1
|
Hausdorf B. Species Delimitation Using Genomic Data: Options and Limitations. Mol Ecol 2025; 34:e17717. [PMID: 40026292 PMCID: PMC11974488 DOI: 10.1111/mec.17717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
The most effective approaches for species discovery and species validation with genomic data remain underexplored. This study evaluates the merits and limitations of phylogenetic approaches based on the multispecies coalescent model and population genetic approaches for species discovery, i.e., species delimitation in the absence of prior knowledge, using genomic datasets from four well-known radiations. Furthermore, it demonstrates how geographic data can be integrated with the genomic data for species validation, i.e., for testing primary species hypotheses. The multispecies coalescent model-based approaches tr2 and soda resulted in high over-splitting of species, low percentages of species delimited according to the current classification, and low percentages of individuals assigned to the same species as in the current classification across all four species complexes studied. Conversely, the species numbers were slightly underestimated based on the structure results. Although the proportion of species delimited according to the current classification and the proportion of individuals assigned to the same species as in the current classification in the classifications based on the structure results is approximately twice that of the classifications proposed by the multispecies coalescent model-based approaches, it remains unsatisfactory. A slight over-splitting of species into population groups can be corrected by species validation with isolation-by-distance tests if a sufficient number of populations have been sampled for each species. Sampling design is an essential step in any taxonomic study, as it has a significant impact on the delimitation of the species and the possibility of their validation.
Collapse
Affiliation(s)
- Bernhard Hausdorf
- Leibniz Institute for the Analysis of Biodiversity ChangeHamburgGermany
- Universität HamburgHamburgGermany
| |
Collapse
|
2
|
Peck LD, Llewellyn T, Bennetot B, O’Donnell S, Nowell RW, Ryan MJ, Flood J, Rodríguez de la Vega RC, Ropars J, Giraud T, Spanu PD, Barraclough TG. Horizontal transfers between fungal Fusarium species contributed to successive outbreaks of coffee wilt disease. PLoS Biol 2024; 22:e3002480. [PMID: 39637834 PMCID: PMC11620798 DOI: 10.1371/journal.pbio.3002480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/30/2024] [Indexed: 12/07/2024] Open
Abstract
Outbreaks of fungal diseases have devastated plants and animals throughout history. Over the past century, the repeated emergence of coffee wilt disease caused by the fungal pathogen Fusarium xylarioides severely impacted coffee production across sub-Saharan Africa. To improve the disease management of such pathogens, it is crucial to understand their genetic structure and evolutionary potential. We compared the genomes of 13 historic strains spanning 6 decades and multiple disease outbreaks to investigate population structure and host specialisation. We found that F. xylarioides comprised at least 4 distinct lineages: 1 host-specific to Coffea arabica, 1 to C. canephora var. robusta, and 2 historic lineages isolated from various Coffea species. The presence/absence of large genomic regions across populations, the higher genetic similarities of these regions between species than expected based on genome-wide divergence and their locations in different loci in genomes across populations showed that horizontal transfers of effector genes from members of the F. oxysporum species complex contributed to host specificity. Multiple transfers into F. xylarioides populations matched different parts of the F. oxysporum mobile pathogenicity chromosome and were enriched in effector genes and transposons. Effector genes in this region and other carbohydrate-active enzymes important in the breakdown of plant cell walls were shown by transcriptomics to be highly expressed during infection of C. arabica by the fungal arabica strains. Widespread sharing of specific transposons between F. xylarioides and F. oxysporum, and the correspondence of a putative horizontally transferred regions to a Starship (large mobile element involved in horizontal gene transfers in fungi), reinforce the inference of horizontal transfers and suggest that mobile elements were involved. Our results support the hypothesis that horizontal gene transfers contributed to the repeated emergence of coffee wilt disease.
Collapse
Affiliation(s)
- Lily D. Peck
- Science and Solutions for a Changing Planet, Grantham Institute, Imperial College London, London, United Kingdom
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Berkshire, United Kingdom
- CABI, Egham, Surrey, United Kingdom
| | - Theo Llewellyn
- Science and Solutions for a Changing Planet, Grantham Institute, Imperial College London, London, United Kingdom
- Comparative Fungal Biology, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Bastien Bennetot
- Ecologie Systematique et Evolution, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Samuel O’Donnell
- Ecologie Systematique et Evolution, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Reuben W. Nowell
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Biological & Environmental Sciences, University of Stirling, Scotland, United Kingdom
| | | | | | | | - Jeanne Ropars
- Ecologie Systematique et Evolution, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Tatiana Giraud
- Ecologie Systematique et Evolution, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pietro D. Spanu
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, United Kingdom
| | - Timothy G. Barraclough
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Berkshire, United Kingdom
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Dietz L, Mayer C, Stolle E, Eberle J, Misof B, Podsiadlowski L, Niehuis O, Ahrens D. Metazoa-level USCOs as markers in species delimitation and classification. Mol Ecol Resour 2024; 24:e13921. [PMID: 38146909 DOI: 10.1111/1755-0998.13921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/27/2023]
Abstract
Metazoa-level universal single-copy orthologs (mzl-USCOs) are universally applicable markers for DNA taxonomy in animals that can replace or supplement single-gene barcodes. Previously, mzl-USCOs from target enrichment data were shown to reliably distinguish species. Here, we tested whether USCOs are an evenly distributed, representative sample of a given metazoan genome and therefore able to cope with past hybridization events and incomplete lineage sorting. This is relevant for coalescent-based species delimitation approaches, which critically depend on the assumption that the investigated loci do not exhibit autocorrelation due to physical linkage. Based on 239 chromosome-level assembled genomes, we confirmed that mzl-USCOs are genetically unlinked for practical purposes and a representative sample of a genome in terms of reciprocal distances between USCOs on a chromosome and of distribution across chromosomes. We tested the suitability of mzl-USCOs extracted from genomes for species delimitation and phylogeny in four case studies: Anopheles mosquitos, Drosophila fruit flies, Heliconius butterflies and Darwin's finches. In almost all instances, USCOs allowed delineating species and yielded phylogenies that corresponded to those generated from whole genome data. Our phylogenetic analyses demonstrate that USCOs may complement single-gene DNA barcodes and provide more accurate taxonomic inferences. Combining USCOs from sources that used different versions of ortholog reference libraries to infer marker orthology may be challenging and, at times, impact taxonomic conclusions. However, we expect this problem to become less severe as the rapidly growing number of reference genomes provides a better representation of the number and diversity of organismal lineages.
Collapse
Affiliation(s)
- Lars Dietz
- Museum A. Koenig, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany
| | - Christoph Mayer
- Museum A. Koenig, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany
| | - Eckart Stolle
- Museum A. Koenig, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany
| | - Jonas Eberle
- Museum A. Koenig, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany
- Paris-Lodron-University, Salzburg, Austria
| | - Bernhard Misof
- Museum A. Koenig, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany
- Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Lars Podsiadlowski
- Museum A. Koenig, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany
| | - Oliver Niehuis
- Abt. Evolutionsbiologie und Ökologie, Institut für Biologie I, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Dirk Ahrens
- Museum A. Koenig, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany
| |
Collapse
|
4
|
Ahrens D. Species Diagnosis and DNA Taxonomy. Methods Mol Biol 2024; 2744:33-52. [PMID: 38683310 DOI: 10.1007/978-1-0716-3581-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The use of DNA has helped to improve and speed up species identification and delimitation. However, it also provides new challenges to taxonomists. Incongruence of outcome from various markers and delimitation methods, bias from sampling and skewed species distribution, implemented models, and the choice of methods/priors may mislead results and also may, in conclusion, increase elements of subjectivity in species taxonomy. The lack of direct diagnostic outcome from most contemporary molecular delimitation approaches and the need for a reference to existing and best sampled trait reference systems reveal the need for refining the criteria of species diagnosis and diagnosability in the current framework of nomenclature codes and good practices to avoid nomenclatorial instability, parallel taxonomies, and consequently more and new taxonomic impediment.
Collapse
Affiliation(s)
- Dirk Ahrens
- Museum A. Koenig Bonn, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany.
| |
Collapse
|
5
|
Khan M, Joshi M, Espeland M, Huemer P, Lopez-Vaamonde C, Mutanen M. Patterns of speciation in a parapatric pair of Saturnia moths as revealed by target capture. Mol Ecol 2024; 33:e17194. [PMID: 37933590 DOI: 10.1111/mec.17194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
The focus of this study has been to understand the evolutionary relationships and taxonomy of a widely distributed parapatric species pair of wild silk moths in Europe: Saturnia pavonia and Saturnia pavoniella (Lepidoptera: Saturniidae). To address species delimitation in these parapatric taxa, target enrichment and mtDNA sequencing was employed alongside phylogenetic, admixture, introgression, and species delimitation analyses. The dataset included individuals from both species close to and farther away from the contact zone as well as two hybrids generated in the lab. Nuclear markers strongly supported both S. pavonia and S. pavoniella as two distinct species, with hybrids forming a sister group to S. pavoniella. However, the Maximum Likelihood (ML) tree generated from mtDNA sequencing data presented a different picture, showing both taxa to be phylogenetically intermixed. This inconsistency is likely attributable to mitonuclear discordance, which can arise from biological factors (e.g., introgressive hybridization and/or incomplete lineage sorting). Our analyses indicate that past introgressions have taken place, but that there is no evidence to suggest an ongoing admixture between the two species, demonstrating that the taxa have reached full postzygotic reproductive isolation and hence represent two distinct biological species. Finally, we discuss our results from an evolutionary point of view taking into consideration the past climatic oscillations that have likely shaped the present dynamics between the two species. Overall, our study demonstrates the effectiveness of the target enrichment approach in resolving shallow phylogenetic relationships under complex evolutionary circumstances and that this approach is useful in establishing robust and well-informed taxonomic delimitations involving parapatric taxa.
