1
|
Castañeda-Yslas IY, Torres-Bugarín O, Arellano-García ME, Ruiz-Ruiz B, García-Ramos JC, Toledano-Magaña Y, Pestryakov A, Bogdanchikova N. Protective Effect of Silver Nanoparticles Against Cytosine Arabinoside Genotoxicity: An In Vivo Micronucleus Assay. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1689. [PMID: 39767527 PMCID: PMC11675496 DOI: 10.3390/ijerph21121689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
Cancer treatments have harmful side effects, including genotoxic ones. Our previous research discovered that a specific silver nanoparticle (AgNPs) formulation could reduce the genotoxic effects of an alkylating agent, cyclophosphamide. This study aims to evaluate if this protective effect is observed against an antimetabolite anticancer agent, cytosine arabinoside (Ara-C). An erythrocyte micronucleus assay was conducted on BALB/c mice. A most significant effect was observed after the application scheme, including three doses of Ara-C and three subsequent doses of AgNPs, resulting in a 3.7 and 2.0-fold decrease in the frequency of micronucleated reticulocytes and accumulated erythrocytes, respectively. Current and previous studies reveal that AgNPs could be used as a genoprotector against the genotoxic damage produced by the currently used antineoplastic antimetabolites and alkylating agents. It was revealed that AgNPs could be considered a new class of promising synthetic antineoplastic genoprotectants along with the known class of derivatives from natural sources.
Collapse
Affiliation(s)
- Idalia Yazmin Castañeda-Yslas
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada 22860, Baja California, Mexico;
| | - Olivia Torres-Bugarín
- Medicina Interna II, Decanato Facultad de Medicina, Universidad Autónoma de Guadalajara, Zapopan 45129, Jalisco, Mexico;
| | | | - Balam Ruiz-Ruiz
- Escuela de Ciencias de la Salud Unidad Valle Dorado, Universidad Autónoma de Baja California, Ensenada 22890, Baja California, Mexico;
| | - Juan Carlos García-Ramos
- Instituto Tecnológico de Ensenada, Tecnológico Nacional de México, Ensenada 22780, Baja California, Mexico; (J.C.G.-R.); (Y.T.-M.)
- Centro de Bachillerato Tecnológico Industrial y de Servicios No. 41” Belisario Domínguez”, Dirección General de Educación Tecnológica Industrial, Ensenada 22785, Baja California, Mexico
| | - Yanis Toledano-Magaña
- Instituto Tecnológico de Ensenada, Tecnológico Nacional de México, Ensenada 22780, Baja California, Mexico; (J.C.G.-R.); (Y.T.-M.)
- Centro de Bachillerato Tecnológico Industrial y de Servicios No. 41” Belisario Domínguez”, Dirección General de Educación Tecnológica Industrial, Ensenada 22785, Baja California, Mexico
| | - Alexey Pestryakov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Nina Bogdanchikova
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada 22860, Baja California, Mexico;
| |
Collapse
|
2
|
de Roode KE, Hashemi K, Verdurmen WPR, Brock R. Tumor-On-A-Chip Models for Predicting In Vivo Nanoparticle Behavior. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402311. [PMID: 38700060 DOI: 10.1002/smll.202402311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Indexed: 05/05/2024]
Abstract
Nanosized drug formulations are broadly explored for the improvement of cancer therapy. Prediction of in vivo nanoparticle (NP) behavior, however, is challenging, given the complexity of the tumor and its microenvironment. Microfluidic tumor-on-a-chip models are gaining popularity for the in vitro testing of nanoparticle targeting under conditions that simulate the 3D tumor (microenvironment). In this review, following a description of the tumor microenvironment (TME), the state of the art regarding tumor-on-a-chip models for investigating nanoparticle delivery to solid tumors is summarized. The models are classified based on the degree of compartmentalization (single/multi-compartment) and cell composition (tumor only/tumor microenvironment). The physiological relevance of the models is critically evaluated. Overall, microfluidic tumor-on-a-chip models greatly improve the simulation of the TME in comparison to 2D tissue cultures and static 3D spheroid models and contribute to the understanding of nanoparticle behavior. Interestingly, two interrelated aspects have received little attention so far which are the presence and potential impact of a protein corona as well as nanoparticle uptake through phagocytosing cells. A better understanding of their relevance for the predictive capacity of tumor-on-a-chip systems and development of best practices will be a next step for the further refinement of advanced in vitro tumor models.
Collapse
Affiliation(s)
- Kim E de Roode
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, Nijmegen, 6525 GA, The Netherlands
| | - Khadijeh Hashemi
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, Nijmegen, 6525 GA, The Netherlands
| | - Wouter P R Verdurmen
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, Nijmegen, 6525 GA, The Netherlands
| | - Roland Brock
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, Nijmegen, 6525 GA, The Netherlands
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, 329, Bahrain
| |
Collapse
|
3
|
Wang J, Xu Y, Zhou Y, Zhang J, Jia J, Jiao P, Liu Y, Su G. Modulating the toxicity of engineered nanoparticles by controlling protein corona formation: Recent advances and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169590. [PMID: 38154635 DOI: 10.1016/j.scitotenv.2023.169590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023]
Abstract
With the rapid development and widespread application of engineered nanoparticles (ENPs), understanding the fundamental interactions between ENPs and biological systems is essential to assess and predict the fate of ENPs in vivo. When ENPs are exposed to complex physiological environments, biomolecules quickly and inevitably adsorb to ENPs to form a biomolecule corona, such as a protein corona (PC). The formed PC has a significant effect on the physicochemical properties of ENPs and gives them a brand new identity in the biological environment, which determines the subsequent ENP-cell/tissue/organ interactions. Controlling the formation of PCs is therefore of utmost importance to accurately predict and optimize the behavior of ENPs within living organisms, as well as ensure the safety of their applications. In this review, we provide an overview of the fundamental aspects of the PC, including the formation mechanism, composition, and frequently used characterization techniques. We comprehensively discuss the potential impact of the PC on ENP toxicity, including cytotoxicity, immune response, and so on. Additionally, we summarize recent advancements in manipulating PC formation on ENPs to achieve the desired biological outcomes. We further discuss the challenges and prospects, aiming to provide valuable insights for a better understanding and prediction of ENP behaviors in vivo, as well as the development of low-toxicity ENPs.
