1
|
Fattah S, Shinde AB, Baes M, Allegaert K, Augustijns P, Annaert P. Ontogeny of Hepatic Organic Cation Transporter-1 in Rat and Human. Drug Metab Dispos 2024; 52:1253-1261. [PMID: 39209551 DOI: 10.1124/dmd.124.001766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
The organic cation transporter (OCT)-1 mediates hepatic uptake of cationic endogenous compounds and xenobiotics. To date, limited information exists on how Oct1/OCT1 functionally develops with age in rat and human livers and how this would affect the pharmacokinetics of OCT substrates in children or juvenile animals. The functional ontogeny of rOct/hOCT was profiled in suspended rat (2-57 days old) and human hepatocytes (pediatric liver tissue donors: age 2-12 months) by determining uptake clearance of 4-[4-(dimethylamino)styryl]-N-methylpyridinium iodide (ASP+) as a known rOct/hOCT probe substrate. mRNA expression was determined in rat liver tissue corresponding to rat ages used in the functional studies, while hOCT1 mRNA expressions were determined in the same hepatocyte batches as those used for uptake studies. Maturation of rOct/hOCT activity and expression were evaluated by comparing values obtained at the various ages to the adult values. Relative to adult values (at 8 weeks), ASP+ uptake clearance in suspended rat hepatocytes aged 0, 1, 2, 3, 4, 5, and 6 weeks reached 26%, 29%, 33%, 37%, 72%, 63%, and 71%, respectively. Hepatic Oct1 mRNA expression was consistent with Oct activity (correlation coefficient of 0.92). In human hepatocytes, OCT1 activity was age dependent and also correlated with mRNA levels (correlation coefficient of 0.88). These data show that Oct1/OCT1 activities and expression mature gradually in rat/human liver, thereby mirroring the expression pattern of organic anion transporting polypeptide in rat. These high-resolution transporter ontogeny profiles will allow for more accurate prediction of the pharmacokinetics of OCT1/Oct1 substrates in pediatric populations and juvenile animals. SIGNIFICANCE STATEMENT: Organic cation transporter-1 (OCT1) represents a major drug uptake transporter in human liver. This study provides high-resolution data regarding the age-dependent function of OCT1 in the liver, based on in vitro experiments with rat and human hepatocytes obtained from donors between birth and adulthood. These ontogeny profiles will inform improved age-specific physiologically based pharmacokinetic models for OCT1 drug substrates in neonates, infants, children, and adults.
Collapse
Affiliation(s)
- Sarinj Fattah
- Drug Delivery and Disposition (S.F., Pa.A., Pi.A.), Laboratory of Cell Metabolism (A.B.S., M.B.), Clinical Pharmacology and Pharmacotherapy (K.A.), Department of Pharmaceutical and Pharmacological Sciences, and Department of Development and Regeneration (K.A.), KU Leuven, Leuven, Belgium; and Department of Hospital Pharmacy, Erasmus University Medical Centre, Rotterdam, The Netherlands (K.A.)
| | - Abhijit Babaji Shinde
- Drug Delivery and Disposition (S.F., Pa.A., Pi.A.), Laboratory of Cell Metabolism (A.B.S., M.B.), Clinical Pharmacology and Pharmacotherapy (K.A.), Department of Pharmaceutical and Pharmacological Sciences, and Department of Development and Regeneration (K.A.), KU Leuven, Leuven, Belgium; and Department of Hospital Pharmacy, Erasmus University Medical Centre, Rotterdam, The Netherlands (K.A.)
| | - Myriam Baes
- Drug Delivery and Disposition (S.F., Pa.A., Pi.A.), Laboratory of Cell Metabolism (A.B.S., M.B.), Clinical Pharmacology and Pharmacotherapy (K.A.), Department of Pharmaceutical and Pharmacological Sciences, and Department of Development and Regeneration (K.A.), KU Leuven, Leuven, Belgium; and Department of Hospital Pharmacy, Erasmus University Medical Centre, Rotterdam, The Netherlands (K.A.)
| | - Karel Allegaert
- Drug Delivery and Disposition (S.F., Pa.A., Pi.A.), Laboratory of Cell Metabolism (A.B.S., M.B.), Clinical Pharmacology and Pharmacotherapy (K.A.), Department of Pharmaceutical and Pharmacological Sciences, and Department of Development and Regeneration (K.A.), KU Leuven, Leuven, Belgium; and Department of Hospital Pharmacy, Erasmus University Medical Centre, Rotterdam, The Netherlands (K.A.)
| | - Patrick Augustijns
- Drug Delivery and Disposition (S.F., Pa.A., Pi.A.), Laboratory of Cell Metabolism (A.B.S., M.B.), Clinical Pharmacology and Pharmacotherapy (K.A.), Department of Pharmaceutical and Pharmacological Sciences, and Department of Development and Regeneration (K.A.), KU Leuven, Leuven, Belgium; and Department of Hospital Pharmacy, Erasmus University Medical Centre, Rotterdam, The Netherlands (K.A.)
| | - Pieter Annaert
- Drug Delivery and Disposition (S.F., Pa.A., Pi.A.), Laboratory of Cell Metabolism (A.B.S., M.B.), Clinical Pharmacology and Pharmacotherapy (K.A.), Department of Pharmaceutical and Pharmacological Sciences, and Department of Development and Regeneration (K.A.), KU Leuven, Leuven, Belgium; and Department of Hospital Pharmacy, Erasmus University Medical Centre, Rotterdam, The Netherlands (K.A.)
| |
Collapse
|
2
|
Yang L, Wang X, Zheng JX, Xu ZR, Li LC, Xiong YL, Zhou BC, Gao J, Xu CR. Determination of key events in mouse hepatocyte maturation at the single-cell level. Dev Cell 2023; 58:1996-2010.e6. [PMID: 37557173 DOI: 10.1016/j.devcel.2023.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/10/2023] [Accepted: 07/14/2023] [Indexed: 08/11/2023]
Abstract
Hepatocytes, the liver's predominant cells, perform numerous essential biological functions. However, crucial events and regulators during hepatocyte maturation require in-depth investigation. In this study, we performed single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq) to explore the precise hepatocyte development process in mice. We defined three maturation stages of postnatal hepatocytes, each of which establishes specific metabolic functions and exhibits distinct proliferation rates. Hepatic zonation is gradually formed during hepatocyte maturation. Hepatocytes or their nuclei with distinct ploidies exhibit zonation preferences in distribution and asynchrony in maturation. Moreover, by combining gene regulatory network analysis with in vivo genetic manipulation, we identified critical maturation- and zonation-related transcription factors. This study not only delineates the comprehensive transcriptomic profiles of hepatocyte maturation but also presents a paradigm to identify genes that function in the development of hepatocyte maturation and zonation by combining genetic manipulation and measurement of coordinates in a single-cell developmental trajectory.
Collapse
Affiliation(s)
- Li Yang
- Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xin Wang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Jia-Xi Zheng
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Zi-Ran Xu
- PKU-Tsinghua-NIBS Graduate Program, Peking University, Beijing 100871, China
| | - Lin-Chen Li
- Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yu-Long Xiong
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Bi-Chen Zhou
- Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jie Gao
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Cheng-Ran Xu
- Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; State Key Laboratory of Female Fertility Promotion, Peking University, Beijing 100191, China.
| |
Collapse
|
3
|
Jin J, Zhong XB. Epigenetic Mechanisms Contribute to Intraindividual Variations of Drug Metabolism Mediated by Cytochrome P450 Enzymes. Drug Metab Dispos 2023; 51:672-684. [PMID: 36973001 PMCID: PMC10197210 DOI: 10.1124/dmd.122.001007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/24/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Significant interindividual and intraindividual variations on cytochrome P450 (CYP)-mediated drug metabolism exist in the general population globally. Genetic polymorphisms are one of the major contribution factors for interindividual variations, but epigenetic mechanisms mainly contribute to intraindividual variations, including DNA methylation, histone modifications, microRNAs, and long non-coding RNAs. The current review provides analysis of advanced knowledge in the last decade on contributions of epigenetic mechanisms to intraindividual variations on CYP-mediated drug metabolism in several situations, including (1) ontogeny, the developmental changes of CYP expression in individuals from neonates to adults; (2) increased activities of CYP enzymes induced by drug treatment; (3) increased activities of CYP enzymes in adult ages induced by drug treatment at neonate ages; and (4) decreased activities of CYP enzymes in individuals with drug-induced liver injury (DILI). Furthermore, current challenges, knowledge gaps, and future perspective of the epigenetic mechanisms in development of CYP pharmacoepigenetics are discussed. In conclusion, epigenetic mechanisms have been proven to contribute to intraindividual variations of drug metabolism mediated by CYP enzymes in age development, drug induction, and DILI conditions. The knowledge has helped understanding how intraindividual variation are generated. Future studies are needed to develop CYP-based pharmacoepigenetics to guide clinical applications for precision medicine with improved therapeutic efficacy and reduced risk of adverse drug reactions and toxicity. SIGNIFICANCE STATEMENT: Understanding epigenetic mechanisms in contribution to intraindividual variations of CYP-mediated drug metabolism may help to develop CYP-based pharmacoepigenetics for precision medicine to improve therapeutic efficacy and reduce adverse drug reactions and toxicity for drugs metabolized by CYP enzymes.
Collapse
Affiliation(s)
- Jing Jin
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
4
|
Asin-Garcia E, Batianis C, Li Y, Fawcett JD, de Jong I, Dos Santos VAPM. Phosphite synthetic auxotrophy as an effective biocontainment strategy for the industrial chassis Pseudomonas putida. Microb Cell Fact 2022; 21:156. [PMID: 35934698 PMCID: PMC9358898 DOI: 10.1186/s12934-022-01883-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/26/2022] [Indexed: 11/12/2022] Open
Abstract
The inclusion of biosafety strategies into strain engineering pipelines is crucial for safe-by-design biobased processes. This in turn might enable a more rapid regulatory acceptance of bioengineered organisms in both industrial and environmental applications. For this reason, we equipped the industrially relevant microbial chassis Pseudomonas putida KT2440 with an effective biocontainment strategy based on a synthetic dependency on phosphite, which is generally not readily available in the environment. The produced PSAG-9 strain was first engineered to assimilate phosphite through the genome-integration of a phosphite dehydrogenase and a phosphite-specific transport complex. Subsequently, to deter the strain from growing on naturally assimilated phosphate, all native genes related to its transport were identified and deleted generating a strain unable to grow on media containing any phosphorous source other than phosphite. PSAG-9 exhibited fitness levels with phosphite similar to those of the wild type with phosphate, and low levels of escape frequency. Beyond biosafety, this strategy endowed P. putida with the capacity to be cultured under non-sterile conditions using phosphite as the sole phosphorous source with a reduced risk of contamination by other microbes, while displaying enhanced NADH regenerative capacity. These industrially beneficial features complement the metabolic advantages for which this species is known for, thereby strengthening it as a synthetic biology chassis with potential uses in industry, with suitability towards environmental release.
Collapse
Affiliation(s)
- Enrique Asin-Garcia
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708 WE, The Netherlands
| | - Christos Batianis
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708 WE, The Netherlands
| | - Yunsong Li
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708 WE, The Netherlands
| | - James D Fawcett
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708 WE, The Netherlands
- Department of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London, SW72BX, UK
| | - Ivar de Jong
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708 WE, The Netherlands
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708 WE, The Netherlands.
- LifeGlimmer GmbH, 12163, Berlin, Germany.
