1
|
Wasser-Bennett G, Brown AR, Maynard SK, Owen SF, Tyler CR. Critical insights into the potential risks of antipsychotic drugs to fish, including through effects on behaviour. Biol Rev Camb Philos Soc 2025. [PMID: 40355132 DOI: 10.1111/brv.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 04/15/2025] [Accepted: 04/28/2025] [Indexed: 05/14/2025]
Abstract
Antipsychotic drugs (APDs) are a diverse class of neuroactive pharmaceuticals increasingly detected in surface and ground waters globally. Some APDs are classified as posing a high environmental risk, due, in part, to their tendency to bioaccumulate in wildlife, including fish. Additional risk drivers for APDs relate to their behavioural effects, potentially impacting fitness outcomes. However, standard ecotoxicological tests used in environmental risk assessment (ERA) do not currently account for these mechanisms. In this review, we critically appraise the environmental risks of APDs to fish. We begin by reading-across from human and mammalian effects data to standard ecotoxicological effects endpoints in fish. We then explore the wide range of behaviours suitable for ecotoxicological assessment of APDs (and other neuroactive) pharmaceuticals, principally through laboratory studies with zebrafish, and assess the potential for using these behavioural phenotypes to predict adverse individual- and population-level outcomes in wild fish, taking into account phenotypic plasticity. Next, we illustrate the advantages and challenges of measuring and applying behavioural endpoints for fish, including within current regulatory risk assessments. In our final analysis, the implications of relying on apical endpoints for ERA of neuroactive drugs (including APDs) are assessed and recommendations provided for the development of a more refined and tailored mechanistic approach, which would enable more robust assessment of their environmental risk(s).
Collapse
Affiliation(s)
- Gabrielle Wasser-Bennett
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, Devon, UK
| | - A Ross Brown
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, Devon, UK
| | - Samuel K Maynard
- AstraZeneca, Global Environment, Macclesfield, Cheshire, SK10 2NA, UK
| | - Stewart F Owen
- AstraZeneca, Global Environment, Macclesfield, Cheshire, SK10 2NA, UK
| | - Charles R Tyler
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, Devon, UK
| |
Collapse
|
2
|
Krupka M, Wolska L, Piechowicz L, Głowacka K, Piotrowicz-Cieślak AI. The Impact of Tetracycline on the Soil Microbiome and the Rhizosphere of Lettuce ( Lactuca sativa L.). Int J Mol Sci 2025; 26:2854. [PMID: 40243447 PMCID: PMC11988489 DOI: 10.3390/ijms26072854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
The impact of tetracycline on the soil and rhizosphere microbiome of lettuce was analyzed. Soil was collected from an agricultural field regularly fertilized with manure, and tetracycline was added at two concentrations (5 mg/kg and 25 mg/kg). In untreated soil, dominant bacteria included Proteobacteria (43.17%), Bacteroidota (17.91%), and Firmicutes (3.06%). Tetracycline addition caused significant shifts in the microbiome composition, notably increasing Actinobacteriota (22%) and favoring Mycobacterium tuberculosis (low concentration) and Mycobacterium holsaticum (high concentration). Proteobacteria decreased by 21%, possibly indicating antibiotic resistance development. An increase in Firmicutes, particularly Bacillales, suggested a selection for resistant strains. In the lettuce rhizosphere, tetracycline-induced changes were less pronounced than in soil. Proteobacteria remained dominant, but taxa like Burkholderiales and Chitinophagales increased in response to tetracycline. The rise in chitin-degrading bacteria might result from fungal overgrowth linked to the bacteriostatic effects of tetracycline. Pathogens such as M. tuberculosis, observed in the soil, were not detected in the lettuce rhizosphere.
Collapse
Affiliation(s)
- Magdalena Krupka
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (M.K.); (K.G.)
| | - Lidia Wolska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, 80-204 Gdansk, Poland;
| | - Lidia Piechowicz
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdansk, 80-204 Gdansk, Poland;
| | - Katarzyna Głowacka
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (M.K.); (K.G.)
| | - Agnieszka I. Piotrowicz-Cieślak
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (M.K.); (K.G.)
| |
Collapse
|
3
|
Sanchez-Aceves LM, Gómez-Olivan LM, Pérez-Alvarez I, Rosales-Pérez KE, Hernández-Navarro MD, Amado-Piña D, Natividad R, Galar-Martínez M, García-Medina S, Ramírez-García JJ, Becerril ME, Dávila-Estrada M. Effects of effluents from the Villa Victoria Reservoir (Mexico) on the development of Danio rerio at early life stages through apoptotic response and oxidative-induced state. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177581. [PMID: 39566642 DOI: 10.1016/j.scitotenv.2024.177581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
As one of Mexico's most crucial water storage facilities, the Villa Victoria Reservoir (VVR) supplies water to over six million people residing in the Mexico City Metropolitan Area. In recent years, this water resource has been subjected to significant risks due to several factors, including human population growth, alterations in global climate patterns, excessive resource utilization, and insufficient protective regulations, thereby endangering not only the biocenosis itself, but also the water supply for numerous inhabitants. This study aimed to evaluate the current state of the reservoir through the determination of conventional and emerging pollutants present in the sampling points, as well as embryotoxicity and oxidative damage in Danio rerio embryos exposed to effluents from the VVR. Embryotoxicity was quantified using the General Morphology Score (GMS) and teratogenic index, whereas oxidative damage was assessed based on lipid peroxidation, hydroperoxide content, oxidized proteins, antioxidant enzyme activity, and gene expression. These results revealed the presence of heavy metals, diverse pharmaceutical compounds, and pesticides. In addition, elevated lipid, hydroperoxide, and protein oxidation accompanied by alterations in superoxide dismutase (SOD) and catalase (CAT) enzymatic activity were observed during exposure. GMS resulted in impaired embryo development and teratogenic effects, including pericardial, axial, and skeletal edema. Furthermore, the upregulation of genes associated with apoptotic processes and antioxidant defense reflects a comprehensive response to oxidative stress. The study concluded that pollutants in VVR water induced oxidative damage, modified antioxidant activity, elicited embryotoxicity, and upregulated oxidative damage-related genes. The findings underscore the necessity of undertaking restoration efforts for water sources, as pollution can potentially endanger aquatic organisms and human well-being.
Collapse
Affiliation(s)
- Livier M Sanchez-Aceves
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Olivan
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico.
| | - Itzayana Pérez-Alvarez
- Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan/Jesús Carranza s/n. Toluca, 50120 Toluca, Estado de México, Mexico
| | - Karina Elisa Rosales-Pérez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - María Dolores Hernández-Navarro
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Deysi Amado-Piña
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco, km 14.5, San Cayetano, Toluca 50200, Mexico
| | - Reyna Natividad
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco, km 14.5, San Cayetano, Toluca 50200, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu, Delegación Gustavo A. Madero, Ciudad de México 07738, Mexico
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu, Delegación Gustavo A. Madero, Ciudad de México 07738, Mexico
| | - J J Ramírez-García
- Laboratorio de Química Analítica, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón esq. Paseo Tollocan, CP 50120 Toluca, Estado de México, Mexico
| | - M E Becerril
- Laboratorio de Química Analítica, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón esq. Paseo Tollocan, CP 50120 Toluca, Estado de México, Mexico
| | - M Dávila-Estrada
- Laboratorio de Química Analítica, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón esq. Paseo Tollocan, CP 50120 Toluca, Estado de México, Mexico
| |
Collapse
|
4
|
Medykowska M, Wiśniewska M, Szewczuk-Karpisz K, Galaburda M. Adsorption Capacity of Carbon-Silica Composites Towards Diclofenac in Poly(acrylic acid) Containing Systems: A Crucial Study on Common Wastewater Contaminants. Chemphyschem 2024; 25:e202300813. [PMID: 38430067 DOI: 10.1002/cphc.202300813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/03/2024]
Abstract
Diclofenac is one of the most popular over-the-counter non-steroidal anti-inflammatory drug and poly(acrylic acid) is a frequently used as thickener, filler or stabilizer. For these reasons, they are common organic contaminants in raw wastewater. The purpose of the presented studies was to compare the adsorption capacity of three carbon-silica composites - metal-free C/SiO2, iron-enriched C/Fe/SiO2 and manganese-enriched C/Mn/SiO2 towards diclofenac. The studies were carried out in single, and mixed systems in the presence of poly(acrylic acid) polymer. Adsorption, desorption and kinetics of the adsorption process were investigated. The concentration of diclofenac in the supernatants was determined using high-performance liquid chromatography. The solids were also characterized with an ASAP apparatus using low-temperature nitrogen desorption adsorption isotherms at liquid nitrogen temperature. In addition, potentiometric titrations and electrophoretic mobility measurements, as well as stability tests of the studied suspensions were carried out. The most efficient composite among investigated ones proved to be C/Fe/SiO2 removing diclofenac at the level of 46.68 mg/g for its initial concentration of 90 ppm. The results obtained clearly demonstrated that the carbon-silica composites are effective in separation of drugs from aqueous solutions and can be successfully used in the future for the removal of organic pollutants from water environment.
Collapse
Affiliation(s)
- Magdalena Medykowska
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Maria Curie-Sklodowska Sq. 3, 20-031, Lublin, Poland
| | - Małgorzata Wiśniewska
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Maria Curie-Sklodowska Sq. 3, 20-031, Lublin, Poland
| | | | - Mariia Galaburda
- Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, General Naumov Street 17, 03164, Kyiv, Ukraine
- Department of Physicochemistry of Solid Surface, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie- Sklodowska University in Lublin, Maria Curie-Sklodowska Sq. 3, 20-031, Lublin, Poland
| |
Collapse
|
5
|
Popoola LT, Olawale TO, Salami L. A review on the fate and effects of contaminants in biosolids applied on land: Hazards and government regulatory policies. Heliyon 2023; 9:e19788. [PMID: 37810801 PMCID: PMC10556614 DOI: 10.1016/j.heliyon.2023.e19788] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
The increase in world population growth and its resultant increase in industrial production to meet its need, have continued to raise the volume of wastewater received by treatment plant facilities. This has expectedly, led to an upsurge in the volume of sewage sludge and biosolids generated from wastewater treatment systems. Biosolids are best managed by application on land because of their agronomic benefits. However, this usage has been discovered to negatively affect humans and impact the environment due to the accumulation of minute concentrations of contaminants still present in the biosolid after treatment, hence the need for government regulations. This review article examined the fate and effects of pollutants, especially persistent organic pollutants (PoPs) of concern and emerging contaminants found in biosolids used for land applications, and also discussed government regulations on biosolid reuse from the perspectives of the two major regulations governing biosolid land application-the EU's Sludge Directive and USEPA's Part 503 Rule, in an attempt to draw attention to their outdated contents since enactment, as they do not currently meet the challenges of biosolid land application and thus, require a comprehensive update. Any update efforts should focus on USEPA's Part 503 Rule, which is less stringent on the allowable concentration of biosolid pollutants. Furthermore, an update should include specific regulations on new and emerging contaminants and persistent organic pollutants (PoPs) such as microplastics, pharmaceutical and personal care products (P&PCPs), surfactants, endocrine-disrupting chemicals, flame retardants, pathogens, and organic pollutants; further reduction of heavy metal standard limits, and consideration of soil phosphate-metal interactions to regulate biosolid agronomic loading rate. Future biosolid research should focus on the concentration of TCS, TCC, and emerging pharmaceuticals, as well as Microplastic transport in biosolid-amended soils, soil-plant transfer mechanism, and metabolism of PFAs in the soils; all of which will inform government policies on biosolid application on land.
Collapse
Affiliation(s)
- Lekan Taofeek Popoola
- Department of Chemical and Petroleum Engineering, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Theophilus Ogunwumi Olawale
- Department of Chemical and Petroleum Engineering, University of Lagos, Akoka, Yaba, Lagos State, Nigeria
- Environmental Engineering Research Unit, Department of Chemical Engineering, Lagos State University, Epe, Lagos State, Nigeria
| | - Lukumon Salami
- Environmental Engineering Research Unit, Department of Chemical Engineering, Lagos State University, Epe, Lagos State, Nigeria
| |
Collapse
|
6
|
Vázquez-Tapia I, Salazar-Martínez T, Acosta-Castro M, Meléndez-Castolo KA, Mahlknecht J, Cervantes-Avilés P, Capparelli MV, Mora A. Occurrence of emerging organic contaminants and endocrine disruptors in different water compartments in Mexico - A review. CHEMOSPHERE 2022; 308:136285. [PMID: 36057353 DOI: 10.1016/j.chemosphere.2022.136285] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
This review compiles the studies (2007-2021) regarding the occurrence of emerging organic contaminants (EOCs) and endocrine disruptors (EDs) in wastewater, surface water and groundwater in Mexico. A total of 174 compounds were detected, including pharmaceuticals, hormones, plasticizers, personal care products, sweeteners, drugs, and pesticides considered as EDs. The levels of EOCs and EDs varied from ng/L to 140 mg/L, depending on the compound, location, and compartment. Raw wastewater was the most studied matrix, showing a greater abundance and number of detected compounds. Nevertheless, surface waters showed high concentrations of bisphenol-A, butylbenzil-phthalate, triclosan, pentachlorophenol, and the hormones estrone, 17 α-ethinylestradiol, and 17 β-estradiol, which exceeded the thresholds set by international guidelines. Concentrations of 17 α-ethinylestradiol and triclosan exceeding the above-mentioned limits were reported in groundwater. Cropland irrigation with raw wastewater was the principal activity introducing EOCs and EDs into groundwater. The groundwater abundance of EOCs was considerably lesser than that of wastewater, highlighting the attenuation capacity of soils/aquifers during wastewater infiltration. However, carbamazepine and N,N-diethyl-meta-toluamide showed higher concentrations in groundwater than those in wastewater, suggesting their accumulation/concentration in soils/pore-waters. Although the contamination of water resources represents one of the most environmental concerns in Mexico, this review brings to light the lack of studies on the occurrence of EOCs in Mexican waters, which is important for public health policies and for developing legislations that incorporates EOCs as priority contaminants in national water quality guidelines. Consequently, the development of legislations will support regulatory compliance for wastewater and drinking water, reducing the human exposure.
