1
|
Marques MB, Reis EVF, Gonzaga PFP, Aguiar-Santos J, Pedrosa VB, Nunes JLS, Saint'Pierre TD, Jorge MB, Hauser-Davis RA, Luvizotto-Santos R. Associations between metals and metalloids, oxidative stress and genotoxicity in Nurse sharks Ginglymostoma cirratum from the Brazilian Amazon Coast. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 981:179530. [PMID: 40328063 DOI: 10.1016/j.scitotenv.2025.179530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/31/2025] [Accepted: 04/23/2025] [Indexed: 05/08/2025]
Abstract
Elasmobranch populations have significantly declined in recent decades due to anthropogenic activities, with chemical contamination comprising one of the main threats to this group. Although some biochemical biomarkers have been utilized to assess elasmobranch health, especially concerning metal and metalloid contamination, associations with genotoxic biomarkers are still scarce and non-existent for Brazilian Amazon coast sharks. Herein, metals, metalloids, reduced glutathione (GSH), glutathione S-transferase (GST), metallothionein (MT), and nuclear anomalies (micronucleus, nuclear buds, and bilobed cells) were determined in gills, liver, and muscle tissues of Nurse sharks (Ginglymostoma cirratum) from the São Marcos Estuarine Complex, Maranhão, Brazil. Females exhibited significantly higher As concentrations in muscle (23.14 ± 13.98 μg g-1) and gills (4.53 ± 2.10 μg g-1) compared to males (3.98 ± 2.61 μg g-1 and 1.51 ± 0.41 μg g-1, respectively) (p < 0.05). Males showed higher Se concentrations in muscle (0.52 ± 0.02 μg g-1) compared to females (0.32 ± 0.09 μg g-1) (p < 0.05), while Rb levels were higher in male liver (0.28 ± 0.05 μg g-1) than in females (0.18 ± 0.04 μg g-1) (p = 0.001). No significant differences were observed for Hg, Ti or rare earth elements (Ce and La) between sexes (p > 0.05). Higher GSH concentrations and GST activities were noted in gills and liver, while MT concentrations were higher in muscle. Low genotoxic damage frequency was observed, likely due to the species' sedentary lifestyle and efficient DNA repair system. Moderate to strong correlations between metals/metalloids and biochemical/genotoxic responses were detected, particularly in females, highlighting the protective role of GST against DNA damage. Protective effects of Se against Hg were observed in the liver. Metal concentrations did not exceed regulatory limits, although bioaccumulation patterns and physiological responses suggest that Nurse sharks are exposed to environmental contamination, with As and Se accumulation.
Collapse
Affiliation(s)
- Mateus Brandão Marques
- Programa de Pós-Graduação em Ciência & Tecnologia Ambiental - PPGC&TAmb, Universidade Federal do Maranhão - UFMA, São Luís, MA, Brazil; Grupo de Ecotoxicologia Aquática, Centro de Ciências Exatas e Tecnologia - CCET/UFMA, São Luís, MA, Brazil
| | | | | | - Jamerson Aguiar-Santos
- Laboratório de Organismos Aquáticos, Departamento de Oceanografia e Limnologia, DEOLI/UFMA, Brazil
| | - Vanessa Baptista Pedrosa
- Laboratório do Grupo de Estudos em Biologia Aquática, Universidade Federal do Maranhão, Pinheiro, MA, Brazil
| | - Jorge Luiz Silva Nunes
- Laboratório de Organismos Aquáticos, Departamento de Oceanografia e Limnologia, DEOLI/UFMA, Brazil
| | - Tatiana Dillenburg Saint'Pierre
- Laboratório de Espectrometria Atômica, Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Marianna Basso Jorge
- Programa de Pós-Graduação em Ciência & Tecnologia Ambiental - PPGC&TAmb, Universidade Federal do Maranhão - UFMA, São Luís, MA, Brazil; Grupo de Ecotoxicologia Aquática, Centro de Ciências Exatas e Tecnologia - CCET/UFMA, São Luís, MA, Brazil
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Ricardo Luvizotto-Santos
- Programa de Pós-Graduação em Ciência & Tecnologia Ambiental - PPGC&TAmb, Universidade Federal do Maranhão - UFMA, São Luís, MA, Brazil; Grupo de Ecotoxicologia Aquática, Centro de Ciências Exatas e Tecnologia - CCET/UFMA, São Luís, MA, Brazil
| |
Collapse
|
2
|
Marghany F, Ayobahan SU, Salinas G, Schäfers C, Hollert H, Eilebrecht S. Identification of molecular signatures for azole fungicide toxicity in zebrafish embryos by integrating transcriptomics and gene network analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126215. [PMID: 40189088 DOI: 10.1016/j.envpol.2025.126215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/12/2025]
Abstract
Azoles control fungal growth by inhibiting sterol biosynthesis in fungi according to the fungicide resistance action committee. Furthermore, previous studies have highlighted several effects of azole fungicides in fish including endocrine disruption. In this study, we analysed the transcriptome responses of zebrafish embryos exposed to azole fungicides to identify gene expression fingerprints indicating toxic effects such as endocrine disruption induced by sterol biosynthesis inhibition. Firstly, a modified zebrafish embryo toxicity test was conducted following the OECD 236 guideline, exposing embryos to difenoconazole, epoxiconazole, and tebuconazole. After 96 h, RNA was extracted for transcriptome analysis, which revealed concentration-dependent responses for each fungicide. Additionally, overrepresentation analysis of significantly differentially expressed genes revealed biological functions related to sterol biosynthesis and endocrine disruption. A gene set with specific expression patterns was was identified as molecular signature for indicating adverse effects induced by sterol biosynthesis inhibitors in zebrafish embryos. After further validation, the gene expression fingerprints and biomarkers identified in this study may be used in the future to identify endocrine activity of substances under development in a pre-regulatory screening using the zebrafish embryo model.
Collapse
Affiliation(s)
- Fatma Marghany
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany; Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| | - Steve U Ayobahan
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Gabriela Salinas
- NGS-Services for Integrative Genomics, University of Göttingen, Göttingen, Germany
| | - Christoph Schäfers
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Henner Hollert
- Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany; Department Environmental Media Related Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Sebastian Eilebrecht
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany.
| |
Collapse
|
3
|
Sánchez-González D, Blanco-Peña K, Solano-Campos F, Solano K, Mena F. Exposure to an environmentally relevant concentration of chlorpyrifos induces transcriptional changes and neurotoxicity in Poecilia gillii without clear behavioral effects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117900. [PMID: 39978101 DOI: 10.1016/j.ecoenv.2025.117900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/03/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
Overusing chlorpyrifos (CPF) in tropical countries such as Costa Rica poses a potential risk to freshwater ecosystems. This study investigated the effects of transient exposure to an environmentally relevant CPF concentration on the native fish species Poecilia gillii, employing a comprehensive approach that evaluated multiple levels of biological organization. Using RT-qPCR, we quantified transcript changes in genes involved in various biological processes, including inflammation and apoptosis; annexin A1 (anxa1b), cytokine regulation; cytokine-inducible SH2-containing protein (cish), redox reactions; NADH oxidoreductase subunit A2 (ndufa2), protein translocation; Sec61 gamma subunit (sec61g), and biotransformation; glutathione S-transferase rho (gstr). Additionally, we measured biochemical biomarkers such as phase I; 7-ethoxyresorufin-O-deethylase (EROD) and phase II; glutathione S-transferase (GST) biotransformation enzymes, oxidative stress markers; catalase (CAT) and lipid peroxidation (LPO), and conducted behavioral tests to assess swimming fitness and antipredator reactions. Neurotoxicity was assessed by measuring brain and muscle tissue cholinesterase (ChE) activity. Following 48 h of exposure to 5.5 µg/L CPF, we observed significant downregulation of the sec61g and gstr genes, decreased CAT activity, and neurotoxic effects, as indicated by reduced ChE activity in muscle. Although no significant behavioral changes were detected, our results suggest that short-term exposure to environmentally relevant CPF concentrations can disrupt gene expression, compromising biotransformation and protein synthesis in P. gillii juveniles. Moreover, the observed neurotoxicity, which is consistent with the mechanism of action of CPF, may lead to subtle behavioral changes. This study provides evidence of the sublethal effects of CPF on nontarget organisms, highlighting the importance of considering gene expression changes when assessing CPF toxicity.
Collapse
Affiliation(s)
- Daniel Sánchez-González
- Universidad Nacional, Costa Rica. Escuela de Ciencias Biológicas (ECB), Heredia 86-3000, Costa Rica.
| | - Kinndle Blanco-Peña
- Universidad Nacional, Costa Rica. Instituto Regional de Estudios en Sustancias Tóxicas/Central American Institute for Studies on Toxic Substances (IRET), Heredia 86-3000, Costa Rica.
| | - Frank Solano-Campos
- Universidad Nacional, Costa Rica. Escuela de Ciencias Biológicas (ECB), Heredia 86-3000, Costa Rica.
| | - Karla Solano
- Universidad Nacional, Costa Rica. Instituto Regional de Estudios en Sustancias Tóxicas/Central American Institute for Studies on Toxic Substances (IRET), Heredia 86-3000, Costa Rica.
| | - Freylan Mena
- Universidad Nacional, Costa Rica. Instituto Regional de Estudios en Sustancias Tóxicas/Central American Institute for Studies on Toxic Substances (IRET), Heredia 86-3000, Costa Rica.
| |
Collapse
|
4
|
Martin BPM, Franco ME, Schirmer K. Comparative characterization of organ-specific phase I and II biotransformation enzyme kinetics in salmonid S9 sub-cellular fractions and cell lines. Cell Biol Toxicol 2025; 41:37. [PMID: 39873933 PMCID: PMC11775053 DOI: 10.1007/s10565-025-09992-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025]
Abstract
Advancing in vitro systems to address the effects of chemical pollution requires a thorough characterization of their functionalities, such as their repertoire of biotransformation enzymes. Currently, knowledge regarding the presence, activity magnitudes, and inducibility of different biotransformation pathways in vitro is scarce, particularly across organs. We report organ-specific kinetics for phase I and II biotransformation enzymes, under basal and induced conditions, in two in vitro systems using salmonid fish: S9 sub-cellular fractions from brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) were compared with rainbow trout cell lines. Cyp1a and glutathione S-transferase (Gst) activities were the highest in liver S9 fractions and RTL-W1 liver cells, yet systems derived from the intestine, gills, and brain also displayed these biotransformation pathways. Cyp3a-like activity was only measurable in liver and intestinal S9 fractions, but all rainbow trout cell lines, including RTgill-W1 and RTbrain, displayed this type of activity. Furthermore, despite RTgutGC having the highest constitutive Cyp3a-like activity, its inducibility was the highest in RTL-W1 cells. Similarly, both RTL-W1 and RTgutGC cells displayed Cyp2b-like activity, but this was only measurable upon induction. Contrarily, S9 fractions from the liver, intestine and gills displayed constitutive Cyp2b-like activity. While these differences could be related to differential functionality of biological processes at the in vivo level, we provide important evidence of a broad spectrum of in vitro enzymatic activity in salmonid models. As such, both S9 fractions and cell lines represent important alternatives to animal testing for evaluating the biotransformation and bioaccumulation of environmental pollutants.
Collapse
Affiliation(s)
- Baptiste P M Martin
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600, Dübendorf, Switzerland
| | - Marco E Franco
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600, Dübendorf, Switzerland
| | - Kristin Schirmer
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600, Dübendorf, Switzerland.
- Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland.
| |
Collapse
|
5
|
Nahar M, Rai R, Jat D. Therapeutic intervention of vitamin B12 in mitigating chronic alcoholism induced alterations in adult zebrafish ( Danio rerio): a holistic in vivo approach. Int J Neurosci 2024:1-15. [PMID: 39207796 DOI: 10.1080/00207454.2024.2398564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/08/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Chronic alcoholism refers to the unpleasant symptoms directly resulting from excessive drinking. Increased alcohol metabolites and an unbalanced oxidative state are likely to blame for the reported effects under these circumstances. According to preclinical and clinical research, vitamin B12 can act on several organ systems with demonstrated neuroprotective, antioxidant, and glutamate modulating properties. OBJECTIVE This research sought to examine the ameliorative effects of vitamin B12 (VtB12) in persistent alcohol (AlOH) exposed adult zebrafish with the help of following parameters like the anxiety related behavior test, Oxidative stress, and antioxidant assays, histological and immunofluorescence analysis. METHODS Zebrafish pretreated with 0.40% AlOH (v/v) for 120 min (+AlOH) or not (-AlOH), were exposed for 6 h to home tank water (-VtB12) or to 59 µg-VtB12/kg-fish food (+VtB12) to analyze anxiety behavior in the geotaxis (novel tank) test as well as the oxidative brain damage in the adult zebrafish. RESULTS Adult zebrafish exposed to chronic AlOH showed a decrease in the distance travelled, average and mobility speed, and increased the average frozen time, the explored area, and total no. of the site explored in the trapezoid tank. AlOH exposure also resulted in oxidative damage, enhanced lipid peroxidation, advanced oxidative protein products, decreased enzymatic and non-enzymatic antioxidant activities, and enhanced reactive oxygen species generation. Additionally, VtB12 supplementation improved neurogenesis, evident in increased Nissl cell numbers and NeuN expression in the brain. CONCLUSION Chronic alcoholism may be effect on the brain cells as well as on the neuro-behavior of zebrafish. This research demonstrated that VtB12 shows promise as a neuroprotective agent against chronic alcoholism induced alterations in zebrafish's brain.
Collapse
Affiliation(s)
- Manisha Nahar
- Neuroscience Research Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, M.P, India
| | - Ravina Rai
- Neuroscience Research Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, M.P, India
| | - Deepali Jat
- Neuroscience Research Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, M.P, India
| |
Collapse
|
6
|
Laçin C, Turhan DO, Güngördü A. Assessing the impact of antiviral drugs commonly utilized during the COVID-19 pandemic on the embryonic development of Xenopus laevis. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134462. [PMID: 38718506 DOI: 10.1016/j.jhazmat.2024.134462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/30/2024]
Abstract
The antiviral drugs favipiravir and oseltamivir are widely used to treat viral infections, including coronavirus 2019 (COVID-19), and their levels are expected to increase in the aquatic environment. In this study, the potential toxic and teratogenic effects of these drugs were evaluated using the frog embryo teratogenesis assay Xenopus (FETAX). In addition, glutathione S-transferase (GST), glutathione reductase (GR), catalase, carboxylesterase (CaE), and acetylcholinesterase (AChE) enzyme activities and malondialdehyde levels were measured as biochemical markers in embryos and tadpoles for comparative assessment of the sublethal effects of the test compounds. Prior to embryo exposure, drug concentrations in the exposure medium were measured with high-performance liquid chromatography. The 96-h median lethal concentration (LC50) was 137.9 and 32.3 mg/L for favipiravir and oseltamivir, respectively. The teratogenic index for favipiravir was 4.67. Both favipiravir and oseltamivir inhibited GR, CaE, and AChE activities in embryos, while favipiravir increased the GST and CaE activities in tadpoles. In conclusion, favipiravir, for which teratogenicity data are available in mammalian test organisms and human teratogenicity is controversial, inhibited Xenopus laevis embryo development and was teratogenic. In addition, sublethal concentrations of both drugs altered the biochemical responses in embryos and tadpoles, with differences between the developmental stages.
Collapse
Affiliation(s)
- Cemal Laçin
- Laboratory of Environmental Toxicology, Department of Biology, Faculty of Arts and Science, Inonu University, 44280 Malatya, Turkey
| | - Duygu Ozhan Turhan
- Laboratory of Environmental Toxicology, Department of Biology, Faculty of Arts and Science, Inonu University, 44280 Malatya, Turkey
| | - Abbas Güngördü
- Laboratory of Environmental Toxicology, Department of Biology, Faculty of Arts and Science, Inonu University, 44280 Malatya, Turkey.
| |
Collapse
|
7
|
Arslan E, Güngördü A. Subacute toxicity and endocrine-disrupting effects of Fe 2O 3, ZnO, and CeO 2 nanoparticles on amphibian metamorphosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4174-4195. [PMID: 38097842 DOI: 10.1007/s11356-023-31441-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024]
Abstract
This study evaluated the potential toxic and endocrine-disrupting effects of sublethal concentrations of Fe2O3, CeO2 and ZnO nanoparticles (NPs) on amphibian metamorphosis. Tadpoles were exposed to several NPs concentrations, reaching a maximum of 1000 µg/L, for up to 21 days according to the amphibian metamorphosis assay (AMA). Some standard morphological parameters, such as developmental stage (DS), hind limb length (HLL), snout-to-vent length (SVL), wet body weight (WBW), and as well as post-exposure lethality were recorded in exposed organisms on days 7 and 21 of the bioassay. Furthermore, triiodothyronine (T3), thyroxine (T4) and malondialdehyde (MDA) levels and the activities of glutathione S-transferases (GST), glutathione reductase (GR), catalase (CAT), carboxylesterase (CaE), and acetylcholinesterase (AChE) were determined in exposed tadpoles as biomarkers. The results indicate that short-term exposure to Fe2O3 NPs leads to toxic effects, both exposure periods cause toxic effects and growth inhibition for ZnO NPs, while short-term exposure to CeO2 NPs results in toxic effects and long-term exposure causes endocrine-disrupting effects. The responses observed after exposure to the tested NPs during amphibian metamorphosis suggest that they may have ecotoxicological effects and their effects should be monitored through field studies.
Collapse
Affiliation(s)
- Eren Arslan
- Laboratory of Environmental Toxicology, Department of Biology, Faculty of Arts and Science, Inonu University, 44280, Malatya, Turkey
| | - Abbas Güngördü
- Laboratory of Environmental Toxicology, Department of Biology, Faculty of Arts and Science, Inonu University, 44280, Malatya, Turkey.
| |
Collapse
|
8
|
Feng C, Bai H, Chang X, Wu Z, Dong W, Ma Q, Yang J. Aflatoxin B1-induced early developmental hepatotoxicity in larvae zebrafish. CHEMOSPHERE 2023; 340:139940. [PMID: 37634582 DOI: 10.1016/j.chemosphere.2023.139940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Aflatoxin B1 (AFB1) is a ubiquitous mycotoxin that causes oxidative damage in various organs. At present, the research studies on AFB1 are primarily focused on its effects on the terrestrial environment and animals. However, its toxicity mechanism in aquatic environments and aquatic animals has not been largely explored. Thus, in this study, zebrafish was used as a model to study the toxicity mechanism of AFB1 on the liver of developing larvae. The results showed that AFB1 exposure inhibited liver development and promoted fat accumulation in the liver. Transcriptome sequencing analysis showed that AFB1 affected liver redox metabolism and oxidoreductase activity. KEGG analysis showed that AFB1 inhibited the expression of gsto1, gpx4a, mgst3a, and idh1 in the glutathione metabolizing enzyme gene pathway, resulting in hepatic oxidative stress. At the same time, AFB1 also inhibited the expression of acox1, acsl1b, pparα, fabp2, and cpt1 genes in peroxidase and PPAR metabolic pathways, inducing hepatic steatosis and lipid droplet accumulation. Antioxidant N-Acetyl-l-cysteine (NAC) preconditioning up-regulated gsto1, gpx4a and idh1 genes, and improved the AFB1-induced lipid droplet accumulation in the liver. In summary, AFB1 induced hepatic oxidative stress and steatosis, resulting in abnormal liver fat metabolism and accumulation of cellular lipid droplets. NAC could be used as a potential preventative drug to improve AFB1-induced fat accumulation.
Collapse
Affiliation(s)
- Chi Feng
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology,Tongliao,Inner Mongolia, 028000, China; Department of Chemistry and Chemical Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Hongxia Bai
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology,Tongliao,Inner Mongolia, 028000, China; Inner Mongolia Minzu Univ, Coll Anim Sci & Technol, Tongliao,Inner Mongolia, 028000, China
| | - Xu Chang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology,Tongliao,Inner Mongolia, 028000, China; Inner Mongolia Minzu Univ, Coll Anim Sci & Technol, Tongliao,Inner Mongolia, 028000, China
| | - Zhixuan Wu
- Inner Mongolia Minzu Univ, Coll Anim Sci & Technol, Tongliao,Inner Mongolia, 028000, China
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology,Tongliao,Inner Mongolia, 028000, China; Inner Mongolia Minzu Univ, Coll Anim Sci & Technol, Tongliao,Inner Mongolia, 028000, China
| | - Qianqian Ma
- Inner Mongolia Minzu Univ, Inst Pharmaceut Chem & Pharmacol, Tongliao, Inner Mongolia, 028000, China
| | - Jingfeng Yang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology,Tongliao,Inner Mongolia, 028000, China; Inner Mongolia Minzu Univ, Coll Anim Sci & Technol, Tongliao,Inner Mongolia, 028000, China.
| |
Collapse
|
9
|
Felisbino K, Kirsten N, da Silva Milhorini S, Marçal IS, Bernert K, Schiessl R, Nominato-Oliveira L, Guiloski IC. Teratogenic effects of the dicamba herbicide in Zebrafish (Danio rerio) embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122187. [PMID: 37442326 DOI: 10.1016/j.envpol.2023.122187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/15/2023]
Abstract
Dicamba has been used worldwide for 60 years, but few studies have been conducted on its environmental safety and health effects. Therefore, this study aims to evaluate the acute toxicity, teratogenic effects, oxidative stress, and neurotoxicity of Dicamba in zebrafish embryos. Embryos were exposed to concentrations of 4.5, 18, 72, and 288 mg/L of Dicamba for 96 h. Among the teratogenic effects, yolk sac edema predominated, besides malabsorption of nutrients (grayish yolk sac). The presence of edema may indicate problems with circulation and water efflux from the embryos, which may be related to kidney and cardiovascular problems. Other effects such as hemorrhage, spinal and eye malformations, and dwarfism were also observed. The hatching rate was reduced in the highest concentration, and in the other concentrations, a decrease was noticeable indicating a delay in development. Neurotoxic effects were also observed. Oxidative stress analysis showed a significant decrease in SOD at all concentrations and an increase in GPx, GSH, and LPO at 288 mg/L of Dicamba. It was observed that the herbicide is capable of causing teratogenic effects, developmental delay, and oxidative stress. These results show that exposure to Dicamba, in a commercial formulation, can bring risks during embryonic development. In addition, it highlights the need for further studies on the effects of the herbicide and a reassessment of toxicity categorization.
Collapse
Affiliation(s)
- Karoline Felisbino
- Faculdades Pequeno Príncipe, Av Iguaçu, 333, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av Munhoz da Rocha, 490, Curitiba, Paraná, Brazil.
| | - Nathalia Kirsten
- Faculdades Pequeno Príncipe, Av Iguaçu, 333, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av Munhoz da Rocha, 490, Curitiba, Paraná, Brazil
| | - Shayane da Silva Milhorini
- Faculdades Pequeno Príncipe, Av Iguaçu, 333, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av Munhoz da Rocha, 490, Curitiba, Paraná, Brazil
| | - Isabela Saragioto Marçal
- Faculdades Pequeno Príncipe, Av Iguaçu, 333, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av Munhoz da Rocha, 490, Curitiba, Paraná, Brazil
| | - Karina Bernert
- Faculdades Pequeno Príncipe, Av Iguaçu, 333, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av Munhoz da Rocha, 490, Curitiba, Paraná, Brazil
| | - Rafaela Schiessl
- Faculdades Pequeno Príncipe, Av Iguaçu, 333, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av Munhoz da Rocha, 490, Curitiba, Paraná, Brazil
| | - Leticia Nominato-Oliveira
- Faculdades Pequeno Príncipe, Av Iguaçu, 333, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av Munhoz da Rocha, 490, Curitiba, Paraná, Brazil
| | - Izonete Cristina Guiloski
- Faculdades Pequeno Príncipe, Av Iguaçu, 333, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av Munhoz da Rocha, 490, Curitiba, Paraná, Brazil
| |
Collapse
|
10
|
Kizilkaya S, Akpinar G, Sesal NC, Kasap M, Gokalsin B, Kayhan FE. Using proteomics, q-PCR and biochemical methods complementing as a multiapproach to elicit the crucial responses of zebrafish liver exposed to neonicotinoid pesticide. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101103. [PMID: 37399785 DOI: 10.1016/j.cbd.2023.101103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/10/2023] [Accepted: 06/10/2023] [Indexed: 07/05/2023]
Abstract
Pesticides enter the environment through runoff and leaching and this raises public concern about effects on non-target organisms. Imidacloprid (IMI) a synthetic pesticide, has an unstable half-life, metabolized in minutes to weeks in the water. To evaluate the effects of IMI on the zebrafish liver, we conducted proteomic, molecular and biochemical analysis in a multi-level approach, to highlight the complementary features regarding the results of each method. Adult zebrafish were exposed to 60 mg/L IMI for 48 h and were evaluated using nLC-MS/MS for proteins, q-PCR analysis for expression of cat, gpx, pxr, ache, along with CAT and AChE enzyme activities and GSH and MDA assays. Based on proteomics, the regulation of antioxidant and immune responses, as well as gene transcription were significant processes affected. Apoptosis and ER stress pathways were upregulated and there was a down-regulation of cat and gpx genes. There was also elevated CAT activity and GSH and decreased MDA. Additionally, elevated AChE activity and up regulation of ache expression was observed. The multi-approach results included regulators of antioxidant, xenobiotic response and neuro-protective related proteins (genes and enzymes), which overall reflected harmful effects of IMI. Consequently, this study highlights the effects of IMI on zebrafish liver and reveals new potential biomarkers. In this respect, evaluated outcomes reveal the complementary features emphasizing the importance of studying chemicals using several methods. Our study provides deeper insights for future work in ecotoxicological studies regarding IMI and contribute to existing toxicity literature.