- Bioprocess Engineering Group, Wageningen University & Research, Wageningen, 6700 AA, The Netherlands.
| |
Collapse
|
5
|
Ni J, Zhu P, Mo Q, Luo W, Du Z, Jiang J, Yang S, Zhao L, Gong Q, Wang Y. Dynamic Transcriptomic Profiling During Liver Development in Schizothorax Prenanti. Front Physiol 2022; 13:928858. [PMID: 35899028 PMCID: PMC9309550 DOI: 10.3389/fphys.2022.928858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/21/2022] [Indexed: 11/23/2022] Open
Abstract
Liver is an important organ for glucose and lipid metabolism, immunity, and detoxification in fish. However, the gene regulatory network of postnatal liver development still remains unknown in teleost fish. In this study, we performed transcriptome analysis on the liver of S. prenanti at three stages. A total of 1692 differentially expressed genes (DGEs) were identified across three liver developmental stages. The oil red O staining and PAS staining revealed that the lipid content of liver was increased and the glycogen content of liver was decreased during liver development. The fatty acids biosynthesis related genes were upregulated in adult and young stages compared with juvenile stage, while lipid degradation related genes were downregulated. The genes related to glycolysis, gluconeogenesis and glycogenolysis were upregulated in juvenile or young stages compared with adult stage. Further pathway analysis indicated that the CYP450 pathway, cell cycle and amino acid metabolic pathway were induced in the process of liver maturation. Our study presents the gene expression pattern in different liver development stages of S. prenanti and may guide future studies on metabolism of S. prenanti liver.
Collapse
Affiliation(s)
- Jiahui Ni
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Peng Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qilang Mo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wei Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zongjun Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Quan Gong
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yan Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Yan Wang,
| |
Collapse
|
6
|
Zhao X, Xuan R, Wang A, Li Q, Zhao Y, Du S, Duan Q, Wang Y, Ji Z, Guo Y, Wang J, Chao T. High-Throughput Sequencing Reveals Transcriptome Signature of Early Liver Development in Goat Kids. Genes (Basel) 2022; 13:833. [PMID: 35627218 PMCID: PMC9141777 DOI: 10.3390/genes13050833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 01/27/2023] Open
Abstract
As a vital metabolic and immune organ in animals, the liver plays an important role in protein synthesis, detoxification, metabolism, and immune defense. The primary research purpose of this study was to reveal the effect of breast-feeding, weaning transition, and weaning on the gene expression profile in the goat kid liver and to elucidate the transcriptome-level signatures associated with liver metabolic adaptation. Therefore, transcriptome sequencing was performed on liver tissues, which was collected at 1 day (D1), 2 weeks (W2), 4 weeks (W4), 8 weeks (W8), and 12 weeks (W12) after birth in Laiwu black goats at five different time-points, with five goats at each time point. From 25 libraries, a total of 37497 mRNAs were found to be expressed in goat kid livers, and 1271 genes were differentially expressed between at least two of the five time points. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that these genes were annotated as an extracellular region fraction, exhibiting monooxygenase activity, positive regulation of T cell activation, mitotic spindle mid-region assembly, cytokinesis, cytoskeleton-dependent cytokinesis, regulation of cytokinesis, regulation of lymphocyte proliferation, and so on. In addition, it mainly deals with metabolism, endocrine, cell proliferation and apoptosis, and immune processes. Finally, a gene regulatory network was constructed, and a total of 14 key genes were screened, which were mainly enriched for cell growth and development, endocrine, immune, and signal transduction-related pathways. Our results provide new information on the molecular mechanisms and pathways involved in liver development, metabolism, and immunity of goats.
Collapse
Affiliation(s)
- Xiaodong Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 261018, China; (X.Z.); (R.X.); (Q.L.); (Y.Z.); (S.D.); (Q.D.); (Y.W.); (Z.J.); (Y.G.); (J.W.)
| | - Rong Xuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 261018, China; (X.Z.); (R.X.); (Q.L.); (Y.Z.); (S.D.); (Q.D.); (Y.W.); (Z.J.); (Y.G.); (J.W.)
| | - Aili Wang
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China;
| | - Qing Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 261018, China; (X.Z.); (R.X.); (Q.L.); (Y.Z.); (S.D.); (Q.D.); (Y.W.); (Z.J.); (Y.G.); (J.W.)
| | - Yilin Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 261018, China; (X.Z.); (R.X.); (Q.L.); (Y.Z.); (S.D.); (Q.D.); (Y.W.); (Z.J.); (Y.G.); (J.W.)
| | - Shanfeng Du
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 261018, China; (X.Z.); (R.X.); (Q.L.); (Y.Z.); (S.D.); (Q.D.); (Y.W.); (Z.J.); (Y.G.); (J.W.)
| | - Qingling Duan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 261018, China; (X.Z.); (R.X.); (Q.L.); (Y.Z.); (S.D.); (Q.D.); (Y.W.); (Z.J.); (Y.G.); (J.W.)
| | - Yanyan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 261018, China; (X.Z.); (R.X.); (Q.L.); (Y.Z.); (S.D.); (Q.D.); (Y.W.); (Z.J.); (Y.G.); (J.W.)
| | - Zhibin Ji
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 261018, China; (X.Z.); (R.X.); (Q.L.); (Y.Z.); (S.D.); (Q.D.); (Y.W.); (Z.J.); (Y.G.); (J.W.)
| | - Yanfei Guo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 261018, China; (X.Z.); (R.X.); (Q.L.); (Y.Z.); (S.D.); (Q.D.); (Y.W.); (Z.J.); (Y.G.); (J.W.)
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 261018, China; (X.Z.); (R.X.); (Q.L.); (Y.Z.); (S.D.); (Q.D.); (Y.W.); (Z.J.); (Y.G.); (J.W.)
| | - Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 261018, China; (X.Z.); (R.X.); (Q.L.); (Y.Z.); (S.D.); (Q.D.); (Y.W.); (Z.J.); (Y.G.); (J.W.)
| |
Collapse
|
7
|
Special Section on Bile Acids, Drug Metabolism, and Toxicity-Editorial. Drug Metab Dispos 2022; 50:422-424. [PMID: 35410872 DOI: 10.1124/dmd.122.000835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/02/2022] [Indexed: 11/22/2022] Open
|
8
|
van Groen BD, Nicolaï J, Kuik AC, Van Cruchten S, van Peer E, Smits A, Schmidt S, de Wildt SN, Allegaert K, De Schaepdrijver L, Annaert P, Badée J. Ontogeny of Hepatic Transporters and Drug-Metabolizing Enzymes in Humans and in Nonclinical Species. Pharmacol Rev 2021; 73:597-678. [PMID: 33608409 DOI: 10.1124/pharmrev.120.000071] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The liver represents a major eliminating and detoxifying organ, determining exposure to endogenous compounds, drugs, and other xenobiotics. Drug transporters (DTs) and drug-metabolizing enzymes (DMEs) are key determinants of disposition, efficacy, and toxicity of drugs. Changes in their mRNA and protein expression levels and associated functional activity between the perinatal period until adulthood impact drug disposition. However, high-resolution ontogeny profiles for hepatic DTs and DMEs in nonclinical species and humans are lacking. Meanwhile, increasing use of physiologically based pharmacokinetic (PBPK) models necessitates availability of underlying ontogeny profiles to reliably predict drug exposure in children. In addition, understanding of species similarities and differences in DT/DME ontogeny is crucial for selecting the most appropriate animal species when studying the impact of development on pharmacokinetics. Cross-species ontogeny mapping is also required for adequate translation of drug disposition data in developing nonclinical species to humans. This review presents a quantitative cross-species compilation of the ontogeny of DTs and DMEs relevant to hepatic drug disposition. A comprehensive literature search was conducted on PubMed Central: Tables and graphs (often after digitization) in original manuscripts were used to extract ontogeny data. Data from independent studies were standardized and normalized before being compiled in graphs and tables for further interpretation. New insights gained from these high-resolution ontogeny profiles will be indispensable to understand cross-species differences in maturation of hepatic DTs and DMEs. Integration of these ontogeny data into PBPK models will support improved predictions of pediatric hepatic drug disposition processes. SIGNIFICANCE STATEMENT: Hepatic drug transporters (DTs) and drug-metabolizing enzymes (DMEs) play pivotal roles in hepatic drug disposition. Developmental changes in expression levels and activities of these proteins drive age-dependent pharmacokinetics. This review compiles the currently available ontogeny profiles of DTs and DMEs expressed in livers of humans and nonclinical species, enabling robust interpretation of age-related changes in drug disposition and ultimately optimization of pediatric drug therapy.
Collapse
Affiliation(s)
- B D van Groen
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - J Nicolaï
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - A C Kuik
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - S Van Cruchten
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - E van Peer
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - A Smits
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - S Schmidt
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - S N de Wildt
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - K Allegaert
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - L De Schaepdrijver
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - P Annaert
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - J Badée
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| |
Collapse
|
9
|
Gong T, Zhang C, Ni X, Li X, Li J, Liu M, Zhan D, Xia X, Song L, Zhou Q, Ding C, Qin J, Wang Y. A time-resolved multi-omic atlas of the developing mouse liver. Genome Res 2020; 30:263-275. [PMID: 32051188 PMCID: PMC7050524 DOI: 10.1101/gr.253328.119] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 01/17/2020] [Indexed: 12/13/2022]
Abstract
Liver organogenesis and development are composed of a series of complex, well-orchestrated events. Identifying key factors and pathways governing liver development will help elucidate the physiological and pathological processes including those of cancer. We conducted multidimensional omics measurements including protein, mRNA, and transcription factor (TF) DNA-binding activity for mouse liver tissues collected from embryonic day 12.5 (E12.5) to postnatal week 8 (W8), encompassing major developmental stages. These data sets reveal dynamic changes of core liver functions and canonical signaling pathways governing development at both mRNA and protein levels. The TF DNA-binding activity data set highlights the importance of TF activity in early embryonic development. A comparison between mouse liver development and human hepatocellular carcinoma (HCC) proteomic profiles reveal that more aggressive tumors are characterized with the activation of early embryonic development pathways, whereas less aggressive ones maintain liver function-related pathways that are elevated in the mature liver. This work offers a panoramic view of mouse liver development and provides a rich resource to explore in-depth functional characterization.
Collapse
Affiliation(s)
- Tongqing Gong
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Chunchao Zhang
- Alkek Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xiaotian Ni
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Institute of Lifeomics, Beijing 102206, China.,Department of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xianju Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Jin'e Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Mingwei Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Dongdong Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Institute of Lifeomics, Beijing 102206, China.,Department of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xia Xia
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Lei Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Quan Zhou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Institute of Lifeomics, Beijing 102206, China.,State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Yi Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Institute of Lifeomics, Beijing 102206, China.,Alkek Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
10
|
Development of precision medicine approaches based on inter-individual variability of BCRP/ ABCG2. Acta Pharm Sin B 2019; 9:659-674. [PMID: 31384528 PMCID: PMC6664102 DOI: 10.1016/j.apsb.2019.01.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022] Open
Abstract
Precision medicine is a rapidly-developing modality of medicine in human healthcare. Based on each patient׳s unique characteristics, more accurate dosages and drug selection can be made to achieve better therapeutic efficacy and less adverse reactions in precision medicine. A patient׳s individual parameters that affect drug transporter action can be used to develop a precision medicine guidance, due to the fact that therapeutic efficacy and adverse reactions of drugs can both be affected by expression and function of drug transporters on the cell membrane surface. The purpose of this review is to summarize unique characteristics of human breast cancer resistant protein (BCRP) and the genetic variability in the BCRP encoded gene ABCG2 in the development of precision medicine. Inter-individual variability of BCRP/ABCG2 can impact choices and outcomes of drug treatment for several diseases, including cancer chemotherapy. Several factors have been implicated in expression and function of BCRP, including genetic, epigenetic, physiologic, pathologic, and environmental factors. Understanding the roles of these factors in controlling expression and function of BCRP is critical for the development of precision medicine based on BCRP-mediated drug transport.