Collapse
Affiliation(s)
- Ivón Vázquez-Tapia
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla, 72453, Mexico
| | - Tania Salazar-Martínez
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla, 72453, Mexico
| | - Mariana Acosta-Castro
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla, 72453, Mexico
| | - Karen Andrea Meléndez-Castolo
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla, 72453, Mexico
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64149, Nuevo León, Mexico
| | - Pabel Cervantes-Avilés
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla, 72453, Mexico
| | - Mariana V Capparelli
- Instituto de Ciencias del Mar y Limnología, Estación El Carmen, Universidad Nacional Autónoma de México, Ciudad del Carmen, 24157, Mexico
| | - Abrahan Mora
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla, 72453, Mexico.
| |
Collapse
|
7
|
Sharma M, Yadav A, Dubey KK, Tipple J, Das DB. Decentralized systems for the treatment of antimicrobial compounds released from hospital aquatic wastes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156569. [PMID: 35690196 DOI: 10.1016/j.scitotenv.2022.156569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/04/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
In many developing countries, untreated hospital effluents are discharged and treated simultaneously with municipal wastewater. However, if the hospital effluents are not treated separately, they pose concerning health risks due to the possible transport of the antimicrobial genes and microbes in the environment. Such effluent is considered as a point source for a number of potentially infectious microorganisms, waste antimicrobial compounds and other contaminants that could promote antimicrobial resistance development. The removal of these contaminants prior to discharge reduces the exposure of antimicrobials to the environment and this should lower the risk of superbug development. At an effluent discharge site, suitable pre-treatment of wastewater containing antimicrobials could maximise the ecological impact with potentially reduced risk to human health. In addressing these points, this paper reviews the applications of decentralized treatment systems toward reducing the concentration of antimicrobials in wastewater. The most commonly used techniques in decentralized wastewater treatment systems for onsite removal of antimicrobials were discussed and evidence suggests that hybrid techniques should be more useful for the efficient removal of antimicrobials. It is concluded that alongside the cooperation of administration departments, health industries, water treatment authorities and general public, decentralized treatment technology can efficiently enhance the removal of antimicrobial compounds, thereby decreasing the concentration of contaminants released to the environment that could pose risks to human and ecological health due to development of antimicrobial resistance in microbes.
Collapse
Affiliation(s)
- Manisha Sharma
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Ankush Yadav
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Kashyap Kumar Dubey
- Bioprocess Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Joshua Tipple
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Diganta Bhusan Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom.
| |
Collapse
|
8
|
Selak A, Reberski JL, Klobučar G, Grčić I. Ecotoxicological aspects related to the occurrence of emerging contaminants in the Dinaric karst aquifer of Jadro and Žrnovnica springs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153827. [PMID: 35157871 DOI: 10.1016/j.scitotenv.2022.153827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/19/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Karst aquifers are globally important source of drinking water and harbor specific ecosystems that are vulnerable to anthropogenic contamination. This paper provides insights into the occurrence and ecotoxicological characterization of 21 emerging contaminants (ECs) detected in the karst catchment of Jadro and Žrnovnica springs (Dinarides, Croatia). Karst springs used for water supply, surface water, and groundwater were sampled during seven campaigns. The ECs concentration levels ranged from 0.3 ng/L (tramadol in Jadro spring) to 372 ng/L (1H-benzotriazole in Cetina River). DEET was the most frequently detected ECs with an average concentration of around 50 ng/L in both surface water and groundwater. To prioritise detected ECs, their persistence (P), bioaccumulation (B), mobility (M) and toxicity (T) were assessed based on in silico strategy for PBT assessment and recently developed REACH PMT guidelines. PBT scores ranging below the threshold of 0.5, indicated non-PBT compounds of expected low concern. However, only 4 out of 21 detected ECs were not assessed as PMT/vPvM. Concerningly, 20 ECs were categorised as very mobile. Karst springs exhibited larger proportions of ECs meeting PMT/vPvM criteria than surface water. To characterise the contamination extent and estimate the incidence of adverse effects of detected ECs, a preliminary environmental risk assessment (ERA) was conducted. Most ECs posed no environmental risk with RQ values predominantly below 0.01. The total risk quotient RQsite accentuated Cetina River as having the highest risk compared to other sampling sites. This is the first study on ECs in Croatian karst, contributing to a growing need to understand the impacts of emerging contaminants in karst aquifers, which are still largely unexplored.
Collapse
Affiliation(s)
- Ana Selak
- HGI-CGS Croatian Geological Survey, Department of Hydrogeology and Engineering Geology, Sachsova 2, 10 000 Zagreb, Croatia.
| | - Jasmina Lukač Reberski
- HGI-CGS Croatian Geological Survey, Department of Hydrogeology and Engineering Geology, Sachsova 2, 10 000 Zagreb, Croatia
| | - Göran Klobučar
- PMF Faculty of Science, Department of Biology, Division of Zoology, Rooseveltov trg 6, 10 000 Zagreb, Croatia
| | - Ivana Grčić
- GFV Faculty of Geotechnical Engineering, Department of Environmental Engineering, Hallerova aleja 7, 42000 Varaždin, Croatia
| |
Collapse
|
9
|
Diniz V, Rath G, Rath S, Araújo LS, Cunha DGF. Competitive kinetics of adsorption onto activated carbon for emerging contaminants with contrasting physicochemical properties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:42185-42200. [PMID: 34435291 DOI: 10.1007/s11356-021-16043-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Activated carbon (AC) can be used for the removal of emerging contaminants (e.g., drugs) in water and wastewater treatment plants. In the present study, we investigated the performance of two ACs (from coconut shell and Pinnus sp.) in the adsorption of caffeine, carbamazepine, and ricobendazole considering the compounds separately and in combination in batch-scale experiments. The concentrations of the drugs were determined by a validated method using solid-phase extraction with on-line ultra-high performance liquid chromatography-tandem mass spectrometry. The most mesoporous AC provided higher drug removal. The kinetic data were described by the pseudo-second-order, Elovich, and Weber-Morris models, while the adsorption isotherms showed a better fit to the Freundlich model, indicative of multilayer adsorption. The Dubinin-Radushkevich model was used as a first approach to estimate the mean adsorption energy (E) and the results indicate that chemisorption governed the adsorption process, with E higher than 8 kJ mol-1. In the multicomponent assays, the adsorption of caffeine showed the greatest hindrance caused by the presence of other drugs. Multicomponent assays are fundamental to evaluate the potential adsorption capacity in real water treatment plants. Our study suggests that drugs with different structures and physicochemical properties may interact differently with ACs, especially in multicomponent solutions, with important implications for the design (e.g., volumes and areas of treatment plants) and operation (e.g., water residence time) of the treatment plants.
Collapse
Affiliation(s)
- Vinicius Diniz
- São Carlos School of Engineering, Hydraulics and Sanitation Department, University of São Paulo, São Carlos, SP, 13566-590, Brazil.
| | - Gabriela Rath
- Institute of Chemistry, University of Campinas, Campinas, SP, 13084-971, Brazil
| | - Susanne Rath
- Institute of Chemistry, University of Campinas, Campinas, SP, 13084-971, Brazil
| | - Larissa Sene Araújo
- São Carlos School of Engineering, Hydraulics and Sanitation Department, University of São Paulo, São Carlos, SP, 13566-590, Brazil
| | - Davi Gasparini Fernandes Cunha
- São Carlos School of Engineering, Hydraulics and Sanitation Department, University of São Paulo, São Carlos, SP, 13566-590, Brazil
| |
Collapse
|
10
|
Martin RM, Bereman MS, Marsden KC. The Cyanotoxin 2,4-DAB Reduces Viability and Causes Behavioral and Molecular Dysfunctions Associated with Neurodegeneration in Larval Zebrafish. Neurotox Res 2022; 40:347-364. [PMID: 35029765 PMCID: PMC9035002 DOI: 10.1007/s12640-021-00465-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/30/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
Exposure to cyanotoxins has been linked to neurodegenerative diseases, including amyotrophic lateral sclerosis, Alzheimer's, and Parkinson's disease. While the cyanotoxin β-methylamino-L-alanine (BMAA) has received much attention, cyanobacteria produce many cyanotoxic compounds, several of which have been detected in nature alongside BMAA, including 2,4-diaminobutyric acid (2,4-DAB) and N-(2-aminoethyl)glycine (AEG). Thus, the question of whether 2,4-DAB and AEG also cause neurotoxic effects in vivo is of great interest, as is the question of whether they interact to enhance toxicity. Here, we evaluate the toxic and neurotoxic effects of these cyanotoxins alone or in combination by measuring zebrafish larval viability and behavior after exposure. 2,4-DAB was the most potent cyanotoxin as it decreased larval viability by approximately 50% at 6 days post fertilization, while BMAA and AEG decreased viability by just 16% and 8%, respectively. Although we only observed minor neurotoxic effects on spontaneous locomotion, BMAA and AEG enhanced acoustic startle sensitivity, and they interacted in an additive manner to exert their effects. 2,4-DAB; however, only modulated startle kinematics, an indication of motor dysfunction. To investigate the mechanisms of 2,4-DAB's effects, we analyzed the protein profile of larval zebrafish exposed to 500 µM 2,4-DAB at two time points and identified molecular signatures consistent with neurodegeneration, including disruption of metabolic pathways and downregulation of the ALS-associated genes SOD1 and UBQLN4. Together, our data demonstrate that BMAA and its isomers AEG and 2,4-DAB cause neurotoxic effects in vivo, with 2,4-DAB as the most potent of the three in the zebrafish model.
Collapse
Affiliation(s)
- Rubia M Martin
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Michael S Bereman
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Kurt C Marsden
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
11
|
Świacka K, Maculewicz J, Kowalska D, Caban M, Smolarz K, Świeżak J. Presence of pharmaceuticals and their metabolites in wild-living aquatic organisms - Current state of knowledge. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127350. [PMID: 34607031 DOI: 10.1016/j.jhazmat.2021.127350] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
In the last decades an increasing number of studies has been published concerning contamination of aquatic ecosystems with pharmaceuticals. Yet, the distribution of these chemical compounds in aquatic environments raises many questions and uncertainties. Data on the presence of selected pharmaceuticals in the same water bodies varies significantly between different studies. Therefore, since early 1990 s, wild organisms have been used in research on environmental contamination with pharmaceuticals. Indeed, pharmaceutical levels measured in biological matrices may better reflect their overall presence in the aquatic environments as such levels include not only direct exposure of a given organisms to a specific pollutant but also processes such as bioaccumulation and biomagnification. In the present paper, data concerning occurrence of pharmaceuticals in aquatic biota was reviewed. So far, pharmaceuticals have been studied mainly in fish and molluscs, with only a few papers available on crustaceans and macroalgae. The most commonly found pharmaceuticals both in freshwater and marine organisms are antibiotics, antidepressants and NSAIDS while there is no information about the presence of anticancer drugs in aquatic organisms. Furthermore, only single studies were conducted in Africa and Australia. Hence, systematization of up-to-date knowledge, the main aim of this review, is needed for further research targeting.
Collapse
Affiliation(s)
- Klaudia Świacka
- Department of Experimental Ecology of Marine Organisms, Institute of Oceanography, University of Gdańsk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland
| | - Jakub Maculewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Dorota Kowalska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Katarzyna Smolarz
- Department of Experimental Ecology of Marine Organisms, Institute of Oceanography, University of Gdańsk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland
| | - Justyna Świeżak
- Department of Experimental Ecology of Marine Organisms, Institute of Oceanography, University of Gdańsk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland
| |
Collapse
|
12
|
Zhang X, Shi J, Huang X, Shao B. Formation and occurrence of disinfection byproducts of benzodiazepine drug estazolam in drinking water of Beijing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150028. [PMID: 34798715 DOI: 10.1016/j.scitotenv.2021.150028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Estazolam (EZ) is a long-acting benzodiazepine (BZD) drug with high clinical consumption in China to treat anxiety, depression and other syndromes. Recently, it has been found as a leading potentially inappropriate medication among hospitalized elderly patients, increasing the risk of falls. It is discharged into the aquatic environment after use and has been frequently detected, ultimately affecting the safety of drinking water. In the present study, the reaction of EZ during chlorination disinfection was investigated in detail with regard to its transformation and kinetics. By means of ultra-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF-MS), four main disinfection byproducts (DBPs) were tentatively identified, and the transformation pathways were speculated to be cleavage at the imine linkage and oxidation on the diazepinone ring. The chlorination reaction rate in the pseudo-first-order kinetic model was significantly affected by free available chlorine (FAC) and pH. The increase in pH value led to a decrease in the reaction rate, while a higher dosage of chlorine resulted in a faster kinetic rate. We further estimated the potential toxicities of EZ and its DBPs using quantitative structure-activity relationship (QSAR) software tools. DBPs exhibited much higher toxicity than EZ and exhibited developmental toxicity and mutagenicity. Finally, a total of 108 drinking water samples were collected in the wet and dry seasons to determine actual residue changes in real environmental conditions. The detection frequency was 29% for EZ, and the highest concentration of 0.60 ng L-1 was found for its DBPs in tap water. No seasonal variations in concentration were observed. Overall, the results indicate that EZ and its DBPs may persist in drinking water, posing potential risks to public health.