Collapse
Affiliation(s)
- Seyma Kizilkaya
- Marmara University Institute of Pure and Applied Sciences, Istanbul 34722, Turkiye.
| | - Gurler Akpinar
- Kocaeli University Faculty of Medicine, Department of Medical Biology, Kocaeli 41001, Turkiye
| | - Nuzhet Cenk Sesal
- Marmara University Faculty of Science, Department of Biology, Istanbul 34722, Turkiye
| | - Murat Kasap
- Kocaeli University Faculty of Medicine, Department of Medical Biology, Kocaeli 41001, Turkiye
| | - Baris Gokalsin
- Marmara University Faculty of Science, Department of Biology, Istanbul 34722, Turkiye
| | - Figen Esin Kayhan
- Marmara University Faculty of Science, Department of Biology, Istanbul 34722, Turkiye
| |
Collapse
|
11
|
Rialto TCR, Marino RV, Abe FR, Dorta DJ, Oliveira DP. Comparative Assessment of the Toxicity of Brominated and Halogen-Free Flame Retardants to Zebrafish in Terms of Tail Coiling Activity, Biomarkers, and Locomotor Activity. TOXICS 2023; 11:732. [PMID: 37755743 PMCID: PMC10534375 DOI: 10.3390/toxics11090732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023]
Abstract
BDE-47, a flame retardant that is frequently detected in environmental compartments and human tissues, has been associated with various toxic effects. In turn, information about the effects of aluminum diethyl-phosphinate (ALPI), a halogen-free flame retardant from a newer generation, is limited. This study aims to assess and compare the toxicity of BDE-47 and ALPI to zebrafish by analyzing the tail coiling, locomotor, acetylcholinesterase activities, and oxidative stress biomarkers. At 3000 µg/L BDE-47, the coiling frequency increased at 26-27 h post-fertilization (hpf), but the burst activity (%) and mean burst duration (s) did not change significantly. Here, we considered that the increased coiling frequency is a slight neurotoxic effect because locomotor activity was impaired at 144 hpf and 300 µg/L BDE-47. Moreover, we hypothesized that oxidative stress could be involved in the BDE-47 toxicity mechanisms. In contrast, only at 30,000 µg/L did ALPI increase the catalase activity, while the motor behavior during different developmental stages remained unaffected. On the basis of these findings, BDE-47 is more toxic than ALPI.
Collapse
Affiliation(s)
- Taisa Carla Rizzi Rialto
- Department of Clinical, Toxicological and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil; (T.C.R.R.); (F.R.A.)
| | - Renan Vieira Marino
- Department of Clinical, Toxicological and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil; (T.C.R.R.); (F.R.A.)
| | - Flavia Renata Abe
- Department of Clinical, Toxicological and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil; (T.C.R.R.); (F.R.A.)
| | - Daniel Junqueira Dorta
- Department of Chemistry, Faculty of Philosophy Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil;
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara 14800-900, SP, Brazil
| | - Danielle Palma Oliveira
- Department of Clinical, Toxicological and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil; (T.C.R.R.); (F.R.A.)
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara 14800-900, SP, Brazil
| |
Collapse
|
12
|
Zou W, Zhao C, Chen J, Wang Y, Jin C, Zhang X. Systematic stress persistence and recovery patterns of rice (Oryza sativa L.) roots in response to molybdenum disulfide nanosheets. CHEMOSPHERE 2023; 321:138166. [PMID: 36804254 DOI: 10.1016/j.chemosphere.2023.138166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The increasing application of engineered nanomaterials (ENMs) unavoidably leads to environmental release and biological exposure. Understanding the potential hazards of ENMs on crops is essential for appropriate utilization and management. Herein, rice seedlings were hydroponically exposed to molybdenum sulfide (MoS2, a typical ENM) nanosheets at 5-20 mg/L for 7 days and then depurated for another 7 days in a fresh culture medium. Exposure to MoS2 triggered irreversible reductions in root length (by 26.3%-69.9%) and tip number (by 22.2%-66.0%). Integration of biochemical assays, transcriptomic and metabolomics found that oxidative stress induced by MoS2 in roots was persistent, whereas the activation of aquaporins, ionic transportation, and energy synthesis was normalized due to the recovery of nutrient uptake. The down-regulated levels of genes and metabolites associated with peroxidases, hemicellulose synthesis, expansins, and auxins caused persistent structural damages (sclerosis and rupture) of root cell walls. Approximately 64.5%-84.8% of internalized MoS2 nanosheets were degraded, and the successive up-regulation of genes encoding cytochrome P450s and glutathione S-transferases reflected the biotransformation and detoxification of MoS2 in the depuration period. These findings provide novel insights into the persistence and recovery of MoS2 phytotoxicity, which will help advance the risk assessment of MoS2 application on environment.
Collapse
Affiliation(s)
- Wei Zou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China.
| | - Chenxu Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Jiayi Chen
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Yihan Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Caixia Jin
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Xingli Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
13
|
Singh R, Singh V, Beigh SA. Effect of parity on non-esterified fatty acid, oxidant/antioxidant status, and zinc and copper levels around periparturient period in Beetal goats of Himalayan Region. J Anim Physiol Anim Nutr (Berl) 2023; 107:418-427. [PMID: 35616055 DOI: 10.1111/jpn.13738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/04/2022] [Accepted: 05/06/2022] [Indexed: 01/24/2023]
Abstract
The study was conducted to evaluate the effect of parity and physiological status on non-esterified fatty acid (NEFA), oxidative stress, and zinc and copper levels among the Beetal breed of goat. Thirty dual-purpose Beetal goats reared under the semi-intensive system were selected and based on parity were divided into three groups with 10 animals each viz. Early parity (EP; ≤2 parity), mid parity (MP; 3-6 parity), and late parity (LP; ≥7 parity). Blood samples were collected 3 weeks and 1 week pre-kidding followed by 1, 2, 4, and 8 weeks post-kidding for the estimation of NEFA, oxidant (malondialdehyde [MDA], antioxidant (superoxide dismutase [SOD], catalase [CAT], glutathione [GSH], glutathione peroxidase [GSH-Px], and glutathione S-transferase [GST]), and zinc and copper levels. Significant (p < 0.01) increase was observed in NEFA and MDA levels as the goats approached kidding and continued till 2 weeks post-kidding in MP and LP and 1 week post-kidding in EP goats. Significant decrease in SOD (p < 0.05), CAT (p < 0.05), GSH-Px (p < 0.01), GSH (p < 0.01), and GST (p < 0.05) activities were observed as goats approached kidding and continued to decrease up to 2 weeks post-kidding. Zinc and copper levels showed a significant decline from 3 weeks pre-kidding to 2 weeks post-kidding in MP and LP and 1 week post-kidding in EP goats. A significant effect of parity was observed on MDA (p < 0.05), GSH (p < 0.05), and GSH-Px (p < 0.05) activities only; however, parity × sampling time interaction was observed in all the parameters. Findings highlight a different metabolic, trace mineral (zinc and copper), and oxidative response around the periparturient period in Beetal goats, with the EP goats, responding first to increased metabolic and oxidative stress and also first to recover from oxidant/antioxidant imbalance.
Collapse
Affiliation(s)
- Rajiv Singh
- Division of Veterinary Medicine, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, R.S. Pura, Jammu and Kashmir, India
| | - Virampal Singh
- Division of Veterinary Medicine, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, R.S. Pura, Jammu and Kashmir, India
| | - Shafayat A Beigh
- Division of Veterinary Clinical Medicine, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| |
Collapse
|
14
|
Xu T, Yu X, Zhou S, Wu Y, Deng X, Wu Y, Wang S, Gao X, Nie S, Zhou C, Sun J, Huang Y. DNA methylation and mRNA expression of glutathione S-transferase alpha 4 are associated with intracranial aneurysms in a gender-dependent manner. Front Genet 2023; 13:1079455. [PMID: 36699470 PMCID: PMC9868450 DOI: 10.3389/fgene.2022.1079455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/28/2022] [Indexed: 01/10/2023] Open
Abstract
Objective: We performed a case-control study to investigate the correlation between DNA methylation and mRNA expression of the glutathione S-transferase alpha 4 (GSTA4) gene and the risk of intracranial aneurysm (IA) in the Chinese Han population. Methods: After propensity score matching, 44 pairs of cases and controls were collected in this study. Fasting blood samples were collected for DNA and RNA extraction within 24 h of admission. Nine CpG dinucleotides were selected from the GSTA4 promoter region for DNA methylation pyrosequencing. mRNA expression of GSTA4 was measured by quantitative real-time polymerase chain reaction (RT-qPCR). In vitro cell experiments were conducted to verify the association between 5-aza-2'-deoxycytidine induced DNA hypomethylation and GSTA4 mRNA expression. Results: The mean methylation level of GSTA4 was much lower in IA patients, especially in IA patients, especially in unruptured IA (UIA), than that in controls (IA vs. Control, p < .001; ruptured IA (RIA) vs. Control, p = .005; UIA vs. Control, p < .001). With sex stratification, we further found that the association between GSTA4 methylation and IA risk presented only in women (mean methylation level: IA vs. Control, p < .001; RIA vs. Control, p = .009; UIA vs. Control, p < .001). GSTA4 mRNA expression was significantly higher in the IA group than in the control group (p < .01) and negatively correlated with DNA methylation in all individuals (r = -.746, p < .001). DNA hypomethylation can increase GSTA4 mRNA expression in human primary artery smooth muscle cells. The receiver operating characteristic (ROC) curve showed that GSTA4 mean methylation (AUC = .80, p < .001) was a reliable predictor of women intracranial aneurysm, among which CpG 1 exhibited the best predictive value (AUC = .89, p < .001). In addition, GSTA4 expression levels could also predict the risk of IA in women (AUC = .87, p = .005). Conclusion: Decreased DNA methylation and increased mRNA expression of the GSTA4 gene are associated with the risk of IA in women.
