Australia.,CSIRO Oceans and Atmosphere, Queensland Biosciences Precinct, St Lucia, 4067, Australia
| | - Katrin Schmidt
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Lars Stemmann
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire d'Océanographie de Villefranche (LOV), Villefranche-sur-Mer, France
| | - Kerrie M Swadling
- Institute for Marine and Antarctic Studies & Australian Antarctic Program Partnership, University of Tasmania, Hobart, Tasmania, Australia
| | - Guang Yang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China
| | - Lidia Yebra
- Centro Oceanográfico de Málaga (IEO, CSIC), Puerto Pesquero s/n, 29640, Fuengirola, Spain
| |
Collapse
|
11
|
Pan X, Arsenault S, Rokosz K, Chen Y. Spatial variability of striped bass spawning responses to climate change. Glob Ecol Conserv 2023. [DOI: 10.1016/j.gecco.2023.e02405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
|
12
|
Community Structure and Abiotic Characteristics of Pelagic Microalgal in Adjacent Areas of the Barents Sea and Kara Sea. DIVERSITY 2023. [DOI: 10.3390/d15020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This study aimed to confirm the hypothesis of a floristic identity between the southeastern Barents Sea and the southwestern Kara Sea. We conducted integrated studies of pelagic microalgae communities including microscope cell counting and taxonomical identification as well as photosynthetic pigments determination and defining of hydrological and hydrochemical characteristics during a cruise in late August and the first half of September 2020. As far as we are concerned, no such observations had been carried out in this region at this time of the year before. During our observations, 35 species were identified, 14 (40%) of which were present in both water bodies. The communities of both regions were in a state corresponding to the autumn stage of the annual succession cycle. In the southeastern Barents Sea, the mean abundance of organisms in the water column varied from 10.650 to 41.840 cells per liter with a biomass of 71.04 to 300.55 µg/L. In the southwestern Kara Sea, these values were 3.510–28.420 cell/L and 16.31–66.96 µg/L, respectively. In general, the results of a comparative analysis suggest that the pelagic algal communities in the regions under comparison, despite the difference in hydrological parameters, demonstrate similar qualitative and quantitative characteristics and thus may belong to the same phytogeographic region.
Collapse
|
13
|
Mulyasari G, Trisusilo A, Windirah N, Djarot IN, Putra AS. Assessing Perceptions and Adaptation Responses to Climate Change among Small-Scale Fishery on the Northern Coastal of Bengkulu, Indonesia. ScientificWorldJournal 2023; 2023:8770267. [PMID: 36704448 PMCID: PMC9873426 DOI: 10.1155/2023/8770267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 01/19/2023] Open
Abstract
Small-scale fisheries are facing significant challenges from climate change. Fishers feel the impact of climate change, which forces them to adapt. We, therefore, analyzed local climatic changes, fishers' perceptions regarding climate change and its impacts, adaptation responses, and determinants. Three decades of meteorological data were analyzed (1985-2020). A total of 300 fishermen were selected using quota sampling and interviewed using a structured questionnaire. Data were analyzed using the descriptive and binary logit regression models to explain the determinants of adaptation responses. The findings indicate that fishers' perceptions of climatic changes align with historical climatic data. Typologies of adaptation responses used in the study showed that time fishing adjustment was the most widely used adaptation option by fishermen. For this reason, fishermen are very active in looking for information about climate change to help them find the right time to go to sea and reduce the risk of climate change. Analysis using the binary logit regression model showed that fishing income, boat power, and climate change perceptions were the significant (p < 0.1) factors significantly influencing adaptation responses. Therefore, to strengthen the adaptation responses in small-scale fisheries, fishers' perceptions should be considered.
Collapse
Affiliation(s)
- Gita Mulyasari
- Department of Agricultural Socio-Economics, University of Bengkulu, Jl. WR. Supratman, Kandang Limun, Bengkulu 38371, Indonesia
- Postdoctoral at Research Center for Sustainable Production System and Life Cycle Assessment, National Research and Innovation Agency, PUSPIPTEK Area, Serpong 15314, Indonesia
| | - Agung Trisusilo
- Department of Agricultural Socio-Economics, University of Bengkulu, Jl. WR. Supratman, Kandang Limun, Bengkulu 38371, Indonesia
| | - Nola Windirah
- Department of Agricultural Socio-Economics, University of Bengkulu, Jl. WR. Supratman, Kandang Limun, Bengkulu 38371, Indonesia
| | - Ira Nurhayati Djarot
- Research Center for Sustainable Production System and Life Cycle Assessment, National Research and Innovation Agency, PUSPIPTEK Area, Serpong 15314, Indonesia
| | - Agusta Samodra Putra
- Research Center for Sustainable Production System and Life Cycle Assessment, National Research and Innovation Agency, PUSPIPTEK Area, Serpong 15314, Indonesia
| |
Collapse
|
14
|
Johnston NM, Murphy EJ, Atkinson A, Constable AJ, Cotté C, Cox M, Daly KL, Driscoll R, Flores H, Halfter S, Henschke N, Hill SL, Höfer J, Hunt BPV, Kawaguchi S, Lindsay D, Liszka C, Loeb V, Manno C, Meyer B, Pakhomov EA, Pinkerton MH, Reiss CS, Richerson K, Jr. WOS, Steinberg DK, Swadling KM, Tarling GA, Thorpe SE, Veytia D, Ward P, Weldrick CK, Yang G. Status, Change, and Futures of Zooplankton in the Southern Ocean. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.624692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In the Southern Ocean, several zooplankton taxonomic groups, euphausiids, copepods, salps and pteropods, are notable because of their biomass and abundance and their roles in maintaining food webs and ecosystem structure and function, including the provision of globally important ecosystem services. These groups are consumers of microbes, primary and secondary producers, and are prey for fishes, cephalopods, seabirds, and marine mammals. In providing the link between microbes, primary production, and higher trophic levels these taxa influence energy flows, biological production and biomass, biogeochemical cycles, carbon flux and food web interactions thereby modulating the structure and functioning of ecosystems. Additionally, Antarctic krill (Euphausia superba) and various fish species are harvested by international fisheries. Global and local drivers of change are expected to affect the dynamics of key zooplankton species, which may have potentially profound and wide-ranging implications for Southern Ocean ecosystems and the services they provide. Here we assess the current understanding of the dominant metazoan zooplankton within the Southern Ocean, including Antarctic krill and other key euphausiid, copepod, salp and pteropod species. We provide a systematic overview of observed and potential future responses of these taxa to a changing Southern Ocean and the functional relationships by which drivers may impact them. To support future ecosystem assessments and conservation and management strategies, we also identify priorities for Southern Ocean zooplankton research.
Collapse
|
15
|
Athira TR, Nefla A, Shifa CT, Shamna H, Aarif KM, AlMaarofi SS, Rashiba AP, Reshi OR, Jobiraj T, Thejass P, Muzaffar SB. The impact of long-term environmental change on zooplankton along the southwestern coast of India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:316. [PMID: 35355144 DOI: 10.1007/s10661-022-09921-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Environmental pollution and climate change are causing major changes in the marine environment. Coastal zones around the world are experiencing changes such as nutrient influx, resulting in altered plankton communities. The aim of this study was to determine the response of zooplankton to the changes in the environmental variables in the coastal zone of the Arabian Sea, Southwest Coast of India, over 10 years. Zooplankton abundance, chlorophyll-a concentrations, and water quality variables (rainfall, nitrates, phosphates, pH, water temperature, and salinity) were quantified from January 2010 to December 2019. Water temperature, pH, salinity, and phosphates increased steadily across the sites during the study period whereas chlorophyll-a and nitrates decreased. Rainfall abundance was not exhibiting any patterns or trends. The effects of the sampled environmental variables on zooplankton abundance were tested using generalized linear mixed models. Salinity and phosphates negatively affected the zooplankton abundance whereas water temperature, pH, and chlorophyll-a concentration had a positive effect. Coastal zones in southwest India are experiencing declining phytoplankton abundance due to a number of environmental factors. Reduced phytoplankton combined with altered environmental variables are having declining effects on zooplankton. This decline in zooplankton population has far reaching effects on biota in higher trophic levels including economically important organisms such as fishes.
