1
|
Dooka BD, Orish CN, Ezejiofor AN, Umeji TC, Nkpaa KW, Okereke I, Cirovic A, Cirovic A, Orisakwe OE. Rice bran extract ameliorate heavy metal mixture induced hippocampal toxicity via inhibiting oxido-inflammatory damages and modulating Hmox-1/BDNF/Occludin/Aβ40/Aβ42 in rats. Toxicol Res (Camb) 2025; 14:tfaf049. [PMID: 40201631 PMCID: PMC11975361 DOI: 10.1093/toxres/tfaf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 04/10/2025] Open
Abstract
The hippocampus executes the integration of memory and spatial learning information. This study evaluated the effect of rice bran extract (RBE) on heavy metal mixture (MM) induced hippocampal toxicity and its underlying mechanism in albino rats. Thirty five rats were exposed to MM alone at Pb 20 mg/kg, Al 35 mg/kg, and Mn 0.564 mg/kg body weight or co-exposed with RBE at 125, 250 and 500 mg/kg body weight, 125 RBE mg/kg b.wt only, and 500 RBE mg/kg b.wt only 5 days a wk for 13 wk (90 days). Subsequently, oxidative stress, inflammation (cyclooxygenase-2) and caspase-3, amyloid precursor proteins (Aβ40 and Aβ42), HMOX-1, occludin and BDNF and transcription factor Nrf-2 in the hippocampus were investigated. MM treatment resulted in significantly higher escape latency time than both the control and MM plus RBE group. MM exposure induced increased oxidative stress, inflammation resulting in enhanced hippocampal apoptosis. MM significantly increased bioaccumulation of Pb, Al, and Pb; increased caspase-3, Nrf-2, Aβ40 and Aβ42 and significantly decreased occludin, BDNF, HMOX-1 when compared with the control. All these effects were reversed by RBE. Collectively, RBE ameliorated MM - induced oxidative stress, neuro-inflammation and hippocampal apoptosis via attenuation of oxidative damages of cellular constituents, neuronal inflammation and subsequent down regulation of amyloid precursor proteins Aβ40, Aβ42 and up regulation of occludin, BDNF, HMOX-1 protein expression via Nrf-2 dependent pathways to abrogate hippocampal toxicity associated with spatial learning and memory deficits.
Collapse
Affiliation(s)
- Baridoo Donatus Dooka
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB 5323, Choba 500102, Port Harcourt, Nigeria
| | - Chinna N Orish
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, PMB, 5323, Choba 500102, Port Harcourt, Nigeria
| | - Anthonet N Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB 5323, Choba 500102, Port Harcourt, Nigeria
| | - Theresa C Umeji
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Madonna University, Elele, Rivers State 500102, Nigeria
| | - Kpobari W Nkpaa
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB 5323, Choba 500102, Port Harcourt, Nigeria
| | - Ifeoma Okereke
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB 5323, Choba 500102, Port Harcourt, Nigeria
| | - Ana Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade 101801, Serbia
| | - Aleksandar Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade 101801, Serbia
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB 5323, Choba 500102, Port Harcourt, Nigeria
- Advanced Research Centre, European University of Lefke, Lefke, Northern Cyprus, Mersin TR-10, Turkey
| |
Collapse
|
2
|
Bektas H, Dasdag S. Radiofrequency radiation and Alzheimer's disease: harmful and therapeutic implications. Int J Radiat Biol 2025; 101:559-571. [PMID: 40131785 DOI: 10.1080/09553002.2025.2481854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 02/25/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025]
Abstract
PURPOSE Alzheimer's disease (AD) is a neurodegenerative disorder characterized by memory loss and cognitive decline. The relationship between AD and radiofrequency (RF) radiation emitted by wireless devices remains under investigation. The aim of this review is to comprehensively explore the effects of RF radiation on AD by evaluating existing literature. This review used Web of Science, Scopus, and PubMed to find relevant studies on AD and RF radiation. This review evaluates a total of 81 studies, including animal models, human studies, and in vitro experiments, with results summarized in tables for clarity. CONCLUSION Some studies suggest RF aggravates AD by increasing oxidative stress, impairing blood-brain barrier integrity, and promoting amyloid-beta deposition. Conversely, other studies indicate RF may have protective benefits, such as enhancing brain mitochondrial functions and reducing amyloid-beta levels. Understanding the RF-AD relationship, including parameters like frequency and exposure time, is crucial for therapeutic strategies. The studies reviewed highlight RF radiation's dual effects on AD, underscoring the need for a detailed approach. Further studies are required to clarify these effects and inform preventive and therapeutic measures.
Collapse
Affiliation(s)
- Hava Bektas
- Department of Biophysics, Medical School of Van Yuzuncu Yil University, Van, Turkey
| | - Suleyman Dasdag
- Department of Biophysics, Medical School of Istanbul Medeniyet University, Istanbul, Turkey
| |
Collapse
|
3
|
Wang X, Zhao X, Xu J, Li M, Sun B, Gao A, Zhang L, Wu S, Liu X, Zou D, Li Z, Dong G, Zhang C, Wang C. The Impact of 9.375 GHz Microwave Radiation on the Emotional and Cognitive Abilities of Mice. Int J Mol Sci 2025; 26:2871. [PMID: 40243492 PMCID: PMC11988873 DOI: 10.3390/ijms26072871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
In recent years, high-power microwave (HPM) technology has developed rapidly. However, the current research mainly focuses on how to improve its performance and its impact on electronic devices, and there has been relatively little research on its effects on organisms. In particular, the research on the biological effects of HPMs in the X-band is even more limited. The purpose of this paper is to conduct a study on the effects of HPMs in the X-band with a frequency of 9.375 GHz on mood, learning, and cognitive abilities, as well as the antioxidant defense system. Upon observation, it was noted that the mice in the exposed groups, when compared to the control group, did not display significant signs of depression or anxiety. Furthermore, their learning capabilities, memory retention, and cognitive functions remained intact and were not adversely affected. The results of oxidative-stress-related indicators in serum and brain tissue showed increased levels of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), reduced levels of protein carbonyl (PCO) and malondialdehyde (MDA), and no significant changes in reactive oxygen species (ROS). In summary, acute exposure to 9.375 GHz HPM did not cause significant damage to the organisms, and the body could defend against the acute stress caused by HPMs through its own antioxidant system. This investigation provides substantial theoretical foundations and robust experimental evidence for establishing safety parameters and potential biomedical applications of microwave radiation within defined exposure limits.
Collapse
Affiliation(s)
- Xinyu Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (X.W.); (X.Z.); (J.X.); (M.L.); (B.S.); (A.G.); (L.Z.); (S.W.); (X.L.); (D.Z.); (Z.L.); (G.D.)
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xuelong Zhao
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (X.W.); (X.Z.); (J.X.); (M.L.); (B.S.); (A.G.); (L.Z.); (S.W.); (X.L.); (D.Z.); (Z.L.); (G.D.)
| | - Jing Xu
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (X.W.); (X.Z.); (J.X.); (M.L.); (B.S.); (A.G.); (L.Z.); (S.W.); (X.L.); (D.Z.); (Z.L.); (G.D.)
| | - Menghua Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (X.W.); (X.Z.); (J.X.); (M.L.); (B.S.); (A.G.); (L.Z.); (S.W.); (X.L.); (D.Z.); (Z.L.); (G.D.)
| | - Bin Sun
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (X.W.); (X.Z.); (J.X.); (M.L.); (B.S.); (A.G.); (L.Z.); (S.W.); (X.L.); (D.Z.); (Z.L.); (G.D.)
| | - Anning Gao
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (X.W.); (X.Z.); (J.X.); (M.L.); (B.S.); (A.G.); (L.Z.); (S.W.); (X.L.); (D.Z.); (Z.L.); (G.D.)
| | - Lihui Zhang
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (X.W.); (X.Z.); (J.X.); (M.L.); (B.S.); (A.G.); (L.Z.); (S.W.); (X.L.); (D.Z.); (Z.L.); (G.D.)
| | - Shuang Wu
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (X.W.); (X.Z.); (J.X.); (M.L.); (B.S.); (A.G.); (L.Z.); (S.W.); (X.L.); (D.Z.); (Z.L.); (G.D.)
| | - Xiaoman Liu
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (X.W.); (X.Z.); (J.X.); (M.L.); (B.S.); (A.G.); (L.Z.); (S.W.); (X.L.); (D.Z.); (Z.L.); (G.D.)
| | - Dongfang Zou
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (X.W.); (X.Z.); (J.X.); (M.L.); (B.S.); (A.G.); (L.Z.); (S.W.); (X.L.); (D.Z.); (Z.L.); (G.D.)
| | - Zhihui Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (X.W.); (X.Z.); (J.X.); (M.L.); (B.S.); (A.G.); (L.Z.); (S.W.); (X.L.); (D.Z.); (Z.L.); (G.D.)
| | - Guofu Dong
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (X.W.); (X.Z.); (J.X.); (M.L.); (B.S.); (A.G.); (L.Z.); (S.W.); (X.L.); (D.Z.); (Z.L.); (G.D.)
| | - Chenggang Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Changzhen Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (X.W.); (X.Z.); (J.X.); (M.L.); (B.S.); (A.G.); (L.Z.); (S.W.); (X.L.); (D.Z.); (Z.L.); (G.D.)
| |
Collapse
|
4
|
Kizilçay AO, Tütüncü B, Koçarslan M, Gözel MA. Effects of 1800 MHz and 2100 MHz mobile phone radiation on the blood-brain barrier of New Zealand rabbits. Med Biol Eng Comput 2025; 63:915-932. [PMID: 39548043 DOI: 10.1007/s11517-024-03238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
In this study, the impact of mobile phone radiation on blood-brain barrier (BBB) permeability was investigated. A total of 21 New Zealand rabbits were used for the experiments, divided into three groups, each consisting of 7 rabbits. One group served as the control, while the other two were exposed to electromagnetic radiation at frequencies of 1800 MHz with a distance of 14.5 cm and 2100 MHz with a distance of 17 cm, maintaining a constant power intensity of 15 dBm, for a duration equivalent to the current average daily conversation time of 38 min. The exposure was conducted under non-thermal conditions, with RF radiation levels approximately ten times lower than normal values. Evans blue (EB) dye was used as a marker to assess BBB permeability. EB binds to plasma proteins, and its presence in brain tissue indicates a disruption in BBB integrity, allowing for a quantitative evaluation of radiation-induced permeability changes. Left and right brain tissue samples were analyzed using trichloroacetic acid (TCA) and phosphate-buffered solution (PBS) solutions to measure EB amounts at 620 nm via spectrophotometry. After the experiments, BBB tissue samples were collected from the right and left brains of all rabbits in the three groups and subjected to a series of medical procedures. Samples from Group 1 were compared with those from Group 2 and Group 3 using statistical methods to determine if there were any significant differences. As a result, it was found that there was no statistically significant difference in the BBB of rabbits exposed to 1800 MHz radiation, whereas there was a statistically significant difference at a 95% confidence level in the BBB of rabbits exposed to 2100 MHz radiation. A decrease in EB values was observed upon the arithmetic examination of the BBB.