Collapse
Affiliation(s)
- Tianqi Xu
- Department of Neurology, Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang, China.,Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
| | - Xi Yu
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Shenjun Zhou
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China.,Department of Neurosurgery, Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Yiwen Wu
- Department of Neurosurgery, Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Xinpeng Deng
- Department of Neurosurgery, Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Yuefei Wu
- Department of Neurology, Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Shiyi Wang
- Department of Neurology, Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang, China.,Medical School of Ningbo University, Ningbo, China
| | - Xiang Gao
- Department of Neurosurgery, Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Sheng Nie
- Department of Neurosurgery, Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Chenhui Zhou
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China.,Department of Neurosurgery, Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Jie Sun
- Department of Neurosurgery, Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Yi Huang
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China.,Department of Neurosurgery, Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
15
|
Liu L, Yang Y, Yang F, Lin Y, Liu K, Wang X, Zhang Y. A mechanistic investigation about hepatoxic effects of borneol using zebrafish. Hum Exp Toxicol 2023; 42:9603271221149011. [PMID: 36594174 DOI: 10.1177/09603271221149011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Except for clinical value, borneol is routinely used in food and cosmetics with seldom safety evaluation. To investigate its hepatoxicity, we exposed 3 dpf (days post fertilization) larval zebrafish to borneol at a gradient of concentrations (200-500 μM) for 3 days. Herein, our results revealed that high doses of borneol (300-500 μM) caused liver size decrease or lateral lobe absence. Borneol also seriously disturbed the hepatic protein metabolism presented with the increased activity of alanine aminotransferase (ALT) and lipid metabolism shown with the increased level of triglycerides (TG) and total cholesterol (TC). The lipid accumulation (oil red staining) was detected as well. Additionally, significant upregulation of genes was detected that related to oxidative stress, lipid anabolism, endoplasmic reticulum stress (ERS), and autophagy. Conversely, the lipid metabolism-related genes were markedly downregulated. Moreover, the changes in the superoxide dismutase activity and the level of glutathione and malondialdehyde raised the likelihood of lipid peroxidation. The outcomes indicated the involvement of oxidative stress, ERS, lipid metabolism, and autophagy in borneol-induced lipid metabolic disorder and hepatic injury. This study will provide a more comprehensive understanding of borneol hepatoxicity and the theoretical basis for the safe use of this compound.
Collapse
Affiliation(s)
- L Liu
- School of Pharmacy, 12412Changzhou University, Changzhou, China
| | - Y Yang
- School of Pharmacy, 12412Changzhou University, Changzhou, China.,Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - F Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Y Lin
- School of Pharmacy, 12412Changzhou University, Changzhou, China
| | - K Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - X Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Y Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
16
|
Yedji RS, Sohm B, Salnot V, Guillonneau F, Cossu-Leguille C, Battaglia E. First Identification of a Large Set of Serine Hydrolases by Activity-Based Protein Profiling in Dibutyl Phthalate-Exposed Zebrafish Larvae. Int J Mol Sci 2022; 23:ijms232416060. [PMID: 36555700 PMCID: PMC9786740 DOI: 10.3390/ijms232416060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Despite the involvement of several serine hydrolases (SHs) in the metabolism of xenobiotics such as dibutyl phthalate (DBP), no study has focused on mapping this enzyme class in zebrafish, a model organism frequently used in ecotoxicology. Here, we survey and identify active SHs in zebrafish larvae and search for biological markers of SH type after exposure to DBP. Zebrafish were exposed to 0, 5, and 100 µg/L DBP from 4 to 120 h post-fertilization. A significant decrease in vitellogenin expression level of about 2-fold compared to the control was found in larvae exposed to 100 µg/L DBP for 120 h. The first comprehensive profiling of active SHs in zebrafish proteome was achieved with an activity-based protein profiling (ABPP) approach. Among 49 SHs identified with high confidence, one was the carboxypeptidase ctsa overexpressed in larvae exposed to 100 µg/L DBP for 120 h. To the best of our knowledge, this is the first time that a carboxypeptidase has been identified as deregulated following exposure to DBP. The overall results indicate that targeted proteomics approaches, such as ABPP, can, therefore, be an asset for understanding the mechanism of action related to xenobiotics in ecotoxicology.
Collapse
Affiliation(s)
- Rodrigue S. Yedji
- LIEC, UMR7360, Campus Bridoux, Université de Lorraine, 57070 Metz, France
| | - Bénédicte Sohm
- LIEC, UMR7360, Campus Bridoux, Université de Lorraine, 57070 Metz, France
| | - Virginie Salnot
- Plateforme Protéomique 3P5, Inserm U1016-Institut Cochin, MICUSPC, Université Paris Descartes, 75006 Paris, France
| | - François Guillonneau
- Plateforme Protéomique 3P5, Inserm U1016-Institut Cochin, MICUSPC, Université Paris Descartes, 75006 Paris, France
- Unité Protéomique Clinique, Institut de Cancérologie de l’Ouest, CRCI2NA-UMR INSERM 1307/CNRS 6075, team03, 15, rue André Boquel, 49055 Angers, France
| | | | - Eric Battaglia
- LIEC, UMR7360, Campus Bridoux, Université de Lorraine, 57070 Metz, France
- Correspondence:
| |
Collapse
|
17
|
Demery-Poulos C, Chambers JM. Identification, conservation, and expression of tiered pharmacogenes in zebrafish. PLoS One 2022; 17:e0273582. [PMID: 36040978 PMCID: PMC9426904 DOI: 10.1371/journal.pone.0273582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022] Open
Abstract
The number of adverse drug events in the United States is critically high, with annual rates exceeding 1 million cases over the last nine years. One cause of adverse drug events is the underlying genetic variation that can alter drug responses. Pharmacogenomics is a growing field that seeks to better understand the relationship between a patient’s genetics and drug efficacy. Currently, pharmacogenomics relies largely on human trials, as there is not a well-developed animal model for studying preventative measures and alternative treatments. Here, we analyzed pharmacogene expression at two developmental time points in zebrafish to demonstrate the potential of using this model organism for high-throughput pharmacogenomics research. We found that 76% of tiered human pharmacogenes have a zebrafish ortholog, and of these, many have highly conserved amino acid sequences. Additional gene ontology analysis was used to classify pharmacogenes and identify candidate pathways for future modeling in zebrafish. As precision medicine burgeons, adopting a high-throughput in vivo model such as the zebrafish could greatly increase our understanding of the molecular pathology underlying adverse drug events.
Collapse
Affiliation(s)
- Catherine Demery-Poulos
- Department of Pharmaceutical Sciences, College of Pharmacy, Natural and Health Sciences, Manchester University, Fort Wayne, Indiana, United States
| | - Joseph M. Chambers
- Department of Pharmaceutical Sciences, College of Pharmacy, Natural and Health Sciences, Manchester University, Fort Wayne, Indiana, United States
- * E-mail:
| |
Collapse
|
18
|
Chen Y, Song W, Ge W, Yan R. Metabolic competency of larval zebrafish in drug-induced liver injury: a case study of acetaminophen poisoning. Toxicol Sci 2022; 189:175-185. [PMID: 35944217 DOI: 10.1093/toxsci/kfac082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Larval zebrafish is emerging as a new model organism for studying drug-induced liver injury (DILI) with superiorities in visual assessment, genetic engineering as well as high throughput. Metabolic bioactivation to form reactive intermediates is a common event that triggers DILI. This study first addressed the correlation between acetaminophen metabolism and hepatotoxicity in zebrafish larvae (3 days post-fertilization) and demonstrated the occurrence of cytochrome P450 enzymes-mediated APAP bioactivation at early developmental stage through characterizing the dose-effect (0-1.6 mg/mL) and the time-course (0-72 h) of liver injury and metabolism in the AB strain and LiPan transgenic line Tg(lfabp10a: DsRed; elaA: egfp) expressing liver-specific fluorescent protein. APAP caused multi-organ developmental retardation and elicited dose- and time-dependent hepatotoxicity. Liver imaging revealed significant changes earlier than histological and biochemical measurements. APAP bioactivation in larval zebrafish was first confirmed by the detection of the glutathione conjugate of the reactive intermediate NAPQI (NAPQI-GSH) and subsequent mercapturate derivatives NAPQI-cysteine and NAPQI-N-acetylcysteine after even short (0.5-hour post exposure) or low (0.2 mg/mL) APAP exposure. APAP overdose impaired metabolic function, in particular sulfation, while facilitated GSH depletion and APAP sulfate excretion. Meanwhile, APAP displayed triphasic accumulation in the larvae, agreeing with fluctuating metabolic capabilities with sulfation dominating the early larval developmental stage. Most importantly, the dose-response effects and time-course of APAP accumulation and metabolism agree well with those of the liver injury development. Overall, larval zebrafish has developed mammalian-like metabolic function, enabling it an ideal model organism for high throughput screening hepatotoxicity and mechanistic study of bioactivation-based DILI.
Collapse
Affiliation(s)
- Yijia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Weiyi Song
- Center of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Wei Ge
- Center of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.,Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080, China
| |
Collapse
|
19
|
Song L, Li M, Feng C, Sa R, Hu X, Wang J, Yin X, Qi C, Dong W, Yang J. Protective effect of curcumin on zebrafish liver under ethanol-induced oxidative stress. Comp Biochem Physiol C Toxicol Pharmacol 2022; 258:109360. [PMID: 35523403 DOI: 10.1016/j.cbpc.2022.109360] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/13/2022] [Accepted: 04/27/2022] [Indexed: 11/03/2022]
Abstract
Oxidative stress has an important role in determining severe damage to the liver, including steatosis. Curcumin (CUR) is a natural polyphenol compound with antioxidant potential but its mechanism is still unclear. In this study, 2% ethanol (ETH) was used to establish a liver injury model in Tg (fabp10: Ps Red) transgenic zebrafish with the fluorescent liver. Ethanol-treated zebrafish had an increased vacuole rate at 144 h post-fertilization (hpf), thus confirming the effectiveness of the proposed model in inducing liver damage. However, when ethanol was submitted to co-exposure with curcumin, fluorescence area and signal intensity, as well as vacuole rate, were similar to the levels found in the control group. RNA-seq results showed that ethanol and CUR affected the regulation of catalytic activity and phenylalanine metabolism, biosynthesis of amino acids, and arginine and proline metabolism signaling pathways. QRT-PCR analysis also showed that treatment with CUR led to the downregulation of genes involved in the Nrf2-Keap1 signaling pathway and altered the expression pattern of genes related to glutathione metabolism (gsr, gpx1a, gstp1, gsto1, and idh1a). CUR also induced an increase in GSH content and recovered decreased GSH caused by ethanol exposure. The findings discussed herein indicate that CUR can promote glutathione synthesis, which aided in the recovery from ethanol-induced liver damage in zebrafish larvae.
Collapse
Affiliation(s)
- Lei Song
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Ming Li
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Chi Feng
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Rigaiqiqige Sa
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Xiaodong Hu
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Jie Wang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Xiaoyu Yin
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Chelimuge Qi
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University for Nationalities, Tongliao, Inner Mongolia 028000, China.
| | - Jingfeng Yang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University for Nationalities, Tongliao, Inner Mongolia 028000, China.
| |
Collapse
|
20
|
Li B, Zhang X, Tefsen B, Wells M. From speciation to toxicity: Using a "Two-in-One" whole-cell bioreporter approach to assess harmful effects of Cd and Pb. WATER RESEARCH 2022; 217:118384. [PMID: 35427828 DOI: 10.1016/j.watres.2022.118384] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Due to the sheer number of contaminated sites, bioavailability-based measurement and modeling of toxicity is used to triage response; despite advances, both remain relatively cumbersome. Cadmium (Cd) and lead (Pb) are two of the most toxic and globally prevalent pollutants, disproportionately impacting disadvantaged communities. Here we demonstrate the use of high throughput lights-on bioreporter technology to measure both speciation and toxicity. The organism's response is fit-for-purpose to parameterize the Biotic Ligand Model used in risk assessment of aquatic ecotoxicity and setting environmental Water Quality Criteria. Toxicity endpoints for analogous Cd and Pb models reported in literature average 71st and 44th rank-percentile sensitivity of Genus Mean Acute Values for acute toxicity (i.e., insensitive) in comparison to the bioreporter, the unique dual-mode measurement ability of which can predict toxicity endpoints from below the 5th percentile up to the 50th rank-percentile. These results are extensible to other reporters, paving the way to cost-efficient environmental risk assessment of aquatic ecotoxicity for a wide range of priority toxic pollutants.