Collapse
Affiliation(s)
- Xin Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing 100013, China
| | - Jiachen Shi
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing 100013, China
| | - Xiaoyong Huang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing 100013, China; College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing 100013, China; College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China.
| |
Collapse
|
13
|
Vieira LR, Soares AMVM, Freitas R. Caffeine as a contaminant of concern: A review on concentrations and impacts in marine coastal systems. CHEMOSPHERE 2022; 286:131675. [PMID: 34358890 DOI: 10.1016/j.chemosphere.2021.131675] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/18/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Caffeine has been identified as emerging contaminant of concern due to its widespread occurrence in the aquatic environment and potential to be biologically active. Recently, these concerns have been translated in an increasing research on its occurrence and effects on biota. However, there is still a limited knowledge on seawater matrices and the implications of caffeine presence in coastal and marine ecosystems are not fully known. The present review aims to fill these knowledge gaps, analysing the existing literature regarding the occurrence, effects and potential risks of caffeine residues to coastal ecosystems, contributing to the risk assessment of this psychoactive drug in the aquatic environment. The analysed literature reported caffeine concentrations in the coastal ecosystems, raising high concerns about the potential adverse impacts on the ecological safety and human health. Caffeine has been found in tissues from coastal and marine biota including microalgae, coral reefs, bivalves and fish due to bioaccumulation after chronic, long-term exposures in a contaminated environment. Additionally, caffeine residues had been demonstrated to have adverse impacts on aquatic organisms, at environmentally realistic concentrations, inducing oxidative stress and lipid peroxidation, neurotoxicity, changing energy reserves and metabolic activity, affecting reproduction and development and, in some cases, causing mortality. Considering the increasing adverse impacts of caffeine pollution in the coastal environment, this review highlights the urgent need to minimize the increasing load of caffeine to the aquatic ecosystems; being imperative the implementation of scientific programs and projects to classify effectively the caffeine as a high-priority environmentally hazardous emerging pollutant.
Collapse
Affiliation(s)
- L R Vieira
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - A M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - R Freitas
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
14
|
Hara-Yamamura H, Nakashima K, Fukushima T, Okabe S. Transcriptomic response of HepG2 cells exposed to three common anti-inflammatory drugs: Ketoprofen, mefenamic acid, and diclofenac in domestic wastewater effluents. CHEMOSPHERE 2022; 286:131715. [PMID: 34388874 DOI: 10.1016/j.chemosphere.2021.131715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/05/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
The biological impacts of residual pharmaceuticals in the complex wastewater effluents have not been fully understood. Here, we investigated changes in the transcriptomic responses of hepatobrastoma (HepG2) cells exposed to a single or partially combined three common non-steroidal anti-inflammatory drugs (NSAIDs); ketoprofen (KPF), mefenamic acid (MFA) and diclofenac (DCF), in domestic wastewater effluents. After 48 h sub-lethal exposure to single compounds, the DNA microarray analysis identified 57-184 differently expressed genes (DEGs). The hierarchical clustering analysis and GO enrichment of the DEGs showed that gene expression profiles of the NSAIDs were distinct from each other although they are classified into the same therapeutic category. Four maker genes (i.e., EGR1, AQP3, SQSTM1, and NAG1) were further selected from the common DEGs, and their expressions were quantified by qPCR assay in a dose-dependent manner (ranging from μg/L to mg/L). The results revealed the insignificant induction of the marker genes at 1 μg/L of KPF, MFA, and DCF, suggesting negligible biological impacts of the NSAIDs on gene expression (early cellular responses) of HepG2 at typical concentration levels found in the actual wastewater effluents. Based on the quantitative expression analysis of the selected marker genes, the present study indicated that the presence of wastewater effluent matrix may mitigate the potentially adverse cellular impacts of the NSAIDs.
Collapse
Affiliation(s)
- Hiroe Hara-Yamamura
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.
| | - Koji Nakashima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.
| | - Toshikazu Fukushima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.
| |
Collapse
|
15
|
Wang D, Zhang H, Yu Y, Zhang J. Enhanced abatement of pharmaceuticals by permanganate via the addition of Co 3O 4 nanoparticles. CHEMOSPHERE 2021; 282:131115. [PMID: 34119724 DOI: 10.1016/j.chemosphere.2021.131115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 05/07/2023]
Abstract
Pharmaceuticals may pose serious potential risks, such as biological responses and chronic health effects, due to their ubiquitous in natural aquatic water bodies. In this study, we proposed an effective, feasible, and low-cost strategy for the abatement of pharmaceuticals (i.e., phenylbutazone (PBZ) and sulfinpyrazone (SPZ)) via Co3O4 nanoparticles (NPs) as heterogeneous catalyst in permanganate (Mn(VII)) oxidation for the first time. The performance of the Co3O4 NPs in permanganate oxidation is highly dependent on pH and its dosage. Co3O4 NPs play as electron shuttles in the catalytic permanganate oxidation process involving one-electron transfer with the oxidation of ≡CoII to ≡CoIII by permanganate and the formation of colloidal manganese dioxide (MnO2), as well as the reduction of the newly formed ≡CoIII to ≡CoII by organics and the production of oxidized organic byproducts. The degradation pathways of PBZ and SPZ in catalytic permanganate oxidation were proposed based on the liquid chromatography-tandem mass spectrometry (LC-MS/MS) results and Gaussian calculation, and the toxicity decay of pharmaceuticals during oxidation was observed. Considering the stability, reusability, and cost, Co3O4 coupled with Mn(VII) is suitable for water pretreatment and is potentially feasible for industrial application, which is not only effective for decomposing PBZ and SPZ, but also for eliminating their toxicity.
Collapse
Affiliation(s)
- Dingxiang Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment & Ecology, Chongqing University, Chongqing, 400045, China
| | - Honglong Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment & Ecology, Chongqing University, Chongqing, 400045, China
| | - Yongqiang Yu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment & Ecology, Chongqing University, Chongqing, 400045, China
| | - Jing Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment & Ecology, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
16
|
Lee HJ, Kim DW, Kim C, Ryu HD, Chung EG, Kim K. Concentrations and Risk Assessments of Antibiotics in an Urban-Rural Complex Watershed with Intensive Livestock Farming. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10797. [PMID: 34682559 PMCID: PMC8535446 DOI: 10.3390/ijerph182010797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 11/22/2022]
Abstract
Antibiotics used for the treatment of humans and livestock are released into the environment, whereby they pose a grave threat to biota (including humans) as they can cause the emergence of various strains of resistant bacteria. An improved understanding of antibiotics in the environment is thus vital for appropriate management and mitigation. Herein, surface water and groundwater samples containing antibiotics were analyzed in an urban-rural complex watershed (Cheongmi Stream) comprising intensive livestock farms by collecting samples across different time points and locations. The spatiotemporal trends of the residual antibiotics were analyzed, and ecological and antibiotic resistance-based risk assessments were performed considering their concentrations. The results showed that the concentrations and detection frequencies of the residual antibiotics in the surface water were affected by various factors such as agricultural activities and point sources, and were higher than those found in groundwater; however, frequent detection of antibiotics in groundwater showed that residual antibiotics were influenced by factors such as usage pattern and sewage runoff. Furthermore, few antibiotics posed ecological risks. The risk assessment methods adopted in this study can be applied elsewhere, and the results can be considered in the environmental management of residual antibiotics in the Cheongmi Stream watershed.
Collapse
Affiliation(s)
- Hyun-Jeoung Lee
- Department of Water Environment Research, National Institute of Environmental Research (NIER), Hwangyoung-ro 42, Seo-gu, Incheon 22689, Korea; (H.-J.L.); (D.-W.K.); (H.-D.R.); (K.K.)
| | - Deok-Woo Kim
- Department of Water Environment Research, National Institute of Environmental Research (NIER), Hwangyoung-ro 42, Seo-gu, Incheon 22689, Korea; (H.-J.L.); (D.-W.K.); (H.-D.R.); (K.K.)
| | - Chansik Kim
- Accident Coordination & Training Division, National Institute of Chemical Safety, Gajeongbuk-ro 90, Yuseong-gu, Dajeon 34111, Korea;
| | - Hong-Duck Ryu
- Department of Water Environment Research, National Institute of Environmental Research (NIER), Hwangyoung-ro 42, Seo-gu, Incheon 22689, Korea; (H.-J.L.); (D.-W.K.); (H.-D.R.); (K.K.)
| | - Eu-Gene Chung
- Department of Water Environment Research, National Institute of Environmental Research (NIER), Hwangyoung-ro 42, Seo-gu, Incheon 22689, Korea; (H.-J.L.); (D.-W.K.); (H.-D.R.); (K.K.)
| | - Kyunghyun Kim
- Department of Water Environment Research, National Institute of Environmental Research (NIER), Hwangyoung-ro 42, Seo-gu, Incheon 22689, Korea; (H.-J.L.); (D.-W.K.); (H.-D.R.); (K.K.)
| |
Collapse
|
17
|
Llamas-Dios MI, Vadillo I, Jiménez-Gavilán P, Candela L, Corada-Fernández C. Assessment of a wide array of contaminants of emerging concern in a Mediterranean water basin (Guadalhorce river, Spain): Motivations for an improvement of water management and pollutants surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147822. [PMID: 34034190 DOI: 10.1016/j.scitotenv.2021.147822] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
This study investigates the occurrence and distribution of 185 organic contaminants (regulated pollutants and contaminants of emerging concern; CECs) in surface and groundwater of the Guadalhorce River basin (southern Spain) providing the most detailed dataset regarding organic pollution presented so far in this area. Up to 63 contaminants were detected in a monitoring campaign conducted in March 2016. Most contaminants were detected more frequently in surface water where they generally present higher concentrations suggesting the prevalence of wastewater discharges into streams as the main pollutant sources. In general, hydrophobic CECs presented the highest frequencies of detection and concentrations, which can be a consequence of several factors: (1) hydrophobic compounds show a higher retardation factor, which result, along with a continuous contaminant input, in a widespread and homogeneous distribution. In contrast, hydrophilic contaminants are more easily transported by water flows towards the lower basin and potentially accumulate as driven by groundwater flow and because of low renewal rates in the detrital aquifers caused by re-pumping and irrigation return flows in agricultural lands; (2) hydrophobic CECs studied in this research are mainly personal care products and organophosphate esters flame retardants and plasticizers, which are present in many different products and are used in large amounts; Also, (3) use of biosolids (reclaimed sewer sludge) as fertilizer for crops is potentially an additional diffuse source of organic pollutants in the study area contributing to a widespread distribution, especially for hydrophobic compounds. Obtained results highlight the need to better define the potential risk of non-regulated contaminants in water resources as well as the great impact of untreated wastewater discharges.
Collapse
Affiliation(s)
- M I Llamas-Dios
- Group of Hydrogeology, Department of Geology, Faculty of Science, University of Málaga, 29071 Málaga, Spain
| | - I Vadillo
- Group of Hydrogeology, Department of Geology, Faculty of Science, University of Málaga, 29071 Málaga, Spain.
| | - P Jiménez-Gavilán
- Group of Hydrogeology, Department of Geology, Faculty of Science, University of Málaga, 29071 Málaga, Spain
| | - L Candela
- IMDEA-Water, 28805 Alcalá de Henares, 03690 Madrid, Spain; IUACA, University of Alicante, Alicante, Spain
| | - C Corada-Fernández
- Physical Chemistry Department, Faculty of Marine and Environmental Sciences, University of Cadiz, CEIMAR, 11510 Cádiz, Spain
| |
Collapse
|
18
|
Lee HJ, Kim DW, Chung EG. Strong links between load and manure and a comprehensive risk assessment of veterinary antibiotics with low K OW in intensive livestock farming watersheds. CHEMOSPHERE 2021; 279:130902. [PMID: 34134438 DOI: 10.1016/j.chemosphere.2021.130902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/28/2021] [Accepted: 05/15/2021] [Indexed: 05/09/2023]
Abstract
Various veterinary antibiotics (VAs) are used in large quantities as an essential component for intensive livestock farming, and can flow into the environment from various pollution sources. In this study, VAs in surface water and groundwater in the Gwangcheon stream watershed, an intensive livestock farming area in Korea, were analyzed using ultra-high-performance liquid chromatograph-quadrupole orbitrap high-resolution mass spectrometer with online solid phase extraction. Although the selected VAs are relatively mobile and have low KOW values it is significant to assess their fates and ecological risks in the environment. The concentration of VAs in the surface water was higher than that in groundwater by approximately 23-fold, indicating that the former were directly introduced from pollution sources such as livestock manure. An analysis of the correlation between livestock manure production and the residuals of VAs in the stream showed a high linearity (R2 > 0.70), confirming that livestock excreta significantly contributed to the VAs in the watershed. A combined evaluation of environmental behaviors and ecological risks of VAs was performed for the first time using persistence, bioaccumulation potential, and toxicity properties and risk quotient values of VAs. Trimethoprim showed persistence and a potential impact on the ecosystem. The cumulative risk quotient values at one sampling point exceeded 1 indicating that several VAs can cumulatively cause local risk. The risk assessment method considering pollution sources, different locations, and correlation analysis applied in this study will be useful in evaluating the impacts of trace pollutants in watersheds.