Collapse
Affiliation(s)
- Abdullah Oğuz Kizilçay
- Department of Computer Engineering, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| | - Bilal Tütüncü
- Energy Institute, Istanbul Technical University, Istanbul, Turkey.
| | - Mehmet Koçarslan
- Department of Sterilization, Dursun Odabaş Medical Faculty, Van Yüzüncü Yıl University, Van, Turkey
| | - Mahmut Ahmet Gözel
- Department of Electrical and Electronics Engineering, Süleyman Demirel University, Isparta, Turkey
| |
Collapse
|
5
|
Meyer F, Bitsch A, Forman HJ, Fragoulis A, Ghezzi P, Henschenmacher B, Kellner R, Kuhne J, Ludwig T, Sachno D, Schmid G, Tsaioun K, Verbeek J, Wright R. The effects of radiofrequency electromagnetic field exposure on biomarkers of oxidative stress in vivo and in vitro: A systematic review of experimental studies. ENVIRONMENT INTERNATIONAL 2024; 194:108940. [PMID: 39566441 DOI: 10.1016/j.envint.2024.108940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/25/2024] [Accepted: 08/04/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Oxidative stress is thought to be related to many diseases. Furthermore, it is hypothesized that radiofrequency electromagnetic fields (RF-EMF) may induce excessive oxidative stress in various cell types and thereby have the potential to compromise human and animal health. The objective of this systematic review (SR) is to summarize and evaluate the literature on the relation between the exposure to RF-EMF in the frequency range from 100 kHz to 300 GHz and biomarkers of oxidative stress. METHODS The SR framework was developed following the guidelines established in the WHO Handbook for Guideline Development and NTP/OHAT's Handbook for Conducting a Literature-Based Health Assessment. We used the latter handbook's methodology for implementing the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach for environmental health assessments. We searched the following databases up until June 30, 2023: PubMed, Embase, Web of Science Core Collection, Scopus, and the EMF-Portal. The reference lists of included studies and retrieved review articles were also manually searched. We rated Risk of Bias (RoB) using the OHAT RoB Rating Tool and assessed publication bias using funnel plots of included studies. We assessed the certainty of the evidence (high, moderate, low, or very low) for an association between RF-EMF and oxidative stress using an adapted version of the GRADE framework. Data were extracted according to a predefined set of forms developed in DistillerSR. Data were analysed after grouping them first as in vitro or in vivo and then according to outcome category, species category, and exposed tissue. We synthesized study results using a random effects meta-analysis when study characteristics were judged sufficiently similar to be combined and heterogeneity (I2) was lower than 75 %, otherwise we describe the findings narratively. RESULTS Fifty-six (56) studies, 45 in vivo and 11 in vitro, in which cells (in vitro) or animals (in vivo) were exposed to frequencies in the range 800-2450 MHz, were included in the systematic review after eliminating 12,353 publications because they did not meet the criteria defined in the published protocol (Henschenmacher et al., 2022). Of 56 studies 52 studies with 169 individual results were included in the meta-analysis. Together, these studies examined six human in vitro samples and fifty animal samples, including rodents (mice, rats, hamsters, and guinea pigs, (n = 46)) and rabbits (n = 4). RF-EMF were predominantly applied as continuous wave exposures in these studies. The outcome biomarkers for modified proteins and amino acids were measured in n = 30 studies, for oxidized DNA bases in n = 26 studies, for oxidized lipids in n = 3 studies and hydrogen peroxide production in 2 studies. Outcomes were mostly measured in the brain (n = 22), liver (n = 9), cells (n = 9), blood (n = 6), and testis (n = 2). RoB in studies was high, mainly due to biases in exposure and outcome assessment. IN VIVO STUDIES Brain: The effect on biomarkers for oxidized DNA bases in the rodent brain (five studies, n = 98) had an inconsistent effect, varying from a large decrease with a standardized mean difference (SMD) of -3.40 (95 % CI [-5.15, -1.64]) to a large increase with an SMD of 2.2 (95 % CI [0.78, 3.62]). In the brain of rabbits (two studies, n = 44), the effect sizes also varied, from an SMD of -1.06 (95 % CI [-2.13, 0.00]) to an SMD of 5.94 (95 % CI [3.14, 8.73]). The effect on biomarkers for modified proteins and amino acids in the rodent brain (15 studies, n = 328) also varied from a large decrease with an SMD of -6.11 (95 % CI [-8.16, -4.06]) to a large increase with an SMD of 5.33 (95 % CI [2.49, 8.17]). The effect on biomarkers for oxidized lipids in the brain of rodents (one study, n = 56) also varied from a large decrease with SMD = -4.10 (95 % CI [-5.48, -2.73]) to SMD = 1.27 (95 % CI [0.45, 2.10]). Liver: The effect on biomarkers for oxidized DNA bases in the rodent liver (two studies, n = 26) was inconsistent with effect sizes in both directions: SMD = -0.71 (95 % CI [-1.80, 0.38]) and SMD = 1.56 (95 % CI [0.19, 2.92]). The effect on biomarkers for oxidized DNA bases in the rabbits' liver (two studies, n = 60) was medium with a pooled SMD of 0.39 (95 % CI [-0.79, 1.56]). Biomarkers for modified proteins and amino acids in the liver of rodents (six studies, n = 159) increased with a pooled SMD of 0.55 (95 % CI [0.06, 1.05]). Blood: The effect of RF-EMF on biomarkers for oxidized DNA bases in rodent blood (four studies, n = 104) was inconsistent, with SMDs ranging from -1.14 (95 % CI [-2.23, -0.06]) to 1.71 (95 % CI [-0.10, 3.53]). RF-EMF had no effect on biomarkers for modified proteins and amino acids in rodent blood (three studies, n = 40), with a pooled SMD of -0.08 (95 % CI [-1.32, 1.16]). There was a large increase in biomarkers for oxidized DNA bases in rodent plasma (two studies, n = 38) with a pooled SMD of 2.25 (95 % CI [1.27, 3.24]). Gonads: There was an increase in biomarkers for oxidized DNA bases in the rodent testis (two studies, n = 24) with a pooled SMD of 1.60 (95 % CI [0.62, 2.59]). The effect of RF-EMF on biomarkers for modified proteins and amino acids in the ovary of rodents (two studies, n = 52) was inconsistent with a medium effect, SMD = 0.24 (95 % CI [-0.74, 1.23])) and a large effect (SMD = 2.08 (95 % CI [1.22, 2.94])). Thymus: RF-EMF increased biomarkers for modified proteins and amino acids in the thymus of rodents (one study, n = 42) considerably with a pooled SMD of 6.16 (95 % CI [3.55, 8.76]). Cells: RF-EMF increased oxidized DNA bases in rodent cells with SMD of 2.49 (95 % CI [1.30, 3.67]) (one study, n = 27). There was a medium effect in oxidized lipids (one study, n = 18) but not statistically significant with SMD = 0.34 (95 % CI [-0.62, 1.29]). IN VITRO STUDIES In in vitro studies in human cells (three studies, n = 110), there were inconsistent increases in biomarkers for oxidized DNA bases, where the SMDs varied between 0.01 (95 % CI [-0.59, 0.62]) and 7.12 (95% CI [0.06, 14.18]) in 4 results (2 of them statistically significant). In rodent cells (three studies, n = 24), there was a not statistically significant large effect in biomarkers for oxidized DNA bases with SMD = 2.07 (95 % CI [-1.38, 5.52]). The RF-EMF biomarkers for modified proteins and amino acids in human cells (one study, n = 18) showed a large effect with SMD = 1.07 (95 % CI [-0.05, 2.19]). In rodent cells (two studies, n = 24) a medium effect of SMD = 0.56 (95 % CI [-0.29, 1.41]) was observed. DISCUSSION The evidence on the relation between the exposure to RF-EMF and biomarkers of oxidative stress was of very low certainty, because a majority of the included studies were rated with a high RoB level and provided high heterogeneity. This is due to inaccurate measurements of exposure and/or of measurement of oxidative stress biomarkers and missing information on the blinding of research personnel to exposure conditions or outcome measurements. There may be no or an inconsistent effect of RF-EMF on biomarkers of oxidative stress in the brain, liver, blood, plasma and serum, and in the female reproductive system in animal experiments but the evidence is of very low certainty. There may be an increase in biomarkers of oxidative stress in testes, serum and thymus of rodents but the evidence is of very low certainty. Future studies should improve experimental designs and characterization of exposure systems as well as the use of validated biomarker measurements with positive controls. Other: This review was partially funded by the World Health Organization. The protocol for this review is registered in PROSPERO (https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021235573) and published in Environment International (https://doi.org/10.1016/j.envint.2021.106932) (Henschenmacher et al., 2022).