Collapse
Affiliation(s)
- Maria Khan
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Mukta Joshi
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Marianne Espeland
- Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany
| | - Peter Huemer
- Tiroler Landesmuseen Betriebsges.m.b.H., Naturwissenschaftliche Sammlungen, Hall, Austria
| | | | - Marko Mutanen
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| |
Collapse
|
6
|
da Silva TF, Sampaio I, Angulo A, Domínguez-Domínguez O, Andrade-Santos J, Guimarães-Costa A, Santos S. Species delimitation by DNA barcoding reveals undescribed diversity in Stelliferinae (Sciaenidae). PLoS One 2023; 18:e0296335. [PMID: 38153939 PMCID: PMC10754464 DOI: 10.1371/journal.pone.0296335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 12/08/2023] [Indexed: 12/30/2023] Open
Abstract
Stelliferinae is the third most speciose subfamily of Sciaenidae, with 51 recognized species arranged in five genera. Phylogenies derived from both morphological and molecular data support the monophyly of this subfamily, although there is no general consensus on the intergeneric relationships or the species diversity of this group. We used the barcoding region of the cytochrome oxidase C subunit I (COI) gene to verify the delimitation of Stelliferinae species based on the Automatic Barcode Gap Discovery (ABGD), Generalized Mixed Yule Coalescence (GMYC), and Bayesian Poisson Tree Process (bPTP) methods. In general, the results of these different approaches were congruent, delimiting 30-32 molecular operational taxonomic units (MOTUs), most of which coincided with valid species. Specimens of Stellifer menezesi and Stellifer gomezi were attributed to a single species, which disagrees with the most recent review of this genus. The evidence also indicated that Odontoscion xanthops and Corvula macrops belong to a single MOTU. In contrast, evidence also indicates presence of distinct lineages in both Odontoscion dentex and Bairdiella chrysoura. Such results are compatible with the existence of cryptic species, which is supported by the genetic divergence and haplotype genealogy. Therefore, the results of the present study indicate the existence of undescribed diversity in the Stelliferinae, which reinforces the need for an ample taxonomic review of the fish in this subfamily.
Collapse
Affiliation(s)
- Tárcia Fernanda da Silva
- Laboratory of Fish Microbiology, Institute of Coastal Studies, Federal University of Para (UFPA), Braganca, Para, Brazil
| | - Iracilda Sampaio
- Laboratory of Evolution, Institute of Coastal Studies, Federal University of Para (UFPA), Braganca, Para, Brazil
| | - Arturo Angulo
- Escuela de Biología, Museo de Zoología/Centro de Investigación en Biodiversidad y Ecología Tropical (CIBET) and Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Universidad de Costa Rica, San Pedro de Montes de Oca, San José, Costa Rica
| | - Omar Domínguez-Domínguez
- Laboratory of Aquatic Biology, Faculty of Biology, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morella, Michoacán, Mexico
| | - Jonas Andrade-Santos
- Laboratory of Ichthyology, Vertebrates Department–Federal University of Rio de Janeiro, National Museum, Rio de Janeiro, Brazil
| | - Aurycéia Guimarães-Costa
- Laboratory of Evolution, Institute of Coastal Studies, Federal University of Para (UFPA), Braganca, Para, Brazil
| | - Simoni Santos
- Laboratory of Fish Microbiology, Institute of Coastal Studies, Federal University of Para (UFPA), Braganca, Para, Brazil
| |
Collapse
|
7
|
Dietz L, Eberle J, Mayer C, Kukowka S, Bohacz C, Baur H, Espeland M, Huber BA, Hutter C, Mengual X, Peters RS, Vences M, Wesener T, Willmott K, Misof B, Niehuis O, Ahrens D. Standardized nuclear markers improve and homogenize species delimitation in Metazoa. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.14041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lars Dietz
- Museum A. Koenig, Leibniz Institute for the Analysis of Biodiversity Change (LIB) Bonn Germany
| | - Jonas Eberle
- Museum A. Koenig, Leibniz Institute for the Analysis of Biodiversity Change (LIB) Bonn Germany
- Paris‐Lodron‐University Salzburg Austria
| | - Christoph Mayer
- Museum A. Koenig, Leibniz Institute for the Analysis of Biodiversity Change (LIB) Bonn Germany
| | - Sandra Kukowka
- Museum A. Koenig, Leibniz Institute for the Analysis of Biodiversity Change (LIB) Bonn Germany
| | - Claudia Bohacz
- Museum A. Koenig, Leibniz Institute for the Analysis of Biodiversity Change (LIB) Bonn Germany
| | - Hannes Baur
- Naturhistorisches Museum Bern/Institute of Ecology and Evolution University of Bern Bern Switzerland
| | - Marianne Espeland
- Museum A. Koenig, Leibniz Institute for the Analysis of Biodiversity Change (LIB) Bonn Germany
| | - Bernhard A. Huber
- Museum A. Koenig, Leibniz Institute for the Analysis of Biodiversity Change (LIB) Bonn Germany
| | - Carl Hutter
- Museum of Natural Sciences and Department of Biological Sciences Louisiana State University Baton Rouge Louisiana USA
| | - Ximo Mengual
- Museum A. Koenig, Leibniz Institute for the Analysis of Biodiversity Change (LIB) Bonn Germany
| | - Ralph S. Peters
- Museum A. Koenig, Leibniz Institute for the Analysis of Biodiversity Change (LIB) Bonn Germany
| | - Miguel Vences
- Technische Universität Braunschweig Braunschweig Germany
| | - Thomas Wesener
- Museum A. Koenig, Leibniz Institute for the Analysis of Biodiversity Change (LIB) Bonn Germany
| | - Keith Willmott
- Florida Museum of Natural History University of Florida Gainesville Florida USA
| | - Bernhard Misof
- Museum A. Koenig, Leibniz Institute for the Analysis of Biodiversity Change (LIB) Bonn Germany
- Rheinische Friedrich‐Wilhelms‐Universität Bonn Bonn Germany
| | - Oliver Niehuis
- Abt. Evolutionsbiologie und Ökologie, Institut für Biologie I, Albert‐Ludwigs‐Universität Freiburg Freiburg im Breisgau Germany
| | - Dirk Ahrens
- Museum A. Koenig, Leibniz Institute for the Analysis of Biodiversity Change (LIB) Bonn Germany
| |
Collapse
|
8
|
Guo B, Kong L. Comparing the Efficiency of Single-Locus Species Delimitation Methods within Trochoidea (Gastropoda: Vetigastropoda). Genes (Basel) 2022; 13:genes13122273. [PMID: 36553540 PMCID: PMC9778293 DOI: 10.3390/genes13122273] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
In the context of diminishing global biodiversity, the validity and practicality of species delimitation methods for the identification of many neglected and undescribed biodiverse species have been paid increasing attention. DNA sequence-based species delimitation methods are mainly classified into two categories, namely, distance-based and tree-based methods, and have been widely adopted in many studies. In the present study, we performed three distance-based (ad hoc threshold, ABGD, and ASAP) and four tree-based (sGMYC, mGMYC, PTP, and mPTP) analyses based on Trochoidea COI data and analyzed the discordance between them. Moreover, we also observed the performance of these methods at different taxonomic ranks (the genus, subfamily, and family ranks). The results suggested that the distance-based approach is generally superior to the tree-based approach, with the ASAP method being the most efficient. In terms of phylogenetic methods, the single threshold version performed better than the multiple threshold version of GMYC, and PTP showed higher efficiency than mPTP in delimiting species. Additionally, GMYC was found to be significantly influenced by taxonomic rank, showing poorer efficiency in datasets at the genus level than at higher levels. Finally, our results highlighted that cryptic diversity within Trochoidea (Mollusca: Vetigastropoda) might be underestimated, which provides quantitative evidence for excavating the cryptic lineages of these species.
Collapse
Affiliation(s)
- Bingyu Guo
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
- Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
- Correspondence:
| |
Collapse
|
9
|
Glässnerová K, Sklenář F, Jurjević Ž, Houbraken J, Yaguchi T, Visagie C, Gené J, Siqueira J, Kubátová A, Kolařík M, Hubka V. A monograph of Aspergillus section Candidi. Stud Mycol 2022; 102:1-51. [PMID: 36760463 PMCID: PMC9903906 DOI: 10.3114/sim.2022.102.01] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/03/2022] [Indexed: 01/09/2023] Open
Abstract
Aspergillus section Candidi encompasses white- or yellow-sporulating species mostly isolated from indoor and cave environments, food, feed, clinical material, soil and dung. Their identification is non-trivial due to largely uniform morphology. This study aims to re-evaluate the species boundaries in the section Candidi and present an overview of all existing species along with information on their ecology. For the analyses, we assembled a set of 113 strains with diverse origin. For the molecular analyses, we used DNA sequences of three house-keeping genes (benA, CaM and RPB2) and employed species delimitation methods based on a multispecies coalescent model. Classical phylogenetic methods and genealogical concordance phylogenetic species recognition (GCPSR) approaches were used for comparison. Phenotypic studies involved comparisons of macromorphology on four cultivation media, seven micromorphological characters and growth at temperatures ranging from 10 to 45 °C. Based on the integrative approach comprising four criteria (phylogenetic and phenotypic), all currently accepted species gained support, while two new species are proposed (A. magnus and A. tenebricus). In addition, we proposed the new name A. neotritici to replace an invalidly described A. tritici. The revised section Candidi now encompasses nine species, some of which manifest a high level of intraspecific genetic and/or phenotypic variability (e.g., A. subalbidus and A. campestris) while others are more uniform (e.g., A. candidus or A. pragensis). The growth rates on different media and at different temperatures, colony colours, production of soluble pigments, stipe dimensions and vesicle diameters contributed the most to the phenotypic species differentiation. Taxonomic novelties: New species: Aspergillus magnus Glässnerová & Hubka; Aspergillus neotritici Glässnerová & Hubka; Aspergillus tenebricus Houbraken, Glässnerová & Hubka. Citation: Glässnerová K, Sklenář F, Jurjević Ž, Houbraken J, Yaguchi T, Visagie CM, Gené J, Siqueira JPZ, Kubátová A, Kolařík M, Hubka V (2022). A monograph of Aspergillus section Candidi. Studies in Mycology 102: 1-51. doi: 10.3114/sim.2022.102.01.
