1
|
Nugraha A, Wibisono KF, Muda EVS, Cahya P, Eleanor M. Risk assessment of Ochratoxin A (OTA) exposure from coffee consumption in Indonesia using Margin of Exposure (MOE) approach. Food Chem Toxicol 2025; 195:115119. [PMID: 39561937 DOI: 10.1016/j.fct.2024.115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
Ochratoxin A (OTA) is a mycotoxin widely found in foodstuffs that is suspected to pose adverse health effects on humans. As one of the biggest coffee-producing countries, Indonesia face challenges in managing the OTA contamination at reasonable levels in coffee. A favorable climate for fungi growth and inappropriate food safety practices are several issues faced in Indonesia for managing the OTA contamination in coffee products. Nevertheless, studies about risk analysis exposure of OTA from coffee consumption in Indonesia is limited. Hence, the present study aimed to evaluate the risk of exposure to OTA from coffee consumption using the Margin of Exposure Approach (MOE) based on coffee provincial consumption data. Risk assessment using the MOE approach revealed that the OTA exposure from coffee consumption in Indonesia is generally of concern. The MOE values derived in the present study were generally below 1000. Several Indonesian provinces even have MOE values below 200, indicating a greater concern of exposure. Overall, the present study highlights the importance of food safety management in Indonesian coffee production to minimize the OTA exposure from coffee consumption.
Collapse
Affiliation(s)
- Ananditya Nugraha
- Department of Food Technology, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, 13210, Indonesia.
| | - Kenneth Francis Wibisono
- Department of Food Technology, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, 13210, Indonesia
| | - Eleonora Valentia Sode Muda
- Department of Food Science and Nutrition, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, 13210, Indonesia
| | - Patricia Cahya
- Department of Food Technology, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, 13210, Indonesia
| | - Michella Eleanor
- Department of Food Technology, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, 13210, Indonesia
| |
Collapse
|
2
|
Khalaf AAA, Elhady MA, Ibrahim MA, Hassanen EI, Abdelrahman RE, Noshy PA. Quercetin protects the liver of broiler chicken against oxidative stress and apoptosis induced by ochratoxin A. Toxicon 2024; 251:108160. [PMID: 39489351 DOI: 10.1016/j.toxicon.2024.108160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/18/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Ochratoxin A (OTA) is a mycotoxin that causes major health concerns in human and animals. Quercetin (QUE) is a flavonoid that possesses antioxidant, anti-inflammatory and anti-apoptotic properties. This report aims to investigate the ameliorative effects of QUE against OTA-induced hepatotoxicity in broiler chicken. Forty broiler chicks were equally allocated into 4 groups: Group I (control), Group II (OTA), Group III (QUE) and Group IV (OTA + QUE). OTA (0.5 mg/kg) and QUE (0.5 g/kg) were incorporated into the chicken feed for 42 days. The results presented a significant decrease in body weight and elevation in feed conversion ratio, and a significant elevation of the activities of serum alanine aminotransferase and aspartate aminotransferase enzymes in the OTA birds. Additionally, there was a significant decrease in catalase activity and reduced glutathione content and a significant elevation in malondialdehyde level in the liver of OTA-exposed birds. Various hepatocellular lesions were also noticed in the OTA-exposed birds. OTA exposure up-regulated the phosphatase and tensin homologue (PTEN) and the pro-apoptotic genes and down-regulated the anti-apoptotic genes in the liver. The addition of QUE ameliorated most of the hepatotoxic effects of OTA.
Collapse
Affiliation(s)
- Abdel Azeim A Khalaf
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed A Elhady
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Metabolism, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Rehab E Abdelrahman
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Peter A Noshy
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
3
|
Aydemir MC, Yaman İ, Kilic MA. Membrane Receptor-Mediated Disruption of Cellular Homeostasis: Changes in Intracellular Signaling Pathways Increase the Toxicity of Ochratoxin A. Mol Nutr Food Res 2024; 68:e2300777. [PMID: 38880772 DOI: 10.1002/mnfr.202300777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/29/2024] [Indexed: 06/18/2024]
Abstract
Organisms maintain their cellular homeostatic balance by interacting with their environment through the use of their cell surface receptors. Membrane based receptors such as the transforming growth factor β receptor (TGFR), the prolactin receptor (PRLR), and hepatocyte growth factor receptor (HGFR), along with their associated signaling cascade, play significant roles in retaining cellular homeostasis. While these receptors and related signaling pathways are essential for health of cell and organism, their dysregulation can lead to imbalance in cell function with severe pathological conditions such as cell death or cancer. Ochratoxin A (OTA) can disrupt cellular homeostasis by altering expression levels of these receptors and/or receptor-associated intracellular downstream signaling modulators and/or pattern and levels of their phosphorylation/dephosphorylation. Recent studies have shown that the activity of the TGFR, the PRLR, and HGFR and their associated signaling cascades change upon OTA exposure. A critical evaluation of these findings suggests that while increased activity of the HGFR and TGFR signaling pathways leads to an increase in cell survival and fibrosis, decreased activity of the PRLR signaling pathway leads to tissue damage. This review explores the roles of these receptors in OTA-related pathologies and effects on cellular homeostasis.
Collapse
Affiliation(s)
- Mesut Cihan Aydemir
- Department of Biology, Institute of Natural and Applied Sciences, Akdeniz University, Antalya, 07070, Turkey
| | - İbrahim Yaman
- Molecular Toxicology and Cancer Research Laboratory, Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Bebek, 34342, Turkey
| | - Mehmet Akif Kilic
- Department of Biology, Molecular Biology Section, Akdeniz University, Antalya, 07070, Turkey
| |
Collapse
|
4
|
Li J, Cai X, Jiang P, Wang H, Zhang S, Sun T, Chen C, Fan K. Co-based Nanozymatic Profiling: Advances Spanning Chemistry, Biomedical, and Environmental Sciences. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307337. [PMID: 37724878 DOI: 10.1002/adma.202307337] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/12/2023] [Indexed: 09/21/2023]
Abstract
Nanozymes, next-generation enzyme-mimicking nanomaterials, have entered an era of rational design; among them, Co-based nanozymes have emerged as captivating players over times. Co-based nanozymes have been developed and have garnered significant attention over the past five years. Their extraordinary properties, including regulatable enzymatic activity, stability, and multifunctionality stemming from magnetic properties, photothermal conversion effects, cavitation effects, and relaxation efficiency, have made Co-based nanozymes a rising star. This review presents the first comprehensive profiling of the Co-based nanozymes in the chemistry, biology, and environmental sciences. The review begins by scrutinizing the various synthetic methods employed for Co-based nanozyme fabrication, such as template and sol-gel methods, highlighting their distinctive merits from a chemical standpoint. Furthermore, a detailed exploration of their wide-ranging applications in biosensing and biomedical therapeutics, as well as their contributions to environmental monitoring and remediation is provided. Notably, drawing inspiration from state-of-the-art techniques such as omics, a comprehensive analysis of Co-based nanozymes is undertaken, employing analogous statistical methodologies to provide valuable guidance. To conclude, a comprehensive outlook on the challenges and prospects for Co-based nanozymes is presented, spanning from microscopic physicochemical mechanisms to macroscopic clinical translational applications.
Collapse
Affiliation(s)
- Jingqi Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Xinda Cai
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Peng Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Huayuan Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Shiwei Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Chunxia Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
5
|
Więckowska M, Szelenberger R, Niemcewicz M, Harmata P, Poplawski T, Bijak M. Ochratoxin A-The Current Knowledge Concerning Hepatotoxicity, Mode of Action and Possible Prevention. Molecules 2023; 28:6617. [PMID: 37764392 PMCID: PMC10534339 DOI: 10.3390/molecules28186617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Ochratoxin A (OTA) is considered as the most toxic of the other ochratoxins synthesized by various fungal species belonging to the Aspergillus and Penicillium families. OTA commonly contaminates food and beverages, resulting in animal and human health issues. The toxicity of OTA is known to cause liver damage and is still being researched. However, current findings do not provide clear insights into the toxin mechanism of action. The current studies focusing on the use of potentially protective compounds against the effects of the toxin are insufficient as they are mainly conducted on animals. Further research is required to fill the existing gaps in both fields (namely the exact OTA molecular mechanism and the prevention of its toxicity in the human liver). This review article is a summary of the so far obtained results of studies focusing on the OTA hepatotoxicity, its mode of action, and the known approaches of liver cells protection, which may be the base for expanding other research in near future.
Collapse
Affiliation(s)
- Magdalena Więckowska
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.W.); (R.S.); (M.N.)
| | - Rafał Szelenberger
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.W.); (R.S.); (M.N.)
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.W.); (R.S.); (M.N.)
| | - Piotr Harmata
- Faculty of Advanced Technologies and Chemistry, Military University of Technology, 2 gen. S. Kaliskiego St., 00-908 Warsaw, Poland;
| | - Tomasz Poplawski
- Department of Pharmaceutical Microbiology and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.W.); (R.S.); (M.N.)
| |
Collapse
|
6
|
Ráduly Z, Szabó A, Mézes M, Balatoni I, Price RG, Dockrell ME, Pócsi I, Csernoch L. New perspectives in application of kidney biomarkers in mycotoxin induced nephrotoxicity, with a particular focus on domestic pigs. Front Microbiol 2023; 14:1085818. [PMID: 37125184 PMCID: PMC10140568 DOI: 10.3389/fmicb.2023.1085818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
The gradual spread of Aspergilli worldwide is adding to the global shortage of food and is affecting its safe consumption. Aspergillus-derived mycotoxins, including aflatoxins and ochratoxin A, and fumonisins (members of the fusariotoxin group) can cause pathological damage to vital organs, including the kidney or liver. Although the kidney functions as the major excretory system in mammals, monitoring and screening for mycotoxin induced nephrotoxicity is only now a developmental area in the field of livestock feed toxicology. Currently the assessment of individual exposure to mycotoxins in man and animals is usually based on the analysis of toxin and/or metabolite contamination in the blood or urine. However, this requires selective and sensitive analytical methods (e.g., HPLC-MS/MS), which are time consuming and expensive. The toxicokinetic of mycotoxin metabolites is becoming better understood. Several kidney biomarkers are used successfully in drug development, however cost-efficient, and reliable kidney biomarkers are urgently needed for monitoring farm animals for early signs of kidney disease. β2-microglobulin (β2-MG) and N-acetyl-β-D-glucosaminidase (NAG) are the dominant biomarkers employed routinely in environmental toxicology research, while kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) are also emerging as effective markers to identify mycotoxin induced nephropathy. Pigs are exposed to mycotoxins due to their cereal-based diet and are particularly susceptible to Aspergillus mycotoxins. In addition to commonly used diagnostic markers for nephrotoxicity including plasma creatinine, NAG, KIM-1 and NGAL can be used in pigs. In this review, the currently available techniques are summarized, which are used for screening mycotoxin induced nephrotoxicity in farm animals. Possible approaches are considered, which could be used to detect mycotoxin induced nephropathy.
