1
|
Singh M, Chadha P. Dose-Dependent Hepatorenal Damage Induced by Erythrosine: A Study of Biochemical, Oxidative Stress, DNA Damage, and Histopathological Effects in Wistar Rats. J Appl Toxicol 2025; 45:884-897. [PMID: 39843243 DOI: 10.1002/jat.4754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/24/2024] [Accepted: 01/02/2025] [Indexed: 01/24/2025]
Abstract
This study aimed to provide insights into the hepatorenal toxicity induced by erythrosine, a synthetic red dye commonly used in food and pharmaceuticals, which has raised concerns over its potential health risks. Twenty-four rats were randomly divided into four groups (n = 6). The first group was the control group and the other group received one of three doses of erythrosine based on acceptable daily intake (¼ ADI, ½ ADI, and ADI, 0.1 mg/kg body weight). This study examined biological activity via biochemical enzyme analysis, oxidative stress indices, DNA damage, and histopathology. Compared with the control group, erythrosine administration increased the serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total bilirubin, total protein, urea, creatinine, and uric acid at the highest erythrosine dose. The catalase and the superoxide dismutase activity decreased in both tissues at the highest dose. The glutathione-S-transferase activity increased at the ¼ ADI dose and decreased at higher doses in both tissues. In contrast, acetylcholinesterase activity was greater in erythrosine-treated rats than in control rats. Oxidative stress indices indicated increased lipid peroxidation, hydrogen peroxide content, and lactate dehydrogenase activity. The comet assay was used to assess DNA damage, revealing significant damage in the erythrosine-treated groups. Histopathological examination revealed necrotic and degenerative changes in the liver and kidney tissues. The findings underscore dose-dependent hepatorenal toxicity and highlight the novelty of demonstrating a comprehensive link between erythrosine exposure, oxidative stress, and DNA damage. These results emphasize the need for cautious evaluation of synthetic dye consumption due to potential health risks.
Collapse
Affiliation(s)
- Mandeep Singh
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Pooja Chadha
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
2
|
Constantin OE, Stoica F, Lazăr (Mistrianu) S, Andronoiu DG, Turturică M, Stănciuc N, Rațu RN, Croitoru C, Râpeanu G. A Sustainable Approach: Repurposing Red Beetroot Peels for Innovative Meringue Products. Foods 2025; 14:317. [PMID: 39856983 PMCID: PMC11765219 DOI: 10.3390/foods14020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
With the increasing global demand for sustainable and eco-friendly food items, it is imperative to investigate alternate sources of natural pigments. The red beetroot (Beta vulgaris L.) is a traditional food in many countries and a rich bioactive compound known for its beneficial properties. Beetroot peel, a by-product of beetroot food processing, is often discarded, contributing to environmental damage. This research explores the potential of beetroot peel (BP) powder as a natural pigment in food products and its functional benefits. The study focuses on incorporating BP powder into meringues, aiming to create a value-added product with enhanced properties, particularly antioxidant activity. Various amounts of BP powder (4-10%) were added to meringue formulations, and the effects on the resulting meringues' physicochemical properties, sensory qualities, and phytochemical profiles were assessed during 21 days of storage. The research revealed that BP powder, besides its function as a natural colorant and the pleasing pink hue it imparts to meringues, also enhances antioxidant activity due to its high phenolic concentration. BP powder was also incorporated to enhance the meringues' overall sensory characteristics, improving their flavor and texture. The research findings indicate that BP has the potential to be used as a natural food ingredient to promote human health, resource-use efficiency, and a circular economy.
Collapse
Affiliation(s)
- Oana Emilia Constantin
- Integrated Center for Research, Expertise and Technological Transfer in Food Industry, Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania; (O.E.C.); (S.L.); (D.G.A.); (M.T.); (N.S.); (R.N.R.); (C.C.)
| | - Florina Stoica
- Department of Pedotechnics, Faculty of Agriculture, “Ion Ionescu de La Brad” Iasi University of Life Sciences, 3 Mihail Sadoveanu Alley, 700489 Iasi, Romania;
| | - Silvia Lazăr (Mistrianu)
- Integrated Center for Research, Expertise and Technological Transfer in Food Industry, Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania; (O.E.C.); (S.L.); (D.G.A.); (M.T.); (N.S.); (R.N.R.); (C.C.)
| | - Doina Georgeta Andronoiu
- Integrated Center for Research, Expertise and Technological Transfer in Food Industry, Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania; (O.E.C.); (S.L.); (D.G.A.); (M.T.); (N.S.); (R.N.R.); (C.C.)
| | - Mihaela Turturică
- Integrated Center for Research, Expertise and Technological Transfer in Food Industry, Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania; (O.E.C.); (S.L.); (D.G.A.); (M.T.); (N.S.); (R.N.R.); (C.C.)
| | - Nicoleta Stănciuc
- Integrated Center for Research, Expertise and Technological Transfer in Food Industry, Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania; (O.E.C.); (S.L.); (D.G.A.); (M.T.); (N.S.); (R.N.R.); (C.C.)
| | - Roxana Nicoleta Rațu
- Integrated Center for Research, Expertise and Technological Transfer in Food Industry, Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania; (O.E.C.); (S.L.); (D.G.A.); (M.T.); (N.S.); (R.N.R.); (C.C.)
- Department of Food Technologies, Faculty of Agriculture, “Ion Ionescu de La Brad” Iasi University of Life Sciences, 3 Mihail Sadoveanu Alley, 700489 Iasi, Romania
| | - Constantin Croitoru
- Integrated Center for Research, Expertise and Technological Transfer in Food Industry, Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania; (O.E.C.); (S.L.); (D.G.A.); (M.T.); (N.S.); (R.N.R.); (C.C.)
- Academy of Agricultural and Forestry Sciences, 61 Marasti Blvd, 011464 Bucharest, Romania
| | - Gabriela Râpeanu
- Integrated Center for Research, Expertise and Technological Transfer in Food Industry, Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania; (O.E.C.); (S.L.); (D.G.A.); (M.T.); (N.S.); (R.N.R.); (C.C.)
| |
Collapse
|
3
|
Shokri S, Shariatifar N, Molaee-Aghaee E, Khaniki GJ, Sadighara P, Vali Zade S, Shoeibi S. Ponceau 4R elimination from fruit juice: An integrated optimization strategy utilizing artificial neural networks, least squares, and chitosan-nickel ferrite Nano Sorbent. Food Chem X 2024; 24:101856. [PMID: 39416305 PMCID: PMC11480246 DOI: 10.1016/j.fochx.2024.101856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
The goal of present work is to examine the efficiency of aminated-chitosan/NiFe2O4 nanoparticles (AmCs/NiFe2O4 NPs) produced for removing Ponceau 4R (P4R) from fruit juice through an adsorption process. The resulting nanoparticles were characterized using various techniques. The modeling of results was done using least squares (LS) and Radial basis function-artificial neural network (RBF-ANN). The optimum removal of P4R (91.43 %) was obtained at the following optimum conditions: pH 4.47, adsorbent dosage 0.047 g/L, contact time approximately 57.78 min, and initial concentration P4R 26.89 mg/L. The highest adsorption capacity (qm) was found to be 208.33 mg g-1. The P4R adsorption mostly followed the Freundlich and pseudo-second-order isotherm kinetic models. Both LS-based models and RBF-ANN provided good predictions for independent variables. The dye elimination efficacy for juice samples were approximately 90.34 %. Therefore, based on the obtained results, it can be claimed that the prepared AmCs/NiFe2O4 NPs can be used to remove P4R.
Collapse
Affiliation(s)
- Samira Shokri
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nabi Shariatifar
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Molaee-Aghaee
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Jahed Khaniki
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Sadighara
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Somaye Vali Zade
- Halal Research Center of IRI, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Shahram Shoeibi
- Food and Drug Laboratory Research Center, Food and Drug Administration, Iran Ministrily of Health and Medical Education, Iran
| |
Collapse
|
4
|
Hofseth LJ, Hebert JR, Murphy EA, Trauner E, Vikas A, Harris Q, Chumanevich AA. Allura Red AC is a xenobiotic. Is it also a carcinogen? Carcinogenesis 2024; 45:711-720. [PMID: 39129647 PMCID: PMC11464682 DOI: 10.1093/carcin/bgae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/13/2024] Open
Abstract
Merriam-Webster and Oxford define a xenobiotic as any substance foreign to living systems. Allura Red AC (a.k.a., E129; FD&C Red No. 40), a synthetic food dye extensively used in manufacturing ultra-processed foods and therefore highly prevalent in our food supply, falls under this category. The surge in synthetic food dye consumption during the 70s and 80s was followed by an epidemic of metabolic diseases and the emergence of early-onset colorectal cancer in the 1990s. This temporal association raises significant concerns, particularly given the widespread inclusion of synthetic food dyes in ultra-processed products, notably those marketed toward children. Given its interactions with key contributors to colorectal carcinogenesis such as inflammatory mediators, the microbiome, and DNA damage, there is growing interest in understanding Allura Red AC's potential impact on colon health as a putative carcinogen. This review discusses the history of Allura Red AC, current research on its effects on the colon and rectum, potential mechanisms underlying its impact on colon health, and provides future considerations. Indeed, although no governing agencies classify Allura Red AC as a carcinogen, its interaction with key guardians of carcinogenesis makes it suspect and worthy of further molecular investigation. The goal of this review is to inspire research into the impact of synthetic food dyes on colon health.