Collapse
Affiliation(s)
- T R Athira
- Department of Zoology, Govt College, Madappally, Kozhikode, 673102, Kerala, India
| | - Aymen Nefla
- Department of Biology, Faculty of Sciences of Tunis, University of Tunis El Manar, El Manar II, 2092, Tunis, Tunisia.
| | - C T Shifa
- Department of Zoology, Govt College, Madappally, Kozhikode, 673102, Kerala, India
| | - H Shamna
- Acarology Laboratory, Department of Zoology, University of Calicut, Thenhipalam P.O, Kozhikode, Kerala, India
| | - K M Aarif
- Terrestrial Ecology, Centre for Environment and Marine Studies, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Sama S AlMaarofi
- Department of Environmental Sustainability, Faculty of Science, Lakehead University, 500 University Avenue, Orillia, ON, L3V 0B9, Canada
| | - A P Rashiba
- Department of Zoology, Wildlife Biology Division, Farook College PO, Farook College, Kozhikode, Kerala , India
| | - Omer R Reshi
- Climate Modelling and Data Analysis, Centre for Environment and Marine Studies, King Fahad University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - T Jobiraj
- Department of Zoology, Govt College, Kodanchery, Kozhikode, 673580, Kerala, India
| | - P Thejass
- Department of Zoology, Govt College, Madappally, Kozhikode, 673102, Kerala, India
| | - Sabir Bin Muzaffar
- Department of Biology, United Arab Emirates University, PO Box, 15551, Al Ain, United Arab Emirates.
| |
Collapse
|
16
|
Environmental Impact on Harmful Species Pseudo-nitzschia spp. and Phaeocystis globosa Phenology and Niche. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10020174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Global environmental change modifies the phytoplankton community, which leads to variations in their phenology and potentially causes a temporal mismatch between primary producers and consumers. In parallel, phytoplankton community change can favor the appearance of harmful species, which makes the understanding of the mechanisms involved in structuring phytoplankton ecological niches paramount for preventing future risk. In this study, we aimed to assess for the first time the relationship between environmental conditions, phenology and niche ecology of harmful species Phaeocystis globosa and the complex Pseudo-nitzschia along the French coast of the eastern English Channel. A new method of bloom detection within a time-series was developed, which allowed the characterization of 363 blooms by 22 phenological variables over 11 stations from 1998 to 2019. The pairwise quantification of asymmetric dependencies between the phenological variables revealed the implication of different mechanisms, common and distinct between the taxa studied. A PERMANOVA helped to reveal the importance of seasonal change in the environmental and community variables. The Outlying Mean and the Within Outlying Mean indexes allowed us to position the harmful taxa niche among the rest of community and quantify how their respective phenology impacted the dynamic of their subniches. We also discussed the possible hypothesis involved and the perspective of predictive models.
Collapse
|
17
|
Tommasi D, Hunt BPV, Pakhomov EA. Differential response of distinct copepod life history types to spring environmental forcing in Rivers Inlet, British Columbia, Canada. PeerJ 2021; 9:e12238. [PMID: 34721967 PMCID: PMC8530099 DOI: 10.7717/peerj.12238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/10/2021] [Indexed: 11/22/2022] Open
Abstract
The temporal dynamics of five copepod species common to coastal waters of the Pacific Northwest were examined in relation to variability in spring temperature and phytoplankton dynamics in 2008, 2009, and 2010 in Rivers Inlet, British Columbia, Canada. The five species were differentiated by life history strategies. Acartia longiremis, Metridia pacifica, and Paraeuchaeta elongata remained active over most of the year. By contrast, the reproductive effort of Eucalanus bungii and Calanus marshallae was concentrated over the spring period and they spent most of the year in diapause as C5 copepodites. A delay in the timing of the spring bloom was associated with a shift in the phenology of all species. However, following the delay in spring bloom timing, recruitment to the G1 cohort was reduced only for E. bungii and C. marshallae. Recruitment successes of E. bungii and C. marshallae was also drastically reduced in 2010, an El Niño year, when spring temperatures were highest. Reasons for the observed differential response to spring environmental forcing, and its effect on upper trophic levels, are discussed.
Collapse
Affiliation(s)
- Desiree Tommasi
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Brian P V Hunt
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada.,Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada.,Hakai Institute, Heriot Bay, BC, Canada
| | - Evgeny A Pakhomov
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada.,Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada.,Hakai Institute, Heriot Bay, BC, Canada
| |
Collapse
|
18
|
The Seasonal Microbial Ecology of Plankton and Plankton-Associated Vibrio parahaemolyticus in the Northeast United States. Appl Environ Microbiol 2021; 87:e0297320. [PMID: 33990304 PMCID: PMC8276809 DOI: 10.1128/aem.02973-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial ecology studies have proven to be important resources for improving infectious disease response and outbreak prevention. Vibrio parahaemolyticus is an ongoing source of shellfish-borne food illness in the Northeast United States, and there is keen interest in understanding the environmental conditions that coincide with V. parahaemolyticus disease risk, in order to aid harvest management and prevent further illness. Zooplankton and chitinous phytoplankton are associated with V. parahaemolyticus dynamics elsewhere; however, this relationship is undetermined for the Great Bay estuary (GBE), an important emerging shellfish growing region in the Northeast United States. A comprehensive evaluation of the microbial ecology of V. parahaemolyticus associated with plankton was conducted in the GBE using 3 years of data regarding plankton community, nutrient concentration, water quality, and V. parahaemolyticus concentration in plankton. The concentrations of V. parahaemolyticus associated with plankton were highly seasonal, and the highest concentrations of V. parahaemolyticus cultured from zooplankton occurred approximately 1 month before the highest concentrations of V. parahaemolyticus from phytoplankton. The two V. parahaemolyticus peaks corresponded with different water quality variables and a few highly seasonal plankton taxa. Importantly, V. parahaemolyticus concentrations and plankton community dynamics were poorly associated with nutrient concentrations and chlorophyll a, commonly applied proxy variables for assessing ecological health risks and human health risks from harmful plankton and V. parahaemolyticus elsewhere. Together, these statistical associations (or lack thereof) provide valuable insights to characterize the plankton-V. parahaemolyticus dynamic and inform approaches for understanding the potential contribution of plankton to human health risks from V. parahaemolyticus for the Northeast United States. IMPORTANCE The Vibrio-plankton interaction is a focal relationship in Vibrio disease research; however, little is known about this dynamic in the Northeast United States, where V. parahaemolyticus is an established public health issue. We integrated phototactic plankton separation with seasonality analysis to determine the dynamics of the plankton community, water quality, and V. parahaemolyticus concentrations. Distinct bimodal peaks in the seasonal timing of V. parahaemolyticus abundance from phyto- versus zooplankton and differing associations with water quality variables and plankton taxa indicate that monitoring and forecasting approaches should consider the source of exposure when designing predictive methods for V. parahaemolyticus. Helicotheca tamensis has not been previously reported in the GBE. Its detection during this study provides evidence of the changes occurring in the ecology of regional estuaries and potential mechanisms for changes in V. parahaemolyticus populations. The Vibrio monitoring approaches can be translated to aid other areas facing similar public health challenges.
Collapse
|
19
|
Lenz PH, Roncalli V, Cieslak MC, Tarrant AM, Castelfranco AM, Hartline DK. Diapause vs. reproductive programs: transcriptional phenotypes in a keystone copepod. Commun Biol 2021; 4:426. [PMID: 33782539 PMCID: PMC8007741 DOI: 10.1038/s42003-021-01946-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 03/01/2021] [Indexed: 02/01/2023] Open
Abstract
Many arthropods undergo a seasonal dormancy termed "diapause" to optimize timing of reproduction in highly seasonal environments. In the North Atlantic, the copepod Calanus finmarchicus completes one to three generations annually with some individuals maturing into adults, while others interrupt their development to enter diapause. It is unknown which, why and when individuals enter the diapause program. Transcriptomic data from copepods on known programs were analyzed using dimensionality reduction of gene expression and functional analyses to identify program-specific genes and biological processes. These analyses elucidated physiological differences and established protocols that distinguish between programs. Differences in gene expression were associated with maturation of individuals on the reproductive program, while those on the diapause program showed little change over time. Only two of six filters effectively separated copepods by developmental program. The first one included all genes annotated to RNA metabolism and this was confirmed using differential gene expression analysis. The second filter identified 54 differentially expressed genes that were consistently up-regulated in individuals on the diapause program in comparison with those on the reproductive program. Annotated to oogenesis, RNA metabolism and fatty acid biosynthesis, these genes are both indicators for diapause preparation and good candidates for functional studies.