Collapse
Affiliation(s)
- Jiali Wang
- School of Pharmacy, Nantong University, Nantong 226019, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yuhang Xu
- School of Pharmacy, Nantong University, Nantong 226019, China
| | - Yun Zhou
- School of Pharmacy, Nantong University, Nantong 226019, China
| | - Jian Zhang
- Digestive Diseases Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 510001, China; Center for Gastrointestinal Surgery, the First Affiliated Hospital, Sun Yat-sen University, 510001 Guangzhou, China
| | - Jianbo Jia
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Peifu Jiao
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong 226019, China.
| |
Collapse
|
4
|
Naylor-Adamson L, Price TW, Booth Z, Stasiuk GJ, Calaminus SDJ. Quantum Dot Imaging Agents: Haematopoietic Cell Interactions and Biocompatibility. Cells 2024; 13:354. [PMID: 38391967 PMCID: PMC10887166 DOI: 10.3390/cells13040354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
Quantum dots (QDs) are semi-conducting nanoparticles that have been developed for a range of biological and non-biological functions. They can be tuned to multiple different emission wavelengths and can have significant benefits over other fluorescent systems. Many studies have utilised QDs with a cadmium-based core; however, these QDs have since been shown to have poor biological compatibility. Therefore, other QDs, such as indium phosphide QDs, have been developed. These QDs retain excellent fluorescent intensity and tunability but are thought to have elevated biological compatibility. Herein we discuss the applicability of a range of QDs to the cardiovascular system. Key disease states such as myocardial infarction and stroke are associated with cardiovascular disease (CVD), and there is an opportunity to improve clinical imaging to aide clinical outcomes for these disease states. QDs offer potential clinical benefits given their ability to perform multiple functions, such as carry an imaging agent, a therapy, and a targeting motif. Two key cell types associated with CVD are platelets and immune cells. Both cell types play key roles in establishing an inflammatory environment within CVD, and as such aid the formation of pathological thrombi. However, it is unclear at present how and with which cell types QDs interact, and if they potentially drive unwanted changes or activation of these cell types. Therefore, although QDs show great promise for boosting imaging capability, further work needs to be completed to fully understand their biological compatibility.
Collapse
Affiliation(s)
- Leigh Naylor-Adamson
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Thomas W. Price
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Zoe Booth
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Graeme J. Stasiuk
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Simon D. J. Calaminus
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| |
Collapse
|
5
|
Tang H, Zhang Y, Yang T, Wang C, Zhu Y, Qiu L, Liu J, Song Y, Zhou L, Zhang J, Wong YK, Liu Y, Xu C, Wang H, Wang J. Cholesterol modulates the physiological response to nanoparticles by changing the composition of protein corona. NATURE NANOTECHNOLOGY 2023; 18:1067-1077. [PMID: 37537273 DOI: 10.1038/s41565-023-01455-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/12/2023] [Indexed: 08/05/2023]
Abstract
Nanoparticles (NPs) in biological fluids form a layer of biomolecules known as the protein corona. The protein corona has been shown to determine the biological identity and in vivo fate of NPs, but whether and how metabolites, especially disease-related small molecules, regulate the protein corona and subsequently impact NP fate in vivo is relatively poorly understood. Here we report on the effects of cholesterol on the generation of protein corona and subsequent effects. We find that high levels of cholesterol, as in hypercholesterolemia, result in a protein corona with enriched apolipoproteins and reduced complement proteins by altering the binding affinity of the proteins to the NPs. The cholesterol-mediated protein corona can induce stronger inflammatory responses to NPs in macrophages and promote the cellular uptake of NPs in hepatocytes by enhancing the recognition of lipoprotein receptors when compared with normal protein corona. The result of in vivo biodistribution assays shows that, compared with healthy mice, NPs in hypercholesterolemic mice were more likely to be delivered to the liver, spleen and brain, and less likely to be delivered to the lungs. Our findings reveal that the metabolome profile is an unexploited factor impacting the target efficacy and safety of nanomedicines, providing a way to develop personalized nanomedicines by harnessing disease-related metabolites.
Collapse
Affiliation(s)
- Huan Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tong Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chen Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yinhua Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liangjia Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiahui Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yang Song
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lirue Zhou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yin Kwan Wong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yuanfang Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, China
| | - Chengchao Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China.
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, China
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China.
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, and School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Rabel M, Warncke P, Thürmer M, Grüttner C, Bergemann C, Kurland HD, Müller FA, Koeberle A, Fischer D. The differences of the impact of a lipid and protein corona on the colloidal stability, toxicity, and degradation behavior of iron oxide nanoparticles. NANOSCALE 2021; 13:9415-9435. [PMID: 34002735 DOI: 10.1039/d0nr09053k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
AIM In this study, the influence of a serum albumin (SA) and human plasma (HP) derived protein- and lipid molecule corona on the toxicity and biodegradability of different iron oxide nanoparticles (IONP) was investigated. METHODS IONP were synthesized and physicochemically characterized regarding size, charge, and colloidal stability. The adsorbed proteins were quantified and separated by gel electrophoresis. Adsorbed lipids were profiled by ultraperformance liquid chromatography-ESI-tandem mass spectrometry. The biocompatibility was investigated using isolated erythrocytes and a shell-less hen's egg model. The biodegradability was assessed by iron release studies in artificial body fluids. RESULTS The adsorption patterns of proteins and lipids varied depending on the surface characteristics of the IONP like charge and hydrophobicity. The biomolecule corona modified IONP displayed favorable colloidal stability and toxicological profile compared to IONP without biomolecule coronas, reducing erythrocyte aggregation and hemolysis in vitro as well as the corresponding effects ex ovo/in vivo. The coronas decreased the degradation speed of all tested IONP compared to bare particles, but, whereas all IONP degraded at the same rate for the SA corona, substantial differences were evident for IONP with HP-derived corona depending on the lipid adsorption profile. CONCLUSION In this study the impact of the proteins and lipids in the biomolecule corona on the entire IONP application cycle from the injection process to the degradation was demonstrated.