Collapse
Affiliation(s)
- Felix Meyer
- Federal Office for Radiation Protection, Competence Centre EMF, Karl-Liebknecht-Strasse 33, 03046 Cottbus, Germany.
| | - Annette Bitsch
- Fraunhofer Institute for Toxicology and Experimental Medicine, Chemical Safety and Toxicology, Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
| | - Henry Jay Forman
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089, USA; University of California Merced, 5200 Lake Road, Merced, CA 95343, USA
| | - Athanassios Fragoulis
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, 52074 Aachen, Germany
| | - Pietro Ghezzi
- Brighton and Sussex Medical School, University of Sussex, Trafford Centre, Falmer BN1 9RY, United Kingdom; Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Bernd Henschenmacher
- Federal Office for Radiation Protection, Ingolstädter Landstrasse 1, 85764 Oberschleißheim, Germany
| | - Rupert Kellner
- Fraunhofer Institute for Toxicology and Experimental Medicine, Chemical Safety and Toxicology, Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
| | - Jens Kuhne
- Federal Office for Radiation Protection, Competence Centre EMF, Karl-Liebknecht-Strasse 33, 03046 Cottbus, Germany
| | - Tonia Ludwig
- Federal Office for Radiation Protection, Ingolstädter Landstrasse 1, 85764 Oberschleißheim, Germany
| | - Dmitrij Sachno
- Fraunhofer Institute for Toxicology and Experimental Medicine, Chemical Safety and Toxicology, Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
| | - Gernot Schmid
- Seibersdorf Laboratories, Campus Seibersdorf, 2444 Seibersdorf, Austria
| | - Katya Tsaioun
- Evidence-based Toxicology Collaboration (EBTC), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Jos Verbeek
- University Medical Center Amsterdam, Cochrane Work, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Robert Wright
- Welch Medical Library, Johns Hopkins University School of Medicine, 1900 E. Monument Street, Baltimore, MD 21205, USA
| |
Collapse
|
6
|
Abtin S, Seyedaghamiri F, Aalidaeijavadi Z, Farrokhi AM, Moshrefi F, Ziveh T, Zibaii MI, Aliakbarian H, Rezaei-Tavirani M, Haghparast A. A review on the consequences of molecular and genomic alterations following exposure to electromagnetic fields: Remodeling of neuronal network and cognitive changes. Brain Res Bull 2024; 217:111090. [PMID: 39349259 DOI: 10.1016/j.brainresbull.2024.111090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
The use of electromagnetic fields (EMFs) is essential in daily life. Since 1970, concerns have grown about potential health hazards from EMF. Exposure to EMF can stimulate nerves and affect the central nervous system, leading to neurological and cognitive changes. However, current research results are often vague and contradictory. These effects include changes in memory and learning through changes in neuronal plasticity in the hippocampus, synapses and hippocampal neuritis, and changes in metabolism and neurotransmitter levels. Prenatal exposure to EMFs has negative effects on memory and learning, as well as changes in hippocampal neuron density and histomorphology of hippocampus. EMF exposure also affects the structure and function of glial cells, affecting gate dynamics, ion conduction, membrane concentration, and protein expression. EMF exposure affects gene expression and may change epigenetic regulation through effects on DNA methylation, histone modification, and microRNA biogenesis, and potentially leading to biological changes. Therefore, exposure to EMFs possibly leads to changes in cellular and molecular mechanisms in central nervous system and alter cognitive function.
Collapse
Affiliation(s)
- Shima Abtin
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Seyedaghamiri
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Aalidaeijavadi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Mohammad Farrokhi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fazel Moshrefi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayebeh Ziveh
- Laboratory of Biophysics and Molecular Biology, Departments of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Hadi Aliakbarian
- Faculty of Electrical Engineering, KN Toosi University of Technology, Tehran, Iran
| | | | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Li B, Zhang X, Qiao N, Chen J, Bi W, Zhi W, Ma L, Miao C, Wang L, Zou Y, Hu X. A real-time working memory evaluation system for macaques in microwave fields. Bioelectromagnetics 2024; 45:338-347. [PMID: 39099158 DOI: 10.1002/bem.22519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/14/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024]
Abstract
With the development and widespread application of electromagnetic technology, the health hazards of electromagnetic radiation have attracted much attention and concern. The effect of electromagnetic radiation on the nervous system, especially on learning, memory, and cognitive functions, is an important research topic in the field of electromagnetic biological effects. Most previous studies were conducted with rodents, which are relatively mature. As research has progressed, studies using non-human primates as experimental subjects have been carried out. Compared to rodents, non-human primates such as macaques not only have brain structures more similar to those of humans but also exhibit learning and memory processes that are similar. In this paper, we present a behavioral test system for the real-time evaluation of the working memory (WM) of macaques in a microwave environment. The system consists of two parts: hardware and software. The hardware consists of four modules: the operation terminal, the control terminal, the optical signal transmission, and detection module and the reward feedback module. The software program can implement the feeding learning task, the button-pressing learning task, and the delayed match-to-sample task. The device is useful for the real-time evaluation of the WM of macaques in microwave environments, showing good electromagnetic compatibility, a simple and reliable structure, and easy operation.
Collapse
Affiliation(s)
- Bowen Li
- Beijing Institute of Radiation Medicine, Beijing, China
- College of Education, Hebei University, Baoding, China
| | - Xueyan Zhang
- Beijing Institute of Dental Research, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Beijing, China
| | - Nan Qiao
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Jiawei Chen
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Weijie Bi
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Weijia Zhi
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Lizhen Ma
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Congcong Miao
- Beijing Institute of Dental Research, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Beijing, China
| | - Lifeng Wang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yong Zou
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiangjun Hu
- Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
8
|
Gupta V, Srivastava R. Ashwagandha Diminishes Hippocampal Apoptosis Induced by Microwave Radiation by Acetylcholinesterase Dependent Neuro-Inflammatory Pathway in Male Coturnix coturnix Japonica. Neurochem Res 2024; 49:1687-1702. [PMID: 38506951 DOI: 10.1007/s11064-024-04127-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/22/2024]
Abstract
Microwave radiation (MWR) has been linked to neurodegeneration by inducing oxidative stress in the hippocampus of brain responsible for learning and memory. Ashwagandha (ASW), a medicinal plant is known to prevent neurodegeneration and promote neuronal health. This study investigated the effects of MWR and ASW on oxidative stress and cholinergic imbalance in the hippocampus of adult male Japanese quail. One control group received no treatment, the second group quails were exposed to MWR at 2 h/day for 30 days, third was administered with ASW root extract orally 100 mg/day/kg body weight and the fourth was exposed to MWR and also treated with ASW. The results showed that MWR increased serum corticosterone levels, disrupted cholinergic balance and induced neuro-inflammation. This neuro-inflammation further led to oxidative stress, as evidenced by decreased activity of antioxidant enzymes SOD, CAT and GSH. MWR also caused a significant decline in the nissil substances in the hippocampus region of brain indicating neurodegeneration through oxidative stress mediated hippocampal apoptosis. ASW, on the other hand, was able to effectively enhance the cholinergic balance and subsequently lower inflammation in hippocampus neurons. This suggests that ASW can protect against the neurodegenerative effects of MWR. ASW also reduced excessive ROS production by increasing the activity of ROS-scavenging enzymes. Additionally, ASW prevented neurodegeneration through decreased expression of caspase-3 and caspase-7 in hippocampus, thus promoting neuronal health. In conclusion, this study showed that MWR induces apoptosis and oxidative stress in the brain, while ASW reduces excessive ROS production, prevents neurodegeneration and promotes neuronal health.
Collapse
Affiliation(s)
- Vaibhav Gupta
- Avian Reproductive and Endocrinology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Rashmi Srivastava
- Department of Zoology, Faculty of Science, University of Allahabad, Prayagraj, UP, 211002, India.
| |
Collapse
|
9
|
Xin Y, Guan ST, Ren K, Wang H, Dong J, Wang HY, Zhang J, Xu XP, Yao BW, Zhao L, Shi CX, Peng RY. Microwave Radiation Caused Dynamic Metabolic Fluctuations in the Mammalian Hippocampus. Metabolites 2024; 14:354. [PMID: 39057677 PMCID: PMC11278544 DOI: 10.3390/metabo14070354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
To investigate the dynamic changes in hippocampal metabolism after microwave radiation using liquid chromatography in tandem with mass spectrometry/mass spectrometry (LC-MS/MS) and to identify potential biomarkers. Wistar rats were randomly assigned to a sham group and a microwave radiation group. The rats in the microwave radiation group were exposed to 2.856 GHz for 15 min for three times, with 5 min intervals. The rats in the sham group were not exposed. Transmission electron microscope revealed blurring of the synaptic cleft and postsynaptic dense thickening in hippocampal neurons after microwave radiation. Metabolomic analysis revealed 38, 24, and 39 differentially abundant metabolites at 3, 7, and 14 days after radiation, respectively, and the abundance of 9 metabolites, such as argininosuccinic acid, was continuously decreased. After microwave radiation, the abundance of metabolites such as argininosuccinic acid was successively decreased, indicating that these metabolites could be potential biomarkers for hippocampal tissue injury.
Collapse
Affiliation(s)
- Yu Xin
- School of Education, Hebei University, Baoding 071002, China; (Y.X.); (K.R.)
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| | - Shu-Ting Guan
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| | - Ke Ren
- School of Education, Hebei University, Baoding 071002, China; (Y.X.); (K.R.)
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| | - Hui Wang
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| | - Ji Dong
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| | - Hao-Yu Wang
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| | - Jing Zhang
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| | - Xin-Ping Xu
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| | - Bin-Wei Yao
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| | - Li Zhao
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| | - Chang-Xiu Shi
- School of Education, Hebei University, Baoding 071002, China; (Y.X.); (K.R.)
| | - Rui-Yun Peng
- School of Education, Hebei University, Baoding 071002, China; (Y.X.); (K.R.)
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| |
Collapse
|
10
|
Song X, Li H, Liu X, Pang M, Wang Y. Calcium Imaging Characterize the Neurobiological Effect of Terahertz Radiation in Zebrafish Larvae. SENSORS (BASEL, SWITZERLAND) 2023; 23:7689. [PMID: 37765745 PMCID: PMC10537331 DOI: 10.3390/s23187689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/22/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023]
Abstract
(1) Objective: To explore the neurobiological effects of terahertz (THz) radiation on zebrafish larvae using calcium (Ca2+) imaging technology. (2) Methods: Zebrafish larvae at 7 days post fertilization (dpf) were exposed to THz radiation for 10 or 20 min; the frequency was 2.52 THz and the amplitude 50 mW/cm2. The behavioral experiments, neural Ca2+ imaging, and quantitative polymerase chain reaction (qPCR) of the dopamine-related genes were conducted following the irradiation. (3) Results: Compared with the control group, the behavioral experiments demonstrated that THz radiation significantly increased the distance travelled and speed of zebrafish larvae. In addition, the maximum acceleration and motion frequency were elevated in the 20 min radiation group. The neural Ca2+ imaging results indicated a substantial increase in zebrafish neuronal activity. qPCR experiments revealed a significant upregulation of dopamine-related genes, such as drd2b, drd4a, slc6a3 and th. (4) Conclusion: THz radiation (2.52 THz, 50 mW/cm2, 20 min) upregulated dopamine-related genes and significantly enhanced neuronal excitability, and the neurobiological effect of THz radiation can be visualized using neural Ca2+ imaging in vivo.
Collapse
Affiliation(s)
- Xin Song
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (X.S.); (X.L.)
| | - Haibin Li
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China;
| | - Xiuyun Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (X.S.); (X.L.)
