1
|
Craig ME, Walker AP, Iversen CM, Knox RG, Yaffar D, York LM. Tree root nutrient uptake kinetics vary with nutrient availability, environmental conditions, and root traits: a global analysis. THE NEW PHYTOLOGIST 2025; 246:2495-2505. [PMID: 40296682 DOI: 10.1111/nph.70140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/19/2025] [Indexed: 04/30/2025]
Abstract
Root nutrient uptake by trees is a critical process that couples carbon and nutrient cycling in forest ecosystems. Yet, root nutrient uptake traits are poorly constrained, and the dynamics of this process are often not represented in models reflecting sparse measurements and understanding of root nutrient uptake physiology that lags those of aboveground physiology in forest ecosystems. Here, we present a global dataset of published nutrient uptake capacity and affinity values for tree species, with the goal of describing global patterns and evaluating responses to environmental drivers and associations with root traits. The dataset contains observations for ammonium, nitrate, and phosphate uptake spanning 77 tree species. Nutrient uptake capacity and affinity varied by more than an order of magnitude for each nutrient. Notably, tropical forests are underrepresented in these observations. Nutrient uptake capacity was generally diminished under nutrient enrichment but enhanced with soil warming and root-mycorrhizal colonization. The magnitude and direction of these effects can depend on the duration of exposure to a given treatment. Species with thinner roots had a tendency toward greater uptake capacity and affinity. Overall, root nutrient uptake traits are highly variable across tree species, yet they depend on environmental drivers and life-history strategies.
Collapse
Affiliation(s)
- Matthew E Craig
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Anthony P Walker
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Colleen M Iversen
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Ryan G Knox
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Daniela Yaffar
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Larry M York
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
2
|
Zhang Y, Liu R, Liu Z, Hu Y, Xia Z, Hu B, Rennenberg H. Consequences of excess urea application on photosynthetic characteristics and nitrogen metabolism of Robinia pseudoacacia seedlings. CHEMOSPHERE 2024; 346:140619. [PMID: 37944768 DOI: 10.1016/j.chemosphere.2023.140619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/09/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Urea is the most frequently used nitrogen (N) fertilizer worldwide. However, the mechanisms in plants to cope with excess urea are largely unknown, especially for woody legumes that can meet their N demand by their own N2-fixation capacity. Here, we studied the immediate consequences of different amounts of urea application and exposure duration on photosynthesis, N metabolism, and the activity of antioxidative enzymes of Robinia pseudoacacia seedlings. For this purpose, seedlings were grown for 3 months under normal N availability with rhizobia inoculation and, subsequently, 50 mg N kg-1 was applied to the soil twice with urea as additional N source. Our results show that excess urea application significantly promoted photosynthesis, which increased by 80.3% and 84.7% compared with CK after the 1st and 2nd urea applications, respectively. The increase in photosynthesis translated into an increase in root and nodule biomass of 88.7% and 82.0%, respectively, while leaf biomass decreased by 4.8% after the first application of urea. The N content in leaves was 92.6% higher than in roots, but excess urea application increased the N content of protein and free amino acids in roots by 25.0%, and 43.3%, respectively. Apparently, enhanced root growth and N storage in the roots constitute mechanisms to prevent the negative consequences of excess N in the shoot upon urea application. Nitrate reductase (NR) activity of leaves and roots increased by 74.4% and 26.3%, respectively. Glutathione reductase (GR) activity in leaves and roots was enhanced by 337% and 34.0%, respectively, but then decreased rapidly to the initial level before fertilization. This result shows that not only N metabolism, but also antioxidative capacity was transiently promoted by excess urea application. Apparently, excess urea application initially poses oxidative stress to the plants that is immediately counteracted by enhanced scavenging of reactive oxygen species via enhanced GR activity.
Collapse
Affiliation(s)
- Yong Zhang
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, PR China
| | - Rui Liu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, PR China
| | - Zhenshan Liu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, PR China
| | - Yanping Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, PR China
| | - Zhuyuan Xia
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, PR China
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, PR China.