Collapse
Key Words
- 3′-UTR, 3′-untranslated region
- 5-aza-C, 5-aza-2′-deoxycytidine
- ABCG2, ATP-binding cassette subfamily G member 2
- ALL, acute lymphocytic leukemia
- AML, acute myeloid leukemia
- AUC, area under curve
- BCRP
- BCRP, breast cancer resistant protein
- Epigenetics
- FTC, fumitremorgin C
- Gene polymorphisms
- H3K4me3, histone H3 lysine 4 trimethylation
- H3K9me3, histone H3 lysine 9 trimethylation
- H3S10P, histone H3 serine 10 phosphorylation
- HDAC, histone deacetylase
- HIF-1α, hypoxia inducible factor 1 subunit alpha
- HIV-1, human immunodeficiency virus type-1
- HMG-CoA, β-hydroxy-β-methyl-glutaryl-coenzyme A
- MDR, multidrug resistance
- MDR1, multidrug resistance 1
- NBD, nucleotide binding domain
- P-gp, P-glycoprotein
- Physiologic factors
- Precision medicine
- RISC, RNA-induced silencing complex
- SNP, Single nucleotide polymorphism
- TKI, tyrosine kinase inhibitor
- Tat, transactivator protein
- miRNA, microRNA
- siRNA, small RNA interference
Collapse
|
11
|
Wu KC, Cui JY, Liu J, Lu H, Zhong XB, Klaassen CD. RNA-Seq provides new insights on the relative mRNA abundance of antioxidant components during mouse liver development. Free Radic Biol Med 2019; 134:335-342. [PMID: 30659941 PMCID: PMC6588412 DOI: 10.1016/j.freeradbiomed.2019.01.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 11/18/2022]
Abstract
Mammals have developed a variety of antioxidant systems to protect them from the oxygen environment and toxic stimuli. Little is known about the mRNA abundance of antioxidant components during postnatal development of the liver. Therefore, the purpose of this study was to compare the mRNA abundance of antioxidant components during liver development. Livers from male C57BL/6J mice were collected at 12 ages from prenatal to adulthood. The transcriptome was determined by RNA-Seq with transcript abundance estimated by Cufflinks. RNA-Seq provided a complete, more accurate, and unbiased quantification of the transcriptome. Among 33 known antioxidant components examined, three ontogeny patterns of liver antioxidant components were observed: (1) Prenatal-enriched, in which the mRNAs decreased from fetal livers to adulthood, such as metallothionein and heme oxygenase-1; (2) adolescent-rich and relatively stable expression, such as peroxiredoxins; and (3) adult-rich, in which the mRNA increased with age, such as catalase and superoxide dismutase. Alternative splicing of several antioxidant genes, such as Keap1, Glrx2, Gpx3, and Txnrd1, were also detected by RNA-Seq. In summary, RNA-Seq revealed the relative abundance of hepatic antioxidant enzymes, which are important in protecting against the deleterious effects of oxidative stress.
Collapse
Affiliation(s)
- Kai Connie Wu
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, United States
| | - Jie Liu
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Hong Lu
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Curtis D Klaassen
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States.
| |
Collapse
|
12
|
Wagner JB, Abdel-Rahman S, Gaedigk R, Gaedigk A, Raghuveer G, Staggs VS, Kauffman R, Van Haandel L, Leeder JS. Impact of Genetic Variation on Pravastatin Systemic Exposure in Pediatric Hypercholesterolemia. Clin Pharmacol Ther 2019; 105:1501-1512. [PMID: 30549267 DOI: 10.1002/cpt.1330] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/20/2018] [Indexed: 11/07/2022]
Abstract
This study investigated the impact of SLCO1B1 genotype on pravastatin systemic exposure in children and adolescents with hypercholesterolemia. Participants (8-20 years) with at least one allelic variant of SLCO1B1 c.521T>C (521TC, n = 15; 521CC, n = 2) and wild-type controls (521TT, n = 15) completed a single oral dose pharmacokinetic study. Interindividual variability of pravastatin acid (PVA) exposure within SLCO1B1 genotype groups exceeded the approximately twofold difference in mean PVA exposure observed between SLCO1B1 genotype groups (P > 0.05, q > 0.10). The 3'α-iso-pravastatin acid and lactone isomer formation in the acidic environment of the stomach prior to absorption also was variable and affected PVA exposure in all genotype groups. The SLCO1B1 c.521 gene variant contributing to variability in systemic exposure to PVA in our pediatric cohort was comparable to previous studies in adults. However, other demographic and physicochemical factors seem to also contribute to interindividual variability in the dose-exposure relationship.
Collapse
Affiliation(s)
- Jonathan B Wagner
- Ward Family Heart Center, Children's Mercy, Kansas City, Missouri, USA
- Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, Missouri, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Susan Abdel-Rahman
- Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, Missouri, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Roger Gaedigk
- Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, Missouri, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, Missouri, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Geetha Raghuveer
- Ward Family Heart Center, Children's Mercy, Kansas City, Missouri, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Vincent S Staggs
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
- Health Services & Outcomes Research, Children's Mercy, Kansas City, Missouri, USA
| | - Ralph Kauffman
- Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, Missouri, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Leon Van Haandel
- Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, Missouri, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - J Steven Leeder
- Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, Missouri, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| |
Collapse
|
13
|
Han LW, Gao C, Mao Q. An update on expression and function of P-gp/ABCB1 and BCRP/ABCG2 in the placenta and fetus. Expert Opin Drug Metab Toxicol 2018; 14:817-829. [PMID: 30010462 DOI: 10.1080/17425255.2018.1499726] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION P-glycoprotein (P-gp)/ABCB1 and breast cancer resistance protein (BCRP)/ABCG2 are highly expressed in the placenta and fetus throughout gestation and can modulate exposure and toxicity of drugs and xenobiotics to the vulnerable fetus during the sensitive times of growth and development. We aim to provide an update on current knowledge on placental and fetal expressions of the two transporters in different species, and to provide insight on interpreting transporter expression and fetal exposure relative to the concept of fraction of drug transported. Areas covered: Comprehensive literature review through PubMed (primarily from July 2010 to February 2018) on P-gp and BCRP expression and function in the placenta and fetus of primarily human, mouse, rat, and guinea pig. Expert opinion: While there are many commonalities in the expression and function of P-gp and BCRP in the placenta and fetal tissues across species, there are distinct differences in expression levels and temporal changes. Further studies are needed to quantify protein abundance of these transporters and functionally assess their activities at various gestational stages. Combining the knowledge of interspecies differences and the concept of fraction of drug transported, we may better predict the magnitude of impact these transporters have on fetal drug exposure.
Collapse
Affiliation(s)
- Lyrialle W Han
- a Department of Pharmaceutics, School of Pharmacy , University of Washington , Seattle , WA , USA
| | - Chunying Gao
- a Department of Pharmaceutics, School of Pharmacy , University of Washington , Seattle , WA , USA
| | - Qingcheng Mao
- a Department of Pharmaceutics, School of Pharmacy , University of Washington , Seattle , WA , USA
| |
Collapse
|
14
|
Wang M, Jiang B, Peng Q, Liu W, He X, Liang Z, Lin Y. Transcriptome Analyses in Different Cucumber Cultivars Provide Novel Insights into Drought Stress Responses. Int J Mol Sci 2018; 19:ijms19072067. [PMID: 30013000 PMCID: PMC6073345 DOI: 10.3390/ijms19072067] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/28/2018] [Accepted: 07/10/2018] [Indexed: 12/05/2022] Open
Abstract
Drought stress is one of the most serious threats to cucumber quality and yield. To gain a good understanding of the molecular mechanism upon water deficiency, we compared and analyzed the RNA sequencing-based transcriptomic responses of two contrasting cucumber genotypes, L-9 (drought-tolerant) and A-16 (drought-sensitive). In our present study, combining the analysis of phenotype, twelve samples of cucumber were carried out a transcriptomic profile by RNA-Seq under normal and water-deficiency conditions, respectively. A total of 1008 transcripts were differentially expressed under normal conditions (466 up-regulated and 542 down-regulated) and 2265 transcripts under drought stress (979 up-regulated and 1286 down-regulated). The significant positive correlation between RNA sequencing data and a qRT-PCR analysis supported the results found. Differentially expressed genes (DEGs) involved in metabolic pathway and biosynthesis of secondary metabolism were significantly changed after drought stress. Several genes, which were related to sucrose biosynthesis (Csa3G784370 and Csa3G149890) and abscisic acid (ABA) signal transduction (Csa4M361820 and Csa6M382950), were specifically induced after 4 days of drought stress. DEGs between the two contrasting cultivars identified in our study provide a novel insight into isolating helpful candidate genes for drought tolerance in cucumber.
Collapse
Affiliation(s)
- Min Wang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China.
| | - Biao Jiang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China.
| | - Qingwu Peng
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Wenrui Liu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Xiaoming He
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Zhaojun Liang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Yu'e Lin
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| |
Collapse
|
15
|
Xu SF, Ji LL, Wu Q, Li J, Liu J. Ontogeny and aging of Nrf2 pathway genes in livers of rats. Life Sci 2018; 203:99-104. [PMID: 29689272 DOI: 10.1016/j.lfs.2018.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/22/2018] [Accepted: 04/12/2018] [Indexed: 12/11/2022]
Abstract
The Nrf2/Keap1 antioxidant system plays important roles in protecting against oxidative stress and toxic stimuli, which may vary in infants, elderly, and females. AIM The constitutive expression of the Nrf2 genes during development and aging in both sexes would help our understanding of the Nrf2/Keap1 pathway in toxicological studies. MAIN METHODS Sprague Dawley rat livers were collected at 11 age points from prenatal (-2 d), neonatal (1, 7, 14 and 21 d), at puberty (28 and 35 d), at adulthood (60 and 180 d), to aging (540 and 800 d) from both sexes. Total RNA and proteins were extracted for real-time RT-PCR and Western-blot analysis. KEY FINDINGS The abundant mRNA expression was in the order of Nrf2, Gclm, Nqo1, Gclc, Ho-1, and Keap1. The expression of these genes except Gclc was high in fetal livers, decreased at birth, reached the first peak at 7 days of age, and gradually decreased to adult levels till 180 days of age. All these genes remained high at 540 days of age, but declined at 800 days of age, with more increases with Nqo1 and Ho-1. Females had lower fetal, neonatal, and aged levels than males. Protein expressions of Nrf2, Nqo1, Ho-1, GCLC and GCLM agree with mRNA analysis. SIGNIFICANCE This study characterized the age- and sex-related changes of Nrf2-related gene/proteins in livers of rats, and higher expressions in newborns and aged rats could cope with increased oxidative stress in infants and elderly.
Collapse
Affiliation(s)
- Shang-Fu Xu
- Key Lab for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, China; The MOE Key Lab for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Li Ji
- The MOE Key Lab for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qin Wu
- Key Lab for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, China
| | - Jin Li
- Research Center for Medicine & Biology, Zunyi Medical University, Zunyi, China
| | - Jie Liu
- Key Lab for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
16
|
Li X, Ao J, Wu J. Systematic identification and comparison of expressed profiles of lncRNAs and circRNAs with associated co-expression and ceRNA networks in mouse germline stem cells. Oncotarget 2018; 8:26573-26590. [PMID: 28404936 PMCID: PMC5432280 DOI: 10.18632/oncotarget.15719] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/22/2017] [Indexed: 01/01/2023] Open
Abstract
Accumulating evidence indicates that long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) involve in germ cell development. However, little is known about the functions and mechanisms of lncRNAs and circRNAs in self-renewal and differentiation of germline stem cells. Therefore, we explored the expression profiles of mRNAs, lncRNAs, and circRNAs in male and female mouse germline stem cells by high-throughput sequencing. We identified 18573 novel lncRNAs and 18822 circRNAs in the germline stem cells and further confirmed the existence of these lncRNAs and circRNAs by RT-PCR. The results showed that male and female germline stem cells had similar GDNF signaling mechanism. Subsequently, 8115 mRNAs, 3996 lncRNAs, and 921 circRNAs exhibited sex-biased expression that may be associated with germline stem cell acquisition of the sex-specific properties required for differentiation into gametes. Gene Ontology (GO) and KEGG pathway enrichment analyses revealed different functions for these sex-biased lncRNAs and circRNAs. We further constructed correlated expression networks including coding–noncoding co-expression and competing endogenous RNAs with bioinformatics. Co-expression analysis showed hundreds of lncRNAs were correlated with sex differences in mouse germline stem cells, including lncRNA Gm11851, lncRNA Gm12840, lncRNA 4930405O22Rik, and lncRNA Atp10d. CeRNA network inferred that lncRNA Meg3 and cirRNA Igf1r could bind competitively with miRNA-15a-5p increasing target gene Inha, Acsl3, Kif21b, and Igfbp2 expressions. These findings provide novel perspectives on lncRNAs and circRNAs and lay a foundation for future research into the regulating mechanisms of lncRNAs and circRNAs in germline stem cells.