Collapse
Affiliation(s)
- Martin Rabel
- Pharmaceutical Technology and Biopharmacy, Friedrich-Schiller-University Jena, Lessingstraße 8, 07743 Jena, Germany
| | - Paul Warncke
- Pharmaceutical Technology and Biopharmacy, Friedrich-Schiller-University Jena, Lessingstraße 8, 07743 Jena, Germany
| | - Maria Thürmer
- Department of Pharmaceutical and Medical Chemistry, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Cordula Grüttner
- micromod Partikeltechnologie GmbH, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany
| | | | - Heinz-Dieter Kurland
- Otto Schott Institute of Materials Research (OSIM), Friedrich-Schiller-University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Frank A Müller
- Otto Schott Institute of Materials Research (OSIM), Friedrich-Schiller-University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Andreas Koeberle
- Department of Pharmaceutical and Medical Chemistry, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany and Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Mitterweg 24, 6020 Innsbruck, Austria
| | - Dagmar Fischer
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany.
| |
Collapse
|
7
|
Bao J, Zhang Q, Duan T, Hu R, Tang J. The Fate of Nanoparticles In Vivo and the Strategy of Designing Stealth Nanoparticle for Drug Delivery. Curr Drug Targets 2021; 22:922-946. [PMID: 33461465 DOI: 10.2174/1389450122666210118105122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 11/22/2022]
Abstract
Nano-drug delivery systems (Nano-DDS) offer powerful advantages in drug delivery and targeted therapy for diseases. Compared to the traditional drug formulations, Nano-DDS can increase solubility, biocompatibility, and reduce off-targeted side effects of free drugs. However, they still have some disadvantages that pose a limitation in reaching their full potential in clinical use. Protein adsorption in blood, activation of the complement system, and subsequent sequestration by the mononuclear phagocyte system (MPS) consequently result in nanoparticles (NPs) to be rapidly cleared from circulation. Therefore, NPs have low drug delivery efficiency. So, it is important to develop stealth NPs for reducing bio-nano interaction. In this review, we first conclude the interaction between NPs and biological environments, such as blood proteins and MPS, and factors influencing each other. Next, we will summarize the new strategies to reduce NPs protein adsorption and uptake by the MPS based on current knowledge of the bio-nano interaction. Further directions will also be highlighted for the development of biomimetic stealth nano-delivery systems by combining targeted strategies for a better therapeutic effect.
Collapse
Affiliation(s)
- Jianwei Bao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qianqian Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Tijie Duan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Rongfeng Hu
- key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Anhui "115" Xin'an Medicine Research & Development Innovation Team, Anhui Academy of Chinese Medicine, Hefei 230038, China
| | - Jihui Tang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
8
|
Thompson CL, Fu S, Knight MM, Thorpe SD. Mechanical Stimulation: A Crucial Element of Organ-on-Chip Models. Front Bioeng Biotechnol 2020; 8:602646. [PMID: 33363131 PMCID: PMC7758201 DOI: 10.3389/fbioe.2020.602646] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Organ-on-chip (OOC) systems recapitulate key biological processes and responses in vitro exhibited by cells, tissues, and organs in vivo. Accordingly, these models of both health and disease hold great promise for improving fundamental research, drug development, personalized medicine, and testing of pharmaceuticals, food substances, pollutants etc. Cells within the body are exposed to biomechanical stimuli, the nature of which is tissue specific and may change with disease or injury. These biomechanical stimuli regulate cell behavior and can amplify, annul, or even reverse the response to a given biochemical cue or drug candidate. As such, the application of an appropriate physiological or pathological biomechanical environment is essential for the successful recapitulation of in vivo behavior in OOC models. Here we review the current range of commercially available OOC platforms which incorporate active biomechanical stimulation. We highlight recent findings demonstrating the importance of including mechanical stimuli in models used for drug development and outline emerging factors which regulate the cellular response to the biomechanical environment. We explore the incorporation of mechanical stimuli in different organ models and identify areas where further research and development is required. Challenges associated with the integration of mechanics alongside other OOC requirements including scaling to increase throughput and diagnostic imaging are discussed. In summary, compelling evidence demonstrates that the incorporation of biomechanical stimuli in these OOC or microphysiological systems is key to fully replicating in vivo physiology in health and disease.
Collapse
Affiliation(s)
- Clare L Thompson
- Centre for Predictive in vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Su Fu
- Centre for Predictive in vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Martin M Knight
- Centre for Predictive in vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Stephen D Thorpe
- UCD School of Medicine, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
9
|
Abstract
Nanomedicine is an interdisciplinary field of research, comprising science, engineering, and medicine. Many are the clinical applications of nanomedicine, such as molecular imaging, medical diagnostics, targeted therapy, and image-guided surgery. Despite major advances during the past 20 years, many efforts must be done to understand the complex behavior of nanoparticles (NPs) under physiological conditions, the kinetic and thermodynamic principles, involved in the rational design of NP. Once administrated in physiological environment, NPs interact with biomolecules and they are surrounded by protein corona (PC) or biocorona. PC can trigger an immune response, affecting NPs toxicity and targeting capacity. This review aims to provide a detailed description of biocorona and of parameters that are able to control PC formation and composition. Indeed, the review provides an overview about the role of PC in the modulation of both cytotoxicity and immune response as well as in the control of targeting capacity.