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, PR China
| |
Collapse
|
3
|
Chen P, Li L, Xia S, Zhang R, Zhang R, Zeng XM, Shuai D, Liu Y, Li ZG. Enhancement patterns of potassium on nitrogen transport and functional genes in cotton vary with nitrogen levels. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111824. [PMID: 37572966 DOI: 10.1016/j.plantsci.2023.111824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/17/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
The application of potassium (K) in conjunction with nitrogen (N) has been shown to enhance N use efficiency. However, there is still a need for further understanding of the optimal ratios and molecular regulatory mechanisms, particularly in soil-cotton systems. Here, a field trial was conducted, involving varying rates of N and K, alongside pot and hydroponic experiments. The objective was to assess the impact of N-K interaction on the absorption, transport and distribution of N in cotton. The results showed that K supply at 90 and 240 kg ha-1 had a beneficial impact on N uptake and distribution to both seed and lint, resulting in the highest N use efficiency ranging from 22% to 62% and yield improvements from 20% to 123%. The increase in stem and root diameters, rather than the quantify of xylem vessels and phloem sieve tubes, facilitated the uptake and transport of N due to the provision of K. At the molecular level, K supply upregulated the expression levels of genes encoding GhNRT2.1 transporter and GhSLAH3 channel in cotton roots to promote N uptake and GhNRT1.5/NPF7.3 genes to transport N to shoot under low-N conditions. However, under high-N conditions, K supply induced anion channel genes (GhSLAH4) of roots to promote N uptake and genes encoding GhNRT1.5/NPF7.3 and GhNRT1.8/NPF7.2 transporters to facilitate NO3- unloading from xylem to mesophyll cell in high-N plants. Furthermore, K supply resulted in the upregulation of gene expression for GhGS2 in leaves, while simultaneously downregulating the expression of GhNADH-GOGAT, GhGDH1 and GhGDH3 genes in high-N roots. The enzyme activities of nitrite reductase and glutamine synthetase increased and glutamate dehydrogenase decreased, but the concentration of NO3- and soluble protein exhibited a significant increase and free amino acid decreased in the shoots subsequent to K supply.
Collapse
Affiliation(s)
- Peng Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Linyang Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Shujie Xia
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Runhua Zhang
- Wuhan Academy of Agriculture Science and Technology, Vegetable Research Institute, Wuhan 430345, China
| | - Runqin Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xiao-Min Zeng
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Du Shuai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of Conservation Biology / Economic Botany / Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Zhi-Guo Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
4
|
Bělonožníková K, Černý M, Hýsková V, Synková H, Valcke R, Hodek O, Křížek T, Kavan D, Vaňková R, Dobrev P, Haisel D, Ryšlavá H. Casein as protein and hydrolysate: Biostimulant or nitrogen source for Nicotiana tabacum plants grown in vitro? PHYSIOLOGIA PLANTARUM 2023; 175:e13973. [PMID: 37402155 DOI: 10.1111/ppl.13973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/06/2023]
Abstract
In contrast to inorganic nitrogen (N) assimilation, the role of organic N forms, such as proteins and peptides, as sources of N and their impact on plant metabolism remains unclear. Simultaneously, organic biostimulants are used as priming agents to improve plant defense response. Here, we analysed the metabolic response of tobacco plants grown in vitro with casein hydrolysate or protein. As the sole source of N, casein hydrolysate enabled tobacco growth, while protein casein was used only to a limited extent. Free amino acids were detected in the roots of tobacco plants grown with protein casein but not in the plants grown with no source of N. Combining hydrolysate with inorganic N had beneficial effects on growth, root N uptake and protein content. The metabolism of casein-supplemented plants shifted to aromatic (Trp), branched-chain (Ile, Leu, Val) and basic (Arg, His, Lys) amino acids, suggesting their preferential uptake and/or alterations in their metabolic pathways. Complementarily, proteomic analysis of tobacco roots identified peptidase C1A and peptidase S10 families as potential key players in casein degradation and response to N starvation. Moreover, amidases were significantly upregulated, most likely for their role in ammonia release and impact on auxin synthesis. In phytohormonal analysis, both forms of casein influenced phenylacetic acid and cytokinin contents, suggesting a root system response to scarce N availability. In turn, metabolomics highlighted the stimulation of some plant defense mechanisms under such growth conditions, that is, the high concentrations of secondary metabolites (e.g., ferulic acid) and heat shock proteins.