Collapse
Affiliation(s)
- Petra H. Lenz
- grid.410445.00000 0001 2188 0957Pacific Biosciences Research Center, University of Hawaiʻi at Mānoa, Honolulu, HI USA
| | - Vittoria Roncalli
- grid.410445.00000 0001 2188 0957Pacific Biosciences Research Center, University of Hawaiʻi at Mānoa, Honolulu, HI USA ,grid.6401.30000 0004 1758 0806Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Matthew C. Cieslak
- grid.410445.00000 0001 2188 0957Pacific Biosciences Research Center, University of Hawaiʻi at Mānoa, Honolulu, HI USA
| | - Ann M. Tarrant
- grid.56466.370000 0004 0504 7510Woods Hole Oceanographic Institution, Woods Hole, MA USA
| | - Ann M. Castelfranco
- grid.410445.00000 0001 2188 0957Pacific Biosciences Research Center, University of Hawaiʻi at Mānoa, Honolulu, HI USA
| | - Daniel K. Hartline
- grid.410445.00000 0001 2188 0957Pacific Biosciences Research Center, University of Hawaiʻi at Mānoa, Honolulu, HI USA
| |
Collapse
|
20
|
Ruiz-Ruiz PA, Contreras S, Urzúa Á, Quiroga E, Rebolledo L. Fatty acid biomarkers in three species inhabiting a high latitude Patagonian fjord (Yendegaia Fjord, Chile). Polar Biol 2021. [DOI: 10.1007/s00300-020-02788-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Mesozooplankton succession in a sub-Antarctic bay (Beagle channel, Southern tip of South America): distinctive annual patterns between two environmentally different zones. Polar Biol 2020. [DOI: 10.1007/s00300-020-02698-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Spatio-Temporal Variability of Chlorophyll-A and Environmental Variables in the Panama Bight. REMOTE SENSING 2020. [DOI: 10.3390/rs12132150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The analysis of synoptic satellite data of total chlorophyll-a (Chl-a) and the environmental drivers that influence nutrient and light availability for phytoplankton growth allows us to understand the spatio-temporal variability of phytoplankton biomass. In the Panama Bight Tropical region (PB; 1–9°N, 79–84°W), the spatial distribution of Chl-a is mostly related to the seasonal wind patterns and the intensity of localized upwelling centers. However, the association between the Chl-a and different physical variables and nutrient availability is still not fully assessed. In this study, we evaluate the relationship between the Chl-a and multiple physical (wind, Ekman pumping, geostrophic circulation, mixed layer depth, sea level anomalies, river discharges, sea surface temperature, and photosynthetically available radiation) and chemical (nutrients) drivers in order to explain the spatio-temporal Chl-a variability in the PB. We used satellite data of Chl-a and physical variables, and a re-analysis of a biogeochemical product for nutrients (2002–2016). Our results show that at the regional scale, the Chl-a varies seasonally in response to the wind forcing and sea surface temperature. However, in the coastal areas (mainly Gulf of Panama and off central-southern Colombia), the maximum non-seasonal Chl-a values are found in association with the availability of nutrients by river discharges, localized upwelling centers and the geostrophic circulation field. From this study, we infer that the interplay among these physical-chemical drivers is crucial for supporting the phytoplankton growth and the high biodiversity of the PB region.
Collapse
|
23
|
Chivers WJ, Edwards M, Hays GC. Phenological shuffling of major marine phytoplankton groups over the last six decades. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- William J. Chivers
- School of Electrical Engineering and Computing University of Newcastle Ourimbah New South Wales Australia
| | - Martin Edwards
- Marine Biological Association of the United Kingdom The Laboratory Plymouth UK
- Marine Institute University of Plymouth Plymouth UK
| | - Graeme C. Hays
- Centre for Integrative Ecology Deakin University Geelong Victoria Australia
| |
Collapse
|
24
|
Xiao X, Agustí S, Pan Y, Yu Y, Li K, Wu J, Duarte CM. Warming Amplifies the Frequency of Harmful Algal Blooms with Eutrophication in Chinese Coastal Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13031-13041. [PMID: 31609108 DOI: 10.1021/acs.est.9b03726] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Widespread coastal eutrophication is known to increase the prevalence of harmful algal blooms (HABs). Increased HABs have also been linked to climate change, with ocean warming predicted to lead to increased prevalence and earlier timing of HABs. Testing the predictions of warming to HABs is difficult due to the lack of long-term observations across spatial scales. Here, we use a 45 year (1970-2015) record of the occurrence and duration of HABs along Chinese coast to show that the HAB frequency has increased at a rate of 40 ± 4% decade-1, with earlier timing by 5.50 ± 1.78 days decade-1. The increasing frequency of blooms varied with latitude and is significantly correlated with warming at an average rate of 0.17 ± 0.03 °C decade-1, with the positive relationship being strongest in more eutrophic provinces. HAB frequency increased with elevated dissolved inorganic nutrient concentration, but this increase was amplified further with warming. Warming and eutrophication showed additive roles in triggering HABs. Swift action to mitigate eutrophication is essential to avoid a sharp increase in the HABs in coastal waters with further warming.
Collapse
Affiliation(s)
- Xi Xiao
- Zhejiang University, Ocean College , 1 Zheda Road , Zhoushan , Zhejiang 316021 , China
| | - Susana Agustí
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Yaoru Pan
- Zhejiang University, Ocean College , 1 Zheda Road , Zhoushan , Zhejiang 316021 , China
| | - Yan Yu
- Zhejiang University, Ocean College , 1 Zheda Road , Zhoushan , Zhejiang 316021 , China
| | - Ke Li
- Zhejiang University, Ocean College , 1 Zheda Road , Zhoushan , Zhejiang 316021 , China
| | - Jiaping Wu
- Zhejiang University, Ocean College , 1 Zheda Road , Zhoushan , Zhejiang 316021 , China
| | - Carlos M Duarte
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| |
Collapse
|
25
|
Durant JM, Molinero JC, Ottersen G, Reygondeau G, Stige LC, Langangen Ø. Contrasting effects of rising temperatures on trophic interactions in marine ecosystems. Sci Rep 2019; 9:15213. [PMID: 31645657 PMCID: PMC6811528 DOI: 10.1038/s41598-019-51607-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/28/2019] [Indexed: 11/09/2022] Open
Abstract
In high-latitude marine environments, primary producers and their consumers show seasonal peaks of abundance in response to annual light cycle, water column stability and nutrient availability. Predatory species have adapted to this pattern by synchronising life-history events such as reproduction with prey availability. However, changing temperatures may pose unprecedented challenges by decoupling the predator-prey interactions. Here we build a predator-prey model accounting for the full life-cycle of fish and zooplankton including their phenology. The model assumes that fish production is bottom-up controlled by zooplankton prey abundance and match or mismatch between predator and prey phenology, and is parameterised based on empirical findings of how climate influences phenology and prey abundance. With this model, we project possible climate-warming effects on match-mismatch dynamics in Arcto-boreal and temperate biomes. We find a strong dependence on synchrony with zooplankton prey in the Arcto-boreal fish population, pointing towards a possible pronounced population decline with warming because of frequent desynchronization with its zooplankton prey. In contrast, the temperate fish population appears better able to track changes in prey timing and hence avoid strong population decline. These results underline that climate change may enhance the risks of predator-prey seasonal asynchrony and fish population declines at higher latitudes.