Collapse
Affiliation(s)
- Elisa Fasoli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| |
Collapse
|
10
|
Nicoletti M, Gambarotti C, Fasoli E. Proteomic exploration of soft and hard biocorona onto PEGylated multiwalled carbon nanotubes. Biotechnol Appl Biochem 2020; 68:1003-1013. [PMID: 32910836 DOI: 10.1002/bab.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/31/2020] [Indexed: 01/03/2023]
Abstract
In nanomedicine, carbon nanotubes (CNTs) are considered potential candidates as drug delivery systems. The absorption of proteins onto CNTs, after their administration in physiological environment, forms the protein corona or biocorona, which is able to influence their biological properties and biocompatibility. For this reason, characterization of protein corona is a crucial aspect in the research to control CNTs toxicity and capability to target cells. Multiwalled carbon nanotubes (MWCNTs) were functionalized with polyethylene glycol (PEG), chosen considering its well-known biocompatibility, and then incubated in human plasma to create the biocorona. Plasma proteins, which bound around PEGylated CNTs, were detached using five different solutions, grouped into native and denaturant buffers, and used to characterize the two components of biocorona. The proteomic fingerprinting of biocorona was performed by SDS-PAGE and 2D-PAGE separation and mass spectrometry analysis. Native eluents were able to capture proteins of soft corona, characterized by complex secondary structures, and formed by both β-sheet and α-helices domains. Denaturant buffers have eluted many proteins with a high percentage of the α-helix structure that could be involved in specific interactions responsible for the formation of hard corona.
Collapse
Affiliation(s)
- Maria Nicoletti
- Department of Chemistry, Materials and Chemical Engineering, "Giulio Natta,", Politecnico di Milano, Milan, 20133, Italy
| | - Cristian Gambarotti
- Department of Chemistry, Materials and Chemical Engineering, "Giulio Natta,", Politecnico di Milano, Milan, 20133, Italy
| | - Elisa Fasoli
- Department of Chemistry, Materials and Chemical Engineering, "Giulio Natta,", Politecnico di Milano, Milan, 20133, Italy
| |
Collapse
|
11
|
Palacios-Hernandez T, Diaz-Diestra DM, Nguyen AK, Skoog SA, Vijaya Chikkaveeraiah B, Tang X, Wu Y, Petrochenko PE, Sussman EM, Goering PL. Cytotoxicity, cellular uptake and apoptotic responses in human coronary artery endothelial cells exposed to ultrasmall superparamagnetic iron oxide nanoparticles. J Appl Toxicol 2020; 40:918-930. [PMID: 32080871 DOI: 10.1002/jat.3953] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/12/2020] [Accepted: 01/23/2020] [Indexed: 01/11/2023]
Abstract
Ultrasmall superparamagnetic iron oxide nanoparticles (USPION) possess reactive surfaces, are metabolized and exhibit unique magnetic properties. These properties are desirable for designing novel theranostic biomedical products; however, toxicity mechanisms of USPION are not completely elucidated. The goal of this study was to investigate cell interactions (uptake and cytotoxicity) of USPION using human coronary artery endothelial cells as a vascular cell model. Polyvinylpirrolidone-coated USPION were characterized: average diameter 17 nm (transmission electron microscopy [TEM]), average hydrodynamic diameter 44 nm (dynamic light scattering) and zeta potential -38.75 mV. Cells were exposed to 0 (control), 25, 50, 100 or 200 μg/mL USPION. Concentration- and time-dependent cytotoxicity were observed after 3-6 hours through 24 hours of exposure using Alamar Blue and Real-Time Cell Electronic Sensing assays. Cell uptake was evaluated by imaging using live-dead confocal microscopy, actin and nuclear fluorescent staining, and TEM. Phase-contrast, confocal microscopy, and TEM imaging showed significant USPION internalization as early as 3 hours after exposure to 25 μg/mL. TEM imaging demonstrated particle internalization in secondary lysosomes with perinuclear localization. Three orthogonal assays were conducted to assess apoptosis. TUNEL staining demonstrated a marked increase in fragmented DNA, a response pathognomonic of apoptosis, after a 4-hour exposure. Cells subjected to agarose gel electrophoresis exhibited degraded DNA 3 hours after exposure. Caspase-3/7 activity increased after a 3-hour exposure. USPION uptake resulted in cytotoxicity involving apoptosis and these results contribute to further mechanistic understanding of the USPION toxicity in vitro in cardiovascular endothelial cells.
Collapse
Affiliation(s)
- Teresa Palacios-Hernandez
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland
| | - Daysi M Diaz-Diestra
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland
| | - Alexander K Nguyen
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland
| | - Shelby A Skoog
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland
| | - Bhaskara Vijaya Chikkaveeraiah
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland
| | - Xing Tang
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland
| | - Yong Wu
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland
| | - Peter E Petrochenko
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland
| | - Eric M Sussman
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland
| | - Peter L Goering
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
12
|
Kobos L, Shannahan J. Biocorona‐induced modifications in engineered nanomaterial–cellular interactions impacting biomedical applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1608. [PMID: 31788989 DOI: 10.1002/wnan.1608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/18/2019] [Accepted: 09/29/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Lisa Kobos
- School of Health Sciences College of Human and Health Sciences, Purdue University West Lafayette Indiana
| | - Jonathan Shannahan
- School of Health Sciences College of Human and Health Sciences, Purdue University West Lafayette Indiana
| |
Collapse
|
13
|
Kobos LM, Alqatani S, Ferreira CR, Aryal UK, Hedrick V, Sobreira TJP, Shannahan JH. An Integrative Proteomic/Lipidomic Analysis of the Gold Nanoparticle Biocorona in Healthy and Obese Conditions. ACTA ACUST UNITED AC 2019; 5:150-166. [PMID: 32292798 DOI: 10.1089/aivt.2019.0005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Introduction: When nanoparticles (NPs) enter a physiological environment, a coating of biomolecules or biocorona (BC) forms on the surface. Formation of the NP-BC is dependent on NP properties, the physiological environment, and time. The BC influences NP properties and biological interactions such as cellular internalization, immune responses, biodistribution, and others, leading to pharmacological and toxicological consequences. To date, examination of the NP-BC has focused primarily on protein components and healthy conditions. Therefore, we evaluated the protein and lipid content of BCs that formed on physicochemically distinct gold nanoparticles (AuNPs) under healthy and obese conditions. A comprehensive understanding of the NP-BC is necessary for the translation of in vitro toxicity assessments to clinical applications. Materials and Methods: AuNPs with two coatings (poly-N-vinylpyrrolidone [PVP] or citrate) and diameters (20 or 100 nm) were incubated in pooled human serum, and an integrated proteomic/lipidomic approach was used to evaluate BC composition. Macrophages were utilized to evaluate differential immune responses due to variations in the AuNP-BC. Results: AuNPs form distinct BCs based on physicochemical properties and the surrounding environment, with the obese BC containing more proteins and fewer lipids than the healthy BC. Differential macrophage inflammatory responses were observed based on AuNP properties and BC composition. Discussion and Conclusion: Overall, these findings demonstrate that AuNP size and coating, as well as physiological environment, influence the protein and lipid composition of the BC, which impacts cellular responses following exposure. These findings demonstrate that incorporation of BCs representing distinct physiological conditions may enhance the translatability of nanosafety in vitro studies.