Collapse
Affiliation(s)
- Hyun-Jeoung Lee
- Department of Water Environment Research, National Institute of Environmental Research (NIER), Hwangyoung-ro 42, Seo-gu, Incheon, 22689, South Korea
| | - Deok-Woo Kim
- Department of Water Environment Research, National Institute of Environmental Research (NIER), Hwangyoung-ro 42, Seo-gu, Incheon, 22689, South Korea
| | - Eu Gene Chung
- Department of Water Environment Research, National Institute of Environmental Research (NIER), Hwangyoung-ro 42, Seo-gu, Incheon, 22689, South Korea.
| |
Collapse
|
19
|
Hain E, Adejumo H, Anger B, Orenstein J, Blaney L. Advances in antimicrobial activity analysis of fluoroquinolone, macrolide, sulfonamide, and tetracycline antibiotics for environmental applications through improved bacteria selection. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125686. [PMID: 34088184 DOI: 10.1016/j.jhazmat.2021.125686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/13/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
The widespread use of antibiotics has led to their ubiquitous presence in water and wastewater and raised concerns about antimicrobial resistance. Clinical antibiotic susceptibility assays have been repurposed to measure removal of antimicrobial activity during water and wastewater treatment processes. The corresponding protocols have mainly employed growth inhibition of Escherichia coli. The present work focused on optimizing bacteria selection to improve the sensitivity of residual antimicrobial activity measurements by broth microdilution assays. Thirteen antibiotics from four classes (i.e., fluoroquinolones, macrolides, sulfonamides, tetracyclines) were investigated against three gram-negative organisms, namely E. coli, Mycoplasma microti, and Pseudomonas fluorescens. The minimum inhibitory concentration (MIC) and half-maximal inhibitory concentration (IC50) were calculated for each antibiotic-bacteria pair. P. fluorescens produces a fluorescent siderophore, pyoverdine, that was used to assess sublethal effects and further enhance the sensitivity of antimicrobial activity measurements. The optimal antibiotic-bacteria pairs were as follows: fluoroquinolone-E. coli (growth inhibition); macrolide- and sulfonamide-M. microti (growth inhibition); and, tetracycline-P. fluorescens (pyoverdine inhibition). Compared to E. coli growth inhibition, the sensitivity of antimicrobial activity analysis was improved by up to 728, 19, and 2.7 times for macrolides (tylosin), sulfonamides (sulfamethoxazole), and tetracyclines (chlortetracycline), facilitating application of these bioassays at environmentally-relevant conditions.
Collapse
Affiliation(s)
- Ethan Hain
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA
| | - Hollie Adejumo
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA; University of Michigan, Department of Civil and Environmental Engineering, 2350 Hayward Street, 2105 GG Brown Building, Ann Arbor, MI 48109-2125, USA
| | - Bridget Anger
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA
| | - Joseph Orenstein
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA
| | - Lee Blaney
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA.
| |
Collapse
|
20
|
Roveri V, Guimarães LL, Toma W, Correia AT. Occurrence and risk assessment of pharmaceuticals and cocaine around the coastal submarine sewage outfall in Guarujá, São Paulo State, Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11384-11400. [PMID: 33123891 DOI: 10.1007/s11356-020-11320-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study was to screen and quantify 23 pharmaceutical compounds (including illicit drugs), at two sampling points near the diffusers of the Guarujá submarine outfall, State of São Paulo, Brazil. Samples were collected in triplicate during the high (January 2018) and low (April 2018) seasons at two different water column depths (surface and bottom). A total of 10 compounds were detected using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Caffeine (42.3-141.0 ng/L), diclofenac (3.6-85.7 ng/L), valsartan (4.7-14.3 ng/L), benzoylecgonine (0.3-1.7 ng/L), and cocaine (0.3-0.6 ng/L) were frequently detected (75% occurrence). Orphenadrine (0.6-3.0 ng/L) and atenolol (0.1-0.3 ng/L), and acetaminophen (1.2-1.4 ng/L) and losartan (0.7-3.4 ng/L), were detected in 50% and 25% of the samples, respectively. Only one sample (12.5%) detected the presence of carbamazepine (< 0.001-0.1 ng/L). Unexpectedly a lower frequency of occurrence and concentration of these compounds occurred during the summer season, suggesting that other factors, such as the oceanographic and hydrodynamic regimes of the study area, besides the population rise, should be taken into account. Caffeine presented concentrations above the surface water safety limits (0.01 μg/L). For almost all compounds, the observed concentrations indicate nonenvironmental risk for the aquatic biota, except for caffeine, diclofenac, and acetaminophen that showed low to moderate ecological risk for the three trophic levels tested.
Collapse
Affiliation(s)
- Vinicius Roveri
- Faculdade de Ciência e Tecnologia (FCT), Universidade Fernando Pessoa (UFP), Praça 9 de Abril 349, 4249-004, Porto, Portugal
- Universidade Metropolitana de Santos (UNIMES), Avenida Conselheiro Nébias, 536, Encruzilhada, Santos, São Paulo, 11045-002, Brazil
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Luciana Lopes Guimarães
- Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília (UNISANTA), Rua Cesário Mota 8, F83A, Santos, São Paulo, 11045-040, Brazil
| | - Walber Toma
- Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília (UNISANTA), Rua Cesário Mota 8, F83A, Santos, São Paulo, 11045-040, Brazil
| | - Alberto Teodorico Correia
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal.
- Faculdade de Ciências da Saúde (FCS), Universidade Fernando Pessoa (UFP), Rua Carlos da Maia 296, 4200-150, Porto, Portugal.
- Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP), Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
21
|
Marshall MM, McCluney KE. Mixtures of co-occurring chemicals in freshwater systems across the continental US. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115793. [PMID: 33069045 DOI: 10.1016/j.envpol.2020.115793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/24/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Trace chemicals are common in marine and freshwater ecosystems globally. It is recognized that in the environment, individual chemicals are rarely found in isolation. Insufficient work has examined which chemicals co-occur and which methods best identify these mixtures. Using an existing data set, we found evidence that simple correlation analysis is better at identifying mixtures of commonly co-occurring trace chemicals than more commonly used PCA methods. Moreover, simple correlation analysis, unlike PCA, can be used in cases with unbalanced designs and with data points below reportable limits. Application of this approach allowed identification of 10 groups of chemicals commonly found together in freshwaters of the continental US, representing common "chemical syndromes." Better identification of co-occurring chemical combinations could aid in our understanding of biological and ecological effects of aquatic contaminants. This research provides evidence of correlation analyses as a more effective method for identifying commonly co-occurring aquatic contaminants. We also examined the patterns of these mixtures with a dataset consisting of concentrations of 406 trace chemicals from 38 sample locations across the continental US.
Collapse
Affiliation(s)
- Melanie M Marshall
- Wright State University - Lake Campus, Celina, OH, 45822, United States; Bowling Green State University, Bowling Green, OH, 43402, United States.
| | - Kevin E McCluney
- Bowling Green State University, Bowling Green, OH, 43402, United States
| |
Collapse
|
22
|
Gudda FO, Waigi MG, Odinga ES, Yang B, Carter L, Gao Y. Antibiotic-contaminated wastewater irrigated vegetables pose resistance selection risks to the gut microbiome. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114752. [PMID: 32417582 DOI: 10.1016/j.envpol.2020.114752] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Wastewater reuse in food crop irrigation has led to agroecosystem pollution concerns and human health risks. However, there is limited attention on the relationship of sub-lethal antibiotic levels in vegetables and resistance selection. Most risk assessment studies show non-significant toxicity, but overlook the link between antibiotics in crops and propagation of gut microbiome resistance selection. The review highlights the risk of antibiotics in treated water used for irrigation, uptake, and accumulation in edible vegetable parts. Moreover, it elucidates the risks to the adaptive resistance selection of the gut microbiome from sub-lethal antibiotic levels, as a result of dietary contaminated vegetables. Experiments have reported that bacterial resistance selection is possible at concentrations that are several hundred-folds lower than lethal effect levels on susceptible cells. Consequently, mutants selected at low antibiotic levels, such as those from vegetables, are fitter and more resistant compared to those selected at high concentrations. Necessary standardization, such as the development of minimum acceptable antibiotic limits allowable in food crop irrigation water, with a focus on minimum selection concentration, and not only toxicity, has been proposed. Wastewater irrigation offers environmental benefits and can contribute to food security, but it has non-addressed risks. Research gaps, future perspectives, and frameworks of mitigating the potential risks are discussed.
Collapse
Affiliation(s)
- Fredrick Owino Gudda
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Faculty of Environment and Resource Development, Department of Environmental Sciences, Egerton University, Box 536, Egerton, 20115, Kenya
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Emmanuel Stephen Odinga
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bing Yang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Laura Carter
- School of Geography, University of Leeds, Leeds, LS2 9JT, UK
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
23
|
Foon PY, Ganesan Y, Iranmanesh M, Foroughi B. Understanding the behavioural intention to dispose of unused medicines: an extension of the theory of planned behaviour. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28030-28041. [PMID: 32405948 DOI: 10.1007/s11356-020-09125-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
This study examined behavioural intention to dispose of unused medicines using a comprehensive model integrating the theory of planned behaviour (TPB), with knowledge as a driver of personal norms; attitudes, personal norms, and perceived busyness as additional drivers of behavioural intention; and perceived convenience as a moderator. The model was tested with data collected from 204 respondents using the partial least squares technique. Knowledge about the proper disposal of unused medicines was recognized as a strong predictor of personal norms and attitudes towards proper disposal of waste medications. The results showed that attitudes, personal norms, perceived busyness, and perceived behavioural control have significant effects on intention to dispose of unused medicines. Furthermore, perceived convenience moderates the impacts of attitude, personal norms, and perceived behavioural control on intention to dispose of unused medicines. The extended TPB explained 55.7% of the variance of intention to dispose of unused medicines properly. Our results indicate the importance of integrating additional variables into the TPB to enhance its explanatory power in predicting behavioural intention. The results suggest to governments that in order to implement planned programs for proper collection and destruction of waste medication, a plan is needed to enhance public knowledge on the impacts of improper medication waste disposal on the environment, and also that collection points should become accessible for anyone.
Collapse
Affiliation(s)
- Phooi Yut Foon
- Graduate School of Business, University Science Malaysia (USM), 11800, Penang, Malaysia
| | - Yuvaraj Ganesan
- Graduate School of Business, University Science Malaysia (USM), 11800, Penang, Malaysia
| | - Mohammad Iranmanesh
- School of Business and Law, Edith Cowan University (ECU), Joondalup, 6027, Australia.
| | - Behzad Foroughi
- Department of International Business Administration, I-Shou University, Kaohsiung City, Taiwan
| |
Collapse
|
24
|
Koroša A, Brenčič M, Mali N. Estimating the transport parameters of propyphenazone, caffeine and carbamazepine by means of a tracer experiment in a coarse-gravel unsaturated zone. WATER RESEARCH 2020; 175:115680. [PMID: 32217381 DOI: 10.1016/j.watres.2020.115680] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
Among the emerging contaminants today, pharmaceuticals are some of the most demanding chemical compounds when it comes to understanding their transport within aquifers. The transport of pharmaceuticals in an unsaturated zone is influenced by many factors, including compound sorption and degradation, which is essential in assessing contaminant migration in soil and groundwater. Coarse-gravel aquifers are particularly important for drinking water sources and industrial water supply. Globally, little data on the transport characteristics of coarse-gravel unsaturated zones is available. However, such data is crucial to understanding the transport of pollutants and to implementing the appropriate management strategies to protect the aquifers. In this article, we present tracer experiments employed to determine pharmaceutical transport parameters in the coarse-gravel unsaturated zone. The tracer experiment was performed as a multi-tracer exercise, where deuterated water was infiltrated as a conservative tracer to define the characteristics of the unsaturated zone, together with pharmaceuticals (propyphenazone, caffeine and carbamazepine) as reactive tracers. Based on the breakthrough curves measured at various depths, inverse modelling in combination with analytical and numerical methods (HYDRUS-1D) was performed. Hydraulic parameters for the unsaturated zone were estimated. Linear sorption coefficients (Kd) and degradation half-lives (t1/2) were evaluated for each pharmaceutical. In the unsaturated zone of the coarse-gravel aquifer caffeine has the lowest sorption capacity (mean Kd = 0.027 Lkg-1), while the sorption coefficient of propyphenazone is higher (Kd = 0.07 Lkg-1). Results for the degradation constant of the first order and t1/2 indicate that caffeine has the fastest decay rate (highest t1/2 = 69.3 days), followed by propyphenazone (highest t1/2 = 92.4 days). The parameters for carbamazepine could not be determined using an advection dispersion equation.
Collapse
Affiliation(s)
- Anja Koroša
- Geological Survey of Slovenia, Dimičeva 14, SI-1000, Ljubljana, Slovenia.
| | - Mihael Brenčič
- Department of Geology, Natural and Engineering Faculty, University of Ljubljana, Aškerčeva Cesta 12, SI-1000, Ljubljana, Slovenia; Geological Survey of Slovenia, Dimičeva 14, SI-1000, Ljubljana, Slovenia
| | - Nina Mali
- Geological Survey of Slovenia, Dimičeva 14, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
25
|
Fukushima T, Jintana W, Okabe S. Mixture toxicity of the combinations of silver nanoparticles and environmental pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:6326-6337. [PMID: 31865577 DOI: 10.1007/s11356-019-07413-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Although toxicity of silver nanoparticles (AgNPs) has been well studied, the mixture toxicity of the combination of AgNPs and other environmental pollutants is still largely unknown. Here, we investigated the mixture toxicity of the combinations of AgNPs and common environmental pollutants such as arsenic (As), cadmium (Cd), and chromium (Cr) on human hepatoma cell line (HepG2) at noncytotoxic concentrations based on analyses of cytotoxicity, genotoxicity, reactive oxygen species (ROS) generation, and modes of cell death. In addition, DNA microarray analysis was performed to understand the cellular responses at a molecular level. AgNPs-As and AgNPs-Cd combinations exhibited synergistic effect on cytotoxicity while AgNPs-Cr showed additive effect. The AgNPs-Cd combination caused much stronger synergism than AgNPs-As combination. Based on cellular and molecular level analyses, the synergistic effect could be explained by overproduction of reactive oxygen species (ROS), which induced DNA damage and consequently apoptotic cell death. On the other hand, the additive effect caused by AgNPs-Cr could be attributed to reduction of the mixture toxicity by precipitation of Cr ions. Taken together, our results clearly demonstrated that the mixture toxicity of AgNPs with As, Cd, or Cr at noncytotoxic concentrations had different toxicity effects. Particularly, toxicogenomic approach using DNA microarray was useful to assess the mechanisms of the mixture toxicity.