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China;
| | - Meijun Pang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (X.S.); (X.L.)
| | - Yuye Wang
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China;
| |
Collapse
|
11
|
Yao C, Dong J, Ren K, Sun L, Wang H, Zhang J, Wang H, Xu X, Yao B, Zhou H, Zhao L, Peng R. Accumulative Effects of Multifrequency Microwave Exposure with 1.5 GHz and 2.8 GHz on the Structures and Functions of the Immune System. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4988. [PMID: 36981897 PMCID: PMC10049199 DOI: 10.3390/ijerph20064988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Microwave ablation can produce immune activation due to thermal effects. However, the nonthermal effects of microwaves on the immune system are still largely unexplored. In this study, we sequentially exposed rats to 1.5 GHz microwave for 6 min and 2.8 GHz microwave for 6 min at an average power density of 5, 10, and 30 mW/cm2. The structure of the thymus, spleen, and mesenteric lymph node were observed, and we showed that multifrequency microwave exposure caused tissue injuries, such as congestion and nuclear fragmentation in lymphocytes. Ultrastructural injuries, including mitochondrial swelling, mitochondrial cristae rupture, and mitochondrial cavitation, were observed, especially in the 30 mW/cm2 microwave-exposed group. Generally, multifrequency microwaves decreased white blood cells, as well as lymphocytes, monocytes, and neutrophils, in peripheral blood, from 7 d to 28 d after exposure. Microwaves with an average density of 30 mW/cm2 produced much more significant inhibitory effects on immune cells. Moreover, multifrequency microwaves at 10 and 30 mW/cm2, but not 5 mW/cm2, reduced the serum levels of several cytokines, such as interleukin-1 alpha (IL-1α), IL-1β, interferon γ (IFN-γ) and tumor necrosis factor α (TNF-α), at 7 d and 14 d after exposure. We also found similar alterations in immunoglobulins (Igs), IgG, and IgM in serum. However, no obvious changes in complement proteins were detected. In conclusion, multifrequency microwave exposure of 1.5 GHz and 2.8 GHz caused both structural injuries of immune tissues and functional impairment in immune cells. Therefore, it will be necessary to develop an effective strategy to protect people from multifrequency microwave-induced immune suppression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Li Zhao
- Correspondence: (L.Z.); (R.P.)
| | | |
Collapse
|
12
|
Wang H, Song L, Zhao L, Wang H, Xu X, Dong J, Zhang J, Yao B, Zhao X, Peng R. The dose-dependent effect of 1.5-GHz microwave exposure on spatial memory and the NMDAR pathway in Wistar rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37427-37439. [PMID: 36574118 PMCID: PMC9792922 DOI: 10.1007/s11356-022-24850-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
A certain power of microwave radiation could cause changes in the nervous, cardiovascular, and other systems of the body, and the brain was a sensitive target organ of microwave radiation injury. Studies have shown that microwaves can impair cognitive functions in humans and animals, such as learning and memory, attention, and orientation. The dose-dependent effect of microwave radiation is still unclear. Our study aimed to investigate the effects of 1.5-GHz microwaves with different average power densities on locative learning and memory abilities, hippocampal structure, and related N-methyl D-aspartate receptor (NMDAR) signalling pathway proteins in rats. A total number of 140 male Wistar rats were randomly divided into four groups: S group (sham exposure), L5 group (1.5-GHz microwaves with average power density = 5 mW/cm2), L30 group (1.5-GHz microwaves with average power density = 30 mW/cm2), and L50 group (1.5-GHz microwaves with average power density = 50 mW/cm2). Changes in spatial learning and memory, EEG activity, hippocampal structure, and NMDAR signalling pathway molecules were detected from 6 h to 28 d after microwave exposure. After exposure to 1.5-GHz microwaves, rats in the L30 and L50 groups showed impaired spatial memory, inhibited EEG activity, pyknosis and hyperchromatism of neuron nucleus, and changes in NMDAR subunits and downstream signalling molecules. In conclusion, 1.5-GHz microwaves with an average power density of 5, 30, and 50 mW/cm2 could induce spatial memory dysfunction, hippocampal structure changes, and changes in protein levels in rats, and there was a defined dose-dependent effect.
Collapse
Affiliation(s)
- Hui Wang
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, People's Republic of China
| | - Lequan Song
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, People's Republic of China
| | - Li Zhao
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, People's Republic of China
| | - Haoyu Wang
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, People's Republic of China
| | - Xinping Xu
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, People's Republic of China
| | - Ji Dong
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, People's Republic of China
| | - Jing Zhang
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, People's Republic of China
| | - Binwei Yao
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, People's Republic of China
| | - Xuelong Zhao
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, People's Republic of China
| | - Ruiyun Peng
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, People's Republic of China.
| |
Collapse
|
13
|
Bayat M, Karimi N, Karami M, Haghighi AB, Bayat K, Akbari S, Haghani M. Chronic exposure to 2.45 GHz microwave radiation improves cognition and synaptic plasticity impairment in vascular dementia model. Int J Neurosci 2023; 133:111-122. [PMID: 33635159 DOI: 10.1080/00207454.2021.1896502] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Purpose: In this study, we evaluated the effects of 2.45 GHz microwave radiation on cognitive dysfunction induced by vascular dementia (VaD).Methods: The VaD was induced by bilateral-common carotid occlusion (2-VO). The rats were divided into 4 groups including: control (n = 6), sham (n = 6), 2-VO (n = 8), and 2-VO + Wi-Fi (n = 10) groups. Wi-Fi modem centrally located at the distance of 25 cm from the animal's cages and the animals were continuously exposed to Wi-Fi signal while they freely moved in the cage (2 h/day for forty-five days). Therefore, the power density (PD) and specific absorption rate value (SAR) decreased at a distance of 25 to 60 cm (PD = 0.018 to 0.0032 mW/cm2, SAR = 0.0346 to 0.0060 W/Kg). The learning, memory, and hippocampal synaptic-plasticity were evaluated by radial arm maze (RAM), passive avoidance (PA), and field-potential recording respectively. The number of hippocampal CA1 cells was also assessed by giemsa staining.Results: Our results showed that VaD model led to impairment in the spatial learning and memory performance in RAM and PA that were associated with long-term potentiation (LTP) impairment, decrease of basal-synaptic transmission (BST), increase of GABA transmission, and decline of neurotransmitter release-probability as well as hippocampal cell loss. Notably, chronic Wi-Fi exposure significantly recovered the learning-memory performance, LTP induction, and cell loss without any effect on BST.Conclusions: The LTP recovery by Wi-Fi in the 2-VO rats was probably related to significant increases in the hippocampal CA1 neuronal density, partial recovery of neurotransmitter release probability, and reduction of GABA transmissiSon as evident by rescue of paired-pulse ratio 10 ms.
Collapse
Affiliation(s)
- Mahnaz Bayat
- Clinical Neurology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Karimi
- Department of Physiology, the Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Karami
- Department of Physiology, the Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Kamjoo Bayat
- Department of Physics, K. N. Toosi University of Technology, Tehran, Iran
| | - Somayeh Akbari
- Department of Physiology, the Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Haghani
- Department of Physiology, the Medical School, Shiraz University of Medical Sciences, Shiraz, Iran.,Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Rana JN, Mumtaz S, Choi EH, Han I. ROS production in response to high-power microwave pulses induces p53 activation and DNA damage in brain cells: Radiosensitivity and biological dosimetry evaluation. Front Cell Dev Biol 2023; 11:1067861. [PMID: 36910143 PMCID: PMC9996137 DOI: 10.3389/fcell.2023.1067861] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Background: Pulsed high-power microwave (HPM) has many applications and is constantly being researched to expand its uses in the future. As the number of applications grows, the biological effects and safety level of pulsed HPM become a serious issue, requiring further research. Objective: The brain is regarded as the most vulnerable organ to radiation, raising concerns about determining an acceptable level of exposure. The effect of nanosecond pulses and the mechanisms underlying HPM on the brain has not been studied. For the first time, we observed the effect of pulsed 3.5 GHz HPM on brain normal astrocytes and cancer U87 MG cells, as well as the likely mechanisms involved. Methods: To generate 3.5 GHz HPM, an axial virtual cathode oscillator was constructed on pulsed power generator "Chundoong". The cells were directly exposed to HPM (10, 25, 40, and 60) pulses (1 mJ/pulse), with each pulse delivered after 1 min of charging time to evaluate the dose dependent effects. Results: A strong electric field (∼23 kV/cm) of HPM irradiation primarily causes the production of reactive oxygen species (ROS), altering cell viability, mitochondrial activity, and cell death rates in U87 and astrocytes at certain dosages. The ROS generation in response to HPM exposure was primarily responsible for DNA damage and p53 activation. The hazardous dosage of 60 pulses is acknowledged as having damaging effects on brain normal cells. Interestingly, the particular 25 pulses exhibited therapeutic effects on U87 cells via p53, Bax, and Caspase-3 activation. Conclusion: HPM pulses induced apoptosis-related events such as ROS burst and increased oxidative DNA damage at higher dosages in normal cells and specific 25 pulses in cancer U87. These findings are useful to understand the physiological mechanisms driving HPM-induced cell death, as well as the safety threshold range for HPM exposure on normal cells and therapeutic effects on cancer U87. As HPM technology advances, we believe this study is timely and will benefit humanity and future research.
Collapse
Affiliation(s)
- Juie Nahushkumar Rana
- Department of Plasma Bio Display, Kwangwoon University, Seoul, Republic of Korea.,Plasma Bioscience Research Center (PBRC), Kwangwoon University, Seoul, Republic of Korea
| | - Sohail Mumtaz
- Plasma Bioscience Research Center (PBRC), Kwangwoon University, Seoul, Republic of Korea.,Department of Electrical and Biological Physics, Kwangwoon University, Seoul, Republic of Korea
| | - Eun Ha Choi
- Department of Plasma Bio Display, Kwangwoon University, Seoul, Republic of Korea.,Plasma Bioscience Research Center (PBRC), Kwangwoon University, Seoul, Republic of Korea.,Department of Electrical and Biological Physics, Kwangwoon University, Seoul, Republic of Korea
| | - Ihn Han
- Department of Plasma Bio Display, Kwangwoon University, Seoul, Republic of Korea.,Plasma Bioscience Research Center (PBRC), Kwangwoon University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Changes in the histopathology and in the proteins related to the MAPK pathway in the brains of rats exposed to pre and postnatal radiofrequency radiation over four generations. J Chem Neuroanat 2022; 126:102187. [DOI: 10.1016/j.jchemneu.2022.102187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
|
16
|
Gupta V, Srivastava R. 2.45 GHz microwave radiation induced oxidative stress: Role of inflammatory cytokines in regulating male fertility through estrogen receptor alpha in Gallus gallus domesticus. Biochem Biophys Res Commun 2022; 629:61-70. [PMID: 36113179 DOI: 10.1016/j.bbrc.2022.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022]
Abstract
Due to the growing number of gadgets emitting electromagnetic radiation (EMR), particularly microwave (MW) radiation, in our daily lives, it is believed that EMR have both long-term and short-term biological impacts that are quite concerning for avian as well as human health. Due to the negative impact of MW emitting equipment on the biological system this study looks into the mechanistic approach by which low-level of 2.45 GHz MW radiation causes an oxidative stress and inflammatory response in the testes micro-environment which further gets regulated by estrogen receptor alpha (ERα) expression in immature Gallus gallus domesticus leading to male infertility. Two weeks old immature male chickens were exposed to non-thermal low-level 2.45-GHz MW radiation for 2 h/day for 30 days (power density = 0.1264 mw/cm2 and SAR = 0.9978 W/kg). In the exposed group, morphometric examination of the testes revealed decreased testicular weight, volume and gonado-somatic index. Further, histological staining demonstrated a substantial reduction in the diameter of seminiferous tubules in the exposed group as compared to the control. The degree of oxidative stress was also determined showing an increase in oxidative stress parameters after exposure. The radiation exposed testes showed a significant increase in IL-1β immunoreactivity and decline in IL-10 immunoreactivity, indicating a sense of MW radiation-induced oxidative stress-regulated inflammatory response. A substantial reduction in ERα expression was also observed in exposed testes by Western blotting. Our investigations conclude that testes being vulnerable to free radical damage become an easy target organ for MW exposure induced oxidative and inflammatory stress. Therefore it becomes evident that it may cause male infertility in chicks via downregulation of ER-α in testis.
