1
|
Evke S, Lin Q, Melendez JA, Begley TJ. Epitranscriptomic Reprogramming Is Required to Prevent Stress and Damage from Acetaminophen. Genes (Basel) 2022; 13:genes13030421. [PMID: 35327975 PMCID: PMC8955276 DOI: 10.3390/genes13030421] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
Epitranscriptomic marks, in the form of enzyme catalyzed RNA modifications, play important gene regulatory roles in response to environmental and physiological conditions. However, little is known with respect to how acute toxic doses of pharmaceuticals influence the epitranscriptome. Here we define how acetaminophen (APAP) induces epitranscriptomic reprogramming and how the writer Alkylation Repair Homolog 8 (Alkbh8) plays a key gene regulatory role in the response. Alkbh8 modifies tRNA selenocysteine (tRNASec) to translationally regulate the production of glutathione peroxidases (Gpx’s) and other selenoproteins, with Gpx enzymes known to play protective roles during APAP toxicity. We demonstrate that APAP increases toxicity and markers of damage, and decreases selenoprotein levels in Alkbh8 deficient mouse livers, when compared to wildtype. APAP also promotes large scale reprogramming of many RNA marks comprising the liver tRNA epitranscriptome including: 5-methoxycarbonylmethyluridine (mcm5U), isopentenyladenosine (i6A), pseudouridine (Ψ), and 1-methyladenosine (m1A) modifications linked to tRNASec and many other tRNA’s. Alkbh8 deficiency also leads to wide-spread epitranscriptomic dysregulation in response to APAP, demonstrating that a single writer defect can promote downstream changes to a large spectrum of RNA modifications. Our study highlights the importance of RNA modifications and translational responses to APAP, identifies writers as key modulators of stress responses in vivo and supports the idea that the epitranscriptome may play important roles in responses to pharmaceuticals.
Collapse
Affiliation(s)
- Sara Evke
- Nanobioscience Constellation, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA; (S.E.); (J.A.M.)
- The RNA Institute, University at Albany, Albany, NY 12222, USA;
| | - Qishan Lin
- The RNA Institute, University at Albany, Albany, NY 12222, USA;
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
- RNA Epitranscriptomics and Proteomics Resource, University at Albany, Albany, NY 12222, USA
| | - Juan Andres Melendez
- Nanobioscience Constellation, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA; (S.E.); (J.A.M.)
- The RNA Institute, University at Albany, Albany, NY 12222, USA;
| | - Thomas John Begley
- The RNA Institute, University at Albany, Albany, NY 12222, USA;
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
- RNA Epitranscriptomics and Proteomics Resource, University at Albany, Albany, NY 12222, USA
- Correspondence:
| |
Collapse
|
2
|
Cayir A. RNA modifications as emerging therapeutic targets. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 13:e1702. [PMID: 34816607 DOI: 10.1002/wrna.1702] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022]
Abstract
The field of epitranscriptome, posttranscriptional modifications to RNAs, is still growing up and has presented substantial evidences for the role of RNA modifications in diseases. In terms of new drug development, RNA modifications have a great promise for therapy. For example, more than 170 type of modifications exist in various types of RNAs. Regulatory genes and their roles in critical biological process have been identified and they are associated with several diseases. Current data, for example, identification of inhibitors targeting RNA modifications regulatory genes, strongly support the idea that RNA modifications have potential as emerging therapeutic targets. Therefore, in this review, RNA modifications and regulatory genes were comprehensively documented in terms of drug development by summarizing the findings from previous studies. It was discussed how RNA modifications or regulatory genes can be targeted by altering molecular mechanisms. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Akin Cayir
- Vocational Health College, Canakkale Onsekiz Mart University, Canakkale, Turkey.,Akershus Universitetssykehus, Medical Department, Lørenskog, Norway
| |
Collapse
|
3
|
N-Acetyl Cysteine Overdose Inducing Hepatic Steatosis and Systemic Inflammation in Both Propacetamol-Induced Hepatotoxic and Normal Mice. Antioxidants (Basel) 2021; 10:antiox10030442. [PMID: 33809388 PMCID: PMC8000488 DOI: 10.3390/antiox10030442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
Acetaminophen (APAP) overdose induces acute liver damage and even death. The standard therapeutic dose of N-acetyl cysteine (NAC) cannot be applied to every patient, especially those with high-dose APAP poisoning. There is insufficient evidence to prove that increasing NAC dose can treat patients who failed in standard treatment. This study explores the toxicity of NAC overdose in both APAP poisoning and normal mice. Two inbred mouse strains with different sensitivities to propacetamol-induced hepatotoxicity (PIH) were treated with different NAC doses. NAC therapy decreased PIH by reducing lipid oxidation, protein nitration and inflammation, and increasing glutathione (GSH) levels and antioxidative enzyme activities. However, the therapeutic effects of NAC on PIH were dose-dependent from 125 (N125) to 275 mg/kg (N275). Elevated doses of NAC (400 and 800 mg/kg, N400 and N800) caused additional deaths in both propacetamol-treated and normal mice. N800 treatments significantly decreased hepatic GSH levels and induced inflammatory cytokines and hepatic microvesicular steatosis in both propacetamol-treated and normal mice. Furthermore, both N275 and N400 treatments decreased serum triglyceride (TG) and induced hepatic TG, whereas N800 treatment significantly increased interleukin-6, hepatic TG, and total cholesterol levels. In conclusion, NAC overdose induces hepatic and systemic inflammations and interferes with fatty acid metabolism.
Collapse
|
4
|
Zhao T, Hu Y, Valsdottir LR, Zang T, Peng J. Identifying drug-target interactions based on graph convolutional network and deep neural network. Brief Bioinform 2020; 22:2141-2150. [PMID: 32367110 DOI: 10.1093/bib/bbaa044] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022] Open
Abstract
Identification of new drug-target interactions (DTIs) is an important but a time-consuming and costly step in drug discovery. In recent years, to mitigate these drawbacks, researchers have sought to identify DTIs using computational approaches. However, most existing methods construct drug networks and target networks separately, and then predict novel DTIs based on known associations between the drugs and targets without accounting for associations between drug-protein pairs (DPPs). To incorporate the associations between DPPs into DTI modeling, we built a DPP network based on multiple drugs and proteins in which DPPs are the nodes and the associations between DPPs are the edges of the network. We then propose a novel learning-based framework, 'graph convolutional network (GCN)-DTI', for DTI identification. The model first uses a graph convolutional network to learn the features for each DPP. Second, using the feature representation as an input, it uses a deep neural network to predict the final label. The results of our analysis show that the proposed framework outperforms some state-of-the-art approaches by a large margin.
Collapse
Affiliation(s)
- Tianyi Zhao
- Department of Computer Science at Harbin Institute of Technology. He currently works as a bioinformatician in Beth Israel Deaconess Medical Center
| | - Yang Hu
- Department of Life Science at Harbin Institute of Technology. His expertise is bioinformatics
| | - Linda R Valsdottir
- MS in Biology and works as a scientific writer at the Smith Center for Outcomes Research in Cardiology at Beth Israel Deaconess Medical Center in Boston, MA. Her work is focused on helping researchers communicate their findings in an effort to translate novel analytical approaches and clinical expertise into improved outcomes for patients
| | - Tianyi Zang
- School of Computer Science and Technology at Harbin Institute of Technology (HIT), China. Before joining HIT in 2009, he was a research fellow at the Department of Computer Science at University of Oxford, UK. His current research is concerned with biomedical bigdata computing and algorithms, deep-learning algorithms for network data, intelligent recommendation algorithms, and modeling and analysis methods for complex systems
| | - Jiajie Peng
- School of Computer Science at Northwestern Polytechnical University. His expertise is computational biology and machine learning. Availability and implementation: https://github.com/zty2009/GCN-DNN/
| |
Collapse
|
5
|
Krewski D, Andersen ME, Tyshenko MG, Krishnan K, Hartung T, Boekelheide K, Wambaugh JF, Jones D, Whelan M, Thomas R, Yauk C, Barton-Maclaren T, Cote I. Toxicity testing in the 21st century: progress in the past decade and future perspectives. Arch Toxicol 2019; 94:1-58. [DOI: 10.1007/s00204-019-02613-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022]
|
6
|
Brayton CF, Boyd KL, Everitt JL, Meyerholz DK, Treuting PM, Bolon B. An Introduction to Pathology in Biomedical Research: A Mission-Critical Specialty for Reproducibility and Rigor in Translational Research. ILAR J 2019; 59:1-3. [PMID: 31329902 DOI: 10.1093/ilar/ilz008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 03/27/2019] [Indexed: 12/25/2022] Open
Abstract
This issue of ILAR Journal focusses on pathology and pathologists in biomedical research, more specifically in preclinical translational research involving (nonhuman) animals, emphasizing academic settings. Considerations in study design and planning to maximize benefit from pathologists and pathology resources are reviewed. Adjunctive technologies including molecular techniques, digital pathology, and imaging are highlighted. Additional considerations regarding safety and regulatory concerns, and veterinary clinical trials are reviewed as well. Pathology has been fundamental to understanding clinical disease, remains fundamental to diagnosing disease, and is required in drug and device development. Broader integration of pathology expertise and well-designed pathology investigations have much to offer research rigor and reproducibility, and successful translation from biomedical research.