Collapse
Affiliation(s)
- Toshikazu Fukushima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Wongta Jintana
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.
| |
Collapse
|
26
|
Metformin degradation in aqueous solutions by electro-activation of persulfate and hydrogen peroxide using natural and synthetic ferrous ion sources. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112285] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Kumari M, Kumar A. Human health risk assessment of antibiotics in binary mixtures for finished drinking water. CHEMOSPHERE 2020; 240:124864. [PMID: 31542580 DOI: 10.1016/j.chemosphere.2019.124864] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/17/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
The present study developed a new step-wise approach to estimate the potential human health risk of antibiotics in binary mixture for drinking water samples for two different sub-populations. Monte Carlo simulation based uncertainty analysis was performed to reduce uncertainty in risk assessment. Human health risk assessment studies were carried out using the acceptable daily intake (ADIs) for exposures of individual antibiotics considering point of departure (POD) and uncertainty factors (UFs). The estimated ADI values were used to estimate the predicted no effect concentrations (PNECs), at or below which no adverse human health effects are anticipated. Hazard quotient (HQ) in risk assessment was calculated as a ratio of environmental concentrations (ECs) and PNECs (EC/PNEC). The study showed that the average HQs values of individual antibiotics in adult and children were found below the acceptable limit, demonstrating no possible human health risk for both the subgroups. HIinteraction values of antibiotics in binary mixture was calculated using HQ values of antibiotics. The study observed that the estimated HIinteraction values of antibiotics in binary mixture was found to be less than 1 for both the sub populations, indicating no potential adverse effects on human health. Concentration of antibiotics was the primary contributor (>65%) to the overall variance in the uncertainty estimates for HQs of individual antibiotics in drinking water for adult and children. The co-occurrence of antibiotics in binary mixture for drinking water samples doesn't possess any possible risk on human health for the studied population.
Collapse
Affiliation(s)
- Minashree Kumari
- Environment Engineering Section, Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi, 110017, India.
| | - Arun Kumar
- Environment Engineering Section, Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi, 110017, India.
| |
Collapse
|
28
|
da Fonseca TG, Abessa DMS, Bebianno MJ. Effects of mixtures of anticancer drugs in the benthic polychaete Nereis diversicolor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1180-1192. [PMID: 31252116 DOI: 10.1016/j.envpol.2019.05.095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 05/24/2023]
Abstract
The increasing consumption of anticancer drugs through single and/or combinatory chemotherapy worldwide raised concern regarding their toxicity burden in coastal zones. The toxicity of a mixture of three compounds involving the drugs cisplatin (CisPt), cyclophosphamide (CP) and tamoxifen (TAM) was determined on the marine polychaete Nereis diversicolor exposed to an increasing range of their concentrations, respectively: Mix A: 0.1 + 10 + 0.1 ng L-1; Mix B: 10 + 100 + 10 ng L-1; Mix C: 100 + 500 + 25 ng L-1; Mix D: 100 + 1000 + 100 ng L-1. Different endpoints were assessed, including disturbance in the burrowing behaviour, neurotoxicity (acetylcholinesterase - AChE activity), antioxidant enzymes (superoxide dismutase - SOD; catalase - CAT; selenium-dependent glutathione peroxidase - Se-GPx and total glutathione peroxidases T-GPx activities), biotransformation metabolism (glutathione-S-transferases - GST), lipid peroxidation (LPO) and genotoxicity (DNA damage). Biological effects of the mixtures of anticancer compounds on N. diversicolor were compared with previous studies about effects on the same biological model under single-drug exposure conducted with the same molecules. Regarding SOD activity, TAM showed an antagonist effect over CisPt and CP in mixtures C and D. In Mix D, there was a synergistic effect of TAM and CisPt that inhibited CAT activity and an additive interaction of CisPt and CP on the Phase II biotransformation enzyme. Drugs in Mix A also suppressed polychaetes' GST activity, although different from the respective single-drug responses, besides able to induce T-GPx activity, that was not sufficient to avoid oxidative damage and mid-grade DNA damage. Due to the absence of burrowing impairment in Mix A, mechanisms involved in neurotoxicity were other than the one driven by AChE alterations. At the intermediary concentrations (Mix B and C), only LPO occurred. Data from drugs individually may not predict the risks provided by mixtures.
Collapse
Affiliation(s)
- Tainá Garcia da Fonseca
- Centro de Investigação Marinha e Ambiental (CIMA), Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal; NEPEA, Núcleo de Estudos em Poluição e Ecotoxicologia. Aquática, Universidade Estadual Paulista (UNESP), Campus do Litoral Paulista, São Vicente, SP, 11330-900, Brazil
| | - Denis M S Abessa
- NEPEA, Núcleo de Estudos em Poluição e Ecotoxicologia. Aquática, Universidade Estadual Paulista (UNESP), Campus do Litoral Paulista, São Vicente, SP, 11330-900, Brazil
| | - Maria João Bebianno
- Centro de Investigação Marinha e Ambiental (CIMA), Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal.
| |
Collapse
|
29
|
Edwards QA, Sultana T, Kulikov SM, Garner-O'Neale LD, Metcalfe CD. Micropollutants related to human activity in groundwater resources in Barbados, West Indies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:76-82. [PMID: 30927730 DOI: 10.1016/j.scitotenv.2019.03.314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
Several micropollutants, including caffeine, artificial sweeteners, pharmaceuticals, steroid hormones and a current-use pesticide were analyzed in water samples collected from five groundwater pumping stations in Barbados. The presence of caffeine and three artificial sweeteners (i.e. acesulfame, sucralose, saccharin) in groundwater samples indicated that groundwater was being contaminated by infiltration of wastewater into the karst aquifer. An estrogen (i.e. estrone), three pharmaceuticals (i.e. carbamazepine, trimethoprim, ibuprofen) and a transformation product of the fungicide, chlorothalonil (i.e. 4-hydroxychlorothalonil) were also detected at ng/L concentrations in groundwater collected from two or more pumping sites. The concentrations of carbamazepine and trimethoprim were correlated with the concentrations of caffeine (R2 values of 0.70 to 0.80), indicating pharmaceutical contamination of groundwater by infiltration from domestic wastewater. The concentrations of caffeine were generally higher in groundwater samples collected in June during the wet season relative to the concentrations in samples collected in February during the dry season, indicating that infiltration of contaminants is higher during periods of heavy rainfall. Rapid rates of degradation and relatively slow rates of infiltration may explain why several target analytes were not detected in groundwater. Elevated concentrations of 4-hydroxychlorothalonil > 0.1 μg/L in samples collected at two of the monitoring sites warrant further studies on the sources and the distribution of this compound and other pesticides used in agriculture and for turf-treatment (e.g. golf courses). Overall, more data are needed in order to implement mitigation strategies that are effective in reducing chemical contamination in groundwater in Barbados.
Collapse
Affiliation(s)
- Quincy A Edwards
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill Campus, PO Box 64, Bridgetown, BB11000, Barbados.
| | - Tamanna Sultana
- Water Quality Centre, Trent University, 1600 West Bank Drive, Peterborough, Ontario K9J 7B8, Canada
| | - Sergei M Kulikov
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill Campus, PO Box 64, Bridgetown, BB11000, Barbados
| | - Leah D Garner-O'Neale
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill Campus, PO Box 64, Bridgetown, BB11000, Barbados
| | - Chris D Metcalfe
- Water Quality Centre, Trent University, 1600 West Bank Drive, Peterborough, Ontario K9J 7B8, Canada
| |
Collapse
|
30
|
Jepsen R, He K, Blaney L, Swan C. Effects of antimicrobial exposure on detrital biofilm metabolism in urban and rural stream environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:1151-1160. [PMID: 30970480 DOI: 10.1016/j.scitotenv.2019.02.254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/13/2019] [Accepted: 02/16/2019] [Indexed: 06/09/2023]
Abstract
The occurrence of antimicrobials and other pharmaceuticals in streams is increasingly being reported, yet the impacts of these contaminants of emerging concern on aquatic ecosystems are relatively unknown. Bacteria and fungi are vital components of stream environments and, therefore, exposure to antimicrobials may have important consequences for ecosystem services, such as carbon cycling. The objective of this study was to investigate how two antimicrobials, ciprofloxacin and climbazole, impact detrital biofilm metabolism in urban and rural streams. To establish baseline conditions, the biological oxygen demand (BOD) of red maple (Acer rubrum) biofilms was measured in one urban and one rural stream. In mesocosm studies, the BOD of biofilms on single- and mixed-species leaf litter from the same sites was measured after exposure to 10 μg/L of the antimicrobials, both in combination and individually. The presence of ciprofloxacin and climbazole did not affect BOD compared to the controls at the urban site, although significant differences were identified for select treatments at the rural site. In addition, the BOD of mixed-leaf biofilms was not significantly different from that of single species litter after exposure. Overall, exposure to 10 μg/L of the antimicrobials did not significantly impact community-level carbon processing by the leaf biofilms, and leaf mixtures did not result in increased biofilm BOD compared to single species leaves. The outcomes of this work demonstrate a need for further research for the understanding the effects of antimicrobials on rural streams to prevent unintended consequences to ecological processes and biota from future development, leaking septic systems, and wastewater spills.
Collapse
Affiliation(s)
- Rikke Jepsen
- Department of Geography and Environmental Systems, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Ke He
- University of Maryland, Department of Chemical, Biochemical, and Environmental Engineering, Baltimore County, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA
| | - Lee Blaney
- University of Maryland, Department of Chemical, Biochemical, and Environmental Engineering, Baltimore County, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA
| | - Christopher Swan
- Department of Geography and Environmental Systems, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
31
|
Rossmassler K, Kim S, Broeckling CD, Galloway S, Prenni J, De Long SK. Impact of primary carbon sources on microbiome shaping and biotransformation of pharmaceuticals and personal care products. Biodegradation 2019; 30:127-145. [PMID: 30820709 DOI: 10.1007/s10532-019-09871-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 02/14/2019] [Indexed: 12/26/2022]
Abstract
Knowledge of the conditions that promote the growth and activity of pharmaceutical and personal care product (PPCP)-degrading microorganisms within mixed microbial systems are needed to shape microbiomes in biotreatment reactors and manage process performance. Available carbon sources influence microbial community structure, and specific carbon sources could potentially be added to end-of-treatment train biotreatment systems (e.g., soil aquifer treatment [SAT]) to select for the growth and activity of a range of microbial phylotypes that collectively degrade target PPCPs. Herein, the impacts of primary carbon sources on PPCP biodegradation and microbial community structure were explored to identify promising carbon sources for PPCP biotreatment application. Six types of primary carbon sources were investigated: casamino acids, two humic acid and peptone mixtures (high and low amounts of humic acid), molasses, an organic acids mixture, and phenol. Biodegradation was tracked for five PPCPs (diclofenac, 5-fluorouracil, gemfibrozil, ibuprofen, and triclosan). Primary carbon sources were found to differentially impact microbial community structures and rates and efficiencies of PPCP biotransformation. Of the primary carbon sources tested, casamino acids, organic acids, and phenol showed the fastest biotransformation; however, on a biomass-normalized basis, both humic acid-peptone mixtures showed comparable or superior biotransformation. By comparing microbial communities for the different primary carbon sources, abundances of unclassified Beijerinckiaceae, Beijerinckia, Sphingomonas, unclassified Sphingomonadaceae, Flavobacterium, unclassified Rhizobiales, and Nevskia were statistically linked with biotransformation of specific PPCPs.
Collapse
Affiliation(s)
- Karen Rossmassler
- Department of Civil and Environmental Engineering, Colorado State University, 1301 Campus Delivery, Fort Collins, CO, 80523, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Sunah Kim
- Department of Civil and Environmental Engineering, Colorado State University, 1301 Campus Delivery, Fort Collins, CO, 80523, USA
- Department of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Corey D Broeckling
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, USA
| | - Sarah Galloway
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, USA
| | - Jessica Prenni
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, USA
| | - Susan K De Long
- Department of Civil and Environmental Engineering, Colorado State University, 1301 Campus Delivery, Fort Collins, CO, 80523, USA.
| |
Collapse
|
32
|
Blaney L, Lawler DF, Katz LE. Transformation kinetics of cyclophosphamide and ifosfamide by ozone and hydroxyl radicals using continuous oxidant addition reactors. JOURNAL OF HAZARDOUS MATERIALS 2019; 364:752-761. [PMID: 30428451 DOI: 10.1016/j.jhazmat.2018.09.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 09/21/2018] [Accepted: 09/27/2018] [Indexed: 06/09/2023]
Abstract
The detection of pharmaceuticals in water and wastewater has triggered human and ecological health concerns. As highly toxic compounds, chemotherapy agents (CAs), such as the cyclophosphamide (CYP) and ifosfamide (IFO) structural isomers, represent a unique threat. This research elucidated the fate of CYP and IFO during ozonation and advanced oxidation by hydroxyl radicals (HO•). Novel semi-batch reactors were used to determine the second-order rate constants for CYP and IFO with O3 and HO•. These reactors provided independent control of the oxidant exposure through continuous and constant aqueous ozone and peroxone (O3-H2O2) addition. The rate constants for transformation of CYP and IFO by ozone were 2.58 ± 0.40 M-1s-1 and 6.95 ± 0.21 M-1s-1, respectively, indicating that ozone alone is not suitable for treating CAs. Transformation of CYP and IFO by hydroxyl radicals was fast, with rate constants of 2.69(±0.17)×109 M-1s-1 and 2.73(±0.16)×109 M-1s-1, respectively. The major transformation products formed by O3 and HO attack consisted of the 4-hydroxy-, 4-keto-, dechloroethyl-, and imino- derivatives of CYP and IFO. Low yields of the active metabolites of the CAs, namely phosphoramide mustard and isophosphoramide mustard, were detected. These findings suggest that treated water may retain the ability to alkylate DNA and confer toxicity.