Collapse
Affiliation(s)
- Lisa M Kobos
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, Indiana
| | - Saeed Alqatani
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, Indiana.,National Center for Pharmaceuticals, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Christina R Ferreira
- Department of Chemistry and Center for Analytical Instrumentation Development, Purdue University, West Lafayette, Indiana
| | - Uma K Aryal
- Purdue Proteomics Facility, Bindley Bioscience Center, Discovery Park, Purdue University, West Lafayette, Indiana
| | - Victoria Hedrick
- Purdue Proteomics Facility, Bindley Bioscience Center, Discovery Park, Purdue University, West Lafayette, Indiana
| | - Tiago J P Sobreira
- Computational Life Sciences and Informatics, Bindley Bioscience Center, Discovery Park, Purdue University, West Lafayette, Indiana
| | - Jonathan H Shannahan
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, Indiana
| |
Collapse
|
14
|
Ahn EY, Lee YJ, Park J, Chun P, Park Y. Antioxidant Potential of Artemisia capillaris, Portulaca oleracea, and Prunella vulgaris Extracts for Biofabrication of Gold Nanoparticles and Cytotoxicity Assessment. NANOSCALE RESEARCH LETTERS 2018; 13:348. [PMID: 30377868 PMCID: PMC6207604 DOI: 10.1186/s11671-018-2751-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/12/2018] [Indexed: 05/31/2023]
Abstract
Three aqueous plant extracts (Artemisia capillaris, Portulaca oleracea, and Prunella vulgaris) were selected for the biofabrication of gold nanoparticles. The antioxidant activities (i.e., free radical scavenging activity, total phenolic content, and reducing power) of the extracts and how these activities affected the biofabrication of gold nanoparticles were investigated. P. vulgaris exerted the highest antioxidant activity, followed by A. capillaris and then P. oleracea. P. vulgaris was the most efficient reducing agent in the biofabrication process. Gold nanoparticles biofabricated by P. vulgaris (PV-AuNPs) had a maximum surface plasmon resonance of 530 nm with diverse shapes. High-resolution X-ray diffraction analysis showed that the PV-AuNPs had a face-centered cubic structure. The reaction yield was estimated to be 99.3% by inductively coupled plasma optical emission spectroscopy. The hydrodynamic size was determined to be 45 ± 2 nm with a zeta potential of - 13.99 mV. The PV-AuNPs exerted a dose-dependent antioxidant activity. Remarkably, the highest cytotoxicity of the PV-AuNPs was observed against human colorectal adenocarcinoma cells in the absence of fetal bovine serum, while for human pancreas ductal adenocarcinoma cells, the highest cytotoxicity was observed in the presence of fetal bovine serum. This result demonstrates that P. vulgaris extract was an efficient reducing agent for biofabrication of gold nanoparticles exerting cytotoxicity against cancer cells.
Collapse
Affiliation(s)
- Eun-Young Ahn
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834 Republic of Korea
| | - You Jeong Lee
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834 Republic of Korea
| | - Jisu Park
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834 Republic of Korea
| | - Pusoon Chun
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834 Republic of Korea
| | - Youmie Park
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834 Republic of Korea
| |
Collapse
|
15
|
Kobos LM, Adamson SXF, Evans S, Gavin TP, Shannahan JH. Altered formation of the iron oxide nanoparticle-biocorona due to individual variability and exercise. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 62:215-226. [PMID: 30096581 PMCID: PMC6112769 DOI: 10.1016/j.etap.2018.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
Nanoparticles (NPs), introduced into a biological environment, accumulate a coating of biomolecules or biocorona (BC). Although the BC has toxicological and pharmacological consequences, the effects of inter-individual variability and exercise on NP-BC formation are unknown. We hypothesized that NPs incubated in plasma form distinct BCs between individuals, and exercise causes additional intra-individual alterations. 20 nm iron oxide (Fe3O4) NPs were incubated in pre- or post-exercise plasma ex vivo, and proteomics was utilized to evaluate BC components. Analysis demonstrated distinct BC formation between individuals, while exercise was found to enhance NP-BC complexity. Abundance differences of NP-BC proteins were determined between individuals and resulting from exercise. Differential human macrophage response was identified due to NP-BC variability. These findings demonstrate that individuals form unique BCs and that exercise influences NP-biomolecule interactions. An understanding of NP-biomolecule interactions is necessary for elucidation of mechanisms responsible for variations in human responses to NP exposures and/or nano-based therapies.