Collapse
Affiliation(s)
- Xiaoyong Li
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junping Ao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Ji Wu
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.,Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China.,Shanghai Key Laboratory of Reproduction Medicine, Shanghai, 200025, China
| |
Collapse
|
17
|
Wagner JB, Abdel-Rahman S, Van Haandel L, Gaedigk A, Gaedigk R, Raghuveer G, Kauffman R, Leeder JS. Impact of SLCO1B1 Genotype on Pediatric Simvastatin Acid Pharmacokinetics. J Clin Pharmacol 2018; 58:823-833. [PMID: 29469964 DOI: 10.1002/jcph.1080] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/21/2017] [Indexed: 11/08/2022]
Abstract
This study investigated the impact of allelic variation in SLCO1B1, a gene encoding for the liver-specific solute carrier organic anion transporter family member 1B1 protein (SLCO1B1), on simvastatin and simvastatin acid (SVA) systemic exposure in children and adolescents. Participants (8-20 years old) with at least 1 variant SLCO1B1 c.521T>C allele (521TC, n = 15; 521CC, n = 2) and 2 wild-type alleles (521TT, n = 15) completed a single oral dose pharmacokinetic study. At equivalent doses, SVA exposure was 6.3- and 2.5-fold greater in 521CC and TC genotypes relative to 521TT (Cmax , 2.1 ± 0.2 vs 1.0 ± 0.5 vs 0.4 ± 0.3 ng/mL; P < .0001; and AUC, 12.1 ± 0.3 vs 4.5 ± 2.5 vs 1.9 ± 1.8 ng·h/mL; P < .0001). The impact of the SLCO1B1 c.521 genotype was more pronounced in children, although considerable interindividual variability in SVA exposure was observed within genotype groups. In addition, SVA systemic exposure was negligible in 25% of pediatric participants. Further investigation of the ontogeny and genetic variation of SVA formation and SLCO1B1-mediated hepatic uptake is necessary to better understand the variability in SVA exposure in children and its clinical consequences.
Collapse
Affiliation(s)
- Jonathan B Wagner
- Ward Family Heart Center, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, MO, USA.,Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, MO, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Susan Abdel-Rahman
- Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, MO, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Leon Van Haandel
- Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, MO, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, MO, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Roger Gaedigk
- Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, MO, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Geetha Raghuveer
- Ward Family Heart Center, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, MO, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Ralph Kauffman
- Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, MO, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - J Steven Leeder
- Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, MO, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| |
Collapse
|
18
|
Choudhuri S, Patton GW, Chanderbhan RF, Mattia A, Klaassen CD. From Classical Toxicology to Tox21: Some Critical Conceptual and Technological Advances in the Molecular Understanding of the Toxic Response Beginning From the Last Quarter of the 20th Century. Toxicol Sci 2018; 161:5-22. [PMID: 28973688 PMCID: PMC5837539 DOI: 10.1093/toxsci/kfx186] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Toxicology has made steady advances over the last 60+ years in understanding the mechanisms of toxicity at an increasingly finer level of cellular organization. Traditionally, toxicological studies have used animal models. However, the general adoption of the principles of 3R (Replace, Reduce, Refine) provided the impetus for the development of in vitro models in toxicity testing. The present commentary is an attempt to briefly discuss the transformation in toxicology that began around 1980. Many genes important in cellular protection and metabolism of toxicants were cloned and characterized in the 80s, and gene expression studies became feasible, too. The development of transgenic and knockout mice provided valuable animal models to investigate the role of specific genes in producing toxic effects of chemicals or protecting the organism from the toxic effects of chemicals. Further developments in toxicology came from the incorporation of the tools of "omics" (genomics, proteomics, metabolomics, interactomics), epigenetics, systems biology, computational biology, and in vitro biology. Collectively, the advances in toxicology made during the last 30-40 years are expected to provide more innovative and efficient approaches to risk assessment. A goal of experimental toxicology going forward is to reduce animal use and yet be able to conduct appropriate risk assessments and make sound regulatory decisions using alternative methods of toxicity testing. In that respect, Tox21 has provided a big picture framework for the future. Currently, regulatory decisions involving drugs, biologics, food additives, and similar compounds still utilize data from animal testing and human clinical trials. In contrast, the prioritization of environmental chemicals for further study can be made using in vitro screening and computational tools.
Collapse
Affiliation(s)
- Supratim Choudhuri
- Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland
| | - Geoffrey W Patton
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington
| | - Ronald F Chanderbhan
- Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland
| | - Antonia Mattia
- Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland
| | - Curtis D Klaassen
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington
| |
Collapse
|
19
|
Pope C, Piekos SC, Chen L, Mishra S, Zhong XB. The role of H19, a long non-coding RNA, in mouse liver postnatal maturation. PLoS One 2017; 12:e0187557. [PMID: 29099871 PMCID: PMC5669494 DOI: 10.1371/journal.pone.0187557] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/21/2017] [Indexed: 12/16/2022] Open
Abstract
H19 RNA is highly expressed at early postnatal ages and precipitously decreases at a specific time corresponding with increases in expression of genes important for mature liver function, such as drug metabolizing enzymes. H19’s role in the regulation of liver maturation is currently unknown. Using an H19 knockout mouse model to determine the role of H19 in liver development, we quantified gene expression for insulin growth factor signaling, Wnt signaling, key cytochrome P450 (P450) enzymes known to change as the liver develops, and fetal and adult plasma protein produced in liver. In mice lacking H19 expression, liver weights were significantly increased immediately after birth and significant increases were found in the number of actively proliferating cells. Increases in cell proliferation may be due to increases in β-catenin protein affecting Wnt signaling, increases in insulin-like growth factor 2 (IGF2) expression, and/or increases in insulin-like growth factor 1 receptor (IGF1R) expression at the protein level. Loss of targeted inhibition of IGF1R by microRNA 675 (miR-675) may be the cause of IGF1R increases, as miR-675 expression is also abrogated with loss of H19 expression in our model. P450 expression patterns were largely unchanged. No change in the production of plasma proteins was found, indicating H19 may not be important for liver maturation despite its role in controlling cell proliferation during liver growth. H19 may be important for normal liver development, and understanding how the liver matures will assist in predicting drug efficacy and toxicity in pediatric populations.
Collapse
Affiliation(s)
- Chad Pope
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail: ,
| | - Stephanie C. Piekos
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, United States of America
| | - Liming Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, United States of America
| | - Shashank Mishra
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Xiao-bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, United States of America
| |
Collapse
|
20
|
Peng L, Piekos SC, Guo GL, Zhong XB. Role of Farnesoid X Receptor in the Determination of Liver Transcriptome during Postnatal Maturation in Mice. NUCLEAR RECEPTOR RESEARCH 2017; 4:101308. [PMID: 29795774 PMCID: PMC5962295 DOI: 10.11131/2017/101308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The liver is a vital organ with critical functions in metabolism of various biologically useful materials, synthesis of several vital proteins, detoxification of toxic substances, and immune defense. Most liver functions are not mature at birth and many changes happen during postnatal liver development, which lead to differential vulnerabilities of the liver at different developmental stages. However, the details of what changes occur in liver after birth, at what developmental stages they occur, and molecular mechanisms in the regulation of the developmental process are not clearly known. The nuclear receptor Farnesoid X receptor (FXR) is an important transcriptional regulator in liver. Here, we used RNA-Sequencing to analyze the transcriptome of mouse liver from perinatal to adult ages in both C57BL/6 and Fxr-/- mice. We have defined a clear timeline of functional transition from prenatal through neonatal and adolescent to adult in C57BL/6 mice. Without FXR, activation of neonatal-specific pathways was prolonged and maturation of multiple metabolic pathways was delayed. The loss of FXR also led to increased expression of 27 other transcription regulators. Our data support a conclusion that developmental transcriptome revealed significant functional transition during postnatal liver development and FXR plays an important role in control of postnatal liver maturation.
Collapse
Affiliation(s)
- Lai Peng
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Stephanie C. Piekos
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, School of Pharmacy, Rutgers University, Piscataway, NJ 08807, USA
| | - Xiao-bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
21
|
Cheng SL, Bammler TK, Cui JY. RNA Sequencing Reveals Age and Species Differences of Constitutive Androstane Receptor-Targeted Drug-Processing Genes in the Liver. Drug Metab Dispos 2017; 45:867-882. [PMID: 28232382 PMCID: PMC5478913 DOI: 10.1124/dmd.117.075135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/17/2017] [Indexed: 12/26/2022] Open
Abstract
The constitutive androstane receptor (CAR/Nr1i3) is an important xenobiotic-sensing nuclear receptor that is highly expressed in the liver and is well known to have species differences. During development, age-specific activation of CAR may lead to modified pharmacokinetics and toxicokinetics of drugs and environmental chemicals, leading to higher risks for adverse drug reactions in newborns and children. The goal of this study was to systematically investigate the age- and species-specific regulation of various drug-processing genes (DPGs) after neonatal or adult CAR activation in the livers of wild-type, CAR-null, and humanized CAR transgenic mice. At either 5 or 60 days of age, the three genotypes of mice were administered a species-appropriate CAR ligand or vehicle once daily for 4 days (i.p.). The majority of DPGs were differentially regulated by age and/or CAR activation. Thirty-six DPGs were commonly upregulated by CAR activation regardless of age or species of CAR. Although the cumulative mRNAs of uptake transporters were not readily altered by CAR, the cumulative phase I and phase II enzymes as well as efflux transporters were all increased after CAR activation in both species. In general, mouse CAR activation produced comparable or even greater fold increases of many DPGs in newborns than in adults; conversely, humanized CAR activation produced weaker induction in newborns than in adults. Western blotting and enzyme activity assays confirmed the age and species specificities of selected CAR-targeted DPGs. In conclusion, this study systematically compared the effect of age and species of CAR proteins on the regulation of DPGs in the liver and demonstrated that the regulation of xenobiotic biotransformation by CAR is profoundly modified by age and species.