Collapse
Affiliation(s)
- Lee Blaney
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD, 21250-0002, USA.
| | - Desmond F Lawler
- University of Texas at Austin, Department of Civil, Architectural and Environmental Engineering, Environmental and Water Resources Engineering Program, 301 East Dean Keeton Street, Stop C1786, Austin, TX, 78712-1173, USA
| | - Lynn E Katz
- University of Texas at Austin, Department of Civil, Architectural and Environmental Engineering, Environmental and Water Resources Engineering Program, 301 East Dean Keeton Street, Stop C1786, Austin, TX, 78712-1173, USA
| |
Collapse
|
33
|
Synergistic and Antagonistic Effects of Phenylalanine and Various Antibiotics on the Growth of Pathogenic Bacteria. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-0597-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Tang Y, Guo LL, Hong CY, Bing YX, Xu ZC. Seasonal occurrence, removal and risk assessment of 10 pharmaceuticals in 2 sewage treatment plants of Guangdong, China. ENVIRONMENTAL TECHNOLOGY 2019; 40:458-469. [PMID: 29069966 DOI: 10.1080/09593330.2017.1397758] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/15/2017] [Indexed: 05/23/2023]
Abstract
A long-term investigation, which covered 10 sampling campaigns over 3 years, was performed to evaluate the occurrence, removal and risk of 10 pharmaceuticals in 2 full-scale sewage treatment plants (STPs) in Guangdong, South China. Target pharmaceuticals except for clofibrate and ibuprofen were detected in every sample, with mean concentrations of 12.5-685.6 and 7.9-130.3 ng/L in the influent and effluent, respectively. Salicylic acid was the most abundant compound in both the influents and effluents in the two STPs. For most pharmaceuticals, the seasonal variation in the influent showed the highest concentrations in January and lowest concentrations in July due to their consumption and rainfall. Ibuprofen and fenoprofen presented high removal rates (>90%) and some of the targets such as gemfibrozil, mefenamic acid, tolfenamic acid and diclofenac were detectable with significantly higher mass loads in effluents than in influents. Studies of the five efficiently eliminated pharmaceuticals show that the primary treatment and secondary treatment contributed to most pharmaceutical removal, the anoxic tank made a negligible contribution to their elimination. According to the results produced from the calculation of the risk quotient, only diclofenac might pose a risk to the aquatic environment.
Collapse
Affiliation(s)
- Ying Tang
- a Guangdong Polytechnic of Environmental Protection Engineering , Foshan , People's Republic of China
| | - Lu-Lu Guo
- a Guangdong Polytechnic of Environmental Protection Engineering , Foshan , People's Republic of China
| | - Cheng-Yang Hong
- b South China Institute of Environment Sciences, MEP , Guangzhou , People's Republic of China
| | - Yong-Xin Bing
- b South China Institute of Environment Sciences, MEP , Guangzhou , People's Republic of China
| | - Zhen-Cheng Xu
- b South China Institute of Environment Sciences, MEP , Guangzhou , People's Republic of China
| |
Collapse
|
35
|
Chiavola A, Tedesco P, Boni MR. Fate of selected drugs in the wastewater treatment plants (WWTPs) for domestic sewage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:1113-1123. [PMID: 28560628 DOI: 10.1007/s11356-017-9313-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 05/18/2017] [Indexed: 05/27/2023]
Abstract
The wide diffusion of Emerging Organic Micropollutants (EOMs) in the environment is receiving increasing attention due to their potential toxicological effects on living organisms. So far, the Wastewater Treatment Plants (WWTPs) have not been designed with the purpose to remove these contaminants; therefore, they can represent the major source of release into the environment both through the effluent and the wasted sludge. The fate of EOMs in the WWTPs is still not completely known; further investigations are therefore needed to assess if it is possible to exploit the existing treatment units to reduce EOM concentrations or which processes must be implemented to this purpose. Among the wide class of EOMs, the present study focused on the following drugs of abuse: amphetamine (AM), methamphetamine (MET), 11-nor-Δ9-THC-9carboxy (THC-COOH) and benzoylecgonine (BEG). Presence and removal efficiency of these drugs in the activated sludge tank of a WWTP for domestic sewage was investigated through analyses at both full-scale and laboratory scale. Determinations conducted in the full-scale WWTP highlighted that, among the searched drugs, AM was found to be the most abundant in the influent and effluent of the biological oxidation tank, while 11-nor-Δ9-THC-9carboxy was present at the lowest concentration. Some removal took place in the units prior to the oxidation tank, although the main reduction was observed to occur in the biological oxidation reactor. All the drugs showed a wide variability of the measured concentrations during the week and the day. Taking into account results from both full-scale observations and batch tests, removals in the biological reactor were found within the following ranges: 33-84% for AM, 33-97% for MET, 33-57% for BEG and 29-83% for THC-COOH. These removals were due to a combination of adsorption and biodegradation mainly, while volatilization did not play a significant role. Other processes, e.g. hydrolysis, were likely to occur.
Collapse
Affiliation(s)
- Agostina Chiavola
- Department of Civil, Building and Environmental Engineering, Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184, Rome, Italy.
| | - Pierpaolo Tedesco
- Department of Civil, Building and Environmental Engineering, Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184, Rome, Italy
| | - Maria Rosaria Boni
- Department of Civil, Building and Environmental Engineering, Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184, Rome, Italy
| |
Collapse
|
36
|
Simu GM, Atchana J, Soica CM, Coricovac DE, Simu SC, Dehelean CA. Pharmaceutical Mixtures: Still A Concern for Human and Environmental Health. Curr Med Chem 2018; 27:121-153. [PMID: 30406736 DOI: 10.2174/0929867325666181108094222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/09/2018] [Accepted: 01/29/2018] [Indexed: 11/22/2022]
Abstract
In the present work, recent data on the sources, occurrence and fate of human-use pharmaceutical active compounds (PhACs) in the aquatic environment have been reviewed. Since PhACs and their metabolites are usually present as mixtures in the environment at very low concentrations, a particular emphasis was placed onto the PhACs mixtures, as well as on their short-term and long-term effects against human and environmental health. Moreover, a general overview of the main conventional as well as of the latest trends in wastewaters decontaminant technologies was outlined. Advantages and disadvantages of current processes were also pointed out. It appears that numerous gaps still exist in the current knowledge related to this field of interest, and further studies should be conducted at the global level in order to ensure a more efficient monitorisation of the presence of PhACs and their metabolites into the aquatic environment and to develop new mitigation measures.
Collapse
Affiliation(s)
- Georgeta M Simu
- University of Medicine and Pharmacy "Victor Babes" Timisoara, Faculty of Pharmacy, 2Eftimie Murgu, Timisoara 300041, Romania
| | - Jeanne Atchana
- University of Maroua, Faculty of Sciences, Department of Chemistry, P.O. Box 46, University of Maroua, Maroua, Cameroon
| | - Codruta M Soica
- University of Medicine and Pharmacy "Victor Babes" Timisoara, Faculty of Pharmacy, 2Eftimie Murgu, Timisoara 300041, Romania
| | - Dorina E Coricovac
- University of Medicine and Pharmacy "Victor Babes" Timisoara, Faculty of Pharmacy, 2Eftimie Murgu, Timisoara 300041, Romania
| | - Sebastian C Simu
- University of Medicine and Pharmacy "Victor Babes" Timisoara, Faculty of Pharmacy, 2Eftimie Murgu, Timisoara 300041, Romania
| | - Cristina A Dehelean
- University of Medicine and Pharmacy "Victor Babes" Timisoara, Faculty of Pharmacy, 2Eftimie Murgu, Timisoara 300041, Romania
| |
Collapse
|
37
|
Acosta-Rangel A, Sánchez-Polo M, Polo AMS, Rivera-Utrilla J, Berber-Mendoza MS. Sulfonamides degradation assisted by UV, UV/H 2O 2 and UV/K 2S 2O 8: Efficiency, mechanism and byproducts cytotoxicity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 225:224-231. [PMID: 30092549 DOI: 10.1016/j.jenvman.2018.06.097] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/15/2018] [Accepted: 06/30/2018] [Indexed: 06/08/2023]
Abstract
The objective of this study was to analyze the effectiveness of UVC, UVC/H2O2 and UVC/K2S2O8 on the degradation of SAs. Rate constant values increased in the order SMZ < SDZ < SML and showed the higher photodegradation of sulfonamides with a penta-heterocycle. Quantum yields were 1.72 × 10-5 mol E-1, 3.02 × 10-5 mol E-1, and 6.32 × 10-5 mol E-1 for SMZ, SDZ and SML, respectively, at 60 min of treatment. R254 values show that the dose habitually utilized for water disinfection is inadequate to remove this type of antibiotic. The initial sulfonamide concentration has a major impact on the degradation rate. The degradation rates were higher at pH 12 for SMZ and SML. SMZ and SML photodegradation kλ values are higher in tap versus distilled water. The presence of radical promoters generates a greater increase in the degradation rate, UVC/K2S2O8 cost less energy, a mechanism was proposed, and the degradation by-products are less toxic than the original product.
Collapse
Affiliation(s)
- A Acosta-Rangel
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain; Center of Postgraduate Research and Studies, Faculty of Engineering, University Autonomous of San Luis Potosí, Av. Dr. M. Nava No. 8, San Luis Potosí, S.L.P., 78290, Mexico.
| | - M Sánchez-Polo
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - A M S Polo
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - J Rivera-Utrilla
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - M S Berber-Mendoza
- Center of Postgraduate Research and Studies, Faculty of Engineering, University Autonomous of San Luis Potosí, Av. Dr. M. Nava No. 8, San Luis Potosí, S.L.P., 78290, Mexico
| |
Collapse
|
38
|
Doležalová Weissmannová H, Pavlovský J, Fišerová L, Kosárová H. Toxicity of Diclofenac: Cadmium Binary Mixtures to Algae Desmodesmus subspicatus Using Normalization Method. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 101:205-213. [PMID: 29974164 DOI: 10.1007/s00128-018-2384-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Algal test using chlorococcal algae Desmodesmus subspicatus was used to determine single acute toxicity of either diclofenac or cadmium and to assess acute toxicity of their binary mixtures. The test confirmed significant acute toxicity of both diclofenac and cadmium; diclofenac with acute toxicity ErC50 60.44 ± 0.20 mg/L and cadmium with acute toxicity ErC50 2.14 ± 0.02 mg/L. This study of acute toxicity of binary cadmium-diclofenac mixtures confirmed their negative effects on aquatic producers and it also proved influence of the above substances on acute toxicity of their mixtures. Normalization method was applied to predict acute toxicity of binary mixtures composed of chemicals with significantly different acute toxicities. Normalization method used molar ratio (R) of chemicals in binary mixtures as their composition descriptor.
Collapse
Affiliation(s)
| | - Jiří Pavlovský
- Faculty of Metallurgy and Materials Engineering, VŠB - Technical University of Ostrava, 17. listopadu 15/2172, 708 33, Ostrava-Poruba, Czech Republic
| | - Lenka Fišerová
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Hedvika Kosárová
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| |
Collapse
|
39
|
Burkina V, Sakalli S, Pilipenko N, Zlabek V, Zamaratskaia G. Effect of human pharmaceuticals common to aquatic environments on hepatic CYP1A and CYP3A-like activities in rainbow trout (Oncorhynchus mykiss): An in vitro study. CHEMOSPHERE 2018; 205:380-386. [PMID: 29704845 DOI: 10.1016/j.chemosphere.2018.04.080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
This study examined the ability of several human pharmaceuticals to modulate hepatic piscine CYP-mediated monooxygenase activities. Effects of six pharmaceuticals: diclofenac, sulfamethoxazole, tramadol, carbamazepine, venlafaxine and nefazodone, were investigated in vitro in rainbow trout hepatic microsomes. The reactions of 7-ethoxyresorufin-O-deethylase (EROD) and benzyloxy-4-trifluoromethylcoumarin-O-debenzyloxylase (BFCOD), were used as markers for hepatic CYP1A and CYP3A-like activities, respectively. Our results showed that EROD and BFCOD activities were both affected by nefazodone. Nefazodone inhibited EROD in a dose dependent manner and was found to be a potent non-competitive inhibitor of EROD with a Ki value of 6.6 μM. BFCOD activity was inhibited non-competitively in the presence of nefazadone with Ki value of 30.7 μM. BFCOD activity was slightly reduced only by the highest concentration of carbamazepine. Diclofenac, sulfamethoxazole, tramadol, and venlafaxine did not affect the activity of either EROD or BFCOD. We further exposed microsomal fraction to mixtures of six pharmaceuticals to investigate potential inhibition. The results showed that EROD and BFCOD activity was inhibited on 94% and 80%, respectively at higher tested concentration. To our knowledge, this is the first report to demonstrate an inhibitory effect of nefazodone on hepatic CYP1A and CYP3A-like proteins in rainbow trout.