Collapse
Affiliation(s)
- Lisa M Kobos
- School of Health Sciences, College of Human and Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Sherleen Xue-Fu Adamson
- School of Health Sciences, College of Human and Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Sheelagh Evans
- Health and Kinesiology, College of Human and Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Timothy P Gavin
- Health and Kinesiology, College of Human and Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Jonathan H Shannahan
- School of Health Sciences, College of Human and Health Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
16
|
Nierenberg D, Khaled AR, Flores O. Formation of a protein corona influences the biological identity of nanomaterials. Rep Pract Oncol Radiother 2018; 23:300-308. [PMID: 30100819 PMCID: PMC6084521 DOI: 10.1016/j.rpor.2018.05.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/05/2018] [Indexed: 12/17/2022] Open
Abstract
The development and testing of nanomaterials is an area of interest due to promising diagnostic and therapeutic applications in the treatment of diseases like cancer or cardiovascular disease. While extensive studies of the physicochemical properties of nanoparticles (NPs) are available, the investigation of the protein corona (PC) that is formed on NPs in biofluids is a relatively new area of research. The fact that few NPs are in clinical use indicates that the biological identity of NPs, which is in large part due to the PC formed in blood or other bodily fluids, may be altered in ways yet to be fully understood. Herein, we review the recent advances in PC research with the intent to highlight the current state of the field. We discuss the dynamic processes that control the formation of the PC on NPs, which involve the transient soft corona and more stable hard corona. Critical factors, like the environment and disease-state that affect the composition and stability of the PC are presented, with the intent of showcasing promising applications for utilizing the PC for disease diagnosis and the identification of disease-related biomarkers. This review summarizes the unique challenges presented by the nanoparticle corona and indicates future directions for investigation.
Collapse
Affiliation(s)
| | | | - Orielyz Flores
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, United States
| |
Collapse
|
17
|
Experimental challenges regarding the in vitro investigation of the nanoparticle-biocorona in disease states. Toxicol In Vitro 2018; 51:40-49. [PMID: 29738787 DOI: 10.1016/j.tiv.2018.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/11/2018] [Accepted: 05/03/2018] [Indexed: 11/20/2022]
Abstract
Toxicological evaluation of nanoparticles (NPs) requires the utilization of in vitro techniques due to their number and diverse properties. Cell culture systems are often lacking in their ability to perform comparative toxicity assessment due to dosimetry issues and capacity to simulate in vivo environments. Upon encountering a physiological environment, NPs become coated with biomolecules forming a biocorona (BC), influencing function, biodistribution, and toxicity. Disease-induced alterations in the biological milieu can alter BC formation. This study evaluates the role of low-density lipoprotein (LDL) in altering macrophage responses to iron oxide (Fe3O4) NPs. BCs were formed by incubating Fe3O4 NPs in serum-free media, or 10% fetal bovine serum with or without LDL present. Following exposures to a normalized dose (25 μg/mL), macrophage association of Fe3O4 NPs with a LDL-BC was enhanced. TNF-α mRNA expression and protein levels were differentially induced due to BCs. Cell surface expression of SR-B1 was reduced following all Fe3O4 NPs exposures, while only NPs with an LDL-BC enhanced mitochondrial membrane potential. These findings suggest that elevations in LDL may contribute to distinct BC formation thereby influencing NP-cellular interactions and response. Further, our study highlights challenges that may arise during the in vitro evaluation of disease-related variations in the NP-BC.
Collapse
|
18
|
Weldon BA, Griffith WC, Workman T, Scoville DK, Kavanagh TJ, Faustman EM. In vitro to in vivo benchmark dose comparisons to inform risk assessment of quantum dot nanomaterials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 10:e1507. [PMID: 29350469 DOI: 10.1002/wnan.1507] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/07/2017] [Accepted: 11/22/2017] [Indexed: 12/16/2022]
Abstract
Engineered nanomaterials are currently under review for their potential toxicity; however, their use in consumer/commercial products has continued to outpace risk assessments. In vitro methods may be utilized as tools to improve the efficiency of risk assessment approaches. We propose a framework to compare relationships between previously published in vitro and in vivo toxicity assessments of cadmium-selenium containing quantum dots (QDs) using benchmark dose (BMD) and dosimetric assessment methods. Although data were limited this approach was useful for identifying sensitive assays and strains. In vitro studies assessed effects of QDs in three pulmonary cell types across two mouse strains. Significant dose-response effects were modeled and a standardized method of BMD analysis was performed as a function of both exposure dose and dosimetric dose. In vivo studies assessed pulmonary effects of QD exposure across eight mouse strains. BMD analysis served as a basis for relative comparison with in vitro studies. We found consistent responses in common endpoints between in vitro and in vivo studies. Strain sensitivity was consistent between in vitro and in vivo studies, showing A/J mice more sensitive to QDs. Cell types were found to differentially take up QDs. Dosimetric adjustments identified similar sensitivity among cell types. Thus, BMD analysis can be used as an effective tool to compare the sensitivity of different strains, cell types, and assays to QDs. These methods allow for in vitro assays to be used to predict in vivo responses, improve the efficiency of in vivo studies, and allow for prioritization of nanomaterial assessments. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Brittany A Weldon
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington.,Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - William C Griffith
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington.,Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Tomomi Workman
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington.,Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - David K Scoville
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington.,Center for Exposures, Diseases, Genomics and Environment, University of Washington, Seattle, Washington
| | - Terrance J Kavanagh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington.,Center for Exposures, Diseases, Genomics and Environment, University of Washington, Seattle, Washington
| | - Elaine M Faustman
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington.,Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
19
|
Galbiati V, Cornaghi L, Gianazza E, Potenza MA, Donetti E, Marinovich M, Corsini E. In vitro assessment of silver nanoparticles immunotoxicity. Food Chem Toxicol 2018; 112:363-374. [PMID: 29331734 DOI: 10.1016/j.fct.2017.12.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/22/2017] [Accepted: 12/15/2017] [Indexed: 11/16/2022]
Abstract
This study aimed to characterize unwanted immune effects of nanoparticles (NP) using THP-1 cells, human whole blood and enriched peripheral blood monocytes. Commercially available silver NP (AgNP < 100 nm, also confirmed by Single Particle Extinction and Scattering) were used as prototypical NP. Cells were treated with AgNP alone or in combination with classical immune stimuli (i.e. LPS, PHA, PWM) and cytokine assessed; in addition, CD54 and CD86 expression was evaluated in THP-1 cells. AgNP alone induced dose-related IL-8 production in all models, with higher response observed in THP-1 cells, possibly connected to different protein corona formation in bovine versus human serum. AgNP potentiated LPS-induced IL-8 and TNF-α, but not LPS-induced IL-10. AgNP alone induced slight increase in IL-4, and no change in IFN-γ production. While responses to PHA in term of IL-4 and IFN-γ production were not affected, increased PWM-induced IL-4 and IFN-γ production were observed, suggesting potentiation of humoral response. Reduction in PHA-induced IL-10 was observed. Overall, results indicate immunostimulatory effects. THP-1 cells work as well as primary cells, representing a useful and practical alternative, with the awareness that from a physiological point of view the whole blood assay is the one that comes closest to reality.