Collapse
Affiliation(s)
- Sunny Lihua Cheng
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
22
|
Ontogeny, aging, and gender-related changes in hepatic multidrug resistant protein genes in rats. Life Sci 2017; 170:108-114. [DOI: 10.1016/j.lfs.2016.11.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/16/2016] [Accepted: 11/23/2016] [Indexed: 12/26/2022]
|
23
|
Li CY, Renaud HJ, Klaassen CD, Cui JY. Age-Specific Regulation of Drug-Processing Genes in Mouse Liver by Ligands of Xenobiotic-Sensing Transcription Factors. Drug Metab Dispos 2016; 44:1038-49. [PMID: 26577535 PMCID: PMC4931882 DOI: 10.1124/dmd.115.066639] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/13/2015] [Indexed: 01/08/2023] Open
Abstract
The xenobiotic-sensing transcription factors (xeno-sensors) AhR, CAR, and PXR upregulate the expression of many drug-processing genes (DPGs) in liver. Previous studies have unveiled profound changes in the basal expression of DPGs during development; however, knowledge on the ontogeny of the inducibility of DPGs in response to pharmacological activation of xeno-sensors is still limited. The goal of this study was to investigate the age-specific regulation of DPGs by prototypical xeno-sensor ligands: 2,3,7,8-tetrachlorodibenzodioxin (TCDD) for AhR; 1,4-bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) for CAR; and pregnane-16α-carbonitrile (PCN) for PXR during mouse liver development. The basal mRNAs of most DPGs were low during neonatal age, but gradually increased to adult levels, whereas some DPGs (Cyp1a2, Cyp2b10, Cyp3a11, Gstm2, Gstm3, Papss2, and Oatp1a4) exhibited an adolescent-predominant expression pattern. The inducibility of DPGs was age-specific: 1) during neonatal age, the highest fold increase in the mRNA expression was observed for Cyp1a2, Sult5a1, and Ugt1a9 by TCDD; Cyp3a11 and Mrp2 by TCPOBOP; as well as Gstm2 and Gstm3 by PCN; 2) during adolescent age, the highest fold increase in the mRNA expression was observed for Ugt1a6 and Mrp4 by TCDD, Cyp2b10, Ugt2b34, and Ugt2b35 by TCPOBOP, as well as Gsta1, Gsta4, Sult1e1, Ugt1a1, Mrp3, and Mrp4 by PCN; 3) in adults, the highest fold increase in the mRNA expression was observed for Aldh1a1, Aldh1a7, and Ugt2b36 by TCPOBOP, as well as Papss2 and Oatp1a4 by PCN. In conclusion, the inducibility of hepatic DPGs following the pharmacological activation of xeno-sensors is age specific.
Collapse
MESH Headings
- Age Factors
- Aldehyde Dehydrogenase/genetics
- Aldehyde Dehydrogenase/metabolism
- Animals
- Animals, Newborn
- Basic Helix-Loop-Helix Transcription Factors/agonists
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Constitutive Androstane Receptor
- Cytochrome P-450 Enzyme System/genetics
- Cytochrome P-450 Enzyme System/metabolism
- Gene Expression Profiling/methods
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- Glucuronosyltransferase/genetics
- Glucuronosyltransferase/metabolism
- Glutathione Transferase/genetics
- Glutathione Transferase/metabolism
- Ligands
- Liver/drug effects
- Liver/metabolism
- Male
- Mice, Inbred C57BL
- Organic Cation Transport Proteins/genetics
- Organic Cation Transport Proteins/metabolism
- Polychlorinated Dibenzodioxins/pharmacology
- Pregnane X Receptor
- Pregnenolone Carbonitrile/pharmacology
- Pyridines/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Aryl Hydrocarbon/agonists
- Receptors, Aryl Hydrocarbon/metabolism
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid/agonists
- Receptors, Steroid/metabolism
- Sulfotransferases/genetics
- Sulfotransferases/metabolism
Collapse
Affiliation(s)
- Cindy Yanfei Li
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (C.Y.L., C.D.K., J.Y.C.); and Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas (H.J.R.)
| | - Helen J Renaud
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (C.Y.L., C.D.K., J.Y.C.); and Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas (H.J.R.)
| | - Curtis D Klaassen
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (C.Y.L., C.D.K., J.Y.C.); and Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas (H.J.R.)
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (C.Y.L., C.D.K., J.Y.C.); and Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas (H.J.R.)
| |
Collapse
|
24
|
Elmorsi Y, Barber J, Rostami-Hodjegan A. Ontogeny of Hepatic Drug Transporters and Relevance to Drugs Used in Pediatrics. Drug Metab Dispos 2016; 44:992-8. [PMID: 26712821 DOI: 10.1124/dmd.115.067801] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/23/2015] [Indexed: 02/13/2025] Open
Abstract
Most of the pharmacokinetic studies conducted to calculate pediatric drug doses are based on scaling from adult data using various allometric parameters related to body size. However, these uniform scaling methods cannot account for all physiologic changes occurring during maturation, which influence various drugs in different ways. The ontogeny of physiologic and biologic functions accompanying the progression from infancy to childhood to adulthood does not proceed in a simple monotonic rate with body size for various elimination pathways. The transporters and their interplay with enzymes have a substantial role in drug metabolism and disposition. Although much is known about enzymes and their ontogeny, there is a scarcity of information on the ontogenic profile of drug transporters, particularly during the early years of human life. These ontogeny data are required for the enhancement of physiologically based pharmacokinetic models, and consequently for the prediction of pharmacokinetic profiles of new therapeutic compounds in pediatric populations. This review points to the relative ontogeny rate for enzymes and transporters and how these may confound our understanding of the role that transporters may or may not play in childhood compared with adulthood.
Collapse
Affiliation(s)
- Yasmine Elmorsi
- Manchester Pharmacy School, University of Manchester, Manchester, United Kingdom (Y.E., J.B., A.R.-H.); and Simcyp Limited (a Certara Company) Sheffield, United Kingdom (A.R.-H.)
| | - Jill Barber
- Manchester Pharmacy School, University of Manchester, Manchester, United Kingdom (Y.E., J.B., A.R.-H.); and Simcyp Limited (a Certara Company) Sheffield, United Kingdom (A.R.-H.)
| | - Amin Rostami-Hodjegan
- Manchester Pharmacy School, University of Manchester, Manchester, United Kingdom (Y.E., J.B., A.R.-H.); and Simcyp Limited (a Certara Company) Sheffield, United Kingdom (A.R.-H.).
| |
Collapse
|
25
|
Mooij MG, van de Steeg E, van Rosmalen J, Windster JD, de Koning BAE, Vaes WHJ, van Groen BD, Tibboel D, Wortelboer HM, de Wildt SN. Proteomic Analysis of the Developmental Trajectory of Human Hepatic Membrane Transporter Proteins in the First Three Months of Life. Drug Metab Dispos 2016; 44:1005-13. [PMID: 27103634 DOI: 10.1124/dmd.115.068577] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/20/2016] [Indexed: 01/02/2023] Open
Abstract
Human hepatic membrane-embedded transporter proteins are involved in trafficking endogenous and exogenous substrates. Even though impact of transporters on pharmacokinetics is recognized, little is known on maturation of transporter protein expression levels, especially during early life. We aimed to study the protein expression of 10 transporters in liver tissue from fetuses, infants, and adults. Transporter protein expression levels [ATP-binding cassette transporter (ABC)B1, ABCG2, ABCC2, ABCC3, bile salt efflux pump, glucose transporter 1, monocarboxylate transporter 1, organic anion transporter polypeptide (OATP)1B1, OATP2B1, and organic cation/carnitine transporter 2) were quantified using ultraperformance liquid chromatography tandem mass spectrometry in snap-frozen postmortem fetal, infant, and adult liver samples. Protein expression was quantified in isolated crude membrane fractions. The possible association between postnatal and postmenstrual age versus protein expression was studied. We studied 25 liver samples, as follows: 10 fetal [median gestational age 23.2 wk (range 16.4-37.9)], 12 infantile [gestational age at birth 35.1 wk (27.1-41.0), postnatal age 1 wk (0-11.4)], and 3 adult. The relationship of protein expression with age was explored by comparing age groups. Correlating age within the fetal/infant age group suggested four specific protein expression patterns, as follows: stable, low to high, high to low, and low-high-low. The impact of growth and development on human membrane transporter protein expression is transporter-dependent. The suggested age-related differences in transporter protein expression may aid our understanding of normal growth and development, and also may impact the disposition of substrate drugs in neonates and young infants.
Collapse
Affiliation(s)
- Miriam G Mooij
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (M.G.M., J.D.W., B.D.G., D.T., S.N.W.); Department of Biostatistics, Erasmus MC, Rotterdam, The Netherlands (J.R.); Division of Pediatric Gastroenterology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.A.E.K.); TNO, Zeist, The Netherlands (E.v.d.S., H.M.W., W.H.J.V.); and Department of Pharmacology and Toxicology, Radboud University, Nijmegen, The Netherlands (S.N.d.W.)
| | - Evita van de Steeg
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (M.G.M., J.D.W., B.D.G., D.T., S.N.W.); Department of Biostatistics, Erasmus MC, Rotterdam, The Netherlands (J.R.); Division of Pediatric Gastroenterology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.A.E.K.); TNO, Zeist, The Netherlands (E.v.d.S., H.M.W., W.H.J.V.); and Department of Pharmacology and Toxicology, Radboud University, Nijmegen, The Netherlands (S.N.d.W.)
| | - Joost van Rosmalen
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (M.G.M., J.D.W., B.D.G., D.T., S.N.W.); Department of Biostatistics, Erasmus MC, Rotterdam, The Netherlands (J.R.); Division of Pediatric Gastroenterology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.A.E.K.); TNO, Zeist, The Netherlands (E.v.d.S., H.M.W., W.H.J.V.); and Department of Pharmacology and Toxicology, Radboud University, Nijmegen, The Netherlands (S.N.d.W.)
| | - Jonathan D Windster
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (M.G.M., J.D.W., B.D.G., D.T., S.N.W.); Department of Biostatistics, Erasmus MC, Rotterdam, The Netherlands (J.R.); Division of Pediatric Gastroenterology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.A.E.K.); TNO, Zeist, The Netherlands (E.v.d.S., H.M.W., W.H.J.V.); and Department of Pharmacology and Toxicology, Radboud University, Nijmegen, The Netherlands (S.N.d.W.)
| | - Barbara A E de Koning
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (M.G.M., J.D.W., B.D.G., D.T., S.N.W.); Department of Biostatistics, Erasmus MC, Rotterdam, The Netherlands (J.R.); Division of Pediatric Gastroenterology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.A.E.K.); TNO, Zeist, The Netherlands (E.v.d.S., H.M.W., W.H.J.V.); and Department of Pharmacology and Toxicology, Radboud University, Nijmegen, The Netherlands (S.N.d.W.)
| | - Wouter H J Vaes
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (M.G.M., J.D.W., B.D.G., D.T., S.N.W.); Department of Biostatistics, Erasmus MC, Rotterdam, The Netherlands (J.R.); Division of Pediatric Gastroenterology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.A.E.K.); TNO, Zeist, The Netherlands (E.v.d.S., H.M.W., W.H.J.V.); and Department of Pharmacology and Toxicology, Radboud University, Nijmegen, The Netherlands (S.N.d.W.)
| | - Bianca D van Groen
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (M.G.M., J.D.W., B.D.G., D.T., S.N.W.); Department of Biostatistics, Erasmus MC, Rotterdam, The Netherlands (J.R.); Division of Pediatric Gastroenterology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.A.E.K.); TNO, Zeist, The Netherlands (E.v.d.S., H.M.W., W.H.J.V.); and Department of Pharmacology and Toxicology, Radboud University, Nijmegen, The Netherlands (S.N.d.W.)
| | - Dick Tibboel
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (M.G.M., J.D.W., B.D.G., D.T., S.N.W.); Department of Biostatistics, Erasmus MC, Rotterdam, The Netherlands (J.R.); Division of Pediatric Gastroenterology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.A.E.K.); TNO, Zeist, The Netherlands (E.v.d.S., H.M.W., W.H.J.V.); and Department of Pharmacology and Toxicology, Radboud University, Nijmegen, The Netherlands (S.N.d.W.)