Collapse
Affiliation(s)
- Viktoriia Burkina
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Sidika Sakalli
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Nadezhda Pilipenko
- Swedish University of Agricultural Sciences, Department of Molecular Science, Uppsala BioCenter, P.O. Box 7015, SE-750 07 Uppsala, Sweden.
| | - Vladimir Zlabek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Galia Zamaratskaia
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic; Swedish University of Agricultural Sciences, Department of Molecular Science, Uppsala BioCenter, P.O. Box 7015, SE-750 07 Uppsala, Sweden.
| |
Collapse
|
40
|
Kim C, Ryu HD, Chung EG, Kim Y, Lee JK. A review of analytical procedures for the simultaneous determination of medically important veterinary antibiotics in environmental water: Sample preparation, liquid chromatography, and mass spectrometry. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 217:629-645. [PMID: 29649735 DOI: 10.1016/j.jenvman.2018.04.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 03/10/2018] [Accepted: 04/02/2018] [Indexed: 05/21/2023]
Abstract
Medically important (MI) antibiotics are defined by the United States Food and Drug Administration as drugs containing certain active antimicrobial ingredients that are used for the treatment of human diseases or enteric pathogens causing food-borne diseases. The presence of MI antibiotic residues in environmental water is a major concern for both aquatic ecosystems and public health, particularly because of their potential to contribute to the development of antimicrobial-resistant microorganisms. In this article, we present a review of global trends in the sales of veterinary MI antibiotics and the analytical methodologies used for the simultaneous determination of antibiotic residues in environmental water. According to recently published government reports, sales volumes have increased steadily, despite many countries having adopted strategies for reducing the consumption of antibiotics. Global attention needs to be directed urgently at establishing new management strategies for reducing the use of MI antimicrobial products in the livestock industry. The development of standardized analytical methods for the detection of multiple residues is required to monitor and understand the fate of antibiotics in the environment. Simultaneous analyses of antibiotics have mostly been conducted using high-performance liquid chromatography-tandem mass spectrometry with a solid-phase extraction (SPE) pretreatment step. Currently, on-line SPE protocols are used for the rapid and sensitive detection of antibiotics in water samples. On-line detection protocols must be established for the monitoring and screening of unknown metabolites and transformation products of antibiotics in environmental water.
Collapse
Affiliation(s)
- Chansik Kim
- Department of Water Environment Research, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, 22689, South Korea
| | - Hong-Duck Ryu
- Department of Water Environment Research, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, 22689, South Korea
| | - Eu Gene Chung
- Department of Water Environment Research, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, 22689, South Korea.
| | - Yongseok Kim
- Department of Water Environment Research, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, 22689, South Korea
| | - Jae-Kwan Lee
- Department of Water Environment Research, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, 22689, South Korea
| |
Collapse
|
41
|
Orbach SM, Ehrich MF, Rajagopalan P. High-throughput toxicity testing of chemicals and mixtures in organotypic multi-cellular cultures of primary human hepatic cells. Toxicol In Vitro 2018; 51:83-94. [PMID: 29751030 DOI: 10.1016/j.tiv.2018.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 05/06/2018] [Accepted: 05/07/2018] [Indexed: 02/07/2023]
Abstract
High-throughput screening (HTS) of liver toxicants can bridge the gap in understanding adverse effects of chemicals on humans. Toxicity testing of mixtures is time consuming and expensive, since the number of possible combinations increases exponentially with the number of chemicals. The combination of organotypic culture models (OCMs) and HTS assays can lead to the rapidly evaluation of chemical toxicity in a cost and time-effective manner while prioritizing chemicals that warrant additional investigation. We describe the design, assembly and toxicant response of multi-cellular hepatic organotypic culture models comprised of primary human or rat cells assembled in 96-well plates (denoted as μOCMs). These models were assembled using automated procedures that did not affect hepatocyte function or viability, rendering them ideal for large-scale toxicity evaluations. Rat μOCMs were assembled to obtain insights into deviations from human toxicity. Four test chemicals (acetaminophen, ethanol, isoniazid, and perfluorooctanoic acid) were added to the μOCMs individually or in mixtures. HTS assays were utilized to measure cell death, apoptosis, glutathione depletion, mitochondrial membrane damage, and cytochrome P450 2E1 activity. The μOCMs exhibited increased toxicant sensitivity compared to hepatocyte sandwich cultures. Synergistic and non-synergistic interactions were observed when the toxicants were added as mixtures. Specifically, chemical interactions in the μOCMs were manifested by changes in apoptosis and decreased glutathione. The μOCMs accurately predicted hepatotoxicity for individual and mixtures of toxicants, demonstrating their potential for large-scale toxicity evaluations in the future.
Collapse
Affiliation(s)
- Sophia M Orbach
- Department of Chemical Engineering, Virginia Tech, Suite 245 Goodwin Hall, 635 Prices Fork Road, Blacksburg, VA 24061, USA.
| | - Marion F Ehrich
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, 205 Duck Pond Drive, Blacksburg, VA 24061, USA.
| | - Padmavathy Rajagopalan
- Department of Chemical Engineering, Virginia Tech, Suite 245 Goodwin Hall, 635 Prices Fork Road, Blacksburg, VA 24061, USA; ICTAS Center for Systems Biology of Engineered Tissue, Virginia Tech, 333 Kelly Hall, 325 Stanger Street, Blacksburg, VA 24061, USA; School of Biomedical Engineering and Sciences, Virginia Tech, 333 Kelly Hall, 325 Stanger Street, Blacksburg, VA 24061, USA.
| |
Collapse
|
42
|
Biel-Maeso M, Baena-Nogueras RM, Corada-Fernández C, Lara-Martín PA. Occurrence, distribution and environmental risk of pharmaceutically active compounds (PhACs) in coastal and ocean waters from the Gulf of Cadiz (SW Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:649-659. [PMID: 28866393 DOI: 10.1016/j.scitotenv.2017.08.279] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 08/28/2017] [Accepted: 08/28/2017] [Indexed: 05/11/2023]
Abstract
In this study, we have evaluated the occurrence and distribution of 78 pharmaceuticals in different aquatic marine environments from the Gulf of Cadiz (SW Spain) for the first time. The obtained results revealed that pharmaceuticals were present in seawater at total concentrations ranging 61-2133 and 16-189ngL-1 in coastal and oceanic transects, respectively. Potential marine pollution hotspots were observed in enclosed or semi-enclosed water bodies (Cadiz Bay), showing concentrations that were one or two orders of magnitude higher than in the open ocean. The presence of these chemicals in local sewage treatment plants (STPs), one of the main contamination sources, was also assessed, revealing total concentrations of up to 23μgL-1 in effluents. PhACs with the highest detection frequencies and concentrations in the sampling region were analgesics and anti-inflammatories followed by antibiotics in the case of samples from Cadiz Bay or caffeine in oceanic seawater samples. Risk quotients, expressed as ratios between the measured environmental concentration (MEC) and the predicted no-effect concentrations (PNEC) were higher than 1 for two compounds (gemfibrozil and ofloxacin) in effluent of Jerez de la Frontera sewage treatment plant (STP). No high environmental risk was detected in both coastal and oceanic sampling areas, although the information available about the effects of these chemicals on marine biota is still very limited and negative effects on non-target species cannot be discarded.
Collapse
Affiliation(s)
- Miriam Biel-Maeso
- Physical Chemistry Department, Faculty of Marine and Environmental Sciences, University of Cadiz, CEI·MAR, Cádiz 11510, Spain
| | - Rosa María Baena-Nogueras
- Physical Chemistry Department, Faculty of Marine and Environmental Sciences, University of Cadiz, CEI·MAR, Cádiz 11510, Spain
| | - Carmen Corada-Fernández
- Physical Chemistry Department, Faculty of Marine and Environmental Sciences, University of Cadiz, CEI·MAR, Cádiz 11510, Spain
| | - Pablo A Lara-Martín
- Physical Chemistry Department, Faculty of Marine and Environmental Sciences, University of Cadiz, CEI·MAR, Cádiz 11510, Spain.
| |
Collapse
|
43
|
Forootanfar H, Arjmand S, Behzadi M, Faramarzi MA. Laccase-Mediated Treatment of Pharmaceutical Wastes. RESEARCH ADVANCEMENTS IN PHARMACEUTICAL, NUTRITIONAL, AND INDUSTRIAL ENZYMOLOGY 2018. [DOI: 10.4018/978-1-5225-5237-6.ch010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Laccases are versatile multi-copper enzymes belonging to the superfamily of oxidase enzymes, which have been known since the nineteenth century. Recent discoveries have refined investigators' views of the potential of laccase as a magic tool for remarkable biotechnological purposes. A literature review of the capabilities of laccases, their assorted substrates, and their molecular mechanism of action now indicates the emergence of a new direction for laccase application as part of an arsenal in the fight against the contamination of water supplies by a number of frequently prescribed medications. This chapter provides a critical review of the literature and reveals the pivotal role of laccases in the elimination and detoxification of pharmaceutical contaminants in aquatic environments and wastewaters.
Collapse
|
44
|
Tahrani L, Mehri I, Reyns T, Anthonissen R, Verschaeve L, Khalifa ABH, Loco JV, Abdenaceur H, Mansour HB. UPLC-MS/MS analysis of antibiotics in pharmaceutical effluent in Tunisia: ecotoxicological impact and multi-resistant bacteria dissemination. Arch Microbiol 2017; 200:553-565. [PMID: 29230492 DOI: 10.1007/s00203-017-1467-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/23/2017] [Accepted: 12/06/2017] [Indexed: 11/30/2022]
Abstract
The UPLC MS/MS analysis showed the presence of the two antibiotics in the pharmaceutical industry discharges during 3 months; norfloxacin and spiramycin which were quantified with the mean concentrations of 226.7 and 84.2 ng mL-1, respectively. Sixteen resistant isolates were obtained from the pharmaceutical effluent and identified by sequencing. These isolates belong to different genera, namely Citrobacter, Acinetobacter, Pseudomonas, Delftia, Shewanella, and Rheinheimera. The antibiotic resistance phenotypes of these isolates were determined (27 tested antibiotics-discs). All the studied isolates were found resistant to amoxicillin and gentamicin, and 83.33% of isolates were resistant to ciprofloxacin. Multiple antibiotic resistances were revealed against β-lactams, quinolones, and aminoglycosides families. Our overall results suggest that the obtained bacterial isolates may constitute potential candidates for bioremediation and can be useful for biotechnological applications. Genotoxic effects were assessed by a battery of biotests; the pharmaceutical wastewater was genotoxic according to the bacterial Vitotox test and micronuclei test. Genotoxicity was also evaluated by the comet test; the tail DNA damages reached 38 and 22% for concentrated sample (10×) and non-concentrated sample (1×), respectively. However, the histological sections of kidney and liver's mice treated by pharmaceutical effluent showed normal histology and no visible structural effects or alterations as cytolysis, edema, or ulcerative necrosis were observed. Residual antibiotics can reach water environment through wastewater and provoke dissemination of the antibiotics resistance and induce genotoxic effects.
Collapse
Affiliation(s)
- Leyla Tahrani
- Laboratory of Chemical Residues and Contaminants, Direction of Food Medicines and Consumer Safety, Scientific Institute of Public Health, Juliette Wytsmanstraat 14, 1050, Brussels, Belgium.,Laboratory of toxicology, Scientific Institute of Public Health, Juliette Wytsmanstraat 14, 1050, Brussels, Belgium.,Research Unit of Analysis and Process Applied to the Environment, APAE UR17ES32 Higher Institute of Applied Sciences and Technology Mahdia "ISSAT", Monastir University, 5100, Monastir, Tunisia
| | - Ines Mehri
- Laboratoire Traitement et recyclage des eaux, Centre de recherche et technologie des eaux, Borj Cedria, Tunisia
| | - Tim Reyns
- Laboratory of Chemical Residues and Contaminants, Direction of Food Medicines and Consumer Safety, Scientific Institute of Public Health, Juliette Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Roel Anthonissen
- Laboratory of toxicology, Scientific Institute of Public Health, Juliette Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Luc Verschaeve
- Laboratory of toxicology, Scientific Institute of Public Health, Juliette Wytsmanstraat 14, 1050, Brussels, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Joris Van Loco
- Laboratory of Chemical Residues and Contaminants, Direction of Food Medicines and Consumer Safety, Scientific Institute of Public Health, Juliette Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Hassen Abdenaceur
- Laboratoire Traitement et recyclage des eaux, Centre de recherche et technologie des eaux, Borj Cedria, Tunisia
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied to the Environment, APAE UR17ES32 Higher Institute of Applied Sciences and Technology Mahdia "ISSAT", Monastir University, 5100, Monastir, Tunisia.
| |
Collapse
|
45
|
Novak M, Žegura B, Modic B, Heath E, Filipič M. Cytotoxicity and genotoxicity of anticancer drug residues and their mixtures in experimental model with zebrafish liver cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 601-602:293-300. [PMID: 28558277 DOI: 10.1016/j.scitotenv.2017.05.115] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/10/2017] [Accepted: 05/13/2017] [Indexed: 06/07/2023]
Abstract
Anticancer drugs enter aquatic environment predominantly via hospital and municipal wastewater effluents where they may, due to their genotoxic potential, cause adverse environmental effects even at very low doses. In this study we evaluated cytotoxic and genotoxic potential of two widely used anticancer drugs, cyclophosphamide (CP) and ifosfamide (IF) as individual compounds and in a complex mixture together with 5-fluorouracil (5-FU) and cisplatin (CDDP) because these four drugs have been frequently detected in an oncological ward effluents. As an experimental model we used zebrafish liver cell (ZFL) line. The cytotoxicity was determined with the MTS assay and genotoxicity with the comet assay and cytokinesis block micronucleus (CBMN) assay that measure the formation of DNA strand breaks and genomic instability, respectively. CP and IF exerted low cytotoxicity towards ZFL cells. Both compounds induced DNA strand breaks and genomic instability, however at relatively high concentrations that are not relevant for the contamination of aquatic environment. The mixture of CP, IF, 5-FU and CDDP was tested at maximal detected concentrations of each drug as determined in the effluents from the oncological ward. The mixture was not cytotoxic and did not induce genomic instability, but it induced significant increase in the formation of DNA strand breaks at concentrations of individual compounds that were several orders of magnitude lower from those that were effective when tested as individual compounds. The results indicate that such mixtures of anticancer drugs may pose a threat to aquatic organisms at environmentally relevant concentrations and contribute to the accumulating evidence that it is not always possible to predict adverse effects of complex mixtures based on the toxicological data for individual compounds.
