1
|
Amadei M, Polticelli F, Musci G, Bonaccorsi di Patti MC. The Ferroxidase-Permease System for Transport of Iron Across Membranes: From Yeast to Humans. Int J Mol Sci 2025; 26:875. [PMID: 39940646 PMCID: PMC11817551 DOI: 10.3390/ijms26030875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/16/2025] [Accepted: 01/19/2025] [Indexed: 02/16/2025] Open
Abstract
Transport of iron across the cell membrane is a tightly controlled process carried out by specific proteins in all living cells. In yeast and in mammals, a system formed by an enzyme with ferroxidase activity coupled to a membrane transporter supports iron uptake or iron efflux, respectively. Ferroxidase belongs to the family of blue multicopper oxidases, enzymes able to couple the one-electron oxidation of substrate(s) to full reduction of molecular oxygen to water. On the other hand, the permeases are widely different and are specific to Fe3+ and Fe2+ in yeast and multicellular organisms, respectively. This review will describe the yeast and human ferroxidase-permease systems, highlighting similarities and differences in structure, function and regulation of the respective protein components.
Collapse
Affiliation(s)
- Matteo Amadei
- Department of Biochemical Sciences ‘A. Rossi Fanelli’, Sapienza University of Rome, 00185 Rome, Italy;
| | | | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
| | | |
Collapse
|
2
|
Tian S, Wang B, Ding Y, Zhang Y, Yu P, Chang YZ, Gao G. The role of iron transporters and regulators in Alzheimer's disease and Parkinson's disease: Pathophysiological insights and therapeutic prospects. Biomed Pharmacother 2024; 179:117419. [PMID: 39245001 DOI: 10.1016/j.biopha.2024.117419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024] Open
Abstract
Brain iron homeostasis plays a vital role in maintaining brain development and controlling neuronal function under physiological conditions. Many studies have shown that the imbalance of brain iron homeostasis is closely related to the pathogenesis of neurodegenerative diseases (NDs), such as Alzheimer's disease (AD) and Parkinson's disease (PD). Recent advances have revealed the importance of iron transporters and regulatory molecules in the pathogenesis and treatment of NDs. This review summarizes the research progress on brain iron overload and the aberrant expression of several key iron transporters and regulators in AD and PD, emphasizes the pathological roles of these molecules in the pathogenesis of AD and PD, and highlights the therapeutic prospects of targeting these iron transporters and regulators to restore brain iron homeostasis in the treatment of AD and PD. A comprehensive understanding of the pathophysiological roles of iron, iron transporters and regulators, and their regulations in NDs may provide new therapeutic avenues for more targeted neurotherapeutic strategies for treating these diseases.
Collapse
Affiliation(s)
- Siqi Tian
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Bing Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yiqian Ding
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yu Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Peng Yu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| | - Yan-Zhong Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| | - Guofen Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| |
Collapse
|
3
|
Helman SL, Zhou J, Fuqua BK, Lu Y, Collins JF, Chen H, Vulpe CD, Anderson GJ, Frazer DM. The biology of mammalian multi-copper ferroxidases. Biometals 2023; 36:263-281. [PMID: 35167013 PMCID: PMC9376197 DOI: 10.1007/s10534-022-00370-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/04/2022] [Indexed: 12/24/2022]
Abstract
The mammalian multicopper ferroxidases (MCFs) ceruloplasmin (CP), hephaestin (HEPH) and zyklopen (ZP) comprise a family of conserved enzymes that are essential for body iron homeostasis. Each of these enzymes contains six biosynthetically incorporated copper atoms which act as intermediate electron acceptors, and the oxidation of iron is associated with the four electron reduction of dioxygen to generate two water molecules. CP occurs in both a secreted and GPI-linked (membrane-bound) form, while HEPH and ZP each contain a single C-terminal transmembrane domain. These enzymes function to ensure the efficient oxidation of iron so that it can be effectively released from tissues via the iron export protein ferroportin and subsequently bound to the iron carrier protein transferrin in the blood. CP is particularly important in facilitating iron release from the liver and central nervous system, HEPH is the major MCF in the small intestine and is critical for dietary iron absorption, and ZP is important for normal hair development. CP and HEPH (and possibly ZP) function in multiple tissues. These proteins also play other (non-iron-related) physiological roles, but many of these are ill-defined. In addition to disrupting iron homeostasis, MCF dysfunction perturbs neurological and immune function, alters cancer susceptibility, and causes hair loss, but, despite their importance, how MCFs co-ordinately maintain body iron homeostasis and perform other functions remains incompletely understood.
Collapse
Affiliation(s)
- Sheridan L Helman
- Molecular Nutrition Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jie Zhou
- Department of Physiological Sciences, University of Florida, Gainsville, FL, USA
| | - Brie K Fuqua
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yan Lu
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia
- Mucosal Immunology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - James F Collins
- Food Science and Human Nutrition Department, University of Florida, Gainsville, FL, USA
| | - Huijun Chen
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Christopher D Vulpe
- Department of Physiological Sciences, University of Florida, Gainsville, FL, USA
| | - Gregory J Anderson
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia.
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, Australia.
| | - David M Frazer
- Molecular Nutrition Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
4
|
Zhang KR, Baumann B, Song Y, Sterling J, Erler EA, Guttha S, Kozmik Z, Dunaief JL. Conditional knockout of hephaestin in the neural retina disrupts retinal iron homeostasis. Exp Eye Res 2022; 218:109028. [PMID: 35271829 PMCID: PMC9050911 DOI: 10.1016/j.exer.2022.109028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 11/18/2022]
Abstract
Iron accumulation has been implicated in degenerative retinal diseases. It can catalyze the production of damaging reactive oxygen species. Previous work has demonstrated iron accumulation in multiple retinal diseases, including age-related macular degeneration and diabetic retinopathy. In mice, systemic knockout of the ferroxidases ceruloplasmin (Cp) and hephaestin (Heph), which oxidize iron, results in retinal iron accumulation and iron-induced degeneration. To determine the role of Heph in the retina, we generated a neural retina-specific Heph knockout on a background of systemic Cp knockout. This resulted in elevated neural retina iron. Conversely, retinal ganglion cells had elevated transferrin receptor and decreased ferritin, suggesting diminished iron levels. The retinal degeneration observed in systemic Cp-/-, Heph-/- mice did not occur. These findings indicate that Heph has a local role in regulating neural retina iron homeostasis, but also suggest that preserved Heph function in either the RPE or systemically mitigates the degeneration phenotype observed in the systemic Cp-/-, Heph-/- mice.
Collapse
Affiliation(s)
- Kevin R Zhang
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, 422 Curie Blvd., Philadelphia, PA, 19104, USA.
| | - Bailey Baumann
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, 422 Curie Blvd., Philadelphia, PA, 19104, USA.
| | - Ying Song
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, 422 Curie Blvd., Philadelphia, PA, 19104, USA.
| | - Jacob Sterling
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, 422 Curie Blvd., Philadelphia, PA, 19104, USA.
| | - Elizabeth A Erler
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, 422 Curie Blvd., Philadelphia, PA, 19104, USA.
| | - Samyuktha Guttha
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, 422 Curie Blvd., Philadelphia, PA, 19104, USA.
| | - Zbynek Kozmik
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, ASCR, v. v. i. Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| | - Joshua L Dunaief
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, 422 Curie Blvd., Philadelphia, PA, 19104, USA.
| |
Collapse
|
5
|
Venkataramani V. Iron Homeostasis and Metabolism: Two Sides of a Coin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1301:25-40. [PMID: 34370286 DOI: 10.1007/978-3-030-62026-4_3] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Iron is an ancient, essential and versatile transition metal found in almost all living organisms on Earth. This fundamental trace element is used in the synthesis of heme and iron-sulfur (Fe-S) containing proteins and other vital cofactors that are involved in respiration, redox reactions, catalysis, DNA synthesis and transcription. At the same time, the ability of iron to cycle between its oxidized, ferric (Fe3+) and its reduced, ferrous (Fe2+) state contributes to the production of free radicals that can damage biomolecules, including proteins, lipids and DNA. In particular, the regulated non-apoptotic cell death ferroptosis is driven by Fe2+-dependent lipid peroxidation that can be prevented by iron chelation or genetic inhibition of cellular iron uptake. Therefore, iron homeostasis must be tightly regulated to avoid iron toxicity. This review provides an overview of the origin and chemistry of iron that makes it suitable for a variety of biological functions and addresses how organisms evolved various strategies, including their scavenging and antioxidant machinery, to manage redox-associated drawbacks. Finally, key mechanisms of iron metabolism are highlighted in human diseases and model organisms, underlining the perils of dysfunctional iron handlings.