| | - Heleen M Wortelboer
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (M.G.M., J.D.W., B.D.G., D.T., S.N.W.); Department of Biostatistics, Erasmus MC, Rotterdam, The Netherlands (J.R.); Division of Pediatric Gastroenterology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.A.E.K.); TNO, Zeist, The Netherlands (E.v.d.S., H.M.W., W.H.J.V.); and Department of Pharmacology and Toxicology, Radboud University, Nijmegen, The Netherlands (S.N.d.W.)
| | - Saskia N de Wildt
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (M.G.M., J.D.W., B.D.G., D.T., S.N.W.); Department of Biostatistics, Erasmus MC, Rotterdam, The Netherlands (J.R.); Division of Pediatric Gastroenterology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.A.E.K.); TNO, Zeist, The Netherlands (E.v.d.S., H.M.W., W.H.J.V.); and Department of Pharmacology and Toxicology, Radboud University, Nijmegen, The Netherlands (S.N.d.W.)
| |
Collapse
|
26
|
Fu ZD, Selwyn FP, Cui JY, Klaassen CD. RNA Sequencing Quantification of Xenobiotic-Processing Genes in Various Sections of the Intestine in Comparison to the Liver of Male Mice. Drug Metab Dispos 2016; 44:842-56. [PMID: 27048750 PMCID: PMC4885488 DOI: 10.1124/dmd.115.068270] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 04/04/2016] [Indexed: 12/31/2022] Open
Abstract
Previous reports on tissue distribution of xenobiotic-processing genes (XPGs) have limitations, because many non-cytochrome P450 phase I enzymes have not been investigated, and one cannot compare the real mRNA abundance of multiple XPGs using conventional quantification methods. Therefore, this study aimed to quantify and compare the mRNA abundance of all major XPGs in the liver and intestine using RNA sequencing. The mRNA profiles of 304 XPGs, including phase I, phase II enzymes, phase II cosubstrate synthetic enzymes, xenobiotic transporters, as well as xenobiotic-related transcription factors, were systematically examined in the liver and various sections of the intestine in adult male C57BL/6J mice. By two-way hierarchical clustering, over 80% of the XPGs had tissue-divergent expression, which partitioned into liver-predominant, small intestine-predominant, and large intestine-predominant patterns. Among the genes, 54% were expressed highest in the liver, 21% in the duodenum, 4% in the jejunum, 6% in the ileum, and 15% in the large intestine. The highest-expressed XPG in the liver was Mgst1; in the duodenum, Cyp3a11; in the jejunum and ileum, Ces2e; and in the large intestine, Cyp2c55. Interestingly, XPGs in the same family usually exhibited highly different tissue distribution patterns, and many XPGs were almost exclusively expressed in one tissue and minimally expressed in others. In conclusion, the present study is among the first and the most comprehensive investigations of the real mRNA abundance and tissue-divergent expression of all major XPGs in mouse liver and intestine, which aids in understanding the tissue-specific biotransformation and toxicity of drugs and other xenobiotics.
Collapse
Affiliation(s)
- Zidong Donna Fu
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Felcy Pavithra Selwyn
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Curtis D Klaassen
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
27
|
Brouwer KLR, Aleksunes LM, Brandys B, Giacoia GP, Knipp G, Lukacova V, Meibohm B, Nigam SK, Rieder M, de Wildt SN. Human Ontogeny of Drug Transporters: Review and Recommendations of the Pediatric Transporter Working Group. Clin Pharmacol Ther 2015; 98:266-87. [PMID: 26088472 DOI: 10.1002/cpt.176] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/15/2015] [Accepted: 06/15/2015] [Indexed: 12/19/2022]
Abstract
The critical importance of membrane-bound transporters in pharmacotherapy is widely recognized, but little is known about drug transporter activity in children. In this white paper, the Pediatric Transporter Working Group presents a systematic review of the ontogeny of clinically relevant membrane transporters (e.g., SLC, ABC superfamilies) in intestine, liver, and kidney. Different developmental patterns for individual transporters emerge, but much remains unknown. Recommendations to increase our understanding of membrane transporters in pediatric pharmacotherapy are presented.
Collapse
Affiliation(s)
- K L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - L M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers, the State University of New Jersey, Ernest Mario School of Pharmacy, Piscataway, New Jersey, USA
| | - B Brandys
- NIH Library, National Institutes of Health, Bethesda, Maryland, USA
| | - G P Giacoia
- Obstetric and Pediatric Pharmacology and Therapeutics Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Rockville, Maryland, USA
| | - G Knipp
- College of Pharmacy, Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana, USA
| | - V Lukacova
- Simulations Plus, lnc., Lancaster, California, USA
| | - B Meibohm
- University of Tennessee Health Science Center, College of Pharmacy, Memphis, Tennessee, USA
| | - S K Nigam
- University of California San Diego, La Jolla, California, USA
| | - M Rieder
- Department of Pediatrics, University of Western Ontario, London, Ontario, Canada
| | - S N de Wildt
- Erasmus MC Sophia Children's Hospital, Intensive Care and Department of Pediatric Surgery, Rotterdam, the Netherlands
| | | |
Collapse
|
28
|
Gunewardena SS, Yoo B, Peng L, Lu H, Zhong X, Klaassen CD, Cui JY. Deciphering the Developmental Dynamics of the Mouse Liver Transcriptome. PLoS One 2015; 10:e0141220. [PMID: 26496202 PMCID: PMC4619800 DOI: 10.1371/journal.pone.0141220] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/06/2015] [Indexed: 02/06/2023] Open
Abstract
During development, liver undergoes a rapid transition from a hematopoietic organ to a major organ for drug metabolism and nutrient homeostasis. However, little is known on a transcriptome level of the genes and RNA-splicing variants that are differentially regulated with age, and which up-stream regulators orchestrate age-specific biological functions in liver. We used RNA-Seq to interrogate the developmental dynamics of the liver transcriptome in mice at 12 ages from late embryonic stage (2-days before birth) to maturity (60-days after birth). Among 21,889 unique NCBI RefSeq-annotated genes, 9,641 were significantly expressed in at least one age, 7,289 were differently regulated with age, and 859 had multiple (> = 2) RNA splicing-variants. Factor analysis showed that the dynamics of hepatic genes fall into six distinct groups based on their temporal expression. The average expression of cytokines, ion channels, kinases, phosphatases, transcription regulators and translation regulators decreased with age, whereas the average expression of peptidases, enzymes and transmembrane receptors increased with age. The average expression of growth factors peak between Day-3 and Day-10, and decrease thereafter. We identified critical biological functions, upstream regulators, and putative transcription modules that seem to govern age-specific gene expression. We also observed differential ontogenic expression of known splicing variants of certain genes, and 1,455 novel splicing isoform candidates. In conclusion, the hepatic ontogeny of the transcriptome ontogeny has unveiled critical networks and up-stream regulators that orchestrate age-specific biological functions in liver, and suggest that age contributes to the complexity of the alternative splicing landscape of the hepatic transcriptome.
Collapse
Affiliation(s)
- Sumedha S. Gunewardena
- Department of Molecular and Integrative Physiology, Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States of America
| | - Byunggil Yoo
- Children's Mercy Hospital, Kansas City, Missouri, 64108, United States of America
| | - Lai Peng
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, 06269, United States of America
| | - Hong Lu
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York, 13210, United States of America
| | - Xiaobo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, 06269, United States of America
| | - Curtis D. Klaassen
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, 98195, United States of America
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, 98195, United States of America
| |
Collapse
|
29
|
Selwyn FP, Csanaky IL, Zhang Y, Klaassen CD. Importance of Large Intestine in Regulating Bile Acids and Glucagon-Like Peptide-1 in Germ-Free Mice. Drug Metab Dispos 2015; 43:1544-56. [PMID: 26199423 PMCID: PMC4576674 DOI: 10.1124/dmd.115.065276] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/20/2015] [Indexed: 12/25/2022] Open
Abstract
It is known that 1) elevated serum bile acids (BAs) are associated with decreased body weight, 2) elevated glucagon-like peptide-1 (GLP-1) levels can decrease body weight, and 3) germ-free (GF) mice are resistant to diet-induced obesity. The purpose of this study was to test the hypothesis that a lack of intestinal microbiota results in more BAs in the body, resulting in increased BA-mediated transmembrane G protein-coupled receptor 5 (TGR5) signaling and increased serum GLP-1 as a mechanism of resistance of GF mice to diet-induced obesity. GF mice had 2- to 4-fold increased total BAs in the serum, liver, bile, and ileum. Fecal excretion of BAs was 63% less in GF mice. GF mice had decreased secondary BAs and increased taurine-conjugated BAs, as anticipated. Surprisingly, there was an increase in non-12α-OH BAs, namely, β-muricholic acid, ursodeoxycholic acid (UDCA), and their taurine conjugates, in GF mice. Further, in vitro experiments confirmed that UDCA is a primary BA in mice. There were minimal changes in the mRNA of farnesoid X receptor target genes in the ileum (Fibroblast growth factor 15, small heterodimer protein, and ileal bile acid-binding protein), in the liver (small heterodimer protein, liver receptor homolog-1, and cytochrome P450 7a1), and BA transporters (apical sodium dependent bile acid transporter, organic solute transporter α, and organic solute transporter β) in the ileum of GF mice. Surprisingly, there were marked increases in BA transporters in the large intestine. Increased GLP-1 levels and gallbladder size were observed in GF mice, suggesting activation of TGR5 signaling. In summary, the GF condition results in increased expression of BA transporters in the colon, resulting in 1) an increase in total BA concentrations in tissues, 2) a change in BA composition to favor an increase in non-12α-OH BAs, and 3) activation of TGR5 signaling with increased gallbladder size and GLP-1.
Collapse
Affiliation(s)
- Felcy Pavithra Selwyn
- Departments of Pharmacology, Toxicology, and Therapeutics (F.P.S., Y.Z.) and Internal Medicine (I.L.C., C.D.K.), University of Kansas Medical Center, Kansas City, Kansas
| | - Iván L Csanaky
- Departments of Pharmacology, Toxicology, and Therapeutics (F.P.S., Y.Z.) and Internal Medicine (I.L.C., C.D.K.), University of Kansas Medical Center, Kansas City, Kansas
| | - Youcai Zhang
- Departments of Pharmacology, Toxicology, and Therapeutics (F.P.S., Y.Z.) and Internal Medicine (I.L.C., C.D.K.), University of Kansas Medical Center, Kansas City, Kansas
| | - Curtis D Klaassen
- Departments of Pharmacology, Toxicology, and Therapeutics (F.P.S., Y.Z.) and Internal Medicine (I.L.C., C.D.K.), University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
30
|
Selwyn FP, Cui JY, Klaassen CD. RNA-Seq Quantification of Hepatic Drug Processing Genes in Germ-Free Mice. Drug Metab Dispos 2015; 43:1572-80. [PMID: 25956306 PMCID: PMC4576678 DOI: 10.1124/dmd.115.063545] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/07/2015] [Indexed: 11/22/2022] Open
Abstract
Intestinal bacteria have been shown to be important in regulating host intermediary metabolism and contributing to obesity. However, relatively less is known about the effect of intestinal bacteria on the expression of hepatic drug-processing genes in the host. This study characterizes the expression of hepatic drug-processing genes in germ-free (GF) mice using RNA-Seq. Total RNA were isolated from the livers of adult male conventional and GF C57BL/6J mice (n = 3 per group). In the livers of GF mice, the mRNA of the aryl hydrocarbon receptor target gene Cyp1a2 was increased 51%, and the mRNA of the peroxisome proliferator-activated receptor α (PPARα) target gene Cyp4a14 was increased 202%. Conversely, the mRNA of the constitutive androstane receptor (CAR) target gene Cyp2b10 was decreased 57%, and the mRNA of the pregnane X receptor target gene Cyp3a11 was decreased 87% in GF mice. Although other non-Cyp phase-1 enzymes in the livers of GF mice were only moderately affected, there was a marked down-regulation in the phase-2 enzymes glutathione S-transferases p1 and p2, as well as a marked up-regulation in the major bile acid transporters Na(+)-taurocholate cotransporting polypeptide and organic anion-transporting polypeptide 1b2, and the cholesterol transporter ATP-binding cassette transporter Abcg5/Abcg8. This study demonstrates that intestinal bacteria regulate the expression of a large number of drug-processing genes, which suggests that intestinal bacteria are responsible for some individual differences in drug responses.