Collapse
Affiliation(s)
- Lorne J Hofseth
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, United States
| | - James R Hebert
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, 29208, United States
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, 29208, United States
| | - Elizabeth Angela Murphy
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC, 29208, United States
| | - Erica Trauner
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, United States
| | - Athul Vikas
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, United States
| | - Quinn Harris
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, United States
| | - Alexander A Chumanevich
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, United States
| |
Collapse
|
5
|
Amchova P, Siska F, Ruda-Kucerova J. Food Safety and Health Concerns of Synthetic Food Colors: An Update. TOXICS 2024; 12:466. [PMID: 39058118 PMCID: PMC11280921 DOI: 10.3390/toxics12070466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 07/28/2024]
Abstract
The toxicity of food additives is widely studied and concerns many consumers worldwide. Synthetic food colors are often considered an unnecessary risk to consumer health. Since the European Food Safety Authority's (EFSA) re-evaluation between 2009 and 2014, the body of scientific literature on food colors has grown, and new evaluations are being published by the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Therefore, this narrative review aims to review the toxicological data that have become available since 2014. The reviewed colors are Quinoline Yellow, Sunset Yellow, Azorubine, Amaranth, Ponceau 4R, Erythrosine, Allura Red, Patent Blue, Indigo Carmine, Brilliant Blue FCF, Green S, Brilliant Black, Brown HT, and Lithol Rubine BK. Tartrazine was not included in this paper; the overwhelming amount of recent data on Tartrazine toxicity requires more space than this review can provide. The issues regarding the toxicity of synthetic food colors and real population exposures are being regularly examined and reviewed by relevant authorities, such as the EFSA and JECFA. The current ADI limits set by the authorities are mostly in agreement, and they seem safe. However, the EFSA and JECFA assessments of some of the colors are more than a decade old, and new evidence will soon be required.
Collapse
Affiliation(s)
- Petra Amchova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (P.A.); (F.S.)
| | - Filip Siska
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (P.A.); (F.S.)
- Oncology Department, Hospital of Ceske Budejovice, B. Nemcove 585/54, 370 01 Ceske Budejovice, Czech Republic
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (P.A.); (F.S.)
| |
Collapse
|
6
|
Bhatt D, Vyas K, Singh S, John PJ, Soni IP. Sunset Yellow induced biochemical and histopathological alterations in rat brain sub-regions. Acta Histochem 2024; 126:152155. [PMID: 38489857 DOI: 10.1016/j.acthis.2024.152155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 01/28/2024] [Accepted: 03/01/2024] [Indexed: 03/17/2024]
Abstract
Sunset Yellow, a synthetic orange azo food dye was examined in this study for its impact on the Wistar rat brain sub-regions. The dye was administered orally to weanling rats at the Acceptable Daily Intake level (4 mg/kg/bw) for 40 days, and brain sub-regions viz., frontal cortex, cerebellum and hippocampus were examined for biochemical and histopathological changes. The results showed a significant decrease in tissue protein levels, superoxide dismutase, and catalase activity, as well as a significant increase in lipid peroxide levels in all brain sub-regions. Glutathione-S-transferase and Glutathione Reductase activities decreased, while Glutathione peroxidase activity increased. The biogenic amine levels and Acetylcholinesterase activity were also altered, with the frontal cortex and hippocampus being the most affected. Additionally, the dye caused histopathological damage in all brain sub-regions examined. This study indicates that the ADI level of Sunset Yellow may adversely affect brain tissue by causing oxidative damage.
Collapse
Affiliation(s)
- Diksha Bhatt
- Environmental Toxicology Laboratory, Department of Zoology, University of Rajasthan, Jaipur 302004, India.
| | - Krati Vyas
- Environmental Toxicology Laboratory, Department of Zoology, University of Rajasthan, Jaipur 302004, India
| | - Shakuntala Singh
- Environmental Toxicology Laboratory, Department of Zoology, University of Rajasthan, Jaipur 302004, India
| | - P J John
- Environmental Toxicology Laboratory, Department of Zoology, University of Rajasthan, Jaipur 302004, India
| | - I P Soni
- Environmental Toxicology Laboratory, Department of Zoology, University of Rajasthan, Jaipur 302004, India
| |
Collapse
|
7
|
Grondin JA, Khan WI. Emerging Roles of Gut Serotonin in Regulation of Immune Response, Microbiota Composition and Intestinal Inflammation. J Can Assoc Gastroenterol 2024; 7:88-96. [PMID: 38314177 PMCID: PMC10836984 DOI: 10.1093/jcag/gwad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2024] Open
Abstract
Although the exact etiology of inflammatory bowel diseases (IBD) is unknown, studies have shown that dysregulated immune responses, genetic factors, gut microbiota, and environmental factors contribute to their pathogenesis. Intriguingly, serotonin (5-hydroxytryptamine or 5-HT) seems to be a molecule with increasingly strong implications in the pathogenesis of intestinal inflammation, affecting host physiology, including autophagy and immune responses, as well as microbial composition and function. 5-HT may also play a role in mediating how environmental effects impact outcomes in IBD. In this review, we aim to explore the production and important functions of 5-HT, including its impact on the gut. In addition, we highlight the bidirectional impacts of 5-HT on the immune system, the gut microbiota, and the process of autophagy and how these effects contribute to the manifestation of intestinal inflammation. We also explore recent findings connecting 5-HT signalling and the influence of environmental factors, particularly diet, in the pathogenesis of IBD. Ultimately, we explore the pleiotropic effects of this ancient molecule on biology and health in the context of intestinal inflammation.
Collapse
Affiliation(s)
- Jensine A Grondin
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
8
|
Li F, Tang R, Kang Y, Cui X, Wang Y, Yang X. Fluorescent composite based on peptide nanotubes activating coumarin 6 for sensitive detection of new coccine in food samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123492. [PMID: 37844452 DOI: 10.1016/j.saa.2023.123492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
New coccine (NC), as a kind of common colorant, has been frequently used in our daily life. Herein, the fluorescent composite (PNTs@C6) prepared by the hydrophobic non-covalent interaction between peptide nanotubes and coumarin 6 (C6) was designed for the determination of NC. Due to the activation of C6 by peptide nanotubes, the composite exhibits strong green fluorescence emission, which can be selectively quenched by NC through the inner filter effect. Therefore, a new fluorescent method based on the PNTs@C6 composite for NC detection was constructed. Under optimal conditions, the fluorescence quenching of the sensor exhibits a good linear relationship with the concentration of NC in the range of 0.01-10 μM and the limit of detection is 3.6 nM. Furthermore, the strategy shows simplicity, rapid response and high selectivity and has been successfully applied to the detection of NC in food samples.
Collapse
Affiliation(s)
- Fang Li
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China
| | - Rong Tang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China
| | - Yujie Kang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China
| | - Xiaoyan Cui
- Nanchong Food and Drug Inspection Institute, Nanchong 637000, China
| | - Ya Wang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China.
| | - Xiupei Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China.
| |
Collapse
|
9
|
Zhang Q, Chumanevich AA, Nguyen I, Chumanevich AA, Sartawi N, Hogan J, Khazan M, Harris Q, Massey B, Chatzistamou I, Buckhaults PJ, Banister CE, Wirth M, Hebert JR, Murphy EA, Hofseth LJ. The synthetic food dye, Red 40, causes DNA damage, causes colonic inflammation, and impacts the microbiome in mice. Toxicol Rep 2023; 11:221-232. [PMID: 37719200 PMCID: PMC10502305 DOI: 10.1016/j.toxrep.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/19/2023] Open
Abstract
The incidence of colorectal cancer (CRC) among young people has been on the rise for the past four decades and its underlying causes are only just starting to be uncovered. Recent studies suggest that consuming ultra-processed foods and pro-inflammatory diets may be contributing factors. The increase in the use of synthetic food colors in such foods over the past 40 years, including the common synthetic food dye Allura Red AC (Red 40), coincides with the rise of early-onset colorectal cancer (EOCRC). As these ultra-processed foods are particularly appealing to children, there is a growing concern about the impact of synthetic food dyes on the development of CRC. Our study aimed to investigate the effects of Red 40 on DNA damage, the microbiome, and colonic inflammation. Despite a lack of prior research, high levels of human exposure to pro-inflammatory foods containing Red 40 highlight the urgency of exploring this issue. Our results show that Red 40 damages DNA both in vitro and in vivo and that consumption of Red 40 in the presence of a high-fat diet for 10 months leads to dysbiosis and low-grade colonic inflammation in mice. This evidence supports the hypothesis that Red 40 is a dangerous compound that dysregulates key players involved in the development of EOCRC.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Alexander A. Chumanevich
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Ivy Nguyen
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Anastasiya A. Chumanevich
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Nora Sartawi
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Jake Hogan
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Minou Khazan
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Quinn Harris
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Bryson Massey
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Phillip J. Buckhaults
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Carolyn E. Banister
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Michael Wirth
- Department of Biobehavioral Health & Nursing Science, College of Nursing, University of South Carolina, Columbia, SC 29208, USA
| | - James R. Hebert
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - E. Angela Murphy
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Lorne J. Hofseth
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
10
|
Khan KA, Shah A, Nisar J, Haleem A, Shah I. Photocatalytic Degradation of Food and Juices Dyes via Photocatalytic Nanomaterials Synthesized through Green Synthetic Route: A Systematic Review. Molecules 2023; 28:4600. [PMID: 37375155 DOI: 10.3390/molecules28124600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The unavailability of non-poisonous and hygienic food substances is the most challenging issue of the modern era. The uncontrolled usage of toxic colorant moieties in cosmetics and food manufacturing units leads to major threats to human life. The selection of environmentally benign approaches for the removal of these toxic dyes has gained the utmost attention from researchers in recent decades. This review article's main aim is the focus on the application of green-synthesized nanoparticles (NPs) for the photocatalytic degradation of toxic food dyes. The use of synthetic dyes in the food industry is a growing concern due to their harmful effects on human health and the environment. In recent years, photocatalytic degradation has emerged as an effective and eco-friendly method for the removal of these dyes from wastewater. This review discusses the various types of green-synthesized NPs that have been used for photocatalytic degradation (without the production of any secondary pollutant), including metal and metal oxide NPs. It also highlights the synthesis methods, characterization techniques, and photocatalytic efficiency of these NPs. Furthermore, the review explores the mechanisms involved in the photocatalytic degradation of toxic food dyes using green-synthesized NPs. Different factors that responsible for the photodegradation, are also highlighted. Advantages and disadvantages, as well as economic cost, are also discussed briefly. This review will be advantageous for the readers because it covers all aspects of dyes photodegradation. The future feature and limitations are also part of this review article. Overall, this review provides valuable insights into the potential of green-synthesized NPs as a promising alternative for the removal of toxic food dyes from wastewater.