Collapse
Affiliation(s)
- Zsolt Ráduly
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
- *Correspondence: Zsolt Ráduly,
| | - András Szabó
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Kaposvár, Hungary
- ELKH-MATE Mycotoxins in the Food Chain Research Group, Kaposvár, Hungary
| | - Miklós Mézes
- ELKH-MATE Mycotoxins in the Food Chain Research Group, Kaposvár, Hungary
- Department of Food Safety, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | | | - Robert G. Price
- Department of Nutrition, Franklin-Wilkins Building, King’s College London, London, United Kingdom
| | - Mark E. Dockrell
- SWT Institute of Renal Research, London, United Kingdom
- Department of Molecular and Clinical Sciences, St. George’s University, London, United Kingdom
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
7
|
Claeys L, De Saeger S, Scelo G, Biessy C, Casagrande C, Nicolas G, Korenjak M, Fervers B, Heath AK, Krogh V, Luján-Barroso L, Castilla J, Ljungberg B, Rodriguez-Barranco M, Ericson U, Santiuste C, Catalano A, Overvad K, Brustad M, Gunter MJ, Zavadil J, De Boevre M, Huybrechts I. Mycotoxin Exposure and Renal Cell Carcinoma Risk: An Association Study in the EPIC European Cohort. Nutrients 2022; 14:3581. [PMID: 36079840 PMCID: PMC9460795 DOI: 10.3390/nu14173581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Mycotoxins have been suggested to contribute to a spectrum of adverse health effects in humans, including at low concentrations. The recognition of these food contaminants being carcinogenic, as co-occurring rather than as singularly present, has emerged from recent research. The aim of this study was to assess the potential associations of single and multiple mycotoxin exposures with renal cell carcinoma risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. METHODS Food questionnaire data from the EPIC cohort were matched to mycotoxin food occurrence data compiled by the European Food Safety Authority (EFSA) from European Member States to assess long-term dietary mycotoxin exposures, and to associate these with the risk of renal cell carcinoma (RCC, n = 911 cases) in 450,112 EPIC participants. Potential confounding factors were taken into account. Analyses were conducted using Cox's proportional hazards regression models to compute hazard ratios (HRs) and 95% confidence intervals (95% CIs) with mycotoxin exposures expressed as µg/kg body weight/day. RESULTS Demographic characteristics differed between the RCC cases and non-cases for body mass index, age, alcohol intake at recruitment, and other dietary factors. In addition, the mycotoxin exposure distributions showed that a large proportion of the EPIC population was exposed to some of the main mycotoxins present in European foods such as deoxynivalenol (DON) and derivatives, fumonisins, Fusarium toxins, Alternaria toxins, and total mycotoxins. Nevertheless, no statistically significant associations were observed between the studied mycotoxins and mycotoxin groups, and the risk of RCC development. CONCLUSIONS These results show an absence of statistically significant associations between long-term dietary mycotoxin exposures and RCC risk. However, these results need to be validated in other cohorts and preferably using repeated dietary exposure measurements. In addition, more occurrence data of, e.g., citrinin and fumonisins in different food commodities and countries in the EFSA database are a prerequisite to establish a greater degree of certainty.
Collapse
Affiliation(s)
- Liesel Claeys
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, 150 Cours Albert Thomas, 69008 Lyon, France
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, 150 Cours Albert Thomas, 69008 Lyon, France
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg 2092, South Africa
| | - Ghislaine Scelo
- Genomic Epidemiology Branch, International Agency for Research on Cancer, World Health Organization, 150 Cours Albert Thomas, 69008 Lyon, France
| | - Carine Biessy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, 150 Cours Albert Thomas, 69008 Lyon, France
| | - Corinne Casagrande
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, 150 Cours Albert Thomas, 69008 Lyon, France
| | - Genevieve Nicolas
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, 150 Cours Albert Thomas, 69008 Lyon, France
| | - Michael Korenjak
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, 150 Cours Albert Thomas, 69008 Lyon, France
| | - Beatrice Fervers
- Department Prevention Cancer Environment, Centre Léon Bérard, U1296 INSERM Radiation, Defense, Health and Environment, 28 Rue Laënnec, 69373 Lyon, France
| | - Alicia K. Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary’s Campus, Norfolk Place, London W2 1PG, UK
| | - Vittorio Krogh
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto dei Tumori di Milano, 1 Via Venezian, 20133 Milan, Italy
| | - Leila Luján-Barroso
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology—IDIBELL, Granvia de L-Hospitalet 199-203, 08908 L’Hospitalet de Llobregat, Spain
| | - Jesús Castilla
- Navarra Public Health Institute—IdiSNA, Leyre 15, 31003 Pamplona, Spain
- Centre for Biomedical Research in Epidemiology and Public Health (CIBERESP), C. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Börje Ljungberg
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, SE-901 87 Umeå, Sweden
| | - Miguel Rodriguez-Barranco
- Centre for Biomedical Research in Epidemiology and Public Health (CIBERESP), C. Monforte de Lemos 3-5, 28029 Madrid, Spain
- Andalusian School of Public Health (EASP), 4 Cta. del Observatorio, 18011 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, 15 Av. de Madrid, 18012 Granada, Spain
| | - Ulrika Ericson
- Department of Clinical Sciences in Malmö, Lund University, Jan Waldenströms gata 35, SE-214 28 Malmö, Sweden
| | - Carmen Santiuste
- Centre for Biomedical Research in Epidemiology and Public Health (CIBERESP), C. Monforte de Lemos 3-5, 28029 Madrid, Spain
- Department of Epidemiology, Murcia Regional Heath Council, IMIB-Arrixaca, 11 Ronda de Levante, 30008 Murcia, Spain
| | - Alberto Catalano
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy
| | - Kim Overvad
- Department of Public Health, Aarhus University, Bartholins Allé 2, 8000 Aarhus, Denmark
| | - Magritt Brustad
- Department of Community Medicine, The Arctic University of Norway, Hansines veg 18, 9019 Tromsø, Norway
| | - Marc J. Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, 150 Cours Albert Thomas, 69008 Lyon, France
| | - Jiri Zavadil
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, 150 Cours Albert Thomas, 69008 Lyon, France
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Inge Huybrechts
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, 150 Cours Albert Thomas, 69008 Lyon, France
| |
Collapse
|
8
|
Zheng R, Qing H, Ma Q, Huo X, Huang S, Zhao L, Zhang J, Ji C. A Newly Isolated Alcaligenes faecalis ANSA176 with the Capability of Alleviating Immune Injury and Inflammation through Efficiently Degrading Ochratoxin A. Toxins (Basel) 2022; 14:toxins14080569. [PMID: 36006231 PMCID: PMC9415193 DOI: 10.3390/toxins14080569] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/08/2022] [Accepted: 08/17/2022] [Indexed: 12/02/2022] Open
Abstract
Ochratoxin A (OTA) is one of the most prevalent mycotoxins that threatens food and feed safety. Biodegradation of OTA has gained much attention. In this study, an Alcaligenes faecalis strain named ANSA176, with a strong OTA-detoxifying ability, was isolated from donkey intestinal chyme and characterized. The strain ANSA176 could degrade 97.43% of 1 mg/mL OTA into OTα within 12 h, at 37 °C. The optimal levels for bacterial growth were 22–37 °C and pH 6.0–9.0. The effects of ANSA176 on laying hens with an OTA-contaminated diet were further investigated. A total of 36 laying hens were assigned to three dietary treatments: control group, OTA (250 µg/kg) group, and OTA + ANSA176 (6.2 × 108 CFU/kg diet) group. The results showed that OTA decreased the average daily feed intake (ADFI) and egg weight (EW); meanwhile, it increased serum alanine aminopeptidase (AAP), leucine aminopeptidase (LAP), β2-microglobulin (β2-MG), immunoglobulin G (IgG), tumor necrosis factor-α (TNF-α), and glutathione reductase (GR). However, the ANSA176 supplementation inhibited or attenuated the OTA-induced damages. Taken together, OTA-degrading strain A. faecalis ANSA176 was able to alleviate the immune injury and inflammation induced by OTA.
Collapse
|
9
|
Carter LE, Bugiel S, Nunnikhoven A, Verster AJ, Bondy GS, Curran IHA. Genomic analysis of Fisher F344 rat kidneys from a reproductive study following dietary ochratoxin A exposure. Food Chem Toxicol 2022; 167:113302. [PMID: 35843423 DOI: 10.1016/j.fct.2022.113302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by species of Penicillium and Aspergillus, and is found in many commodities including cereal grains, nuts, and coffee. OTA is a renal carcinogen and nephrotoxin at high concentrations, targeting the proximal tubules. This study uses transcriptomics and the previously reported apical data (Bondy et al., 2021) to infer mode-of-action of OTA toxicity in male and female rats exposed to low doses of OTA in utero and throughout development. Our findings support a male-specific activation of the innate and adaptive immune responses in F1 pups to OTA exposure. This was not found in the female F1 pups, and may be due to female-specific increased p38 activity and VDR signaling. Differentially expressed genes related to karyomegaly, MAPK activity, and immune activation appears to develop from in utero exposure to OTA whereas those related to decreased kidney and liver function, and changes to reproductive pathways occur in both rat generations. Together, these transcriptional results confirm that dietary exposure to OTA causes renal toxicity as well as alterations to hepatic and reproductive pathways in rats. In utero exposure of rats to OTA results in sex-specific alterations in immune response pathways, VDR signaling, and p38 activity.
Collapse
Affiliation(s)
- L E Carter
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada.
| | - S Bugiel
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - A Nunnikhoven
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - A J Verster
- Bureau of Food Surveillance and Science Integration, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - G S Bondy
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - I H A Curran
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| |
Collapse
|
10
|
Dey DK, Kang JI, Bajpai VK, Kim K, Lee H, Sonwal S, Simal-Gandara J, Xiao J, Ali S, Huh YS, Han YK, Shukla S. Mycotoxins in food and feed: toxicity, preventive challenges, and advanced detection techniques for associated diseases. Crit Rev Food Sci Nutr 2022; 63:8489-8510. [PMID: 35445609 DOI: 10.1080/10408398.2022.2059650] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mycotoxins are produced primarily as secondary fungal metabolites. Mycotoxins are toxic in nature and naturally produced by various species of fungi, which usually contaminate food and feed ingredients. The growth of these harmful fungi depends on several environmental factors, such as pH, humidity, and temperature; therefore, the mycotoxin distribution also varies among global geographical areas. Various rules and regulations regarding mycotoxins are imposed by the government bodies of each country, which are responsible for addressing global food and health security concerns. Despite this legislation, the incidence of mycotoxin contamination is continuously increasing. In this review, we discuss the geographical regulatory guidelines and recommendations that are implemented around the world to control mycotoxin contamination of food and feed products. Researchers and inventors from various parts of the world have reported several innovations for controlling mycotoxin-associated health consequences. Unfortunately, most of these techniques are restricted to laboratory scales and cannot reach users. Consequently, to date, no single device has been commercialized that can detect all mycotoxins that are naturally available in the environment. Therefore, in this study, we describe severe health hazards that are associated with mycotoxin exposure, their molecular signaling pathways and processes of toxicity, and their genotoxic and cytotoxic effects toward humans and animals. We also discuss recent developments in the construction of a sensitive and specific device that effectively implements mycotoxin identification and detection methods. In addition, our study comprehensively examines the recent advancements in the field for mitigating the health consequences and links them with the molecular and signaling pathways that are activated upon mycotoxin exposure.