Collapse
Affiliation(s)
- Boling Li
- Department of Environmental Science, University of Liverpool, Brownlow Hill, Liverpool L69 7ZX, UK; Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Boris Tefsen
- Ronin Institute, 127 Haddon Place, Montclair, NJ 07043, United States.
| | - Mona Wells
- Ronin Institute, 127 Haddon Place, Montclair, NJ 07043, United States.
| |
Collapse
|
21
|
Zhang Y, Huang D, Lv N, Zhu G, Peng J, Chou T, Zhu Z, Wang J, Chen Y, Fang X, Qu J, Chen J, Liu S. Global Quantification of Glutathione S-Transferases in Human Serum Using LC-MS/MS Coupled with Affinity Enrichment. J Proteome Res 2022; 21:1311-1320. [PMID: 35353507 DOI: 10.1021/acs.jproteome.2c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The members of the glutathione S-transferase (GST) superfamily often exhibit functional overlap and can compensate for each other. Their concentrations in serum are considered as disease biomarkers. A global and quantitative evaluation of serum GSTs is therefore urgent, but there is a lack of efficient approaches due to technological limitations. GSH magnetic beads were examined for their affinity to enrich GSTs in serum, and the enriched GSTs were quantitatively targeted using a Q Exactive HF-X mass spectrometer in parallel reaction monitoring (PRM) mode. To optimize the quantification of GST peptides, sample types, trypsin digestion, and serum loading were carefully assessed; a biosynthetic method was employed to generate isotope-labeled GST peptides, and instrumental parameters were systematically optimized. A total of 134 clinical sera were collected for GST quantification from healthy donors and patients with four liver diseases. Using the new approach, GSTs in healthy sera were profiled: 14 GST peptides were quantified, and the abundance of five GST families was ranked GSTM > GSTP > GSTA > MGST1 > GSTT1, ranging from 0.1 to 4 pmol/L. Furthermore, combining the abundance of multiple GST peptides could effectively distinguish different types of liver diseases. Quantification of serum GSTs through targeted proteomics, therefore, has apparent clinical potential for disease diagnosis.
Collapse
Affiliation(s)
- Yuxing Zhang
- College of Life Sciences & Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China.,BGI-Shenzhen, Shenzhen 518083, China.,Beijing Institute of Genomics & China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China
| | - Deliang Huang
- Department of Liver Diseases, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518100, China
| | - Ning Lv
- Department of Clinical Laboratory, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, National Clinical Research Center for Infectious Diseases, Shenzhen 518114, China
| | | | - Jinghan Peng
- Department of Liver Diseases, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518100, China
| | | | - Zhibin Zhu
- Department of Liver Diseases, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518100, China
| | - Ju Wang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yuanyuan Chen
- Department of Liver Diseases, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518100, China
| | - Xiangdong Fang
- College of Life Sciences & Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China.,Beijing Institute of Genomics & China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiuxin Qu
- Department of Clinical Laboratory, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, National Clinical Research Center for Infectious Diseases, Shenzhen 518114, China
| | - Jun Chen
- Department of Liver Diseases, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518100, China
| | - Siqi Liu
- BGI-Shenzhen, Shenzhen 518083, China
| |
Collapse
|
22
|
Martins RX, Vieira L, Souza JACR, Silva MGF, Muniz MS, Souza T, Queiroga FR, Machado MRF, da Silva PM, Farias D. Exposure to 2,4-D herbicide induces hepatotoxicity in zebrafish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109110. [PMID: 34144256 DOI: 10.1016/j.cbpc.2021.109110] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/31/2022]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) herbicide is the main ingredient in over 1500 commercially available products such as Weedestroy® AM40 and DMA® 4 IVM. Although the liver has been identified as one of the organs that are affected by this herbicide, reports on its hepatotoxic effects available in the literature are restricted to rats. Thus, there is a gap in information on other organisms that may be vulnerable to 2,4-D exposure, such as fish. Therefore, the present work aimed to assess the hepatotoxic potential of 2,4-D in fish using zebrafish (Danio rerio) larvae as a model system. For this purpose, its acute toxicity to zebrafish embryos was assessed, as well as its sublethal effects (< LC50) on the activity of enzymes related to oxidative (GST, CAT and GPX) and metabolic (LDH) stress and liver parameters (AST, ALT and ALP) after 48 h of exposure. Morphological analyses of the liver were also assessed in zebrafish larvae. As a result, 2,4-D reduced larvae survival (LC50 15.010 mg/L in 96 h of exposure), induced malformations, altered the activity of LDH, GST and CAT enzymes and significantly increased the activity of all biomarkers for liver damage. Although no changes in the color or size of larval liver were observed, histopathological analysis revealed that treatment with 2,4-D caused severe changes in liver tissue, such as vacuolization of the cytosol, eccentric cell nucleus, loss of tissue architecture and cellular boundaries. Thus, the results showed that 2,4-D altered the enzymatic profile related to oxidative stress, and induces liver damage.
Collapse
Affiliation(s)
- Rafael Xavier Martins
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Leonardo Vieira
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Juliana Alves Costa Ribeiro Souza
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Marília Guia Flor Silva
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Marta Silva Muniz
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Terezinha Souza
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Fernando Ramos Queiroga
- Laboratory of Immunology and Pathology of Invertebrates (LABIPI), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | | | - Patricia Mirella da Silva
- Laboratory of Immunology and Pathology of Invertebrates (LABIPI), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Davi Farias
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil.
| |
Collapse
|
23
|
Tierbach A, Groh KJ, Schönenberger R, Schirmer K, Suter MJF. Biotransformation Capacity of Zebrafish (Danio rerio) Early Life Stages: Functionality of the Mercapturic Acid Pathway. Toxicol Sci 2021; 176:355-365. [PMID: 32428239 DOI: 10.1093/toxsci/kfaa073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Zebrafish (Danio rerio) early life stages offer a versatile model system to study the efficacy and safety of drugs or other chemicals with regard to human and environmental health. This is because, aside from the well-characterized genome of zebrafish and the availability of a broad range of experimental and computational research tools, they are exceptionally well suited for high-throughput approaches. Yet, one important pharmacokinetic aspect is thus far only poorly understood in zebrafish embryo and early larvae: their biotransformation capacity. Especially, biotransformation of electrophilic compounds is a critical pathway because they easily react with nucleophile molecules, such as DNA or proteins, potentially inducing adverse health effects. To combat such adverse effects, conjugation reactions with glutathione and further processing within the mercapturic acid pathway have evolved. We here explore the functionality of this pathway in zebrafish early life stages using a reference substrate (1-chloro-2,4-dinitrobenzene, CDNB). With this work, we show that zebrafish embryos can biotransform CDNB to the respective glutathione conjugate as early as 4 h postfertilization. At all examined life stages, the glutathione conjugate is further biotransformed to the last metabolite of the mercapturic acid pathway, the mercapturate, which is slowly excreted. Being able to biotransform electrophiles within the mercapturic acid pathway shows that zebrafish early life stages possess the potential to process xenobiotic compounds through glutathione conjugation and the formation of mercapturates. The presence of this chemical biotransformation and clearance route in zebrafish early life stages supports the application of this model in toxicology and chemical hazard assessment.
Collapse
Affiliation(s)
- Alena Tierbach
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600 Dübendorf, Switzerland.,EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland
| | - Ksenia J Groh
- Food Packaging Forum Foundation, 8045 Zürich, Switzerland
| | - René Schönenberger
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600 Dübendorf, Switzerland
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600 Dübendorf, Switzerland.,EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland.,ETH Zürich, Swiss Federal Institute of Technology, Department of Environmental Systems Science, 8092 Zürich, Switzerland
| | - Marc J-F Suter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600 Dübendorf, Switzerland.,ETH Zürich, Swiss Federal Institute of Technology, Department of Environmental Systems Science, 8092 Zürich, Switzerland
| |
Collapse
|
24
|
Cansız D, Ustundag UV, Unal I, Alturfan AA, Emekli-Alturfan E. Morphine attenuates neurotoxic effects of MPTP in zebrafish embryos by regulating oxidant/antioxidant balance and acetylcholinesterase activity. Drug Chem Toxicol 2021; 45:2439-2447. [PMID: 34340603 DOI: 10.1080/01480545.2021.1957558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases due to the loss of dopaminergic neurons in the midbrain in the substantia nigra. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxic agent causing disruptions in mitochondria of dopaminergic neurons leading to impaired oxidant-antioxidant balance. Both zebrafish and zebrafish embryos are sensitive to MPTP. In zebrafish embryos, MPTP decreases the dopaminergic cells in the diencephalon by damaging dopaminergic neurons. Morphine is an opioid pain killer and a strong analgesic that is used to treat chronic pain. Until today morphine has been shown to regulate the survival or death of neurons and both protective and destructive effects of morphine have been reported in the central nervous system. This study aimed to evaluate the effects of morphine in MPTP-exposed zebrafish embryos. Developmental parameters were monitored and documented daily during embryonic development. Locomotor activity of zebrafish embryos at 96 h postfertilization (hpf) was determined. Acetylcholinesterase (AChE) activity and oxidant-antioxidant parameters were analyzed by biochemical methods. RT-PCR was used to evaluate bdnf, dj1, lrrk and pink1 expressions. Morphine treatment improved mortality and hatching rates, locomotor activity, AChE, and antioxidant enzyme activities as well as the expressions of bdnf, dj1, lrrk and pink1 in a dose-dependent manner that were altered by MPTP. Increased lipid peroxidation supports the role of morphine to induce autophagy to prevent PD-related pathologies. Our study provided important data on the possible molecular mechanism of the therapeutic effects of morphine in PD.
Collapse
Affiliation(s)
- Derya Cansız
- Faculty of Medicine, Department of Biochemistry, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Unsal Veli Ustundag
- Faculty of Medicine, Department of Medical Biochemistry, Istanbul Medipol University, Istanbul, Turkey
| | - Ismail Unal
- Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - A Ata Alturfan
- Faculty of Medicine, Department of Biochemistry, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Ebru Emekli-Alturfan
- Faculty of Dentistry, Department of Basic Medical Sciences, Marmara University, Istanbul, Turkey
| |
Collapse
|
25
|
Eide M, Zhang X, Karlsen OA, Goldstone JV, Stegeman J, Jonassen I, Goksøyr A. The chemical defensome of five model teleost fish. Sci Rep 2021; 11:10546. [PMID: 34006915 PMCID: PMC8131381 DOI: 10.1038/s41598-021-89948-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
How an organism copes with chemicals is largely determined by the genes and proteins that collectively function to defend against, detoxify and eliminate chemical stressors. This integrative network includes receptors and transcription factors, biotransformation enzymes, transporters, antioxidants, and metal- and heat-responsive genes, and is collectively known as the chemical defensome. Teleost fish is the largest group of vertebrate species and can provide valuable insights into the evolution and functional diversity of defensome genes. We have previously shown that the xenosensing pregnane x receptor (pxr, nr1i2) is lost in many teleost species, including Atlantic cod (Gadus morhua) and three-spined stickleback (Gasterosteus aculeatus), but it is not known if compensatory mechanisms or signaling pathways have evolved in its absence. In this study, we compared the genes comprising the chemical defensome of five fish species that span the teleosteii evolutionary branch often used as model species in toxicological studies and environmental monitoring programs: zebrafish (Danio rerio), medaka (Oryzias latipes), Atlantic killifish (Fundulus heteroclitus), Atlantic cod, and three-spined stickleback. Genome mining revealed evolved differences in the number and composition of defensome genes that can have implication for how these species sense and respond to environmental pollutants, but we did not observe any candidates of compensatory mechanisms or pathways in cod and stickleback in the absence of pxr. The results indicate that knowledge regarding the diversity and function of the defensome will be important for toxicological testing and risk assessment studies.