Collapse
Affiliation(s)
- Kashif Ali Khan
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Afzal Shah
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Jan Nisar
- National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Abdul Haleem
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Iltaf Shah
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
11
|
Hang D, Wang L, Fang Z, Du M, Wang K, He X, Khandpur N, Rossato SL, Wu K, Hu Z, Shen H, Ogino S, Chan AT, Giovannucci EL, Zhang FF, Song M. Ultra-processed food consumption and risk of colorectal cancer precursors: results from 3 prospective cohorts. J Natl Cancer Inst 2023; 115:155-164. [PMID: 36477589 PMCID: PMC9905956 DOI: 10.1093/jnci/djac221] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/28/2022] [Accepted: 10/26/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Growing evidence indicates the adverse effect of ultra-processed food (UPF) consumption. However, it remains unknown whether UPF consumption influences the risk of colorectal cancer (CRC) precursors, namely conventional adenomas and serrated lesions. METHODS We drew data from the Nurses' Health Study, Nurses' Health Study II, and Health Professionals Follow-up Study, comprising 142 052 participants who had undergone at least 1 lower gastrointestinal endoscopy during follow-up. To handle multiple records per participants, we used multivariable logistic regression for clustered data to calculate odds ratios (OR) and 95% confidence intervals (CIs) of colorectal polyps in relation to cumulative average consumption of UPFs. All statistical tests were 2-sided. RESULTS We documented 11 644 patients with conventional adenomas and 10 478 with serrated lesions during 18-20 years of follow-up. Compared with participants in the lowest quintile of UPF consumption, those in the highest quintile had an increased risk of conventional adenomas (OR = 1.18, 95% CI = 1.11 to 1.26) and serrated lesions (OR = 1.20, 95% CI = 1.13 to 1.28). Similar results were found for high-risk polyps (ie, advanced adenomas and ≥10 mm serrated lesions; OR = 1.17, 95% CI = 1.07 to 1.28). These associations were slightly attenuated but remained statistically significant after further adjusting for body mass index, Western dietary pattern score, or individual dietary factors (fiber, folate, calcium, and vitamin D). The results remained essentially unchanged after excluding processed meat from total UPF intake. CONCLUSIONS Higher consumption of UPFs is associated with an increased risk of CRC precursors. UPFs might be a modifiable target for early prevention of CRC.
Collapse
Affiliation(s)
- Dong Hang
- Department of Epidemiology, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Gusu School, Nanjing Medical University, Nanjing, China
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lu Wang
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Zhe Fang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mengxi Du
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Kai Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xiaosheng He
- Department of Colorectal Surgery, the Six Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Neha Khandpur
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
- Center for Epidemiological Studies in Health and Nutrition (NUPENS), Faculty of Public Health, University of São Paulo, Brazil
| | - Sinara L Rossato
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
- Institute of Geography, Universidade Federal de Uberlândia, Minas Gerais, Brazil
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Zhibin Hu
- Department of Epidemiology, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Gusu School, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Department of Epidemiology, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Gusu School, Nanjing Medical University, Nanjing, China
| | - Shuji Ogino
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Cancer Immunology Program, Dana-Farber Harvard Cancer Center, Boston, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew T Chan
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Edward L Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Fang Fang Zhang
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Sultana S, Rahman MM, Aovi FI, Jahan FI, Hossain MS, Brishti SA, Yamin M, Ahmed M, Rauf A, Sharma R. Food Color Additives in Hazardous Consequences of Human Health: An Overview. Curr Top Med Chem 2023; 23:1380-1393. [PMID: 36650651 DOI: 10.2174/1568026623666230117122433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/03/2022] [Accepted: 11/12/2022] [Indexed: 01/19/2023]
Abstract
Food color additives are used to make food more appetizing. The United States Food and Drug Administration (FDA) permitted nine artificial colorings in foods, drugs, and cosmetics, whereas the European Union (EU) approved five artificial colors (E-104, 122, 124, 131, and 142) for food. However, these synthetic coloring materials raise various health hazards. The present review aimed to summarize the toxic effects of these coloring food additives on the brain, liver, kidney, lungs, urinary bladder, and thyroid gland. In this respect, we aimed to highlight the scientific evidence and the crucial need to assess potential health hazards of all colors used in food on human and nonhuman biota for better scrutiny. Blue 1 causes kidney tumor in mice, and there is evidence of death due to ingestion through a feeding tube. Blue 2 and Citrus Red 2 cause brain and urinary bladder tumors, respectively, whereas other coloring additives may cause different types of cancers and numerous adverse health effects. In light of this, this review focuses on the different possible adverse health effects caused by these food coloring additives, and possible ways to mitigate or avoid the damage they may cause. We hope that the data collected from in vitro or in vivo studies and from clinical investigations related to the possible health hazards of food color additives will be helpful to both researchers and the food industry in the future.
Collapse
Affiliation(s)
- Sharifa Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Farjana Islam Aovi
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Farhana Israt Jahan
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Sakhawat Hossain
- Pharmaceutical Sciences Research Division, BCSIR Dhaka Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-I-Khuda Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | | | - Md Yamin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Rohit Sharma
- Department of Rasashastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
13
|
Kwon YH, Banskota S, Wang H, Rossi L, Grondin JA, Syed SA, Yousefi Y, Schertzer JD, Morrison KM, Wade MG, Holloway AC, Surette MG, Steinberg GR, Khan WI. Chronic exposure to synthetic food colorant Allura Red AC promotes susceptibility to experimental colitis via intestinal serotonin in mice. Nat Commun 2022; 13:7617. [PMID: 36539404 PMCID: PMC9768151 DOI: 10.1038/s41467-022-35309-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Chemicals in food are widely used leading to significant human exposure. Allura Red AC (AR) is a highly common synthetic colorant; however, little is known about its impact on colitis. Here, we show chronic exposure of AR at a dose found in commonly consumed dietary products exacerbates experimental models of colitis in mice. While intermittent exposure is more akin to a typical human exposure, intermittent exposure to AR in mice for 12 weeks, does not influence susceptibility to colitis. However, exposure to AR during early life primes mice to heightened susceptibility to colitis. In addition, chronic exposure to AR induces mild colitis, which is associated with elevated colonic serotonin (5-hydroxytryptamine; 5-HT) levels and impairment of the epithelial barrier function via myosin light chain kinase (MLCK). Importantly, chronic exposure to AR does not influence colitis susceptibility in mice lacking tryptophan hydroxylase 1 (TPH1), the rate limiting enzyme for 5-HT biosynthesis. Cecal transfer of the perturbed gut microbiota by AR exposure worsens colitis severity in the recipient germ-free (GF) mice. Furthermore, chronic AR exposure elevates colonic 5-HT levels in naïve GF mice. Though it remains unknown whether AR has similar effects in humans, our study reveals that chronic long-term exposure to a common synthetic colorant promotes experimental colitis via colonic 5-HT in gut microbiota-dependent and -independent pathway in mice.
Collapse
Affiliation(s)
- Yun Han Kwon
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| | - Suhrid Banskota
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| | - Huaqing Wang
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| | - Laura Rossi
- grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - Jensine A. Grondin
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| | - Saad A. Syed
- grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Medicine, McMaster University, Hamilton, ON Canada
| | - Yeganeh Yousefi
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| | - Jonathan D. Schertzer
- grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Center for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON Canada
| | - Katherine M. Morrison
- grid.25073.330000 0004 1936 8227Center for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Pediatrics, McMaster University, Hamilton, ON Canada
| | - Michael G. Wade
- grid.57544.370000 0001 2110 2143Environmental Health, Science and Research Bureau, Health Canada, Ottawa, ON Canada
| | - Alison C. Holloway
- grid.25073.330000 0004 1936 8227Center for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON Canada
| | - Michael G. Surette
- grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Medicine, McMaster University, Hamilton, ON Canada
| | - Gregory R. Steinberg
- grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Center for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON Canada
| | - Waliul I. Khan
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| |
Collapse
|
14
|
Kizil N, Basaran E, Erbilgin D, Lütfi Yola M, Uzcan F, Soylak M. Deep eutectic solvent (DES) based dispersive Liquid-Phase microextraction of Sunset yellow FCF in food and pharmaceutical products. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
15
|
Ultrasensitive determination of allura red in food samples based on green-emissive carbon nanodots. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01564-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
16
|
Atta S, Watcharawittayakul T, Vo-Dinh T. Ultra-high SERS detection of consumable coloring agents using plasmonic gold nanostars with high aspect-ratio spikes. Analyst 2022; 147:3340-3349. [PMID: 35762677 PMCID: PMC9725038 DOI: 10.1039/d2an00794k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Solution-based SERS detection by using a portable Raman instrument has emerged as an important tool due to its simplicity, and flexibility for rapid and on-site screening of analyte molecules. However, this method has several shortcomings, including poor sensitivity especially for weak-affinity analyte molecules, where there is no close contact between the plasmonic metal surface and analyte molecule. Examples of weak-affinity molecules include pigment molecules that are commonly used as a consumable coloring agent, such as allura red (AR), and sunset yellow (SY). As high consumption of colorant agents has been shown to cause adverse effects on human health, there is a strong need to develop a simple and practical sensing system with high sensitivity for these agents. Here we present a novel, highly sensitive solution-based SERS detection method for AR, and SY by using CTAC capped gold nanostars (GNS) having different aspect ratios (GNS-2, GNS-4, and GNS-5) without utilizing any aggregating agents which can enhance SERS signal however it reduces batch to batch reproducibility. The influence of the aspect ratio of GNS on SERS properties was investigated. We have achieved a limit of detection (LOD) of AR and SY as low as 0.5 and 1 ppb, respectively by using GNS-5 with the advantages of minimal sample preparation by just mixing the analyte solution into a well plate containing GNS solution. In addition, excellent colloidal stability and reproducibility have further enhanced the applicability in real-world samples. Overall, our results evidence that the solution-based SERS detection platform using high aspect-ratio GNS can be applied for practical application to detect pigment molecules in real samples with satisfactory results.
Collapse
Affiliation(s)
- Supriya Atta
- Fitzpatrick Institute for Photonics, Durham, NC 27708, USA.