Collapse
Affiliation(s)
- Vaibhav Gupta
- Avian Reproductive and Endocrinology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Rashmi Srivastava
- Avian Reproductive and Endocrinology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India.
| |
Collapse
|
17
|
Microwave Radiation and the Brain: Mechanisms, Current Status, and Future Prospects. Int J Mol Sci 2022; 23:ijms23169288. [PMID: 36012552 PMCID: PMC9409438 DOI: 10.3390/ijms23169288] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 12/12/2022] Open
Abstract
Modern humanity wades daily through various radiations, resulting in frequent exposure and causing potentially important biological effects. Among them, the brain is the organ most sensitive to electromagnetic radiation (EMR) exposure. Despite numerous correlated studies, critical unknowns surround the different parameters used, including operational frequency, power density (i.e., energy dose), and irradiation time that could permit reproducibility and comparability between analyses. Furthermore, the interactions of EMR with biological systems and its precise mechanisms remain poorly characterized. In this review, recent approaches examining the effects of microwave radiations on the brain, specifically learning and memory capabilities, as well as the mechanisms of brain dysfunction with exposure as reported in the literature, are analyzed and interpreted to provide prospective views for future research directed at this important and novel medical technology for developing preventive and therapeutic strategies on brain degeneration caused by microwave radiation. Additionally, the interactions of microwaves with biological systems and possible mechanisms are presented in this review. Treatment with natural products and safe techniques to reduce harm to organs have become essential components of daily life, and some promising techniques to treat cancers and their radioprotective effects are summarized as well. This review can serve as a platform for researchers to understand the mechanism and interactions of microwave radiation with biological systems, the present scenario, and prospects for future studies on the effect of microwaves on the brain.
Collapse
|
18
|
Wi-Fi technology and human health impact: a brief review of current knowledge. ARHIV ZA HIGIJENU RADA I TOKSIKOLOGIJU 2022; 73:94-106. [PMID: 35792772 PMCID: PMC9287836 DOI: 10.2478/aiht-2022-73-3402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/01/2022] [Indexed: 01/05/2023]
Abstract
An enormous increase in the application of wireless communication in recent decades has intensified research into consequent increase in human exposure to electromagnetic (EM) radiofrequency (RF) radiation fields and potential health effects, especially in school children and teenagers, and this paper gives a snap overview of current findings and recommendations of international expert bodies, with the emphasis on exposure from Wi-Fi technology indoor devices. Our analysis includes over 100 in vitro, animal, epidemiological, and exposure assessment studies (of which 37 in vivo and 30 covering Wi-Fi technologies). Only a small portion of published research papers refers to the “real” health impact of Wi-Fi technologies on children, because they are simply not available. Results from animal studies are rarely fully transferable to humans. As highly controlled laboratory exposure experiments do not reflect real physical interaction between RF radiation fields with biological tissue, dosimetry methods, protocols, and instrumentation need constant improvement. Several studies repeatedly confirmed thermal effect of RF field interaction with human tissue, but non-thermal effects remain dubious and unconfirmed.
Collapse
|
19
|
Verma S, Keshri GK, Karmakar S, Mani KV, Chauhan S, Yadav A, Sharma M, Gupta A. Effects of Microwave 10 GHz Radiation Exposure in the Skin of Rats: An Insight on Molecular Responses. Radiat Res 2021; 196:404-416. [PMID: 34407201 DOI: 10.1667/rade-20-00155.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/06/2021] [Indexed: 11/03/2022]
Abstract
Microwave (MW) radiation poses the risk of potential hazards on human health. The present study investigated the effects of MW 10 GHz exposure for 3 h/day for 30 days at power densities of 5.23 ± 0.25 and 10.01 ± 0.15 mW/cm2 in the skin of rats. The animals exposed to 10 mW/cm2 (corresponded to twice the ICNIRP-2020 occupational reference level of MW exposure for humans) exhibited significant biophysical, biochemical, molecular and histological alterations compared to sham-irradiated animals. Infrared thermography revealed an increase in average skin surface temperature by 1.8°C and standard deviation of 0.3°C after 30 days of 10 mW/cm2 MW exposure compared to the sham-irradiated animals. MW exposure also led to oxidative stress (ROS, 4-HNE, LPO, AOPP), inflammatory responses (NFkB, iNOS/NOS2, COX-2) and metabolic alterations [hexokinase (HK), lactate dehydrogenase (LDH), citrate synthase (CS) and glucose-6-phospahte dehydrogenase (G6PD)] in 10 mW/cm2 irradiated rat skin. A significant alteration in expression of markers associated with cell survival (Akt/PKB) and HSP27/p38MAPK-related stress-response signaling cascade was observed in 10 mW/cm2 irradiated rat skin compared to sham-irradiated rat skin. However, MW-irradiated groups did not show apoptosis, evident by unchanged caspase-3 levels. Histopathological analysis revealed a mild cytoarchitectural alteration in epidermal layer and slight aggregation of leukocytes in 10 mW/cm2 irradiated rat skin. Altogether, the present findings demonstrated that 10 GHz exposure in continuous-wave mode at 10 mW/cm2 (3 h/day, 30 days) led to significant alterations in molecular markers associated with adaptive stress-response in rat skin. Furthermore, systematic scientific studies on more prevalent pulsed-mode of MW-radiation exposure for prolonged duration are warranted.
Collapse
Affiliation(s)
- Saurabh Verma
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Gaurav K Keshri
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Santanu Karmakar
- Microwave Tube Research and Development Centre (MTRDC), DRDO, Bangalore, India
| | - Kumar Vyonkesh Mani
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Satish Chauhan
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Anju Yadav
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Manish Sharma
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Asheesh Gupta
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| |
Collapse
|
20
|
He GL, Wang ZZ, Yu XT, Shen TT, Luo Z, Li P, Luo X, Tan YL, Gao P, Yang XS. The involvement of microglial CX3CR1 in heat acclimation-induced amelioration of adult hippocampal neurogenesis impairment in EMF-exposed mice. Brain Res Bull 2021; 177:181-193. [PMID: 34555433 DOI: 10.1016/j.brainresbull.2021.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022]
Abstract
Microglial CX3C chemokine receptor 1 (CX3CR1) has been implicated in numerous cellular mechanisms, including signalling pathways that regulate brain homoeostasis and adult hippocampal neurogenesis. Specific environmental conditions can impair hippocampal neurogenesis-related cognition, learning and memory. However, the role of CX3CR1 in the neurogenic alterations resulting from the cross-tolerance protection conferred by heat acclimation (HA) against the effects of electromagnetic field (EMF) exposure is less well understood. Here, we investigated the role of microglial CX3CR1 signalling in adult hippocampal neurogenesis induced by HA in EMF-exposed mice. We found that EMF exposure significantly decreased the number of proliferating and differentiating cells in the dentate gyrus (DG) of the hippocampus, resulting in a reduced neurogenesis rate. Moreover, alterations in the phenotypes of activated microglia and decreased expression levels of CX3CR1, but not sirtuin 1 (SIRT1), were observed in the brains of EMF-exposed mice. Remarkably, HA treatment improved microglial phenotypes, restored the expression of CX3CR1, and ameliorated the decrease in the adult hippocampal neurogenesis rate following EMF exposure. Moreover, pharmacological inhibition of CX3CR1 and SIRT1 failed to restore CX3CR1 expression and ameliorate hippocampal neurogenesis impairment following HA plus EMF stimulation. These results indicate that microglial CX3CR1 is involved in the cross-tolerance protective effect of HA on adult hippocampal neurogenesis upon EMF exposure.
Collapse
Affiliation(s)
- Gen-Lin He
- Department of Tropical Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China
| | - Ze-Ze Wang
- Department of Tropical Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China
| | - Xue-Ting Yu
- Department of Tropical Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China
| | - Ting-Ting Shen
- Department of Tropical Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China
| | - Zhen Luo
- Department of Tropical Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China
| | - Ping Li
- Department of Tropical Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China
| | - Xue Luo
- Department of Tropical Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China
| | - Yu-Long Tan
- Department of Tropical Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China
| | - Peng Gao
- Key Laboratory of Medical Protection for Electromagnetic Radiation Ministry of Education, Army Medical University, Chongqing, China
| | - Xue-Sen Yang
- Department of Tropical Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China.
| |
Collapse
|
21
|
Effects of Long-Term Exposure to L-Band High-Power Microwave on the Brain Function of Male Mice. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2237370. [PMID: 34527734 PMCID: PMC8437633 DOI: 10.1155/2021/2237370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022]
Abstract
Currently, the impact of electromagnetic field (EMF) exposure on the nervous system is an increasingly arousing public concern. The present study was designed to explore the effects of continuous long-term exposure to L-band high-power microwave (L-HPM) on brain function and related mechanisms. Forty-eight male Institute of Cancer Research (ICR) mice were exposed to L-HPM at various power densities (0.5, 1.0, and 1.5 W/m2) and the brain function was examined at different time periods after exposure. The morphology of the brain was examined by hematoxylin-eosin (HE) and deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining. Furthermore, cholinergic markers, oxidative stress markers, and the expression of c-fos were evaluated to identify a “potential” mechanism. The results showed that exposure to L-HPM at 1.5 W/m2 can cause generalized injuries in the hippocampus (CA1 and CA3) and cerebral cortex (the first somatosensory cortex) of mice, including cell apoptosis, cholinergic dysfunction, and oxidative damage. Moreover, the deleterious effects were closely related to the power density and exposure time, indicating that long-term and high-power density exposure may be detrimental to the nervous system.