Collapse
Affiliation(s)
- K. Glässnerová
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - F. Sklenář
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Ž. Jurjević
- EMSL Analytical, Cinnaminson, New Jersey, USA
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - T. Yaguchi
- Medical Mycology Research Center, Chiba University, Chuo-ku, Chiba, Japan
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - J. Gené
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - J.P.Z. Siqueira
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
- Laboratório de Microbiologia, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
| | - A. Kubátová
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - M. Kolařík
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - V. Hubka
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
- Medical Mycology Research Center, Chiba University, Chuo-ku, Chiba, Japan
| |
Collapse
|
10
|
Hévin NM, Hansen S, Addison P, Benoit L, Kergoat GJ, Haran J. Late Cenozoic environmental changes drove the diversification of a weevil genus endemic to the Cape Floristic Region. ZOOL SCR 2022. [DOI: 10.1111/zsc.12563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Noémie M.‐C. Hévin
- CBGP INRAE, CIRAD, IRD, Institut Agro, Univ. Montpellier Montpellier France
- Université de Poitiers Poitiers France
| | | | | | - Laure Benoit
- CBGP CIRAD, INRAE, IRD, Institut Agro, Univ. Montpellier Montpellier France
| | - Gael J. Kergoat
- CBGP INRAE, CIRAD, IRD, Institut Agro, Univ. Montpellier Montpellier France
| | - Julien Haran
- CBGP CIRAD, INRAE, IRD, Institut Agro, Univ. Montpellier Montpellier France
| |
Collapse
|
11
|
Montes J, Peláez P, Moreno‐Letelier A, Gernandt DS. Coalescent-based species delimitation in North American pinyon pines using low-copy nuclear genes and plastomes. AMERICAN JOURNAL OF BOTANY 2022; 109:706-726. [PMID: 35526278 PMCID: PMC9321694 DOI: 10.1002/ajb2.1847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
PREMISE Accurate species delimitation is essential for evolutionary biology, conservation, and biodiversity management. We studied species delimitation in North American pinyon pines, Pinus subsection Cembroides, a natural group with high levels of incomplete lineage sorting. METHODS We used coalescent-based methods and multivariate analyses of low-copy number nuclear genes and nearly complete high-copy number plastomes generated with the Hyb-Seq method. The three coalescent-based species delimitation methods evaluated were the Generalized Mixed Yule Coalescent (GMYC), Poisson Tree Process (PTP), and Trinomial Distribution of Triplets (Tr2). We also measured admixture in populations with possible introgression. RESULTS Our results show inconsistencies among GMYC, PTP, and Tr2. The single-locus based GMYC analysis of plastid DNA recovered a higher number of species (up to 24 entities, including singleton lineages and clusters) than PTP and the multi-locus coalescent approach. The PTP analysis identified 10 species whereas Tr2 recovered 13, which agreed closely with taxonomic treatments. CONCLUSIONS We found that PTP and GMYC identified species with low levels of ILS and high morphological divergence (P. maximartinezii, P. pinceana, and P. rzedowskii). However, GMYC method oversplit species by identification of more divergent samples as singletons. Moreover, both PTP and GMYC were incapable of identifying some species that are readily identified morphologically. We suggest that the divergence times between lineages within North American pinyon pines are so disparate that GMYC results are unreliable. Results of the Tr2 method coincided well with previous delimitations based on morphology, DNA, geography, and secondary chemistry.
Collapse
Affiliation(s)
- José‐Rubén Montes
- Posgrado en Ciencias Biológicas, Instituto de BiologíaUniversidad Nacional Autónoma de México04510Ciudad de MéxicoMexico
| | - Pablo Peláez
- Centro de Ciencias GenómicasUniversidad Nacional Autónoma de México62210CuernavacaMorelosMexico
| | - Alejandra Moreno‐Letelier
- Jardín Botánico, Instituto de BiologíaUniversidad Nacional Autónoma de México04510Ciudad de MéxicoMexico
| | - David S. Gernandt
- Departamento de Botánica, Instituto de BiologíaUniversidad Nacional Autónoma de México04510Ciudad de MéxicoMexico
| |
Collapse
|
12
|
Hancock ZB, Lehmberg ES, Blackmon H. Phylogenetics in Space: How Continuous Spatial Structure Impacts Tree Inference. Mol Phylogenet Evol 2022; 173:107505. [PMID: 35577296 DOI: 10.1016/j.ympev.2022.107505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/08/2022] [Accepted: 05/06/2022] [Indexed: 11/26/2022]
Abstract
The tendency to discretize biology permeates taxonomy and systematics, leading to models that simplify the often continuous nature of populations. Even when the assumption of panmixia is relaxed, most models still assume some degree of discrete structure. The multispecies coalescent has emerged as a powerful model in phylogenetics, but in its common implementation is entirely space-independent - what we call the "missing z-axis". In this article, we review the many lines of evidence for how continuous spatial structure can impact phylogenetic inference. We illustrate and expand on these by using complex continuous-space demographic models that include distinct modes of speciation. We find that the impact of spatial structure permeates all aspects of phylogenetic inference, including gene tree stoichiometry, topological and branch-length variance, network estimation, and species delimitation. We conclude by utilizing our results to suggest how researchers can identify spatial structure in phylogenetic datasets.
Collapse
|
13
|
Laidoudi Y, Bedjaoui S, Latrofa MS, Fanelli A, Dantas-Torres F, Otranto D. Genetic and geographical delineation of zoonotic vector-borne helminths of canids. Sci Rep 2022; 12:6699. [PMID: 35462560 PMCID: PMC9035454 DOI: 10.1038/s41598-022-10553-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/30/2022] [Indexed: 12/15/2022] Open
Abstract
Several zoonotic vector-borne helminths (VBHs) infesting canids cause serious veterinary and medical diseases worldwide. Increasing the knowledge about their genetic structures is pivotal to identify them and therefore to settle effective surveillance and control measures. To overcome the limitation due to the heterogeneity of large DNA sequence-datasets used for their genetic characterization, available cytochrome c oxidase subunit 1 (cox1) (n = 546) and the 12S rRNA (n = 280) sequences were examined using combined bioinformatic approach (i.e., distance-clustering, maximum likelihood phylogeny and phylogenetic evolutionary placement). Out of the 826 DNA available sequences from GenBank, 94.7% were characterized at the haplotype level regardless sequence size, completeness and/or their position. A total of 89 different haplotypes were delineated either by cox1 (n = 35), 12S rRNA (n = 21) or by both genes (n = 33), for 14 VBHs (e.g., Acanthocheilonema reconditum, Brugia spp., Dirofilaria immitis, Dirofilaria repens, Onchocerca lupi and Thelazia spp.). Overall, the present approach could be useful for studying global genetic diversity and phylogeography of VBHs. However, as barcoding sequences were restricted to two mitochondrial loci (cox1 and 12S rRNA), the haplotype delineation proposed herein should be confirmed by the characterization of other nuclear loci also to overcome potential limitations caused by the heteroplasmy phenomenon within the mitogenome of VBHs.
Collapse
Affiliation(s)
- Younes Laidoudi
- Parasitology Unit, Department of Veterinary Medicine, University of Bari, Valenzano, Italy
- PADESCA Laboratory, Veterinary Science Institute, University of Constantine 1, 25100, El Khroub, Algeria
| | - Samia Bedjaoui
- Laboratory of Food Hygiene and Quality Insurance System (HASAQ), Higher National Veterinary School, Issad Abbes, Oued Smar, 16000, Algiers, Algeria
| | - Maria Stefania Latrofa
- Parasitology Unit, Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Angela Fanelli
- Infectious Diseases Unit, Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Filipe Dantas-Torres
- Laboratory of Immunoparasitology, Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, 50740-465, Brazil
| | - Domenico Otranto
- Parasitology Unit, Department of Veterinary Medicine, University of Bari, Valenzano, Italy.
- Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
14
|
Phillips JD, Gillis DJ, Hanner RH. Lack of Statistical Rigor in DNA Barcoding Likely Invalidates the Presence of a True Species' Barcode Gap. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.859099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA barcoding has been largely successful in satisfactorily exposing levels of standing genetic diversity for a wide range of taxonomic groups through the employment of only one or a few universal gene markers. However, sufficient coverage of geographically-broad intra-specific haplotype variation within genomic databases like the Barcode of Life Data Systems (BOLD) and GenBank remains relatively sparse. As reference sequence libraries continue to grow exponentially in size, there is now the need to identify novel ways of meaningfully analyzing vast amounts of available DNA barcode data. This is an important issue to address promptly for the routine tasks of specimen identification and species discovery, which have seen broad adoption in areas as diverse as regulatory forensics and resource conservation. Here, it is demonstrated that the interpretation of DNA barcoding data is lacking in statistical rigor. To highlight this, focus is set specifically on one key concept that has become a household name in the field: the DNA barcode gap. Arguments outlined herein specifically center on DNA barcoding in animal taxa and stem from three angles: (1) the improper allocation of specimen sampling effort necessary to capture adequate levels of within-species genetic variation, (2) failing to properly visualize intra-specific and interspecific genetic distances, and (3) the inconsistent, inappropriate use, or absence of statistical inferential procedures in DNA barcoding gap analyses. Furthermore, simple statistical solutions are outlined which can greatly propel the use of DNA barcoding as a tool to irrefutably match unknowns to knowns on the basis of the barcoding gap with a high degree of confidence. Proposed methods examined herein are illustrated through application to DNA barcode sequence data from Canadian Pacific fish species as a case study.
Collapse
|
15
|
Ciaccio E, Debray A, Hedin M. Phylogenomics of paleoendemic lampshade spiders (Araneae, Hypochilidae, Hypochilus), with the description of a new species from montane California. Zookeys 2022; 1086:163-204. [PMID: 35221748 PMCID: PMC8873193 DOI: 10.3897/zookeys.1086.77190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/18/2022] [Indexed: 12/31/2022] Open
Abstract
Hypochilus is a relictual lineage of Nearctic spiders distributed disjunctly across the United States in three montane regions (California, southern Rocky Mountains, southern Appalachia). Phylogenetic resolution of species relationships in Hypochilus has been challenging, and conserved morphology coupled with extreme genetic divergence has led to uncertain species limits in some complexes. Here, Hypochilus interspecies relationships have been reconstructed and cryptic speciation more critically evaluated using a combination of ultraconserved elements, mitochondrial CO1 by-catch, and morphology. Phylogenomic data strongly support the monophyly of regional clades and support a ((California, Appalachia), southern Rocky Mountains) topology. In Appalachia, five species are resolved as four lineages (H.thorelli Marx, 1888 and H.coylei Platnick, 1987 are clearly sister taxa), but the interrelationships of these four lineages remain unresolved. The Appalachian species H.pococki Platnick, 1987 is recovered as monophyletic but is highly genetically structured at the nuclear level. While algorithmic analyses of nuclear data indicate many species (e.g., all H.pococki populations as species), male morphology instead reveals striking stasis. Within the California clade, nuclear and mitochondrial lineages of H.petrunkevitchi Gertsch, 1958 correspond directly to drainage basins of the southern Sierra Nevada, with H.bernardino Catley, 1994 nested within H.petrunkevitchi and sister to the southernmost basin populations. Combining nuclear, mitochondrial, geographical, and morphological evidence a new species from the Tule River and Cedar Creek drainages is described, Hypochilusxomotesp. nov. We also emphasize the conservation issues that face several microendemic, habitat-specialized species in this remarkable genus.