Collapse
Affiliation(s)
- Marta Eide
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Xiaokang Zhang
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Odd André Karlsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Jared V Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - John Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Inge Jonassen
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
26
|
Zhang L, Kim SH, Park KH, Zhi-Wei Y, Jie Z, Townsend DM, Tew KD. Glutathione S-Transferase P Influences Redox Homeostasis and Response to Drugs that Induce the Unfolded Protein Response in Zebrafish. J Pharmacol Exp Ther 2021; 377:121-132. [PMID: 33514607 PMCID: PMC8047768 DOI: 10.1124/jpet.120.000417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/25/2021] [Indexed: 01/21/2023] Open
Abstract
We have created a novel glutathione S-transferase π1 (gstp1) knockout (KO) zebrafish model and used it for comparative analyses of redox homeostasis and response to drugs that cause endoplasmic reticulum (ER) stress and induce the unfolded protein response (UPR). Under basal conditions, gstp1 KO larvae had higher expression of antioxidant nuclear factor erythroid 2-related factor 2 (Nrf2) accompanied by a more reduced larval environment and a status consistent with reductive stress. Compared with wild type, various UPR markers were decreased in KO larvae, but treatment with drugs that induce ER stress caused greater toxicities and increased expression of Nrf2 and UPR markers in KO. Tunicamycin and 02-{2,4-dinitro-5-[4-(N-methylamino)benzoyloxy]phenyl}1-(N,N-dimethylamino)diazen-1-ium-1,2-diolate (PABA/nitric oxide) activated inositol-requiring protein-1/X-box binding protein 1 pathways, whereas thapsigargin caused greater activation of protein kinase-like ER kinase/activating transcription factor 4/CHOP pathways. These results suggest that this teleost model is useful for predicting how GSTP regulates organismal management of oxidative/reductive stress and is a determinant of response to drug-induced ER stress and the UPR. SIGNIFICANCE STATEMENT: A new zebrafish model has been created to study the importance of glutathione S-transferase π1 in development, redox homeostasis, and response to drugs that enact cytotoxicity through endoplasmic reticulum stress and induction of the unfolded protein response.
Collapse
Affiliation(s)
- Leilei Zhang
- Leilei Zhang, Seok-Hyung Kim, Ki-Hoon Park, Zhi-wei Ye, Jie Zhang, Danyelle M. Townsend, Kenneth D. Tew Department of Cell and Molecular Pharmacology and Experimental Therapeutics (L.Z., Z.Y., J.Z., K.D.T.), Division of Nephrology, Department of Medicine (S.-H.K., K.-H.P.), and Department of Pharmaceutical and Biomedical Sciences (D.M.T.), Medical University of South Carolina, Charleston, South Carolina
| | - Seok-Hyung Kim
- Leilei Zhang, Seok-Hyung Kim, Ki-Hoon Park, Zhi-wei Ye, Jie Zhang, Danyelle M. Townsend, Kenneth D. Tew Department of Cell and Molecular Pharmacology and Experimental Therapeutics (L.Z., Z.Y., J.Z., K.D.T.), Division of Nephrology, Department of Medicine (S.-H.K., K.-H.P.), and Department of Pharmaceutical and Biomedical Sciences (D.M.T.), Medical University of South Carolina, Charleston, South Carolina
| | - Ki-Hoon Park
- Leilei Zhang, Seok-Hyung Kim, Ki-Hoon Park, Zhi-wei Ye, Jie Zhang, Danyelle M. Townsend, Kenneth D. Tew Department of Cell and Molecular Pharmacology and Experimental Therapeutics (L.Z., Z.Y., J.Z., K.D.T.), Division of Nephrology, Department of Medicine (S.-H.K., K.-H.P.), and Department of Pharmaceutical and Biomedical Sciences (D.M.T.), Medical University of South Carolina, Charleston, South Carolina
| | - Ye Zhi-Wei
- Leilei Zhang, Seok-Hyung Kim, Ki-Hoon Park, Zhi-wei Ye, Jie Zhang, Danyelle M. Townsend, Kenneth D. Tew Department of Cell and Molecular Pharmacology and Experimental Therapeutics (L.Z., Z.Y., J.Z., K.D.T.), Division of Nephrology, Department of Medicine (S.-H.K., K.-H.P.), and Department of Pharmaceutical and Biomedical Sciences (D.M.T.), Medical University of South Carolina, Charleston, South Carolina
| | - Zhang Jie
- Leilei Zhang, Seok-Hyung Kim, Ki-Hoon Park, Zhi-wei Ye, Jie Zhang, Danyelle M. Townsend, Kenneth D. Tew Department of Cell and Molecular Pharmacology and Experimental Therapeutics (L.Z., Z.Y., J.Z., K.D.T.), Division of Nephrology, Department of Medicine (S.-H.K., K.-H.P.), and Department of Pharmaceutical and Biomedical Sciences (D.M.T.), Medical University of South Carolina, Charleston, South Carolina
| | - Danyelle M Townsend
- Leilei Zhang, Seok-Hyung Kim, Ki-Hoon Park, Zhi-wei Ye, Jie Zhang, Danyelle M. Townsend, Kenneth D. Tew Department of Cell and Molecular Pharmacology and Experimental Therapeutics (L.Z., Z.Y., J.Z., K.D.T.), Division of Nephrology, Department of Medicine (S.-H.K., K.-H.P.), and Department of Pharmaceutical and Biomedical Sciences (D.M.T.), Medical University of South Carolina, Charleston, South Carolina
| | - Kenneth D Tew
- Leilei Zhang, Seok-Hyung Kim, Ki-Hoon Park, Zhi-wei Ye, Jie Zhang, Danyelle M. Townsend, Kenneth D. Tew Department of Cell and Molecular Pharmacology and Experimental Therapeutics (L.Z., Z.Y., J.Z., K.D.T.), Division of Nephrology, Department of Medicine (S.-H.K., K.-H.P.), and Department of Pharmaceutical and Biomedical Sciences (D.M.T.), Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
27
|
Emami-Khoyi A, Le Roux R, Adair MG, Monsanto DM, Main DC, Parbhu SP, Schnelle CM, van der Lingen CD, Jansen van Vuuren B, Teske PR. Transcriptomic Diversity in the Livers of South African Sardines Participating in the Annual Sardine Run. Genes (Basel) 2021; 12:genes12030368. [PMID: 33806647 PMCID: PMC8001748 DOI: 10.3390/genes12030368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
During austral winter, the southern and eastern coastlines of South Africa witness one of the largest animal migrations on the planet, the KwaZulu-Natal sardine run. Hundreds of millions of temperate sardines, Sardinops sagax, form large shoals that migrate north-east towards the subtropical Indian Ocean. Recent studies have highlighted the role that genetic and environmental factors play in sardine run formation. In the present study, we used massively parallel sequencing to assemble and annotate the first reference transcriptome from the liver cells of South African sardines, and to investigate the functional content and transcriptomic diversity. A total of 1,310,530 transcripts with an N50 of 1578 bp were assembled de novo. Several genes and core biochemical pathways that modulate energy production, energy storage, digestion, secretory processes, immune responses, signaling, regulatory processes, and detoxification were identified. The functional content of the liver transcriptome from six individuals that participated in the 2019 sardine run demonstrated heterogeneous levels of variation. Data presented in the current study provide new insights into the complex function of the liver transcriptome in South African sardines.
Collapse
Affiliation(s)
- Arsalan Emami-Khoyi
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park 2006, South Africa; (A.E.-K.); (R.L.R.); (M.G.A.); (D.M.M.); (D.C.M.); (S.P.P.); (C.M.S.); (B.J.v.V.)
| | - Rynhardt Le Roux
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park 2006, South Africa; (A.E.-K.); (R.L.R.); (M.G.A.); (D.M.M.); (D.C.M.); (S.P.P.); (C.M.S.); (B.J.v.V.)
| | - Matthew G. Adair
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park 2006, South Africa; (A.E.-K.); (R.L.R.); (M.G.A.); (D.M.M.); (D.C.M.); (S.P.P.); (C.M.S.); (B.J.v.V.)
| | - Daniela M. Monsanto
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park 2006, South Africa; (A.E.-K.); (R.L.R.); (M.G.A.); (D.M.M.); (D.C.M.); (S.P.P.); (C.M.S.); (B.J.v.V.)
| | - Devon C. Main
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park 2006, South Africa; (A.E.-K.); (R.L.R.); (M.G.A.); (D.M.M.); (D.C.M.); (S.P.P.); (C.M.S.); (B.J.v.V.)
| | - Shilpa P. Parbhu
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park 2006, South Africa; (A.E.-K.); (R.L.R.); (M.G.A.); (D.M.M.); (D.C.M.); (S.P.P.); (C.M.S.); (B.J.v.V.)
| | - Claudia M. Schnelle
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park 2006, South Africa; (A.E.-K.); (R.L.R.); (M.G.A.); (D.M.M.); (D.C.M.); (S.P.P.); (C.M.S.); (B.J.v.V.)
| | - Carl D. van der Lingen
- Branch: Fisheries Management, Department of Environment, Forestry and Fisheries, Private Bag X2, Vlaeberg 8012, South Africa;
- Department of Biological Sciences and Marine Research Institute, University of Cape Town, Private Bag X3, Rondebosch 7700, South Africa
| | - Bettine Jansen van Vuuren
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park 2006, South Africa; (A.E.-K.); (R.L.R.); (M.G.A.); (D.M.M.); (D.C.M.); (S.P.P.); (C.M.S.); (B.J.v.V.)
| | - Peter R. Teske
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park 2006, South Africa; (A.E.-K.); (R.L.R.); (M.G.A.); (D.M.M.); (D.C.M.); (S.P.P.); (C.M.S.); (B.J.v.V.)
- Correspondence:
| |
Collapse
|
28
|
Rastogi A, Timme-Laragy AR. Using Monochlorobimane to Visualize Glutathione Utilization in the Developing Zebrafish (Danio rerio) Embryo. Curr Protoc 2021; 1:e124. [PMID: 33555621 DOI: 10.1002/cpz1.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glutathione (GSH) plays fundamental roles in cellular redox buffering and is a common detoxification pathway for excretion of xenobiotics. This is especially crucial during vertebrate embryogenesis, when an organism is at one of its most vulnerable life stages. Importantly, GSH content and redox potential can dictate cell fate decisions, which can have profound consequences if altered by early life xenobiotic exposures. Owing to technical limitations, the best available method to detect and quantify changes in GSH has been high-pressure liquid chromatography, a terminal method that prevents suborganism-level resolution of these changes in developing embryos. Here, we describe a protocol that leverages the transparent nature of zebrafish embryos and the compatibility of monochlorobimane with the zebrafish GSH-S-transferase enzymes, to allow for the visualization of changes in GSH via S-glutathionylation in a live, developing embryo. This method can find broad application in developmental biology and toxicology. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Archit Rastogi
- Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts
| | - Alicia R Timme-Laragy
- Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts.,Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
29
|
Mai Y, Peng S, Li H, Gao Y, Lai Z. NOD-like receptor signaling pathway activation: A potential mechanism underlying negative effects of benzo(α)pyrene on zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2021; 240:108935. [PMID: 33161151 DOI: 10.1016/j.cbpc.2020.108935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/11/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023]
Abstract
Benzo(α)pyrene (BaP) is one of typical polycyclic aromatic hydrocarbons (PAHs) in aquatic environments and has been shown to cause toxic effects to aquatic animals. Although the negative effects of BaP have been investigated, the potential toxic mechanisms remain uncharacterized. To explore the potential mechanisms mediating the toxic effects of BaP, zebrafish (Danio rerio) were exposed to BaP for 15 days and the toxic effects of BaP in zebrafish liver were investigated using physiological and transcriptomic analyses. After 15-day BaP exposure, zebrafish liver exhibited abnormalities including increased cytoplasmic vacuolation, inflammatory cell infiltration, swelled nuclei and irregular pigmentation. BaP exposure also induced oxidative stress to the liver of zebrafish. Transcriptomic profiles revealed 5129 differentially expressed genes (DEGs) after 15-days of BaP exposure, and the vast majority of DEGs were up-regulated under BaP treatment. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses suggest that genes related to immune response were significantly dysregulated. Furthermore, the nucleotide-binding, oligomerization domain (NOD)-like receptor signaling pathway was significantly enriched and most of the genes in this pathway exhibited enhanced expression after BaP exposure. These results partially explained the mechanisms underlying the toxic effects of BaP on zebrafish liver. In conclusion, BaP has the potential to induce physiological responses in zebrafish liver through altering associated genes.