Collapse
|
22
|
Lai YF, Wang HY, Peng RY. Establishment of injury models in studies of biological effects induced by microwave radiation. Mil Med Res 2021; 8:12. [PMID: 33597038 PMCID: PMC7890848 DOI: 10.1186/s40779-021-00303-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 01/29/2021] [Indexed: 02/08/2023] Open
Abstract
Microwave radiation has been widely used in various fields, such as communication, industry, medical treatment, and military applications. Microwave radiation may cause injuries to both the structures and functions of various organs, such as the brain, heart, reproductive organs, and endocrine organs, which endanger human health. Therefore, it is both theoretically and clinically important to conduct studies on the biological effects induced by microwave radiation. The successful establishment of injury models is of great importance to the reliability and reproducibility of these studies. In this article, we review the microwave exposure conditions, subjects used to establish injury models, the methods used for the assessment of the injuries, and the indicators implemented to evaluate the success of injury model establishment in studies on biological effects induced by microwave radiation.
Collapse
Affiliation(s)
- Yun-Fei Lai
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Hao-Yu Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Rui-Yun Peng
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
23
|
Nkpaa KW, Owoeye O, Amadi BA, Adedara IA, Abolaji AO, Wegwu MO, Farombi EO. Ethanol exacerbates manganese-induced oxidative/nitrosative stress, pro-inflammatory cytokines, nuclear factor-κB activation, and apoptosis induction in rat cerebellar cortex. J Biochem Mol Toxicol 2020; 35:e22681. [PMID: 33314588 DOI: 10.1002/jbt.22681] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/20/2020] [Accepted: 11/26/2020] [Indexed: 11/06/2022]
Abstract
Manganese (Mn) exposure is causing public health concerns as well as heavy alcohol consumption. This study investigates the mechanisms of neurotoxicity associated with Mn and ethanol (EtOH) exposure in the rat cerebellar cortex. Experimental animals received 30 mg/kg of Mn alone, 5 g/kg of EtOH alone, co-exposed with 30 mg/kg of Mn and 1.25 or 5 g/kg EtOH, while control animals received water by oral gavage for 35 days. Subsequently, alterations in the neuronal morphology of the cerebellar cortex, oxidative/nitrosative stress, acetylcholinesterase (AChE) activity, neuro-inflammation and protein expression of p53, BAX, caspase-3, and BCL-2 were investigated. The results indicate that Mn alone and EtOH alone induce neuronal alterations in the cerebellar cortex, decrease glutathione level and antioxidant enzyme activities, along with an increase in AChE activity, lipid peroxidation, and hydrogen peroxide generation. Mn alone and EtOH alone also increased neuro-inflammatory markers, namely nitric oxide, myeloperoxidase activity, interleukin-1β, tumor necrosis factor-α, and nuclear factor-κB (NF-κB) levels in the cerebellar cortex. Immunohistochemistry analysis further revealed that exposure of Mn alone and EtOH alone increases the protein expression of cyclooxygenase-2, BAX, p53, and caspase-3 and decrease BCL-2 in the rat cerebellar cortex. Furthermore, the results indicated that Mn co-exposure with EtOH at 1.25 and 5 g/kg EtOH significantly (p ≤ .05) increases the toxicity in the cerebellum when compared with the toxicity of Mn or EtOH alone. Taken together, co-exposure of Mn and EtOH exacerbates neuronal alterations, oxidative/nitrosative stress, AChE activity, pro-inflammatory cytokines, NF-κB signal transcription, and apoptosis induction in the rat cerebellar cortex.
Collapse
Affiliation(s)
- Kpobari W Nkpaa
- Environmental Toxicology Unit, Department of Biochemistry, Faculty of Science, University of Port Harcourt, Choba, Rivers State, Nigeria
| | - Olatunde Owoeye
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Benjamin A Amadi
- Environmental Toxicology Unit, Department of Biochemistry, Faculty of Science, University of Port Harcourt, Choba, Rivers State, Nigeria
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Amos O Abolaji
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Matthew O Wegwu
- Environmental Toxicology Unit, Department of Biochemistry, Faculty of Science, University of Port Harcourt, Choba, Rivers State, Nigeria
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
24
|
Gulati S, Kosik P, Durdik M, Skorvaga M, Jakl L, Markova E, Belyaev I. Effects of different mobile phone UMTS signals on DNA, apoptosis and oxidative stress in human lymphocytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115632. [PMID: 33254645 DOI: 10.1016/j.envpol.2020.115632] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 06/12/2023]
Abstract
Different scientific reports suggested link between exposure to radiofrequency radiation (RF) from mobile communications and induction of reactive oxygen species (ROS) and DNA damage while other studies have not found such a link. However, the available studies are not directly comparable because they were performed at different parameters of exposure, including carrier frequency of RF signal, which was shown to be a critical for appearance of the RF effects. For the first time, we comparatively analyzed genotoxic effects of UMTS signals at different frequency channels used by 3G mobile phones (1923, 1947.47, and 1977 MHz). Genotoxicity was examined in human lymphocytes exposed to RF for 1 h and 3 h using complimentary endpoints such as induction of ROS by imaging flow cytometry, DNA damage by alkaline comet assay, mutations in TP53 gene by RSM assay, preleukemic fusion genes (PFG) by RT-qPCR, and apoptosis by flow cytometry. No effects of RF exposure on ROS, apoptosis, PFG, and mutations in TP53 gene were revealed regardless the UMTS frequency while inhibition of a bulk RNA expression was found. On the other hand, we found relatively small but statistically significant induction of DNA damage in dependence on UMTS frequency channel with maximal effect at 1977.0 MHz. Our data support a notion that each specific signal used in mobile communication should be tested in specially designed experiments to rule out that prolonged exposure to RF from mobile communication would induce genotoxic effects and affect the health of human population.
Collapse
Affiliation(s)
- Sachin Gulati
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, 845 05, Slovak Republic
| | - Pavol Kosik
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, 845 05, Slovak Republic
| | - Matus Durdik
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, 845 05, Slovak Republic
| | - Milan Skorvaga
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, 845 05, Slovak Republic
| | - Lukas Jakl
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, 845 05, Slovak Republic
| | - Eva Markova
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, 845 05, Slovak Republic
| | - Igor Belyaev
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, 845 05, Slovak Republic.
| |
Collapse
|
25
|
Azimzadeh M, Jelodar G. Prenatal and early postnatal exposure to radiofrequency waves (900 MHz) adversely affects passive avoidance learning and memory. Toxicol Ind Health 2020; 36:1024-1030. [PMID: 33200679 DOI: 10.1177/0748233720973143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Prenatal and early postnatal are the most sensitive and high-risk periods to expose to electromagnetic fields (EMFs). This study aimed to investigate the effect of prenatal and early postnatal exposure to 900 MHz radiofrequency waves (RFWs) emitted from a base transceiver station antenna on passive avoidance learning and memory (PALM) and hippocampus histomorphology. Female Sprague Dawley rats (190-230 g) were paired with males. The mated rats, confirmed by observing a vaginal plug, were divided into two groups; control and exposed. The control group (n = 7) was not exposed to RFW. The exposed group was divided into three subgroups (n = 8); exposed Ⅰ, exposed during the gestational period (fetal life), and exposed Ⅱ and Ⅲ (postnatal exposure), exposed to RFW during the first 21 days of life, for 2 h/d and 4 h/d, respectively. PALM was evaluated by a shuttle box in 45-day-old pups. Learning and memory of animals were demonstrated as the duration of remaining within the light area, which is called the lighting time. Histological sections were prepared from brain tissues and stained with hematoxylin and eosin. An impairment in the PALM performance was noticed in all exposed subgroups (Ⅰ, Ⅱ, and Ⅲ) (p < 0.05). Learning (short-term memory) and retention (long-term memory) behaviors were more affected in exposed subgroup Ⅰ (prenatal exposed) compared to other postnatal exposed subgroups (Ⅱ and Ⅲ). Also, a mild decrease in the density of pyramidal cells was observed in the hippocampus of exposed subgroups (Ⅰ and Ⅲ). Prenatal and early postnatal exposure to 900 MHz RFW adversely affected PALM performance and hippocampus tissue in rat pups with more impact for prenatal period exposure.
Collapse
Affiliation(s)
- Mansour Azimzadeh
- Department of Basic Science, 108911School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Gholamali Jelodar
- Department of Basic Science, 108911School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
26
|
Zinc-finger protein A20 protects hair cells from damage made by high-power microwave. JOURNAL OF BIO-X RESEARCH 2019. [DOI: 10.1097/jbr.0000000000000039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
27
|
Wi-Fi decreases melatonin protective effect and increases hippocampal neuronal damage in pentylenetetrazole induced model seizures in rats. PATHOPHYSIOLOGY 2019; 26:375-379. [DOI: 10.1016/j.pathophys.2019.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 11/11/2019] [Accepted: 11/20/2019] [Indexed: 01/08/2023] Open
|
28
|
Nkpaa KW, Adedara IA, Amadi BA, Wegwu MO, Farombi EO. Ethanol via Regulation of NF-κB/p53 Signaling Pathway Increases Manganese-Induced Inflammation and Apoptosis in Hypothalamus of Rats. Biol Trace Elem Res 2019; 190:101-108. [PMID: 30284675 DOI: 10.1007/s12011-018-1535-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 09/25/2018] [Indexed: 01/07/2023]
Abstract
The diet is a major route of manganese (Mn) exposure for humans. Interestingly, several epidemiological data demonstrated an increase in the incidence of alcohol consumption globally. Chemical-chemical interaction subsequent to chemical mixtures exposure may result in a synergism or antagonism effects. The present study investigated the influence of co-exposure to ethanol (EtOH) and Mn on inflammation and apoptosis in the hypothalamus of rats. The study consisted of five groups of rats that were exposed to drinking water alone, EtOH alone at 5 g/kg, Mn alone at 30 mg/kg or co-expose with EtOH at 1.25 and 5 g/kg body weight by oral gavage for 35 consecutive days. The results indicated that the significant (p < 0.05) increases in pro-inflammatory cytokines, namely tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) as well as cyclooxygenase-2 (COX-2) and nuclear factor kappa B (NF-κB) activation in the hypothalamus following individual exposure to Mn and EtOH to rats were intensified in the co-exposure group. Moreover, immunohistochemistry analysis showed marked decrease in B cell lymphoma-2 (Bcl-2) protein expression as well as the increases in the apoptotic proteins, namely Bax and caspase-3 along with p53 in the hypothalamus of rats treated with Mn or EtOH alone were intensified in the co-exposure group. Taken together, these findings highlight that EtOH exacerbated the induction of inflammatory and apoptotic biomarkers via regulation of NF-κB/p53 signaling pathways in the hypothalamus of rats. These alterations may have profound disrupting effects on the hypothalamus functions such as impairment of it metabolic and autonomic nervous system functions.