Collapse
Affiliation(s)
- Erik Ciaccio
- Department of Biology, San Diego State University, San Diego, California, USA San Diego State University San Diego United States of America.,Department of Entomology, Plant Pathology and Nematology, University of Idaho, Idaho, USA University of Idaho Idaho United States of America
| | - Andrew Debray
- Department of Biology, San Diego State University, San Diego, California, USA San Diego State University San Diego United States of America.,Nano PharmaSolutions Inc., San Diego, California, USA Nano PharmaSolutions Inc. San Diego United States of America
| | - Marshal Hedin
- Department of Biology, San Diego State University, San Diego, California, USA San Diego State University San Diego United States of America
| |
Collapse
|
16
|
Crespo LC, Silva I, Enguídanos A, Cardoso P, Arnedo M. Island hoppers: Integrative taxonomic revision of Hogna wolf spiders (Araneae, Lycosidae) endemic to the Madeira islands with description of a new species. Zookeys 2022; 1086:84-135. [PMID: 35221746 PMCID: PMC8866340 DOI: 10.3897/zookeys.1086.68015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 12/13/2021] [Indexed: 11/12/2022] Open
Abstract
Because of their ability for aerial dispersal using silk and preference for open habitats, many wolf spiders are formidable colonisers. Pioneering arachnologists were already aware of the large and colourful wolf spiders in the Madeira archipelago, currently included in the genus Hogna Simon, 1885. The origins were investigated and species boundaries of Madeiran Hogna examined by integrating target-gene and morphological information. A multi-locus phylogenetic analysis of a thorough sampling across wolf-spider diversity suggested a single origin of Madeiran endemics, albeit with low support. Divergence time estimation traced back their origin to the late Miocene, a time of major global cooling that drove the expansion of grasslands and the associated fauna. Morphological examination of types and newly collected material revealed a new species, hereby described as H.isambertoi Crespo, sp. nov. Additionally, H.blackwalli is revalidated and three new synonymies are proposed, namely H.biscoitoi Wunderlich, 1992, junior synonym of H.insularum Kulczynski, 1899, H.schmitzi Wunderlich, 1992, junior synonym of H.maderiana (Walckenaer, 1837), and Arctosamaderana Roewer, 1960 junior synonym of H.ferox (Lucas, 1838). Species delimitation analyses of mitochondrial and nuclear markers provided additional support for morphological delineations. The species pair H.insularum and H.maderiana, however, constituted an exception: the lack of exclusive haplotypes in the examined markers, along with the discovery of intermediate forms, pointed to hybridisation between these two species as reported in other congeneric species on islands. Finally, the conservation status of the species is discussed and candidates for immediate conservation efforts are identified.
Collapse
Affiliation(s)
- Luís C Crespo
- Department of Evolutionary Biology, Ecology and Environmental Sciences (Arthropods), Biodiversity Research Institute (IRBio), Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain Universitat de Barcelona Barcelona Spain.,Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History (LUOMUS), University of Helsinki, P.O. Box 17, 00014 Helsinki, Finland University of Helsinki Helsinki Finland
| | - Isamberto Silva
- Instituto das Florestas e Conservação da Natureza IP-RAM, Jardim Botânico da Madeira, Caminho do Meio, Bom Sucesso, 9064-512, Funchal, Portugal Instituto das Florestas e Conservação da Natureza IP-RAM, Jardim Botânico da Madeira Funchal Portugal
| | - Alba Enguídanos
- Department of Evolutionary Biology, Ecology and Environmental Sciences (Arthropods), Biodiversity Research Institute (IRBio), Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain Universitat de Barcelona Barcelona Spain
| | - Pedro Cardoso
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History (LUOMUS), University of Helsinki, P.O. Box 17, 00014 Helsinki, Finland University of Helsinki Helsinki Finland
| | - Miquel Arnedo
- Department of Evolutionary Biology, Ecology and Environmental Sciences (Arthropods), Biodiversity Research Institute (IRBio), Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain Universitat de Barcelona Barcelona Spain
| |
Collapse
|
17
|
Miralles A, Ducasse J, Brouillet S, Flouri T, Fujisawa T, Kapli P, Knowles LL, Kumari S, Stamatakis A, Sukumaran J, Lutteropp S, Vences M, Puillandre N. SPART: A versatile and standardized data exchange format for species partition information. Mol Ecol Resour 2021; 22:430-438. [PMID: 34288531 DOI: 10.1111/1755-0998.13470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/25/2021] [Accepted: 07/12/2021] [Indexed: 11/28/2022]
Abstract
A wide range of data types can be used to delimit species and various computer-based tools dedicated to this task are now available. Although these formalized approaches have significantly contributed to increase the objectivity of species delimitation (SD) under different assumptions, they are not routinely used by alpha-taxonomists. One obvious shortcoming is the lack of interoperability among the various independently developed SD programs. Given the frequent incongruences between species partitions inferred by different SD approaches, researchers applying these methods often seek to compare these alternative species partitions to evaluate the robustness of the species boundaries. This procedure is excessively time consuming at present, and the lack of a standard format for species partitions is a major obstacle. Here, we propose a standardized format, SPART, to enable compatibility between different SD tools exporting or importing partitions. This format reports the partitions and describes, for each of them, the assignment of individuals to the "inferred species". The syntax also allows support values to be optionally reported, as well as original trees and the full command lines used in the respective SD analyses. Two variants of this format are proposed, overall using the same terminology but presenting the data either optimized for human readability (matricial SPART) or in a format in which each partition forms a separate block (SPART.XML). ABGD, DELINEATE, GMYC, PTP and TR2 have already been adapted to output SPART files and a new version of LIMES has been developed to import, export, merge and split them.
Collapse
Affiliation(s)
- Aurélien Miralles
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | | | - Sophie Brouillet
- Department of Genetics, Evolution and Environment, Centre for Life's Origins and Evolution, University College London, London, UK
| | - Tomas Flouri
- Department of Genetics, Evolution and Environment, Centre for Life's Origins and Evolution, University College London, London, UK
| | - Tomochika Fujisawa
- Center for Data Science Education and Research, Shiga University, Shiga, Japan
| | - Paschalia Kapli
- Department of Genetics, Evolution and Environment, Centre for Life's Origins and Evolution, University College London, London, UK
| | - L Lacey Knowles
- Department of Ecology and Evolution, University of Michigan, Ann Arbor, MI, USA
| | - Sangeeta Kumari
- Braunschweig University of Technology, Zoological Institute, Braunschweig, Germany
| | - Alexandros Stamatakis
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany.,Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Jeet Sukumaran
- Biology Department, LS 262, San Diego State University, San Diego, CA, USA
| | - Sarah Lutteropp
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Miguel Vences
- Braunschweig University of Technology, Zoological Institute, Braunschweig, Germany
| | - Nicolas Puillandre
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| |
Collapse
|
18
|
Neretina AN, Karabanov DP, Sacherova V, Kotov AA. Unexpected mitochondrial lineage diversity within the genus Alonella Sars, 1862 (Crustacea: Cladocera) across the Northern Hemisphere. PeerJ 2021; 9:e10804. [PMID: 33585083 PMCID: PMC7860113 DOI: 10.7717/peerj.10804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/30/2020] [Indexed: 02/05/2023] Open
Abstract
Representatives of the genus Alonella Sars (Crustacea: Cladocera: Chydorinae) belong to the smallest known water fleas. Although species of Alonella are widely distributed and often abundant in acidic and mountain water bodies, their diversity is poorly studied. Morphological and genetic approaches have been complicated by the minute size of these microcrustaceans. As a result, taxonomists have avoided revising these species. Here, we present genetic data on Alonella species diversity across the Northern Hemisphere with particular attention to the A. excisa species complex. We analyzed 82 16S rRNA sequences (all newly obtained), and 78 COI sequences (39 were newly obtained). The results revealed at least twelve divergent phylogenetic lineages, possible cryptic species, of Alonella, with different distribution patterns. As expected, the potential species diversity of this genus is significantly higher than traditionally accepted. The A. excisa complex is represented by nine divergent clades in the Northern Hemisphere, some of them have relatively broad distribution ranges and others are more locally distributed. Our results provide a genetic background for subsequent morphological analyses, formal descriptions of Alonella species and detailed phylogeographical studies.
Collapse
Affiliation(s)
- Anna N. Neretina
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry P. Karabanov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
- I.D. Papanin Institute for Biology of Inland Waters, Borok, Yaroslavl State, Russia
| | | | - Alexey A. Kotov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
19
|
Chan KO, Hutter CR, Wood PL, Grismer LL, Das I, Brown RM. Gene flow creates a mirage of cryptic species in a Southeast Asian spotted stream frog complex. Mol Ecol 2020; 29:3970-3987. [PMID: 32808335 DOI: 10.1111/mec.15603] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 07/29/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023]
Abstract
Most new cryptic species are described using conventional tree- and distance-based species delimitation methods (SDMs), which rely on phylogenetic arrangements and measures of genetic divergence. However, although numerous factors such as population structure and gene flow are known to confound phylogenetic inference and species delimitation, the influence of these processes is not frequently evaluated. Using large numbers of exons, introns, and ultraconserved elements obtained using the FrogCap sequence-capture protocol, we compared conventional SDMs with more robust genomic analyses that assess population structure and gene flow to characterize species boundaries in a Southeast Asian frog complex (Pulchrana picturata). Our results showed that gene flow and introgression can produce phylogenetic patterns and levels of divergence that resemble distinct species (up to 10% divergence in mitochondrial DNA). Hybrid populations were inferred as independent (singleton) clades that were highly divergent from adjacent populations (7%-10%) and unusually similar (<3%) to allopatric populations. Such anomalous patterns are not uncommon in Southeast Asian amphibians, which brings into question whether the high levels of cryptic diversity observed in other amphibian groups reflect distinct cryptic species-or, instead, highly admixed and structured metapopulation lineages. Our results also provide an alternative explanation to the conundrum of divergent (sometimes nonsister) sympatric lineages-a pattern that has been celebrated as indicative of true cryptic speciation. Based on these findings, we recommend that species delimitation of continuously distributed "cryptic" groups should not rely solely on conventional SDMs, but should necessarily examine population structure and gene flow to avoid taxonomic inflation.