Collapse
Affiliation(s)
- Valentina Galbiati
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milan, Italy
| | - Laura Cornaghi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy
| | - Elisabetta Gianazza
- Gruppo di Studio per la Proteomica e la Struttura delle Proteine, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Marco A Potenza
- Dipartimento di Fisica, Università degli Studi di Milano, 20133 Milan, Italy
| | - Elena Donetti
- Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milan, Italy
| | - Marina Marinovich
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Emanuela Corsini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milan, Italy.
| |
Collapse
|
20
|
Nanoparticle-Protein Interaction: The Significance and Role of Protein Corona. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1048:175-198. [DOI: 10.1007/978-3-319-72041-8_11] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Alsaleh NB, Brown JM. Immune responses to engineered nanomaterials: current understanding and challenges. CURRENT OPINION IN TOXICOLOGY 2017; 10:8-14. [PMID: 29577105 DOI: 10.1016/j.cotox.2017.11.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Engineered nanomaterials (ENM) are utilized in many applications due to their unique physicochemical properties. The increasing use of ENMs in consumer products raises concerns of potential adverse effects in humans and the environment. A common outcome of exposure (intentional, environmental or occupational) to ENMs is altered immune responses including inflammation, hypersensitivity, and immunosuppression. ENMs have been shown to interact with the immune system through key effector cells (i.e. mast cells and antigen presenting cells) or via complement activation leading to consequences to both innate and adaptive immunity. Further, upon introduction into a biological system, ENMs are rapidly coated with proteins, lipids and other macromolecules forming a biocorona which impacts immune cell and complement responses. In this current opinion, we highlight key studies and challenges in understanding cellular mechanisms of ENM-mediated immunomodulation and toxicity.
Collapse
Affiliation(s)
- Nasser B Alsaleh
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jared M Brown
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
22
|
Chen D, Ganesh S, Wang W, Amiji M. Plasma protein adsorption and biological identity of systemically administered nanoparticles. Nanomedicine (Lond) 2017; 12:2113-2135. [DOI: 10.2217/nnm-2017-0178] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although a variety of nanoparticles (NPs) have been used for drug delivery applications, their surfaces are immediately covered by plasma protein corona upon systemic administration. As a result, the adsorbed proteins create a unique biological identity of the NPs that lead to unpredictable performance. The protein corona on NPs could also impede active targeting, induce off-target effects, trigger particle clearance and even provoke toxicity. This article reviews the fundamentals of NP–plasma protein interaction, the consequences of the interactions, and provides insights into the correlations of protein corona with biodistribution and cellular delivery. We hope that this review will trigger additional questions and possible solutions that lead to more favorable developments in NP-based targeted delivery systems.
Collapse
Affiliation(s)
- Dongyu Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Shanthi Ganesh
- Department of Pre-Clinical Oncology, Dicerna Pharmaceuticals, Inc., Cambridge, MA 02140, USA
| | - Weimin Wang
- Department of Chemistry and Formulation, Dicerna Pharmaceuticals, Inc., Cambridge, MA 02140, USA
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
23
|
Raghavendra AJ, Fritz K, Fu S, Brown JM, Podila R, Shannahan JH. Variations in biocorona formation related to defects in the structure of single walled carbon nanotubes and the hyperlipidemic disease state. Sci Rep 2017; 7:8382. [PMID: 28814800 PMCID: PMC5559455 DOI: 10.1038/s41598-017-08896-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/19/2017] [Indexed: 01/25/2023] Open
Abstract
Ball-milling utilizes mechanical stress to modify properties of carbon nanotubes (CNTs) including size, capping, and functionalization. Ball-milling, however, may introduce structural defects resulting in altered CNT-biomolecule interactions. Nanomaterial-biomolecule interactions result in the formation of the biocorona (BC), which alters nanomaterial properties, function, and biological responses. The formation of the BC is governed by the nanomaterial physicochemical properties and the physiological environment. Underlying disease states such as cardiovascular disease can alter the biological milieu possibly leading to unique BC identities. In this ex vivo study, we evaluated variations in the formation of the BC on single-walled CNTs (SWCNTs) due to physicochemical alterations in structure resulting from ball-milling and variations in the environment due to the high-cholesterol disease state. Increased ball-milling time of SWCNTs resulted in enhanced structural defects. Following incubation in normal mouse serum, label-free quantitative proteomics identified differences in the biomolecular content of the BC due to the ball-milling process. Further, incubation in cholesterol-rich mouse serum resulted in the formation of unique BCs compared to SWCNTs incubated in normal serum. Our study demonstrates that the BC is modified due to physicochemical modifications such as defects induced by ball-milling and physiological disease conditions, which may result in variable biological responses.
Collapse
Affiliation(s)
- Achyut J Raghavendra
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina, 29634, USA
- Clemson Nanomaterials Center and COMSET, Clemson University, Anderson, South Carolina, 29625, USA
| | - Kristofer Fritz
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Sherleen Fu
- School of Health Sciences, College of Human and Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Jared M Brown
- Colorado Center for Nanomedicine and Nanosafety, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Ramakrishna Podila
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina, 29634, USA.