Collapse
Affiliation(s)
- Vivek Venkataramani
- Institute of Pathology, University Medical Center Göttingen (UMG), Göttingen, Germany.
| |
Collapse
|
6
|
Aslan ES, N White K, A Syed B, S Srai K, W Evans R. Expression of soluble, active, fluorescently tagged hephaestin in COS and CHO cell lines. ACTA ACUST UNITED AC 2020; 44:393-405. [PMID: 33402866 PMCID: PMC7759196 DOI: 10.3906/biy-2005-39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 09/23/2020] [Indexed: 11/29/2022]
Abstract
Hephaestin (Hp) is a trans-membrane protein, which plays a critical role in intestinal iron absorption. Hp was originally identified as the gene responsible for the phenotype of sex-linked anaemia in the
sla
mouse. The mutation in the
sla
protein causes accumulation of dietary iron in duodenal cells, causing severe microcytic hypochromic anaemia. Although mucosal uptake of dietary iron is normal, export from the duodenum is inhibited. Hp is homologous to ceruloplasmin (Cp), a member of the family of multi copper ferroxidases (MCFs) and possesses ferroxidase activity that facilitates iron release from the duodenum and load onto the serum iron transport protein transferrin. In the present study, attempts were made to produce biologically active recombinant mouse hephaestin as a secretory form tagged with green fluorescent protein (GFP), Hpsec-GFP. Plasmid expressing Hpsec-GFP was constructed and transfected into COS and CHO cells. The GFP aided the monitoring expression in real time to select the best conditions to maximise expression and provided a tag for purifying and analysing Hpsec-GFP. The protein had detectable oxidase activity as shown by in-gel and solution-based assays. The methods described here can provide the basis for further work to probe the interaction of hephaestin with other proteins using complementary fluorescent tags on target proteins that would facilitate the fluorescence resonance energy transfer measurements, for example with transferrin or colocalisation studies, and help to discover more about hephaestin works at the molecular level.
Collapse
Affiliation(s)
- Elif Sibel Aslan
- Department of Molecular Biology and Genetics, Faculty of Engineer and Natural Science, Biruni University, İstanbul Turkey
| | - Kenneth N White
- School of Human Sciences, London Metropolitan University, London UK
| | | | - Kaila S Srai
- Division of Biosciences, University College London, London UK
| | - Robert W Evans
- Metalloprotein Research Group, Division of Biosciences, School of Health Sciences and Social Care, Brunel University, Uxbridge UK
| |
Collapse
|
7
|
Baumann BH, Shu W, Song Y, Simpson EM, Lakhal-Littleton S, Dunaief JL. Ferroportin-mediated iron export from vascular endothelial cells in retina and brain. Exp Eye Res 2019; 187:107728. [PMID: 31323276 PMCID: PMC6759385 DOI: 10.1016/j.exer.2019.107728] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/05/2019] [Accepted: 07/15/2019] [Indexed: 12/29/2022]
Abstract
Retinal iron accumulation has been implicated in the pathogenesis of age-related macular degeneration (AMD) and other neurodegenerative diseases. The retina and the brain are protected from the systemic circulation by the blood retinal barrier (BRB) and blood brain barrier (BBB), respectively. Iron levels within the retina and brain need to be tightly regulated to prevent oxidative injury. The method of iron entry through the retina and brain vascular endothelial cells (r&bVECs), an essential component of the BRB and BBB, is not fully understood. However, localization of the cellular iron exporter, ferroportin (Fpn), to the abluminal membrane of these cells, leads to the hypothesis that Fpn may play an important role in the import of iron across the BRB and BBB. To test this hypothesis, a mouse model with deletion of Fpn within the VECs in both the retina and the brain was developed through tail vein injection of AAV9-Ple261(CLDN5)-icre to both experimental Fpnf/f, and control Fpn+/+ mice at P21. Mice were aged to 9 mo and changes in retinal and brain iron distribution were observed. In vivo fundus imaging and quantitative serum iron detection were used for model validation. Eyes and brains were collected for immunofluorescence. Deletion of Fpn from the retinal and brain VECs leads to ferritin-L accumulation, an indicator of elevated iron levels, in the retinal and brain VECs. This occurred despite lower serum iron levels in the experimental mice. This result suggests that Fpn normally transfers iron from retinal and brain VECs into the retina and brain. These results help to better define the method of retina and brain iron import and will increase understanding of neurodegenerative diseases involving iron accumulation.
Collapse
Affiliation(s)
- Bailey H Baumann
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, 422 Curie Blvd, Philadelphia, PA, 19104, USA.
| | - Wanting Shu
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, 422 Curie Blvd, Philadelphia, PA, 19104, USA; Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, No. 100 Haining Road, Shanghai, 200080, China.
| | - Ying Song
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, 422 Curie Blvd, Philadelphia, PA, 19104, USA.
| | - Elizabeth M Simpson
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, BC, V5Z 4H4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada.
| | - Samira Lakhal-Littleton
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
| | - Joshua L Dunaief
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, 422 Curie Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
8
|
Deshpande CN, Xin V, Lu Y, Savage T, Anderson GJ, Jormakka M. Large scale expression and purification of secreted mouse hephaestin. PLoS One 2017; 12:e0184366. [PMID: 28880952 PMCID: PMC5589216 DOI: 10.1371/journal.pone.0184366] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/22/2017] [Indexed: 01/04/2023] Open
Abstract
Hephaestin is a large membrane-anchored multicopper ferroxidase involved in mammalian iron metabolism. Newly absorbed dietary iron is exported across the enterocyte basolateral membrane by the ferrous iron transporter ferroportin, but hephaestin increases the efficiency of this process by oxidizing the transported iron to its ferric form and promoting its release from ferroportin. Deletion or mutation of the hephaestin gene leads to systemic anemia with iron accumulation in the intestinal epithelium. The crystal structure of human ceruloplasmin, another multicopper ferroxidase with 50% sequence identity to hephaestin, has provided a framework for comparative analysis and modelling. However, detailed structural information for hephaestin is still absent, leaving questions relating to metal coordination and binding sites unanswered. To obtain structural information for hephaestin, a reliable protocol for large-scale purification is required. Here, we present an expression and purification protocol of soluble mouse hephaestin, yielding milligram amounts of enzymatically active, purified protein using the baculovirus/insect cell system.
Collapse
Affiliation(s)
- Chandrika N. Deshpande
- Structural Biology Program, Centenary Institute, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Vicky Xin
- Structural Biology Program, Centenary Institute, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Yan Lu
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Tom Savage
- School of Geosciences, University of Sydney, Sydney, New South Wales, Australia
| | - Gregory J. Anderson
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Mika Jormakka
- Structural Biology Program, Centenary Institute, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
9
|
Ion channelopathies and migraine pathogenesis. Mol Genet Genomics 2017; 292:729-739. [DOI: 10.1007/s00438-017-1317-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
|
10
|
Ogra Y. Molecular mechanisms underlying copper homeostasis in Mammalian cells. Nihon Eiseigaku Zasshi 2015; 69:136-45. [PMID: 24858509 DOI: 10.1265/jjh.69.136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Copper (Cu) is an essential metal for living organisms that utilize oxygen for respiration and is required as a cofactor of redox-regulating enzymes, such as superoxide dismutase, ceruloplasmin, lysyl oxidase, tyrosinase, and dopamine β-hydroxylase. However, the redox-active property of this metal may have toxic effects on cells due to the generation of harmful reactive oxygen species. Given these circumstances, it is said that cells have a dependable system for Cu homeostasis that efficiently distributes this essential metal to cuproenzymes, thereby preventing damage to proteins, nucleic acids, sugars, and lipids. In particular, influx, efflux, and intracellular distribution with maintenance of the oxidation state of Cu are strictly regulated. Several groups of Cu-regulating factors have been identified in mammalian cells, i.e., Cu transporters, Cu chaperones, Cu-binding proteins/peptides, and others. In this review, the features of the Cu-regulating factors are concisely examined in terms of molecular mechanisms underlying Cu homeostasis in cells.