Collapse
Affiliation(s)
- Cory F Brayton
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Kelli L Boyd
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jeffrey L Everitt
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina
| | | | - Piper M Treuting
- Department of Comparative Medicine, University of Washington School of Medicine, Seattle, Washington
| | | |
Collapse
|
7
|
Talikka M, Belcastro V, Gubian S, Martin F, Peitsch MC, Hoeng J. Systems toxicology meta-analysis—From aerosol exposure to nanotoxicology. CURRENT OPINION IN TOXICOLOGY 2019. [DOI: 10.1016/j.cotox.2019.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Pannala VR, Vinnakota KC, Rawls KD, Estes SK, O'Brien TP, Printz RL, Papin JA, Reifman J, Shiota M, Young JD, Wallqvist A. Mechanistic identification of biofluid metabolite changes as markers of acetaminophen-induced liver toxicity in rats. Toxicol Appl Pharmacol 2019; 372:19-32. [PMID: 30974156 DOI: 10.1016/j.taap.2019.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/22/2019] [Accepted: 04/05/2019] [Indexed: 12/12/2022]
Abstract
Acetaminophen (APAP) is the most commonly used analgesic and antipyretic drug in the world. Yet, it poses a major risk of liver injury when taken in excess of the therapeutic dose. Current clinical markers do not detect the early onset of liver injury associated with excess APAP-information that is vital to reverse injury progression through available therapeutic interventions. Hence, several studies have used transcriptomics, proteomics, and metabolomics technologies, both independently and in combination, in an attempt to discover potential early markers of liver injury. However, the casual relationship between these observations and their relation to the APAP mechanism of liver toxicity are not clearly understood. Here, we used Sprague-Dawley rats orally gavaged with a single dose of 2 g/kg of APAP to collect tissue samples from the liver and kidney for transcriptomic analysis and plasma and urine samples for metabolomic analysis. We developed and used a multi-tissue, metabolism-based modeling approach to integrate these data, characterize the effect of excess APAP levels on liver metabolism, and identify a panel of plasma and urine metabolites that are associated with APAP-induced liver toxicity. Our analyses, which indicated that pathways involved in nucleotide-, lipid-, and amino acid-related metabolism in the liver were most strongly affected within 10 h following APAP treatment, identified a list of potential metabolites in these pathways that could serve as plausible markers of APAP-induced liver injury. Our approach identifies toxicant-induced changes in endogenous metabolism, is applicable to other toxicants based on transcriptomic data, and provides a mechanistic framework for interpreting metabolite alterations.
Collapse
Affiliation(s)
- Venkat R Pannala
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA; Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA.
| | - Kalyan C Vinnakota
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA; Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA
| | - Kristopher D Rawls
- Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, Virginia 22908, USA
| | - Shanea K Estes
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Tracy P O'Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Richard L Printz
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, Virginia 22908, USA
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA
| | - Masakazu Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jamey D Young
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Chemical and Biomolecular Engineering, Vanderbilt University School of Engineering, Nashville, TN 37232, USA.
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA.
| |
Collapse
|
9
|
Yang X, Zhan Y, Sun Q, Xu X, Kong Y, Zhang J. Adenosine 5'-monophosphate blocks acetaminophen toxicity by increasing ubiquitination-mediated ASK1 degradation. Oncotarget 2018; 8:6273-6282. [PMID: 28031524 PMCID: PMC5351630 DOI: 10.18632/oncotarget.14059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/13/2016] [Indexed: 12/12/2022] Open
Abstract
Acetaminophen (APAP) overdose is the most frequent cause of drug-induced liver failure in the world. Hepatic c-jun NH2-terminal protein kinase (JNK) activation is thought to be a consequence of oxidative stress produced during APAP metabolism. Activation of JNK signals causes hepatocellular damage with necrotic and apoptotic cell death. Here we found that APAP caused a feedback increase in plasma adenosine 5′-monophsphate (5′-AMP). We demonstrated that co-administration of APAP and 5′-AMP significantly ameliorated APAP-induced hepatotoxicity in mice, without influences on APAP metabolism and its analgesic function. The mechanism of protection by 5′-AMP was through inhibiting APAP-induced activation of JNK, and attenuating downstream c-jun and c-fos gene expression. This was triggered by attenuating apoptosis signal-regulated kinase 1(ASK1) methylation and increasing ubiquitination-mediated ASK1 protein degradation. Our findings indicate that replacing the current APAP with a safe and functional APAP/5′-AMP formulation could prevent APAP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Xiao Yang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yibei Zhan
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Qi Sun
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yi Kong
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
10
|
Li C, Ming Y, Hong W, Tang Y, Lei X, Li X, Mao Y. Comparison of hepatic transcriptome profiling between acute liver injury and acute liver failure induced by acetaminophen in mice. Toxicol Lett 2018; 283:69-76. [DOI: 10.1016/j.toxlet.2017.11.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 02/07/2023]
|
11
|
Feswick A, Munkittrick KR, Martyniuk CJ. Estrogen-responsive gene networks in the teleost liver: What are the key molecular indicators? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 56:366-374. [PMID: 29126055 DOI: 10.1016/j.etap.2017.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 10/28/2017] [Indexed: 06/07/2023]
Abstract
An overarching goal of environmental genomics is to leverage sensitive suites of markers that are robust and reliable to assess biological responses in a range of species inhabiting variable environments. The objective of this study was to identify core groups of transcripts and molecular signaling pathways that respond to 17alpha-ethylinestadiol (EE2), a ubiquitous estrogenic contaminant, using transcriptome datasets generated from six independent laboratories. We sought to determine which biomarkers and gene networks were those most robust and reliably detected in multiple laboratories. Six laboratories conducted microarray analysis in pieces of the same liver from male fathead minnows exposed to ∼15ng/L EE2 for 96h. There were common transcriptional networks identified in every dataset. These included down-regulation of gene networks associated with blood clotting, complement activation, triglyceride storage, and xenobiotic metabolism. Noteworthy was that more than ∼85% of the gene networks were suppressed by EE2. Leveraging both these data and those mined from the Comparative Toxicogenomics Database (CTD), we narrowed in on an EE2-responsive transcriptional network. All transcripts in this network responded ∼±5-fold or more to EE2, increasing reliability of detection. This network included estrogen receptor alpha, transferrin, myeloid cell leukemia 1, insulin like growth factor 1, insulin like growth factor binding protein 2, and methionine adenosyltransferase 2A. This estrogen-responsive interactome has the advantage over single markers (e.g. vitellogenin) in that these entities are directly connected to each other based upon evidence of expression regulation and protein binding. Thus, it represents an interacting functional suite of estrogenic markers. Vitellogenin, the gold standard for estrogenic exposures, can show high individual variability in its response to estrogens, and the use of a multi-gene approach for estrogenic chemicals is expected to improve sensitivity. In our case, the coefficient of variation was significantly lowered by the gene network (∼67%) compared to Vtg alone, supporting the use of this transcriptional network as a sensitive alternative for detecting estrogenic effluents and chemicals. We propose that screening chemicals for estrogenicity using interacting genes within a defined expression network will improve sensitivity, accuracy, and reduce the number of animals required for endocrine disruption assessments.
Collapse
Affiliation(s)
- April Feswick
- Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - Kelly R Munkittrick
- Executive Director of Cold Regions and Water Initiatives, Wilfred Laurier University
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA; Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada.
| |
Collapse
|
12
|
Joseph P. Transcriptomics in toxicology. Food Chem Toxicol 2017; 109:650-662. [PMID: 28720289 PMCID: PMC6419952 DOI: 10.1016/j.fct.2017.07.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/12/2017] [Accepted: 07/14/2017] [Indexed: 12/11/2022]
Abstract
Xenobiotics, of which many are toxic, may enter the human body through multiple routes. Excessive human exposure to xenobiotics may exceed the body's capacity to defend against the xenobiotic-induced toxicity and result in potentially fatal adverse health effects. Prevention of the adverse health effects, potentially associated with human exposure to the xenobiotics, may be achieved by detecting the toxic effects at an early, reversible and, therefore, preventable stage. Additionally, an understanding of the molecular mechanisms underlying the toxicity may be helpful in preventing and/or managing the ensuing adverse health effects. Human exposures to a large number of xenobiotics are associated with hepatotoxicity or pulmonary toxicity. Global gene expression changes taking place in biological systems, in response to exposure to xenobiotics, may represent the early and mechanistically relevant cellular events contributing to the onset and progression of xenobiotic-induced adverse health outcomes. Hepatotoxicity and pulmonary toxicity resulting from exposure to xenobiotics are discussed as specific examples to demonstrate the potential application of transcriptomics or global gene expression analysis in the prevention of adverse health effects associated with exposure to xenobiotics.
Collapse
Affiliation(s)
- Pius Joseph
- Molecular Carcinogenesis Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA.
| |
Collapse
|
13
|
Hendrickx DM, Souza T, Jennen DGJ, Kleinjans JCS. DTNI: a novel toxicogenomics data analysis tool for identifying the molecular mechanisms underlying the adverse effects of toxic compounds. Arch Toxicol 2016; 91:2343-2352. [PMID: 28032149 PMCID: PMC5429357 DOI: 10.1007/s00204-016-1922-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 12/15/2016] [Indexed: 01/29/2023]
Abstract
Unravelling gene regulatory networks (GRNs) influenced by chemicals is a major challenge in systems toxicology. Because toxicant-induced GRNs evolve over time and dose, the analysis of global gene expression data measured at multiple time points and doses will provide insight in the adverse effects of compounds. Therefore, there is a need for mathematical methods for GRN identification from time-over-dose-dependent data. One of the current approaches for GRN inference is Time Series Network Identification (TSNI). TSNI is based on ordinary differential equations (ODE), describing the time evolution of the expression of each gene, which is assumed to be dependent on the expression of other genes and an external perturbation (i.e. chemical exposure). Here, we present Dose-Time Network Identification (DTNI), a method extending TSNI by including ODE describing how the expression of each gene evolves with dose, which is supposed to depend on the expression of other genes and the exposure time. We also adapted TSNI in order to enable inclusion of time-over-dose-dependent data from multiple compounds. Here, we show that DTNI outperforms TSNI in inferring a toxicant-induced GRN. Moreover, we show that DTNI is a suitable method to infer a GRN dose- and time-dependently induced by a group of compounds influencing a common biological process. Applying DTNI on experimental data from TG-GATEs, we demonstrate that DTNI provides in-depth information on the mode of action of compounds, in particular key events and potential molecular initiating events. Furthermore, DTNI also discloses several unknown interactions which have to be verified experimentally.