- Clemson Nanomaterials Center and COMSET, Clemson University, Anderson, South Carolina, 29625, USA.
| | - Jonathan H Shannahan
- School of Health Sciences, College of Human and Health Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
24
|
Shannahan J. The biocorona: a challenge for the biomedical application of nanoparticles. NANOTECHNOLOGY REVIEWS 2017; 6:345-353. [PMID: 29607287 PMCID: PMC5875931 DOI: 10.1515/ntrev-2016-0098] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Formation of the biocorona on the surface of nanoparticles is a significant obstacle for the development of safe and effective nanotechnologies, especially for nanoparticles with biomedical applications. Following introduction into a biological environment, nanoparticles are rapidly coated with biomolecules resulting in formation of the nanoparticle-biocorona. The addition of these biomolecules alters the nanoparticle's physicochemical characteristics, functionality, biodistribution, and toxicity. To synthesize effective nanotherapeutics and to more fully understand possible toxicity following human exposures, it is necessary to elucidate these interactions between the nanoparticle and the biological media resulting in biocorona formation. A thorough understanding of the mechanisms by which the addition of the biocorona governs nanoparticle-cell interactions is also required. Through elucidating the formation and the biological impact of the biocorona, the field of nanotechnology can reach its full potential. This understanding of the biocorona will ultimately allow for more effective laboratory screening of nanoparticles and enhanced biomedical applications. The importance of the nanoparticle-biocorona has been appreciated for a decade; however, there remain numerous future directions for research which are necessary for study. This perspectives article will summarize the unique challenges presented by the nanoparticle-biocorona and avenues of future needed investigation.
Collapse
Affiliation(s)
- Jonathan Shannahan
- Corresponding author: Jonathan Shannahan, School of Health Sciences, Purdue University, 550 Stadium Mall Dr. 47907, West Lafayette, Indiana, USA, Tel.: +765-494-2326,
| |
Collapse
|
25
|
Johnson MM, Mendoza R, Raghavendra AJ, Podila R, Brown JM. Contribution of engineered nanomaterials physicochemical properties to mast cell degranulation. Sci Rep 2017; 7:43570. [PMID: 28262689 PMCID: PMC5337938 DOI: 10.1038/srep43570] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/25/2017] [Indexed: 12/25/2022] Open
Abstract
The rapid development of engineered nanomaterials (ENMs) has grown dramatically in the last decade, with increased use in consumer products, industrial materials, and nanomedicines. However, due to increased manufacturing, there is concern that human and environmental exposures may lead to adverse immune outcomes. Mast cells, central to the innate immune response, are one of the earliest sensors of environmental insult and have been shown to play a role in ENM-mediated immune responses. Our laboratory previously determined that mast cells are activated via a non-FcεRI mediated response following silver nanoparticle (Ag NP) exposure, which was dependent upon key physicochemical properties. Using bone marrow-derived mast cells (BMMCs), we tested the hypothesis that ENM physicochemical properties influence mast cell degranulation. Exposure to 13 physicochemically distinct ENMs caused a range of mast degranulation responses, with smaller sized Ag NPs (5 nm and 20 nm) causing the most dramatic response. Mast cell responses were dependent on ENMs physicochemical properties such as size, apparent surface area, and zeta potential. Surprisingly, minimal ENM cellular association by mast cells was not correlated with mast cell degranulation. This study suggests that a subset of ENMs may elicit an allergic response and contribute to the exacerbation of allergic diseases.
Collapse
Affiliation(s)
- Monica M Johnson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, USA
| | - Ryan Mendoza
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, USA
| | - Achyut J Raghavendra
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA.,Clemson Nanomaterials Center and COMSET, Clemson University, Anderson, SC 296225, USA
| | - Ramakrishna Podila
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA.,Clemson Nanomaterials Center and COMSET, Clemson University, Anderson, SC 296225, USA
| | - Jared M Brown
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, USA
| |
Collapse
|
26
|
Corbo C, Molinaro R, Tabatabaei M, Farokhzad OC, Mahmoudi M. Personalized protein corona on nanoparticles and its clinical implications. Biomater Sci 2017; 5:378-387. [PMID: 28133653 PMCID: PMC5592724 DOI: 10.1039/c6bm00921b] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It is now well understood that once in contact with biological fluids, nanoscale objects lose their original identity and acquire a new biological character, referred to as a protein corona. The protein corona changes many of the physicochemical properties of nanoparticles, including size, surface charge, and aggregation state. These changes, in turn, affect the biological fate of nanoparticles, including their pharmacokinetics, biodistribution, and therapeutic efficacy. It is progressively being accepted that even slight variations in the composition of a protein source (e.g., plasma and serum) can substantially change the composition of the corona formed on the surface of the exact same nanoparticles. Recently it has been shown that the protein corona is strongly affected by the patient's specific disease. Therefore, the same nanomaterial incubated with plasma proteins of patients with different pathologies adsorb protein coronas with different compositions, giving rise to the concept of personalized protein corona. Herein, we review this concept along with recent advances on the topic, with a particular focus on clinical relevance.
Collapse
Affiliation(s)
- Claudia Corbo
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Roberto Molinaro
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Mateen Tabatabaei
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Omid C Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. and King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Morteza Mahmoudi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. and Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Choi K, Riviere JE, Monteiro-Riviere NA. Protein corona modulation of hepatocyte uptake and molecular mechanisms of gold nanoparticle toxicity. Nanotoxicology 2016; 11:64-75. [DOI: 10.1080/17435390.2016.1264638] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Kyoungju Choi
- Department of Anatomy and Physiology, Kansas State University, Nanotechnology Innovation Center of Kansas State (NICKS), Manhattan, KS, USA
| | - Jim E. Riviere
- Department of Anatomy and Physiology, Kansas State University, Nanotechnology Innovation Center of Kansas State (NICKS), Manhattan, KS, USA
| | - Nancy A. Monteiro-Riviere
- Department of Anatomy and Physiology, Kansas State University, Nanotechnology Innovation Center of Kansas State (NICKS), Manhattan, KS, USA
| |
Collapse
|