Collapse
Affiliation(s)
- Yasumitsu Ogra
- Laboratory of Chemical Toxicology and Environmental Health, Showa Pharmaceutical University
| |
Collapse
|
11
|
The multicopper ferroxidase hephaestin enhances intestinal iron absorption in mice. PLoS One 2014; 9:e98792. [PMID: 24896847 PMCID: PMC4045767 DOI: 10.1371/journal.pone.0098792] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/06/2014] [Indexed: 12/31/2022] Open
Abstract
Hephaestin is a vertebrate multicopper ferroxidase important for the transfer of dietary iron from intestinal cells to the blood. Hephaestin is mutated in the sex-linked anemia mouse, resulting in iron deficiency. However, sex-linked anemia mice still retain some hephaestin ferroxidase activity. They survive, breed, and their anemia improves with age. To gain a better understanding of the role of hephaestin in iron homeostasis, we used the Cre-lox system to generate knockout mouse models with whole body or intestine-specific (Villin promoter) ablation of hephaestin. Both types of mice were viable, indicating that hephaestin is not essential and that other mechanisms, multicopper ferroxidase-dependent or not, must compensate for hephaestin deficiency. The knockout strains, however, both developed a microcytic, hypochromic anemia, suggesting severe iron deficiency and confirming that hephaestin plays an important role in body iron acquisition. Consistent with this, the knockout mice accumulated iron in duodenal enterocytes and had reduced intestinal iron absorption. In addition, the similarities of the phenotypes of the whole body and intestine-specific hephaestin knockout mice clarify the important role of hephaestin specifically in intestinal enterocytes in maintaining whole body iron homeostasis. These mouse models will serve as valuable tools to study the role of hephaestin and associated proteins in iron transport in the small intestine and other tissues.
Collapse
|
12
|
Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L. Copper active sites in biology. Chem Rev 2014; 114:3659-853. [PMID: 24588098 PMCID: PMC4040215 DOI: 10.1021/cr400327t] [Citation(s) in RCA: 1219] [Impact Index Per Article: 110.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - David E. Heppner
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | - Jake W. Ginsbach
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Jordi Cirera
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Munzarin Qayyum
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | | | - Ryan G. Hadt
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Li Tian
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| |
Collapse
|
13
|
Multi-copper oxidases and human iron metabolism. Nutrients 2013; 5:2289-313. [PMID: 23807651 PMCID: PMC3738974 DOI: 10.3390/nu5072289] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/29/2013] [Accepted: 06/06/2013] [Indexed: 01/13/2023] Open
Abstract
Multi-copper oxidases (MCOs) are a small group of enzymes that oxidize their substrate with the concomitant reduction of dioxygen to two water molecules. Generally, multi-copper oxidases are promiscuous with regards to their reducing substrates and are capable of performing various functions in different species. To date, three multi-copper oxidases have been detected in humans—ceruloplasmin, hephaestin and zyklopen. Each of these enzymes has a high specificity towards iron with the resulting ferroxidase activity being associated with ferroportin, the only known iron exporter protein in humans. Ferroportin exports iron as Fe2+, but transferrin, the major iron transporter protein of blood, can bind only Fe3+ effectively. Iron oxidation in enterocytes is mediated mainly by hephaestin thus allowing dietary iron to enter the bloodstream. Zyklopen is involved in iron efflux from placental trophoblasts during iron transfer from mother to fetus. Release of iron from the liver relies on ferroportin and the ferroxidase activity of ceruloplasmin which is found in blood in a soluble form. Ceruloplasmin, hephaestin and zyklopen show distinctive expression patterns and have unique mechanisms for regulating their expression. These features of human multi-copper ferroxidases can serve as a basis for the precise control of iron efflux in different tissues. In this manuscript, we review the biochemical and biological properties of the three human MCOs and discuss their potential roles in human iron homeostasis.
Collapse
|
14
|
Functional role of the putative iron ligands in the ferroxidase activity of recombinant human hephaestin. J Biol Inorg Chem 2012; 17:1187-95. [PMID: 22961397 DOI: 10.1007/s00775-012-0932-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 08/16/2012] [Indexed: 01/10/2023]
Abstract
Hephaestin is a multicopper ferroxidase expressed mainly in the mammalian small intestine. The ferroxidase activity of hephaestin is thought to play an important role during iron export from intestinal enterocytes and the subsequent iron loading of the blood protein transferrin, which delivers iron to the tissues. Structurally, the ectodomain of hephaestin is predicted to resemble ceruloplasmin, the soluble ferroxidase of blood. In this study, the human hephaestin ectodomain was expressed in baby hamster kidney cells and purified to electrophoretic homogeneity. Ion exchange chromatography of purified recombinant human hephaestin (rhHp) resulted in the isolation of hephaestin fractions with distinct catalytic and spectroscopic properties. The fraction of rhHp with the highest enzymatic activity also showed an enhanced molar absorptivity at 600 nm, characteristic of type 1 copper sites. Kinetic analysis revealed that rhHp possesses both high-affinity and low-affinity binding sites for ferrous iron. To investigate the role of particular residues in iron specificity of hephaestin, mutations of putative iron ligands were introduced into rhHp using site-directed mutagenesis. Kinetic analysis of ferroxidation rates of wild-type rhHp and mutants demonstrated the important roles of hephaestin residues E960 and H965 in the observed ferroxidase activity.
Collapse
|
15
|
Wolkow N, Song D, Song Y, Chu S, Hadziahmetovic M, Lee JC, Iacovelli J, Grieco S, Dunaief JL. Ferroxidase hephaestin's cell-autonomous role in the retinal pigment epithelium. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1614-24. [PMID: 22342521 DOI: 10.1016/j.ajpath.2011.12.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 12/11/2011] [Accepted: 12/20/2011] [Indexed: 01/04/2023]
Abstract
Hephaestin (Heph) is a ferroxidase protein that converts ferrous to ferric iron to facilitate cellular iron export by ferroportin. Many tissues express either Heph or its homologue, ceruloplasmin (Cp), but the retina expresses both. In mice, a combined systemic mutation of Heph and systemic knockout of Cp (Cp(-/-), Heph(sla/sla)) causes retinal iron accumulation and retinal degeneration, with features of human age-related macular degeneration; however, the role of Heph and Cp in the individual retinal cells is unclear. Herein, we used conditional knockout mice to study Heph's role in retinal pigment epithelial (RPE) and photoreceptor cells. Loss of both Heph and Cp from RPE cells alone results in RPE cell iron accumulation and degeneration. We found, however, that RPE iron accumulation in these conditional knockout mice is not as great as in systemic knockout mice. Photoreceptor-specific Heph knockout indicates that the additional iron in the RPE cells does not result from loss of ferroxidases in the photoreceptors, and Cp and Heph play minor roles in photoreceptors. Instead, loss of ferroxidases in other retinal cells causes retinal iron accumulation and transfer of iron to the RPE cells. Cp and Heph are necessary for iron export from the retina but are not essential for iron import into the retina. Thus, our studies, revise how we think about iron import and export from the retina.
Collapse
Affiliation(s)
- Natalie Wolkow
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Vashchenko G, Bleackley MR, Griffiths TAM, MacGillivray RTA. Oxidation of organic and biogenic amines by recombinant human hephaestin expressed in Pichia pastoris. Arch Biochem Biophys 2011; 514:50-6. [PMID: 21802403 DOI: 10.1016/j.abb.2011.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 06/28/2011] [Accepted: 07/12/2011] [Indexed: 11/15/2022]
Abstract
Hephaestin is a multicopper ferroxidase involved in iron absorption in the small intestine. Expressed mainly on the basolateral surface of duodenal enterocytes, hephaestin facilitates the export of iron from the intestinal epithelium into blood by oxidizing Fe(2+) into Fe(3+), the only form of iron bound by the plasma protein transferrin. Structurally, the human hephaestin ectodomain is predicted to resemble ceruloplasmin, the major multicopper oxidase in blood. In addition to its ferroxidase activity, ceruloplasmin was reported to oxidize a wide range of organic compounds including a group of physiologically relevant substrates (biogenic amines). To study oxidation of organic substrates, the human hephaestin ectodomain was expressed in Pichia pastoris. The purified recombinant hephaestin has an average copper content of 4.2 copper atoms per molecule. The K(m) for Fe(2+) of hephaestin was determined to be 3.2μM which is consistent with the K(m) values for other multicopper ferroxidases. In addition, the K(m) values of hephaestin for such organic substrates as p-phenylenediamine and o-dianisidine are close to values determined for ceruloplasmin. However, in contrast to ceruloplasmin, hephaestin was incapable of direct oxidation of adrenaline and dopamine implying a difference in biological substrate specificities between these two homologous ferroxidases.