Collapse
Affiliation(s)
- Kin O Chan
- Lee Kong Chian National History Museum, Faculty of Science, National University of Singapore, Singapore
| | - Carl R Hutter
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA.,Museum of Natural Sciences and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Perry L Wood
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA.,Department of Biological Sciences & Museum of Natural History, Auburn University, Auburn, AL, USA
| | - L L Grismer
- Herpetology Laboratory, Department of Biology, La Sierra University, Riverside, CA, USA
| | - Indraneil Das
- Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Rafe M Brown
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
20
|
Lücking R, Aime MC, Robbertse B, Miller AN, Ariyawansa HA, Aoki T, Cardinali G, Crous PW, Druzhinina IS, Geiser DM, Hawksworth DL, Hyde KD, Irinyi L, Jeewon R, Johnston PR, Kirk PM, Malosso E, May TW, Meyer W, Öpik M, Robert V, Stadler M, Thines M, Vu D, Yurkov AM, Zhang N, Schoch CL. Unambiguous identification of fungi: where do we stand and how accurate and precise is fungal DNA barcoding? IMA Fungus 2020; 11:14. [PMID: 32714773 PMCID: PMC7353689 DOI: 10.1186/s43008-020-00033-z] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
True fungi (Fungi) and fungus-like organisms (e.g. Mycetozoa, Oomycota) constitute the second largest group of organisms based on global richness estimates, with around 3 million predicted species. Compared to plants and animals, fungi have simple body plans with often morphologically and ecologically obscure structures. This poses challenges for accurate and precise identifications. Here we provide a conceptual framework for the identification of fungi, encouraging the approach of integrative (polyphasic) taxonomy for species delimitation, i.e. the combination of genealogy (phylogeny), phenotype (including autecology), and reproductive biology (when feasible). This allows objective evaluation of diagnostic characters, either phenotypic or molecular or both. Verification of identifications is crucial but often neglected. Because of clade-specific evolutionary histories, there is currently no single tool for the identification of fungi, although DNA barcoding using the internal transcribed spacer (ITS) remains a first diagnosis, particularly in metabarcoding studies. Secondary DNA barcodes are increasingly implemented for groups where ITS does not provide sufficient precision. Issues of pairwise sequence similarity-based identifications and OTU clustering are discussed, and multiple sequence alignment-based phylogenetic approaches with subsequent verification are recommended as more accurate alternatives. In metabarcoding approaches, the trade-off between speed and accuracy and precision of molecular identifications must be carefully considered. Intragenomic variation of the ITS and other barcoding markers should be properly documented, as phylotype diversity is not necessarily a proxy of species richness. Important strategies to improve molecular identification of fungi are: (1) broadly document intraspecific and intragenomic variation of barcoding markers; (2) substantially expand sequence repositories, focusing on undersampled clades and missing taxa; (3) improve curation of sequence labels in primary repositories and substantially increase the number of sequences based on verified material; (4) link sequence data to digital information of voucher specimens including imagery. In parallel, technological improvements to genome sequencing offer promising alternatives to DNA barcoding in the future. Despite the prevalence of DNA-based fungal taxonomy, phenotype-based approaches remain an important strategy to catalog the global diversity of fungi and establish initial species hypotheses.
Collapse
Affiliation(s)
- Robert Lücking
- Botanischer Garten und Botanisches Museum, Freie Universität Berlin, Königin-Luise-Straße 6–8, 14195 Berlin, Germany
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
| | - M. Catherine Aime
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907 USA
| | - Barbara Robbertse
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892 USA
| | - Andrew N. Miller
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Illinois Natural History Survey, University of Illinois, 1816 South Oak Street, Champaign, IL 61820-6970 USA
| | - Hiran A. Ariyawansa
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, Taipe City, Taiwan
| | - Takayuki Aoki
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- National Agriculture and Food Research Organization, Genetic Resources Center, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| | - Gianluigi Cardinali
- Department Pharmaceutical Sciences, University of Perugia, Via Borgo 20 Giugno, 74, Perugia, Italy
| | - Pedro W. Crous
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Irina S. Druzhinina
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - David M. Geiser
- Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802 USA
| | - David L. Hawksworth
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Surrey, TW9 3DS UK
- Geography and Environment, University of Southampton, Southampton, SO17 1BJ UK
- Jilin Agricultural University, Changchun, 130118 Jilin Province China
| | - Kevin D. Hyde
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- World Agroforestry Centre, East and Central Asia, Kunming, 650201 Yunnan China
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Rai, 50150 Thailand
| | - Laszlo Irinyi
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital (Research and Education Network), Westmead Institute for Medical Research, Sydney, NSW Australia
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - Peter R. Johnston
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Manaaki Whenua – Landcare Research, Private Bag 92170, Auckland, 1142 New Zealand
| | | | - Elaine Malosso
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Universidade Federal de Pernambuco, Centro de Biociências, Departamento de Micologia, Laboratório de Hifomicetos de Folhedo, Avenida da Engenharia, s/n Cidade Universitária, Recife, PE 50.740-600 Brazil
| | - Tom W. May
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Royal Botanic Gardens Victoria, Birdwood Avenue, Melbourne, Victoria 3004 Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital (Research and Education Network), Westmead Institute for Medical Research, Sydney, NSW Australia
| | - Maarja Öpik
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- University of Tartu, 40 Lai Street, 51 005 Tartu, Estonia
| | - Vincent Robert
- Department Pharmaceutical Sciences, University of Perugia, Via Borgo 20 Giugno, 74, Perugia, Italy
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Marc Stadler
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department Microbial Drugs, Helmholtz Centre for Infection Research, and German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Marco Thines
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Straße 9, 60439 Frankfurt (Main); Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt (Main), Germany
| | - Duong Vu
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Andrey M. Yurkov
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Ning Zhang
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901 USA
| | - Conrad L. Schoch
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892 USA
| |
Collapse
|
21
|
Kotov AA, Garibian PG, Bekker EI, Taylor DJ, Karabanov DP. A new species group from the Daphnia curvirostris species complex (Cladocera: Anomopoda) from the eastern Palaearctic: taxonomy, phylogeny and phylogeography. Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
The eastern Palaearctic is a centre of diversity for freshwater cladocerans (Crustacea), but little is known about the evolution and taxonomy of this diversity. Daphnia curvirostris is a Holarctic species complex that has most of its diversity in the eastern Palaearctic. We examined the phylogeography, rates of evolution and taxonomic status for each clade of the D. curvirostris complex using morphological and genetic evidence from four genes. The cybertaxonomical and morphological evidence supported an eastern Palaearctic clade, with at least four species (described here as the Daphnia korovchinskyi sp. nov. group) having diagnostic morphological characters. We also detected convergent morphological characters in the D. curvirostris complex that provided information about species boundaries. Two of the new species (Daphnia koreana sp. nov. and Daphnia ishidai sp. nov.) are known from single ponds and are threatened by human activity. Divergence time estimates suggested an ancient origin (12–28 Mya) for the D. korovchinskyi group, but these estimates are complicated by the small number of calibration points.
Collapse
Affiliation(s)
- Alexey A Kotov
- A. N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Leninsky Prospect, Moscow, Russia
| | - Petr G Garibian
- A. N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Leninsky Prospect, Moscow, Russia
| | - Eugeniya I Bekker
- A. N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Leninsky Prospect, Moscow, Russia
| | - Derek J Taylor
- Department of Biological Sciences, The State University of New York at Buffalo, NY, USA
| | - Dmitry P Karabanov
- A. N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Leninsky Prospect, Moscow, Russia
- I. D. Papanin Institute for Biology of Inland Waters of Russian Academy of Sciences, Russia
| |
Collapse
|
22
|
Eberle J, Ahrens D, Mayer C, Niehuis O, Misof B. A Plea for Standardized Nuclear Markers in Metazoan DNA Taxonomy. Trends Ecol Evol 2020; 35:336-345. [DOI: 10.1016/j.tree.2019.12.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022]
|
23
|
Coalescence-based species delimitation using genome-wide data reveals hidden diversity in a cosmopolitan group of lichens. ORG DIVERS EVOL 2020. [DOI: 10.1007/s13127-019-00424-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Petzold A, Hassanin A. A comparative approach for species delimitation based on multiple methods of multi-locus DNA sequence analysis: A case study of the genus Giraffa (Mammalia, Cetartiodactyla). PLoS One 2020; 15:e0217956. [PMID: 32053589 PMCID: PMC7018015 DOI: 10.1371/journal.pone.0217956] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 01/24/2020] [Indexed: 12/25/2022] Open
Abstract
Molecular data are now commonly used in taxonomy for delimiting cryptic species. In the case of giraffes, which were treated as a single species (Giraffa camelopardalis) during half of a century, several molecular studies have suggested a splitting into four to seven species, but the criteria applied for taxonomic delimitation were not fully described. In this study, we have analysed all multi-locus DNA sequences available for giraffes using multispecies coalescent (MSC: *BEAST, BPP and STACEY), population genetic (STRUCTURE, allelic networks, haplotype network and bootstrapping, haplowebs and conspecificity matrix) and phylogenetic (MrBayes, PhyML, SuperTRI) methods to identify the number of species. Our results show that depending on the method chosen, different taxonomic hypotheses, recognizing from two to six species, can be considered for the genus Giraffa. Our results confirm that MSC methods can lead to taxonomic over-splitting, as they delimit geographic structure rather than species. The 3-species hypothesis, which recognizes G. camelopardalis sensu strico A, G. giraffa, and G. tippelskirchi, is highly supported by phylogenetic analyses and also corroborated by most population genetic and MSC analyses. The three species show high levels of nucleotide divergence in both nuclear (0.35-0.51%) and mitochondrial sequences (3-4%), and they are characterised by 7 to 12 exclusive synapomorphies (ES) detected in nine of the 21 nuclear introns analysed for this study. By contrast, other putative species, such as G. peralta, G. reticulata, G. thornicrofti or G. tippelskirchi sensu stricto, do not exhibit any ES in the nuclear genes. A robust mito-nuclear conflict was found for the position and monophyly of G. giraffa and G. tippelskirchi, which is interpreted as the result of a mitochondrial introgression from Masai to southeastern giraffe during the Pleistocene and nuclear gene flow mediated by male dispersal between southern populations (subspecies G. g. giraffa and G. g. angolensis).