Collapse
Affiliation(s)
- Matjaž Novak
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 111, 1000 Ljubljana, Slovenia; Ecological Engineering Institute, Ljubljanska ulica 9, 2000 Maribor, Slovenia; Jozef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| | - Bojana Žegura
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| | - Barbara Modic
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Ester Heath
- Institute Jozef Stefan, Jadranska 29, 1000 Ljubljana, Slovenia.
| | - Metka Filipič
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| |
Collapse
|
46
|
Kim S, Rossmassler K, Broeckling CD, Galloway S, Prenni J, De Long SK. Impact of inoculum sources on biotransformation of pharmaceuticals and personal care products. WATER RESEARCH 2017; 125:227-236. [PMID: 28865372 DOI: 10.1016/j.watres.2017.08.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/04/2017] [Accepted: 08/18/2017] [Indexed: 05/25/2023]
Abstract
Limited knowledge of optimal microbial community composition for PPCP biotreatment, and of the microbial phylotypes that drive biotransformation within mixed microbial communities, has hindered the rational design and operation of effective and reliable biological PPCP treatment technologies. Herein, bacterial community composition was investigated as an isolated variable within batch biofilm reactors via comparison of PPCP removals for three distinct inocula. Inocula pre-acclimated to model PPCPs were derived from activated sludge (AS), ditch sediment historically-impacted by wastewater treatment plant effluent (Sd), and material from laboratory-scale soil aquifer treatment (SAT) columns. PPCP removals were found to be substantially higher for AS- and Sd-derived inocula compared to the SAT-derived inocula despite comparable biomass. Removal patterns differed among the 6 model compounds examined (diclofenac, 5-fluorouracil, gabapentin, gemfibrozil, ibuprofen, and triclosan) indicating differences in biotransformation mechanisms. Sphingomonas, Beijerinckia, Methylophilus, and unknown Cytophagaceae were linked with successful PPCP biodegradation via next-generation sequencing of 16S rRNA genes over time. Results indicate the criticality of applying engineering approaches to control bacterial community compositions in biotreatment systems.
Collapse
Affiliation(s)
- Sunah Kim
- Colorado State University, Department of Civil and Environmental Engineering, USA
| | - Karen Rossmassler
- Colorado State University, Department of Civil and Environmental Engineering, USA
| | | | - Sarah Galloway
- Colorado State University, Proteomics and Metabolomics Facility, USA
| | - Jessica Prenni
- Colorado State University, Proteomics and Metabolomics Facility, USA
| | - Susan K De Long
- Colorado State University, Department of Civil and Environmental Engineering, USA.
| |
Collapse
|
47
|
Załęska-Radziwiłł M, Affek K, Doskocz N. Ecotoxicological risk assessment of chosen pharmaceuticals detected in surface waters. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:1233-1239. [PMID: 28949837 DOI: 10.1080/10934529.2017.1356199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The goal of this work was to assess the risk posed by the presence of ciprofloxacin, 17α-ethinylestradiol and 5-fluorouracil in aquatic ecosystems based on chronic single-species ecotoxicological tests. There were 23 species used in this study: one cyanobacterium, three green algae, one higher plant, one protozoan, two crustaceans, two fish, 12 bacteria and one fungus (yeast). The risk assessment was performed on the basis of the PEC/PNEC ratio (PEC - predicted environmental concentration, PNEC - predicted no-effect concentration). PNEC was calculated using an assessment factor and statistical extrapolation models. The risk in relation to aquatic organisms proved to be high. The potentially affected fraction of aquatic species in the presence of pharmaceutical active ingredients, depending on the calculation method and the selected concentration in surface waters (predicted or measured), ranged from 6.26 to 27.84% for ciprofloxacin, 2.13 to 18.74% for 17α-ethinylestradiol and 4.96 to 39.28% for 5-fluorouracil. The study indicates several gaps in the existing guidelines, which may be considered within the guideline-revision process.
Collapse
Affiliation(s)
- Monika Załęska-Radziwiłł
- a Faculty of Building Services, Hydro and Environmental Engineering, Department of Biology , Warsaw University of Technology , Warsaw , Poland
| | - Katarzyna Affek
- a Faculty of Building Services, Hydro and Environmental Engineering, Department of Biology , Warsaw University of Technology , Warsaw , Poland
| | - Nina Doskocz
- a Faculty of Building Services, Hydro and Environmental Engineering, Department of Biology , Warsaw University of Technology , Warsaw , Poland
| |
Collapse
|
48
|
Aissaoui S, Ouled-Haddar H, Sifour M, Beggah C, Benhamada F. Biological Removal of the Mixed Pharmaceuticals: Diclofenac, Ibuprofen, and Sulfamethoxazole Using a Bacterial Consortium. IRANIAN JOURNAL OF BIOTECHNOLOGY 2017; 15:135-142. [PMID: 29845061 DOI: 10.15171/ijb.1530] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/26/2016] [Accepted: 06/20/2017] [Indexed: 11/09/2022]
Abstract
Background: The presence of pharmaceuticals at low concentrations (ng to μg) in the environment has become a hot spot for researchers in the past decades due to the unknown environmental impact and the possible damages they might have to the plantae and fauna present in the aquatic systems, as well as to the other living organisms. Objectives: The aim of the present investigation was to develop a bacterial consortium isolated from different origins to evaluate the ability of such a consortium to remove a mixture of pharmaceuticals in the batch system at lab scale, as well as assessment of its resistance to the other micropollutants present in the environment. Material and Methods: Using a closed bottle test, biodegradation of the mixed pharmaceuticals including Diclofenac (DCF), Ibuprofen (IBU), and Sulfamethoxazole (SMX) (at a concentration of 3 mg.L-1 of each drug) by the bacterial consortium was investigated. The test was carried out under metabolic (pharmaceutical was used as the sole source of carbon) and co-metabolic condition (in the presence of glucose). Finally, the ability of the bacterial consortium to resist other micropollutants like antibiotics and heavy metals was investigated. Results: Under the metabolic condition, the mixed bacteria (i.e., consortium) were able to metabolize 23.08% and 9.12% of IBU, and DCF at a concentration of 3 mg.L-1 of each drug, respectively. Whereas, in co-metabolic conditions, IBU was eliminated totally, in addition, 56% of the total concentration of DCF was removed, as well. In both metabolic and cometabolic conditions, removal of SMX was not observed. The selected bacteria were able to resist to most of the applied antibiotics and the used heavy metals, except mercury, where only one strain (S4) was resistant to the later heavy metal. Conclusion: Results suggest that the developed consortium might be an excellent candidate for the application in the bioremediation process for treating ecosystems contaminated with the pharmaceutical.
Collapse
Affiliation(s)
- Salima Aissaoui
- Laboratory of Molecular Toxicology, Faculty of Nature and life Sciences, University of Mohammed Seddik Benyahia - Jijel, 98 Ouled Aissa-Jijel 1800-Algeria, Algeria
| | - Houria Ouled-Haddar
- Laboratory of Molecular Toxicology, Faculty of Nature and life Sciences, University of Mohammed Seddik Benyahia - Jijel, 98 Ouled Aissa-Jijel 1800-Algeria, Algeria.,Department of Applied Microbiology and Food Sciences, Faculty of Nature and Life Sciences, University of Mohammed Seddik BenyahiaJijel, 98 Ouled Aissa-Jijel 1800-Algeria, Algeria
| | - Mohamed Sifour
- Laboratory of Molecular Toxicology, Faculty of Nature and life Sciences, University of Mohammed Seddik Benyahia - Jijel, 98 Ouled Aissa-Jijel 1800-Algeria, Algeria.,Department of Applied Microbiology and Food Sciences, Faculty of Nature and Life Sciences, University of Mohammed Seddik BenyahiaJijel, 98 Ouled Aissa-Jijel 1800-Algeria, Algeria
| | - Chérifa Beggah
- Department of Applied Microbiology and Food Sciences, Faculty of Nature and Life Sciences, University of Mohammed Seddik BenyahiaJijel, 98 Ouled Aissa-Jijel 1800-Algeria, Algeria
| | - Farida Benhamada
- Department of Applied Microbiology and Food Sciences, Faculty of Nature and Life Sciences, University of Mohammed Seddik BenyahiaJijel, 98 Ouled Aissa-Jijel 1800-Algeria, Algeria
| |
Collapse
|
49
|
Wang C, Hou L, Li J, Xu Z, Gao T, Yang J, Zhang H, Li X, Du P. Occurrence of diazepam and its metabolites in wastewater and surface waters in Beijing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:15379-15389. [PMID: 28508332 DOI: 10.1007/s11356-017-8922-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/23/2017] [Indexed: 06/07/2023]
Abstract
Occurrence of diazepam and its metabolites, nordiazepam, temazepam, and oxazepam in the water environment in Beijing was investigated. Samples were collected from four rivers flowing through the city and from all the thirteen sewage treatment plants in the urban area. Average influent concentrations of diazepman, temazepam, and oxazepam in 2013 summer ranged from 0.9 to 7.1, 1.5 to 3.4, and 2.9 to 12.4 ng L-1, respectively, whereas nordiazepam concentrations were below quantification limit on the majority of sampling dates. No significant seasonal variation in influent concentrations was observed. Removal during treatment was low for diazepman (<50%), temazepam (<20%), and oxazepam (<20%), consistent with previous findings reported in the literature. Wastewater-based epidemiology approach was applied to back-calculate population size-normalized diazepam consumption (using temazepam as biomarker) in Beijing, which was found to be at least 3.8 times more of the national average. Diazepam, temazepam, and oxazepam were widely detected in surface waters, with concentrations greater than concentrations in sewage influents at many sampling points, strongly indicating direct discharge of wastewater of high diazepam concentrations into the surface waters in the city.
Collapse
Affiliation(s)
- Congcong Wang
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, People's Republic of China
| | - Linlin Hou
- College of Chemistry and Chemical Engineering, Anyang Normal University, 45500, Henan, People's Republic of China
| | - Jing Li
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, People's Republic of China
| | - Zeqiong Xu
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, People's Republic of China
| | - Tingting Gao
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, People's Republic of China
| | - Jun Yang
- Beijing Urban Drainage Monitoring Center Co. Ltd., Beijing, 100012, China
| | - Huafang Zhang
- Beijing Urban Drainage Monitoring Center Co. Ltd., Beijing, 100012, China
| | - Xiqing Li
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, People's Republic of China.
| | - Peng Du
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, People's Republic of China.
| |
Collapse
|
50
|
Ghazouani M, Akrout H, Bousselmi L. Nitrate and carbon matter removals from real effluents using Si/BDD electrode. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:9895-9906. [PMID: 27623854 DOI: 10.1007/s11356-016-7563-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/30/2016] [Indexed: 06/06/2023]
Abstract
This work investigated the electrochemical treatment of four real effluents which were municipal wastewater (MWW), human urine (HU), river water (Wadi), and slaughterhouse wastewater (SHWW). The treatment was performed on a Boron-Doped Diamond (BDD) as anode/cathode material with an applied current density of 35.7 mA cm-2 and without any reagent addition. Effluent characterization before treatment indicated that nitrogen pollution existed essentially as ammonium/ammonia ions, low level of nitrate, and in some cases as nitrite form. Organic pollution was also determined by COD values which were 920, 7300, 320, and 2280 mg O2 L-1 for MWW, HU, Wadi, and SHWW effluents, respectively. The effectiveness of the electrochemical oxidation/reduction was assessed by nitrogenous compounds and COD removals. Obtained removals underlined the simultaneous oxidation and reduction at the BDD interfaces of the main species present in the real effluents as well as the electro-generated ones. Results confirmed the high performance of BDD electrode for removal of coexistent pollutants from the studied matrix. The oxidation of organic matter and ammonium/ammonia as well as the kinetic of COD degradation was rapid in acidic medium (HU case) than that in neutral and alkaline medium (MWW, Wadi, and SHWW). Moreover, the phytotoxicity test showed less toxic behavior only in the cases of MWW and SHWW with a Germination Index equal to 58.8 and 72.2 %, respectively. The EC and ACE were also evaluated for all studied wastewaters, and the lowest EC value (0.03 kWh (g COD)-1) was obtained for the more charged effluent (HU).
Collapse
Affiliation(s)
- Mouna Ghazouani
- Laboratory of Wastewaters and Environment, Centre of Water Researches and Technologies (CERTE), Techopark Borj Cedria, Touristic road of Soliman, BP 273, 8020, Soliman, Tunisia
| | - Hanene Akrout
- Laboratory of Wastewaters and Environment, Centre of Water Researches and Technologies (CERTE), Techopark Borj Cedria, Touristic road of Soliman, BP 273, 8020, Soliman, Tunisia.
| | - Latifa Bousselmi
- Laboratory of Wastewaters and Environment, Centre of Water Researches and Technologies (CERTE), Techopark Borj Cedria, Touristic road of Soliman, BP 273, 8020, Soliman, Tunisia
| |
Collapse
|