Collapse
Affiliation(s)
- Debasish Kumar Dey
- Department of Biotechnology, Daegu University, Gyeongsan, Republic of Korea
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ji In Kang
- Anticancer Agents Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, Republic of Korea
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University, Seoul, Republic of Korea
| | - Kwanwoo Kim
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, Republic of Korea
| | - Hoomin Lee
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, Republic of Korea
| | - Sonam Sonwal
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, Republic of Korea
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, Republic of Korea
| | - Yong-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University, Seoul, Republic of Korea
| | - Shruti Shukla
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana, India
| |
Collapse
|
11
|
Eeza MNH, Bashirova N, Zuberi Z, Matysik J, Berry JP, Alia A. An integrated systems-level model of ochratoxin A toxicity in the zebrafish (Danio rerio) embryo based on NMR metabolic profiling. Sci Rep 2022; 12:6341. [PMID: 35428752 PMCID: PMC9012740 DOI: 10.1038/s41598-022-09726-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 03/22/2022] [Indexed: 11/09/2022] Open
Abstract
Ochratoxin A (OTA) is one of the most widespread mycotoxin contaminants of agricultural crops. Despite being associated with a range of adverse health effects, a comprehensive systems-level mechanistic understanding of the toxicity of OTA remains elusive. In the present study, metabolic profiling by high-resolution magic angle spinning (HRMAS) NMR, coupled to intact zebrafish embryos, was employed to identify metabolic pathways in relation to a systems-level model of OTA toxicity. Embryotoxicity was observed at sub-micromolar exposure concentrations of OTA. Localization of OTA, based on intrinsic fluorescence, as well as a co-localization of increased reactive oxygen species production, was observed in the liver kidney, brain and intestine of embryos. Moreover, HRMAS NMR showed significant alteration of metabolites related to targeting of the liver (i.e., hepatotoxicity), and pathways associated with detoxification and oxidative stress, and mitochondrial energy metabolism. Based on metabolic profiles, and complementary assays, an integrated model of OTA toxicity is, thus, proposed. Our model suggests that OTA hepatotoxicity compromises detoxification and antioxidant pathways, leading to mitochondrial membrane dysfunction manifested by crosstalk between pathways of energy metabolism. Interestingly, our data additionally aligns with a possible role of mitochondrial fusion as a "passive mechanism" to rescue mitochondrial integrity during OTA toxicity.
Collapse
Affiliation(s)
- Muhamed N H Eeza
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
- Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Narmin Bashirova
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
- Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Zain Zuberi
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Jörg Matysik
- Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - John P Berry
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA.
- Biomolecular Science Institute, Florida International University, Miami, FL, USA.
| | - A Alia
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany.
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
12
|
Luo H, Wang G, Chen N, Fang Z, Xiao Y, Zhang M, Gerelt K, Qian Y, Lai R, Zhou Y. A Superefficient Ochratoxin A Hydrolase with Promising Potential for Industrial Applications. Appl Environ Microbiol 2022; 88:e0196421. [PMID: 34788069 PMCID: PMC8788665 DOI: 10.1128/aem.01964-21] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
As the most seriously controlled mycotoxin produced by Aspergillus spp. and Penicillium spp., ochratoxin A (OTA) results in various toxicological effects and widely contaminates agro-products. Biological detoxification is the highest priority regarding OTA in food and feed industry, but currently available detoxification enzymes have relatively low effectiveness in terms of time and cost. Here we show a superefficient enzyme, ADH3, identified from Stenotrophomonas acidaminiphila that has a strong ability to transform OTA into nontoxic ochratoxin-α by acting as an amidohydrolase. Recombinant ADH3 (1.2 μg/mL) completely degrades 50 μg/L OTA within 90 s, while the other most efficient OTA hydrolases available take several hours. The kinetic constant showed that rADH3 (Kcat/Km) catalytic efficiency was 56.7 to 35,000 times higher than those of previous hydrolases rAfOTase, rOTase, and commercial carboxypeptidase A (CPA). Protein structure-based assay suggested that ADH3 has a preference for hydrophobic residues to form a larger hydrophobic area than other detoxifying enzymes at the cavity of the catalytic sites, and this structure allows OTA easier access to the catalytic sites. In addition, ADH3 shows considerable temperature adaptability to exert hydrolytic function at the temperature down to 0°C or up to 70°C. Collectively, we report a superefficient OTA detoxifying enzyme with promising potential for industrial applications. IMPORTANCE Ochratoxin A (OTA) can result in various toxicological effects and widely contaminates agro-products and feedstuffs. OTA detoxifications by microbial strains and bio-enzymes are significant to food safety. Although previous studies showed OTA could be transformed through several pathways, the ochratoxin-α pathway is recognized as the most effective one. However, the most currently available enzymes are not efficient enough. Here, a superefficient hydrolase, ADH3, which can completely transform 50 μg/L OTA into ochratoxin-α within 90 s was screened and characterized. The hydrolase ADH3 shows considerable temperature adaptability (0 to 70°C) to exert the hydrolytic function. Findings of this study supplied an efficient OTA detoxifying enzyme and predicted the superefficient degradation mechanism, laying a foundation for future industrial applications.
Collapse
Affiliation(s)
- Han Luo
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei, China
| | - Gan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Sino-African Joint Research Center, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Nan Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei, China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, China
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, China
| | - Min Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Sino-African Joint Research Center, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Khishigjargal Gerelt
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei, China
| | - Yingying Qian
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Sino-African Joint Research Center, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Yu Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei, China
| |
Collapse
|
13
|
Mao X, Li H, Ge L, Liu S, Hou L, Yue D, Du H, Pan C, Gan F, Liu Y, Huang K, Chen X. Selenomethionine alleviated Ochratoxin A induced pyroptosis and renal fibrotic factors expressions in MDCK cells. J Biochem Mol Toxicol 2021; 36:e22933. [PMID: 34676619 DOI: 10.1002/jbt.22933] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/07/2021] [Accepted: 10/06/2021] [Indexed: 01/30/2023]
Abstract
Ochratoxin A (OTA) is universally known to induce nephrotoxicity via inducing oxidative stress and apoptosis, inhibiting protein synthesis and activating autophagy. Our previous studies have proved that OTA induces nephrotoxicity in vitro and in vivo by adjusting the NOD-like receptor protein 3 (NLRP3) inflammasome activation and caspase-1-dependent pyroptosis. Based on these findings, we further investigated the protective role of selenomethionine (SeMet) on OTA-caused nephrotoxicity using the Madin-Darby canine kidney (MDCK) epithelial cells as an in vitro model, proposing to offer a new way for remedying OTA-induced nephrotoxicity by nutritional manipulation. We measured the cell vitality, lactate dehydrogenase (LDH) activity and the expression of renal fibrotic genes, NLRP3 inflammasome and pyroptosis related genes. MTT and LDH results indicated that SeMet supplementation significantly mitigated 2.0 μg/ml OTA-induced cytotoxicity in MDCK cells (p < 0.05). Meanwhile, SeMet alleviated OTA induced increase of reactive oxygen species in MDCK cells. Then, the expressions of α-SMA, Vimentin, and TGF-β were detected both in mRNA and protein levels. The results indicated 8 μM SeMet supplementation could significantly downregulate the expression of OTA-induced renal fibrosis-related genes (p < 0.05). In addition, the upregulation of OTA-induced NLRP3 inflammasome and pyroptosis downstream genes was also significantly inhibited by 8 μM of SeMet (p < 0.05). In summary, SeMet could alleviate OTA-induced renal fibrotic genes expression and reduce NLRP3-caspase-1-dependent pyroptosis. Therefore, SeMet supplementation may become an effective approach for preserving animals from renal injury exposed to OTA.
Collapse
Affiliation(s)
- Xinru Mao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Institute of Animal Nutrition and Health, Nanjing Agricultural University, Nanjing, China
| | - Hu Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Institute of Animal Nutrition and Health, Nanjing Agricultural University, Nanjing, China
| | - Lei Ge
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Institute of Animal Nutrition and Health, Nanjing Agricultural University, Nanjing, China
| | - Shuiping Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Institute of Animal Nutrition and Health, Nanjing Agricultural University, Nanjing, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Institute of Animal Nutrition and Health, Nanjing Agricultural University, Nanjing, China
| | - Dongmei Yue
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Institute of Animal Nutrition and Health, Nanjing Agricultural University, Nanjing, China
| | - Heng Du
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Institute of Animal Nutrition and Health, Nanjing Agricultural University, Nanjing, China
| | - Cuiling Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Institute of Animal Nutrition and Health, Nanjing Agricultural University, Nanjing, China
| | - Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Institute of Animal Nutrition and Health, Nanjing Agricultural University, Nanjing, China
| | - Yunhuan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Institute of Animal Nutrition and Health, Nanjing Agricultural University, Nanjing, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Institute of Animal Nutrition and Health, Nanjing Agricultural University, Nanjing, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Institute of Animal Nutrition and Health, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
14
|
Wang Z, Gao Y, Huang X, Huang S, Yang X, Wang J, Zheng N. Metabolomics analysis underlay mechanisms in the renal impairment of mice caused by combination of aflatoxin M1 and ochratoxin A. Toxicology 2021; 458:152835. [PMID: 34126166 DOI: 10.1016/j.tox.2021.152835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/26/2021] [Accepted: 06/09/2021] [Indexed: 11/29/2022]
Abstract
Aflatoxin M1 (AFM1) and ochratoxin A (OTA) are pernicious mycotoxins widely co-existing in the environment. However, nephrotoxicity and underlying mechanism induced by AFM1 coupled with OTA still remain to be explored. In this study, CD-1 mice were treated with 3.5 mg/kg b.w. AFM1, OTA, and AFM1 + OTA for 35 days, and UPLC-MS-based metabolomics method was effectuated to investigate metabolomic profiles of mice kidney. Subsequent experiments on human renal proximal tubular (HK-2) cells were performed to dig out the causal connections between distinguished differential metabolites and nephrotoxicity. Compared with DMSO vehicle group, all three toxin treatments (AFM1 and OTA alone, and in combination) significantly reduced final body weight, and remarkably elevated the concentration of serum creatinine (SCr) and caused abnormal histological phenotypes (shown by histopathological slices). OTA, AFM1 + OTA but not AFM1 reduced the relative weight index of kidney. These phenotypic results indicated that AFM1 and OTA were both toxic to the body, and it seemed that OTA exhibited a notable impairment to kidney while AFM1 had similar but limited effect compared with OTA. Further metabolomics analysis showed that when AFM1 and OTA were combined together, OTA exerted dominant effect on the alteration of metabolic processes. There were few differences in the number of changed metabolites between OTA and AFM1 + OTA group. Among the differentially expressed metabolites affected by OTA, and AFM1 + OTA, lysophosphatidylcholines (LysoPCs) were identified as the main type with significant upregulation, in which LysoPC (16:0) accounted for the most prime proportion. Western blotting results of HK-2 cells showed that single OTA and AFM1 + OTA increased the apoptotic protein expressions of Bax, caspase 3 and PARP, and decreased the expression of Bcl-2; while AFM1 only raised the expression of caspase 3. LysoPC (16:0) but not LysoPC (18:1) lifted the protein level of caspase 3 and PARP in HK-2 cells, and reduced the level of Bcl-2. Taken together, this study is the first effort trying to assess nephrotoxicity of AFM1 with OTA, and we guessed that OTA had a more pronounced toxicity to kidney in contrast to AFM1. No obvious synergism between AFM1 and OTA was found to contribute to the occurrence or development of nephropathy. LysoPC (16:0) might be the pivotal metabolite in response to single OTA and combined AFM1 + OTA engendering renal injury.