Collapse
Affiliation(s)
- Ganna Vashchenko
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
17
|
Abstract
Multi-copper oxidases are a large family of enzymes prevalent in all three domains of life. They couple the one-electron oxidation of substrate to the four-electron reduction of dioxygen to water and feature at least four Cu atoms, traditionally divided into three sites: T1, T2, and (binuclear) T3. The T1 site catalyzes substrate oxidation while a trinuclear cluster (comprising combined T2 and T3 centres) catalyzes the reduction of dioxygen. Substrate oxidation at the T1 Cu site occurs via an outer-sphere mechanism and consequently substrate specificities are determined primarily by the nature of a substrate docking/oxidation (SDO) site associated with the T1 Cu centre. Many of these enzymes ‘moonlight’, i.e. display broad specificities towards many different substrates and may have multiple cellular functions. A sub-set are robust catalysts for the oxidation of low-valent transition metal ions such as FeII, CuI, and MnII and are termed ‘metallo-oxidases’. They play essential roles in nutrient metal uptake and homeostasis, with the ferroxidase ceruloplasmin being a prominent member. Their SDO sites are tailored to facilitate specific binding and facile oxidation of these low-valent metal ions and this is the focus of this review.
Collapse
|
18
|
Chen H, Attieh ZK, Syed BA, Kuo Y, Stevens V, Fuqua BK, Andersen HS, Naylor CE, Evans RW, Gambling L, Danzeisen R, Bacouri‐Haidar M, Usta J, Vulpe CD, McArdle HJ. Identification of zyklopen, a new member of the vertebrate multicopper ferroxidase family, and characterization in rodents and human cells. J Nutr 2010; 140:1728-35. [PMID: 20685892 PMCID: PMC2937573 DOI: 10.3945/jn.109.117531] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 01/08/2010] [Accepted: 07/06/2010] [Indexed: 11/14/2022] Open
Abstract
We previously detected a membrane-bound, copper-containing oxidase that may be involved in iron efflux in BeWo cells, a human placental cell line. We have now identified a gene encoding a predicted multicopper ferroxidase (MCF) with a putative C-terminal membrane-spanning sequence and high sequence identity to hephaestin (Heph) and ceruloplasmin (Cp), the other known vertebrate MCF. Molecular modeling revealed conservation of all type I, II, and III copper-binding sites as well as a putative iron-binding site. Protein expression was observed in multiple diverse mouse tissues, including placenta and mammary gland, and the expression pattern was distinct from that of Cp and Heph. The protein possessed ferroxidase activity, and protein levels decreased in cellular copper deficiency. Knockdown with small interfering RNA in BeWo cells indicates that this gene represents the previously detected oxidase. We propose calling this new member of the MCF family "zyklopen."
Collapse
Affiliation(s)
- Huijun Chen
- Department of Nutritional Science and Toxicology, University of California, Berkeley, CA 94720
- Medical School, Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Zouhair K. Attieh
- Department of Nutritional Science and Toxicology, University of California, Berkeley, CA 94720
- Department of Laboratory Science and Technology, American University of Science and Technology, Ashrafieh 1100, Lebanon
| | - Basharut A. Syed
- Department of Nutritional Science and Toxicology, University of California, Berkeley, CA 94720
- Visiongain Ltd, London EC1V 2QY, UK
| | - Yien‐Ming Kuo
- Department of Medicine, University of California, San Francisco, CA 94143
| | - Valerie Stevens
- Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, AB21 9SB, UK
| | - Brie K. Fuqua
- Department of Nutritional Science and Toxicology, University of California, Berkeley, CA 94720
| | - Henriette S. Andersen
- Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, AB21 9SB, UK
| | - Claire E. Naylor
- Department of Crystallography, Birkbeck College, London, WC1E 7HX, UK
| | - Robert W. Evans
- Division of Biosciences, Centre for Infection, Immunity and Disease Mechanisms, School of Health Sciences and Social Care, Brunel University, Uxbridge, Middlesex, UB8 3PH, UK
| | - Lorraine Gambling
- Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, AB21 9SB, UK
| | - Ruth Danzeisen
- Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, AB21 9SB, UK
- International Copper Association, Inc., New York, NY 10016
| | - Mhenia Bacouri‐Haidar
- Department of Biology, Faculty of Sciences, Lebanese University, Hadath 1500, Lebanon
| | - Julnar Usta
- Department of Biochemistry, School of Medicine, American University of Beirut, Beirut 1103, Lebanon
| | - Chris D. Vulpe
- Department of Nutritional Science and Toxicology, University of California, Berkeley, CA 94720
| | - Harry J. McArdle
- Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, AB21 9SB, UK
| |
Collapse
|
19
|
Harrison-Findik DD. Gender-related variations in iron metabolism and liver diseases. World J Hepatol 2010; 2:302-10. [PMID: 21161013 PMCID: PMC2999297 DOI: 10.4254/wjh.v2.i8.302] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 06/30/2010] [Accepted: 07/07/2010] [Indexed: 02/06/2023] Open
Abstract
The regulation of iron metabolism involves multiple organs including the duodenum, liver and bone marrow. The recent discoveries of novel iron-regulatory proteins have brought the liver to the forefront of iron homeostasis. The iron overload disorder, genetic hemochromatosis, is one of the most prevalent genetic diseases in individuals of Caucasian origin. Furthermore, patients with non-hemochromatotic liver diseases, such as alcoholic liver disease, chronic hepatitis C or nonalcoholic steatohepatitis, often exhibit elevated serum iron indices (ferritin, transferrin saturation) and mild to moderate hepatic iron overload. Clinical data indicate significant differences between men and women regarding liver injury in patients with alcoholic liver disease, chronic hepatitis C or nonalcoholic steatohepatitis. The penetrance of genetic hemochromatosis also varies between men and women. Hepcidin has been suggested to act as a modifier gene in genetic hemochromatosis. Hepcidin is a circulatory antimicrobial peptide synthesized by the liver. It plays a pivotal role in the regulation of iron homeostasis. Hepcidin has been shown to be regulated by iron, inflammation, oxidative stress, hypoxia, alcohol, hepatitis C and obesity. Sex and genetic background have also been shown to modulate hepcidin expression in mice. The role of gender in the regulation of human hepcidin gene expression in the liver is unknown. However, hepcidin may play a role in gender-based differences in iron metabolism and liver diseases. Better understanding of the mechanisms associated with gender-related differences in iron metabolism and chronic liver diseases may enable the development of new treatment strategies.
Collapse
Affiliation(s)
- Duygu D Harrison-Findik
- Duygu D Harrison-Findik, Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5820, United States
| |
Collapse
|
20
|
Abstract
Aerobic organisms are faced with a dilemma. Environmental iron is found primarily in the relatively inert Fe(III) form, whereas the more metabolically active ferrous form is a strong pro-oxidant. This conundrum is solved by the redox cycling of iron between Fe(III) and Fe(II) at every step in the iron metabolic pathway. As a transition metal ion, iron can be "metabolized" only by this redox cycling, which is catalyzed in aerobes by the coupled activities of ferric iron reductases (ferrireductases) and ferrous iron oxidases (ferroxidases).
Collapse
Affiliation(s)
- Daniel J Kosman
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14214.
| |
Collapse
|
21
|
Analysis of the high-affinity iron uptake system at the Chlamydomonas reinhardtii plasma membrane. EUKARYOTIC CELL 2010; 9:815-26. [PMID: 20348389 DOI: 10.1128/ec.00310-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Multicopper ferroxidases play a vital role in iron metabolism in bacteria, fungi, algae, and mammals. Saccharomyces cerevisiae utilizes a channeling mechanism to couple the ferroxidase activity of Fet3p to Fe(3+) transport into the cell by Ftr1p. In contrast, the mechanisms by which mammals couple the ferroxidase reaction to iron trafficking is unclear. The human ferroxidases ceruloplasmin and hephaestin are twice the size of Fet3p and interact with proteins that are not expressed in fungi. Chlamydomonas FOX1 is a homolog of the human ferroxidases but likely supports iron uptake in a manner similar to that of yeast, since Chlamydomonas reinhardtii expresses a ferric iron permease homolog, FTR1. The results presented support this hypothesis. We show that FOX1 is trafficked to the plasma membrane and is oriented with its multicopper oxidase/ferroxidase domain in the exocytoplasmic space. Our analysis of FTR1 indicates its topology is similar to that of S. cerevisiae Ftr1p, with a potential exocytoplasmic iron channeling motif and two potential iron permeation motifs in membrane-spanning regions. We demonstrate that high-affinity iron uptake is dependent on FOX1 and the copper status of the cell. Kinetic inhibition of high-affinity iron uptake by a ferric iron chelator does not reflect the strength of the chelator, supporting a ferric iron channeling mechanism for high-affinity iron uptake in Chlamydomonas. Last, recombinant FOX1 (rFOX1) has been isolated in a partially holo form that exhibits the UV-visible absorbance spectrum of a multicopper oxidase and the catalytic activity of a ferroxidase.