Collapse
Affiliation(s)
- Diana M Hendrickx
- Department of Toxicogenomics, GROW-School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands.
- , P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | - Terezinha Souza
- Department of Toxicogenomics, GROW-School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
- , P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Danyel G J Jennen
- Department of Toxicogenomics, GROW-School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
- , P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Jos C S Kleinjans
- Department of Toxicogenomics, GROW-School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
- , P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| |
Collapse
|
14
|
Bushel PR, Fannin RD, Gerrish K, Watkins PB, Paules RS. Blood gene expression profiling of an early acetaminophen response. THE PHARMACOGENOMICS JOURNAL 2016; 17:230-236. [PMID: 26927286 DOI: 10.1038/tpj.2016.8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/16/2015] [Accepted: 01/20/2016] [Indexed: 01/12/2023]
Abstract
Acetaminophen can adversely affect the liver especially when overdosed. We used whole blood as a surrogate to identify genes as potential early indicators of an acetaminophen-induced response. In a clinical study, healthy human subjects were dosed daily with 4 g of either acetaminophen or placebo pills for 7 days and evaluated over the course of 14 days. Alanine aminotransferase (ALT) levels for responders to acetaminophen increased between days 4 and 9 after dosing, and 12 genes were detected with expression profiles significantly altered within 24 h. The early responsive genes separated the subjects by class and dose period. In addition, the genes clustered patients who overdosed on acetaminophen apart from controls and also predicted the exposure classifications with 100% accuracy. The responsive genes serve as early indicators of an acetaminophen exposure, and their gene expression profiles can potentially be evaluated as molecular indicators for further consideration.
Collapse
Affiliation(s)
- P R Bushel
- Microarray and Genome Informatics Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.,Biostatistics Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - R D Fannin
- Molecular Genomics Core, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.,Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - K Gerrish
- Molecular Genomics Core, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.,Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - P B Watkins
- The Hamner Institute for Health Sciences, Research Triangle Park, NC, USA.,Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - R S Paules
- Molecular Genomics Core, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.,Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
15
|
Fannin RD, Gerrish K, Sieber SO, Bushel PR, Watkins PB, Paules RS. Blood transcript immune signatures distinguish a subset of people with elevated serum ALT from others given acetaminophen. Clin Pharmacol Ther 2016; 99:432-41. [PMID: 26690555 DOI: 10.1002/cpt.328] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 11/11/2015] [Accepted: 12/04/2015] [Indexed: 12/14/2022]
Abstract
The diagnosis of drug-induced liver injury is hindered by the limited utility of clinical chemistries. We have shown that hepatotoxicants can produce peripheral blood transcriptome "signatures" (PBTS) in rodents and humans. In this study, 42 adults were treated with acetaminophen (APAP; 1 g every 6 hours) for seven days, followed by three days of placebo. Eleven subjects received only placebo. After five days, 12 subjects (30%) had increases in serum alanine aminotransferase (ALT) levels ("responders"). PBTS of 707 and 760 genes, respectively, could distinguish responders and nonresponders from placebos. Functional analysis of the responder PBTS revealed increased expression of genes involved in TH2-mediated and innate immune responses, whereas the nonresponders demonstrated increased gene expression consistent with a tolerogenic immune response. Taken together, these observations suggest that the clinical subjects with transient increases in serum ALT failed to maintain or intensify a hepatic tolerogenic immune response.
Collapse
Affiliation(s)
- R D Fannin
- National Institute of Environmental Health Sciences, Molecular Genomics Core, National Institute of Health, Research Triangle Park, North Carolina, USA
| | - K Gerrish
- National Institute of Environmental Health Sciences, Molecular Genomics Core, National Institute of Health, Research Triangle Park, North Carolina, USA
| | - S O Sieber
- National Institute of Environmental Health Sciences, Molecular Genomics Core, National Institute of Health, Research Triangle Park, North Carolina, USA
| | - P R Bushel
- National Institute of Environmental Health Sciences, Biostatistics and Computational Biology Branch, National Institute of Health, Research Triangle Park, North Carolina, USA
| | - P B Watkins
- Hamner - University of North Carolina Institute for Drug Safety Sciences, Research Triangle Park, North Carolina, USA
| | - R S Paules
- National Institute of Environmental Health Sciences, National Toxicology Program, Biomolecular Screening Branch, National Institute of Health, Research Triangle Park, North Carolina, USA
| |
Collapse
|
16
|
Comparative metabonomic analysis of hepatotoxicity induced by acetaminophen and its less toxic meta-isomer. Arch Toxicol 2016; 90:3073-3085. [PMID: 26746206 PMCID: PMC5104807 DOI: 10.1007/s00204-015-1655-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 11/23/2015] [Indexed: 01/31/2023]
Abstract
The leading cause of drug-induced liver injury in the developed world is overdose with N-acetyl-p-aminophenol (APAP). A comparative metabonomic approach was applied to the study of both xenobiotic and endogenous metabolic profiles reflective of in vivo exposure to APAP (300 mg/kg) and its structural isomer N-acetyl-m-aminophenol (AMAP; 300 mg/kg) in C57BL/6J mice, which was anchored with histopathology. Liver and urine samples were collected at 1 h, 3 h and 6 h post-treatment and analyzed by 1H nuclear magnetic resonance (NMR) spectroscopy and gas chromatography–mass spectrometry (liver only). Histopathology revealed the presence of centrilobular necrosis from 3 h post-APAP treatment, while an AMAP-mediated necrotic endpoint was not observed within the timescale of this study, yet two of five treated mice showed minimal centrilobular eosinophilia. The 1H-NMR xenobiotic metabolic profile of APAP-treated animals comprised of mercapturate (urine and liver) and glutathionyl (liver) conjugates detected at 1 h post-treatment. This finding corroborated the hepatic endogenous metabolic profile which showed depletion of glutathione from 1 h onwards. In contrast, AMAP glutathionyl conjugates were not detected, nor was AMAP-induced depletion of hepatic glutathione observed. APAP administration induced significant endogenous hepatic metabolic perturbations, primarily linked to oxidative and energetic stress, and perturbation of amino acid metabolism. Early depletion of glutathione was followed by depletion of additional sulfur-containing metabolites, while altered levels of mitochondrial and glycolytic metabolites indicated a disruption of energy homeostasis. In contrast, AMAP administration caused minimal, transient, distinct metabolic perturbations and by 6 h the metabolic profiles of AMAP-treated mice were indistinguishable from those of controls.
Collapse
|
17
|
Thiele K, Solano ME, Huber S, Flavell RA, Kessler T, Barikbin R, Jung R, Karimi K, Tiegs G, Arck PC. Prenatal acetaminophen affects maternal immune and endocrine adaptation to pregnancy, induces placental damage, and impairs fetal development in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2805-18. [PMID: 26254283 DOI: 10.1016/j.ajpath.2015.06.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 05/20/2015] [Accepted: 06/04/2015] [Indexed: 12/11/2022]
Abstract
Acetaminophen (APAP; ie, Paracetamol or Tylenol) is generally self-medicated to treat fever or pain and recommended to pregnant women by their physicians. Recent epidemiological studies reveal an association between prenatal APAP use and an increased risk for asthma. Our aim was to identify the effects of APAP in pregnancy using a mouse model. Allogeneically mated C57Bl/6J females were injected i.p. with 50 or 250 mg/kg APAP or phosphate-buffered saline on gestation day 12.5; nonpregnant females served as controls. Tissue samples were obtained 1 or 4 days after injection. APAP-induced liver toxicity was mirrored by significantly increased plasma alanine aminotransferase levels. In uterus-draining lymph nodes of pregnant dams, the frequencies of mature dendritic cells and regulatory T cells significantly increased on 250 mg/kg APAP. Plasma progesterone levels significantly decreased in dams injected with APAP, accompanied by a morphologically altered placenta. Although overall litter sizes and number of fetal loss remained unaltered, a reduced fetal weight and a lower frequency of hematopoietic stem cells in the fetal liver were observed on APAP treatment. Our data provide strong evidence that prenatal APAP interferes with maternal immune and endocrine adaptation to pregnancy, affects placental function, and impairs fetal maturation and immune development. The latter may have long-lasting consequences on children's immunity and account for the increased risk for asthma observed in humans.