Collapse
Affiliation(s)
- Alice Petzold
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, MNHN, CNRS, EPHE, Paris, France
- Muséum national d'Histoire naturelle, CP51, Paris, France
| | - Alexandre Hassanin
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, MNHN, CNRS, EPHE, Paris, France
- Muséum national d'Histoire naturelle, CP51, Paris, France
| |
Collapse
|
25
|
Jirapatrasilp P, Backeljau T, Prasankok P, Chanabun R, Panha S. Untangling a mess of worms: Species delimitations reveal morphological crypsis and variability in Southeast Asian semi-aquatic earthworms (Almidae, Glyphidrilus). Mol Phylogenet Evol 2019; 139:106531. [PMID: 31185298 DOI: 10.1016/j.ympev.2019.106531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/19/2019] [Accepted: 06/07/2019] [Indexed: 11/26/2022]
Abstract
Semi-aquatic freshwater earthworms in the genus Glyphidrilus from Southeast Asia are characterized by both an extreme morphological crypsis among divergent phylogenetic lineages and a high morphological variability within the same phylogenetic lineages. The present study provides a new taxonomic framework for this problematic genus in SE Asia by integrating DNA sequence and morphological data. When single-locus and multilocus multispecies coalescent-based (MSC) species delimitation methods were applied to DNA sequence data, they usually yielded highly incongruent results compared to morphology-based species identifications. This suggested the presence of several cryptic species and high levels of intraspecific morphological variation. Applying reciprocal monophyly to the cytochrome c oxidase subunit 1 (COI) gene tree allowed us to propose the existence of 33 monophyletic species. Yet, often substantially more molecular operational taxonomic units (MOTUs) were obtained when species delimitation was based on COI and 16S rRNA sequences. In contrast, the ITS1 and ITS2 sequences suggested fewer MOTUs and did not recover most of the monophyletic species from the Mekong basin. However, several of these latter taxa were better supported when MSC species delimitation methods were applied to the combined mtDNA and ITS datasets. The ITS2 secondary structure retrieved one unnamed Mekong basin species that was not uncovered by the other methods when applied to ITS2 sequences. In conclusion, based on an integrative taxonomic workflow, 26 Glyphidrilus candidate species were retained and two remained to be confirmed. As such, this study provides evidence to suggest nine species new to science and to synonymize 12 nominal morphospecies. It also illustrates that the uncritical use of COI as a universal DNA barcode may overestimate species diversity because COI may be unable to distinguish between divergent conspecific lineages and different candidate species.
Collapse
Affiliation(s)
- Parin Jirapatrasilp
- Biological Sciences Program, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Animal Systematics Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thierry Backeljau
- Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000 Brussels, Belgium; Evolutionary Ecology Group, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Pongpun Prasankok
- School of Biology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Ratmanee Chanabun
- Program in Animal Science, Faculty of Agriculture Technology, Sakon Nakhon Rajabhat University, Sakon Nakhon 47000, Thailand
| | - Somsak Panha
- Animal Systematics Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
26
|
García-Melo JE, Oliveira C, Da Costa Silva GJ, Ochoa-Orrego LE, Garcia Pereira LH, Maldonado-Ocampo JA. Species delimitation of neotropical Characins (Stevardiinae): Implications for taxonomy of complex groups. PLoS One 2019; 14:e0216786. [PMID: 31166941 PMCID: PMC6550444 DOI: 10.1371/journal.pone.0216786] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 04/29/2019] [Indexed: 12/21/2022] Open
Abstract
Accurate species delimitation is crucial for studies of phylogeny, phylogeography, ecology, conservation and biogeography. The limits of species and genera in the Characidae family are controversial due to its uncertain phylogenetic relationships, high level of morphological homoplasy and the use of ambiguous morphological characters for descriptions. Here we establish species boundaries for Bryconamericus, Hemibrycon, Knodus and Eretmobrycon (Stevardiinae: Characidae), previously diagnosed with morphology, using three different barcoding approaches (GMYC, PTP, ABGD). Results revealed that species delimitation was successful by the use of a single-gene approach and by following a workflow in the context of integrative taxonomy, making evident problems and mistakes in the cataloging of Characidae species. Hence, it was possible to infer boundaries at genus level for clusters in the trees (GMYC and PTP) and automatic partitions (ABGD) which were consistent with some of recent taxonomic changes proposed in Characidae. We found that discordance cases between methods were linked to limitations of the methods and associated to putative species cluster closely related, some historically problematic in their diagnosis and identification. Furthermore, we suggested taxonomic changes and possibly new species, revealing a high degree of hidden diversity. Finally, we propose a workflow as a fast, accurate and objective way to delimit species from mitochondrial DNA sequences and to help clarify the classification of this group.
Collapse
Affiliation(s)
- Jorge E. García-Melo
- Laboratorio de Ictiología, Unidad de Ecología y Sistemática (UNESIS), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Claudio Oliveira
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Campus de Botucatu, Botucatu, SP, Brazil
| | - Guilherme José Da Costa Silva
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Campus de Botucatu, Botucatu, SP, Brazil
- Universidade Santo Amaro, Rua Prof. Enéas de Siqueira Neto, Jardim das Imbuias, São Paulo—SP, Brazil
| | - Luz E. Ochoa-Orrego
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Campus de Botucatu, Botucatu, SP, Brazil
| | - Luiz Henrique Garcia Pereira
- Centro de Ciências da Vida e da Natureza, Universidade Federal da Integração Latino-Americana–UNILA, Foz do Iguaçu, Paraná, Brazil
| | - Javier A. Maldonado-Ocampo
- Laboratorio de Ictiología, Unidad de Ecología y Sistemática (UNESIS), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
27
|
Oliver PM, Ashman LG, Bank S, Laver RJ, Pratt RC, Tedeschi LG, Moritz CC. On and off the rocks: persistence and ecological diversification in a tropical Australian lizard radiation. BMC Evol Biol 2019; 19:81. [PMID: 30894117 PMCID: PMC6427882 DOI: 10.1186/s12862-019-1408-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 03/04/2019] [Indexed: 12/17/2022] Open
Abstract
Background Congruent patterns in the distribution of biodiversity between regions or habitats suggest that key factors such as climatic and topographic variation may predictably shape evolutionary processes. In a number of tropical and arid biomes, genetic analyses are revealing deeper and more localised lineage diversity in rocky ranges than surrounding habitats. Two potential drivers of localised endemism in rocky areas are refugial persistence through climatic change, or ecological diversification and specialisation. Here we examine how patterns of lineage and phenotypic diversity differ across two broad habitat types (rocky ranges and open woodlands) in a small radiation of gecko lizards in the genus Gehyra (the australis group) from the Australian Monsoonal Tropics biome. Results Using a suite of approaches for delineating evolutionarily independent lineages, we find between 26 and 41 putative evolutionary units in the australis group (versus eight species currently recognised). Rocky ranges are home to a greater number of lineages that are also relatively more restricted in distribution, while lineages in open woodland habitats are fewer, more widely distributed, and, in one case, show evidence of range expansion. We infer at least two shifts out of rocky ranges and into surrounding woodlands. Phenotypic divergence between rocky ranges specialist and more generalist taxa is detected, but no convergent evolutionary regimes linked to ecology are inferred. Conclusions In climatically unstable biomes such as savannahs, rocky ranges have functioned as zones of persistence, generators of diversity and a source of colonists for surrounding areas. Phenotypic divergence can also be linked to the use of differing habitat types, however, the extent to which ecological specialisation is a primary driver or secondary outcome of localised diversification remains uncertain. Electronic supplementary material The online version of this article (10.1186/s12862-019-1408-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paul M Oliver
- Environmental Futures Research Institute, Griffith University, 170 Kessels Rd, Nathan, Queensland, 4111, Australia. .,Biodiversity and Geosciences Program, Queensland Museum, South Brisbane, Queensland, 4101, Australia. .,Division of Ecology and Evolution, Research School of Biology, and Centre for Biodiversity Analysis, The Australian National University, 46 Sullivans Creek Road, Acton, ACT, 2601, Australia.
| | - Lauren G Ashman
- Division of Ecology and Evolution, Research School of Biology, and Centre for Biodiversity Analysis, The Australian National University, 46 Sullivans Creek Road, Acton, ACT, 2601, Australia
| | - Sarah Bank
- Division of Ecology and Evolution, Research School of Biology, and Centre for Biodiversity Analysis, The Australian National University, 46 Sullivans Creek Road, Acton, ACT, 2601, Australia.,Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Rebecca J Laver
- Division of Ecology and Evolution, Research School of Biology, and Centre for Biodiversity Analysis, The Australian National University, 46 Sullivans Creek Road, Acton, ACT, 2601, Australia
| | - Renae C Pratt
- Division of Ecology and Evolution, Research School of Biology, and Centre for Biodiversity Analysis, The Australian National University, 46 Sullivans Creek Road, Acton, ACT, 2601, Australia
| | - Leonardo G Tedeschi
- Division of Ecology and Evolution, Research School of Biology, and Centre for Biodiversity Analysis, The Australian National University, 46 Sullivans Creek Road, Acton, ACT, 2601, Australia
| | - Craig C Moritz
- Division of Ecology and Evolution, Research School of Biology, and Centre for Biodiversity Analysis, The Australian National University, 46 Sullivans Creek Road, Acton, ACT, 2601, Australia
| |
Collapse
|
28
|
Suárez-Villota EY, Quercia CA, Díaz LM, Vera-Sovier V, Nuñez JJ. Speciation in a biodiversity hotspot: Phylogenetic relationships, species delimitation, and divergence times of Patagonian ground frogs from the Eupsophus roseus group (Alsodidae). PLoS One 2018; 13:e0204968. [PMID: 30543633 PMCID: PMC6292574 DOI: 10.1371/journal.pone.0204968] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/27/2018] [Indexed: 11/19/2022] Open
Abstract
The alsodid ground frogs of the Eupsophus genus are divided into two groups, the roseus (2n = 30) and vertebralis (2n = 28), which are distributed throughout the temperate Nothofagus forests of South America. Currently, the roseus group is composed by four species, while the vertebralis group consists of two. Phylogenetic relationships and species delimitation within each group are controversial. In fact, previous analyses considered that the roseus group was composed of between four to nine species. In this work, we evaluated phylogenetic relationships, diversification times, and species delimitation within the roseus group using a multi-locus dataset. For this purpose, mitochondrial (D-loop, Cyt b, and COI) and nuclear (POMC and CRYBA1) partial sequences from 164 individuals were amplified, representing all species. Maximum Likelihood (ML) and Bayesian approaches were used to reconstruct phylogenetic relationships. Species tree was estimated using BEAST and singular value decomposition scores for species quartets (SVDquartets). Species limits were evaluated with six coalescent approaches. Diversification times were estimated using mitochondrial and nuclear rates with LogNormal relaxed clock in BEAST. Nine well-supported monophyletic lineages were recovered in Bayesian, ML, and SVDquartets, including eight named species and a lineage composed by specimens from the Villarrica population (Bootstrap:>70, PP:> 0.99). Single-locus species delimitation analyses overestimated the species number in E. migueli, E. calcaratus, and E. roseus lineages, while multi-locus analyses recovered as species the nine lineages observed in phylogenetic analyses (Ctax = 0.69). It is hypothesized that Eupsophus diversification occurred during Mid-Pleistocene (0.42-0.14 Mya), with most species having originated after the Last Southern Patagonian Glaciation (0.18 Mya). Our results revitalize the hypothesis that the E. roseus group is composed of eight species and support the Villarrica lineage as a new putative species.