Collapse
|
22
|
Hudson DM, Curtis SB, Smith VC, Griffiths TAM, Wong AYK, Scudamore CH, Buchan AMJ, MacGillivray RTA. Human hephaestin expression is not limited to enterocytes of the gastrointestinal tract but is also found in the antrum, the enteric nervous system, and pancreatic {beta}-cells. Am J Physiol Gastrointest Liver Physiol 2010; 298:G425-32. [PMID: 20019163 DOI: 10.1152/ajpgi.00453.2009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hephaestin (Hp) is a membrane protein with ferroxidase activity that converts Fe(II) to Fe(III) during the absorption of nutritional iron in the gut. Using anti-peptide antibodies to predicted immunogenic regions of rodent Hp, previous immunocytochemical studies in rat, mouse, and human gut tissues localized Hp to the basolateral membranes of the duodenal enterocytes where the Hp was predicted to aid in the transfer of Fe(III) to transferrin in the blood. We used a recombinant soluble form of human Hp to obtain a high-titer polyclonal antibody to Hp. This antibody was used to identify the intracellular location of Hp in human gut tissue. Our immunocytochemical studies confirmed the previous localization of Hp in human enterocytes. However, we also localized Hp to the entire length of the gastrointestinal tract, the antral portion of the stomach, and to the enteric nervous system (both the myenteric and submucous plexi). Hp was also localized to human pancreatic beta-cells. In addition to its expression in the same cells as Hp, ferroportin was also localized to the ductal cells of the exocrine pancreas. The localization of the ferroxidase Hp to the neuronal plexi and the pancreatic beta cells suggests a role for the enzymatic function of Hp in the protection of these specialized cell types from oxidative damage.
Collapse
Affiliation(s)
- David M Hudson
- Centre for Blood Research and Department of Biochemistry, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Núñez MT. Regulatory mechanisms of intestinal iron absorption-uncovering of a fast-response mechanism based on DMT1 and ferroportin endocytosis. Biofactors 2010; 36:88-97. [PMID: 20232409 DOI: 10.1002/biof.84] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Knowledge on the intestinal iron transport process and the regulation of body iron stores has greatly increased during the last decade. The liver, through the sensing of circulating iron, is now recognized as the central organ in this regulation. High iron levels induce the synthesis of hepcidin, which in turn decreases circulating iron by inhibiting its recycling from macrophages and its absorption at the intestine. Another mechanism for the control of iron absorption by the enterocyte is an active Iron Responsive Element (IRE)/Iron Regulatory Protein (IRP) system. The IRE/IRP system regulates the expression of iron uptake and storage proteins thus regulating iron absorption. Similarly, increasing evidence points to the transcriptional regulation of both divalent metal transporter 1 (DMT1) and ferroportin expression. A new mechanism of regulation related to a phenomenon called the mucosal block is starting to be unveiled. The mucosal block describes the ability of an initial dose of ingested iron to block absorption of a second dose given 2-4 h later. Here, we review the mechanisms involved in the expression of DMT1 and ferroportin, and present recent evidence on the molecular components and cellular processes involved in the mucosal block response. Our studies indicate that mucosal block is a fast-response endocytic mechanism destined to decrease intestinal iron absorption during a high ingest of iron.
Collapse
Affiliation(s)
- Marco T Núñez
- Department of Biology, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
24
|
Abstract
Iron (Fe) is an essential, but potentially noxious, metal for almost all organisms. Its precise cellular regulation is necessary to ensure synthesis of numerous iron-containing proteins required for metabolic processes yet at the same time avoiding the build-up of potentially toxic levels of iron. In humans, iron-deficiency results in anemia, while excess iron can lead to organ damage as a result of a build-up of non-transferrin-bound iron (NTBI). In recent years, the cloning of novel proteins has clarified the mechanisms of iron uptake, storage and metabolic regulation. Our current knowledge of the molecular aspects of mammalian iron metabolism and NTBI are presented in this review.
Collapse
Affiliation(s)
- Basharut A Syed
- Metalloprotein Research Group, Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | | | | | | |
Collapse
|
25
|
Hower V, Mendes P, Torti FM, Laubenbacher R, Akman S, Shulaev V, Torti SV. A general map of iron metabolism and tissue-specific subnetworks. MOLECULAR BIOSYSTEMS 2009; 5:422-43. [PMID: 19381358 PMCID: PMC2680238 DOI: 10.1039/b816714c] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Iron is required for survival of mammalian cells. Recently, understanding of iron metabolism and trafficking has increased dramatically, revealing a complex, interacting network largely unknown just a few years ago. This provides an excellent model for systems biology development and analysis. The first step in such an analysis is the construction of a structural network of iron metabolism, which we present here. This network was created using CellDesigner version 3.5.2 and includes reactions occurring in mammalian cells of numerous tissue types. The iron metabolic network contains 151 chemical species and 107 reactions and transport steps. Starting from this general model, we construct iron networks for specific tissues and cells that are fundamental to maintaining body iron homeostasis. We include subnetworks for cells of the intestine and liver, tissues important in iron uptake and storage, respectively, as well as the reticulocyte and macrophage, key cells in iron utilization and recycling. The addition of kinetic information to our structural network will permit the simulation of iron metabolism in different tissues as well as in health and disease.
Collapse
Affiliation(s)
- Valerie Hower
- Department of Cancer Biology, Wake Forest University School of Medicine, Medical Center Blvd, Winston Salem, NC 27157, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Cui R, Duan XL, Anderson GJ, Qiao YT, Yu P, Qian ZM, Yoshida K, Takeda S, Guo P, Yang ZL, Chang YZ. Age-dependent expression of hephaestin in the brain of ceruloplasmin-deficient mice. J Trace Elem Med Biol 2009; 23:290-9. [PMID: 19747625 DOI: 10.1016/j.jtemb.2009.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2008] [Revised: 04/28/2009] [Accepted: 05/05/2009] [Indexed: 11/25/2022]
Abstract
Aceruloplasminemia is an autosomal recessive disorder caused by mutations in the ceruloplasmin (CP) gene. It is characterized by iron accumulation in the brain and in visceral organs. However, little is known about the mechanism of iron transport in these regions. Adult CP null (CP(-/-)) mice show increased iron deposition in several regions of brain, such as the cerebellum and brainstem. In this study, we investigated the expression of the ceruloplasmin homolog hephaestin (Heph) in the brain of CP(-/-) mice as a function of age. In the cerebral cortex and caudate putamen of 80-week-old CP(-/-) mice, the expression of Heph increased significantly whilst iron levels remain normal [Patel BN, Dunn RJ, Jeong SY, Zhu Q, Julien JP, David S. Ceruloplasmin regulates iron levels in the CNS and prevents free radical injury. J Neurosci 2002;22(15):6578-6], indicating that Heph might compensate for the loss of CP. In contrast, the substantia nigra and cerebellum of 80-week-old CP(-/-) mice accumulate iron but do not express high levels or significant decrease of Heph, suggesting that Heph does not replace CP in these regions. These data suggest that Heph may compensate for the loss of CP in a region-specific manner.