- Department of Biomedical Engineering, Durham, NC 27708, USA
| | - Tongchatra Watcharawittayakul
- Fitzpatrick Institute for Photonics, Durham, NC 27708, USA.
- Department of Biomedical Engineering, Durham, NC 27708, USA
| | - Tuan Vo-Dinh
- Fitzpatrick Institute for Photonics, Durham, NC 27708, USA.
- Department of Biomedical Engineering, Durham, NC 27708, USA
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| |
Collapse
|
17
|
Bienstock RJ, Perera L, Pasquinelli MA. Molecular Modeling Study of the Genotoxicity of the Sudan I and Sudan II Azo Dyes and Their Metabolites. Front Chem 2022; 10:880782. [PMID: 35815205 PMCID: PMC9261194 DOI: 10.3389/fchem.2022.880782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Azo dyes are defined by the presence of a characteristic N=N group. Sudan I and Sudan II are synthetic azo dyes that have been used as coloring agents. Although animal toxicity studies suggest that Sudan dyes are mutagenic, their molecular mechanism of action is unknown, thus making it challenging to establish thresholds for tolerable daily intake or to understand how these molecules could be modified to ameliorate toxicity. In addition, dye metabolites, such as azobiphenyl and 4-aminobiphenyl, have been correlated with epigenetic alterations. We shed some light on the mechanisms of Sudan dye genotoxicity through a molecular modeling study of Sudan I and Sudan II dyes and two common metabolites interacting with DNA as adducts. The results suggest that all four adducts cause significant perturbations to the DNA helical conformation and structure; thus, it can be inferred that DNA repair and replication processes would be significantly impacted.
Collapse
Affiliation(s)
- Rachelle J. Bienstock
- Fiber and Polymer Science Program, Wilson College of Textiles, North Carolina State University, Raleigh, NC, United States
- National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - Lalith Perera
- National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
- *Correspondence: Lalith Perera, ; Melissa A. Pasquinelli,
| | - Melissa A. Pasquinelli
- Fiber and Polymer Science Program, Wilson College of Textiles, North Carolina State University, Raleigh, NC, United States
- Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh, NC, United States
- *Correspondence: Lalith Perera, ; Melissa A. Pasquinelli,
| |
Collapse
|
18
|
Microbial Degradation of Azo Dyes: Approaches and Prospects for a Hazard-Free Conversion by Microorganisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084740. [PMID: 35457607 PMCID: PMC9026373 DOI: 10.3390/ijerph19084740] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022]
Abstract
Azo dyes have become a staple in various industries, as colors play an important role in consumer choices. However, these dyes pose various health and environmental risks. Although different wastewater treatments are available, the search for more eco-friendly options persists. Bioremediation utilizing microorganisms has been of great interest to researchers and industries, as the transition toward greener solutions has become more in demand through the years. This review tackles the health and environmental repercussions of azo dyes and its metabolites, available biological approaches to eliminate such dyes from the environment with a focus on the use of different microorganisms, enzymes that are involved in the degradation of azo dyes, and recent trends that could be applied for the treatment of azo dyes.
Collapse
|
19
|
Liu L, Mi Z, Huo X, Yuan L, Bao Y, Liu Z, Feng F. A label-free fluorescence nanosensor based on nitrogen and phosphorus co-doped carbon quantum dots for ultra-sensitive detection of new coccine in food samples. Food Chem 2022; 368:130829. [PMID: 34411858 DOI: 10.1016/j.foodchem.2021.130829] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 01/22/2023]
Abstract
In this paper, an innovative method for the sensitive detection of new coccine using N, P-doped carbon quantum dots (N,P-CQDs) as fluorescent nanosensor is reported for the first time. The sensing mechanism is based on the fluorescence quenching of N,P-CQDs by new coccine through inner filter effect (IFE). N,P-CQDs were prepared by simple hydrothermal treatment of citric acid, phosphoric acid and ethylenediamine. Under the optimal conditions, the new coccine has two good linear responses in the concentration range of 0.2-100 and 100-200 μM, and the detection limits are as low as 24.8 and 9.4 nM, respectively. Our developed nanosensor has been successfully used for the determination of new coccine in food samples with good precision and high accuracy. This work highlights the economic, rapid, simple, selective and ultra-sensitive for new coccine detection, and opens up a new way for the monitoring of new coccine in actual food samples.
Collapse
Affiliation(s)
- Lizhen Liu
- Shanxi Datong University, Datong 037009, PR China
| | - Zhi Mi
- Shanxi Datong University, Datong 037009, PR China.
| | - Xingyan Huo
- Shanxi Normal University, Linfen 041004, PR China
| | - Lin Yuan
- Shanxi Datong University, Datong 037009, PR China
| | - Yayan Bao
- Shanxi Datong University, Datong 037009, PR China
| | - Zhixiong Liu
- Shanxi Datong University, Datong 037009, PR China
| | - Feng Feng
- Shanxi Datong University, Datong 037009, PR China.
| |
Collapse
|
20
|
Memon AH, Wei B, Shams S, Jiang Y, Jiao M, Su M, Liang H. Construction of robust bienzyme-mimicking nanocatalysts for dye degradation by self-assembly of hematin, metal ions, and nucleotides. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01125a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The growing proportion of the textile industry has led to an increase in the concentration of colored dyes in aquatic systems.
Collapse
Affiliation(s)
- Amjad Hussain Memon
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
- Government Boys High School Manjhand, Education and Literary Department, Govt of Sindh, Pakistan
| | - Bin Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Saira Shams
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yucui Jiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Mengzhao Jiao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Mingming Su
- School of Environment and Natural Resources, Renmin University of China, Beijing, PR China
| | - Hao Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
21
|
Rukmi Putri WD, Ramadhani Nurbaya S, Sofia Murtini E. Microencapsulation of Betacyanin Extract from Red Dragon Fruit Peel. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2021. [DOI: 10.12944/crnfsj.9.3.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The aim of this research was evaluated the effect of type and ratio of coating materials on characteristics of betacyanin extract microencapsulated by freeze drying. The combination was consisted of maltodextrin+gum arabic (MD+GA), maltodextrin+carboxymethyl cellulose (MD+CMC), maltodextrin+carrageenan (MD+C), and maltodextrin (MD) with ratio 3:1 and 4:1 (w/v) to the extract. Betacyanin microcapsules was analyzed for its characteristics, including encapsulation efficiency and microstructure. The result showed type and ratio of coating materials significantly influenced moisture content, color, and bulk density of the microcapsules (p<0,05). MD+GA coating material had the highest value of encapsulation efficiency (99.41 %). Microstructure analysis of the microcapsules showed it had amorphous shape. Betacyanin microcapsules from red dragon peel was potential to be natural food colorant.
Collapse
Affiliation(s)
- Widya Dwi Rukmi Putri
- 1Agricultural Product Technology Department, Faculty of Agricultural Technology, Universitas Brawijaya, Malang City, East Java, Indonesia
| | - Syarifa Ramadhani Nurbaya
- 2Food Technology Department, Faculty of Science and Technology, Universitas Muhammadiyah Sidoarjo, Sidoarjo City, East Java, Indonesia
| | - Erni Sofia Murtini
- 1Agricultural Product Technology Department, Faculty of Agricultural Technology, Universitas Brawijaya, Malang City, East Java, Indonesia
| |
Collapse
|
22
|
Nazim M, Kim JH, Lee HY, Cho SK. Development of Three-Dimensional Nickel-Cobalt Oxide Nanoflowers for Superior Photocatalytic Degradation of Food Colorant Dyes: Catalyst Properties and Reaction Kinetic Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12929-12939. [PMID: 34706541 DOI: 10.1021/acs.langmuir.1c01999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, we present three-dimensional flower-like nickel-cobalt oxide (F-NCO) nanosheets developed in a facile, eco-friendly hydrothermal route to apply as photocatalysts for food colorant Allura Red AC dye removal under light illumination. Using Brunauer-Emmett-Teller analysis, it was found that the F-NCO nanosheets displayed a surface area of ∼53.65 m2/g and a Barrett-Joyner-Halenda pore size of ∼14 nm, which was also confirmed by the calculated crystallite size of ∼15 nm using powder X-ray diffraction (XRD) analysis. From Williamson-Hall analysis of XRD spectra, F-NCO nanosheets revealed a crystal-lattice strain of ∼3.42 × 10-3 and a dislocation density of ∼4.397 × 1015 lines/m2 in the crystal structure. Transmission electron microscopy analysis revealed that F-NCO nanosheets accumulated to form flower-like nanostructures of <100 nm length with a d-spacing of ∼2.6 Å, which is attributed to the (311) crystallographic plane (α = γ = β = 90°, a = b = c = 8.110 Å, JCPDS No. 00-020-0781) of the cubic phase. The F-NCO nanosheets exhibited an excellent photocatalytic efficiency of ∼94.75% in ∼10 min with sodium borohydride under UV light. The Langmuir-Hinshelwood model determined pseudo-first-order reaction kinetics of dye degradation using the ln[AtA0]versus time plot. The kinetic study produced a first-order rate constant (k) of ∼0.219 min-1, resulting in ∼3.16 min half-life (t1/2) for the F-NCO-catalyzed degradation reaction. Thus outstanding photocatalytic performance of F-NCO nanosheets would display their huge potential for organic-pollutant removal from water with exceptional recyclability for wide research applications in the future.