Collapse
Affiliation(s)
- Kpobari W Nkpaa
- Environmental Toxicology Unit, Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B 5323, Choba, Rivers State, Nigeria.
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Benjamin A Amadi
- Environmental Toxicology Unit, Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B 5323, Choba, Rivers State, Nigeria
| | - Matthew O Wegwu
- Environmental Toxicology Unit, Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B 5323, Choba, Rivers State, Nigeria
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
29
|
Sienkiewicz Z, van Rongen E. Can Low-Level Exposure to Radiofrequency Fields Effect Cognitive Behaviour in Laboratory Animals? A Systematic Review of the Literature Related to Spatial Learning and Place Memory. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1607. [PMID: 31071933 PMCID: PMC6539921 DOI: 10.3390/ijerph16091607] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 12/20/2022]
Abstract
This review considers whether exposure to low-level radiofrequency (RF) fields, mostly associated with mobile phone technology, can influence cognitive behaviour of laboratory animals. Studies were nominated for inclusion using an a priori defined protocol with preselected criteria, and studies were excluded from analysis if they did not include sufficient details about the exposure, dosimetry or experimental protocol, or if they lacked a sham-exposed group. Overall, 62 studies were identified that have investigated the effects of RF fields on spatial memory and place learning and have been published since 1993. Of these, 17 studies were excluded, 20 studies reported no significant field-related effects, 21 studies reported significant impairments or deficits, and four studies reported beneficial consequences. The data do not suggest whether these outcomes are related to specific differences in exposure or testing conditions, or simply represent chance. However, some studies have suggested possible molecular mechanisms for the observed effects, but none of these has been substantiated through independent replication. Further behavioural studies could prove useful to resolve this situation, and it is suggested that these studies should use a consistent animal model with standardized exposure and testing protocols, and with detailed dosimetry provided by heterogeneous, anatomically-realistic animal models.
Collapse
Affiliation(s)
- Zenon Sienkiewicz
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Oxfordshire OX11 0RQ, UK.
| | - Eric van Rongen
- Health Council of the Netherlands, P.O. Box 16052, 2500 BB The Hague, The Netherlands.
| |
Collapse
|
30
|
Nkpaa KW, Amadi BA, Wegwu MO, Farombi EO. Ethanol increases manganese—Induced spatial learning and memory deficits via oxidative/nitrosative stress induced p53 dependent/independent hippocampal apoptosis. Toxicology 2019; 418:51-61. [DOI: 10.1016/j.tox.2019.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/26/2019] [Accepted: 03/02/2019] [Indexed: 02/07/2023]
|
31
|
Karimi N, Bayat M, Haghani M, Saadi HF, Ghazipour GR. 2.45 GHz microwave radiation impairs learning, memory, and hippocampal synaptic plasticity in the rat. Toxicol Ind Health 2018; 34:873-883. [PMID: 30345889 DOI: 10.1177/0748233718798976] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microwave (MW) radiation has a close relationship with neurobehavioral disorders. Due to the widespread usage of MW radiation, especially in our homes, it is essential to investigate the direct effect of MW radiation on the central nervous system. Therefore, this study was carried out to determine the effect of MW radiation on memory and hippocampal synaptic plasticity. The rats were exposed to 2.45 GHz MW radiation (continuous wave with overall average power density of 0.016 mW/cm2 and overall average whole-body specific absorption rate value of 0.017 W/kg) for 2 h/day over a period of 40 days. Spatial learning and memory were tested by radial maze and passive avoidance tests. We evaluated the synaptic plasticity and hippocampal neuronal cells number by field potential recording and Giemsa staining, respectively. Our results showed that MW radiation exposure decreased the learning and memory performance that was associated with decrement of long-term potentiation induction and excitability of CA1 neurons. However, MW radiation did not have any effects on short-term plasticity and paired-pulse ratio as a good indirect index for measurement of glutamate release probability. The evaluation of hippocampal morphology indicated that the neuronal density in the hippocampal CA1 area was significantly decreased by MW.
Collapse
Affiliation(s)
- Narges Karimi
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahnaz Bayat
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Haghani
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, Iran.,Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Fahandezh Saadi
- Department of Information and Communication Technology (ICT), Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
32
|
Cao JX, Wang F, Li X, Sun YY, Wang Y, Ou CR, Shao XF, Pan DD, Wang DY. The Influence of Microwave Sterilization on the Ultrastructure, Permeability of Cell Membrane and Expression of Proteins of Bacillus Cereus. Front Microbiol 2018; 9:1870. [PMID: 30233502 PMCID: PMC6131623 DOI: 10.3389/fmicb.2018.01870] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 07/25/2018] [Indexed: 12/02/2022] Open
Abstract
Bacillus cereus was isolated from ready-to-serve brine goose, identified by 16S rRNA gene sequencing analysis and treated with a commercial microwave sterilization condition (a power of 1,800 W at 85°C for 5 min). The influence of microwaves on the morphology, the permeability of membrane and the expression of total bacterial proteins was observed. Microwave induced the clean of bacterial nuclear chromatin, increased the permeability and disrupted the integrity of membrane. Twenty-three proteins including 18 expressed down-regulated proteins and 5 expressed up-regulated proteins were identified by HPLC-MS/MS in the samples treated with microwave. The frequencies of proteins changed after microwaves treatment were labeled as 39.13% (synthesis and metabolism of amino acid or proteins), 21.74% (carbohydrate metabolism), 8.70% (anti-oxidant and acetyl Co-A synthesis), and 4.35% (the catalyst of catabolism of bacterial acetoin, ethanol metabolism, glyoxylate pathway, butyrate synthesis and detoxification activity), respectively. This study indicates that microwaves result in the inactivation of Bacillus cereus by cleaning nuclear chromatin, disrupting cell membrane and disordering the expression of proteins.
Collapse
Affiliation(s)
- Jin-Xuan Cao
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Fang Wang
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Xuan Li
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Yang-Ying Sun
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Ying Wang
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Chang-Rong Ou
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Xing-Feng Shao
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Dao-Dong Pan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Dao-Ying Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
33
|
Shahin S, Singh SP, Chaturvedi CM. 2.45 GHz microwave radiation induced oxidative and nitrosative stress mediated testicular apoptosis: Involvement of a p53 dependent bax-caspase-3 mediated pathway. ENVIRONMENTAL TOXICOLOGY 2018; 33:931-945. [PMID: 29968967 DOI: 10.1002/tox.22578] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
Deleterious effects of MW radiation on the male reproduction are well studied. Previous reports although suggest that 2.45 GHz MW irradiation induced oxidative and nitrosative stress adversely affects the male reproductive function but the detailed molecular mechanism occurring behind it has yet to be elucidated. The aim of present study was to investigate the underlying detailed pathway of the testicular apoptosis induced by free radical load and redox imbalance due to 2.45 GHz MW radiation exposure and the degree of severity along with the increased exposure duration. Twelve-week old male mice were exposed to 2.45 GHz MW radiation [continuous-wave (CW) with overall average Power density of 0.0248 mW/cm2 and overall average whole body SAR value of 0.0146 W/kg] for 2 hr/day over a period of 15, 30, and 60 days. Testicular histology, serum testosterone, ROS, NO, MDA level, activity of antioxidant enzymes, expression of pro-apoptotic proteins (p53 and Bax), anti-apoptotic proteins (Bcl-2 and Bcl-xL ), cytochrome-c, inactive/active caspase-3, and uncleaved PARP-1 were evaluated. Findings suggest that 2.45 GHz MW radiation exposure induced testicular redox imbalance not only leads to enhanced testicular apoptosis via p53 dependent Bax-caspase-3 mediated pathway, but also increases the degree of apoptotic severity in a duration dependent manner.
Collapse
Affiliation(s)
- Saba Shahin
- Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Surya Pal Singh
- Department of Electronics Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221005, India
| | | |
Collapse
|
34
|
Ertilav K, Uslusoy F, Ataizi S, Nazıroğlu M. Long term exposure to cell phone frequencies (900 and 1800 MHz) induces apoptosis, mitochondrial oxidative stress and TRPV1 channel activation in the hippocampus and dorsal root ganglion of rats. Metab Brain Dis 2018; 33:753-763. [PMID: 29332300 DOI: 10.1007/s11011-017-0180-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/26/2017] [Indexed: 12/11/2022]
Abstract
Mobile phone providers use electromagnetic radiation (EMR) with frequencies ranging from 900 to 1800 MHz. The increasing use of mobile phones has been accompanied by several potentially pathological consequences, such as neurological diseases related to hippocampal (HIPPON) and dorsal root ganglion neuron (DRGN). The TRPV1 channel is activated different stimuli, including CapN, high temperature and oxidative stress. We investigated the contribution TRPV1 to mitochondrial oxidative stress and apoptosis in HIPPON and DRGN following long term exposure to 900 and 1800 MHz in a rat model. Twenty-four adult rats were equally divided into the following groups: (1) control, (2) 900 MHz, and (3) 1800 MHz exposure. Each experimental group was exposed to EMR for 60 min/ 5 days of the week during the one year. The 900 and 1800 MHz EMR exposure induced increases in TRPV1 currents, intracellular free calcium influx (Ca2+), reactive oxygen species (ROS) production, mitochondrial membrane depolarization (JC-1), apoptosis, and caspase 3 and 9 activities in the HIPPON and DRGN. These deleterious processes were further increased in the 1800 MHz experimental group compared to the 900 MHz exposure group. In conclusion, mitochondrial oxidative stress, programmed cell death and Ca2+ entry pathway through TRPV1 activation in the HIPPON and DRGN of rats were increased in the rat model following exposure to 900 and 1800 MHz cell frequencies. Our results suggest that exposure to 900 and 1800 MHz EMR may induce a dose-associated, TRPV1-mediated stress response.
Collapse
Affiliation(s)
- Kemal Ertilav
- Departmant of Neurosurgery, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Fuat Uslusoy
- Department of Plastic Reconstructive and Aesthetic Surgery, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Serdar Ataizi
- Departmant of Neurosurgery, Yunusemre General State Hospital, Eskişehir, Turkey
| | - Mustafa Nazıroğlu
- Neuroscience Research Center, Suleyman Demirel University, TR-32260, Isparta, Turkey.
| |
Collapse
|
35
|
Hao Y, Li W, Wang H, Zhang J, Yu C, Tan S, Wang H, Xu X, Dong J, Yao B, Zhou H, Zhao L, Peng R. Autophagy mediates the degradation of synaptic vesicles: A potential mechanism of synaptic plasticity injury induced by microwave exposure in rats. Physiol Behav 2018; 188:119-127. [PMID: 29408588 DOI: 10.1016/j.physbeh.2018.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 12/17/2022]
Abstract
To explore how autophagy changes and whether autophagy is involved in the pathophysiological process of synaptic plasticity injury caused by microwave radiation, we established a 30 mW/cm2 microwave-exposure in vivo model, which caused reversible injuries in rat neurons. Microwave radiation induced cognitive impairment in rats and synaptic plasticity injury in rat hippocampal neurons. Autophagy in rat hippocampal neurons was activated following microwave exposure. Additionally, we observed that synaptic vesicles were encapsulated by autophagosomes, a phenomenon more evident in the microwave-exposed group. Colocation of autophagosomes and synaptic vesicles in rat hippocampal neurons increased following microwave exposure. CONCLUSION microwave exposure led to the activation of autophagy in rat hippocampal neurons, and excessive activation of autophagy might damage synaptic plasticity by mediating synaptic vesicle degradation.