Collapse
Affiliation(s)
- Rui Cui
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050016, Hebei Province, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Yeh KY, Yeh M, Mims L, Glass J, Torre A. Iron feeding induces ferroportin 1 and hephaestin migration and interaction in rat duodenal epithelium. Am J Physiol Gastrointest Liver Physiol 2009; 296:G55-65. [PMID: 18974313 PMCID: PMC3833992 DOI: 10.1152/ajpgi.90298.2008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal iron absorption involves proteins located in the brush border membrane (BBM), cytoplasm, and basolateral membrane (BLM) of duodenal enterocytes. Ferroportin 1 (FPN1) and hephaestin (Heph) are necessary for transport of iron out of enterocytes, but it is not known whether these two proteins interact during iron absorption. We first examined colocalization of the proteins by cotransfection of HEK293 cells with pDsRed-FPN1 with pEmGFP-Heph or with the COOH-terminal truncated pEmGFP-HephDelta43 or -HephDelta685 and found that FPN1 and Heph with or without the COOH terminus colocalized. In rat duodenal enterocytes, within 1 h of iron feeding prominent migration of FPN1 from the apical subterminal zone to the basal subnuclear zone of the BLM occurred and increased to at least 4 h after feeding. Heph exhibited a similar though less prominent migration after iron ingestion. Analysis using rat duodenal epithelial cell sheets demonstrated that 1) by velocity sedimentation ultracentrifugation, FPN1 and Heph occupied vesicles of different sizes prior to iron feeding and migrated to similar fractions 1 h after iron feeding; 2) by blue native/SDS-PAGE, FPN1, and Heph interacted to form two complexes, one containing dimeric FPN1 and intact Heph and the other consisting of monomeric FPN1 and a Heph fragment; and 3) by immunoprecipitation, anti-Heph or anti-FPN1 antiserum coimmunoprecipitated FPN1 and Heph. Thus the data indicate that FPN1 and Heph migrate and interact during iron feeding and suggest that dimeric FPN1 is associated with intact Heph.
Collapse
Affiliation(s)
- Kwo-yih Yeh
- Departments of Medicine,Molecular and Cellular Physiology,the Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Mary Yeh
- the Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Laura Mims
- the Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Jonathan Glass
- Departments of Medicine,the Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | | |
Collapse
|
28
|
Doolittle RF, Jiang Y, Nand J. Genomic evidence for a simpler clotting scheme in jawless vertebrates. J Mol Evol 2008; 66:185-96. [PMID: 18283387 DOI: 10.1007/s00239-008-9074-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 12/30/2007] [Accepted: 01/25/2008] [Indexed: 11/24/2022]
Abstract
Mammalian blood clotting involves numerous components, most of which are the result of gene duplications that occurred early in vertebrate evolution and after the divergence of protochordates. As such, the genomes of the jawless fish (hagfish and lamprey) offer the best possibility for finding systems that might have a reduced set of the many clotting factors observed in higher vertebrates. The most straightforward way of inventorying these factors may be through whole genome sequencing. In this regard, the NCBI Trace database ( http://www.ncbi.nlm.nih.gov/Traces/trace.cgi ) for the lamprey (Petromyzon marinus) contains more than 18 million raw DNA sequences determined by whole-genome shotgun methodology. The data are estimated to be about sixfold redundant, indicating that coverage is sufficiently complete to permit judgments about the presence or absence of particular genes. A search for 20 proteins whose sequences were determined prior to the trace database study found all 20. A subsequent search for specified coagulation factors revealed a lamprey system with a smaller number of components than is found in other vertebrates in that factors V and VIII seem to be represented by a single gene, and factor IX, which is ordinarily a cofactor of factor VIII, is not present. Fortuitously, after the completion of the survey of the Trace database, a draft assembly based on the same database was posted. The draft assembly allowed many of the identified Trace fragments to be linked into longer sequences that fully support the conclusion that lampreys have a simpler clotting scheme compared with other vertebrates. The data are also consistent with the hypothesis that a whole-genome duplication or other large scale block duplication occurred after the divergence of jawless fish from other vertebrates and allowed the simultaneous appearance of a second set of two functionally paired proteins in the vertebrate clotting scheme.
Collapse
Affiliation(s)
- Russell F Doolittle
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA 92093-0314, USA.
| | | | | |
Collapse
|
29
|
Hudson DM, Krisinger MJ, Griffiths TA, MacGillivray RT. Neither human hephaestin nor ceruloplasmin forms a stable complex with transferrin. J Cell Biochem 2008; 103:1849-55. [DOI: 10.1002/jcb.21566] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
30
|
Hofmann WP, Welsch C, Takahashi Y, Miyajima H, Mihm U, Krick C, Zeuzem S, Sarrazin C. Identification and in silico characterization of a novel compound heterozygosity associated with hereditary aceruloplasminemia. Scand J Gastroenterol 2007; 42:1088-94. [PMID: 17710675 DOI: 10.1080/00365520701278810] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Hereditary aceruloplasminemia is an adult-onset autosomal recessive disease characterized by increased iron overload in the liver, pancreas, retina, and central nervous system. So far, 45 families with cases of aceruloplasminemia have been reported world-wide and mainly missense and nonsense mutations in the ceruloplasmin gene were detected. MATERIAL AND METHODS Here, we report the identification, clinical characterization, and in silico analysis of a novel compound heterozygosity in the ceruloplasmin gene of a 31-year-old man with iron overload. RESULTS Increased serum ferritin levels, elevated iron saturation, as well as results of iron quantification in the liver and magnetic resonance imaging-based measurement of T2 relaxation times of the substantia nigra consistently suggested iron overload. By sequencing the ceruloplasmin gene, so far unknown nucleotide replacements G229C, and C2131A were detected in exons 2 and 12, respectively. In silico analyses showed that the resulting amino acid changes Asp58His and Gln692Lys are located at highly conserved positions. The Asp58His mutation is located on the surface of the protein, alters polarity, and may interfere with copper incorporation or ceruloplasmin trafficking. The Gln692Lys mutation is mapped to a beta-strand of domain 4 and may lead to conformational change of the cupredoxin fold. CONCLUSIONS As causative for aceruloplasminemia, a formerly unknown compound heterozygosity in the ceruloplasmin gene was identified. In silico characterization suggests an impact on ceruloplasmin conformation and function.
Collapse
Affiliation(s)
- Wolf Peter Hofmann
- Klinik für Innere Medizin II, Kirrbergerstrasse, Universitätsklinikum des Saarlandes, Homburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Rivers CA, Barton JC, Gordeuk VR, Acton RT, Speechley MR, Snively BM, Leiendecker-Foster C, Press RD, Adams PC, McLaren GD, Dawkins FW, McLaren CE, Reboussin DM. Association of ferroportin Q248H polymorphism with elevated levels of serum ferritin in African Americans in the Hemochromatosis and Iron Overload Screening (HEIRS) Study. Blood Cells Mol Dis 2007; 38:247-52. [PMID: 17276706 PMCID: PMC3727273 DOI: 10.1016/j.bcmd.2006.12.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2006] [Accepted: 12/26/2006] [Indexed: 12/11/2022]
Abstract
The ferroportin (FPN1) Q248H polymorphism has been associated with increased serum ferritin (SF) levels in sub-Saharan Africans and in African Americans (AA). AA participants of the HEIRS Study who did not have HFE C282Y or H63D who had elevated initial screening SF (> or =300 microg/L in men and >= or =200 microg/L in women) (defined as cases) were frequency-matched to AA participants with normal SF (defined as controls) to investigate the association of the Q248H with elevated SF. 10.4% of cases and 6.7% of controls were Q248H heterozygotes (P=0.257). Q248H homozygosity was observed in 0.5% of the cases and none of the controls. The frequency of Q248H was higher among men with elevated SF than among control men (P=0.047); corresponding differences were not observed among women. This appeared to be unrelated to self-reports of a previous diagnosis of liver disease. Men with elevated SF were three times more likely than women with elevated SF to have Q248H (P=0.012). There were no significant differences in Q248H frequencies in men and women control participants. We conclude that the frequency of the FPN1 Q248H polymorphism is greater in AA men with elevated SF than in those with normal SF.