Collapse
Affiliation(s)
- Kristin Thiele
- Department of Obstetrics and Fetal Medicine, Laboratory of Experimental Feto-Maternal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - M Emilia Solano
- Department of Obstetrics and Fetal Medicine, Laboratory of Experimental Feto-Maternal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Richard A Flavell
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut
| | - Timo Kessler
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roja Barikbin
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roman Jung
- Center for Diagnostics, Department of Clinical Chemistry/Central Laboratories, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Khalil Karimi
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Petra C Arck
- Department of Obstetrics and Fetal Medicine, Laboratory of Experimental Feto-Maternal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
18
|
Jetten MJA, Ruiz-Aracama A, Coonen MLJ, Claessen SM, van Herwijnen MHM, Lommen A, van Delft JHM, Peijnenburg AACM, Kleinjans JCS. Interindividual variation in gene expression responses and metabolite formation in acetaminophen-exposed primary human hepatocytes. Arch Toxicol 2015; 90:1103-15. [PMID: 26104854 PMCID: PMC4830893 DOI: 10.1007/s00204-015-1545-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 06/03/2015] [Indexed: 12/14/2022]
Abstract
Acetaminophen (APAP) is a readily available over-the-counter drug and is one of the most commonly used analgesics/antipyretics worldwide. Large interindividual variation in susceptibility toward APAP-induced liver failure has been reported. However, the exact underlying factors causing this variability in susceptibility are still largely unknown. The aim of this study was to better understand this variability in response to APAP by evaluating interindividual differences in gene expression changes and APAP metabolite formation in primary human hepatocytes (PHH) from several donors (n = 5) exposed in vitro to a non-toxic to toxic APAP dose range. To evaluate interindividual variation, gene expression data/levels of metabolites were plotted against APAP dose/donor. The correlation in APAP dose response between donors was calculated by comparing data points from one donor to the data points of all other donors using a Pearson-based correlation analysis. From that, a correlation score/donor for each gene/metabolite was defined, representing the similarity of the omics response to APAP in PHH of a particular donor to all other donors. The top 1 % highest variable genes were selected for further evaluation using gene set overrepresentation analysis. The biological processes in which the genes with high interindividual variation in expression were involved include liver regeneration, inflammatory responses, mitochondrial stress responses, hepatocarcinogenesis, cell cycle, and drug efficacy. Additionally, the interindividual variation in the expression of these genes could be associated with the variability in expression levels of hydroxyl/methoxy-APAP and C8H13O5N-APAP-glucuronide. The before-mentioned metabolites or their derivatives have also been reported in blood of humans exposed to therapeutic APAP doses. Possibly these findings can contribute to elucidating the causative factors of interindividual susceptibility toward APAP.
Collapse
Affiliation(s)
- Marlon J A Jetten
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, Room 4.112 UNS 50, 6229 ER, Maastricht, The Netherlands.
| | - Ainhoa Ruiz-Aracama
- RIKILT, Institute of Food Safety, Wageningen UR, PO Box 230, 6700 AE, Wageningen, The Netherlands
| | - Maarten L J Coonen
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, Room 4.112 UNS 50, 6229 ER, Maastricht, The Netherlands
| | - Sandra M Claessen
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, Room 4.112 UNS 50, 6229 ER, Maastricht, The Netherlands
| | - Marcel H M van Herwijnen
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, Room 4.112 UNS 50, 6229 ER, Maastricht, The Netherlands
| | - Arjen Lommen
- RIKILT, Institute of Food Safety, Wageningen UR, PO Box 230, 6700 AE, Wageningen, The Netherlands
| | - Joost H M van Delft
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, Room 4.112 UNS 50, 6229 ER, Maastricht, The Netherlands
| | - Ad A C M Peijnenburg
- RIKILT, Institute of Food Safety, Wageningen UR, PO Box 230, 6700 AE, Wageningen, The Netherlands
| | - Jos C S Kleinjans
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, Room 4.112 UNS 50, 6229 ER, Maastricht, The Netherlands
| |
Collapse
|
19
|
Stamper BD, Garcia ML, Nguyen DQ, Beyer RP, Bammler TK, Farin FM, Kavanagh TJ, Nelson SD. p53 Contributes to Differentiating Gene Expression Following Exposure to Acetaminophen and Its Less Hepatotoxic Regioisomer Both In Vitro and In Vivo. GENE REGULATION AND SYSTEMS BIOLOGY 2015; 9:1-14. [PMID: 26056430 PMCID: PMC4454132 DOI: 10.4137/grsb.s25388] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/06/2015] [Accepted: 04/14/2015] [Indexed: 01/20/2023]
Abstract
The goal of the present study was to compare hepatic toxicogenomic signatures across in vitro and in vivo mouse models following exposure to acetaminophen (APAP) or its relatively nontoxic regioisomer 3′-hydroxyacetanilide (AMAP). Two different Affymetrix microarray platforms and one Agilent Oligonucleotide microarray were utilized. APAP and AMAP treatments resulted in significant and large changes in gene expression that were quite disparate, and likely related to their different toxicologic profiles. Ten transcripts, all of which have been implicated in p53 signaling, were identified as differentially regulated at all time-points following APAP and AMAP treatments across multiple microarray platforms. Protein-level quantification of p53 activity aligned with results from the transcriptomic analysis, thus supporting the implicated mechanism of APAP-induced toxicity. Therefore, the results of this study provide good evidence that APAP-induced p53 phosphorylation and an altered p53-driven transcriptional response are fundamental steps in APAP-induced toxicity.
Collapse
Affiliation(s)
| | | | - Duy Q Nguyen
- School of Pharmacy, Pacific University, Hillsboro, OR, USA
| | - Richard P Beyer
- Department of Environmental and Occupational Health Sciences, University Of Washington, Seattle, WA, USA
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University Of Washington, Seattle, WA, USA
| | - Frederico M Farin
- Department of Environmental and Occupational Health Sciences, University Of Washington, Seattle, WA, USA
| | - Terrance J Kavanagh
- Department of Environmental and Occupational Health Sciences, University Of Washington, Seattle, WA, USA
| | - Sidney D Nelson
- Department of Medicinal Chemistry, University Of Washington, Seattle, WA, USA
| |
Collapse
|
20
|
Zhang H, Gan J, Shu YZ, Humphreys WG. High-Resolution Mass Spectrometry-Based Background Subtraction for Identifying Protein Modifications in a Complex Biological System: Detection of Acetaminophen-Bound Microsomal Proteins Including Argininosuccinate Synthetase. Chem Res Toxicol 2015; 28:775-81. [DOI: 10.1021/tx500526s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Haiying Zhang
- Biotransformation, Bristol-Myers Squibb Research and Development, Princeton, New Jersey 08543, United States
| | - Jinping Gan
- Biotransformation, Bristol-Myers Squibb Research and Development, Princeton, New Jersey 08543, United States
| | - Yue-Zhong Shu
- Biotransformation, Bristol-Myers Squibb Research and Development, Princeton, New Jersey 08543, United States
| | - W. Griffith Humphreys
- Biotransformation, Bristol-Myers Squibb Research and Development, Princeton, New Jersey 08543, United States
| |
Collapse
|
21
|
Rouquié D, Heneweer M, Botham J, Ketelslegers H, Markell L, Pfister T, Steiling W, Strauss V, Hennes C. Contribution of new technologies to characterization and prediction of adverse effects. Crit Rev Toxicol 2015; 45:172-83. [DOI: 10.3109/10408444.2014.986054] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
22
|
Fresno N, Pérez-Fernández R, Goicoechea C, Alkorta I, Fernández-Carvajal A, de la Torre-Martínez R, Quirce S, Ferrer-Montiel A, Martín MI, Goya P, Elguero J. Adamantyl analogues of paracetamol as potent analgesic drugs via inhibition of TRPA1. PLoS One 2014; 9:e113841. [PMID: 25438056 PMCID: PMC4249970 DOI: 10.1371/journal.pone.0113841] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/31/2014] [Indexed: 01/31/2023] Open
Abstract
Paracetamol also known as acetaminophen, is a widely used analgesic and antipyretic agent. We report the synthesis and biological evaluation of adamantyl analogues of paracetamol with important analgesic properties. The mechanism of nociception of compound 6a/b, an analog of paracetamol, is not exerted through direct interaction with cannabinoid receptors, nor by inhibiting COX. It behaves as an interesting selective TRPA1 channel antagonist, which may be responsible for its analgesic properties, whereas it has no effect on the TRPM8 nor TRPV1 channels. The possibility of replacing a phenyl ring by an adamantyl ring opens new avenues in other fields of medicinal chemistry.
Collapse
Affiliation(s)
- Nieves Fresno
- Instituto de Química Médica, IQM-CSIC, Madrid, Spain
| | | | - Carlos Goicoechea
- Departamento de Farmacología y Nutrición, Unidad Asociada de I+D+i al CSIC, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - Ibon Alkorta
- Instituto de Química Médica, IQM-CSIC, Madrid, Spain
- * E-mail:
| | | | | | - Susana Quirce
- Institute of Molecular and Cellular Biology, Universidad Miguel Hernández, Alicante, Spain
| | - Antonio Ferrer-Montiel
- Institute of Molecular and Cellular Biology, Universidad Miguel Hernández, Alicante, Spain
| | - M. Isabel Martín
- Departamento de Farmacología y Nutrición, Unidad Asociada de I+D+i al CSIC, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - Pilar Goya
- Instituto de Química Médica, IQM-CSIC, Madrid, Spain
| | - José Elguero
- Instituto de Química Médica, IQM-CSIC, Madrid, Spain
| |
Collapse
|
23
|
Stamper BD. Transcriptional profiling of reactive metabolites for elucidating toxicological mechanisms: a case study of quinoneimine-forming agents. Drug Metab Rev 2014; 47:45-55. [DOI: 10.3109/03602532.2014.978081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Yuryev A. In silico pathway analysis: the final frontier towards completely rational drug design. Expert Opin Drug Discov 2013; 3:867-76. [PMID: 23484964 DOI: 10.1517/17460441.3.8.867] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pathway and network analyses are rapidly becoming the mainstream tools for functional interpretation of high-throughput data and for drug discovery. Current scientific literature has plenty of examples on how pathway analysis tools are used across all steps of drug development pipeline. Pathway and network analyses already enable rational selection of drug targets based on the knowledge about disease biology. Pathway analysis tools are also popular for the analysis of drug action and validation of drug efficacy and toxicity. This article overviews current achievements of pathway analysis and suggests future directions for its application in drug development such as rational design of combinatorial therapy and personalized medicine.