Collapse
Affiliation(s)
- Mohammed Nazim
- Department of Chemical Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi-si, Gyeongbuk-do 39177, Republic of Korea
- Division of Energy Technology, Daegu Gyeongbuk Institute of Science & Technology, 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Jae Hyun Kim
- Division of Energy Technology, Daegu Gyeongbuk Institute of Science & Technology, 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Hee-Young Lee
- Department of Chemical Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi-si, Gyeongbuk-do 39177, Republic of Korea
| | - Sung Ki Cho
- Department of Chemical Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi-si, Gyeongbuk-do 39177, Republic of Korea
- Department of Energy Engineering Convergence, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi-si, Gyeongsangbuk-do 39177, Republic of Korea
| |
Collapse
|
23
|
Romualdo GR, Leroy K, Costa CJS, Prata GB, Vanderborght B, da Silva TC, Barbisan LF, Andraus W, Devisscher L, Câmara NOS, Vinken M, Cogliati B. In Vivo and In Vitro Models of Hepatocellular Carcinoma: Current Strategies for Translational Modeling. Cancers (Basel) 2021; 13:5583. [PMID: 34771745 PMCID: PMC8582701 DOI: 10.3390/cancers13215583] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and the third leading cause of cancer-related death globally. HCC is a complex multistep disease and usually emerges in the setting of chronic liver diseases. The molecular pathogenesis of HCC varies according to the etiology, mainly caused by chronic hepatitis B and C virus infections, chronic alcohol consumption, aflatoxin-contaminated food, and non-alcoholic fatty liver disease associated with metabolic syndrome or diabetes mellitus. The establishment of HCC models has become essential for both basic and translational research to improve our understanding of the pathophysiology and unravel new molecular drivers of this disease. The ideal model should recapitulate key events observed during hepatocarcinogenesis and HCC progression in view of establishing effective diagnostic and therapeutic strategies to be translated into clinical practice. Despite considerable efforts currently devoted to liver cancer research, only a few anti-HCC drugs are available, and patient prognosis and survival are still poor. The present paper provides a state-of-the-art overview of in vivo and in vitro models used for translational modeling of HCC with a specific focus on their key molecular hallmarks.
Collapse
Affiliation(s)
- Guilherme Ribeiro Romualdo
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
- Department of Structural and Functional Biology, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (G.B.P.); (L.F.B.)
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Kaat Leroy
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (K.L.); (M.V.)
| | - Cícero Júlio Silva Costa
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
| | - Gabriel Bacil Prata
- Department of Structural and Functional Biology, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (G.B.P.); (L.F.B.)
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Bart Vanderborght
- Gut-Liver Immunopharmacology Unit, Basic and Applied Medical Sciences, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium;
- Hepatology Research Unit, Internal Medicine and Paediatrics, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium;
| | - Tereza Cristina da Silva
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
| | - Luís Fernando Barbisan
- Department of Structural and Functional Biology, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (G.B.P.); (L.F.B.)
| | - Wellington Andraus
- Department of Gastroenterology, Clinics Hospital, School of Medicine, University of São Paulo (HC-FMUSP), São Paulo 05403-000, Brazil;
| | - Lindsey Devisscher
- Hepatology Research Unit, Internal Medicine and Paediatrics, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium;
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (K.L.); (M.V.)
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
| |
Collapse
|
24
|
Khan IS, Ali S, Dar KB, Murtaza M, Ali MN, Ganie SA, Dar SA. Toxicological analysis of synthetic dye orange red on expression of NFκB-mediated inflammatory markers in Wistar rats. Drug Chem Toxicol 2021; 45:2626-2636. [PMID: 34555984 DOI: 10.1080/01480545.2021.1979579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Orange red is a food and cosmetic coloring agent made by the amalgamation of two azo dyes carmoisine and sunset yellow.The current study demonstrates the effect of different concentrations of orange red on antioxidant status, inflammatory biomarkers (TNFα, IFNγ, IL1β, IL6, COX-2, iNOS, and NFκB/p65), biochemical enzymes, and liver histology. In totality, 25 male Wistar rats were procured and arbitrarily alienated into 5 different groups each with 5 animals. Group I was taken as the control. Groups II-V were designated as treatment groups. Groups II and III were administered with (5 and 25 mg/kg b.wt.) and groups IV and V with (150 and 300 mg/kg b.wt.) of orange red via oral gavage for 30 days. It was observed that both low and high concentrations of orange red (25, 150, and 300 mg/kg) remarkably augmented the levels of serum inflammatory cytokines (TNFα, IFNγ, IL1β, and IL6) and the protein and gene expression of COX-2, iNOS, and NFκB/p65. A significant decrease in glutathione reductase, glutathione peroxidase, glutathione-S-transferase, superoxidase dismutase, and catalase activity was observed with increasing concentration of orange red. Furthermore, an increase in the level of several vital biochemical parameters and damage severity to hepatic tissue was also found dose dependent.
Collapse
Affiliation(s)
- Ishfaq Shafi Khan
- Cytogenetics and Molecular Biology Research Laboratory, Centre of Research for Development (CORD), University of Kashmir, Srinagar, J&K, India.,Department of Clinical Biochemistry, University of Kashmir, Srinagar, J&K, India
| | - Shafat Ali
- Cytogenetics and Molecular Biology Research Laboratory, Centre of Research for Development (CORD), University of Kashmir, Srinagar, J&K, India
| | - Khalid Bashir Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, J&K, India
| | - Mohd Murtaza
- Cytogenetics and Molecular Biology Research Laboratory, Centre of Research for Development (CORD), University of Kashmir, Srinagar, J&K, India
| | - Md Niamat Ali
- Cytogenetics and Molecular Biology Research Laboratory, Centre of Research for Development (CORD), University of Kashmir, Srinagar, J&K, India
| | - Showkat Ahmad Ganie
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, J&K, India
| | | |
Collapse
|
25
|
Mota IGC, Neves RAMD, Nascimento SSDC, Maciel BLL, Morais AHDA, Passos TS. Artificial Dyes: Health Risks and the Need for Revision of International Regulations. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1934694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | | | - Sara Sayonara Da Cruz Nascimento
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande Do Norte, Natal, Brazil
- Biotechnology Postgraduate Program – RENORBIO, Center for Biosciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | - Bruna Leal Lima Maciel
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande Do Norte, Natal, Brazil
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande Do Norte, Natal, Brazil
| | - Ana Heloneida De Araújo Morais
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande Do Norte, Natal, Brazil
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande Do Norte, Natal, Brazil
- Biochemistry and Molecular Biology Postgraduate Program, Center for Biosciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | - Thaís Souza Passos
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande Do Norte, Natal, Brazil
| |
Collapse
|
26
|
Facile synthesis of 2D nanoflakes and 3D nanosponge-like Ni1−xO via direct calcination of Ni (II) coordination compounds of imidazole and 4-nitrobenzoate: Adsorptive separation kinetics and photocatalytic removal of Amaranth dye contaminated wastewater. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Nazim M, Khan AAP, Asiri AM, Kim JH. Exploring Rapid Photocatalytic Degradation of Organic Pollutants with Porous CuO Nanosheets: Synthesis, Dye Removal, and Kinetic Studies at Room Temperature. ACS OMEGA 2021; 6:2601-2612. [PMID: 33553878 PMCID: PMC7859952 DOI: 10.1021/acsomega.0c04747] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/24/2020] [Indexed: 06/01/2023]
Abstract
In this work, we report the facile, environmentally friendly, room-temperature (RT) synthesis of porous CuO nanosheets and their application as a photocatalyst to degrade an organic pollutant/food dye using NaBH4 as the reducing agent in an aqueous medium. Ultrahigh-resolution field effect scanning electron microscopy images of CuO displayed a broken nanosheet-like (a length of ∼160 nm, a width of ∼65 nm) morphology, and the lattice strain was estimated to be ∼1.24 × 10-3 using the Williamson-Hall analysis of X-ray diffraction plots. Owing to the strong quantum size confinement effect, CuO nanosheets resulted in an optical energy band gap of ∼1.92 eV, measured using Tauc plots of the ultraviolet-visible (UV-vis) spectrum, resulting in excellent photocatalytic efficiency. The RT synthesized CuO catalyst showed a high Brunauer-Emmet-Teller surface area of 30.88 ± 0.2313 m2/g (a correlation coefficient of 0.99972) with an average Barrett-Joyner-Halenda pore size of ∼20.385 nm. The obtained porous CuO nanosheets exhibited a high crystallinity of 73.5% with a crystallite size of ∼12 nm and was applied as an efficient photocatalyst for degradation of the organic pollutant/food dye, Allura Red AC (AR) dye, as monitored by UV-vis spectrophotometric analysis and evidenced by a color change from red to colorless. From UV-vis spectra, CuO nanosheets exhibited an efficient and ultrafast photocatalytic degradation efficiency of ∼96.99% for the AR dye in an aqueous medium within 6 min at RT. According to the Langmuir-Hinshelwood model, photodegradation reaction kinetics followed a pseudo-first-order reaction with a rate constant of k = 0.524 min-1 and a half-life (t 1/2) of 2.5 min for AR dye degradation in the aqueous medium. The CuO nanosheets showed an outstanding recycling ability for AR degradation and would be highly favorable and an efficient catalyst due to the synergistic effect of high adsorption capability and photodegradation of the food dye.
Collapse
Affiliation(s)
- Mohammed Nazim
- Division
of Energy Technology, Daegu Gyeongbuk Institute
of Science & Technology (DGIST), 333 Techno Jungang-Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu 42988, Republic
of Korea
| | - Aftab Aslam Parwaz Khan
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Abdullah M. Asiri
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
- Center
of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jae Hyun Kim
- Division
of Energy Technology, Daegu Gyeongbuk Institute
of Science & Technology (DGIST), 333 Techno Jungang-Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu 42988, Republic
of Korea
| |
Collapse
|
28
|
Wu Y, Nguyen TL, Perlman CE. Intravenous sulforhodamine B reduces alveolar surface tension, improves oxygenation, and reduces ventilation injury in a respiratory distress model. J Appl Physiol (1985) 2020; 130:1305-1316. [PMID: 33211596 DOI: 10.1152/japplphysiol.00421.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In the neonatal respiratory distress syndrome (NRDS) and acute respiratory distress syndrome (ARDS), mechanical ventilation supports gas exchange but can cause ventilation-induced lung injury (VILI) that contributes to high mortality. Further, surface tension, T, should be elevated and VILI is proportional to T. Surfactant therapy is effective in NRDS but not ARDS. Sulforhodamine B (SRB) is a potential alternative T-lowering therapeutic. In anesthetized male rats, we injure the lungs with 15 min of 42 mL/kg tidal volume, VT, and zero end-expiratory pressure ventilation. Then, over 4 h, we support the rats with protective ventilation-VT of 6 mL/kg with positive end-expiratory pressure. At the start of the support period, we administer intravenous non-T-altering fluorescein (targeting 27 µM in plasma) without or with therapeutic SRB (10 nM). Throughout the support period, we increase inspired oxygen fraction, as necessary, to maintain >90% arterial oxygen saturation. At the end of the support period, we euthanize the rat; sample systemic venous blood for injury marker ELISAs; excise the lungs; combine confocal microscopy and servo-nulling pressure measurement to determine T in situ in the lungs; image fluorescein in alveolar liquid to assess local permeability; and determine lavage protein content and wet-to-dry ratio (W/D) to assess global permeability. Lungs exhibit focal injury. Surface tension is elevated 72% throughout control lungs and in uninjured regions of SRB-treated lungs, but normal in injured regions of treated lungs. SRB administration improves oxygenation, reduces W/D, and reduces plasma injury markers. Intravenous SRB holds promise as a therapy for respiratory distress.NEW & NOTEWORTHY Sulforhodmaine B lowers T in alveolar edema liquid. Given the problematic intratracheal delivery of surfactant therapy for ARDS, intravenous SRB might constitute an alternative therapeutic. In a lung injury model, we find that intravenously administered SRB crosses the injured alveolar-capillary barrier thus reduces T specifically in injured lung regions; improves oxygenation; and reduces the degree of further lung injury. Intravenous SRB administration might help respiratory distress patients, including those with the novel coronavirus, avoid mechanical ventilation or, once ventilated, survive.