Collapse
Affiliation(s)
- Charles A. Rivers
- Departments of Microbiology, Medicine, and Epidemiology and International Health, University of Alabama at Birmingham, Birmingham, AL 35294
| | | | - Victor R. Gordeuk
- Division of Hematology/Oncology and Center for Sickle Cell Disease, Howard University, Washington, D.C. 20059
| | - Ronald T. Acton
- Departments of Microbiology, Medicine, and Epidemiology and International Health, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Mark R. Speechley
- Department of Epidemiology and Biostatistics, University of Western Ontario, London, ONT N6A 5C1
| | - Beverly M. Snively
- Section of Biostatistics, Department of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC
| | | | - Richard D. Press
- Pathology Department, Oregon Health & Science University, Portland, OR 97201
| | - Paul C. Adams
- Division of Gastroenterology, Department of Medicine, London Health Sciences Centre, London, ONT N6A 2E8
| | - Gordon D. McLaren
- VA Long Beach Healthcare System, Long Beach, and Division of Hematology/Oncology, University of California, Irvine, CA 90822
| | - Fitzroy W. Dawkins
- Division of Hematology/Oncology and Center for Sickle Cell Disease, Howard University, Washington, D.C. 20059
| | - Christine E. McLaren
- Epidemiology Division, Department of Medicine, University of California, Irvine, CA 92697-7550
| | - David M. Reboussin
- Department of Epidemiology and Biostatistics, University of Western Ontario, London, ONT N6A 5C1
| |
Collapse
|
32
|
Han O, Kim EY. Colocalization of ferroportin-1 with hephaestin on the basolateral membrane of human intestinal absorptive cells. J Cell Biochem 2007; 101:1000-10. [PMID: 17486601 DOI: 10.1002/jcb.21392] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An iron exporter ferroportin-1 (FPN-1) and a multi-copper oxidase hephaestin (Heph) are predicted to be expressed on the basolateral membrane of the enterocyte and involved in the processes of iron export across the basolateral membrane of the enterocyte. However, it is not clear where these proteins are exactly located in the intestinal absorptive cell. We examined cellular localization of FPN-1 and Heph in the intestinal absorptive cells using the fully differentiated Caco-2 cells. Confocal microscope study showed that FPN-1 and Heph are located on the basolateral membrane and they are associated with the transferrin receptor (TfR) in fully differentiated Caco-2 cells grown on microporous membrane inserts. However, Heph protein was not detected in the crypt cell-like proliferating Caco-2 cell. In stably transfected human intestinal absorptive cells expressing human FPN-1 modified by the addition of GFP at the C-terminus, we show that FPN-1-GFP is located on the basolateral membrane and it is associated with Heph suggesting the possibility that FPN-1 might associate and interact with Heph in the process of iron exit across the basolateral membrane of intestinal absorptive cell.
Collapse
Affiliation(s)
- Okhee Han
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
33
|
Chen H, Huang G, Su T, Gao H, Attieh ZK, McKie AT, Anderson GJ, Vulpe CD. Decreased hephaestin activity in the intestine of copper-deficient mice causes systemic iron deficiency. J Nutr 2006; 136:1236-41. [PMID: 16614410 DOI: 10.1093/jn/136.5.1236] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Copper and iron metabolism intersect in mammals. Copper deficiency simultaneously leads to decreased iron levels in some tissues and iron deficiency anemia, whereas it results in iron overload in other tissues such as the intestine and liver. The copper requirement of the multicopper ferroxidases hephaestin and ceruloplasmin likely explains this link between copper and iron homeostasis in mammals. We investigated the effect of in vivo and in vitro copper deficiency on hephaestin (Heph) expression and activity. C57BL/6J mice were separated into 2 groups on the day of parturition. One group was fed a copper-deficient diet and another was fed a control diet for 6 wk. Copper-deficient mice had significantly lower hephaestin and ceruloplasmin (approximately 50% of controls) ferroxidase activity. Liver hepcidin expression was significantly downregulated by copper deficiency (approximately 60% of controls), and enterocyte mRNA and protein levels of ferroportin1 were increased to 2.5 and 10 times, respectively, relative to controls, by copper deficiency, indicating a systemic iron deficiency in the copper-deficient mice. Interestingly, hephaestin protein levels were significantly decreased to approximately 40% of control, suggesting that decreased enterocyte copper content leads to decreased hephaestin synthesis and/or stability. We also examined the effect of copper deficiency on hephaestin in vitro in the HT29 cell line and found dramatically decreased hephaestin synthesis and activity. Both in vivo and in vitro studies indicate that copper is required for the proper processing and/or stability of hephaestin.
Collapse
Affiliation(s)
- Huijun Chen
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720-3104, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The intimate relationship between Fe and Cu in human nutrition has been recognised for many years. The best-characterised link is provided by caeruloplasmin, a multiCu-binding protein that acts as a serum ferrioxidase and is essential for the mobilisation of Fe from storage tissues. Decreased Cu status has been shown to reduce holo-caeruloplasmin production and impair ferrioxidase activity, leading, in a number of cases, to decreased tissue Fe release and the generation of anaemia that is responsive to dietary supplementation with Cu but not Fe. Dietary Fe absorption also requires the presence of a multiCu ferrioxidase. Hephaestin, a caeruloplasmin homologue, works in concert with the IREG1 transporter to permit Fe efflux from enterocytes for loading onto transferrin. The essential role of hephaestin in this process has been recognised from studies in the sex-linked anaemic (sla) mouse, in which Fe efflux is markedly impaired as a result of a mutation in the hephaestin gene that results in a truncated and non-functional version of the protein. There is emerging evidence that a number of other components of the intestinal Fe transport pathway are also Cu sensitive. Divalent metal transporter 1 (DMT1), the Fe transporter located at the apical membrane of enterocytes, is also a physiologically-relevant Cu transporter, suggesting that these two metals may compete with each other for uptake into the duodenal enterocytes. Furthermore, expression of both DMT1 and the basolateral Fe-efflux transporter IREG1 can be regulated by Cu, suggesting that the Fe-Cu relationship may be more complex than first thought.
Collapse
Affiliation(s)
- Paul Sharp
- Centre for Nutrition and Food Safety, School of Biomedical and Molecular Sciences, University of Surrey, Guildford, UK.
| |
Collapse
|
35
|
Petrak J, Vyoral D. Hephaestin—a ferroxidase of cellular iron export. Int J Biochem Cell Biol 2005; 37:1173-8. [PMID: 15778082 DOI: 10.1016/j.biocel.2004.12.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2004] [Indexed: 01/09/2023]
Abstract
Hephaestin is a transmembrane copper-dependent ferroxidase necessary for effective iron transport from intestinal enterocytes into the circulation. Hephaestin is mutated in sex-linked anemia (sla) mice. The initial uptake of iron from the diet in these animals is normal, but the basolateral export of iron from enterocytes is defective, resulting in iron deficiency and microcytic hypochromic anemia. In addition to the small intestine, hephaestin is expressed to a lesser extent in colon, spleen, placenta and kidney but its role in these tissues remains unknown. So far, hephaestin has not been linked to a human disease.
Collapse
Affiliation(s)
- Jiri Petrak
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Praha 2, Czech Republic.
| | | |
Collapse
|
36
|
Bicocchi MP, Pasino M, Lanza T, Bottini F, Molinari AC, Caprino D, Rosano C, Acquila M. Small FVIII gene rearrangements in 18 hemophilia A patients: five novel mutations. Am J Hematol 2005; 78:117-22. [PMID: 15682412 DOI: 10.1002/ajh.20234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hemophilia A (HA) is a disorder caused by mutations of the FVIII gene, which is located on the tip of the long arm of the X chromosome. In a cohort of 18 unrelated Italian patients affected with HA of varying severity, we performed mutational screening of the gene by denaturing high-performance liquid chromatography (DHPLC) and direct sequencing of abnormal peaks. We identified five novel mutations and 9 previously reported DNA alterations. Two of the 9 previously reported alterations were each common to 3 unrelated patients. Six different mutations were characterized as missense alterations, while 8 were non-missense mutations. Among the new gene alterations, one created a stop codon, one consisted of an out-of frame deletion, and one was a splice-site mutation. The last two were missense alterations. In an attempt to better understand the causative effect of the mutations and the clinical variability of the patients, we investigated the consequences of each missense mutation and visualized the effect of the amino acid change on structural FVIII models.