Collapse
Affiliation(s)
| | - Camila A. Quercia
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Leila M. Díaz
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Victoria Vera-Sovier
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - José J. Nuñez
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
29
|
González Marín A, Olave M, Avila LJ, Sites JW, Morando M. Evidence of body size and shape stasis driven by selection in Patagonian lizards of the Phymaturus patagonicus clade (Squamata: Liolaemini). Mol Phylogenet Evol 2018; 129:226-241. [DOI: 10.1016/j.ympev.2018.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 12/22/2022]
|
30
|
Eberle J, Bazzato E, Fabrizi S, Rossini M, Colomba M, Cillo D, Uliana M, Sparacio I, Sabatinelli G, Warnock RCM, Carpaneto G, Ahrens D. Sex-Biased Dispersal Obscures Species Boundaries in Integrative Species Delimitation Approaches. Syst Biol 2018; 68:441-459. [DOI: 10.1093/sysbio/syy072] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 01/05/2023] Open
Affiliation(s)
- Jonas Eberle
- Zoological Research Museum Alexander Koenig, Centre of Taxonomy and Evolutionary Research, Adenauerallee 160, 53113 Bonn, Germany
| | - Erika Bazzato
- Zoological Research Museum Alexander Koenig, Centre of Taxonomy and Evolutionary Research, Adenauerallee 160, 53113 Bonn, Germany
- Department of Life and Environmental Sciences, Botany Division, University of Cagliari, viale Sant’Ignazio da Laconi 13, 09123, Cagliari (CA), Italy
| | - Silvia Fabrizi
- Zoological Research Museum Alexander Koenig, Centre of Taxonomy and Evolutionary Research, Adenauerallee 160, 53113 Bonn, Germany
| | - Michele Rossini
- Zoological Research Museum Alexander Koenig, Centre of Taxonomy and Evolutionary Research, Adenauerallee 160, 53113 Bonn, Germany
- Strada dei Guazzi, 1/3, 61122 Pesaro (PU), Italy
| | - Mariastella Colomba
- Università di Urbino, Dipartimento di Scienze Biomolecolari (DiSB), Via maggetti 22, 61029 Urbino (PU), Italy
| | | | - Marco Uliana
- Museo di Storia Naturale, Santa Croce 1730, 30135 Venezia, Italy
| | | | - Guido Sabatinelli
- Muséum d’Histoire Naturelle, Route de Malagnou 1, 1208 Geneva, Switzerland
| | | | - Giuseppe Carpaneto
- Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, 00146 Roma, Italy
| | - Dirk Ahrens
- Zoological Research Museum Alexander Koenig, Centre of Taxonomy and Evolutionary Research, Adenauerallee 160, 53113 Bonn, Germany
| |
Collapse
|
31
|
Suárez-Villota EY, Quercia CA, Nuñez JJ, Gallardo MH, Himes CM, Kenagy GJ. Monotypic status of the South American relictual marsupial Dromiciops gliroides (Microbiotheria). J Mammal 2018. [DOI: 10.1093/jmammal/gyy073] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Elkin Y Suárez-Villota
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Casilla, Valdivia, Chile
| | - Camila A Quercia
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Casilla, Valdivia, Chile
| | - José J Nuñez
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Casilla, Valdivia, Chile
| | - Milton H Gallardo
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Casilla, Valdivia, Chile
| | - Christopher M Himes
- Burke Museum and Department of Biology, University of Washington, Seattle, WA, USA
| | - G J Kenagy
- Burke Museum and Department of Biology, University of Washington, Seattle, WA, USA
| |
Collapse
|
32
|
Dellicour S, Flot JF. The hitchhiker's guide to single-locus species delimitation. Mol Ecol Resour 2018; 18:1234-1246. [PMID: 29847023 DOI: 10.1111/1755-0998.12908] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 01/21/2023]
Abstract
Molecular approaches to species delimitation are increasingly used to ascertain the number of species in a sample prior to taxonomic, ecological or physiological studies. Although multilocus approaches are gaining fast in popularity, single-gene methods still predominate in the literature. However, available simulation benchmarks of these methods focus exclusively on species-poor samples and/or tree-based approaches: as a result, travellers in the land of single-locus species delimitation lack a comprehensive "hitchhiker's guide" highlighting the sweet spots and dangers on their road. To fill this gap, we compared the performances of distance-based (ABGD, "automatic barcode gap discovery"), allele sharing-based (haplowebs) and tree-based approaches (GMYC, "generalized mixed Yule-coalescent" and PTP, "Poisson tree processes") to detect interspecific boundaries in samples of 6, 60 and 120 simulated species with various speciation rates, effective population sizes, mutation rates and sampling patterns. We found that all approaches performed poorly when population sizes and speciation rates were large, with haplowebs yielding best results followed by ABGD then tree-based approaches. The latter's error type was mostly oversplitting, whereas ABGD chiefly overlumped and haplowebs leaned either way depending on simulation parameters: such widely divergent error patterns suggest that, if all three types of methods agree, then the resulting delimitation is probably correct. Perfect congruence being quite rare, travellers in search of a one-size-fit-all approach to single-locus species delimitation should forget it; however, our hitchhiker's guide raises hope that such species delimitation's Holy Grail may be found in the relatively uncharted nearby land of multilocus species delimitation.
Collapse
Affiliation(s)
- Simon Dellicour
- Department of Microbiology and Immunology, Rega Institute, KU Leuven - University of Leuven, Leuven, Belgium.,Spatial Epidemiology Lab (SpELL), Université libre de Bruxelles, Bruxelles, Belgium
| | - Jean-François Flot
- Evolutionary Biology & Ecology, Université libre de Bruxelles, Bruxelles, Belgium.,Interuniversity Institute of Bioinformatics in Brussels - (IB)2, Brussels, Belgium
| |
Collapse
|
33
|
Ashman LG, Bragg JG, Doughty P, Hutchinson MN, Bank S, Matzke NJ, Oliver P, Moritz C. Diversification across biomes in a continental lizard radiation. Evolution 2018; 72:1553-1569. [PMID: 29972238 DOI: 10.1111/evo.13541] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 12/23/2022]
Abstract
Ecological opportunity is a powerful driver of evolutionary diversification, and predicts rapid lineage and phenotypic diversification following colonization of competitor-free habitats. Alternatively, topographic or environmental heterogeneity could be key to generating and sustaining diversity. We explore these hypotheses in a widespread lineage of Australian lizards: the Gehyra variegata group. This clade occurs across two biomes: the Australian monsoonal tropics (AMT), where it overlaps a separate, larger bodied clade of Gehyra and is largely restricted to rocks; and in the larger Australian arid zone (AAZ) where it has no congeners and occupies trees and rocks. New phylogenomic data and coalescent analyses of AAZ taxa resolve lineages and their relationships and reveal high diversity in the western AAZ (Pilbara region). The AMT and AAZ radiations represent separate radiations with no difference in speciation rates. Most taxa occur on rocks, with small geographic ranges relative to widespread generalist taxa across the vast central AAZ. Rock-dwelling and generalist taxa differ morphologically, but only the lineage-poor central AAZ taxa have accelerated evolution. This accords with increasing evidence that lineage and morphological diversity are poorly correlated, and suggests environmental heterogeneity and refugial dynamics have been more important than ecological release in elevating lineage diversity.