Collapse
Affiliation(s)
- Anton Yuryev
- Ariadne Genomics, Inc., Application Science Department, 9430 Key West avenue, Suite 113, Rockville, MD 20850, USA +1 240 453 6296, ext. 213 ; +1 270 912 6658 ;
| |
Collapse
|
25
|
Joseph P, Umbright C, Sellamuthu R. Blood transcriptomics: applications in toxicology. J Appl Toxicol 2013; 33:1193-202. [PMID: 23456664 DOI: 10.1002/jat.2861] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 12/17/2012] [Accepted: 12/21/2012] [Indexed: 02/02/2023]
Abstract
The number of new chemicals that are being synthesized each year has been steadily increasing. While chemicals are of immense benefit to mankind, many of them have a significant negative impact, primarily owing to their inherent chemistry and toxicity, on the environment as well as human health. In addition to chemical exposures, human exposures to numerous non-chemical toxic agents take place in the environment and workplace. Given that human exposure to toxic agents is often unavoidable and many of these agents are found to have detrimental human health effects, it is important to develop strategies to prevent the adverse health effects associated with toxic exposures. Early detection of adverse health effects as well as a clear understanding of the mechanisms, especially at the molecular level, underlying these effects are key elements in preventing the adverse health effects associated with human exposure to toxic agents. Recent developments in genomics, especially transcriptomics, have prompted investigations into this important area of toxicology. Previous studies conducted in our laboratory and elsewhere have demonstrated the potential application of blood gene expression profiling as a sensitive, mechanistically relevant and practical surrogate approach for the early detection of adverse health effects associated with exposure to toxic agents. The advantages of blood gene expression profiling as a surrogate approach to detect early target organ toxicity and the molecular mechanisms underlying the toxicity are illustrated and discussed using recent studies on hepatotoxicity and pulmonary toxicity. Furthermore, the important challenges this emerging field in toxicology faces are presented in this review article.
Collapse
Affiliation(s)
- Pius Joseph
- Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | | | | |
Collapse
|
26
|
Ozagrel hydrochloride, a selective thromboxane A₂ synthase inhibitor, alleviates liver injury induced by acetaminophen overdose in mice. BMC Gastroenterol 2013; 13:21. [PMID: 23363429 PMCID: PMC3568068 DOI: 10.1186/1471-230x-13-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 01/28/2013] [Indexed: 12/12/2022] Open
Abstract
Background Overdosed acetaminophen (paracetamol, N-acetyl-p-aminophenol; APAP) causes severe liver injury. We examined the effects of ozagrel, a selective thromboxane A2 (TXA2) synthase inhibitor, on liver injury induced by APAP overdose in mice. Methods Hepatotoxicity was induced to ICR male mice by an intraperitoneal injection with APAP (330 mg/kg). The effects of ozagrel (200 mg/kg) treatment 30 min after the APAP injection were evaluated with mortality, serum alanine aminotransferase (ALT) levels and hepatic changes, including histopathology, DNA fragmentation, mRNA expression and total glutathione contents. The impact of ozagrel (0.001-1 mg/mL) on cytochrome P450 2E1 (CYP2E1) activity in mouse hepatic microsome was examined. RLC-16 cells, a rat hepatocytes cell line, were exposed to 0.25 mM N-acetyl-p-benzoquinone imine (NAPQI), a hepatotoxic metabolite of APAP. In this model, the cytoprotective effects of ozagrel (1–100 muM) were evaluated by the WST-1 cell viability assay. Results Ozagel treatment significantly attenuated higher mortality, elevated serum alanine aminotransferase levels, excessive hepatic centrilobular necrosis, hemorrhaging and DNA fragmentation, as well as increase in plasma 2,3-dinor thromboxane B2 levels induced by APAP injection. Ozagrel also inhibited the hepatic expression of cell death-related mRNAs induced by APAP, such as jun oncogene, FBJ osteosarcoma oncogene (fos) and C/EBP homologous protein (chop), but did not suppress B-cell lymphoma 2-like protein11 (bim) expression and hepatic total glutathione depletion. These results show ozagrel can inhibit not all hepatic changes but can reduce the hepatic necrosis. Ozagrel had little impact on CYP2E1 activity involving the NAPQI production. In addition, ozagrel significantly attenuated cell injury induced by NAPQI in RLC-16. Conclusions We demonstrate that the TXA2 synthase inhibitor, ozagrel, dramatically alleviates liver injury induced by APAP in mice, and suggest that it is a promising therapeutic candidate for the treatment of APAP-induced liver injury.
Collapse
|
27
|
Uehara T, Kosyk O, Jeannot E, Bradford BU, Tech K, Macdonald JM, Boorman GA, Chatterjee S, Mason RP, Melnyk SB, Tryndyak VP, Pogribny IP, Rusyn I. Acetaminophen-induced acute liver injury in HCV transgenic mice. Toxicol Appl Pharmacol 2012. [PMID: 23200774 DOI: 10.1016/j.taap.2012.11.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The exact etiology of clinical cases of acute liver failure is difficult to ascertain and it is likely that various co-morbidity factors play a role. For example, epidemiological evidence suggests that coexistent hepatitis C virus (HCV) infection increased the risk of acetaminophen-induced acute liver injury, and was associated with an increased risk of progression to acute liver failure. However, little is known about possible mechanisms of enhanced acetaminophen hepatotoxicity in HCV-infected subjects. In this study, we tested a hypothesis that HCV-Tg mice may be more susceptible to acetaminophen hepatotoxicity, and also evaluated the mechanisms of acetaminophen-induced liver damage in wild type and HCV-Tg mice expressing core, E1 and E2 proteins. Male mice were treated with a single dose of acetaminophen (300 or 500 mg/kg in fed animals; or 200 mg/kg in fasted animals; i.g.) and liver and serum endpoints were evaluated at 4 and 24h after dosing. Our results suggest that in fed mice, liver toxicity in HCV-Tg mice is not markedly exaggerated as compared to the wild-type mice. In fasted mice, greater liver injury was observed in HCV-Tg mice. In fed mice dosed with 300 mg/kg acetaminophen, we observed that liver mitochondria in HCV-Tg mice exhibited signs of dysfunction showing the potential mechanism for increased susceptibility.
Collapse
Affiliation(s)
- Takeki Uehara
- Department of Environmental Sciences & Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Aubert J, Begriche K, Delannoy M, Morel I, Pajaud J, Ribault C, Lepage S, McGill MR, Lucas-Clerc C, Turlin B, Robin MA, Jaeschke H, Fromenty B. Differences in early acetaminophen hepatotoxicity between obese ob/ob and db/db mice. J Pharmacol Exp Ther 2012; 342:676-87. [PMID: 22647274 DOI: 10.1124/jpet.112.193813] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Clinical investigations suggest that hepatotoxicity after acetaminophen (APAP) overdose could be more severe in the context of obesity and nonalcoholic fatty liver disease. The pre-existence of fat accumulation and CYP2E1 induction could be major mechanisms accounting for such hepatic susceptibility. To explore this issue, experiments were performed in obese diabetic ob/ob and db/db mice. Preliminary investigations performed in male and female wild-type, ob/ob, and db/db mice showed a selective increase in hepatic CYP2E1 activity in female db/db mice. However, liver triglycerides in these animals were significantly lower compared with ob/ob mice. Next, APAP (500 mg/kg) was administered in female wild-type, ob/ob, and db/db mice, and investigations were carried out 0.5, 2, 4, and 8 h after APAP intoxication. Liver injury 8 h after APAP intoxication was higher in db/db mice, as assessed by plasma transaminases, liver histology, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay. In db/db mice, however, the extent of hepatic glutathione depletion, levels of APAP-protein adducts, c-Jun N-terminal kinase activation, changes in gene expression, and mitochondrial DNA levels were not greater compared with the other genotypes. Furthermore, in the db/db genotype plasma lactate and β-hydroxybutyrate were not specifically altered, whereas the plasma levels of APAP-glucuronide were intermediary between wild-type and ob/ob mice. Thus, early APAP-induced hepatotoxicity was greater in db/db than ob/ob mice, despite less severe fatty liver and similar basal levels of transaminases. Hepatic CYP2E1 induction could have an important pathogenic role when APAP-induced liver injury occurs in the context of obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Jacinthe Aubert
- Institut National de la Santé et de la Recherche Médicale, U991, Université de Rennes 1, Rennes, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Chen M, Zhang M, Borlak J, Tong W. A Decade of Toxicogenomic Research and Its Contribution to Toxicological Science. Toxicol Sci 2012; 130:217-28. [DOI: 10.1093/toxsci/kfs223] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
30
|
Crawford JM, Aspinall MG. The business value and cost–effectiveness of genomic medicine. Per Med 2012; 9:265-286. [DOI: 10.2217/pme.12.23] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Genomic medicine offers the promise of more effective diagnosis and treatment of human diseases. Genome sequencing early in the course of disease may enable more timely and informed intervention, with reduced healthcare costs and improved long-term outcomes. However, genomic medicine strains current models for demonstrating value, challenging efforts to achieve fair payment for services delivered, both for laboratory diagnostics and for use of molecular information in clinical management. Current models of healthcare reform stipulate that care must be delivered at equal or lower cost, with better patient and population outcomes. To achieve demonstrated value, genomic medicine must overcome many uncertainties: the clinical relevance of genomic variation; potential variation in technical performance and/or computational analysis; management of massive information sets; and must have available clinical interventions that can be informed by genomic analysis, so as to attain more favorable cost management of healthcare delivery and demonstrate improvements in cost–effectiveness.