Collapse
Affiliation(s)
- Joël M Durant
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066, Blindern, N-0316, Oslo, Norway.
| | - Juan-Carlos Molinero
- Institut de Recherche pour le Développement (IRD), UMR248 MARBEC, IRD/CNRS/IFREMER/UM, Sète Cedex, France
| | - Geir Ottersen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066, Blindern, N-0316, Oslo, Norway
- Institute of Marine Research, P.O. Box 1870, Nordnes, N-5817, Bergen, Norway
| | - Gabriel Reygondeau
- Nippon Foundation-Nereus Program, Institute for the Oceans and Fisheries, University of British Columbia, Aquatic Ecosystems Research Lab, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Leif Christian Stige
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066, Blindern, N-0316, Oslo, Norway
| | - Øystein Langangen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066, Blindern, N-0316, Oslo, Norway
| |
Collapse
|
26
|
Cisneros-Mata MA, Mangin T, Bone J, Rodriguez L, Smith SL, Gaines SD. Fisheries governance in the face of climate change: Assessment of policy reform implications for Mexican fisheries. PLoS One 2019; 14:e0222317. [PMID: 31577835 PMCID: PMC6774473 DOI: 10.1371/journal.pone.0222317] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 08/27/2019] [Indexed: 11/19/2022] Open
Abstract
Climate change is driving shifts in the abundance and distribution of marine fish and invertebrates and is having direct and indirect impacts on seafood catches and fishing communities, exacerbating the already negative effects of unsustainably high fishing pressure that exist for some stocks. Although the majority of fisheries in the world are managed at the national or local scale, most existing approaches to assessing climate impacts on fisheries have been developed on a global scale. It is often difficult to translate from the global to regional and local settings because of limited relevant data. To address the need for fisheries management entities to identify those fisheries with the greatest potential for climate change impacts, we present an approach for estimating expected climate change-driven impacts on the productivity and spatial range of fisheries at the regional scale in a data-poor context. We use a set of representative Mexican fisheries as test cases. To assess the implications of climate impacts, we compare biomass, harvest, and profit outcomes from a bioeconomic model under contrasting management policies and with and without climate change. Overall results show that climate change is estimated to negatively affect nearly every fishery in our study. However, the results indicate that overfishing is a greater threat than climate change for these fisheries, hence fixing current management challenges has a greater upside than the projected future costs of moderate levels of climate change. Additionally, this study provides meaningful first approximations of potential effects of both climate change and management reform in Mexican fisheries. Using the climate impact estimations and model outputs, we identify high priority stocks, fleets, and regions for policy reform in Mexico in the face of climate change. This approach can be applied in other data-poor circumstances to focus future research and policy reform efforts on stocks now subject to additional stress due to climate change. Considering their growing relevance as a critical source of protein and micronutrients to nourish our growing population, it is urgent for regions to develop sound fishery management policies in the short-term as they are the most important intervention to mitigate the adverse effects of climate change on marine fisheries.
Collapse
Affiliation(s)
| | - Tracey Mangin
- Bren School of Environmental Science & Management, University of California Santa Barbara, Santa Barbara CA, United States of America
- Sustainable Fisheries Group, Bren School of Environmental Science & Management, University of California Santa Barbara, Santa Barbara, CA, United States of America
| | - Jennifer Bone
- Bren School of Environmental Science & Management, University of California Santa Barbara, Santa Barbara CA, United States of America
- Sustainable Fisheries Group, Bren School of Environmental Science & Management, University of California Santa Barbara, Santa Barbara, CA, United States of America
| | - Laura Rodriguez
- Environmental Defense Fund de México A.C., La Paz, BCS, México
| | | | - Steven D. Gaines
- Bren School of Environmental Science & Management, University of California Santa Barbara, Santa Barbara CA, United States of America
- Sustainable Fisheries Group, Bren School of Environmental Science & Management, University of California Santa Barbara, Santa Barbara, CA, United States of America
| |
Collapse
|
27
|
Staudinger MD, Mills KE, Stamieszkin K, Record NR, Hudak CA, Allyn A, Diamond A, Friedland KD, Golet W, Henderson ME, Hernandez CM, Huntington TG, Ji R, Johnson CL, Johnson DS, Jordaan A, Kocik J, Li Y, Liebman M, Nichols OC, Pendleton D, Richards RA, Robben T, Thomas AC, Walsh HJ, Yakola K. It's about time: A synthesis of changing phenology in the Gulf of Maine ecosystem. FISHERIES OCEANOGRAPHY 2019; 28:532-566. [PMID: 31598058 PMCID: PMC6774335 DOI: 10.1111/fog.12429] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 02/01/2019] [Accepted: 03/08/2019] [Indexed: 05/08/2023]
Abstract
The timing of recurring biological and seasonal environmental events is changing on a global scale relative to temperature and other climate drivers. This study considers the Gulf of Maine ecosystem, a region of high social and ecological importance in the Northwest Atlantic Ocean and synthesizes current knowledge of (a) key seasonal processes, patterns, and events; (b) direct evidence for shifts in timing; (c) implications of phenological responses for linked ecological-human systems; and (d) potential phenology-focused adaptation strategies and actions. Twenty studies demonstrated shifts in timing of regional marine organisms and seasonal environmental events. The most common response was earlier timing, observed in spring onset, spring and winter hydrology, zooplankton abundance, occurrence of several larval fishes, and diadromous fish migrations. Later timing was documented for fall onset, reproduction and fledging in Atlantic puffins, spring and fall phytoplankton blooms, and occurrence of additional larval fishes. Changes in event duration generally increased and were detected in zooplankton peak abundance, early life history periods of macro-invertebrates, and lobster fishery landings. Reduced duration was observed in winter-spring ice-affected stream flows. Two studies projected phenological changes, both finding diapause duration would decrease in zooplankton under future climate scenarios. Phenological responses were species-specific and varied depending on the environmental driver, spatial, and temporal scales evaluated. Overall, a wide range of baseline phenology and relevant modeling studies exist, yet surprisingly few document long-term shifts. Results reveal a need for increased emphasis on phenological shifts in the Gulf of Maine and identify opportunities for future research and consideration of phenological changes in adaptation efforts.
Collapse
Affiliation(s)
- Michelle D. Staudinger
- Department of the Interior Northeast Climate Adaptation Science CenterAmherstMassachusetts
- Department of Environmental ConservationUniversity of Massachusetts AmherstAmherstMassachusetts
| | | | | | | | - Christine A. Hudak
- Department of Ecology, Center for Coastal StudiesProvincetownMassachusetts
| | | | - Antony Diamond
- University of New BrunswickFrederictonNew BrunswickCanada
| | - Kevin D. Friedland
- NOAA, Northeast Fisheries Science Center, National Marine Fisheries ServiceNarragansettRhode Island
| | - Walt Golet
- Gulf of Maine Research InstitutePortlandMaine
- School of Marine SciencesUniversity of MaineOronoMaine
| | | | | | | | - Rubao Ji
- Department of BiologyWoods Hole Oceanographic InstitutionWoods HoleMassachusetts
| | - Catherine L. Johnson
- Fisheries and Oceans Canada, Bedford Institute of OceanographyDartmouthNova ScotiaCanada
| | - David Samuel Johnson
- Virginia Institute of Marine ScienceCollege of William and MaryGloucester PointVirginia
| | - Adrian Jordaan
- Department of Environmental ConservationUniversity of Massachusetts AmherstAmherstMassachusetts
| | - John Kocik
- NOAA, Northeast Fisheries Science Center, National Marine Fisheries ServiceOronoMaine
| | - Yun Li
- Department of BiologyWoods Hole Oceanographic InstitutionWoods HoleMassachusetts
- College of Marine ScienceUniversity of South FloridaSt. PetersburgFlorida
| | - Matthew Liebman
- Office of Ecosystem Protection, US EPA New EnglandBostonMassachusetts
| | - Owen C. Nichols
- Department of Ecology, Center for Coastal StudiesProvincetownMassachusetts
| | - Daniel Pendleton
- Anderson Cabot Center for Ocean Life, New England Aquarium, Central WharfBostonMassachusetts
| | - R. Anne Richards
- Population Dynamics BranchNOAA Northeast Fisheries Science CenterWoods HoleMassachusetts
| | - Thomas Robben
- Connecticut Ornithological AssociationFairfieldConnecticut
| | | | - Harvey J. Walsh
- NOAA, Northeast Fisheries Science Center, National Marine Fisheries ServiceNarragansettRhode Island
| | - Keenan Yakola
- Department of Environmental ConservationUniversity of Massachusetts AmherstAmherstMassachusetts
| |
Collapse
|
28
|
Asch RG, Stock CA, Sarmiento JL. Climate change impacts on mismatches between phytoplankton blooms and fish spawning phenology. GLOBAL CHANGE BIOLOGY 2019; 25:2544-2559. [PMID: 31152499 DOI: 10.1111/gcb.14650] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 03/01/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
Substantial interannual variability in marine fish recruitment (i.e., the number of young fish entering a fishery each year) has been hypothesized to be related to whether the timing of fish spawning matches that of seasonal plankton blooms. Environmental processes that control the phenology of blooms, such as stratification, may differ from those that influence fish spawning, such as temperature-linked reproductive maturation. These different controlling mechanisms could cause the timing of these events to diverge under climate change with negative consequences for fisheries. We use an earth system model to examine the impact of a high-emissions, climate-warming scenario (RCP8.5) on the future spawning time of two classes of temperate, epipelagic fishes: "geographic spawners" whose spawning grounds are defined by fixed geographic features (e.g., rivers, estuaries, reefs) and "environmental spawners" whose spawning grounds move responding to variations in environmental properties, such as temperature. By the century's end, our results indicate that projections of increased stratification cause spring and summer phytoplankton blooms to start 16 days earlier on average (±0.05 days SE) at latitudes >40°N. The temperature-linked phenology of geographic spawners changes at a rate twice as fast as phytoplankton, causing these fishes to spawn before the bloom starts across >85% of this region. "Extreme events," defined here as seasonal mismatches >30 days that could lead to fish recruitment failure, increase 10-fold for geographic spawners in many areas under the RCP8.5 scenario. Mismatches between environmental spawners and phytoplankton were smaller and less widespread, although sizable mismatches still emerged in some regions. This indicates that range shifts undertaken by environmental spawners may increase the resiliency of fishes to climate change impacts associated with phenological mismatches, potentially buffering against declines in larval fish survival, recruitment, and fisheries. Our model results are supported by empirical evidence from ecosystems with multidecadal observations of both fish and phytoplankton phenology.