Collapse
Affiliation(s)
- Ziwei Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Yanan Gao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Xin Huang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Shengnan Huang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Xue Yang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| |
Collapse
|
15
|
Bauer B, Liedtke D, Jarzina S, Stammler E, Kreisel K, Lalomia V, Diefenbacher M, Klopocki E, Mally A. Exploration of zebrafish larvae as an alternative whole-animal model for nephrotoxicity testing. Toxicol Lett 2021; 344:69-81. [PMID: 33722575 DOI: 10.1016/j.toxlet.2021.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/12/2021] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
Due to an increasing demand for testing of new and existing chemicals and legal restrictions for the use of animals, there is a strong need for alternative approaches to assess systemic toxicity. Embryonic and larval zebrafish (Danio rerio) are increasingly recognized as a promising alternative whole-animal model that may be able to overcome limitations of cell-based in vitro assays and bridge the gap between high-throughput in vitro screening and low-throughput in vivo tests in animals. Despite the relatively simple anatomical structure of the zebrafish larval kidney (pronephros) - composed of only two nephrons - the pronephros shares major functions and cell types with mammalian nephrons. Glomerular filtration begins at 48 h post fertilization. The aim of the present study was to investigate if early zebrafish larvae might be a suitable model for nephrotoxicity testing. On day 3 post fertilization, larval zebrafish were treated with selected nephrotoxins (aristolochic acid, cadmium chloride, potassium bromate, ochratoxin A, gentamicin) for 48 h. Histological evaluation of zebrafish larvae exposed to model nephrotoxins revealed tubule injury as evidenced by dilated tubules with loss of the brush border, tubule cell necrosis and disorganization of the tubular epithelium. These changes were most severe after treatment with gentamicin, which also impaired pronephros function as evidenced by reduced clearance of FITC-dextran. Whole-mount in situ hybridization showing loss of cdh17 expression revealed site-specific injury to the proximal tubule segment. Analysis of genes previously identified as novel biomarkers of kidney injury in mammals showed upregulation of the kidney injury marker genes heme oxygenase 1 (hmox1), clusterin (clu), secreted phosphoprotein/osteopontin (spp1), connective tissue growth factor (ctgf) and kim-1 (havcr-1) in response to nephrotoxin treatment, although the response of individual genes varied across compounds. Consistent with the severity of lesions and impaired kidney function, the most prominent gene expression changes occurred in larvae exposed to gentamicin. Overall, our results suggest that larval zebrafish may be a suitable alternative model organism for nephrotoxicity screening, yet further improvements and integration with quantitative in vitro to in vivo extrapolation will be needed to predict human toxicity.
Collapse
Affiliation(s)
- Benedikt Bauer
- Department of Toxicology, University of Würzburg, Versbacher Strasse 9, 97078, Würzburg, Germany
| | - Daniel Liedtke
- Institute of Human Genetics, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Sebastian Jarzina
- Department of Toxicology, University of Würzburg, Versbacher Strasse 9, 97078, Würzburg, Germany
| | - Emilia Stammler
- Department of Toxicology, University of Würzburg, Versbacher Strasse 9, 97078, Würzburg, Germany
| | - Katrin Kreisel
- Department of Toxicology, University of Würzburg, Versbacher Strasse 9, 97078, Würzburg, Germany
| | - Viola Lalomia
- Department of Toxicology, University of Würzburg, Versbacher Strasse 9, 97078, Würzburg, Germany
| | - Markus Diefenbacher
- Chair of Biochemistry and Molecular Biology, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Eva Klopocki
- Institute of Human Genetics, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Angela Mally
- Department of Toxicology, University of Würzburg, Versbacher Strasse 9, 97078, Würzburg, Germany.
| |
Collapse
|
16
|
Pastor L, Vettorazzi A, Guruceaga E, López de Cerain A. Time Course of Renal Transcriptomics after Subchronic Exposure to Ochratoxin A in Fisher Rats. Toxins (Basel) 2021; 13:177. [PMID: 33652839 PMCID: PMC7996782 DOI: 10.3390/toxins13030177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 12/21/2022] Open
Abstract
The mycotoxin ochratoxin A (OTA) is a potent nephrocarcinogen, mainly in male rats. The aim of this study was to determine the time course of gene expression (GeneChip® Rat Gene 2.0 ST Array, Affymetrix) in kidney samples from male and female F344 rats, treated daily (p.o) with 0.50 mg/kg b.w. (body weight) of OTA for 7 or 21 days, and evaluate if there were differences between both sexes. After OTA treatment, there was an evolution of gene expression in the kidney over time, with more differentially expressed genes (DEG) at 21 days. The gene expression time course was different between sexes with respect to the number of DEG and the direction of expression (up or down): the female response was progressive and consistent over time, whereas males had a different early response with more DEG, most of them up-regulated. The statistically most significant DEG corresponded to metabolism enzymes (Akr1b7, Akr1c2, Adh6 down-regulated in females; Cyp2c11, Dhrs7, Cyp2d1, Cyp2d5 down-regulated in males) or transporters (Slc17a9 down-regulated in females; Slco1a1 (OATP-1) and Slc51b and Slc22a22 (OAT) down-regulated in males). Some of these genes had also a basal sex difference and were over-expressed in males or females with respect to the other sex.
Collapse
Affiliation(s)
- Laura Pastor
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, University of Navarra, CIFA Building, c/Irunlarrea 1, E-31008 Pamplona, Spain; (L.P.); (A.L.d.C.)
- IdiSNA, Navarra Institute for Health Research, E-31008 Pamplona, Spain;
| | - Ariane Vettorazzi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, University of Navarra, CIFA Building, c/Irunlarrea 1, E-31008 Pamplona, Spain; (L.P.); (A.L.d.C.)
- IdiSNA, Navarra Institute for Health Research, E-31008 Pamplona, Spain;
| | - Elizabeth Guruceaga
- IdiSNA, Navarra Institute for Health Research, E-31008 Pamplona, Spain;
- Bioinformatics Platform, Center for Applied Medical Research (CIMA), University of Navarra, E-31008 Pamplona, Spain
| | - Adela López de Cerain
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, University of Navarra, CIFA Building, c/Irunlarrea 1, E-31008 Pamplona, Spain; (L.P.); (A.L.d.C.)
- IdiSNA, Navarra Institute for Health Research, E-31008 Pamplona, Spain;
| |
Collapse
|
17
|
Kozieł MJ, Kowalska K, Piastowska-Ciesielska AW. Nrf2: a main responsive element in cells to mycotoxin-induced toxicity. Arch Toxicol 2021; 95:1521-1533. [PMID: 33554281 PMCID: PMC8113212 DOI: 10.1007/s00204-021-02995-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/28/2021] [Indexed: 12/11/2022]
Abstract
Nuclear factor erythroid 2-like 2 (Nrf2) is a transcription factor participating in response to cellular oxidative stress to maintain the redox balance. Generation of reactive oxygen species (ROS) and, in consequence, oxidative stress, are physiological as well as pathological processes which take place in almost all types of cells. Nrf2, in response to oxidative stress, activates expression and production of antioxidant enzymes to remove free radicals. However, the role of Nrf2 seems to be more sophisticated and its increased expression observed in cancer cells allows to draw a conclusion that its role is tissue—and condition—dependent. Interestingly, Nrf2 might also play a crucial role in response to environmental factors like mycotoxins. Thus, the aim of the study is to review the role of Nrf2 in cells exposed to most common mycotoxins to check if the Nrf2 signaling pathway serves as the main response element to mycotoxin-induced oxidative stress in human and animal cells and if it can be a target of detoxifying agents.
Collapse
Affiliation(s)
- Marta Justyna Kozieł
- Medical University of Lodz, Department of Cell Cultures and Genomic Analysis, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Karolina Kowalska
- Medical University of Lodz, Department of Cell Cultures and Genomic Analysis, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | | |
Collapse
|
18
|
Niaz K, Shah SZA, Khan F, Bule M. Ochratoxin A-induced genotoxic and epigenetic mechanisms lead to Alzheimer disease: its modulation with strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44673-44700. [PMID: 32424756 DOI: 10.1007/s11356-020-08991-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Ochratoxin A (OTA) is a naturally occurring mycotoxin mostly found in food items including grains and coffee beans. It induces DNA single-strand breaks and has been considered to be carcinogenic. It is recognized as a serious threat to reproductive health both in males and females. OTA is highly nephrotoxic and carcinogenic, and its potency changes evidently between species and sexes. There is a close association between OTA, mutagenicity, carcinogenicity, and genotoxicity, but the underlying mechanisms are not clear. Reports regarding genotoxic effects in relation to OTA which leads to the induction of DNA adduct formation, protein synthesis inhibition, perturbation of cellular energy production, initiation of oxidative stress, induction of apoptosis, influences on mitosis, induction of cell cycle arrest, and interference with cytokine pathways. All these mechanisms are associated with nephrotoxicity, hepatotoxicity, teratotoxicity, immunological toxicity, and neurotoxicity. OTA administration activates various mechanisms such as p38 MAPK, JNKs, and ERKs dysfunctions, BDNF disruption, TH overexpression, caspase-3 and 9 activation, and ERK-1/2 phosphorylation which ultimately lead to Alzheimer disease (AD) progression. The current review will focus on OTA in terms of recent discoveries in the field of molecular biology. The main aim is to investigate the underlying mechanisms of OTA in regard to genotoxicity and epigenetic modulations that lead to AD. Also, we will highlight the strategies for the purpose of attenuating the hazards posed by OTA exposure.
Collapse
Affiliation(s)
- Kamal Niaz
- Department of Pharmacology and Toxicology, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan.
| | - Syed Zahid Ali Shah
- Department of Pathology, Faculty of Veterinary Science, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Fazlullah Khan
- The Institute of Pharmaceutical Sciences (TIPS), School of Pharmacy, International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, 1417614411, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, 1417614411, Iran
| | - Mohammed Bule
- Department of Pharmacy, College of Medicine and Health Sciences, Ambo University, Ambo, Oromia, Ethiopia
| |
Collapse
|
19
|
Effects of Single and Repeated Oral Doses of Ochratoxin A on the Lipid Peroxidation and Antioxidant Defense Systems in Mouse Kidneys. Toxins (Basel) 2020; 12:toxins12110732. [PMID: 33266415 PMCID: PMC7700583 DOI: 10.3390/toxins12110732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/02/2020] [Accepted: 11/20/2020] [Indexed: 12/22/2022] Open
Abstract
Ochratoxin-A (OTA) is a carcinogenic and nephrotoxic mycotoxin, which may cause health problems in humans and animals, and it is a contaminant in foods and feeds. The purpose of the present study is to evaluate the effect of oral OTA exposure on the antioxidant defense and lipid peroxidation in the kidney. In vivo administration of OTA in CD1, male mice (1 or 10 mg/kg body weight in a single oral dose for 24 h and repeated daily oral dose for 72 h or repeated daily oral dose of 0.5 mg/kg bodyweight for 21 days) resulted in a significant elevation of OTA levels in blood plasma. Some histopathological alterations, transcriptional changes in the glutathione system, and oxidative stress response-related genes were also found. In the renal cortex, the activity of the glutathione-system-related enzymes and certain metabolites of the lipid peroxidation (conjugated dienes, trienes, and thiobarbituric reactive substances) also changed.
Collapse
|
20
|
Adaku Chilaka C, Mally A. Mycotoxin Occurrence, Exposure and Health Implications in Infants and Young Children in Sub-Saharan Africa: A Review. Foods 2020; 9:E1585. [PMID: 33139646 PMCID: PMC7693847 DOI: 10.3390/foods9111585] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
Infants and young children (IYC) remain the most vulnerable population group to environmental hazards worldwide, especially in economically developing regions such as sub-Saharan Africa (SSA). As a result, several governmental and non-governmental institutions including health, environmental and food safety networks and researchers have been proactive toward protecting this group. Mycotoxins, toxic secondary fungal metabolites, contribute largely to the health risks of this young population. In SSA, the scenario is worsened by socioeconomic status, poor agricultural and storage practices, and low level of awareness, as well as the non-establishment and lack of enforcement of regulatory limits in the region. Studies have revealed mycotoxin occurrence in breast milk and other weaning foods. Of concern is the early exposure of infants to mycotoxins through transplacental transfer and breast milk as a consequence of maternal exposure, which may result in adverse health effects. The current paper presents an overview of mycotoxin occurrence in foods intended for IYC in SSA. It discusses the imperative evidence of mycotoxin exposure of this population group in SSA, taking into account consumption data and the occurrence of mycotoxins in food, as well as biomonitoring approaches. Additionally, it discusses the health implications associated with IYC exposure to mycotoxins in SSA.