Collapse
Affiliation(s)
- Yanhui Hao
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, PR China
| | - Wenchao Li
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, PR China
| | - Hui Wang
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, PR China
| | - Jing Zhang
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, PR China
| | - Chao Yu
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, PR China
| | - Shengzhi Tan
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, PR China
| | - Haoyu Wang
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, PR China
| | - Xinping Xu
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, PR China
| | - Ji Dong
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, PR China
| | - Binwei Yao
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, PR China
| | - Hongmei Zhou
- Division of Radiation Protection and Health Physics, Institute of Radiation Medicine, Beijing, PR China
| | - Li Zhao
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, PR China.
| | - Ruiyun Peng
- Department of Experimental Pathology, Institute of Radiation Medicine, Beijing, PR China.
| |
Collapse
|
36
|
Microwave radiation leading to shrinkage of dendritic spines in hippocampal neurons mediated by SNK-SPAR pathway. Brain Res 2018; 1679:134-143. [DOI: 10.1016/j.brainres.2017.11.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 10/21/2017] [Accepted: 11/20/2017] [Indexed: 12/25/2022]
|
37
|
Cao JX, Wang F, Li X, Sun YY, Wang Y, Ou CR, Shao XF, Pan DD, Wang DY. The Influence of Microwave Sterilization on the Ultrastructure, Permeability of Cell Membrane and Expression of Proteins of Bacillus Cereus. Front Microbiol 2018; 9:1870. [PMID: 30233502 DOI: 10.3389/fmicb.2018.0187010.3389/fmicb.2018.01870.s001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 07/25/2018] [Indexed: 05/20/2023] Open
Abstract
Bacillus cereus was isolated from ready-to-serve brine goose, identified by 16S rRNA gene sequencing analysis and treated with a commercial microwave sterilization condition (a power of 1,800 W at 85°C for 5 min). The influence of microwaves on the morphology, the permeability of membrane and the expression of total bacterial proteins was observed. Microwave induced the clean of bacterial nuclear chromatin, increased the permeability and disrupted the integrity of membrane. Twenty-three proteins including 18 expressed down-regulated proteins and 5 expressed up-regulated proteins were identified by HPLC-MS/MS in the samples treated with microwave. The frequencies of proteins changed after microwaves treatment were labeled as 39.13% (synthesis and metabolism of amino acid or proteins), 21.74% (carbohydrate metabolism), 8.70% (anti-oxidant and acetyl Co-A synthesis), and 4.35% (the catalyst of catabolism of bacterial acetoin, ethanol metabolism, glyoxylate pathway, butyrate synthesis and detoxification activity), respectively. This study indicates that microwaves result in the inactivation of Bacillus cereus by cleaning nuclear chromatin, disrupting cell membrane and disordering the expression of proteins.
Collapse
Affiliation(s)
- Jin-Xuan Cao
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Fang Wang
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Xuan Li
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Yang-Ying Sun
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Ying Wang
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Chang-Rong Ou
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Xing-Feng Shao
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Dao-Dong Pan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Dao-Ying Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
38
|
Shahin S, Banerjee S, Swarup V, Singh SP, Chaturvedi CM. From the Cover: 2.45-GHz Microwave Radiation Impairs Hippocampal Learning and Spatial Memory: Involvement of Local Stress Mechanism-Induced Suppression of iGluR/ERK/CREB Signaling. Toxicol Sci 2017; 161:349-374. [DOI: 10.1093/toxsci/kfx221] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
39
|
Othman H, Ammari M, Sakly M, Abdelmelek H. Effects of repeated restraint stress and WiFi signal exposure on behavior and oxidative stress in rats. Metab Brain Dis 2017; 32:1459-1469. [PMID: 28451780 DOI: 10.1007/s11011-017-0016-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/17/2017] [Indexed: 12/14/2022]
Abstract
Today, due to technology development and aversive events of daily life, Human exposure to both radiofrequency and stress is unavoidable. This study investigated the co-exposure to repeated restraint stress and WiFi signal on cognitive function and oxidative stress in brain of male rats. Animals were divided into four groups: Control, WiFi-exposed, restrained and both WiFi-exposed and restrained groups. Each of WiFi exposure and restraint stress occurred 2 h (h)/day during 20 days. Subsequently, various tests were carried out for each group, such as anxiety in elevated plus maze, spatial learning abilities in the water maze, cerebral oxidative stress response and cholinesterase activity in brain and serum. Results showed that WiFi exposure and restraint stress, alone and especially if combined, induced an anxiety-like behavior without impairing spatial learning and memory abilities in rats. At cerebral level, we found an oxidative stress response triggered by WiFi and restraint, per se and especially when combined as well as WiFi-induced increase in acetylcholinesterase activity. Our results reveal that there is an impact of WiFi signal and restraint stress on the brain and cognitive processes especially in elevated plus maze task. In contrast, there are no synergistic effects between WiFi signal and restraint stress on the brain.
Collapse
Affiliation(s)
- Haifa Othman
- Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, University of Carthage, 7021, Jarzouna, Tunisia
| | - Mohamed Ammari
- Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, University of Carthage, 7021, Jarzouna, Tunisia.
- Higher Institute of Applied Biological Sciences of Tunis, University of Tunis El Manar, 9, Rue Zouhair Essafi, 1006, Tunis, Tunisia.
| | - Mohsen Sakly
- Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, University of Carthage, 7021, Jarzouna, Tunisia
| | - Hafedh Abdelmelek
- Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, University of Carthage, 7021, Jarzouna, Tunisia
| |
Collapse
|
40
|
Abstract
This study concerns the effects of microwave on health because they pervade diverse fields of our lives. The brain has been recognized as one of the organs that is most vulnerable to microwave radiation. Therefore, in this article, we reviewed recent studies that have explored the effects of microwave radiation on the brain, especially the hippocampus, including analyses of epidemiology, morphology, electroencephalograms, learning and memory abilities and the mechanisms underlying brain dysfunction. However, the problem with these studies is that different parameters, such as the frequency, modulation, and power density of the radiation and the irradiation time, were used to evaluate microwave radiation between studies. As a result, the existing data exhibit poor reproducibility and comparability. To determine the specific dose-effect relationship between microwave radiation and its biological effects, more intensive studies must be performed.
Collapse
Affiliation(s)
- Wei-Jia Zhi
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Li-Feng Wang
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Xiang-Jun Hu
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
41
|
Wang H, Tan S, Xu X, Zhao L, Zhang J, Yao B, Gao Y, Zhou H, Peng R. Long term impairment of cognitive functions and alterations of NMDAR subunits after continuous microwave exposure. Physiol Behav 2017; 181:1-9. [PMID: 28866028 DOI: 10.1016/j.physbeh.2017.08.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/10/2017] [Accepted: 08/25/2017] [Indexed: 01/19/2023]
Abstract
OBJECTIVE The long term effects of continuous microwave exposure cannot be ignored for the simulation of the real environment and increasing concerns about the negative cognitive effects of microwave exposure. METHODS In this study, 220 male Wistar rats were exposed by a 2.856GHz radiation source with the average power density of 0, 2.5, 5 and 10mW/cm2 for 6min/day, 5days/week and up to 6weeks. The MWM task, the EEG analysis, the hippocampus structure observation and the western blot were applied until the 12months after microwave exposure to detect the spatial learning and memory abilities, the cortical electrical activity, changes of hippocampal structure and the NMDAR subunits expressions. RESULTS Results found that the rats in the 10mW/cm2 group showed the decline of spatial learning and memory abilities and EEG disorders (the decrease of EEG frequencies, and increase of EEG amplitudes and delta wave powers). Moreover, changes of basic structure and ultrastructure of hippocampus also found in the 10 and 5mW/cm2 groups. The decrease of NR 2A, 2B and p-NR2B might contribute to the impairment of cognitive functions. CONCLUSIONS Our findings suggested that the continuous microwave exposure could cause the dose-dependent long term impairment of spatial learning and memory, the abnormalities of EEG and the hippocampal structure injuries. The decrease of NMDAR key subunits and phosphorylation of NR 2B might contribute to the cognitive impairment.
Collapse
Affiliation(s)
- Hui Wang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Shengzhi Tan
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Xinping Xu
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Li Zhao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Jing Zhang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Binwei Yao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Yabing Gao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Hongmei Zhou
- Division of Radiation Protection and Health Physics, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Ruiyun Peng
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, PR China.
| |
Collapse
|
42
|
Shahin S, Singh SP, Chaturvedi CM. Mobile phone (1800MHz) radiation impairs female reproduction in mice, Mus musculus, through stress induced inhibition of ovarian and uterine activity. Reprod Toxicol 2017; 73:41-60. [PMID: 28780396 DOI: 10.1016/j.reprotox.2017.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/27/2017] [Accepted: 08/01/2017] [Indexed: 12/30/2022]
Abstract
Present study investigated the long-term effects of mobile phone (1800MHz) radiation in stand-by, dialing and receiving modes on the female reproductive function (ovarian and uterine histo-architecture, and steroidogenesis) and stress responses (oxidative and nitrosative stress). We observed that mobile phone radiation induces significant elevation in ROS, NO, lipid peroxidation, total carbonyl content and serum corticosterone coupled with significant decrease in antioxidant enzymes in hypothalamus, ovary and uterus of mice. Compared to control group, exposed mice exhibited reduced number of developing and mature follicles as well as corpus lutea. Significantly decreased serum levels of pituitary gonadotrophins (LH, FSH), sex steroids (E2 and P4) and expression of SF-1, StAR, P-450scc, 3β-HSD, 17β-HSD, cytochrome P-450 aromatase, ER-α and ER-β were observed in all the exposed groups of mice, compared to control. These findings suggest that mobile phone radiation induces oxidative and nitrosative stress, which affects the reproductive performance of female mice.
Collapse
Affiliation(s)
- Saba Shahin
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Surya Pal Singh
- Department of Electronics Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | | |
Collapse
|