Collapse
Affiliation(s)
- Yongzhan Mai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, People's Republic of China
| | - Songyao Peng
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, People's Republic of China
| | - Haiyan Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, People's Republic of China
| | - Yuan Gao
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, People's Republic of China
| | - Zini Lai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, People's Republic of China; Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, People's Republic of China; Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou 510380, People's Republic of China.
| |
Collapse
|
30
|
Teratogenic, Oxidative Stress and Behavioural Outcomes of Three Fungicides of Natural Origin ( Equisetum arvense, Mimosa tenuiflora, Thymol) on Zebrafish ( Danio rerio). TOXICS 2021; 9:toxics9010008. [PMID: 33435474 PMCID: PMC7827758 DOI: 10.3390/toxics9010008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 12/20/2022]
Abstract
The improper use of synthetic fungicides has raised public concerns related to environmental pollution and animal health. Over the years, plant-derived antifungals have been investigated as safer alternatives, although little scientific evidence of its neurodevelopmental effects exist. The main objective of this study was to explore the effects of three alternative natural extracts (Equisetum arvense, Mimosa tenuiflora, Thymol) with antifungal properties during the early development of zebrafish by evaluating different teratogenic, oxidative stress and behavioural outcomes. Following the determination of the 96 h-LC50, exposure to sublethal concentrations showed the safety profile of both E. arvense and M. tenuiflora. However, following 96-h exposure to Thymol, increased lethality, pericardial oedema, yolk and eye deformations, and decreased body length were observed. The reduced and oxidized glutathione (GSH:GSSG) ratio was increased, and the glutathione-s-transferase activity in the group exposed to the highest Thymol concentration. Overall, these results support a more reducing environment associated with possible effects at the cellular proliferation level. In addition, the disruption of behavioural states (fear- and anxiety-like disorders) were noted, pointing to alterations in the c-Jun N-terminal kinase developmental signalling pathway, although further studies are required to explore this rationale. Notwithstanding, the results provide direct evidence of the teratogenic effects of Thymol, which might have consequences for non-target species.
Collapse
|
31
|
Tierbach A, Groh KJ, Schoenenberger R, Schirmer K, Suter MJF. Characterization of the Mercapturic Acid Pathway, an Important Phase II Biotransformation Route, in a Zebrafish Embryo Cell Line. Chem Res Toxicol 2020; 33:2863-2871. [PMID: 32990429 DOI: 10.1021/acs.chemrestox.0c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In view of the steadily increasing number of chemical compounds used in various products and applications, high-throughput toxicity screening techniques can help meeting the needs of 21st century risk assessment. Zebrafish (Danio rerio), especially its early life stages, are increasingly used in such screening efforts. In contrast, cell lines derived from this model organism have received less attention so far. A conceivable reason is the limited knowledge about their overall capacity to biotransform chemicals and the spectrum of expressed biotransformation pathways. One important biotransformation route is the mercapturic acid pathway, which protects organisms from harmful electrophilic compounds. The fully functional pathway involves a succession of several enzymatic reactions. To investigate the mercapturic acid pathway performance in the zebrafish embryonic cell line, PAC2, we analyzed the biotransformation products of the reactions comprising this pathway in the cells exposed to a nontoxic concentration of the reference substrate, 1-chloro-2,4-dinitrobenzene (CDNB). Additionally, we used targeted proteomics to measure the expression of cytosolic glutathione S-transferases (GSTs), the enzyme family catalyzing the first reaction in this pathway. Our results reveal that the PAC2 cell line expresses a fully functional mercapturic acid pathway. All but one of the intermediate CDNB biotransformation products were identified. The presence of the active mercapturic acid pathway in this cell line was further supported by the expression of a large palette of GST enzyme classes. Although the enzymes of the class alpha, one of the dominant GST classes in the zebrafish embryo, were not detected, this did not seem to affect the capacity of the PAC2 cells to biotransform CDNB. Our data provide an important contribution toward using zebrafish cell lines, specifically PAC2, for animal-free high- throughput screening in toxicology and chemical hazard assessment.
Collapse
Affiliation(s)
- Alena Tierbach
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland.,School of Architecture, Civil and Environmental Engineering, EPFL Lausanne, 1015 Lausanne, Switzerland
| | - Ksenia J Groh
- Food Packaging Forum Foundation, 8045 Zürich, Switzerland
| | - René Schoenenberger
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland.,School of Architecture, Civil and Environmental Engineering, EPFL Lausanne, 1015 Lausanne, Switzerland.,Swiss Federal Institute of Technology, Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Marc J-F Suter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland.,Swiss Federal Institute of Technology, Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
32
|
Verma SK, Nisha K, Panda PK, Patel P, Kumari P, Mallick MA, Sarkar B, Das B. Green synthesized MgO nanoparticles infer biocompatibility by reducing in vivo molecular nanotoxicity in embryonic zebrafish through arginine interaction elicited apoptosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136521. [PMID: 31951838 DOI: 10.1016/j.scitotenv.2020.136521] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/28/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Increasing demand for magnesium oxide (MgO) nanoparticles (NP) due to their extensive use in different physical and biological applications has raised concern on their biocompatibility and toxicity to human health and ecological safety. This has instigated quest for detailed information on their toxicity mechanism, along with ecofriendly synthesis as a potential solution. This study explores the toxicity of MgO NP at the molecular level using embryonic zebrafish (Danio rerio) and depicts the green synthesis of MgO (G-MgO) NP using the extract from a medicinal plant Calotropis gigantea. Synthesized G-MgO NP were characterized using microscopy, spectroscopy, and dynamic light scattering. Stable 55 ± 10 nm sized MgO NP were generated with a zeta potential of 45 ± 15 mV and hydrodynamic size 110 ± 20 nm. UV-Vis spectrum showed a standard peak at 357 nm. Comparative cellular toxicity analysis showed higher biocompatibility of G-MgO NP compared to MgO NP with reference to the morphological changes, notochord development, and heartbeat rate in embryonic zebrafish LC50 of G-MgO NP was 520 μg/mL compared to 410 μg/mL of MgO NP. Molecular toxicity investigation revealed that the toxic effects of MgO NP was mainly due to the influential dysregulation in oxidative stress leading to apoptosis because of the accumulation and internalization of nanoparticles and their interaction with cellular proteins like Sod1 and p53, thereby affecting structural integrity and functionality. The study delineated the nanotoxicity of MgO NP and suggests the adoption and use of new green methodology for future production.
Collapse
Affiliation(s)
- Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar 751024, India; Advance Science and Technology Research Centre, Vinoba Bhave University, Hazaribagh 825301, India.
| | - Kumari Nisha
- Advance Science and Technology Research Centre, Vinoba Bhave University, Hazaribagh 825301, India; University Department of Biotechnology, Vinoba Bhave University, Hazaribagh 825301, India
| | - Pritam Kumar Panda
- School of Biotechnology, KIIT University, Bhubaneswar 751024, India; Department of Physics and Astronomy (Materials Theory), Uppsala University, 75121, Sweden
| | - Paritosh Patel
- School of Biotechnology, KIIT University, Bhubaneswar 751024, India
| | - Puja Kumari
- Advance Science and Technology Research Centre, Vinoba Bhave University, Hazaribagh 825301, India
| | - M A Mallick
- Advance Science and Technology Research Centre, Vinoba Bhave University, Hazaribagh 825301, India; University Department of Biotechnology, Vinoba Bhave University, Hazaribagh 825301, India
| | - Biplab Sarkar
- ICAR-Indian Institute of Agricultural Biotechnology (IIAB), IINRG Campus, Namkum, Ranchi, Jharkhand 834010, India
| | - Biswadeep Das
- School of Biotechnology, KIIT University, Bhubaneswar 751024, India.
| |
Collapse
|
33
|
Hernandez EP, Shimazaki K, Niihara H, Umemiya-Shirafuji R, Fujisaki K, Tanaka T. Expression analysis of glutathione S-transferases and ferritins during the embryogenesis of the tick Haemaphysalis longicornis. Heliyon 2020; 6:e03644. [PMID: 32258487 PMCID: PMC7114739 DOI: 10.1016/j.heliyon.2020.e03644] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/14/2020] [Accepted: 03/18/2020] [Indexed: 12/20/2022] Open
Abstract
In the tick life cycle, embryogenesis is the only stage of development wherein no blood meal is required. Nevertheless, even in the absence of a blood meal, which is the source of nutrients as well as the ferrous iron and heme that could cause oxidative stress in ticks, malondialdehyde (MDA) has been reported to increase during this period. Additionally, the knockdown of some oxidative stress-related molecules such as ferritin has resulted in abnormal eggs and embryonic death. Here, we investigate the gene and protein expression profiles of the identified glutathione S-transferases (GSTs) and ferritins (Fers) of the tick H. longicornis during embryogenesis through quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blotting, respectively. We also confirm the lipid peroxidation and ferrous iron concentration level using a thiobarbituric acid reactive substances (TBARS) assay. Finally, we attempt to correlate these findings with the events occurring by establishing a staging process in H. longicornis embryos. Lipid peroxidation increased during the course of embryogenesis, as does the amount of GST proteins. On the other hand, the GST genes have high expression at the 1st day post-oviposition, during the early stage of embryogenesis and at day 10 during the period wherein the germ band is observable. Fer gene expression also starts to increase at day 10 and peaks at day 15. In the ferritin proteins, only the secretory ferritin (Fer2) is detected and constitutively expressed during embryogenesis. Events occurring during embryogenesis, such as energy production and iron metabolism for cellular proliferation and differentiation cause oxidative stress in the embryo. To counteract oxidative stress, it is possible that the embryo may utilize oxidative stress-related molecules such as GSTs and Fer2, which could be either maternally or embryo-derived.
Collapse
Affiliation(s)
- Emmanuel Pacia Hernandez
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0056, Japan
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan
| | - Kei Shimazaki
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0056, Japan
| | - Hiroko Niihara
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0056, Japan
| | - Rika Umemiya-Shirafuji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Kozo Fujisaki
- National Agricultural and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0056, Japan
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan
| |
Collapse
|
34
|
Mihaljević I, Bašica B, Maraković N, Kovačević R, Smital T. Interaction of organotin compounds with three major glutathione S-transferases in zebrafish. Toxicol In Vitro 2019; 62:104713. [PMID: 31706034 DOI: 10.1016/j.tiv.2019.104713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 10/25/2022]
Abstract
Glutathione S-transferases (GSTs) play an important role in cellular detoxification as enzymatic mediators of glutathione (GSH) conjugation with a wide range of deleterious compounds, enabling their easier extrusion out of the organism. GSTs are shown to interact with organotin compounds (OTCs), known environmental pollutants, either as substrates, serving as electrophilic targets to the nucleophilic attack of GSH, or as noncompetitive inhibitors by binding to GST active sites and disrupting their enzymatic functions. There is a wide range of deleterious biological effects caused by OTCs in low concentration range. Their environmental concentrations, further potentiated by bioaccumulation in aquatic organisms, correspond with inhibitory constants reported for Gsts in zebrafish, which implies their environmental significance. Therefore, our main goal in this study was to analyze interactions of three major zebrafish Gsts - Gstp1, Gstr1, and Gstt1a - with a series of ten environmentally relevant organotin compounds. Using previously developed Gst inhibition assay with recombinant Gst proteins and fluorescent monochlorobimane as a model substrate, we determined Gst inhibitory constants for all tested OCTs. Furthermore, in order to elucidate nature of Gst interactions with OTCs, we determined type of interactions between tested Gsts and the strongest OTC inhibitors. Our results showed that OTCs can interact with zebrafish Gsts as competitive, noncompetitive, or mixed-type inhibitors. Determined types of interactions were additionally confirmed in silico by molecular docking studies of tested OTCs with newly developed Gst models. In silico models were further used to reveal structures of tested Gsts in more detail and identify crucial amino acid residues which interact with OTCs within Gst active sites. Our results revealed more extensive involvement of Gstr1 and Gstp1 in detoxification of numerous tested OTCs, with low inhibitory constants in nanomolar to low micromolar range and different types of inhibition, whereas Gstt1a noncompetitively interacted with only two tested OTCs with significantly higher inhibitory constants.