Collapse
Affiliation(s)
- You Wu
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey
| | - Tam L Nguyen
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey
| | - Carrie E Perlman
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey
| |
Collapse
|
29
|
Wei L, Yang Y, Sun D. Rapid detection of carmine in black tea with spectrophotometry coupled predictive modelling. Food Chem 2020; 329:127177. [PMID: 32512396 DOI: 10.1016/j.foodchem.2020.127177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/09/2020] [Accepted: 05/27/2020] [Indexed: 11/19/2022]
Abstract
Carmine is an artificial colorant commonly used by fraudulent food business participants in black tea adulteration, for purpose of gaining illegal profits. This study combined spectrophotometry with machine learning for rapid detection of carmine in black tea based on the spectral characteristics of tea infusion. The qualitative model demonstrated an accuracy rate of 100% for successful identification of the presence/absence of carmine in black tea. For quantitative analysis, the R2 between carmine concentrations generated according to spectral characteristics and those determined with HPLC was 0.988 and 0.972, respectively, for black tea samples involved in the test subset and an independent dataset II. Paired t-test indicated that the difference was statistically insignificant (P values of 0.26 and 0.44, respectively). The method established in this study was rapid and reliable for detecting carmine in black tea, and thus could be used as a useful tool to identify black tea adulteration in market.
Collapse
Affiliation(s)
- Lijuan Wei
- Instrumental Analysis & Research Center, Dalian University of Technology, Liaoning, China
| | - Yongheng Yang
- Department of Ocean Science and Technology, Dalian University of Technology, Liaoning, China.
| | - Dongye Sun
- Instrumental Analysis & Research Center, Dalian University of Technology, Liaoning, China
| |
Collapse
|
30
|
Fu Y, Shi J, Xie SY, Zhang TY, Soladoye OP, Aluko RE. Red Beetroot Betalains: Perspectives on Extraction, Processing, and Potential Health Benefits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11595-11611. [PMID: 33040529 DOI: 10.1021/acs.jafc.0c04241] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In recent years, red beetroot has received a growing interest due to its abundant source of bioactive compounds, particularly betalains. Red beetroot betalains have great potential as a functional food ingredient employed in the food and medical industry due to their diverse health-promoting effects. Betalains from red beetroot are natural pigments, which mainly include either yellow-orange betaxanthins or red-violet betacyanins. However, betalains are quite sensitive toward heat, pH, light, and oxygen, which leads to the poor stability during processing and storage. Therefore, it is necessary to comprehend the impacts of the processing approaches on betalains. In this review, the effective extraction and processing methods of betalains from red beetroot were emphatically reviewed. Furthermore, a variety of recently reported bioactivities of beetroot betalains were also summarized. The present work can provide a comprehensive review on both conventional and innovative extraction techniques, processing methods, and the stability of betalains.
Collapse
Affiliation(s)
- Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
- China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology & Business University, Beijing 100048, China
| | - Jia Shi
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Si-Yi Xie
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ting-Yi Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Olugbenga P Soladoye
- Food Processing Development Centre, Ministry of Agriculture and Forestry, Government of Alberta, Leduc, Alberta T9E 7C5, Canada
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
31
|
Evaluation of contact sensitivity to food additives in children with atopic dermatitis. Postepy Dermatol Alergol 2020; 37:390-395. [PMID: 32792881 PMCID: PMC7394164 DOI: 10.5114/ada.2020.96112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/20/2019] [Indexed: 11/17/2022] Open
Abstract
Introduction Atopic dermatitis (AD) is a chronic inflammatory disease caused by the complex interaction of genetic, immune and environmental factors such as food and airborne allergens. The atopy patch test (APT) is a useful way to determine delayed-type hypersensitivity reactions to food and aeroallergens. Many studies have also suggested that food additives are associated with dermatologic adverse reactions and the aggravation of pre-existing atopic dermatitis symptoms. Aim To elucidate the contact sensitivity to food additives in children suffering from AD by using standardized atopy patch testing. Material and methods A total of 45 children with AD and 20 healthy children have been enrolled. All the children have regularly consumed food containing additives, and were subjected to atopy patch tests. Results In total, 28 (62%) children with AD and 4 (20%) healthy children have had positive patch test reactions to ≥ 1 allergens. There has been a significant difference (p = 0.04) between the groups in terms of the positivity rate in the patch test and the most common allergen that elicited positive patch test results in the AD group was azorubine (n = 11, 24.4%, p = 0.014). Conclusions In our study, contact sensitivity was detected more frequently in AD patients. Food additives may play a role in the development and exacerbation of AD. Atopy patch testing with food additives can be useful in the treatment and follow-up of children with AD.
Collapse
|
32
|
Arif A, Ahmad A, Ahmad M. Toxicity assessment of carmine and its interaction with calf thymus DNA. J Biomol Struct Dyn 2020; 39:5861-5871. [DOI: 10.1080/07391102.2020.1794962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Amin Arif
- Department of Biochemistry, Faculty of life sciences, Aligarh Muslim University, Aligarh, India
| | - Ajaz Ahmad
- Department of Biochemistry, Faculty of life sciences, Aligarh Muslim University, Aligarh, India
| | - Masood Ahmad
- Department of Biochemistry, Faculty of life sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
33
|
Giroux JM, Orjubin M. Letter to the Editor: "Lavender Products Associated With Premature Thelarche and Prepubertal Gynecomastia: Case Reports and Endocrine-Disrupting Chemical Activities". J Clin Endocrinol Metab 2020; 105:5831862. [PMID: 32379885 PMCID: PMC7263747 DOI: 10.1210/clinem/dgaa226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/04/2020] [Indexed: 11/25/2022]
Affiliation(s)
- Jean-Marc Giroux
- Consortium HE coordinator, Consortium Huiles Essentielles (Consortium HE), Aix-en-Provence, France
| | - Marie Orjubin
- Consortium HE Project Manager, Consortium Huiles Essentielles (Consortium HE), Aix-en-Provence, France
- Correspondenceand Reprint Requests: Marie Orjubin, Cosmed—les Ocres de l’Arbois—495 rue René Descartes—13100 Aix-en-Provence (France).
| |
Collapse
|
34
|
Hofseth LJ, Hebert JR, Chanda A, Chen H, Love BL, Pena MM, Murphy EA, Sajish M, Sheth A, Buckhaults PJ, Berger FG. Early-onset colorectal cancer: initial clues and current views. Nat Rev Gastroenterol Hepatol 2020; 17:352-364. [PMID: 32086499 PMCID: PMC10711686 DOI: 10.1038/s41575-019-0253-4] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Over the past several decades, the incidence of early-onset colorectal cancer (EOCRC; in patients <50 years old) has increased at an alarming rate. Although robust and scientifically rigorous epidemiological studies have sifted out environmental elements linked to EOCRC, our knowledge of the causes and mechanisms of this disease is far from complete. Here, we highlight potential risk factors and putative mechanisms that drive EOCRC and suggest likely areas for fruitful research. In addition, we identify inconsistencies in the evidence implicating a strong effect of increased adiposity and suggest that certain behaviours (such as diet and stress) might place nonobese and otherwise healthy people at risk of this disease. Key risk factors are reviewed, including the global westernization of diets (usually involving a high intake of red and processed meats, high-fructose corn syrup and unhealthy cooking methods), stress, antibiotics, synthetic food dyes, monosodium glutamate, titanium dioxide, and physical inactivity and/or sedentary behaviour. The gut microbiota is probably at the crossroads of these risk factors and EOCRC. The time course of the disease and the fact that relevant exposures probably occur in childhood raise important methodological issues that are also discussed.
Collapse
Affiliation(s)
- Lorne J Hofseth
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA.
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA.
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA.
| | - James R Hebert
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology & Biostatistics, University of South Carolina, Columbia, SC, USA
| | - Anindya Chanda
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Hexin Chen
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Biology, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
| | - Bryan L Love
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Maria M Pena
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Biology, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
| | - E Angela Murphy
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Mathew Sajish
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Amit Sheth
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Computer Science and Engineering, College of Engineering, University of South Carolina, Columbia, SC, USA
| | - Phillip J Buckhaults
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Franklin G Berger
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Biology, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
35
|
Naik AP, Mittal H, Wadi VS, Sane L, Raj A, Alhassan SM, Al Alili A, Bhosale SV, Morajkar PP. Super porous TiO 2 photocatalyst: Tailoring the agglomerate porosity into robust structural mesoporosity with enhanced surface area for efficient remediation of azo dye polluted waste water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 258:110029. [PMID: 31929065 DOI: 10.1016/j.jenvman.2019.110029] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/16/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
The low surface area of TiO2 (50 m2g-1 - Degussa P25) due to randomly oriented, agglomerated nanostructures and charge carrier recombination tendency, has till date been its major limitation for photocatalytic remediation of polluted wastewater. This study presents an innovative process to design super porous TiO2 nanostructures with high effective surface area (238 m2g-1), robust, structurally ordered mesoporosity via a simple sol-gel assisted reflux method. Detailed material characterization studies suggest that the higher degree of intermolecular ligation in novel templates such as butanetetracarboxylic or tricarballylic acid modified titanium hydroxide gels resulted in retainment of the porous structure during the urea assisted combustion synthesis. The induction of robust structural porosity is accompanied by a reduction in pore size distribution, an increase in pore volume leading to significantly higher total surface area of the synthesized TiO2. Detailed investigation of dye adsorption kinetics and photocatalytic degradation kinetics, complemented by kinetic modeling analysis confirmed that the super porous TiO2 with robust mesoporous structure outperforms the rest of synthesized TiO2 catalyst (having only agglomerate porosity) in terms of its superior adsorption capacity, faster diffusion kinetics and photocatalytic activity for degradation of Amaranth dye. Thus, the super porous TiO2 shows promising potential for application in sustainable photocatalytic technology for remediation of wastewater contaminated with azo dyes.