Collapse
Affiliation(s)
- Cynthia Adaku Chilaka
- Institute of Pharmacology and Toxicology, Julius Maximilian University of Würzburg, Versbacher Straβe 9, 97078 Würzburg, Germany;
| | | |
Collapse
|
21
|
Choi SY, Kim TH, Hong MW, Park TS, Lee H, Lee SJ. Transcriptomic alterations induced by aflatoxin B1 and ochratoxin A in LMH cell line. Poult Sci 2020; 99:5265-5274. [PMID: 33142442 PMCID: PMC7647754 DOI: 10.1016/j.psj.2020.05.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/09/2020] [Accepted: 05/22/2020] [Indexed: 12/23/2022] Open
Abstract
Aflatoxin B1 (AFB1) and ochratoxin A (OTA), which are toxic metabolites of ubiquitously occurring molds, show diverse toxicological effects such as hepatotoxicity, genotoxicity, and immunotoxicity in human and animals. Despite poultry show sensitivity to AFB1 and OTA, the mechanism of these mycotoxins in chickens has not been fully investigated. Here, we aimed to elucidate the molecular mechanism induced by AFB1 and/or OTA in chicken hepatic cells using transcriptomic analysis. Aflatoxin B1 and OTA induced cytotoxic effects in a dose-dependent manner at 48 h after exposure. Furthermore, correlation effect indicated an antagonism between the 2 toxins. The mRNA sequencing of AFB1-treated or OTA-treated chicken hepatocarcinoma and functional analysis revealed the pathways that were commonly regulated by both mycotoxins, especially PPAR signaling, focal adhesion, and MAPK signaling. Based on these findings, a possible hypothesis is that AFB1 and OTA have similar toxic mechanisms and compete for some steps in the chicken liver, and it is expected that the mycotoxins would have antagonistic effects. In addition, genes identified through transcriptome analysis provide candidates for further study of AFB1 and OTA toxicity and targets for efforts to improve the health of chickens exposed to mycotoxins.
Collapse
Affiliation(s)
- So-Young Choi
- Department of Animal Life Science, Kangwon National University, Chuncheon-si, Gangwon-do 24341, Korea
| | - Tae Hyun Kim
- Department of Animal Science, University of California, Davis, Davis, CA 95616, USA
| | - Min-Wook Hong
- Department of Animal Life Science, Kangwon National University, Chuncheon-si, Gangwon-do 24341, Korea
| | - Tae Sub Park
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, Korea
| | - Hyojeong Lee
- Department of Animal Life Science, Kangwon National University, Chuncheon-si, Gangwon-do 24341, Korea
| | - Sung-Jin Lee
- Department of Animal Life Science, Kangwon National University, Chuncheon-si, Gangwon-do 24341, Korea.
| |
Collapse
|
22
|
Juan-García A, Bind MA, Engert F. Larval zebrafish as an in vitro model for evaluating toxicological effects of mycotoxins. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110909. [PMID: 32800244 PMCID: PMC7431674 DOI: 10.1016/j.ecoenv.2020.110909] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 05/03/2023]
Abstract
The presence of mycotoxins in food has created concern. Mycotoxin prevalence in our environment has changed in the last few years maybe due to climatic and other environmental changes. Evidence has emerged from in vitro and in vivo models: some mycotoxins have been found to be potentially carcinogenic, embryogenically harmful, teratogenic, and to generate nephrotoxicity. The risk assessment of exposures to mycotoxins at early life stages became mandatory. In this regard, the effects of toxic compounds on zebrafish have been widely studied, and more recently, mycotoxins have been tested with respect to their effects on developmental and teratogenic effects in this model system, which offers several advantages as it is an inexpensive and an accessible vertebrate model to study developmental toxicity. External post-fertilization and quick maturation make it sensitive to environmental effects and facilitate the detection of endpoints such as morphological deformities, time of hatching, and behavioral responses. Therefore, there is a potential for larval zebrafish to provide new insights into the toxicological effects of mycotoxins. We provide an overview of recent mycotoxin toxicological research in zebrafish embryos and larvae, highlighting its usefulness to toxicology and discuss the strengths and limitations of this model system.
Collapse
Affiliation(s)
- Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés S/n, 46100, Burjassot, València, Spain; Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, USA.
| | - Marie-Abèle Bind
- Department of Statistics, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, USA
| |
Collapse
|
23
|
Karaica D, Micek V, Rašić D, Peraica M, Šegvić Klarić M, Breljak D. Subchronic exposure to individual and combined ochratoxin A and citrinin affects the expression of rat renal organic anion transporters. Mycotoxin Res 2020; 36:339-352. [DOI: 10.1007/s12550-020-00399-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/19/2020] [Accepted: 07/03/2020] [Indexed: 01/03/2023]
|
24
|
Shen Y, Shi Z, Fan JT, Yan B. Dechlorination and demethylation of ochratoxin A enhance blocking activity of PXR activation, suppress PXR expression and reduce cytotoxicity. Toxicol Lett 2020; 332:171-180. [PMID: 32659470 DOI: 10.1016/j.toxlet.2020.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/28/2020] [Accepted: 07/09/2020] [Indexed: 12/16/2022]
Abstract
The pregnane X receptor (PXR) has been established to induce chemoresistance and metabolic diseases. Ochratoxin A (OTA), a mycotoxin, decreases the expression of PXR protein in human primary hepatocytes. OTA is chlorinated and has a methylated lactone ring. Both structures are associated with OTA toxicity. The study was to test the hypothesis that structural modifications differentially impact PXR blocking activity over cytotoxicity. To test this hypothesis, OTA-M and OTA-Cl/M were synthesized. OTA-M lacked the methyl group of the lactone-ring, whereas OTA-Cl/M had neither the methyl group nor the chlorine atom. The blocking activity of PXR activation was determined in a stable cell line, harboring both PXR (coding sequence) and its luciferase element reporter. OTA-Cl/M showed the highest blocking activity, followed by OTA-M and OTA. OTA-Cl/M was 60 times as potent as the common PXR blocker ketoconazole based on calculated IC50 values. OTA-Cl/M decreased by 90 % the expression of PXR protein and was the least cytotoxic among the tested compounds. Molecular docking identified that OTA and its derivatives interacted with different sets of residues in PXR, providing a molecular basis for selectivity. Excessive activation of PXR has been implicated in chemoresistance and metabolic diseases. Downregulation of PXR protein expression likely delivers an effective mechanism against structurally diverse PXR agonists.
Collapse
Affiliation(s)
- Yuanjun Shen
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Zhanquan Shi
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Jun Ting Fan
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Bingfang Yan
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45229, USA.
| |
Collapse
|
25
|
Aşcı Çelik D, Gurbuz N, Toğay VA, Özçelik N. Ochratoxin A causes cell cycle arrest in G1 and G1/S phases through p53 in HK-2 cells. Toxicon 2020; 180:11-17. [DOI: 10.1016/j.toxicon.2020.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/18/2020] [Accepted: 03/31/2020] [Indexed: 12/20/2022]
|
26
|
Schrenk D, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Alexander J, Dall'Asta C, Mally A, Metzler M, Binaglia M, Horváth Z, Steinkellner H, Bignami M. Risk assessment of ochratoxin A in food. EFSA J 2020; 18:e06113. [PMID: 37649524 PMCID: PMC10464718 DOI: 10.2903/j.efsa.2020.6113] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The European Commission asked EFSA to update their 2006 opinion on ochratoxin A (OTA) in food. OTA is produced by fungi of the genus Aspergillus and Penicillium and found as a contaminant in various foods. OTA causes kidney toxicity in different animal species and kidney tumours in rodents. OTA is genotoxic both in vitro and in vivo; however, the mechanisms of genotoxicity are unclear. Direct and indirect genotoxic and non-genotoxic modes of action might each contribute to tumour formation. Since recent studies have raised uncertainty regarding the mode of action for kidney carcinogenicity, it is inappropriate to establish a health-based guidance value (HBGV) and a margin of exposure (MOE) approach was applied. For the characterisation of non-neoplastic effects, a BMDL 10 of 4.73 μg/kg body weight (bw) per day was calculated from kidney lesions observed in pigs. For characterisation of neoplastic effects, a BMDL 10 of 14.5 μg/kg bw per day was calculated from kidney tumours seen in rats. The estimation of chronic dietary exposure resulted in mean and 95th percentile levels ranging from 0.6 to 17.8 and from 2.4 to 51.7 ng/kg bw per day, respectively. Median OTA exposures in breastfed infants ranged from 1.7 to 2.6 ng/kg bw per day, 95th percentile exposures from 5.6 to 8.5 ng/kg bw per day in average/high breast milk consuming infants, respectively. Comparison of exposures with the BMDL 10 based on the non-neoplastic endpoint resulted in MOEs of more than 200 in most consumer groups, indicating a low health concern with the exception of MOEs for high consumers in the younger age groups, indicating a possible health concern. When compared with the BMDL 10 based on the neoplastic endpoint, MOEs were lower than 10,000 for almost all exposure scenarios, including breastfed infants. This would indicate a possible health concern if genotoxicity is direct. Uncertainty in this assessment is high and risk may be overestimated.
Collapse
|
27
|
Wu TS, Lin YT, Huang YT, Yu FY, Liu BH. Ochratoxin A triggered intracerebral hemorrhage in embryonic zebrafish: Involvement of microRNA-731 and prolactin receptor. CHEMOSPHERE 2020; 242:125143. [PMID: 31675585 DOI: 10.1016/j.chemosphere.2019.125143] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Ochratoxin A (OTA), a mycotoxin widely found in foodstuffs, reportedly damages multiple brain regions in developing rodents, but the corresponding mechanisms have not been elucidated. In this study, zebrafish embryos at 6 h post fertilization (hpf) were exposed to various concentrations of OTA and the phenomenon associated with intracerebral hemorrhage was observed at 72 hpf. Exposure of embryos to OTA significantly increased their hemorrhagic rate in a dose-dependent manner. Large numbers of extravagated erythrocytes were observed in the midbrain/hindbrain areas of Tg(fli-1a:EGFP; gata1:DsRed) embryos following exposure to OTA. OTA also disrupted the vascular patterning, especially the arch-shaped central arteries (CtAs), in treated embryos. Histological analysis revealed a cavity-like pattern in their hindbrain ventricles, implying the possibility of cerebral edema. OTA-induced intracerebral hemorrhage and CtA vessel defects were partially reversed by the presence of miR-731 antagomir or the overexpression of prolactin receptor a (prlra); prlra is a downstream target of miR-731. These results suggest that exposure to OTA has a negative effect on cerebral vasculature development by interfering with the miR-731/PRLR axis in zebrafish.
Collapse
Affiliation(s)
- Ting-Shuan Wu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Ting Lin
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ying-Tzu Huang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Feng-Yih Yu
- Department of Biomedical Sciences, Chung Shan Medical University, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Biing-Hui Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
28
|
Selenium Yeast Alleviates Ochratoxin A-Induced Apoptosis and Oxidative Stress via Modulation of the PI3K/AKT and Nrf2/Keap1 Signaling Pathways in the Kidneys of Chickens. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4048706. [PMID: 32148649 PMCID: PMC7053478 DOI: 10.1155/2020/4048706] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/31/2019] [Indexed: 12/15/2022]
Abstract
The purpose of this study was to investigate the protective effect and mechanism of yeast selenium (Se-Y) on ochratoxin- (OTA-) induced nephrotoxicity of chickens. A total of 80 one-day-old healthy chickens were randomly divided into 4 equal groups: control, OTA (50 μg/kg OTA), Se-Y (0.4 mg/kg Se-Y), and OTA+Se-Y (50 μg/kg OTA+0.4 mg/kg Se-Y). In the OTA chickens, differences in body weight, kidney coefficient, biochemical histological analysis, antioxidant capability, and the expression levels of the PI3K/AKT and Nrf2/Keap1 signaling pathway-related genes were observed. The levels of total superoxide dismutase (T-SOD), antioxidant capacity (T-AOC), catalase (CAT), and glutathione (T-GSH) significantly decreased, but the malondialdehyde (MDA) level of the kidneys significantly increased in the OTA treatment group. More importantly, treatment with Se-Y improved the antioxidant enzyme activities within the kidneys of chickens exposed to OTA. In addition, administration of OTA resulted in apoptosis and was associated with decreased expression of AKT, PI3K, and Bcl-2, which in turn enhanced expression of Caspase3, Bax, and P53. However, Se-Y improved the antioxidant defense system through activation of the Nrf2/Keap1 signaling pathway. Gene expression of Nrf2 and its target genes (HO-1, GSH-px, GLRX2, MnSOD, and CAT) was downregulated following OTA exposure. Conversely, Se-Y treatment resulted in a significant upregulation of the same genes. Besides, significant downregulations of protein expression of HO-1, CAT, MnSOD, Nrf2, and Bcl-2 and a significant upregulation of Caspase3 and Bax levels were observed after contaminated with OTA. Notably, OTA-induced apoptosis and oxidative damage in the kidney of chickens were reverted back to normal level in the OTA+Se-Y group. Taken together, the data suggest that Se-Y alleviates OTA-induced nephrotoxicity in chickens, possibly through the activation of the PI3K/AKT and Nrf2/Keap1 signaling pathways.