Collapse
Affiliation(s)
- Felcy Pavithra Selwyn
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Curtis D Klaassen
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
31
|
Selwyn FP, Cheng SL, Bammler TK, Prasad B, Vrana M, Klaassen C, Cui JY. Developmental Regulation of Drug-Processing Genes in Livers of Germ-Free Mice. Toxicol Sci 2015; 147:84-103. [PMID: 26032512 DOI: 10.1093/toxsci/kfv110] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Very little is known about the effect of gut microbiota on the ontogeny of drug-processing genes (DPGs) in liver. In this study, livers were harvested from conventional (CV) and germ-free (GF) male and female mice from 1 to 90 days of age. RNA-Seq in livers of 90-day-old male mice showed that xenobiotic metabolism was the most downregulated pathway within the mRNA transcriptome in absence of intestinal bacteria. In male livers, the mRNAs of 67 critical DPGs partitioned into 4 developmental patterns (real-time-quantitative polymerase chain reaction): Pattern-1 gradually increased to adult levels in livers of CV mice and were downregulated in livers of GF mice, as exemplified by the major drug-metabolizing enzymes cytochrome 3a (Cyp3a) family, which are prototypical pregnane X receptor (PXR)-target genes. Genes in Pattern-2 include Cyp1a2 (aryl hydrocarbon receptor-target gene), Cyp2c family, and Cyp2e1, which were all upregulated mainly at 90 days of age; as well as the peroxisome proliferator-activated receptor α (PPARα)-target genes Cyp4a family and Aldh3a2, which were upregulated not only in 90-days adult age, but also between neonatal and adolescent ages (from 1 to 30 days of age). Genes in Pattern-3 were enriched predominantly in livers of 15-day-old mice, among which the sterol-efflux transporter dimers Abcg5/Abcg8 were downregulated in GF mice. Genes in Pattern-4 were neonatal-enriched, among which the transporter Octn1 mRNA tended to be lower in GF mice at younger ages but higher in adult GF mice as compared with age-matched CV mice. Protein assays confirmed the downregulation of the PXR-target gene Cyp3a protein (Western-blot and liquid chromatography tandem mass spectroscopy), and decreased Cyp3a enzyme activities in male GF livers. Increased microsomal-Cyp4a proteins and nuclear-PPARα were also observed in male GF livers. Interestingly, in contrast to male livers, the mRNAs of Cyp2c or Cyp4a were not readily upregulated in female GF livers approaching adult age, suggesting the maturation of female-specific hormones interferes with the interactions between intestinal microbiota and DPG ontogeny. In conclusion, intestinal microbiota markedly impacts the ontogeny of many hepatic DPGs in a gender-specific manner.
Collapse
Affiliation(s)
| | | | - Theo K Bammler
- *Department of Environmental & Occupational Health Sciences and
| | - Bhagwat Prasad
- Department of Pharmaceutics, University of Washington, Seattle, Washington 98195
| | - Marc Vrana
- Department of Pharmaceutics, University of Washington, Seattle, Washington 98195
| | - Curtis Klaassen
- *Department of Environmental & Occupational Health Sciences and
| | - Julia Yue Cui
- *Department of Environmental & Occupational Health Sciences and
| |
Collapse
|
32
|
Wu AML, Yang M, Dalvi P, Turinsky AL, Wang W, Butcher D, Egan SE, Weksberg R, Harper PA, Ito S. Role of STAT5 and epigenetics in lactation-associated upregulation of multidrug transporter ABCG2 in the mammary gland. Am J Physiol Endocrinol Metab 2014; 307:E596-610. [PMID: 25117410 DOI: 10.1152/ajpendo.00323.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The multidrug resistance efflux transporter ATP-binding cassette subfamily G member 2 (ABCG2) is not only overexpressed in certain drug-resistant cancers but is also highly expressed in the mammary gland during lactation, carrying xenobiotics and nutrients into milk. We sought to investigate the molecular mechanisms involved in the upregulation of ABCG2 during lactation. Expression profiling of different mouse Abcg2 mRNA isoforms (E1a, E1b, and E1c) revealed that E1b is predominantly expressed and induced in the lactating mouse mammary gland. Despite this induction, analyses of CpG methylation status and published ChIP-seq datasets reveal that E1b promoter sequences in the virgin gland are already hypomethylated and marked with the open chromatin histone mark H3K4me2. Using a forced-weaning model to shut down lactation, we found that within 24 h there was a significant reduction in Abcg2 mRNA expression and a loss of signal transducer and activator of transcription-5 (STAT5) occupancy at the mouse Abcg2 gene. Luciferase reporter assays further showed that some of these STAT5-binding regions that contained interferon-γ-activated sequence (GAS) motifs function as an enhancer after prolactin treatment. We conclude that Abcg2 is already poised for expression in the virgin mammary gland and that STAT5 plays an important role in Abcg2 expression during lactation.
Collapse
Affiliation(s)
- Alex Man Lai Wu
- Physiology and Experimental Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Mingdong Yang
- Physiology and Experimental Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Pooja Dalvi
- Physiology and Experimental Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andrei L Turinsky
- Centre for Computational Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Wei Wang
- Developmental and Stem Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Darci Butcher
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sean E Egan
- Developmental and Stem Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Rosanna Weksberg
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada; and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Patricia A Harper
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Shinya Ito
- Physiology and Experimental Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada; and
| |
Collapse
|
33
|
Hou WY, Xu SF, Zhu QN, Lu YF, Cheng XG, Liu J. Age- and sex-related differences of organic anion-transporting polypeptide gene expression in livers of rats. Toxicol Appl Pharmacol 2014; 280:370-7. [PMID: 25168429 DOI: 10.1016/j.taap.2014.08.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 08/09/2014] [Accepted: 08/15/2014] [Indexed: 01/08/2023]
Abstract
Organic anion-transporting polypeptides (Oatps) play important roles in transporting endogenous substances and xenobiotics into the liver and are implicated in drug-drug interactions. Many factors could influence their expression and result in alterations in drug disposition, efficacy and toxicity. This study was aimed to examine the development-, aging-, and sex-dependent Oatps expression in livers of rats. The livers from SD rats during development (-2, 1, 7, 14, 21, 28, 35, and 60 d) and aging (60, 180, 540 and/or 800 d) were collected and total RNAs were extracted, purified, and subjected to real-time PCR analysis. Total proteins were extracted for western-blot analysis. Results showed that Oatp1a1, Oatp1a4, Oatp1a5 and Oatp1b2 were all hardly detectable in fetal rat livers, low at birth, rapidly increased after weaning (21 d), and reached the peak at 60 d. The Oatps remained stable during the age between 60-180 d, and decreased at elderly (540 and/or 800 d). After birth, Oatp1a1, Oatp1a4, and Oatp1b2 were all highly expressed in liver, in contrast, Oatp1a5 expression was low. Oatp expressions are male-predominant in rat livers. In the livers of aged rats, the Oatp expression decreased and shared a consistent ontogeny pattern at the mRNA and protein level. In conclusion, this study showed that in rat liver, Oatp1a1, Oatp1a4, Oatp1a5 and Oatp1b2 gene expressions are influenced by age and gender, which could provide a basis of individual variation in drug transport, metabolism and toxicity in children, elderly and women.
Collapse
Affiliation(s)
- Wei-Yu Hou
- Key Lab for Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi 563003, China
| | - Shang-Fu Xu
- Key Lab for Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi 563003, China
| | - Qiong-Ni Zhu
- Key Lab for Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi 563003, China
| | - Yuan-Fu Lu
- Key Lab for Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi 563003, China
| | - Xing-Guo Cheng
- Department of Pharmaceutical Sciences, St. John's University, New York, NY 11439, USA
| | - Jie Liu
- Key Lab for Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi 563003, China.
| |
Collapse
|
34
|
Establishment of metabolism and transport pathways in the rodent and human fetal liver. Int J Mol Sci 2013; 14:23801-27. [PMID: 24322441 PMCID: PMC3876079 DOI: 10.3390/ijms141223801] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 12/16/2022] Open
Abstract
The ultimate fate of drugs and chemicals in the body is largely regulated by hepatic uptake, metabolism, and excretion. The liver acquires the functional ability to metabolize and transport chemicals during the perinatal period of development. Research using livers from fetal and juvenile rodents and humans has begun to reveal the timing, key enzymes and transporters, and regulatory factors that are responsible for the establishment of hepatic phase I and II metabolism as well as transport. The majority of this research has been limited to relative mRNA and protein quantification. However, the recent utilization of novel technology, such as RNA-Sequencing, and the improved availability and refinement of functional activity assays, has begun to provide more definitive information regarding the extent of hepatic drug disposition in the developing fetus. The goals of this review are to provide an overview of the early regulation of the major phase I and II enzymes and transporters in rodent and human livers and to highlight potential mechanisms that control the ontogeny of chemical metabolism and excretion pathways.
Collapse
|
35
|
Peng L, Cui JY, Yoo B, Gunewardena SS, Lu H, Klaassen CD, Zhong XB. RNA-sequencing quantification of hepatic ontogeny of phase-I enzymes in mice. Drug Metab Dispos 2013; 41:2175-86. [PMID: 24080161 PMCID: PMC3834128 DOI: 10.1124/dmd.113.054635] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 09/30/2013] [Indexed: 12/17/2022] Open
Abstract
Phase-I drug metabolizing enzymes catalyze reactions of hydrolysis, reduction, and oxidation of drugs and play a critical role in drug metabolism. However, the functions of most phase-I enzymes are not mature at birth, which markedly affects drug metabolism in newborns. Therefore, characterization of the expression profiles of phase-I enzymes and the underlying regulatory mechanisms during liver maturation is needed for better estimation of using drugs in pediatric patients. The mouse is an animal model widely used for studying the mechanisms in the regulation of developmental expression of phase-I genes. Therefore, we applied RNA sequencing to provide a "true quantification" of the mRNA expression of phase-I genes in the mouse liver during development. Liver samples of male C57BL/6 mice at 12 different ages from prenatal to adulthood were used for defining the ontogenic mRNA profiles of phase-I families, including hydrolysis: carboxylesterase (Ces), paraoxonase (Pon), and epoxide hydrolase (Ephx); reduction: aldo-keto reductase (Akr), quinone oxidoreductase (Nqo), and dihydropyrimidine dehydrogenase (Dpyd); and oxidation: alcohol dehydrogenase (Adh), aldehyde dehydrogenase (Aldh), flavin monooxygenases (Fmo), molybdenum hydroxylase (Aox and Xdh), cytochrome P450 (P450), and cytochrome P450 oxidoreductase (Por). Two rapidly increasing stages of total phase-I gene expression after birth reflect functional transition of the liver during development. Diverse expression patterns were identified, and some large gene families contained the mRNA of genes that are enriched at different stages of development. Our study reveals the mRNA abundance of phase-I genes in the mouse liver during development and provides a valuable foundation for mechanistic studies in the future.