Collapse
Affiliation(s)
- Amarja P Naik
- School of Chemical Sciences, Goa University, Taleigao Plateau, 403206, Goa, India
| | - Hemant Mittal
- Department of Mechanical Engineering, Khalifa University of Science & Technology, 2533, Abu Dhabi, United Arab Emirates
| | - Vijay S Wadi
- Department of Chemical Engineering, Khalifa University of Science & Technology, 2533, Abu Dhabi, United Arab Emirates
| | - Laxmi Sane
- School of Chemical Sciences, Goa University, Taleigao Plateau, 403206, Goa, India
| | - Abhijeet Raj
- Department of Chemical Engineering, Khalifa University of Science & Technology, 2533, Abu Dhabi, United Arab Emirates
| | - Saeed M Alhassan
- Department of Chemical Engineering, Khalifa University of Science & Technology, 2533, Abu Dhabi, United Arab Emirates
| | - Ali Al Alili
- Department of Mechanical Engineering, Khalifa University of Science & Technology, 2533, Abu Dhabi, United Arab Emirates
| | - Sheshanath V Bhosale
- School of Chemical Sciences, Goa University, Taleigao Plateau, 403206, Goa, India
| | - Pranay P Morajkar
- School of Chemical Sciences, Goa University, Taleigao Plateau, 403206, Goa, India; Department of Chemical Engineering, Khalifa University of Science & Technology, 2533, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
36
|
Microencapsulation of Anthocyanin Extracted from Purple Flesh Cultivated Potatoes by Spray Drying and Its Effects on In Vitro Gastrointestinal Digestion. Molecules 2020; 25:molecules25030722. [PMID: 32046046 PMCID: PMC7038085 DOI: 10.3390/molecules25030722] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/19/2022] Open
Abstract
Purple flesh cultivated potato (PP) is a foodstuff scarcely cultivated in the world but with high potential because of its anthocyanin content. Moreover, it has been little explored as a source of anthocyanins (AT) for further applications in formulated food products. The main goal of this research was to study the effect of maltodextrin (MD) and spray drying conditions on the encapsulation efficiency (EE) and bioaccesibility of AT from purple flesh cultivated potato extract (PPE). The anthocyanin-rich extract was obtained from PP and microencapsulated by spray-drying, using MD as the encapsulating agent. A statistical optimization approach was used to obtain optimal microencapsulation conditions. The PPE microparticles obtained under optimal conditions showed 86% of EE. The protector effect of microencapsulation on AT was observed to be stable during storage and in vitro digestion. The AT degradation rate constant was significantly lower for the PPE-MD than for the PPE. The assessed bioaccesibility of AT from the PPE-MD was 20% higher than that of the PPE, which could be explained by the protective effect of encapsulation against environmental conditions. In conclusion, microencapsulation is an effective strategy to protect AT from PP, suggesting that AT may be an alternative as a stable colorant for use in the food industry.
Collapse
|
37
|
Quantification of the Food Dye Indigo Carmine in Candies Using Digital Image Analysis in a Polyurethane Foam Support. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01715-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Sun SC, Hsieh BC, Chuang MC. Electropolymerised-hemin-catalysed reduction and analysis of tartrazine and sunset yellow. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
39
|
Sensitive and Selective Detection of New Red Colorant Based on Surface-Enhanced Raman Spectroscopy Using Molecularly Imprinted Hydrogels. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9132672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A polyacrylamide-based molecularly imprinted hydrogel (MIH) doped with positively charged gold nanoparticles (Au NPs) has been synthesized via a free radical polymerization of acrylamide (AM) aqueous solution containing positively charged Au NPs as a Raman active substrate, New Red colorant as a template molecule, N,N’-methylenebis(acrylamide) as a crosslinking agent, and potassium persulfate as an initiator. The Au NPs-doped MIHs were subsequently explored as a Raman active substrate for the sensitive and selective detection of New Red colorant via surface-enhanced Raman spectroscopy (SERS). The logarithmic intensity of the characteristic peak of New Red at 1572 cm−1 was proportional to the logarithmic concentration of New Red with a detection linear range of 1.64 × 10−6 to 1.64 × 10−4 M and a limit of detection (LOD) of 1.64 × 10−7 M. The recoveries ranged from 86.3% to 100.6% with a relative standard deviation (RSD) in the range of 2.3% to 7.7%. The RSD and recovery rates for the detection of New Red spiked in a sports drink sample were 1.8% to 7.7% and 91.0% to 97.1%, respectively. These results showed that SERS combined with MIHs as Raman active substrates could provide a sensitive, selective, and effective approach for the detection of the New Red colorant in beverage matrix.
Collapse
|
40
|
Biological Effects of Food Coloring in In Vivo and In Vitro Model Systems. Foods 2019; 8:foods8050176. [PMID: 31137639 PMCID: PMC6560448 DOI: 10.3390/foods8050176] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 11/16/2022] Open
Abstract
(1) Background: The suitability of certain food colorings is nowadays in discussion because of the effects of these compounds on human health. For this reason, in the present work, the biological effects of six worldwide used food colorings (Riboflavin, Tartrazine, Carminic Acid, Erythrosine, Indigotine, and Brilliant Blue FCF) were analyzed using two model systems. (2) Methods: In vivo toxicity, antitoxicity, and longevity assays using the model organism Drosophila melanogaster and in vitro cytotoxicity, DNA fragmentation, and methylation status assays using HL-60 tumor human cell line were carried out. (3) Results: Our in vivo results showed safe effects in Drosophila for all the food coloring treatments, non-significant protective potential against an oxidative toxin, and different effects on the lifespan of flies. The in vitro results in HL-60 cells, showed that the tested food colorings increased tumor cell growth but did not induce any DNA damage or modifications in the DNA methylation status at their acceptable daily intake (ADI) concentrations. (4) Conclusions: From the in vivo and in vitro studies, these results would support the idea that a high chronic intake of food colorings throughout the entire life is not advisable.
Collapse
|
41
|
Bhatia T, Chauhan A, Asati A, Pal G, Saxena PN, Mudiam MKR. Synthesis and application of molecularly imprinted sol‐gels coupled with ultra high performance liquid chromatography for selective extraction and analysis of dyes from spices. SEPARATION SCIENCE PLUS 2019. [DOI: 10.1002/sscp.201900005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Tejasvi Bhatia
- Analytical Chemistry LaboratoryRegulatory Toxicology GroupCSIR‐Indian Institute of Toxicology Research Lucknow India
- Academy of Scientific and Innovative Research (AcSIR)CSIR‐IITR Campus Lucknow India
| | - Abhishek Chauhan
- Analytical Chemistry LaboratoryRegulatory Toxicology GroupCSIR‐Indian Institute of Toxicology Research Lucknow India
- Academy of Scientific and Innovative Research (AcSIR)CSIR‐IITR Campus Lucknow India
| | - Ankita Asati
- Analytical DepartmentCSIR‐Indian Institute of Chemical Technology Hyderabad India
| | - Gaurav Pal
- Analytical Chemistry LaboratoryRegulatory Toxicology GroupCSIR‐Indian Institute of Toxicology Research Lucknow India
| | - Prem Narain Saxena
- Central Instrumentation FacilityCSIR‐Indian Institute of Toxicology Research Lucknow India
| | | |
Collapse
|
42
|
Penagos‐Llanos J, García‐Beltrán O, Calderón JA, Nagles E, Hurtado JJ. Carbon Paste Composite with Co3O4as a New Electrochemical Sensor for the Detection of Allura Red by Reduction. ELECTROANAL 2019. [DOI: 10.1002/elan.201800710] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Johisner Penagos‐Llanos
- Facultad de Ciencias Naturales y MatemáticasUniversidad de Ibagué Carrera 22 Calle 67 730001 Ibagué
| | - Olimpo García‐Beltrán
- Facultad de Ciencias Naturales y MatemáticasUniversidad de Ibagué Carrera 22 Calle 67 730001 Ibagué
| | - J. A. Calderón
- Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMATUniversidad de Antioquia – UdeA Calle 70 No. 52–21 Medellín Colombia
| | - Edgar Nagles
- Facultad de Ciencias Naturales y MatemáticasUniversidad de Ibagué Carrera 22 Calle 67 730001 Ibagué
| | - J. J. Hurtado
- Departamento de QuímicaUniversidad de los Andes Carrera 1 No. 18A-12 111711 Bogotá Colombia
| |
Collapse
|
43
|
Farkhondeh T, Samarghandian S, Azimi-Nezhad M, Shahri AMP. Protective Effects of Curcumin Against Nephrotoxic Agents. Cardiovasc Hematol Disord Drug Targets 2019; 19:176-182. [PMID: 30205807 DOI: 10.2174/1871529x18666180905160830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 08/08/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Curcumin is the one of the main phenolic ingredients in curcuma species rhizome. Curcuma species have traditionally been used for the treatment of diabetes, cardiovascular, and renal diseases. METHODS The present study was designed to review the scientific literature on the protective effects of curcumin against nephrotoxic agents. RESULTS Studies have shown the protective effects of curcumin against nephrotoxic agents such as gallic acid, glucose, tartrazine, streptozotocin, lead, cadmium, fluoride, maleate, malathion, nicotine, cisplatin, gentamicin, and methotrexate. However, further investigations are needed to determine the efficacy of curcumin as an antidote agent due to the lack of clinical trial studies. Therefore, it is recommended to conduct clinical trials in humans to confirm these effects. CONCLUSION The current review indicated that curcumin may be effective against nephrotoxicity by modulating oxidative stress and inflammatory responses.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mohsen Azimi-Nezhad
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali M P Shahri
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
44
|
Teixeira AZA. Sodium content and food additives in major brands of Brazilian children’s foods. CIENCIA & SAUDE COLETIVA 2018; 23:4065-4075. [DOI: 10.1590/1413-812320182312.21812016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 10/27/2016] [Indexed: 01/30/2023] Open
Abstract
Abstract The objective of this paper is to evaluate the sodium content and additive usage in packaged food products targeted at Brazilian children. Commercial database and manufactures’ websites were used to identify major brands of child-oriented foods. Samples were categorized as “children’s foods” (n = 214) and “infant’s foods” (n = 86). Nutrition Facts labels were used to calculate the median Na content (mg/serving, mg/kcal, and mg/100g); the ingredient lists to note the use of food additives. The sodium content found in samples varied widely among brands. The amount of sodium was high (> 210 mg/serving) in 20% of the products. Sodium density exceeded 1 mg/kcal in 40% of the products with the savory foods had the highest densities. More than 30% of the foods categories (corn snacks, filled biscuits, sliced loaf bread, and cereals) did not fulfill the 2014 sodium reduction targets. Food additives present in all children’s foods varied from two to nine additives numbers. However, some products had incredible numbers of additives, such as instant noodles and mini cakes. Although some infants’ foods categories were additives free, most products contained up to three numbers of additives. Continuing surveillance is crucial to evaluate the progress of salt reduction and to revise the maximum permissible limit of additives.