Collapse
|
29
|
Nogaim QA, Sai Pratyusha Bugata L, PV P, Reddy UA, P MG, S IK, M M. Protective effect of Yemeni green coffee powder against the oxidative stress induced by Ochratoxin A. Toxicol Rep 2020; 7:142-148. [PMID: 31956515 PMCID: PMC6962656 DOI: 10.1016/j.toxrep.2019.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 11/13/2019] [Accepted: 11/24/2019] [Indexed: 01/24/2023] Open
Abstract
The current study focusses on knowing the antioxidant effects of green Yemeni coffee powder on reducing the oxidative stress that was induced by Ochratoxin A in kidney, liver and brain of rats. The grouping of female albino Wistar rats was into 5 groups (5 rats/group). Rats of Group 1 designated Vehicle Control (only water), Group2 (10 mg/kg Ochratoxin A); Group 3 designated Low dose (2000 mg/kg Coffee+10 mg/kg Ochratoxin A); Group 4 designated High dose (4000 mg/kg Coffee+10 mg/kg Ochratoxin A); Group 5 designated Coffee Control (1000 mg/kg Coffee) and orally administered with the above test materials repeatedly every day for 28 days. On termination of the study, liver, brain and kidney tissues were collected after dissection, oxidative stress biomarkers (Levels of Lipid Peroxidation and Reduced Glutathione, activities Superoxide Dismutase, Catalase and Glutathione Reductase enzymes) and histopathological studies were carried out. Treatment of Ochratoxin A alone (group 2 rats) significantly increased malondialdehyde content, catalase, and glutathione reductase activities with a decrease in the activity of superoxide dismutase enzyme and reduced glutathione level and in brain, kidney and liver. Whereas, low dose coffee (group 3) and high dose coffee (group 4) rats showed dose-dependent increase in antioxidant and less histopathological alterations. Concomitant treatment of Yemeni green coffee powder and Ochratoxin A brought dose-dependent protective effects against oxidative stress which was induced using Ochratoxin A in liver, brain, and kidney tissues of female rats.
Collapse
Affiliation(s)
- Qais A. Nogaim
- Food Science and Technology Department, Ibb University, Yemen
| | | | - Prabhakar PV
- Toxicology Unit, Applied Biology Division, CSIR Indian Institute of Chemical Technology, Hyderabad, T.S., India
| | - Utkarsh A. Reddy
- Toxicology Unit, Applied Biology Division, CSIR Indian Institute of Chemical Technology, Hyderabad, T.S., India
| | - Mangala Gowri P
- Toxicology Unit, Applied Biology Division, CSIR Indian Institute of Chemical Technology, Hyderabad, T.S., India
| | - Indu Kumari S
- Toxicology Unit, Applied Biology Division, CSIR Indian Institute of Chemical Technology, Hyderabad, T.S., India
| | - Mahboob M
- Toxicology Unit, Applied Biology Division, CSIR Indian Institute of Chemical Technology, Hyderabad, T.S., India
| |
Collapse
|
30
|
Mazur-Kuśnirek M, Antoszkiewicz Z, Lipiński K, Fijałkowska M, Purwin C, Kotlarczyk S. The effect of polyphenols and vitamin E on the antioxidant status and meat quality of broiler chickens fed diets naturally contaminated with ochratoxin A. Arch Anim Nutr 2019; 73:431-444. [PMID: 31523998 DOI: 10.1080/1745039x.2019.1639445] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The aim of this study was to determine the effect of a polyphenol product (PP) (Proviox) and vitamin E on the antioxidant status and meat quality of broiler chickens fed diets contaminated with ochratoxin A (OTA). One hundred and twenty ROSS 308 broiler chickens were randomly divided into six groups (10 replications, 2 birds per replication). Group I received an uncontaminated and unsupplemented diet, diets of groups II to VI were contaminated with OTA at 172 µg and 200 µg/kg for the starter and grower period, respectively. Furthermore, diets of groups III, IV and V were supplemented with vitamin E at 100, 200 and 100 mg, respectively, and to diets of groups V and VI additionally 100 and 2200 mg PP was added, respectively. Supplementation with PP and vitamin E had no significant effects on the growth performance, dressing percentage or carcass trait parameters of broiler chickens. In chickens exposed to stress, dietary supplementation with vitamin E and/or PP improved the total antioxidant status (p ≤ 0.05), enhanced the blood activity of antioxidant enzymes (p ≤ 0.01) and increased the concentrations of non-enzymatic antioxidants (p ≤ 0.01) in the liver and breast muscles. Regardless of the administered antioxidants, chickens fed diets contaminated with OTA were characterised by lower dressing percentage (p ≤ 0.01), a higher proportion of the liver in the carcass (p ≤ 0.01), lower carcass fat content (p ≤ 0.01), and longer small intestines (p ≤ 0.01) and caeca (p ≤ 0.01). Dietary supplementation with PP improved the water-holding capacity of meat (p ≤ 0.01). The breast muscles of chickens fed diets supplemented with PP and vitamin E were characterised by higher (p ≤ 0.05) concentrations of eicosapentaenoic acid (C20:5). It was concluded that PP can be an insufficient component of diets for broiler chickens to improve growth performance and mitigate the negative effects of high dose of OTA in diets.
Collapse
Affiliation(s)
- Magdalena Mazur-Kuśnirek
- Department of Animal Nutrition and Feed Science, University of Warmia and Mazury in Olsztyn , Olsztyn , Poland
| | - Zofia Antoszkiewicz
- Department of Animal Nutrition and Feed Science, University of Warmia and Mazury in Olsztyn , Olsztyn , Poland
| | - Krzysztof Lipiński
- Department of Animal Nutrition and Feed Science, University of Warmia and Mazury in Olsztyn , Olsztyn , Poland
| | - Maja Fijałkowska
- Department of Animal Nutrition and Feed Science, University of Warmia and Mazury in Olsztyn , Olsztyn , Poland
| | - Cezary Purwin
- Department of Animal Nutrition and Feed Science, University of Warmia and Mazury in Olsztyn , Olsztyn , Poland
| | - Sylwia Kotlarczyk
- Department of Animal Nutrition and Feed Science, University of Warmia and Mazury in Olsztyn , Olsztyn , Poland
| |
Collapse
|
31
|
Long-Term Effects of Ochratoxin A on the Glutathione Redox System and Its Regulation in Chicken. Antioxidants (Basel) 2019; 8:antiox8060178. [PMID: 31212917 PMCID: PMC6616419 DOI: 10.3390/antiox8060178] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022] Open
Abstract
The purpose of this study was to evaluate the effect of three-weeks ochratoxin A (OTA) exposure on some lipid peroxidation parameters, reduced glutathione concentration and glutathione-peroxidase activity, as well as expression of oxidative stress response-related (KEAP1, NRF2) and glutathione system (GPX3, GPX4, GSS, GSR) genes in chickens. Three levels of exposure (106, 654 and 1126 μg/kg feed) were applied. The results showed that OTA initiated free radical formation, which was suggested by the increase in the malondialdehyde content in the liver and kidney, which was more marked in the liver, depending on the length of exposure and dose. Reduced glutathione concentration increased as an effect of the highest OTA dose in blood plasma and in liver, but not in red blood cell hemolysates and the kidney. Glutathione peroxidase activity did not change in the blood and showed increasing tendency in the liver, and significant increase in the kidney. Expression of KEAP1 gene showed up-regulation in the liver, and down-regulation in the kidney, but overexpression of NRF2 gene was found in the liver and kidney at the highest dose. However, down-regulation of Nrf2 dependent genes, GPX3, GPX4, GSS and GSR, suggested an improper antioxidant response at the protein level, thus oxidative stress occurred, even at the dose of the EU regulatory limit for poultry diets.
Collapse
|
32
|
Cuadrado A, Rojo AI, Wells G, Hayes JD, Cousin SP, Rumsey WL, Attucks OC, Franklin S, Levonen AL, Kensler TW, Dinkova-Kostova AT. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat Rev Drug Discov 2019; 18:295-317. [PMID: 30610225 DOI: 10.1038/s41573-018-0008-x] [Citation(s) in RCA: 925] [Impact Index Per Article: 154.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The transcription factor NF-E2 p45-related factor 2 (NRF2; encoded by NFE2L2) and its principal negative regulator, the E3 ligase adaptor Kelch-like ECH-associated protein 1 (KEAP1), are critical in the maintenance of redox, metabolic and protein homeostasis, as well as the regulation of inflammation. Thus, NRF2 activation provides cytoprotection against numerous pathologies including chronic diseases of the lung and liver; autoimmune, neurodegenerative and metabolic disorders; and cancer initiation. One NRF2 activator has received clinical approval and several electrophilic modifiers of the cysteine-based sensor KEAP1 and inhibitors of its interaction with NRF2 are now in clinical development. However, challenges regarding target specificity, pharmacodynamic properties, efficacy and safety remain.
Collapse
Affiliation(s)
- Antonio Cuadrado
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
- Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Ana I Rojo
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
- Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Geoffrey Wells
- UCL School of Pharmacy, University College London, London, UK
| | - John D Hayes
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK
| | | | | | | | | | - Anna-Liisa Levonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Thomas W Kensler
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK.
- Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
33
|
Wu S, Lu H, Bai Y. Nrf2 in cancers: A double-edged sword. Cancer Med 2019; 8:2252-2267. [PMID: 30929309 PMCID: PMC6536957 DOI: 10.1002/cam4.2101] [Citation(s) in RCA: 331] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/21/2019] [Accepted: 02/26/2019] [Indexed: 12/11/2022] Open
Abstract
The Nrf2/Keap1 pathway is an important signaling cascade responsible for the resistance of oxidative damage induced by exogenous chemicals. It maintains the redox homeostasis, exerts anti-inflammation and anticancer activity by regulating its multiple downstream cytoprotective genes, thereby plays a vital role in cell survival. Interestingly, in recent years, accumulating evidence suggests that Nrf2 has a contradictory role in cancers. Aberrant activation of Nrf2 is associated with poor prognosis. The constitutive activation of Nrf2 in various cancers induces pro-survival genes and promotes cancer cell proliferation by metabolic reprogramming, repression of cancer cell apoptosis, and enhancement of self-renewal capacity of cancer stem cells. More importantly, Nrf2 is proved to contribute to the chemoresistance and radioresistance of cancer cells as well as inflammation-induced carcinogenesis. A number of Nrf2 inhibitors discovered for cancer treatment were reviewed in this report. These provide a new strategy that targeting Nrf2 could be a promising therapeutic approach against cancer. This review aims to summarize the dual effects of Nrf2 in cancer, revealing its function both in cancer prevention and inhibition, to further discover novel anticancer treatment.