Collapse
Affiliation(s)
- Lai Peng
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.P., X.B.Z.); Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas (J.Y.C., C.D.K.); Kansas Intellectual and Developmental Disabilities Research Center, Kansas City, Kansas (B.Y., S.S.G.); Department of Pharmacology, Upstate Medical University, State University of New York, Syracuse, New York (H.L.)
| | | | | | | | | | | | | |
Collapse
|
36
|
How much do we know about drug handling by SLC and ABC drug transporters in children? Clin Pharmacol Ther 2013; 94:27-9. [PMID: 23778708 DOI: 10.1038/clpt.2013.82] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Although solute carrier (SLC) and ATP-binding cassette (ABC) transporters are critical to the absorption, distribution, and elimination of many small-molecule drugs in children, how these transporters regulate pediatric drug handling remains unclear. For proper dosing and to diminish toxicity, we need a better understanding of how organ development and functional maturation, as well as developmental changes in systemic physiology, impact transporter-mediated drug handling at pediatric developmental stages from the preterm infant through adolescence.
Collapse
|
37
|
Pratt-Hyatt M, Lickteig AJ, Klaassen CD. Tissue distribution, ontogeny, and chemical induction of aldo-keto reductases in mice. Drug Metab Dispos 2013; 41:1480-7. [PMID: 23660342 PMCID: PMC3716307 DOI: 10.1124/dmd.113.051904] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/09/2013] [Indexed: 11/22/2022] Open
Abstract
Aldo-keto reductases (Akrs) are a conserved group of NADPH-dependent oxido-reductase enzymes. This study provides a comprehensive examination of the tissue distribution of the 16 substrate-metabolizing Akrs in mice, their expression during development, and whether they are altered by chemicals that activate distinct transcriptional factor pathways. Akr1c6, 1c14, 1c20, and 1c22 are primarily present in liver; Akr1a4, 1c18, 1c21, and 7a5 in kidney; Akr1d1 in liver and kidney; Akr1b7 in small intestine; Akr1b3 and Akr1e1 in brain; Akr1b8 in testes; Akr1c14 in ovaries; and Akrs1c12, 1c13, and 1c19 are expressed in numerous tissues. Liver expression of Akr1d1 and Akr1c is lowest during prenatal and postnatal development. However, by 20 days of age, liver Akr1d1 increases 120-fold, and Akr1c mRNAs increase as much as 5-fold (Akr1c19) to 1000-fold (Akr1c6). Treatment of mice with chemical activators of transcription factors constitutive androgen receptor (CAR), pregnane X receptor (PXR), and the nuclear factor-erythroid-2 (Nrf2) transcription factor alters liver mRNAs of Akrs. Specifically, CAR activation by 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) increases mRNAs of Akr1b7, Akr1c6, Akr1c19, and Akr1d1, whereas PXR activation by 5-pregnenolone-16α-carbonitrile (PCN) increases the mRNA of Akr1b7 and suppresses mRNAs of Akr1c13 and Akr1c20. The Nrf2 activator 2-cyano-3,12-dioxooleana-1,9-dien-28-imidazolide (CDDO-Im) induces mRNAs of Akr1c6 and Akr1c19. Moreover, Nrf2-null and Nrf2 overexpressing mice demonstrate that this induction is Nrf2-dependent.
Collapse
Affiliation(s)
- Matthew Pratt-Hyatt
- Department of Internal Medicine, University of Kansas Medical Center, 1000 Hixon, MS 1063, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | | | | |
Collapse
|
38
|
Döring B, Lütteke T, Geyer J, Petzinger E. The SLC10 carrier family: transport functions and molecular structure. CURRENT TOPICS IN MEMBRANES 2013. [PMID: 23177985 DOI: 10.1016/b978-0-12-394316-3.00004-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The SLC10 family represents seven genes containing 1-12 exons that encode proteins in humans with sequence lengths of 348-477 amino acids. Although termed solute carriers (SLCs), only three out of seven (i.e. SLC10A1, SLC10A2, and SLC10A6) show sodium-dependent uptake of organic substrates across the cell membrane. These include the uptake of bile salts, sulfated steroids, sulfated thyroidal hormones, and certain statin drugs by SLC10A1 (Na(+)-taurocholate cotransporting polypeptide (NTCP)), the uptake of bile salts by SLC10A2 (apical sodium-dependent bile acid transporter (ASBT)), and uptake of sulfated steroids and sulfated taurolithocholate by SLC10A6 (sodium-dependent organic anion transporter (SOAT)). The other members of the family are orphan carriers not all localized in the cell membrane. The name "bile acid transporter family" arose because the first two SLC10 members (NTCP and ASBT) are carriers for bile salts that establish their enterohepatic circulation. In recent years, information has been obtained on their 2D and 3D membrane topology, structure-transport relationships, and on the ligand and sodium-binding sites. For SLC10A2, the putative 3D morphology was deduced from the crystal structure of a bacterial SLC10A2 analog, ASBT(NM). This information was used in this chapter to calculate the putative 3D structure of NTCP. This review provides first an introduction to recent knowledge about bile acid synthesis and newly found bile acid hormonal functions, and then describes step-by-step each individual member of the family in terms of expression, localization, substrate pattern, as well as protein topology with emphasis on the three functional SLC10 carrier members.
Collapse
Affiliation(s)
- Barbara Döring
- SLC10 family research group, Institute of Pharmacology and Toxicology, Justus Liebig University Giessen, Biomedical Research Center (BFS), Giessen, Germany
| | | | | | | |
Collapse
|
39
|
Lu H, Gunewardena S, Cui JY, Yoo B, Zhong XB, Klaassen CD. RNA-sequencing quantification of hepatic ontogeny and tissue distribution of mRNAs of phase II enzymes in mice. Drug Metab Dispos 2013; 41:844-57. [PMID: 23382457 PMCID: PMC3608454 DOI: 10.1124/dmd.112.050211] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/31/2013] [Indexed: 01/30/2023] Open
Abstract
Phase II conjugating enzymes play key roles in the metabolism of xenobiotics. In the present study, RNA sequencing was used to elucidate hepatic ontogeny and tissue distribution of mRNA expression of all major known Phase II enzymes, including enzymes involved in glucuronidation, sulfation, glutathione conjugation, acetylation, methylation, and amino acid conjugation, as well as enzymes for the synthesis of Phase II cosubstrates, in male C57BL/6J mice. Livers from male C57BL/6J mice were collected at 12 ages from prenatal to adulthood. Many of these Phase II enzymes were expressed at much higher levels in adult livers than in perinatal livers, such as Ugt1a6b, -2a3, -2b1, -2b5, -2b36, -3a1, and -3a2; Gsta1, -m1, -p1, -p2, and -z1; mGst1; Nat8; Comt; Nnmt; Baat; Ugdh; and Gclc. In contrast, hepatic mRNA expression of a few Phase II enzymes decreased during postnatal liver development, such as mGst2, mGst3, Gclm, and Mat2a. Hepatic expression of certain Phase II enzymes peaked during the adolescent stage, such as Ugt1a1, Sult1a1, Sult1c2, Sult1d1, Sult2as, Sult5a1, Tpmt, Glyat, Ugp2, and Mat1a. In adult mice, the total transcripts for Phase II enzymes were comparable in liver, kidney, and small intestine; however, individual Phase II enzymes displayed marked tissue specificity among the three organs. In conclusion, this study unveils for the first time developmental changes in mRNA abundance of all major known Phase II enzymes in mouse liver, as well as their tissue-specific expression in key drug-metabolizing organs. The age- and tissue-specific expression of Phase II enzymes indicate that the detoxification of xenobiotics is highly regulated by age and cell type.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Mukherjee P, Mani S. Methodologies to decipher the cell secretome. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2226-32. [PMID: 23376189 DOI: 10.1016/j.bbapap.2013.01.022] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/18/2012] [Accepted: 01/17/2013] [Indexed: 11/18/2022]
Abstract
The cell secretome is a collection of proteins consisting of transmembrane proteins (TM) and proteins secreted by cells into the extracellular space. A significant portion (~13-20%) of the human proteome consists of secretory proteins. The secretory proteins play important roles in cell migration, cell signaling and communication. There is a plethora of methodologies available like Serial Analysis of Gene Expression (SAGE), DNA microarrays, antibody arrays and bead-based arrays, mass spectrometry, RNA sequencing and yeast, bacterial and mammalian secretion traps to identify the cell secretomes. There are many advantages and disadvantages in using any of the above methods. This review aims to discuss the methodologies available along with their potential advantages and disadvantages to identify secretory proteins. This review is a part of a Special issue on The Secretome. This article is part of a Special Issue entitled: An Updated Secretome.
Collapse
Affiliation(s)
- Paromita Mukherjee
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, 10461, USA.
| | | |
Collapse
|
41
|
Wagner J, Leeder JS. Pediatric pharmacogenomics: a systematic assessment of ontogeny and genetic variation to guide the design of statin studies in children. Pediatr Clin North Am 2012; 59:1017-37. [PMID: 23036242 PMCID: PMC5847265 DOI: 10.1016/j.pcl.2012.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The dose-exposure-response relationship for drugs may differ in pediatric patients compared with adults. Many clinical studies have established drug dose-exposure relationships across the pediatric age spectrum; however, genetic variation was seldom included. This article applies a systematic approach to determine the relative contribution of development and genetic variation on drug disposition and response using HMG-CoA reductase inhibitors as a model. Application of the approach drives the collection of information relevant to understanding the potential contribution of ontogeny and genetic variation to statin dose-exposure-response in children, and identifies important knowledge deficits to be addressed through the design of future studies.
Collapse
Affiliation(s)
- Jonathan Wagner
- Section of Cardiology, Children's Mercy Hospital and Clinics, University of Missouri-Kansas City School of Medicine, 2401 Gillham Road, Kansas City, MO 64108, USA.
| | - J. Steven Leeder
- Division of Clinical Pharmacology and Medical Toxicology, Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Children’s Mercy Hospital and Clinics, 2401 Gillham Road, Kansas City, Missouri 64108
| |
Collapse
|
42
|
Lu H, Cui JY, Gunewardena S, Yoo B, Zhong XB, Klaassen CD. Hepatic ontogeny and tissue distribution of mRNAs of epigenetic modifiers in mice using RNA-sequencing. Epigenetics 2012; 7:914-29. [PMID: 22772165 DOI: 10.4161/epi.21113] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Developmental regulation of gene expression is controlled by distinct epigenetic signatures catalyzed by various epigenetic modifiers. Little is known about the ontogeny and tissue distribution of these epigenetic modifiers. In the present study, we used a novel approach of RNA-sequencing to elucidate hepatic ontogeny and tissue distribution of mRNA expression of 142 epigenetic modifiers, including enzymes involved in DNA methylation/demethylation, histone acetylation/deacetylation, histone methylation/demethylation, histone phosphorylation and chromosome remodeling factors in male C57BL/6 mice. Livers from male C57BL/6 mice were collected at 12 ages from prenatal to adulthood. Many of these epigenetic modifiers were expressed at much higher levels in perinatal livers than adult livers, such as Dnmt1, Dnmt3a, Dnmt3b, Apobec3, Kat1, Ncoa4, Setd8, Ash2l, Dot1l, Cbx1, Cbx3, Cbx5, Cbx6, Ezh2, Suz12, Eed, Suv39h1, Suv420h2, Dek, Hdac1, Hdac2, Hdac7, Kdm2b, Kdm5c, Kdm7, Prmt1-5, Prmt7, Smarca4, Smarcb1, Chd4 and Ino80e. In contrast, hepatic mRNA expression of a few epigenetic modifiers increased during postnatal liver development, such as Smarca2, Kdm1b, Cbx7 and Chd3. In adult mice (60 d of age), most epigenetic modifiers were expressed at moderately (1-3-fold) higher levels in kidney and/or small intestine than liver. In conclusion, this study, for the first time, unveils developmental changes in mRNA abundance of all major known epigenetic modifiers in mouse liver. These data suggest that ontogenic changes in mRNA expression of epigenetic modifiers may play important roles in determining the addition and/or removal of corresponding epigenetic signatures during liver development.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, USA.
| | | | | | | | | | | |
Collapse
|