Collapse
Affiliation(s)
- Rebecca G Asch
- Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey
- Department of Biology, East Carolina University, Greenville, North Carolina
| | - Charles A Stock
- Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration, Princeton, New Jersey
| | - Jorge L Sarmiento
- Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey
| |
Collapse
|
29
|
Scharfe M, Wiltshire KH. Modeling of intra-annual abundance distributions: Constancy and variation in the phenology of marine phytoplankton species over five decades at Helgoland Roads (North Sea). Ecol Modell 2019. [DOI: 10.1016/j.ecolmodel.2019.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Reconstruction of Ocean Color Data Using Machine Learning Techniques in Polar Regions: Focusing on Off Cape Hallett, Ross Sea. REMOTE SENSING 2019. [DOI: 10.3390/rs11111366] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The most problematic issue in the ocean color application is the presence of heavy clouds, especially in polar regions. For that reason, the demand for the ocean color application in polar regions is increased. As a way to overcome such issues, we conducted the reconstruction of the chlorophyll-a concentration (CHL) data using the machine learning-based models to raise the usability of CHL data. This analysis was first conducted on a regional scale and focused on the biologically-valued Cape Hallett, Ross Sea, Antarctica. Environmental factors and geographical information associated with phytoplankton dynamics were considered as predictors for the CHL reconstruction, which were obtained from cloud-free microwave and reanalysis data. As the machine learning models used in the present study, the ensemble-based models such as Random forest (RF) and Extremely randomized tree (ET) were selected with 10-fold cross-validation. As a result, both CHL reconstructions from the two models showed significant agreement with the standard satellite-derived CHL data. In addition, the reconstructed CHLs were close to the actual CHL value even where it was not observed by the satellites. However, there is a slight difference between the CHL reconstruction results from the RF and the ET, which is likely caused by the difference in the contribution of each predictor. In addition, we examined the variable importance for the CHL reconstruction quantitatively. As such, the sea surface and atmospheric temperature, and the photosynthetically available radiation have high contributions to the model developments. Mostly, geographic information appears to have a lower contribution relative to environmental predictors. Lastly, we estimated the partial dependences for the predictors for further study on the variable contribution and investigated the contributions to the CHL reconstruction with changes in the predictors.
Collapse
|
31
|
Record NR, Balch WM, Stamieszkin K. Century-scale changes in phytoplankton phenology in the Gulf of Maine. PeerJ 2019; 7:e6735. [PMID: 31106049 PMCID: PMC6500720 DOI: 10.7717/peerj.6735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/07/2019] [Indexed: 11/24/2022] Open
Abstract
The phenology of major seasonal events is an important indicator of climate. We analyzed multiple datasets of in situ chlorophyll measurements from the Gulf of Maine dating back to the early 20th century in order to detect climate-scale changes in phenology. The seasonal cycle was consistently characterized by a two-bloom pattern, with spring and autumn blooms. The timing of both spring and autumn blooms has shifted later in the year at rates ranging from ∼1 to 9 days per decade since 1960, depending on the phenology metric, and trends only emerged at time scales of >40 years. Bloom phenology had only weak correlations with major climate indices. There were stronger associations between bloom timing and physical and chemical variables. Autumn bloom initiation correlated strongly with surface temperature and salinity, and spring bloom with nutrients. A later spring bloom also correlated with an increased cohort of Calanus finmarchicus, suggesting broader ecosystem implications of phytoplankton phenology.
Collapse
Affiliation(s)
- Nicholas R. Record
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States of America
| | - William M. Balch
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States of America
| | - Karen Stamieszkin
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States of America
| |
Collapse
|
32
|
Fischer AD, Brosnahan ML, Anderson DM. Quantitative Response of Alexandrium catenella Cyst Dormancy to Cold Exposure. Protist 2018; 169:645-661. [DOI: 10.1016/j.protis.2018.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 06/05/2018] [Accepted: 06/07/2018] [Indexed: 11/28/2022]
|
33
|
Muller‐Karger FE, Hestir E, Ade C, Turpie K, Roberts DA, Siegel D, Miller RJ, Humm D, Izenberg N, Keller M, Morgan F, Frouin R, Dekker AG, Gardner R, Goodman J, Schaeffer B, Franz BA, Pahlevan N, Mannino AG, Concha JA, Ackleson SG, Cavanaugh KC, Romanou A, Tzortziou M, Boss ES, Pavlick R, Freeman A, Rousseaux CS, Dunne J, Long MC, Klein E, McKinley GA, Goes J, Letelier R, Kavanaugh M, Roffer M, Bracher A, Arrigo KR, Dierssen H, Zhang X, Davis FW, Best B, Guralnick R, Moisan J, Sosik HM, Kudela R, Mouw CB, Barnard AH, Palacios S, Roesler C, Drakou EG, Appeltans W, Jetz W. Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2018; 28:749-760. [PMID: 29509310 PMCID: PMC5947264 DOI: 10.1002/eap.1682] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 10/30/2017] [Accepted: 12/08/2017] [Indexed: 05/27/2023]
Abstract
The biodiversity and high productivity of coastal terrestrial and aquatic habitats are the foundation for important benefits to human societies around the world. These globally distributed habitats need frequent and broad systematic assessments, but field surveys only cover a small fraction of these areas. Satellite-based sensors can repeatedly record the visible and near-infrared reflectance spectra that contain the absorption, scattering, and fluorescence signatures of functional phytoplankton groups, colored dissolved matter, and particulate matter near the surface ocean, and of biologically structured habitats (floating and emergent vegetation, benthic habitats like coral, seagrass, and algae). These measures can be incorporated into Essential Biodiversity Variables (EBVs), including the distribution, abundance, and traits of groups of species populations, and used to evaluate habitat fragmentation. However, current and planned satellites are not designed to observe the EBVs that change rapidly with extreme tides, salinity, temperatures, storms, pollution, or physical habitat destruction over scales relevant to human activity. Making these observations requires a new generation of satellite sensors able to sample with these combined characteristics: (1) spatial resolution on the order of 30 to 100-m pixels or smaller; (2) spectral resolution on the order of 5 nm in the visible and 10 nm in the short-wave infrared spectrum (or at least two or more bands at 1,030, 1,240, 1,630, 2,125, and/or 2,260 nm) for atmospheric correction and aquatic and vegetation assessments; (3) radiometric quality with signal to noise ratios (SNR) above 800 (relative to signal levels typical of the open ocean), 14-bit digitization, absolute radiometric calibration <2%, relative calibration of 0.2%, polarization sensitivity <1%, high radiometric stability and linearity, and operations designed to minimize sunglint; and (4) temporal resolution of hours to days. We refer to these combined specifications as H4 imaging. Enabling H4 imaging is vital for the conservation and management of global biodiversity and ecosystem services, including food provisioning and water security. An agile satellite in a 3-d repeat low-Earth orbit could sample 30-km swath images of several hundred coastal habitats daily. Nine H4 satellites would provide weekly coverage of global coastal zones. Such satellite constellations are now feasible and are used in various applications.
Collapse
|
34
|
Identification of Phytoplankton Blooms under the Index of Inherent Optical Properties (IOP Index) in Optically Complex Waters. WATER 2018. [DOI: 10.3390/w10020129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Beaugrand G, Kirby RR. How Do Marine Pelagic Species Respond to Climate Change? Theories and Observations. ANNUAL REVIEW OF MARINE SCIENCE 2018; 10:169-197. [PMID: 29298137 DOI: 10.1146/annurev-marine-121916-063304] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this review, we show how climate affects species, communities, and ecosystems, and why many responses from the species to the biome level originate from the interaction between the species' ecological niche and changes in the environmental regime in both space and time. We describe a theory that allows us to understand and predict how marine species react to climate-induced changes in ecological conditions, how communities form and are reconfigured, and so how biodiversity is arranged and may respond to climate change. Our study shows that the responses of species to climate change are therefore intelligible-that is, they have a strong deterministic component and can be predicted.