Collapse
Affiliation(s)
- Shijia Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hong Lu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
34
|
Limonciel A, van Breda SG, Jiang X, Tredwell GD, Wilmes A, Aschauer L, Siskos AP, Sachinidis A, Keun HC, Kopp-Schneider A, de Kok TM, Kleinjans JCS, Jennings P. Persistence of Epigenomic Effects After Recovery From Repeated Treatment With Two Nephrocarcinogens. Front Genet 2018; 9:558. [PMID: 30559759 PMCID: PMC6286959 DOI: 10.3389/fgene.2018.00558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/31/2018] [Indexed: 11/13/2022] Open
Abstract
The discovery of the epigenetic regulation of transcription has provided a new source of mechanistic understanding to long lasting effects of chemicals. However, this information is still seldom exploited in a toxicological context and studies of chemical effect after washout remain rare. Here we studied the effects of two nephrocarcinogens on the human proximal tubule cell line RPTEC/TERT1 using high-content mRNA microarrays coupled with miRNA, histone acetylation (HA) and DNA methylation (DM) arrays and metabolomics during a 5-day repeat-dose exposure and 3 days after washout. The mycotoxin ochratoxin A (OTA) was chosen as a model compound for its known impact on HA and DM. The foremost effect observed was the modulation of thousands of mRNAs and histones by OTA during and after exposure. In comparison, the oxidant potassium bromate (KBrO3) had a milder impact on gene expression and epigenetics. However, there was no strong correlation between epigenetic modifications and mRNA changes with OTA while with KBrO3 the gene expression data correlated better with HA for both up- and down-regulated genes. Even when focusing on the genes with persistent epigenetic modifications after washout, only half were coupled to matching changes in gene expression induced by OTA, suggesting that while OTA causes a major effect on the two epigenetic mechanisms studied, these alone cannot explain its impact on gene expression. Mechanistic analysis confirmed the known activation of Nrf2 and p53 by KBrO3, while OTA inhibited most of the same genes, and genes involved in the unfolded protein response. A few miRNAs could be linked to these effects of OTA, albeit without clear contribution of epigenetics to the modulation of the pathways at large. Metabolomics revealed disturbances in amino acid balance, energy catabolism, nucleotide metabolism and polyamine metabolism with both chemicals. In conclusion, the large impact of OTA on transcription was confirmed at the mRNA level but also with two high-content epigenomic methodologies. Transcriptomic data confirmed the previously reported activation (by KBrO3) and inhibition (by OTA) of protective pathways. However, the integration of omic datasets suggested that HA and DM were not driving forces in the gene expression changes induced by either chemical.
Collapse
Affiliation(s)
- Alice Limonciel
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Simone G van Breda
- Department of Toxicogenomics, GROW-School for Oncology and Development Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Xiaoqi Jiang
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gregory D Tredwell
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom.,Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University, Canberra, ACT, Australia
| | - Anja Wilmes
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Lydia Aschauer
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria.,Brookes Innovation Hub, Orbit Discovery, Oxford, United Kingdom
| | - Alexandros P Siskos
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Agapios Sachinidis
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne (UKK), Cologne, Germany
| | - Hector C Keun
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | | | - Theo M de Kok
- Department of Toxicogenomics, GROW-School for Oncology and Development Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Jos C S Kleinjans
- Department of Toxicogenomics, GROW-School for Oncology and Development Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Paul Jennings
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
35
|
Vettorazzi A, Pastor L, Guruceaga E, López de Cerain A. Sex-dependent gene expression after ochratoxin A insult in F344 rat kidney. Food Chem Toxicol 2018; 123:337-348. [PMID: 30449730 DOI: 10.1016/j.fct.2018.10.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/19/2018] [Accepted: 10/24/2018] [Indexed: 02/02/2023]
Abstract
Ochratoxin A (OTA) is a potent rodent nephrocarcinogen; being males more sensitive than females. The objective was to study the response between sexes at gene expression level (whole genome transcriptomics) in kidneys of F344 rats treated with 0.21 or 0.50 mg/kg bw OTA for 21 days. DNA methylation analysis of selected genes was also studied (MALDI-TOF mass spectrometry). OTA-induced response was dose-dependent in males and females, although clearer in males. Females showed a higher number of altered genes than males but functional analysis revealed a higher number of significantly enriched toxicity lists in 0.21 mg/kg treated males. OTA modulated damage, signaling and metabolism related lists, as well as inflammation, proliferation and oxidative stress in both sexes. Eleven toxicity lists (damage, fibrosis, cell signaling and metabolism) were exclusively altered in males while renal safety biomarker and biogenesis of mitochondria lists were exclusively enriched in females. A high number of lists (39) were significantly enriched in both sexes. However, they contained many sex-biased OTA-modulated genes, mainly phase I and II, transporters and nuclear receptors, but also others related to cell proliferation/apoptosis. No biologically relevant changes were observed in the methylation of selected genes.
Collapse
Affiliation(s)
- Ariane Vettorazzi
- University of Navarra, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, E-31008, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, E-31008, Pamplona, Spain.
| | - Laura Pastor
- University of Navarra, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, E-31008, Pamplona, Spain.
| | - Elizabeth Guruceaga
- IdiSNA, Navarra Institute for Health Research, E-31008, Pamplona, Spain; Bioinformatics Platform, Center for Applied Medical Research (CIMA), University of Navarra, E-31008, Pamplona, Spain.
| | - Adela López de Cerain
- University of Navarra, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, E-31008, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, E-31008, Pamplona, Spain.
| |
Collapse
|
36
|
Enciso JM, López de Cerain A, Pastor L, Azqueta A, Vettorazzi A. Is oxidative stress involved in the sex-dependent response to ochratoxin A renal toxicity? Food Chem Toxicol 2018; 116:379-387. [DOI: 10.1016/j.fct.2018.04.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 11/28/2022]
|
37
|
Wu TS, Lin YT, Huang YT, Cheng YC, Yu FY, Liu BH. Disruption of liver development and coagulation pathway by ochratoxin A in embryonic zebrafish. Toxicol Appl Pharmacol 2018; 340:1-8. [DOI: 10.1016/j.taap.2017.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/11/2017] [Accepted: 12/20/2017] [Indexed: 01/09/2023]
|
38
|
Tao Y, Xie S, Xu F, Liu A, Wang Y, Chen D, Pan Y, Huang L, Peng D, Wang X, Yuan Z. Ochratoxin A: Toxicity, oxidative stress and metabolism. Food Chem Toxicol 2018; 112:320-331. [DOI: 10.1016/j.fct.2018.01.002] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/28/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023]
|
39
|
Sex differences in ochratoxin a toxicity in F344 rats after 7 and 21 days of daily oral administration. Food Chem Toxicol 2018; 111:363-373. [DOI: 10.1016/j.fct.2017.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/26/2017] [Accepted: 11/03/2017] [Indexed: 01/09/2023]
|
40
|
Limbeck E, Vanselow JT, Hofmann J, Schlosser A, Mally A. Linking site-specific loss of histone acetylation to repression of gene expression by the mycotoxin ochratoxin A. Arch Toxicol 2017; 92:995-1014. [PMID: 29098329 DOI: 10.1007/s00204-017-2107-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/26/2017] [Indexed: 11/30/2022]
Abstract
Ochratoxin A (OTA) is a potent renal carcinogen but its mechanism has not been fully resolved. In vitro and in vivo gene expression studies consistently revealed down-regulation of gene expression as the predominant transcriptional response to OTA. Based on the importance of specific histone acetylation marks in regulating gene transcription and our recent finding that OTA inhibits histone acetyltransferases (HATs), leading to loss of acetylation of histones and non-histone proteins, we hypothesized that OTA-mediated repression of gene expression may be causally linked to HAT inhibition and loss of histone acetylation. In this study, we used a novel mass spectrometry approach employing chemical 13C-acetylation of unmodified lysine residues for quantification of post-translational acetylation sites to identify site-specific alterations in histone acetylation in human kidney epithelial cells (HK-2) exposed to OTA. These results showed OTA-mediated hypoacetylation at almost all lysine residues of core histones, including loss of acetylation at H3K9 and H3K14, which are hallmarks of gene activation. ChIP-qPCR used to establish a possible link between H3K9 or H3K14 hypoacetylation and OTA-mediated down-regulation of selected genes (AMIGO2, CLASP2, CTNND1) confirmed OTA-mediated H3K9 hypoacetylation at promoter regions of these genes. Integrated analysis of OTA-mediated genome-wide changes in H3K9 acetylation identified by ChIP-Seq with published gene expression data further demonstrated that among OTA-responsive genes almost 80% of hypoacetylated genes were down-regulated, thus confirming an association between H3K9 acetylation status and gene expression of these genes. However, only 7% of OTA repressed genes showed loss of H3K9 acetylation within promoter regions. Interestingly, however, GO analysis and functional enrichment of down-regulated genes showing loss of H3K9 acetylation at their respective promoter regions revealed enrichment of genes involved in the regulation of transcription, including a number of transcription factors that are predicted to directly or indirectly regulate the expression of 98% of OTA repressed genes. Thus, it is possible that histone acetylation changes in a fairly small set of genes but with key function in transcriptional regulation may trigger a cascade of events that may lead to overall repression of gene expression. Taken together, our data provide evidence for a mechanistic link between loss of H3K9 acetylation as a consequence of OTA-mediated inhibition of HATs and repression of gene expression by OTA, thereby affecting cellular processes critical to tumorigenesis.
Collapse
Affiliation(s)
- Elisabeth Limbeck
- Department of Toxicology, University of Würzburg, Versbacher Str. 9, 97078, Würzburg, Germany
| | - Jens T Vanselow
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97078, Würzburg, Germany
| | - Julian Hofmann
- Department of Toxicology, University of Würzburg, Versbacher Str. 9, 97078, Würzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97078, Würzburg, Germany
| | - Angela Mally
- Department of Toxicology, University of Würzburg, Versbacher Str. 9, 97078, Würzburg, Germany.
| |
Collapse
|
41
|
Loboda A, Stachurska A, Sobczak M, Podkalicka P, Mucha O, Jozkowicz A, Dulak J. Nrf2 deficiency exacerbates ochratoxin A-induced toxicity in vitro and in vivo. Toxicology 2017; 389:42-52. [DOI: 10.1016/j.tox.2017.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 01/21/2023]
|
42
|
Marin DE, Pistol GC, Gras MA, Palade ML, Taranu I. Comparative effect of ochratoxin A on inflammation and oxidative stress parameters in gut and kidney of piglets. Regul Toxicol Pharmacol 2017; 89:224-231. [PMID: 28760389 DOI: 10.1016/j.yrtph.2017.07.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/21/2017] [Accepted: 07/27/2017] [Indexed: 11/19/2022]
Abstract
Ochratoxin A (OTA) is a secondary metabolite produced by fungi of Aspergillus and Penicillium genra. OTA is mainly nephrotoxic but can also cause hepatotoxicity, mutagenicity, teratogenicity, neurotoxicity and immunotoxicity. As recent studies have highlighted the close relationship between gastrointestinal tract and kidney, as principal organs involved in absorption and respective excretion of xenobiotics, the aim of the present study was to analyze the effect of a subchronic exposure (30 days) to 0.05 mg/kg OTA on immune response and oxidative stress parameters at the level of intestine and kidney of young swine. The experiment was realised on twelve crossbred weaned piglets randomly allotted to both control group or toxin group fed 0.050 mg OTA/kg feed. Our results have shown that a subchronic intoxication with a low dose of OTA for 30 days affected the immune response and the anti-oxidant self-defense at gut and kidney level. The gene expression of both markers of signaling pathways involved in inflammation and inflammatory cytokines were affected in a much higher extent in the gut than in the kidney Of OTA intoxicated piglets.