Collapse
Affiliation(s)
- Maria Patrizia Bicocchi
- Department of Hematology and Oncology, Thrombosis and Hemostasis Unit, Giannina Gaslini Institute, Genova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Nittis T, Gitlin JD. Role of copper in the proteosome-mediated degradation of the multicopper oxidase hephaestin. J Biol Chem 2004; 279:25696-702. [PMID: 15087449 DOI: 10.1074/jbc.m401151200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To elucidate the mechanisms of cuproprotein biosynthesis in the secretory pathway, a polyclonal antiserum was generated against hephaestin, a multicopper oxidase essential for enteric iron absorption. Immunoblot analysis and pulse-chase metabolic labeling revealed that hephaestin is synthesized as a single-chain polypeptide modified by N-linked glycosylation to a mature 161-kDa species. Cell surface biotinylation and immunofluorescent studies of polarized, differentiated colon carcinoma cells detected hephaestin on the basolateral surface under steady-state conditions. However, a decrease in the intracellular copper concentration resulted in a marked diminution in the abundance of this protein. Metabolic studies revealed no effect of decreased intracellular copper on the rate of hephaestin synthesis but a dramatic, specific, and reproducible increase in the turnover of the mature 161-kDa protein. Surprisingly, inhibitor studies revealed that this turnover occurs exclusively in the proteasome, and consistent with this finding, in vitro studies identified polyubiquitinated hephaestin under conditions abrogating copper incorporation into this protein. Taken together, these studies demonstrate the presence of a quality control system for posttranslational protein modification occurring beyond the endoplasmic reticulum that, in the case of hephaestin, directly links the rate of enteric iron uptake to nutritional copper status.
Collapse
Affiliation(s)
- Thalia Nittis
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
38
|
Li L, Vulpe CD, Kaplan J. Functional studies of hephaestin in yeast: evidence for multicopper oxidase activity in the endocytic pathway. Biochem J 2003; 375:793-8. [PMID: 12921533 PMCID: PMC1223732 DOI: 10.1042/bj20030866] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2003] [Revised: 08/01/2003] [Accepted: 08/18/2003] [Indexed: 11/17/2022]
Abstract
Hephaestin is a mammalian gene that encodes a predicted multicopper oxidase required for intestinal iron export. To examine if hephaestin can act as a ferroxidase, we studied yeast strains transformed with plasmids containing both a full-length hephaestin and a hephaestin lacking a transmembrane domain. Yeast with a deletion in FET3, which encodes a cell-surface multicopper oxidase, cannot grow on low-iron media. Expression of full-length hephaestin could complement the low-iron growth phenotype of a Delta fet3 strain. Complementation of Delta fet3 cells by hephaestin required genes that encode proteins necessary for the copper loading of Fet3p, including CCC2 and GEF1. Expression of hephaestin in Delta fet3 cells led to an increase in both iron transport and oxidase activity. These results demonstrate that hephaestin is a copper-dependent protein. In contrast with Fet3p, which is found on the cell surface, hephaestin was co-localized with Pep12p-containing vesicles. Inhibition of endocytosis or deletion of both the vacuolar iron transporters ( SMF3 and FET5 / FTH1 ) prevented hephaestin from complementing the low-iron growth phenotype of Delta fet3 cells, suggesting that hephaestin is functioning within the endocytic apparatus.
Collapse
Affiliation(s)
- Liangtao Li
- Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
39
|
Abstract
Release of iron from enterocytes and hepatocytes is thought to require the copper-dependent ferroxidase activity of hephaestin (Hp) and ceruloplasmin (Cp), respectively. In swine, copper deficiency (CD) impairs iron absorption, but whether this occurs in rats is unclear. By feeding a diet deficient in copper, CD was produced, as evidenced by the loss of copper-dependent plasma ferroxidase I activity, and in enterocytes, CD reduced copper levels and copper-dependent oxidase activity. Hematocrit was reduced, and liver iron was doubled. CD reduced duodenal mucosal iron and ferritin, whereas CD increased iron absorption. Duodenal mucosal DMT1-IRE and ferroportin1 expression remained constant with CD. When absorption in CD rats was compared with that seen normally and in iron-deficient anemic animals, strong correlations were found among mucosal iron, ferritin, and iron absorption, suggesting that the level of iron absorption was appropriate given that the erythroid and stores stimulators of iron absorption are opposed in CD. Because CD reduced the activity of Cp, as evidenced by copper-dependent plasma ferroxidase I activity and hepatocyte iron accumulation, but iron absorption increased, it is unlikely that the ferroxidase activity of Hp is important and suggests another function for this protein in the export of iron from the enterocyte during iron absorption. Also, the copper-dependent ferroxidase activity of Cp does not appear important for iron efflux from macrophages, because Kupffer cells of the liver and nonheme iron levels of the spleen were normal during copper deficiency, suggesting another role for Cp in these cells.
Collapse
Affiliation(s)
- Carla Thomas
- Physiology School of Biomedical and Chemical Sciences, Univ. Of Western Australia, Crawley, 6009, Australia
| | | |
Collapse
|
40
|
Bicocchi MP, Pasino M, Lanza T, Bottini F, Boeri E, Mori PG, Molinari AC, Rosano C, Acquila M. Analysis of 18 novel mutations in the factor VIII gene. Br J Haematol 2003; 122:810-7. [PMID: 12930394 DOI: 10.1046/j.1365-2141.2003.04494.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We describe 18 novel mutations, unreported in the Haemophilia A mutation Databases, that have been identified in a cohort of unrelated, Italian patients affected with haemophilia A (HA). Screening of the factor VIII gene (FVIII) was performed using denaturing high-performance liquid chromatography (DHPLC) and direct sequencing. Eight mutations were characterized as non-missense alterations, and the remaining 10 were missense mutations. Heterozygosity for the identified mutations was observed in the female relatives of patients belonging to eight families with sporadic cases. In an attempt to understand better the causative effect of the mutations and the clinical variability of the patients, missense mutation consequences were investigated for: (1) the nature of the new amino acid; (2) the location of the substituted amino acid within crystallographic and theoretical models; and (3) the degree of conservation of the native residue in factor VIII (FVIII) protein and FVIII-related protein family aligned sequences. These research tools have provided evidence that the mutations we describe involve residues that were conserved, at least in FVIII proteins, in all the species we compared.
Collapse
Affiliation(s)
- Maria P Bicocchi
- Haemostasis and Haemophilia Laboratory, IV Paediatric Department, G. Gaslini Institute, Genova, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chung J, Wessling-Resnick M. Molecular mechanisms and regulation of iron transport. Crit Rev Clin Lab Sci 2003; 40:151-82. [PMID: 12755454 DOI: 10.1080/713609332] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Iron homeostasis is primarily maintained through regulation of its transport. This review summarizes recent discoveries in the field of iron transport that have shed light on the molecular mechanisms of dietary iron uptake, pathways for iron efflux to and between peripheral tissues, proteins implicated in organellar transport of iron (particularly the mitochondrion), and novel regulators that have been proposed to control iron assimilation. The transport of both transferrin-bound and nontransferrin-bound iron to peripheral tissues is discussed. Finally, the regulation of iron transport is also considered at the molecular level, with posttranscriptional, transcriptional, and posttranslational control mechanisms being reviewed.
Collapse
Affiliation(s)
- Jayong Chung
- Department of Nutrition, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
42
|
Anderson GJ, Frazer DM, McKie AT, Vulpe CD. The ceruloplasmin homolog hephaestin and the control of intestinal iron absorption. Blood Cells Mol Dis 2002; 29:367-75. [PMID: 12547227 DOI: 10.1006/bcmd.2002.0576] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hephaestin is the gene affected in the sex-linked anemic (sla) mouse. These animals have a defect in the export of iron from intestinal enterocytes into the circulation and this implicates hephaestin in the basolateral transfer step of iron absorption. Hephaestin is homologous to the plasma copper-containing protein ceruloplasmin, and all residues involved in copper binding and disulfide bond formation in ceruloplasmin are conserved in hephaestin. Unlike ceruloplasmin, hephaestin is an integral membrane protein with a single trans-membrane domain. It is highly expressed throughout the small intestine, to a lesser extent in the colon, and at low levels in several other tissues. Surprisingly, most hephaestin appears to be located intracellularly in a perinuclear distribution. Like ceruloplasmin, hephaestin has a ferroxidase activity which is predicted to underlie its biological function. In addition, its expression is stimulated under iron deficient conditions. Analysis of the sla mouse has supported our model for the regulation of intestinal iron absorption whereby changes in systemic iron requirements alter the levels of basolateral transport components with subsequent regulation of brush border transport.
Collapse
Affiliation(s)
- Gregory J Anderson
- Iron Metabolism Laboratory, Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Brisbane, Queensland 4029, Australia.
| | | | | | | |
Collapse
|
43
|
Srai S, Bomford A, McArdle HJ. Iron transport across cell membranes: molecular understanding of duodenal and placental iron uptake. Best Pract Res Clin Haematol 2002. [DOI: 10.1053/beha.2002.0003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|