Collapse
Affiliation(s)
- Grégory Beaugrand
- Laboratoire d'Océanologie et de Géosciences, CNRS UMR 8187 LOG, Université de Lille and Université du Littoral Côte d'Opale, F-62930 Wimereux, France;
- Sir Alister Hardy Foundation for Ocean Science, Plymouth PL1 2PB, United Kingdom
| | | |
Collapse
|
36
|
Henson SA, Cole HS, Hopkins J, Martin AP, Yool A. Detection of climate change-driven trends in phytoplankton phenology. GLOBAL CHANGE BIOLOGY 2018; 24:e101-e111. [PMID: 28871605 DOI: 10.1111/gcb.13886] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
The timing of the annual phytoplankton spring bloom is likely to be altered in response to climate change. Quantifying that response has, however, been limited by the typically coarse temporal resolution (monthly) of global climate models. Here, we use higher resolution model output (maximum 5 days) to investigate how phytoplankton bloom timing changes in response to projected 21st century climate change, and how the temporal resolution of data influences the detection of long-term trends. We find that bloom timing generally shifts later at mid-latitudes and earlier at high and low latitudes by ~5 days per decade to 2100. The spatial patterns of bloom timing are similar in both low (monthly) and high (5 day) resolution data, although initiation dates are later at low resolution. The magnitude of the trends in bloom timing from 2006 to 2100 is very similar at high and low resolution, with the result that the number of years of data needed to detect a trend in phytoplankton phenology is relatively insensitive to data temporal resolution. We also investigate the influence of spatial scales on bloom timing and find that trends are generally more rapidly detectable after spatial averaging of data. Our results suggest that, if pinpointing the start date of the spring bloom is the priority, the highest possible temporal resolution data should be used. However, if the priority is detecting long-term trends in bloom timing, data at a temporal resolution of 20 days are likely to be sufficient. Furthermore, our results suggest that data sources which allow for spatial averaging will promote more rapid trend detection.
Collapse
Affiliation(s)
| | | | - Jason Hopkins
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | | | - Andrew Yool
- National Oceanography Centre, Southampton, UK
| |
Collapse
|
37
|
Kavanaugh MT, Rheuban JE, Luis KMA, Doney SC. Thirty-Three Years of Ocean Benthic Warming Along the U.S. Northeast Continental Shelf and Slope: Patterns, Drivers, and Ecological Consequences. JOURNAL OF GEOPHYSICAL RESEARCH. OCEANS 2017; 122:9399-9414. [PMID: 29497591 PMCID: PMC5815377 DOI: 10.1002/2017jc012953] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/04/2017] [Indexed: 06/08/2023]
Abstract
The U.S. Northeast Continental Shelf is experiencing rapid warming, with potentially profound consequences to marine ecosystems. While satellites document multiple scales of spatial and temporal variability on the surface, our understanding of the status, trends, and drivers of the benthic environmental change remains limited. We interpolated sparse benthic temperature data along the New England Shelf and upper Slope using a seasonally dynamic, regionally specific multiple linear regression model that merged in situ and remote sensing data. The statistical model predicted nearly 90% of the variability of the data, resulting in a synoptic time series spanning over three decades from 1982 to 2014. Benthic temperatures increased throughout the domain, including in the Gulf of Maine. Rates of benthic warming ranged from 0.1 to 0.4°C per decade, with fastest rates occurring in shallow, nearshore regions and on Georges Bank, the latter exceeding rates observed in the surface. Rates of benthic warming were up to 1.6 times faster in winter than the rest of the year in many regions, with important implications for disease occurrence and energetics of overwintering species. Drivers of warming varied over the domain. In southern New England and the mid-Atlantic shallow Shelf regions, benthic warming was tightly coupled to changes in SST, whereas both regional and basin-scale changes in ocean circulation affect temperatures in the Gulf of Maine, the Continental Shelf, and Georges Banks. These results highlight data gaps, the current feasibility of prediction from remotely sensed variables, and the need for improved understanding on how climate may affect seasonally specific ecological processes.
Collapse
Affiliation(s)
- Maria T. Kavanaugh
- Marine Chemistry and Geochemistry DepartmentWoods Hole Oceanographic InstitutionWoods HoleMAUSA
- Ocean Ecology and Biogeochemistry, College of Earth, Ocean, and Atmospheric SciencesOregon State UniversityCorvallisORUSA
| | - Jennie E. Rheuban
- Marine Chemistry and Geochemistry DepartmentWoods Hole Oceanographic InstitutionWoods HoleMAUSA
| | - Kelly M. A. Luis
- School for the EnvironmentUniversity of MassachusettsBostonMAUSA
| | - Scott C. Doney
- Marine Chemistry and Geochemistry DepartmentWoods Hole Oceanographic InstitutionWoods HoleMAUSA
- Department of Environmental SciencesUniversity of Virginia, CharlottesvilleVAUSA
| |
Collapse
|
38
|
Fernandes LDDA, Fagundes Netto EB, Coutinho R. Inter-annual cascade effect on marine food web: A benthic pathway lagging nutrient supply to pelagic fish stock. PLoS One 2017; 12:e0184512. [PMID: 28886162 PMCID: PMC5590966 DOI: 10.1371/journal.pone.0184512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/27/2017] [Indexed: 11/26/2022] Open
Abstract
Currently, spatial and temporal changes in nutrients availability, marine planktonic, and fish communities are best described on a shorter than inter-annual (seasonal) scale, primarily because the simultaneous year-to-year variations in physical, chemical, and biological parameters are very complex. The limited availability of time series datasets furnishing simultaneous evaluations of temperature, nutrients, plankton, and fish have limited our ability to describe and to predict variability related to short-term process, as species-specific phenology and environmental seasonality. In the present study, we combine a computational time series analysis on a 15-year (1995–2009) weekly-sampled time series (high-resolution long-term time series, 780 weeks) with an Autoregressive Distributed Lag Model to track non-seasonal changes in 10 potentially related parameters: sea surface temperature, nutrient concentrations (NO2, NO3, NH4 and PO4), phytoplankton biomass (as in situ chlorophyll a biomass), meroplankton (barnacle and mussel larvae), and fish abundance (Mugil liza and Caranx latus). Our data demonstrate for the first time that highly intense and frequent upwelling years initiate a huge energy flux that is not fully transmitted through classical size-structured food web by bottom-up stimulus but through additional ontogenetic steps. A delayed inter-annual sequential effect from phytoplankton up to top predators as carnivorous fishes is expected if most of energy is trapped into benthic filter feeding organisms and their larval forms. These sequential events can explain major changes in ecosystem food web that were not predicted in previous short-term models.
Collapse
Affiliation(s)
- Lohengrin Dias de Almeida Fernandes
- Department of Biotechnology, Instituto de Estudos do Mar Almirante Paulo Moreira (IEAPM), Brazilian Navy, Arraial do Cabo, Rio de Janeiro, Brazil
- Marine Biotechnology Post-Graduation Program, Arraial do Cabo, Rio de Janeiro, Brazil
- * E-mail:
| | - Eduardo Barros Fagundes Netto
- Marine Biotechnology Post-Graduation Program, Arraial do Cabo, Rio de Janeiro, Brazil
- Department of Oceanography, Instituto de Estudos do Mar Almirante Paulo Moreira (IEAPM), Brazilian Navy, Arraial do Cabo, Rio de Janeiro, Brazil
| | - Ricardo Coutinho
- Department of Biotechnology, Instituto de Estudos do Mar Almirante Paulo Moreira (IEAPM), Brazilian Navy, Arraial do Cabo, Rio de Janeiro, Brazil
- Marine Biotechnology Post-Graduation Program, Arraial do Cabo, Rio de Janeiro, Brazil
| | | |
Collapse
|
39
|
Guallar C, Bacher C, Chapelle A. Global and local factors driving the phenology of Alexandrium minutum (Halim) blooms and its toxicity. HARMFUL ALGAE 2017; 67:44-60. [PMID: 28755720 DOI: 10.1016/j.hal.2017.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
The dinoflagellate Alexandrium minutum is a toxic bloom-forming species distributed worldwide. The mechanisms driving and promoting the species blooms and their toxicity are studied and presented here. Most previously published work focuses on local and/or short-term scales. In this study, a broad temporal and spatial approach is addressed using time series covering several sites over several years and combining environmental variables and A. minutum abundances from the French English Channel - Atlantic coasts. Data were explored by means of phenology and threshold analysis. The A. minutum bloom characteristics are defined. Only one bloom per year is measured and it may reach more than a million of cells L-1. Bloom period extends from April to October and the bloom length ranges from two weeks to six months. In the ecosystems studied, water temperature and river flow, as regional and local factors respectively, are the main environmental drivers influencing the magnitude, growth rate and length of the blooms. Bloom toxicity is linked to the bloom maximum abundance and river flow. This work provides new knowledge for further managing tools for A. minutum blooms in the ecosystems studied.