Collapse
Affiliation(s)
- James M Crawford
- Hofstra North Shore-LIJ School of Medicine, 10 Nevada Drive, Lake Success, NY 11042-1114, USA
| | - Mara G Aspinall
- Ventana Medical Systems, Roche Tissue Diagnostics, 1910 E Innovation Drive, Tucson, AZ 85755, USA
| |
Collapse
|
31
|
Jetten MJA, Gaj S, Ruiz-Aracama A, de Kok TM, van Delft JHM, Lommen A, van Someren EP, Jennen DGJ, Claessen SM, Peijnenburg AACM, Stierum RH, Kleinjans JCS. 'Omics analysis of low dose acetaminophen intake demonstrates novel response pathways in humans. Toxicol Appl Pharmacol 2012; 259:320-8. [PMID: 22285215 DOI: 10.1016/j.taap.2012.01.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 12/25/2022]
Abstract
Acetaminophen is the primary cause of acute liver toxicity in Europe/USA, which led the FDA to reconsider recommendations concerning safe acetaminophen dosage/use. Unfortunately, the current tests for liver toxicity are no ideal predictive markers for liver injury, i.e. they only measure acetaminophen exposure after profound liver toxicity has already occurred. Furthermore, these tests do not provide mechanistic information. Here, 'omics techniques (global analysis of metabolomic/gene-expression responses) may provide additional insight. To better understand acetaminophen-induced responses at low doses, we evaluated the effects of (sub-)therapeutic acetaminophen doses on metabolite formation and global gene-expression changes (including, for the first time, full-genome human miRNA expression changes) in blood/urine samples from healthy human volunteers. Many known and several new acetaminophen-metabolites were detected, in particular in relation to hepatotoxicity-linked, oxidative metabolism of acetaminophen. Transcriptomic changes indicated immune-modulating effects (2g dose) and oxidative stress responses (4g dose). For the first time, effects of acetaminophen on full-genome human miRNA expression have been considered and confirmed the findings on mRNA level. 'Omics techniques outperformed clinical chemistry tests and revealed novel response pathways to acetaminophen in humans. Although no definitive conclusion about potential immunotoxic effects of acetaminophen can be drawn from this study, there are clear indications that the immune system is triggered even after intake of low doses of acetaminophen. Also, oxidative stress-related gene responses, similar to those seen after high dose acetaminophen exposure, suggest the occurrence of possible pre-toxic effects of therapeutic acetaminophen doses. Possibly, these effects are related to dose-dependent increases in levels of hepatotoxicity-related metabolites.
Collapse
Affiliation(s)
- Marlon J A Jetten
- Department of Toxicogenomics, Maastricht University, Universitiessingel 50 6229 ER Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Use of comparative genomics approaches to characterize interspecies differences in response to environmental chemicals: challenges, opportunities, and research needs. Toxicol Appl Pharmacol 2011; 271:372-85. [PMID: 22142766 DOI: 10.1016/j.taap.2011.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 11/11/2011] [Accepted: 11/16/2011] [Indexed: 01/12/2023]
Abstract
A critical challenge for environmental chemical risk assessment is the characterization and reduction of uncertainties introduced when extrapolating inferences from one species to another. The purpose of this article is to explore the challenges, opportunities, and research needs surrounding the issue of how genomics data and computational and systems level approaches can be applied to inform differences in response to environmental chemical exposure across species. We propose that the data, tools, and evolutionary framework of comparative genomics be adapted to inform interspecies differences in chemical mechanisms of action. We compare and contrast existing approaches, from disciplines as varied as evolutionary biology, systems biology, mathematics, and computer science, that can be used, modified, and combined in new ways to discover and characterize interspecies differences in chemical mechanism of action which, in turn, can be explored for application to risk assessment. We consider how genetic, protein, pathway, and network information can be interrogated from an evolutionary biology perspective to effectively characterize variations in biological processes of toxicological relevance among organisms. We conclude that comparative genomics approaches show promise for characterizing interspecies differences in mechanisms of action, and further, for improving our understanding of the uncertainties inherent in extrapolating inferences across species in both ecological and human health risk assessment. To achieve long-term relevance and consistent use in environmental chemical risk assessment, improved bioinformatics tools, computational methods robust to data gaps, and quantitative approaches for conducting extrapolations across species are critically needed. Specific areas ripe for research to address these needs are recommended.
Collapse
|
33
|
Low Y, Uehara T, Minowa Y, Yamada H, Ohno Y, Urushidani T, Sedykh A, Muratov E, Fourches D, Zhu H, Rusyn I, Tropsha A. Predicting drug-induced hepatotoxicity using QSAR and toxicogenomics approaches. Chem Res Toxicol 2011; 24:1251-62. [PMID: 21699217 PMCID: PMC4281093 DOI: 10.1021/tx200148a] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Quantitative structure-activity relationship (QSAR) modeling and toxicogenomics are typically used independently as predictive tools in toxicology. In this study, we evaluated the power of several statistical models for predicting drug hepatotoxicity in rats using different descriptors of drug molecules, namely, their chemical descriptors and toxicogenomics profiles. The records were taken from the Toxicogenomics Project rat liver microarray database containing information on 127 drugs ( http://toxico.nibio.go.jp/datalist.html ). The model end point was hepatotoxicity in the rat following 28 days of continuous exposure, established by liver histopathology and serum chemistry. First, we developed multiple conventional QSAR classification models using a comprehensive set of chemical descriptors and several classification methods (k nearest neighbor, support vector machines, random forests, and distance weighted discrimination). With chemical descriptors alone, external predictivity (correct classification rate, CCR) from 5-fold external cross-validation was 61%. Next, the same classification methods were employed to build models using only toxicogenomics data (24 h after a single exposure) treated as biological descriptors. The optimized models used only 85 selected toxicogenomics descriptors and had CCR as high as 76%. Finally, hybrid models combining both chemical descriptors and transcripts were developed; their CCRs were between 68 and 77%. Although the accuracy of hybrid models did not exceed that of the models based on toxicogenomics data alone, the use of both chemical and biological descriptors enriched the interpretation of the models. In addition to finding 85 transcripts that were predictive and highly relevant to the mechanisms of drug-induced liver injury, chemical structural alerts for hepatotoxicity were identified. These results suggest that concurrent exploration of the chemical features and acute treatment-induced changes in transcript levels will both enrich the mechanistic understanding of subchronic liver injury and afford models capable of accurate prediction of hepatotoxicity from chemical structure and short-term assay results.
Collapse
Affiliation(s)
- Yen Low
- Laboratory for Molecular Modeling, University of North Carolina, Chapel Hill, North Carolina 27599
- Department of Environmental Sciences & Engineering, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Takeki Uehara
- Department of Environmental Sciences & Engineering, University of North Carolina, Chapel Hill, North Carolina 27599
- Toxicogenomics Informatics Project, National Institute of Biomedical Innovation, Asagi, Osaka, Japan
| | - Yohsuke Minowa
- Toxicogenomics Informatics Project, National Institute of Biomedical Innovation, Asagi, Osaka, Japan
| | - Hiroshi Yamada
- Toxicogenomics Informatics Project, National Institute of Biomedical Innovation, Asagi, Osaka, Japan
| | - Yasuo Ohno
- National Institute of Health Sciences, Kamiyoga, Tokyo, Japan
| | - Tetsuro Urushidani
- Toxicogenomics Informatics Project, National Institute of Biomedical Innovation, Asagi, Osaka, Japan
- Doshisha Women's College of Liberal Arts, Kodo, Kyoto, Japan
| | - Alexander Sedykh
- Department of Environmental Sciences & Engineering, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Eugene Muratov
- Department of Environmental Sciences & Engineering, University of North Carolina, Chapel Hill, North Carolina 27599
- A.V. Bogatsky Physical-Chemical Institute NAS of Ukraine, Odessa, Ukraine
| | - Denis Fourches
- Laboratory for Molecular Modeling, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Hao Zhu
- Laboratory for Molecular Modeling, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Ivan Rusyn
- Department of Environmental Sciences & Engineering, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Alexander Tropsha
- Laboratory for Molecular Modeling, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
34
|
Dadarkar SS, Fonseca LC, Mishra PB, Lobo AS, Doshi LS, Dagia NM, Rangasamy AK, Padigaru M. Phenotypic and genotypic assessment of concomitant drug-induced toxic effects in liver, kidney and blood. J Appl Toxicol 2011; 31:117-30. [PMID: 20623750 DOI: 10.1002/jat.1562] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Several studies have characterized drug-induced toxicity in liver and kidney. However, the majority of these studies have been performed with 'individual' organs in isolation. Separately, little is known about the role of whole blood as a surrogate tissue in drug-induced toxicity. Accordingly, we investigated the 'concurrent' response of liver, kidney and whole blood during a toxic assault. Rats were acutely treated with therapeutics (acetaminophen, rosiglitazone, fluconazole, isoniazid, cyclophosphamide, amphotericin B, gentamicin and cisplatin) reported for their liver and/or kidney toxicity. Changes in clinical chemistry parameters (e.g. AST, urea) and/or observed microscopic tissue damage confirmed induced hepatotoxicity and/or nephrotoxicity by all drugs. Drug-induced toxicity was not confined to an 'individual' organ. Not all drugs elicited significant alterations in phenotypic parameters of toxicity (e.g. ALT, creatinine). Accordingly, the transcriptional profile of the organs was studied using a toxicity panel of 30 genes derived from literature. Each of the test drugs generated specific gene expression patterns which were unique for all three organs. Hierarchical cluster analyses of purported hepatotoxicants and nephrotoxicants each led to characteristic 'fingerprints' (e.g. decrease in Cyp3a1 indicative of hepatotoxicity; increase in Spp1 and decrease in Gstp1 indicative of nephrotoxicity). In whole blood cells, a set of genes was derived which closely correlated with individual drug-induced concomitant changes in liver or kidney. Collectively, these data demonstrate drug-induced multi-organ toxicity. Furthermore, our findings underscore the importance of transcriptional profiling during inadequate phenotypic anchorage and suggest that whole blood may be judiciously used as a surrogate for drug-induced extra-hematological organ toxicity.