Collapse
Affiliation(s)
- L G Ashman
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - J G Bragg
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
- Royal Botanic Garden, Sydney, NSW 2000, Australia
| | - P Doughty
- Department of Terrestrial Zoology, Western Australian Museum, Perth, WA 6016, Australia
| | - M N Hutchinson
- South Australian Museum, Adelaide, SA 5000, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- School of Biological Sciences, Flinders University, Adelaide, SA 5042, Australia
| | - S Bank
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
- Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Göttingen 37073, Germany
| | - N J Matzke
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
- School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - P Oliver
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
- Environmental Futures Research Institute, Griffith University, Nathan, QLD 4111, Australia
- Biodiversity and Geosciences Program, Queensland Museum, Brisbane, QLD 4101, Australia
| | - C Moritz
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
34
|
Noguerales V, Cordero PJ, Ortego J. Integrating genomic and phenotypic data to evaluate alternative phylogenetic and species delimitation hypotheses in a recent evolutionary radiation of grasshoppers. Mol Ecol 2018; 27:1229-1244. [DOI: 10.1111/mec.14504] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/16/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Víctor Noguerales
- Grupo de Investigación de la Biodiversidad Genética y Cultural; Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM); Ciudad Real Spain
| | - Pedro J. Cordero
- Grupo de Investigación de la Biodiversidad Genética y Cultural; Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM); Ciudad Real Spain
| | - Joaquín Ortego
- Department of Integrative Ecology; Estación Biológica de Doñana (EBD-CSIC); Seville Spain
| |
Collapse
|
35
|
Ikeda H, Fukumori K, Shoda‐Kagaya E, Takahashi M, Ito MT, Sakai Y, Matsumoto K. Evolution of a key trait greatly affects underground community assembly process through habitat adaptation in earthworms. Ecol Evol 2018; 8:1726-1735. [PMID: 29435247 PMCID: PMC5792615 DOI: 10.1002/ece3.3777] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 11/18/2022] Open
Abstract
Underground community assemblies have not been studied well compared with aboveground communities, despite their importance for our understanding of whole ecosystems. To investigate underground community assembly over evolutionary timescales, we examined terrestrial earthworm communities (Oligochaeta: Haplotaxida) in conserved mountainous primary forests in Japan as a model system. We collected 553 earthworms mostly from two dominant families, the Megascolecidae and the Lumbricidae, from 12 sites. We constructed a molecular taxonomic unit tree based on the analysis of three genes to examine the effects of a biogeographic factor (dispersal ability) and an evolutionary factor (habitat adaptation) on the earthworm community assembly process. The phylogenetic distance of the earthworm communities among sites was positively correlated with geographic distance when intraspecific variation was included, indicating that the divergence within species was affected by biogeographic factors. The community assembly process in the Megascolecidae has also been affected by environmental conditions in relation to an evolutionary relationship between habitat environment and intestinal cecum type, a trait closely related to habitat depth and diet, whereas that in the Lumbricidae has not been affected as such. Intestinal cecum type showed a pattern of niche conservatism in the Megascolecidae lineage. Our results suggest that investigating the evolution of a key trait related to life history can lead to the clear description of community assembly process over a long timescale and that the community assembly process can differ greatly among related lineages even though they live sympatrically.
Collapse
Affiliation(s)
- Hiroshi Ikeda
- Faculty of Agriculture and Life ScienceHirosaki UniversityHirosakiJapan
| | - Kayoko Fukumori
- National Institute of Advanced Industrial Science and TechnologyTsukubaJapan
| | | | | | - Masamichi T. Ito
- Faculty of Economics and ManagementSurugadai UniversityHannoJapan
| | - Yoshimi Sakai
- Kyushu Research CenterForestry and Forest Products Research InstituteKumamotoJapan
| | - Kazuma Matsumoto
- Association of International Research Initiatives for Environmental StudiesTaito‐kuJapan
| |
Collapse
|
36
|
Singhal S, Huang H, Title PO, Donnellan SC, Holmes I, Rabosky DL. Genetic diversity is largely unpredictable but scales with museum occurrences in a species-rich clade of Australian lizards. Proc Biol Sci 2018; 284:rspb.2016.2588. [PMID: 28469025 DOI: 10.1098/rspb.2016.2588] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/03/2017] [Indexed: 12/14/2022] Open
Abstract
Genetic diversity is a fundamental characteristic of species and is affected by many factors, including mutation rate, population size, life history and demography. To better understand the processes that influence levels of genetic diversity across taxa, we collected genome-wide restriction-associated DNA data from more than 500 individuals spanning 76 nominal species of Australian scincid lizards in the genus Ctenotus To avoid potential biases associated with variation in taxonomic practice across the group, we used coalescent-based species delimitation to delineate 83 species-level lineages within the genus for downstream analyses. We then used these genetic data to infer levels of within-population genetic diversity. Using a phylogenetically informed approach, we tested whether variation in genetic diversity could be explained by population size, environmental heterogeneity or historical demography. We find that the strongest predictor of genetic diversity is a novel proxy for census population size: the number of vouchered occurrences in museum databases. However, museum occurrences only explain a limited proportion of the variance in genetic diversity, suggesting that genetic diversity might be difficult to predict at shallower phylogenetic scales.
Collapse
Affiliation(s)
- Sonal Singhal
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Huateng Huang
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pascal O Title
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephen C Donnellan
- South Australian Museum, North Terrace, Adelaide 5000, Australia.,Australian Centre for Evolutionary Biology and Biodiversity, University of Adelaide, Adelaide 5005, Australia
| | - Iris Holmes
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel L Rabosky
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
37
|
Moritz CC, Pratt RC, Bank S, Bourke G, Bragg JG, Doughty P, Keogh JS, Laver RJ, Potter S, Teasdale LC, Tedeschi LG, Oliver PM. Cryptic lineage diversity, body size divergence, and sympatry in a species complex of Australian lizards (
Gehyra
). Evolution 2017; 72:54-66. [DOI: 10.1111/evo.13380] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/15/2017] [Accepted: 10/02/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Craig C. Moritz
- Division of Ecology and Evolution, Research School of Biology, and Centre for Biodiversity Analysis The Australian National University Building 116, Daley Road Acton ACT 2601 Australia
| | - Renae C. Pratt
- Division of Ecology and Evolution, Research School of Biology, and Centre for Biodiversity Analysis The Australian National University Building 116, Daley Road Acton ACT 2601 Australia
| | - Sarah Bank
- Division of Ecology and Evolution, Research School of Biology, and Centre for Biodiversity Analysis The Australian National University Building 116, Daley Road Acton ACT 2601 Australia
| | - Gayleen Bourke
- Division of Ecology and Evolution, Research School of Biology, and Centre for Biodiversity Analysis The Australian National University Building 116, Daley Road Acton ACT 2601 Australia
| | - Jason G. Bragg
- Division of Ecology and Evolution, Research School of Biology, and Centre for Biodiversity Analysis The Australian National University Building 116, Daley Road Acton ACT 2601 Australia
- National Herbarium of New South Wales The Royal Botanic Gardens and Domain Trust Sydney NSW Australia
| | - Paul Doughty
- Western Australian Museum Perth WA 6026 Australia
| | - J. Scott Keogh
- Division of Ecology and Evolution, Research School of Biology, and Centre for Biodiversity Analysis The Australian National University Building 116, Daley Road Acton ACT 2601 Australia
| | - Rebecca J. Laver
- Division of Ecology and Evolution, Research School of Biology, and Centre for Biodiversity Analysis The Australian National University Building 116, Daley Road Acton ACT 2601 Australia
- School of BioSciences The University of Melbourne Parkville VIC 3010 Australia
- Department of Sciences Museum Victoria Carlton, Melbourne VIC 3001 Australia
| | - Sally Potter
- Division of Ecology and Evolution, Research School of Biology, and Centre for Biodiversity Analysis The Australian National University Building 116, Daley Road Acton ACT 2601 Australia
- Australian Museum Research Institute, Australian Museum Sydney NSW Australia
| | - Luisa C. Teasdale
- Division of Ecology and Evolution, Research School of Biology, and Centre for Biodiversity Analysis The Australian National University Building 116, Daley Road Acton ACT 2601 Australia
- School of BioSciences The University of Melbourne Parkville VIC 3010 Australia
- Department of Sciences Museum Victoria Carlton, Melbourne VIC 3001 Australia
- National Collections & Marine Infrastructure, Australian National Insect Collection CSIRO Black Mountain Laboratories Acton ACT 2601 Australia
| | - Leonardo G. Tedeschi
- Division of Ecology and Evolution, Research School of Biology, and Centre for Biodiversity Analysis The Australian National University Building 116, Daley Road Acton ACT 2601 Australia
| | - Paul M. Oliver
- Division of Ecology and Evolution, Research School of Biology, and Centre for Biodiversity Analysis The Australian National University Building 116, Daley Road Acton ACT 2601 Australia
| |
Collapse
|
38
|
Kapli P, Lutteropp S, Zhang J, Kobert K, Pavlidis P, Stamatakis A, Flouri T. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics 2017; 33:1630-1638. [PMID: 28108445 PMCID: PMC5447239 DOI: 10.1093/bioinformatics/btx025] [Citation(s) in RCA: 302] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/27/2016] [Accepted: 01/17/2017] [Indexed: 11/15/2022] Open
Abstract
MOTIVATION In recent years, molecular species delimitation has become a routine approach for quantifying and classifying biodiversity. Barcoding methods are of particular importance in large-scale surveys as they promote fast species discovery and biodiversity estimates. Among those, distance-based methods are the most common choice as they scale well with large datasets; however, they are sensitive to similarity threshold parameters and they ignore evolutionary relationships. The recently introduced "Poisson Tree Processes" (PTP) method is a phylogeny-aware approach that does not rely on such thresholds. Yet, two weaknesses of PTP impact its accuracy and practicality when applied to large datasets; it does not account for divergent intraspecific variation and is slow for a large number of sequences. RESULTS We introduce the multi-rate PTP (mPTP), an improved method that alleviates the theoretical and technical shortcomings of PTP. It incorporates different levels of intraspecific genetic diversity deriving from differences in either the evolutionary history or sampling of each species. Results on empirical data suggest that mPTP is superior to PTP and popular distance-based methods as it, consistently yields more accurate delimitations with respect to the taxonomy (i.e., identifies more taxonomic species, infers species numbers closer to the taxonomy). Moreover, mPTP does not require any similarity threshold as input. The novel dynamic programming algorithm attains a speedup of at least five orders of magnitude compared to PTP, allowing it to delimit species in large (meta-) barcoding data. In addition, Markov Chain Monte Carlo sampling provides a comprehensive evaluation of the inferred delimitation in just a few seconds for millions of steps, independently of tree size. AVAILABILITY AND IMPLEMENTATION mPTP is implemented in C and is available for download at http://github.com/Pas-Kapli/mptp under the GNU Affero 3 license. A web-service is available at http://mptp.h-its.org . CONTACT : paschalia.kapli@h-its.org or alexandros.stamatakis@h-its.org or tomas.flouri@h-its.org. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- P Kapli
- The Exelixis Lab, Scientific Computing Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - S Lutteropp
- The Exelixis Lab, Scientific Computing Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Department of Informatics, Institute of Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - J Zhang
- The Exelixis Lab, Scientific Computing Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - K Kobert
- The Exelixis Lab, Scientific Computing Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - P Pavlidis
- Foundation for Research and Technology, Hellas Institute of Computer Science GR, Heraklion, Crete, Greece
| | - A Stamatakis
- The Exelixis Lab, Scientific Computing Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Department of Informatics, Institute of Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - T Flouri
- The Exelixis Lab, Scientific Computing Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Department of Informatics, Institute of Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|