Collapse
|
40
|
Hunter-Cevera KR, Neubert MG, Olson RJ, Solow AR, Shalapyonok A, Sosik HM. Physiological and ecological drivers of early spring blooms of a coastal phytoplankter. Science 2017; 354:326-329. [PMID: 27846565 DOI: 10.1126/science.aaf8536] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 09/09/2016] [Indexed: 11/02/2022]
Abstract
Climate affects the timing and magnitude of phytoplankton blooms that fuel marine food webs and influence global biogeochemical cycles. Changes in bloom timing have been detected in some cases, but the underlying mechanisms remain elusive, contributing to uncertainty in long-term predictions of climate change impacts. Here we describe a 13-year hourly time series from the New England shelf of data on the coastal phytoplankter Synechococcus, during which the timing of its spring bloom varied by 4 weeks. We show that multiyear trends are due to temperature-induced changes in cell division rate, with earlier blooms driven by warmer spring water temperatures. Synechococcus loss rates shift in tandem with division rates, suggesting a balance between growth and loss that has persisted despite phenological shifts and environmental change.
Collapse
Affiliation(s)
| | - Michael G Neubert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Robert J Olson
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Andrew R Solow
- Marine Policy Center, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Alexi Shalapyonok
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Heidi M Sosik
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| |
Collapse
|
41
|
Changes in phytoplankton bloom phenology over the North Water (NOW) polynya: a response to changing environmental conditions. Polar Biol 2017. [DOI: 10.1007/s00300-017-2095-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Petrou K, Kranz SA, Trimborn S, Hassler CS, Ameijeiras SB, Sackett O, Ralph PJ, Davidson AT. Southern Ocean phytoplankton physiology in a changing climate. JOURNAL OF PLANT PHYSIOLOGY 2016; 203:135-150. [PMID: 27236210 DOI: 10.1016/j.jplph.2016.05.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 06/05/2023]
Abstract
The Southern Ocean (SO) is a major sink for anthropogenic atmospheric carbon dioxide (CO2), potentially harbouring even greater potential for additional sequestration of CO2 through enhanced phytoplankton productivity. In the SO, primary productivity is primarily driven by bottom up processes (physical and chemical conditions) which are spatially and temporally heterogeneous. Due to a paucity of trace metals (such as iron) and high variability in light, much of the SO is characterised by an ecological paradox of high macronutrient concentrations yet uncharacteristically low chlorophyll concentrations. It is expected that with increased anthropogenic CO2 emissions and the coincident warming, the major physical and chemical process that govern the SO will alter, influencing the biological capacity and functioning of the ecosystem. This review focuses on the SO primary producers and the bottom up processes that underpin their health and productivity. It looks at the major physico-chemical drivers of change in the SO, and based on current physiological knowledge, explores how these changes will likely manifest in phytoplankton, specifically, what are the physiological changes and floristic shifts that are likely to ensue and how this may translate into changes in the carbon sink capacity, net primary productivity and functionality of the SO.
Collapse
Affiliation(s)
- Katherina Petrou
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo, New South Wales 2007, Australia.
| | - Sven A Kranz
- Florida State University, Department of Earth, Ocean and Atmospheric Sciences, Tallahassee, FL 32306, USA
| | - Scarlett Trimborn
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany; University of Bremen, Leobener Straße NW2, 28359 Bremen, Germany
| | - Christel S Hassler
- University of Geneva, Earth and Environmental Sciences, Institut F.-A. Forel, Uni Vogt, 66 bvd Carl-Vogt, 1211 Geneva 4, Switzerland
| | - Sonia Blanco Ameijeiras
- University of Geneva, Earth and Environmental Sciences, Institut F.-A. Forel, Uni Vogt, 66 bvd Carl-Vogt, 1211 Geneva 4, Switzerland
| | - Olivia Sackett
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Peter J Ralph
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, 15 Broadway, Ultimo, New South Wales 2007, Australia
| | - Andrew T Davidson
- Department of the Environment, Australian Antarctic Division, 203 Channel Highway, Kingston, Tasmania 7050, Australia; Antarctic Climate and Ecosystem Cooperative Research Centre (ACECRC), University of Tasmania, Private Bag 80, Hobart, Tasmania 7001, Australia
| |
Collapse
|
43
|
Abstract
Understanding how climate influences ecosystems is complicated by the many correlated and interrelated impacting factors. Here we quantify climate effects on Calanus finmarchicus in the northeastern Norwegian Sea and southwestern Barents Sea. By combining oceanographic drift models and statistical analyses of field data from 1959 to 1993 and investigating effects across trophic levels, we are able to elucidate pathways by which climate influences zooplankton. The results show that both chlorophyll biomass in spring and C. finmarchicus biomass in summer relate positively to a combination of shallow mixed layer depth and increased wind in spring, suggesting that C. finmarchicus biomass in summer is influenced by bottom-up effects of food availability. Furthermore, spatially resolved C. finmarchicus biomass in summer is linked to favorable transport from warmer, core areas to the south. However, increased mean temperature in spring does not lead to increased C. finmarchicus biomass in summer. Rather, spring biomass is generally higher, but population growth from spring to summer is lower, after a warm compared with a cold spring. Our study illustrates how improved understanding of climate effects can be obtained when different datasets and different methods are combined in a unified approach.
Collapse
|
44
|
Siegel V, Watkins JL. Distribution, Biomass and Demography of Antarctic Krill, Euphausia superba. BIOLOGY AND ECOLOGY OF ANTARCTIC KRILL 2016. [DOI: 10.1007/978-3-319-29279-3_2] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
45
|
Tekanova EV, Syarki MT. Peculiarities of phenology of the primary production process in the pelagic zone of Lake Onega. BIOL BULL+ 2015. [DOI: 10.1134/s1062359015060114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Climate change and decadal shifts in the phenology of larval fishes in the California Current ecosystem. Proc Natl Acad Sci U S A 2015; 112:E4065-74. [PMID: 26159416 DOI: 10.1073/pnas.1421946112] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Climate change has prompted an earlier arrival of spring in numerous ecosystems. It is uncertain whether such changes are occurring in Eastern Boundary Current Upwelling ecosystems, because these regions are subject to natural decadal climate variability, and regional climate models predict seasonal delays in upwelling. To answer this question, the phenology of 43 species of larval fishes was investigated between 1951 and 2008 off southern California. Ordination of the fish community showed earlier phenological progression in more recent years. Thirty-nine percent of seasonal peaks in larval abundance occurred earlier in the year, whereas 18% were delayed. The species whose phenology became earlier were characterized by an offshore, pelagic distribution, whereas species with delayed phenology were more likely to reside in coastal, demersal habitats. Phenological changes were more closely associated with a trend toward earlier warming of surface waters rather than decadal climate cycles, such as the Pacific Decadal Oscillation and North Pacific Gyre Oscillation. Species with long-term advances and delays in phenology reacted similarly to warming at the interannual time scale as demonstrated by responses to the El Niño Southern Oscillation. The trend toward earlier spawning was correlated with changes in sea surface temperature (SST) and mesozooplankton displacement volume, but not coastal upwelling. SST and upwelling were correlated with delays in fish phenology. For species with 20th century advances in phenology, future projections indicate that current trends will continue unabated. The fate of species with delayed phenology is less clear due to differences between Intergovernmental Panel on Climate Change models in projected upwelling trends.