Collapse
Affiliation(s)
- Shruta S Dadarkar
- Department of Pharmacology, Piramal Life Sciences Limited, Mumbai, Maharashtra, India.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Elferink M, Olinga P, van Leeuwen E, Bauerschmidt S, Polman J, Schoonen W, Heisterkamp S, Groothuis G. Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol 2011; 253:57-69. [DOI: 10.1016/j.taap.2011.03.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/07/2011] [Accepted: 03/11/2011] [Indexed: 12/27/2022]
|
36
|
Penella E, Sandoval J, Zaragozá R, García C, Viña JR, Torres L, García-Trevijano ER. Molecular mechanisms of Id2 down-regulation in rat liver after acetaminophen overdose. Protection by N-acetyl-L-cysteine. Free Radic Res 2011; 44:1044-53. [PMID: 20815767 DOI: 10.3109/10715762.2010.498825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Id2 is a pleiotropic protein whose function depends on its expression levels. Id2-deficient cells show increased cell death. This study explored the molecular mechanisms for the modulation of Id2 expression elicited by GSH and oxidative stress in the liver of acetaminophen (APAP)-intoxicated rats. APAP-overdose induced GSH depletion, Id2 promoter hypoacetylation, RNApol-II released and, therefore, Id2 down-regulation. Id2 expression depends on c-Myc binding to its promoter. APAP-overdose decreased c-Myc content and binding to Id2 promoter. Reduction of c-Myc was not accompanied by decreased c-myc mRNA, suggesting a mechanism dependent on protein stability. Administration of N-acetyl-cysteine prior to APAP-overload prevented GSH depletion and c-Myc degradation. Consistently, c-Myc was recruited to Id2 promoter, histone-H3 was hyperacetylated, RNApol II was bound to Id2 coding region and Id2 repression prevented. The results suggest a novel transcriptional-dependent mechanism of Id2 regulation by GSH and oxidative stress induced by APAP-overdose through the indirect modulation of the proteasome pathway.
Collapse
Affiliation(s)
- Estela Penella
- Departamento de Bioquímica y Biología Molecular, Fundación Investigación Hospital Clínico Valencia / INCLIVA, Universidad de Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
37
|
Martinez AF, Muenke M, Arcos-Burgos M. From the black widow spider to human behavior: Latrophilins, a relatively unknown class of G protein-coupled receptors, are implicated in psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:1-10. [PMID: 21184579 PMCID: PMC4101183 DOI: 10.1002/ajmg.b.31137] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 09/28/2010] [Indexed: 12/24/2022]
Abstract
The findings of a recent study associate LPHN3, a member of the latrophilin family, with an increased risk of developing attention deficit/hyperactivity disorder (ADHD), the most common psychiatric disorder in childhood and adolescence. Latrophilins comprise a new family of G protein-coupled receptors of unknown native physiological function that mediate the neurotoxic effects of α-latrotoxin, a potent toxin found in black widow spider venom. This receptor-toxin interaction has helped to elucidate the mechanistic aspects of neurotransmitter and hormone release in vertebrates. Such unprecedented discovery points to a new direction in the assessment of ADHD and suggest that further study of this receptor family may provide novel insights into the etiology and treatment of ADHD and other related psychiatric conditions.
Collapse
Affiliation(s)
| | | | - Mauricio Arcos-Burgos
- Correspondence to: Dr. Mauricio Arcos-Burgos, M.D., Ph.D., National Human Genome Research Institute, National Institutes of Health, 35 Convent Drive, MSC 3717, Building 35, Room 1B209, Bethesda, MD 20892.
| |
Collapse
|
38
|
Kienhuis AS, Bessems JGM, Pennings JLA, Driessen M, Luijten M, van Delft JHM, Peijnenburg AACM, van der Ven LTM. Application of toxicogenomics in hepatic systems toxicology for risk assessment: acetaminophen as a case study. Toxicol Appl Pharmacol 2010; 250:96-107. [PMID: 20970440 DOI: 10.1016/j.taap.2010.10.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 10/06/2010] [Accepted: 10/14/2010] [Indexed: 11/18/2022]
Abstract
Hepatic systems toxicology is the integrative analysis of toxicogenomic technologies, e.g., transcriptomics, proteomics, and metabolomics, in combination with traditional toxicology measures to improve the understanding of mechanisms of hepatotoxic action. Hepatic toxicology studies that have employed toxicogenomic technologies to date have already provided a proof of principle for the value of hepatic systems toxicology in hazard identification. In the present review, acetaminophen is used as a model compound to discuss the application of toxicogenomics in hepatic systems toxicology for its potential role in the risk assessment process, to progress from hazard identification towards hazard characterization. The toxicogenomics-based parallelogram is used to identify current achievements and limitations of acetaminophen toxicogenomic in vivo and in vitro studies for in vitro-to-in vivo and interspecies comparisons, with the ultimate aim to extrapolate animal studies to humans in vivo. This article provides a model for comparison of more species and more in vitro models enhancing the robustness of common toxicogenomic responses and their relevance to human risk assessment. To progress to quantitative dose-response analysis needed for hazard characterization, in hepatic systems toxicology studies, generation of toxicogenomic data of multiple doses/concentrations and time points is required. Newly developed bioinformatics tools for quantitative analysis of toxicogenomic data can aid in the elucidation of dose-responsive effects. The challenge herein is to assess which toxicogenomic responses are relevant for induction of the apical effect and whether perturbations are sufficient for the induction of downstream events, eventually causing toxicity.
Collapse
Affiliation(s)
- Anne S Kienhuis
- Laboratory for Health Protection Research, National Institute of Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kiyosawa N, Manabe S, Yamoto T, Sanbuissho A. Practical application of toxicogenomics for profiling toxicant-induced biological perturbations. Int J Mol Sci 2010; 11:3397-412. [PMID: 20957103 PMCID: PMC2956103 DOI: 10.3390/ijms11093397] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 08/03/2010] [Accepted: 09/09/2010] [Indexed: 01/13/2023] Open
Abstract
A systems-level understanding of molecular perturbations is crucial for evaluating chemical-induced toxicity risks appropriately, and for this purpose comprehensive gene expression analysis or toxicogenomics investigation is highly advantageous. The recent accumulation of toxicity-associated gene sets (toxicogenomic biomarkers), enrichment in public or commercial large-scale microarray database and availability of open-source software resources facilitate our utilization of the toxicogenomic data. However, toxicologists, who are usually not experts in computational sciences, tend to be overwhelmed by the gigantic amount of data. In this paper we present practical applications of toxicogenomics by utilizing biomarker gene sets and a simple scoring method by which overall gene set-level expression changes can be evaluated efficiently. Results from the gene set-level analysis are not only an easy interpretation of toxicological significance compared with individual gene-level profiling, but also are thought to be suitable for cross-platform or cross-institutional toxicogenomics data analysis. Enrichment in toxicogenomics databases, refinements of biomarker gene sets and scoring algorithms and the development of user-friendly integrative software will lead to better evaluation of toxicant-elicited biological perturbations.
Collapse
Affiliation(s)
- Naoki Kiyosawa
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 717 Horikoshi, Fukuroi, Shizuoka 437-0065, Japan; E-Mails: (T.Y.); (A.S.)
- * Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-538-42-4356; Fax: +81-538-42-4350
| | - Sunao Manabe
- Global Project Management Department, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa, Tokyo 140-8710, Japan; E-Mail: (S.M)
| | - Takashi Yamoto
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 717 Horikoshi, Fukuroi, Shizuoka 437-0065, Japan; E-Mails: (T.Y.); (A.S.)
| | - Atsushi Sanbuissho
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 717 Horikoshi, Fukuroi, Shizuoka 437-0065, Japan; E-Mails: (T.Y.); (A.S.)
| |
Collapse
|
40
|
Fox BC, Devonshire AS, Schutte ME, Foy CA, Minguez J, Przyborski S, Maltman D, Bokhari M, Marshall D. Validation of reference gene stability for APAP hepatotoxicity studies in different in vitro systems and identification of novel potential toxicity biomarkers. Toxicol In Vitro 2010; 24:1962-70. [PMID: 20732408 DOI: 10.1016/j.tiv.2010.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 07/09/2010] [Accepted: 08/16/2010] [Indexed: 12/20/2022]
Abstract
Liver cell lines and primary hepatocytes are becoming increasingly valuable for in vitro toxicogenomic studies, with RT-qPCR enabling the analysis of gene expression profiles following exposure to potential hepatotoxicants. Supporting the accurate normalisation of RT-qPCR data requires the identification of reference genes which have stable expression during in vitro toxicology studies. Therefore, we performed a comprehensive analysis of reference gene stability in two routinely used cell types, (HepG2 cells and primary rat hepatocytes), and two in vitro culture systems, (2D monolayer and 3D scaffolds). A robust reference gene validation strategy was performed, consisting of geNorm analysis, to test for pair wise variation in gene expression, and statistical analysis using analysis of variance. This strategy identified stable reference genes with respect to acetaminophen treatment and time in HepG2 cells (GAPDH and PPIA), and with respect to acetaminophen treatment and culture condition in primary hepatocytes (18S rRNA and α-tubulin). Following the selection of reference genes, the novel target genes E2F7 and IL-11RA were identified as potential toxicity biomarkers for acetaminophen treatment. We conclude that accurate quantification of gene expression requires the use of a validated normalisation strategy for each species and experimental system employed.
Collapse
Affiliation(s)
- Bridget C Fox
- LGC Limited, Queens Road, Teddington, Middlesex TW11 0LY, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Cui Y, Paules RS. Use of transcriptomics in understanding mechanisms of drug-induced toxicity. Pharmacogenomics 2010; 11:573-85. [PMID: 20350139 DOI: 10.2217/pgs.10.37] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adverse drug reactions (ADRs) are an important clinical issue and a serious public health risk. Understanding the underlying mechanisms is critical for clinical diagnosis and management of different ADRs. Toxicogenomics can reveal impacts on biological pathways and processes that had not previously been considered to be involved in a drug response. Mechanistic hypotheses can be generated that can then be experimentally tested using the full arsenal of pharmacology, toxicology, molecular biology and genetics. Recent transcriptomic studies on drug-induced toxicity, which have provided valuable mechanistic insights into various ADRs, have been reviewed with a focus on nephrotoxicity and hepatotoxicity. Related issues have been discussed, including extrapolation of mechanistic findings from experimental model systems to humans using blood as a surrogate tissue for organ damage and comparative systems biology approaches.