Collapse
Affiliation(s)
- Daniela E Marin
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov, 077015, Romania.
| | - Gina C Pistol
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov, 077015, Romania
| | - Mihai A Gras
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov, 077015, Romania
| | - Mihai L Palade
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov, 077015, Romania
| | - Ionelia Taranu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov, 077015, Romania
| |
Collapse
|
43
|
Hameed MR, Khan MZ, Saleemi MK, Khan A, Akhtar M, Hassan ZU, Hussain Z. Study of ochratoxin A (OTA)-induced oxidative stress markers in broiler chicks. TOXIN REV 2017. [DOI: 10.1080/15569543.2017.1303780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Muhammad Raza Hameed
- Department of Pathology, University of Agriculture, Faisalabad, Pakistan,
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan,
| | | | | | - Ahrar Khan
- Department of Pathology, University of Agriculture, Faisalabad, Pakistan,
| | - Masood Akhtar
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan,
| | - Zahoor-ul- Hassan
- Department of Animal Health, The University of Agriculture, Peshawar, Pakistan, and
| | - Zahid Hussain
- Department of Livestock and Dairy Development Government of Punjab, Pakistan
| |
Collapse
|
44
|
Effect of heme oxygenase-1 on ochratoxin A-induced nephrotoxicity in mice. Int J Biochem Cell Biol 2017; 84:46-57. [DOI: 10.1016/j.biocel.2017.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 11/19/2022]
|
45
|
Ahmed Adam MA, Tabana YM, Musa KB, Sandai DA. Effects of different mycotoxins on humans, cell genome and their involvement in cancer (Review). Oncol Rep 2017; 37:1321-1336. [PMID: 28184933 DOI: 10.3892/or.2017.5424] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/16/2017] [Indexed: 11/06/2022] Open
Abstract
The chemical nature of most of the mycotoxins makes them highly liposoluble compounds that can be absorbed from the site of exposure such as from the gastrointestinal and respiratory tract to the blood stream where it can be dissimilated throughout the body and reach different organs such as the liver and kidneys. Mycotoxins have a strong tendency and ability to penetrate the human and animal cells and reach the cellular genome where it causes a major mutagenic change in the nucleotide sequence which leads to strong and permanent defects in the genome. This defect will eventually be transcribed, translated and lead to the development of cancer. In this review, the chemical and physical nature of mycotoxins, the action of mycotoxins on the cellular genome and its effect on humans, mycotoxins and their carcinogenicity and mycotoxins research gaps are discussed, and new research areas are suggested. The research review posed various questions. What are the different mycotoxins that can cause cancer, what is the role of mycotoxins in causing cancer and what types of cancers can be caused by mycotoxins? These questions have been selected due to the significant increase in the mycotoxin contamination and the cancer incidence rate in the contemporary world. By revealing and understanding the role of mycotoxins in developing cancer, measures to reduce the risks and incidents of cancer could be taken.
Collapse
Affiliation(s)
- Mowaffaq Adam Ahmed Adam
- Infectomics Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Yasser M Tabana
- Infectomics Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Khirun Binti Musa
- Infectomics Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Doblin Anak Sandai
- Infectomics Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
46
|
Abdel-Wahhab MA, Aljawish A, El-Nekeety AA, Abdel-Aziem SH, Hassan NS. Chitosan nanoparticles plus quercetin suppress the oxidative stress, modulate DNA fragmentation and gene expression in the kidney of rats fed ochratoxin A-contaminated diet. Food Chem Toxicol 2017; 99:209-221. [PMID: 27923682 DOI: 10.1016/j.fct.2016.12.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/29/2016] [Accepted: 12/02/2016] [Indexed: 12/18/2022]
Abstract
This study aimed to evaluate the protective role of chitosan nanoparticles (COS-NPs) singly or plus quercetin (Q) against OTA-induced oxidative stress and renal genotoxicity. Twelve groups of male Sprague-Dawley rats were treated orally for 3 weeks included the control group, animals fed OTA-contaminated diet (3 mg/kg diet); COS-NPs-treated groups at low (140 mg/kg b.w.) or high (280 mg/kg b.w.) dose, Q-treated group (50 mg/kg b.w.), Q plus low or high dose of COS-NPs-treated groups and OTA plus Q and/or COS-NPs at the two tested doses-treated groups. The results indicated that COS-NPs were roughly rod in shape with average particle size of 200 nm and zeta potential 31.4 ± 2.8 mV. Animals fed OTA-contaminated diet showed significant changes in serum biochemical parameters, increase kidney MDA and DNA fragmentation and decreased GPx and SOD gene expression accompanied with severe histological changes. Q and/or COS-NPs at the two tested doses induced significant improvements in all tested parameters and succeeded to overcome these effects especially in the animals treated with Q plus the high dose of COS-NPs. It could be concluded that COS-NPs are promise candidate to enhance the antioxidant effect of Q and protect against the nephrotoxicity of OTA in high endemic areas.
Collapse
Affiliation(s)
- Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Dept., National Research Center, Dokki, Cairo, Egypt.
| | - Abdulhadi Aljawish
- Laboratory of Nutrition and Toxicology (NUTox), INSERM UMR 866, Bourgogne University, 1 Esplanade Erasme, 21000 Dijon, France
| | - Aziza A El-Nekeety
- Food Toxicology & Contaminants Dept., National Research Center, Dokki, Cairo, Egypt
| | | | - Nabila S Hassan
- Pathology Dept., National Research Center, Dokki, Cairo, Egypt
| |
Collapse
|
47
|
Zhao T, Shen XL, Chen W, Liao X, Yang J, Wang Y, Zou Y, Fang C. Advances in research of nephrotoxicity and toxic antagonism of ochratoxin A. TOXIN REV 2016. [DOI: 10.1080/15569543.2016.1243560] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
48
|
Pastor L, Vettorazzi A, Campión J, Cordero P, López de Cerain A. Gene expression kinetics of renal transporters induced by ochratoxin A in male and female F344 rats. Food Chem Toxicol 2016; 98:169-178. [PMID: 27771458 DOI: 10.1016/j.fct.2016.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/04/2016] [Accepted: 10/18/2016] [Indexed: 01/10/2023]
Abstract
Ochratoxin A (OTA) is a mycotoxin that contaminates foodstuffs. The most relevant concern is its high kidney carcinogenicity in male rats and its unclear mechanism of action. It has been hypothesized that variations in transport mechanisms in kidney cells may be the reason of different sex-dependent sensitivities towards OTA. The aim of this study was to analyze, by RT- qPCR, renal transporters expression in 15-week-old male (M) and female (F) F344 rats at basal level and after single oral OTA administration (0.50 mg/kg bw). Temporal profiles (24h, 48h, 72h, 96h, 1 and 2 months) were studied per sex and transporter. The reference gene for all comparisons was Ppia. At basal level, sex differences were confirmed for Oatp1, Bcrp (M>F) and Oat2 (F>M). OTA tended to inhibit the expression of almost all transporters in both sexes, but clearly induced the expression of Oat2 in males. Regarding time profiles, the highest sex differences involved Oat (Slc22) transporters: Oat2, Oat3 and Oat5 expression showed a significant increase in males (24h) while Oat1, Oat2 and Oat5 level decreased in females (48h). Overall, basal sex differences in F344 rats and the specific sex-dependent response to OTA of Oat2 might contribute to high kidney damage in male rats.
Collapse
Affiliation(s)
- Laura Pastor
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, University of Navarra, C/ Irunlarrea 1, 31008 Pamplona, Spain.
| | - Ariane Vettorazzi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, University of Navarra, C/ Irunlarrea 1, 31008 Pamplona, Spain.
| | - Javier Campión
- Department of Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, C/ Irunlarrea 1, 31008 Pamplona, Spain; Current address: Making Genetics SL, Plaza CEIN 5, 31110 Noain, Spain.
| | - Paul Cordero
- Department of Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, C/ Irunlarrea 1, 31008 Pamplona, Spain; Current address: Institute for Liver and Digestive Health, University College London, Rowland Hill Street, London NW3 2PF, United Kingdom.
| | - Adela López de Cerain
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, University of Navarra, C/ Irunlarrea 1, 31008 Pamplona, Spain.
| |
Collapse
|
49
|
Zhu J, Wang H, Chen F, Fu J, Xu Y, Hou Y, Kou HH, Zhai C, Nelson MB, Zhang Q, Andersen ME, Pi J. An overview of chemical inhibitors of the Nrf2-ARE signaling pathway and their potential applications in cancer therapy. Free Radic Biol Med 2016; 99:544-556. [PMID: 27634172 DOI: 10.1016/j.freeradbiomed.2016.09.010] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/29/2016] [Accepted: 09/10/2016] [Indexed: 12/30/2022]
Abstract
The Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcription factor regulating a wide array of genes for antioxidant and detoxification enzymes in response to oxidative and xenobiotic stress. A large number of Nrf2-antioxidant response element (ARE) activators have been screened for use as chemopreventive agents in oxidative stress-related diseases and even cancer. However, constitutive activation of Nrf2 occurs in a variety of cancers. Aberrant activation of Nrf2 is correlated with cancer progression, chemoresistance, and radioresistance. In this review, we examine recent studies of Nrf2-ARE inhibitors in the context of cancer therapy. We enumerate the possible Nrf2-inhibiting mechanisms of these compounds, their effects sensitizing cancer cells to chemotherapeutic agents, and the prospect of applying them in clinical cancer therapy.
Collapse
Affiliation(s)
- Jiayu Zhu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Huihui Wang
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Feng Chen
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Road, Heping Area, Shenyang 110001, China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Yuanyuan Xu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Yongyong Hou
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Henry H Kou
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Cheng Zhai
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - M Bud Nelson
- MedBlue Incubator, Inc., Research Triangle Park, NC 27709, USA
| | - Qiang Zhang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Melvin E Andersen
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, ScitoVation, LLC, NC 27709, USA LLC
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| |
Collapse
|
50
|
Different Toxicity Mechanisms for Citrinin and Ochratoxin A Revealed by Transcriptomic Analysis in Yeast. Toxins (Basel) 2016; 8:toxins8100273. [PMID: 27669300 PMCID: PMC5086634 DOI: 10.3390/toxins8100273] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/13/2016] [Accepted: 09/17/2016] [Indexed: 11/30/2022] Open
Abstract
Citrinin (CIT) and ochratoxin A (OTA) are important mycotoxins, which frequently co-contaminate foodstuff. In order to assess the toxicologic threat posed by the two mycotoxins separately or in combination, their biological effects were studied here using genomic transcription profiling and specific live cell gene expression reporters in yeast cells. Both CIT and OTA cause highly transient transcriptional activation of different stress genes, which is greatly enhanced by the disruption of the multidrug exporter Pdr5. Therefore, we performed genome-wide transcription profiling experiments with the pdr5 mutant in response to acute CIT, OTA, or combined CIT/OTA exposure. We found that CIT and OTA activate divergent and largely nonoverlapping gene sets in yeast. CIT mainly caused the rapid induction of antioxidant and drug extrusion-related gene functions, while OTA mainly deregulated developmental genes related with yeast sporulation and sexual reproduction, having only a minor effect on the antioxidant response. The simultaneous exposure to CIT and OTA gave rise to a genomic response, which combined the specific features of the separated mycotoxin treatments. The application of stress-specific mutants and reporter gene fusions further confirmed that both mycotoxins have divergent biological effects in cells. Our results indicate that CIT exposure causes a strong oxidative stress, which triggers a massive transcriptional antioxidant and drug extrusion response, while OTA mainly deregulates developmental genes and only marginally induces the antioxidant defense.
Collapse
|