Collapse
|
45
|
Martynov VO, Brygadyrenko VV. The influence of the synthetic food colourings tartrazine, allura red and indigo carmine on the body weight of Tenebrio molitor (Coleoptera, Tenebrionidae) larvae. REGULATORY MECHANISMS IN BIOSYSTEMS 2018. [DOI: 10.15421/021871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Substances for protecting plants often contain colourings, the impact of which on invertebrates has been studied insufficiently. The addition of food colourings in different concentrations to the diet of saprophage beetles can affect their metabolism, causing loss of body weight. In the experiment, we determined the impact of tartrazine, allura red and indigo carmine on the body weight of Tenebrio molitor Linnaeus, 1758 larvae. The substances were added to their fodder at five concentrations (1, 0.1, 0.01, 0.001 and 0.0001 g/kg of dry fodder) during a 21-day experiment. Statistically significant data on changes in the body weight of T. molitor larvae were received after adding 1 g/kg concentration of indigo carmine and 0.1 and 1 g/kg concentrations of tartrazine. In the other variants of the experiment, no statistically significant differences were determined. Tartrazine, allura red and indigo carmine cause decrease in the body weight of T. molitor larvae, depending on the concentration of the colouring. The toxic effect of synthetic food colourings on living organisms and the low number of studies devoted to such impact on insects indicate the relevance and necessity for further research in this sphere.
Collapse
|
46
|
Floriano JM, da Rosa E, do Amaral QDF, Zuravski L, Chaves PEE, Machado MM, de Oliveira LFS. Is tartrazine really safe? In silico and ex vivo toxicological studies in human leukocytes: a question of dose. Toxicol Res (Camb) 2018; 7:1128-1134. [PMID: 30510682 PMCID: PMC6220720 DOI: 10.1039/c8tx00034d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/16/2018] [Indexed: 11/21/2022] Open
Abstract
The use of food colorings has a long-recorded history. Tartrazine (TRZ) is a dye that confers a lemon-yellow color to food and is widely used in the manufacture of numerous food products, as well as in pharmaceuticals and cosmetics. However, few studies have addressed the toxicology of TRZ in human cells or tissues. Considering the frequent consumption of the TRZ dye in food products and the lack of toxicological data, the present study aimed to evaluate the cytotoxicity and genotoxicity of the TRZ dye in human leukocyte cultures and perform theoretical studies to predict its toxicity in silico. Leukocyte cultures were treated with TRZ at concentrations of 5, 17.5, 35, 70, 100, 200, 300, 400, and 500 μg mL-1. All groups were assayed in triplicates. The mutagenicity was evaluated using the micronucleus test, the nuclear division index, and the nuclear division cytotoxicity index, and the chromosomal instability was quantitatively evaluated by band cytogenetics. Genotoxicity was evaluated using the alkaline comet test. Viability was assessed using the Trypan Blue method. Statistical analyses were performed using analysis of variance followed by Tukey's post hoc test, with a p value <0.05 reflecting statistical significance. No mutagenicity or cytotoxicity was found for the dye at the concentrations evaluated. However, DNA damage was induced by TRZ at a concentration of 70 μg mL-1. These results were confirmed by the predictive data from the in silico evaluations. Further studies are required to confirm our data, considering the frequency of the use of TRZ in the diet of the population, including that of children, as well as the exposure to TRZ through drugs, cosmetics, and other non-food products.
Collapse
Affiliation(s)
| | - Emanoeli da Rosa
- Federal University of Pampa - UNIPAMPA , campus Uruguaiana , RS , Brazil .
| | | | - Luísa Zuravski
- Federal University of Pampa - UNIPAMPA , campus Uruguaiana , RS , Brazil .
| | | | | | | |
Collapse
|
47
|
Sienkiewicz A, Kierys A, Goworek J. Polymer-hybrid silica composite for the azo dye removal from aqueous solution. J DISPER SCI TECHNOL 2018. [DOI: 10.1080/01932691.2018.1515024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Andrzej Sienkiewicz
- Department of Adsorption, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Agnieszka Kierys
- Department of Adsorption, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Jacek Goworek
- Department of Adsorption, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
48
|
Khayyat LI, Essawy AE, Sorour JM, Soffar A. Sunset Yellow and Allura Red modulate Bcl2 and COX2 expression levels and confer oxidative stress-mediated renal and hepatic toxicity in male rats. PeerJ 2018; 6:e5689. [PMID: 30280050 PMCID: PMC6166620 DOI: 10.7717/peerj.5689] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/03/2018] [Indexed: 12/23/2022] Open
Abstract
Studies on the adverse health effects caused by azo dyes are insufficient and quite contradictory. This work aims to investigate the possible toxic effect of two types of widely used food additives, Sunset Yellow and Allura Red, by assessing the physiological, histopathological and ultrastructural changes in the liver and kidney. Also, we investigated the genotoxic effect of both dyes on white blood cells. Thirty adult male albino rats were divided into three groups of 10 animals each: control (received water), Sunset Yellow-treated (2.5 mg/kg body weight) and Allura Red-treated (seven mg/kg body weight). The doses were orally applied for 4 weeks. Our results indicated an increase in the biochemical markers of hepatic and renal function (Aspartate aminotransferase, alanine aminotransferase, urea, uric acid and creatinine) in animals administered with the azo dyes. We also observed a noticeable increase in MDA and a marked decrease in total antioxidant levels in azo dye-treated animals compared to controls. Conversely, both dyes adversely affected the liver and kidney of albino rats and altered their histological and fine structure, with downregulation of Bcl2 and upregulation of COX2 expression. Our comet assay results showed a significant elevation in the fold change of tail moment in response to application of Sunset Yellow but not Allura Red. Collectively, we show that Sunset Yellow and Allura Red cause histopathological and physiological aberrations in the liver and kidney of male Wistar albino rats. Moreover, Sunset Yellow but not Allura Red induces a potential genotoxic effect.
Collapse
Affiliation(s)
- Latifa I Khayyat
- Biology Department, Faculty of Applied Sciences, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Amina E Essawy
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Jehan M Sorour
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed Soffar
- Division of Molecular Biology, Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
49
|
PEDOT:PSS/AuNPs/CA modified screen-printed carbon based disposable electrochemical sensor for sensitive and selective determination of carmine. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.07.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
50
|
Gao J, Wang Z, Wang GJ, Gao N, Li J, Zhang YF, Zhou J, Zhang HX, Wen Q, Jin H, Qiao HL. From hepatofibrosis to hepatocarcinogenesis: Higher cytochrome P450 2E1 activity is a potential risk factor. Mol Carcinog 2018; 57:1371-1382. [PMID: 29917271 DOI: 10.1002/mc.22851] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/20/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Jie Gao
- Institute of Clinical Pharmacology; Zhengzhou University; Zhengzhou Henan China
| | - Zhao Wang
- Institute of Clinical Pharmacology; Zhengzhou University; Zhengzhou Henan China
| | - Gao-Ju Wang
- Institute of Clinical Pharmacology; Zhengzhou University; Zhengzhou Henan China
| | - Na Gao
- Institute of Clinical Pharmacology; Zhengzhou University; Zhengzhou Henan China
| | - Jing Li
- Institute of Clinical Pharmacology; Zhengzhou University; Zhengzhou Henan China
| | - Yun-Fei Zhang
- Institute of Clinical Pharmacology; Zhengzhou University; Zhengzhou Henan China
- Affiliated Cancer Hospital of Zhengzhou University; Zhengzhou Henan China
| | - Jun Zhou
- Institute of Clinical Pharmacology; Zhengzhou University; Zhengzhou Henan China
- Affiliated Provincial People's Hospital of Zhengzhou University; Zhengzhou Henan China
| | - Hong-Xin Zhang
- Institute of Clinical Pharmacology; Zhengzhou University; Zhengzhou Henan China
| | - Qiang Wen
- Institute of Clinical Pharmacology; Zhengzhou University; Zhengzhou Henan China
| | - Han Jin
- Institute of Clinical Pharmacology; Zhengzhou University; Zhengzhou Henan China
| | - Hai-Ling Qiao
- Institute of Clinical Pharmacology; Zhengzhou University; Zhengzhou Henan China
| |
Collapse
|