Collapse
Affiliation(s)
- Yuxia Cui
- Environmental Stress & Cancer Group, National Institute of Environmental Health Sciences, Mail Drop D2-03, PO Box 12233, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
42
|
Van Hummelen P, Sasaki J. State-of-the-art genomics approaches in toxicology. Mutat Res 2010; 705:165-71. [PMID: 20466069 DOI: 10.1016/j.mrrev.2010.04.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 04/30/2010] [Indexed: 12/14/2022]
Abstract
Genomics may be an effective tool in decreasing the lengthy drug development process and reducing compound attrition. It can generate specific gene expression profiles induced by chemicals that can be linked to dose and response. Toxicogenomics can identify sensitive biomarkers of early deleterious effects, distinguish genotoxic from non-genotoxic carcinogens and can provide information on the mechanism of action. It can help bridge in vitro to in vivo findings and provide context for preclinical data and thus address human health risks. Issues and shortcomings that still need to be resolved or improved for efficient incorporation of genomics in drug development and environmental toxicology research include data analysis, data interpretation tools and accessible data repositories. In addition, implementation of toxicogenomics in early screening or drug discovery phases and effective use of this information by project teams remains a challenge.
Collapse
|
43
|
Stamper BD, Bammler TK, Beyer RP, Farin FM, Nelson SD. Differential regulation of mitogen-activated protein kinase pathways by acetaminophen and its nonhepatotoxic regioisomer 3'-hydroxyacetanilide in TAMH cells. Toxicol Sci 2010; 116:164-73. [PMID: 20363829 DOI: 10.1093/toxsci/kfq100] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Acetaminophen (APAP), a widely used analgesic and antipyretic that is considered to be relatively safe at recommended doses, is the leading cause of drug-induced liver failure in the United States. 3'-Hydroxyacetanilide (AMAP), a regioisomer of APAP, is useful as a comparative tool for studying APAP-induced toxicity because it is nontoxic relative to APAP. Transforming growth factor-alpha transgenic mouse hepatocytes were treated with both isomers to investigate mitogen-activated protein kinase (MAPK) cascades in order to differentiate their toxicological outcomes. Posttranslational modifications of MAPK signaling were assessed using immunoblotting and Bioplex technology, whereas gene expression changes were measured using Affymetrix Mouse Gene 1.0 ST arrays. APAP treatment led to higher levels of glutathione depletion at 6 and 24 h compared with AMAP in mitochondria. Glutathione depletion was preceded by increased levels of c-Jun N-terminal kinase (JNK) phosphorylation at 2 and 6 h after APAP treatment compared with AMAP, whereas AMAP treatment led to increased extracellular signal-regulated protein kinase (ERK) phosphorylation at 2 and 6 h compared with APAP. Furthermore, APAP treatment significantly upregulated jun oncogene (c-Jun) gene expression, which was confirmed by Western blotting for both the phosphorylated and the nonphosphorylated forms of c-Jun protein. Transfection with JNK siRNA attenuated APAP toxicity after 24 h, suggesting that higher levels of APAP-induced activation of JNK were related to higher rates of cell death. In summary, genomic regulation of MAPK-related transcription factors coupled with posttranslational activation of their upstream kinases is critical in differentiating the toxicities of APAP and AMAP.
Collapse
Affiliation(s)
- Brendan D Stamper
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
44
|
Thompson K. Toxicogenomics and studies of genomic effects of dietary components. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2010; 3:251-8. [PMID: 21474956 DOI: 10.1159/000324361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Karol Thompson
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|
45
|
Blood gene expression markers to detect and distinguish target organ toxicity. Mol Cell Biochem 2009; 335:223-34. [DOI: 10.1007/s11010-009-0272-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 09/16/2009] [Indexed: 10/20/2022]
|
46
|
A toxicogenomics-based parallelogram approach to evaluate the relevance of coumarin-induced responses in primary human hepatocytes in vitro for humans in vivo. Toxicol In Vitro 2009; 23:1163-9. [DOI: 10.1016/j.tiv.2009.06.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 06/02/2009] [Accepted: 06/09/2009] [Indexed: 11/23/2022]
|
47
|
Harrill AH, Ross PK, Gatti DM, Threadgill DW, Rusyn I. Population-based discovery of toxicogenomics biomarkers for hepatotoxicity using a laboratory strain diversity panel. Toxicol Sci 2009; 110:235-43. [PMID: 19420014 DOI: 10.1093/toxsci/kfp096] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Toxicogenomic studies are increasingly used to uncover potential biomarkers of adverse health events, enrich chemical risk assessment, and to facilitate proper identification and treatment of persons susceptible to toxicity. Current approaches to biomarker discovery through gene expression profiling usually utilize a single or few strains of rodents, limiting the ability to detect biomarkers that may represent the wide range of toxicity responses typically observed in genetically heterogeneous human populations. To enhance the utility of animal models to detect response biomarkers for genetically diverse populations, we used a laboratory mouse strain diversity panel. Specifically, mice from 36 inbred strains derived from Mus mus musculus, Mus mus castaneous, and Mus mus domesticus origins were treated with a model hepatotoxic agent, acetaminophen (300 mg/kg, ig). Gene expression profiling was performed on liver tissue collected at 24 h after dosing. We identified 26 population-wide biomarkers of response to acetaminophen hepatotoxicity in which the changes in gene expression were significant across treatment and liver necrosis score but not significant for individual mouse strains. Importantly, most of these biomarker genes are part of the intracellular signaling involved in hepatocyte death and include genes previously associated with acetaminophen-induced hepatotoxicity, such as cyclin-dependent kinase inhibitor 1A (p21) and interleukin 6 signal transducer (Il6st), and genes not previously associated with acetaminophen, such as oncostatin M receptor (Osmr) and MLX interacting protein like (Mlxipl). Our data demonstrate that a multistrain approach may provide utility for understanding genotype-independent toxicity responses and facilitate identification of novel targets of therapeutic intervention.
Collapse
Affiliation(s)
- Alison H Harrill
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
48
|
Kiyosawa N, Ando Y, Manabe S, Yamoto T. Toxicogenomic biomarkers for liver toxicity. J Toxicol Pathol 2009; 22:35-52. [PMID: 22271975 PMCID: PMC3246017 DOI: 10.1293/tox.22.35] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 11/26/2008] [Indexed: 12/15/2022] Open
Abstract
Toxicogenomics (TGx) is a widely used technique in the preclinical stage of drug development to investigate the molecular mechanisms of toxicity. A number of candidate TGx biomarkers have now been identified and are utilized for both assessing and predicting toxicities. Further accumulation of novel TGx biomarkers will lead to more efficient, appropriate and cost effective drug risk assessment, reinforcing the paradigm of the conventional toxicology system with a more profound understanding of the molecular mechanisms of drug-induced toxicity. In this paper, we overview some practical strategies as well as obstacles for identifying and utilizing TGx biomarkers based on microarray analysis. Since clinical hepatotoxicity is one of the major causes of drug development attrition, the liver has been the best documented target organ for TGx studies to date, and we therefore focused on information from liver TGx studies. In this review, we summarize the current resources in the literature in regard to TGx studies of the liver, from which toxicologists could extract potential TGx biomarker gene sets for better hepatotoxicity risk assessment.
Collapse
Affiliation(s)
- Naoki Kiyosawa
- Medicinal Safety Research Labs., Daiichi Sankyo Co., Ltd., 717 Horikoshi, Fukuroi, Shizuoka 437-0065, Japan
| | | | | | | |
Collapse
|
49
|
Harrill AH, Rusyn I. Systems biology and functional genomics approaches for the identification of cellular responses to drug toxicity. Expert Opin Drug Metab Toxicol 2009; 4:1379-89. [PMID: 18950280 DOI: 10.1517/17425255.4.11.1379] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Extensive growth in the field of molecular biology in recent decades has led to the development of new and powerful experimental and computational tools that enable the analysis of complex biological responses to chemical exposure on both a functional and structural genetic level. The ability to profile global responses on a transcriptional level has become a valuable resource in the science of toxicology and attempts are now being made to further understand toxicity mechanisms by incorporating metabolomics and proteomics approaches. In addition, recent progress in understanding the extent of the genetic diversity within and between species allows us to take a fresh look at research on genetic polymorphisms that may influence an individual's susceptibility to toxicity. Whereas new technologies have the potential to make a sizeable impact on our understanding of the mechanisms of toxicity, considerable challenges remain to be addressed, especially with regard to the regulatory acceptance and successful integration of omics data. This review highlights recent advancements in the application of functional and structural genomics techniques to chemical hazard identification and characterization, and to the understanding of the interindividual differences in susceptibility to adverse drug reactions.
Collapse
Affiliation(s)
- Alison Hege Harrill
- University of North Carolina at Chapel Hill, 0031 Michael Hooker Research Center, Curriculum in Toxicology, CB 7431, Chapel Hill, NC, 27599, USA.
| | | |
Collapse
|
50
|
Kienhuis AS, van de Poll MCG, Wortelboer H, van Herwijnen M, Gottschalk R, Dejong CHC, Boorsma A, Paules RS, Kleinjans JCS, Stierum RH, van Delft JHM. Parallelogram Approach Using Rat-Human In Vitro and Rat In Vivo Toxicogenomics Predicts Acetaminophen-induced Hepatotoxicity in Humans. Toxicol Sci 2008; 107:544-52. [DOI: 10.1093/toxsci/kfn237] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|