Collapse
|
47
|
Anguita C, Simeone A. Influence of Seasonal Food Availability on the Dynamics of Seabird Feeding Flocks at a Coastal Upwelling Area. PLoS One 2015; 10:e0131327. [PMID: 26125630 PMCID: PMC4488391 DOI: 10.1371/journal.pone.0131327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 06/01/2015] [Indexed: 11/19/2022] Open
Abstract
The formation of multi-species feeding flocks (MSFFs) through visual recruitment is considered an important strategy for obtaining food in seabirds and its functionality has been ascribed to enhanced foraging efficiency. Its use has been demonstrated in much of the world's oceans and includes numerous species. However, there is scant information on the temporal stability of the composition and abundance of MSFFs as well as the effect of seasonal food availability on their dynamics. Between July 2006 and September 2014, we conducted monthly at-sea seabird counts at Valparaiso Bay (32°56' to 33°01'S, 71°36' to 71°46'W) within the area of influence of the Humboldt Current in central Chile. This area is characterized by a marked seasonality in primary and secondary production associated with upwelling, mainly during austral spring-summer. Based on studies that provide evidence that flocking is most frequent when food is both scarce and patchy, we hypothesized that seabird MSFF attributes (i.e. frequency of occurrence, abundance and composition) will be modified according to the seasonal availability of food. Using generalized linear models (GLMs), our results show that the contrasting seasonality in food availability of the study area (using chlorophyll-a concentration as a proxy) had no significant influence on MSFF attributes, sparsely explaining their variations (P>0.05). Rather than seasonal food availability, the observed pattern for MSFF attributes at Valparaiso Bay suggests a substantial influence of reproductive and migratory (boreal and austral migrants) habits of birds that modulates MSFF dynamics consistently throughout the whole year in this highly variable and patchy environment. We highlight the importance of visual recruitment as a mechanism by which migratory and resident birds interact. This would allow them to reduce resource unpredictability, which in turn has a major impact on structuring seabird's MSFF dynamics.
Collapse
Affiliation(s)
- Cristóbal Anguita
- Departamento de Ecología y Biodiversidad, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, Santiago, Chile
| | - Alejandro Simeone
- Departamento de Ecología y Biodiversidad, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, Santiago, Chile
- * E-mail:
| |
Collapse
|
48
|
Elliott M, Borja Á, McQuatters-Gollop A, Mazik K, Birchenough S, Andersen JH, Painting S, Peck M. Force majeure: Will climate change affect our ability to attain Good Environmental Status for marine biodiversity? MARINE POLLUTION BULLETIN 2015; 95:7-27. [PMID: 25837772 DOI: 10.1016/j.marpolbul.2015.03.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 06/04/2023]
Abstract
The EU Marine Strategy Framework Directive (MSFD) requires that Good Environmental Status (GEnS), is achieved for European seas by 2020. These may deviate from GEnS, its 11 Descriptors, targets and baselines, due to endogenic managed pressures (from activities within an area) and externally due to exogenic unmanaged pressures (e.g. climate change). Conceptual models detail the likely or perceived changes expected on marine biodiversity and GEnS Descriptors in the light of climate change. We emphasise that marine management has to accommodate 'shifting baselines' caused by climate change particularly during GEnS monitoring, assessment and management and 'unbounded boundaries' given the migration and dispersal of highly-mobile species. We suggest climate change may prevent GEnS being met, but Member States may rebut legal challenges by claiming that this is outside its control, force majeure or due to 'natural causes' (Article 14 of the MSFD). The analysis is relevant to management of other global seas.
Collapse
Affiliation(s)
- Michael Elliott
- Institute of Estuarine & Coastal Studies, University of Hull, Hull HU6 7RX, UK.
| | - Ángel Borja
- AZTI-Tecnalia, Marine Research Division, Herrera Kaia, Portualdea s/n, 20110 Pasaia, Spain
| | | | - Krysia Mazik
- Institute of Estuarine & Coastal Studies, University of Hull, Hull HU6 7RX, UK
| | - Silvana Birchenough
- Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, Suffolk NR33 OHT, UK
| | - Jesper H Andersen
- NIVA Denmark Water Research, Winghouse, Ørestads Boulevard 73, 2300 Copenhagen S, Denmark
| | - Suzanne Painting
- Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, Suffolk NR33 OHT, UK
| | - Myron Peck
- Institut für Hydrobiologie und Fischereiwissenschaft, Olbersweg 24, 22767 Hamburg, Germany
| |
Collapse
|
49
|
Arula T, Ojaveer H, Klais R. Impact of extreme climate and bioinvasion on temporal coupling of spring herring (Clupea harengus m.) larvae and their prey. MARINE ENVIRONMENTAL RESEARCH 2014; 102:102-109. [PMID: 24933435 DOI: 10.1016/j.marenvres.2014.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 04/21/2014] [Accepted: 05/08/2014] [Indexed: 06/03/2023]
Abstract
We used weekly observational data from mid-May to end of July in 1958-2012 in Gulf of Riga to investigate temporal coupling between spring herring larvae and their first prey - copepod nauplii, under the extreme hydroclimatic conditions. We focused on a small shallow estuary that is important nursery ground for larvae of the Gulf of Riga (Baltic Sea) herring population. We quantified the effect of extreme values of the winter air temperatures, time of ice retreat and spring water temperatures on the timing of peak abundance of herring larvae and copepod nauplii. We also assessed whether the invasion of the non-native cladoceran Cercopagis pengoi had notable effect on timing and abundance of copepod nauplii during the peak occurrence of herring larvae. In the years of earliest ice retreat the peak abundance of herring larvae was five weeks earlier than in the years of latest ice retreat, while the timing of nauplii remained unchanged. Abundant presence of the C. pengoi affected neither timing nor maximum abundance of copepod nauplii during the herring larvae first feeding period. Thus, we conclude that processes induced by climate variability are superior to invasion of C. pengoi in determining the timing and coupling of larval herring and copepod nauplii.
Collapse
Affiliation(s)
- T Arula
- Estonian Marine Institute, University of Tartu, Pärnu, Estonia.
| | - H Ojaveer
- Estonian Marine Institute, University of Tartu, Pärnu, Estonia
| | - R Klais
- Estonian Marine Institute, University of Tartu, Pärnu, Estonia; Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
50
|
Bi H, Ji R, Liu H, Jo YH, Hare JA. Decadal changes in zooplankton of the Northeast U.S. continental shelf. PLoS One 2014; 9:e87720. [PMID: 24498177 PMCID: PMC3909209 DOI: 10.1371/journal.pone.0087720] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/01/2014] [Indexed: 12/04/2022] Open
Abstract
The abundance of the subarctic copepod, Calanus finmarchicus, and temperate, shelf copepod, Centropages typicus, was estimated from samples collected bi-monthly over the Northeast U.S. continental shelf (NEUS) from 1977–2010. Latitudinal variation in long term trends and seasonal patterns for the two copepod species were examined for four sub-regions: the Gulf of Maine (GOM), Georges Bank (GB), Southern New England (SNE), and Mid-Atlantic Bight (MAB). Results suggested that there was significant difference in long term variation between northern region (GOM and GB), and the MAB for both species. C. finmarchicus generally peaked in May – June throughout the entire study region and Cen. typicus had a more complex seasonal pattern. Time series analysis revealed that the peak time for Cen. typicus switched from November – December to January - March after 1985 in the MAB. The long term abundance of C. finmarchicus showed more fluctuation in the MAB than the GOM and GB, whereas the long term abundance of Cen. typicus was more variable in the GB than other sub-regions. Alongshore transport was significantly correlated with the abundance of C. finmarchicus, i.e., more water from north, higher abundance for C. finmarchicus. The abundance of Cen. typicus showed positive relationship with the Gulf Stream north wall index (GSNWI) in the GOM and GB, but the GSNWI only explained 12–15% of variation in Cen. typicus abundance. In general, the alongshore current was negatively correlated with the GSNWI, suggesting that Cen. typicus is more abundant when advection from the north is less. However, the relationship between Cen. typicus and alongshore transport was not significant. The present study highlights the importance of spatial scales in the study of marine populations: observed long term changes in the northern region were different from the south for both species.
Collapse
Affiliation(s)
- Hongsheng Bi
- Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, Maryland, United States of America
- * E-mail:
| | - Rubao Ji
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Hui Liu
- Department of Marine Biology, Texas A & M University, Galveston, Texas, United States of America
| | - Young-Heon Jo
- Department of Oceanography, Pusan National University, Busan, South Korea
| | - Jonathan A. Hare
- Northeast Fisheries Science Center Narragansett Laboratory, National Marine Fisheries Service, Narragansett, Rhode Island, United States of America
| |
Collapse
|