Collapse
Affiliation(s)
- Ivan Mihaljević
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Branka Bašica
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Nikola Maraković
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Radmila Kovačević
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Tvrtko Smital
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| |
Collapse
|
35
|
Rastogi A, Clark CW, Conlin SM, Brown SE, Timme-Laragy AR. Mapping glutathione utilization in the developing zebrafish (Danio rerio) embryo. Redox Biol 2019; 26:101235. [PMID: 31202080 PMCID: PMC6581987 DOI: 10.1016/j.redox.2019.101235] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/23/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023] Open
Abstract
Glutathione (GSH), the most abundant vertebrate endogenous redox buffer, plays key roles in organogenesis and embryonic development, however, organ-specific GSH utilization during development remains understudied. Monochlorobimane (MCB), a dye conjugated with GSH by glutathione-s-transferase (GST) to form a fluorescent adduct, was used to visualize organ-specific GSH utilization in live developing zebrafish (Danio rerio) embryos. Embryos were incubated in 20 μM MCB for 1 h and imaged on an epifluorescence microscope. GSH conjugation with MCB was high during early organogenesis, decreasing as embryos aged. The heart had fluorescence 21-fold above autofluorescence at 24 hpf, dropping to 8.5-fold by 48 hpf; this increased again by 72 hpf to 23.5-fold, and stayed high till 96 hpf (18-fold). The brain had lower fluorescence (10-fold) at 24 and 48 hpf, steadily increasing to 30-fold by 96 hpf. The sensitivity and specificity of MCB staining was then tested with known GSH modulators. A 10-min treatment at 48 hpf with 750 μM tert-butylhydroperoxide, caused organ-specific reductions in staining, with the heart losing 30% fluorescence, and, the brain ventricle losing 47% fluorescence. A 24 h treatment from 24-48 hpf with 100 μM of N-Acetylcysteine (NAC) resulted in significantly increased fluorescence, with the brain ventricle and heart showing 312% and 240% increases respectively, these were abolished upon co-treatment with 5 μM BSO, an inhibitor of the enzyme that utilizes NAC to synthesize GSH. A 60 min 100 μM treatment with ethacrynic acid, a specific GST inhibitor, caused 30% reduction in fluorescence across all measured structures. MCB staining was then applied to test for GSH disruptions caused by the toxicants perfluorooctanesulfonic acid and mono-(2-ethyl-hexyl)phthalate; MCB fluorescence responded in a dose, structure and age-dependent manner. MCB staining is a robust, sensitive method to detect spatiotemporal changes in GSH utilization, and, can be applied to identify sensitive target tissues of toxicants.
Collapse
Affiliation(s)
- Archit Rastogi
- Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003, USA
| | - Christopher W Clark
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Sarah M Conlin
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Sarah E Brown
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Alicia R Timme-Laragy
- Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003, USA; Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
36
|
Bašica B, Mihaljević I, Maraković N, Kovačević R, Smital T. Molecular characterization of zebrafish Gstr1, the only member of teleost-specific glutathione S- transferase class. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 208:196-207. [PMID: 30682622 DOI: 10.1016/j.aquatox.2019.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/18/2018] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Glutathione S-transferases (GSTs) are multifunctional phase II detoxification enzymes with primary function of glutathione conjugation of various endogenous and exogenous compounds. Teleost-specific Gstr1 in zebrafish (Danio rerio) was previously shown to have high expression in toxicologically relevant tissues and high activity towards model substrates. The aim of this study was a detailed functional characterization of zebrafish Gstr1. Molecular docking analyses were used to get novel insight into structural characteristics of Gstr1 and elucidation of the mechanistic interactions with both GSH and various Gstr1 substrates or inhibitors. An initial screening inhibition assay performed using model fluorescence substrate monochlorobimane (MCB) revealed interactions of different endogenous compounds and environmentally relevant xenobiotics with zebrafish Gstr1. All interacting compounds were further analyzed to determine their inhibition type and Ki values. Our data revealed that pregnenolone, progesterone, testosterone, DHEAS and corticosterone competitively inhibited transformation of MCB by Gstr1 with the calculated Ki values in the range 14-26 μM, implying that these hormones are physiological substrates of zebrafish Gstr1. Estrogens had no effect on Gstr1 activity. Taurochenodeoxycholate (TCDC) expressed lower inhibition potency toward Gstr1 with the Ki value of 33 μM. Among tested xenobiotics tributyltin chloride and rifampicin non-enzymatically bound Gstr1 enzyme (the calculated Ki values are 0.26 μM and 65 μM, respectively) and inhibited its activity, showing that these compounds are reversible noncompetitive inhibitors of zebrafish Gstr1. Insecticide diazinon competitively inhibited Gstr1 activity with calculated Ki value of 27 μM, while other Gstr1-interacting insecticides, chlorpyrifos-methyl (CPF-methyl) and malathion, showed allosteric activation-like effect. Among tested pharmaceuticals, tetracycline, erythromycin and methotrexate demonstrated competitive type of inhibition with the calculated Ki values of 17.5, 36.5 and 29 μM, respectively. In summary, we suggest that zebrafish Gstr1 has an important role in steroidogenesis, metabolism and/or physiological actions of androgens, but not estrogens in fish. Finally, our results imply the role of Gstr1 in metabolism of xenobiotics and protection of fish against deleterious environmental contaminants such as organophosphate insecticides and pharmaceuticals.
Collapse
Affiliation(s)
- Branka Bašica
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
| | - Ivan Mihaljević
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Nikola Maraković
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Radmila Kovačević
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
| | - Tvrtko Smital
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia.
| |
Collapse
|
37
|
Peng JX, He PP, Wei PY, Zhang B, Zhao YZ, Li QY, Chen XL, Peng M, Zeng DG, Yang CL, Chen X. Proteomic Responses Under Cold Stress Reveal Unique Cold Tolerance Mechanisms in the Pacific White Shrimp ( Litopenaeus vannamei). Front Physiol 2018; 9:1399. [PMID: 30483139 PMCID: PMC6243039 DOI: 10.3389/fphys.2018.01399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/13/2018] [Indexed: 11/13/2022] Open
Abstract
The Pacific white shrimp (Litopenaeus vannamei), one of the most widely cultured shrimp species in the world, often suffers from cold stress. To understand the molecular mechanism of cold tolerance in Pacific white shrimp, we conducted a proteomic analysis on two contrasting shrimp cultivars, namely, cold-tolerant Guihai2 (GH2) and cold-sensitive Guihai1 (GH1), under normal temperature (28°C), under cold stress (16°C), and during recovery to 28°C. In total, 3,349 proteins were identified, among which 2,736 proteins were quantified. Based on gene ontology annotations, differentially expressed proteins largely belonged to biological processes, cellular components, and molecular functions. KEGG pathway annotations indicated that the main changes were observed in the lysosome, ribosomes, and oxidative phosphorylation. Subcellular localization analysis showed a significant increase in proteins present in cytosol, extracellular regions, and mitochondria. Combining enrichment-based clustering analysis and qRT-PCR analysis, we found that glutathione S-transferase, zinc proteinase, m7GpppX diphosphatase, AP2 transcription complex, and zinc-finger transcription factors played a major role in the cold stress response in Pacific white shrimp. Moreover, structure proteins, including different types of lectin and DAPPUDRAFT, were indispensable for cold stress tolerance of the Pacific white shrimp. Results indicate the molecular mechanisms of the Pacific white shrimp in response to cold stress and provide new insight into breeding new cultivars with increased cold tolerance.
Collapse
Affiliation(s)
- Jin-Xia Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Ping-Ping He
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Pin-Yuan Wei
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Bin Zhang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Yong-Zhen Zhao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Qiang-Yong Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Xiu-Li Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Min Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Di-Gang Zeng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Chun-Ling Yang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Xiaohan Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| |
Collapse
|
38
|
Bräutigam L, Zhang J, Dreij K, Spahiu L, Holmgren A, Abe H, Tew KD, Townsend DM, Kelner MJ, Morgenstern R, Johansson K. MGST1, a GSH transferase/peroxidase essential for development and hematopoietic stem cell differentiation. Redox Biol 2018; 17:171-179. [PMID: 29702404 PMCID: PMC6006721 DOI: 10.1016/j.redox.2018.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 02/06/2023] Open
Abstract
We show for the first time that, in contrast to other glutathione transferases and peroxidases, deletion of microsomal glutathione transferase 1 (MGST1) in mice is embryonic lethal. To elucidate why, we used zebrafish development as a model system and found that knockdown of MGST1 produced impaired hematopoiesis. We show that MGST1 is expressed early during zebrafish development and plays an important role in hematopoiesis. High expression of MGST1 was detected in regions of active hematopoiesis and co-expressed with markers for hematopoietic stem cells. Further, morpholino-mediated knock-down of MGST1 led to a significant reduction of differentiated hematopoietic cells both from the myeloid and the lymphoid lineages. In fact, hemoglobin was virtually absent in the knock-down fish as revealed by diaminofluorene staining. The impact of MGST1 on hematopoiesis was also shown in hematopoietic stem/progenitor cells (HSPC) isolated from mice, where it was expressed at high levels. Upon promoting HSPC differentiation, lentiviral shRNA MGST1 knockdown significantly reduced differentiated, dedicated cells of the hematopoietic system. Further, MGST1 knockdown resulted in a significant lowering of mitochondrial metabolism and an induction of glycolytic enzymes, energetic states closely coupled to HSPC dynamics. Thus, the non-selenium, glutathione dependent redox regulatory enzyme MGST1 is crucial for embryonic development and for hematopoiesis in vertebrates.
Collapse
Affiliation(s)
- Lars Bräutigam
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jie Zhang
- Departments of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Kristian Dreij
- Institute of Environmental Medicine, Division of Biochemical Toxicology, Karolinska Institutet, SE 17177 Stockholm, Sweden
| | - Linda Spahiu
- Institute of Environmental Medicine, Division of Biochemical Toxicology, Karolinska Institutet, SE 17177 Stockholm, Sweden
| | - Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Hiroshi Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-Ku, Nagoya 464-8602, Japan
| | - Kenneth D Tew
- Departments of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Danyelle M Townsend
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Michael J Kelner
- Department of Pathology, University of California, San Diego, MC7721, La Jolla, CA 92093-7721, United States
| | - Ralf Morgenstern
- Institute of Environmental Medicine, Division of Biochemical Toxicology, Karolinska Institutet, SE 17177 Stockholm, Sweden.
| | - Katarina Johansson
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
39
|
Shi W, Ling J, Jiang LL, Zhao DS, Wang LL, Wu ZT, Li P, Wei YJ, Li HJ. Metabolism of five diterpenoid lactones from Dioscorea bulbifera tubers in zebrafish. RSC Adv 2018; 8:7765-7773. [PMID: 35539098 PMCID: PMC9078502 DOI: 10.1039/c7ra12910f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/12/2018] [Indexed: 11/21/2022] Open
Abstract
Diterpenoid lactones (DLs) have been reported to be the main hepatotoxic constituents in Dioscorea bulbifera tubers (DBT), a traditional Chinese medicinal herb. The acquisition of early information regarding its metabolism is critical for evaluating the potential hepatotoxicity of DLs. We investigated, for the first time, the main metabolites of diosbulbin A (DIOA), diosbulbin C (DIOC), diosbulbin (DIOG), diosbulbin (DIOM) and diosbulbin (DIOF) in adult zebrafish. By using ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS), 6, 2, 7, 5 and 4 metabolites of DIOA, DIOC, DIOF, DIOM and DIOG were identified in the zebrafish body and the aqueous solution, respectively. Both phase-I and phase-II metabolites were observed in the metabolic profiles and the metabolic pathways involved in hydroxyl reduction, glucuronidation, glutathione conjugation and sulfation. The above results indicated that hepatocytic metabolism might be the major route of clearance for DLs. This study provided important information for the understanding of the metabolism of DLs in DBT.
Collapse
Affiliation(s)
- Wei Shi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University No. 24 Tongjia Lane Nanjing 210009 China
| | - Jie Ling
- The Third Clinical School of Medicine, Nanjing University of Chinese Medicine 100 Shizi Street Nanjing 210028 China
| | - Li-Long Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University No. 24 Tongjia Lane Nanjing 210009 China
| | - Dong-Sheng Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University No. 24 Tongjia Lane Nanjing 210009 China
| | - Ling-Li Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University No. 24 Tongjia Lane Nanjing 210009 China
| | - Zi-Tian Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University No. 24 Tongjia Lane Nanjing 210009 China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University No. 24 Tongjia Lane Nanjing 210009 China
| | - Ying-Jie Wei
- The Third Clinical School of Medicine, Nanjing University of Chinese Medicine 100 Shizi Street Nanjing 210028 China
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University No. 24 Tongjia Lane Nanjing 210009 China
| |
Collapse
|