Collapse
Affiliation(s)
- Kateřina Bělonožníková
- Department of Biochemistry, Faculty of Science, Charles University, Praha 2, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Veronika Hýsková
- Department of Biochemistry, Faculty of Science, Charles University, Praha 2, Czech Republic
| | - Helena Synková
- Institute of Experimental Botany, Czech Academy of Sciences, Praha 6, Czech Republic
| | - Roland Valcke
- Molecular and Physical Plant Physiology, Faculty of Sciences, Hasselt University, Diepenbeek, Belgium
| | - Ondřej Hodek
- Department of Analytical Chemistry, Faculty of Science, Charles University, Praha 2, Czech Republic
| | - Tomáš Křížek
- Department of Analytical Chemistry, Faculty of Science, Charles University, Praha 2, Czech Republic
| | - Daniel Kavan
- Department of Biochemistry, Faculty of Science, Charles University, Praha 2, Czech Republic
| | - Radomíra Vaňková
- Institute of Experimental Botany, Czech Academy of Sciences, Praha 6, Czech Republic
| | - Petre Dobrev
- Institute of Experimental Botany, Czech Academy of Sciences, Praha 6, Czech Republic
| | - Daniel Haisel
- Institute of Experimental Botany, Czech Academy of Sciences, Praha 6, Czech Republic
| | - Helena Ryšlavá
- Department of Biochemistry, Faculty of Science, Charles University, Praha 2, Czech Republic
| |
Collapse
|
5
|
Khokon AM, Janz D, Polle A. Ectomycorrhizal diversity, taxon-specific traits and root N uptake in temperate beech forests. THE NEW PHYTOLOGIST 2023. [PMID: 37229659 DOI: 10.1111/nph.18978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
Roots of forest trees are colonized by a diverse spectrum of ectomycorrhizal (EM) fungal species differing in their nitrogen (N) acquisition abilities. Here, we hypothesized that root N gain is the result of EM fungal diversity or related to taxon-specific traits for N uptake. To test our hypotheses, we traced 15 N enrichment in fine roots, coarse roots and taxon-specific ectomycorrhizas in temperate beech forests in two regions and three seasons, feeding 1 mM NH4 NO3 labelled with either 15 NH4 + or 15 NO3 - . We morphotyped > 45 000 vital root tips and identified 51 of 53 detected EM species by sequencing. EM root tips exhibited strong, fungal taxon-specific variation in 15 N enrichment with higher NH4 + than NO3 - enrichment. The translocation of N into the upper parts of the root system increased with increasing EM fungal diversity. Across the growth season, influential EM species predicting root N gain were not identified, probably due to high temporal dynamics of the species composition of EM assemblages. Our results support that root N acquisition is related to EM fungal community-level traits and highlight the importance of EM diversity for tree N nutrition.
Collapse
Affiliation(s)
- Anis Mahmud Khokon
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, 37077, Germany
- Functional Forest Ecology, Universität Hamburg, Barsbüttel, 22885, Germany
| | - Dennis Janz
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, 37077, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, 37077, Germany
| |
Collapse
|
6
|
Xiong H, Ma H, Hu B, Zhao H, Wang J, Rennenberg H, Shi X, Zhang Y. Nitrogen fertilization stimulates nitrogen assimilation and modifies nitrogen partitioning in the spring shoot leaves of citrus (Citrus reticulata Blanco) trees. JOURNAL OF PLANT PHYSIOLOGY 2021; 267:153556. [PMID: 34737128 DOI: 10.1016/j.jplph.2021.153556] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
The spring shoot leaves are important sites of nitrogen (N) metabolism in citrus trees. Understanding the physiological and metabolic response of the spring shoot leaves under varying N fertilization is fundamental to the fertilization management in citrus orchards. Thus, the processes affecting N composition, the activities of N metabolism related enzymes, and the expression of relevant genes were explored in spring shoot leaves under four N levels (0, 207, 275, 413 g N tree-1 y-1, as N0, N207, N275, N413). The results showed that, compared with N0, N275 significantly increased total N by 24.81%, which was mainly attributed to enhancement of structural N by 30.92%, free amino acid N by 40.91% and nitrate N by 41.33%. The relative expression of nitrate reductase (NR) and glutamate dehydrogenase (GDH) under N275 increased by 19.32% and 73.48%, respectively, compared with that under N0 treatment. Compared with N0 treatment, the NR transcription level under N275 treatment increased by 381%. The relative transcription levels of NADP-GDH and GDH1 also increased with increasing N fertilization. However, compared with that under N275, the relative transcription of GDH2 under N413 treatment was inhibited. Therefore, the transcript abundance of NR, NADP-GDH,GDH1 and GDH2 affected the activities of NR and GDH and thereby contributed to the regulation of N composition in the leaves. In addition, the activities of glutamine synthetase and nitrite reductase were largely unaffected or even declined in the N207, N275 and N413 treatments compared with the N0. This study elucidated the mechanism of primary N metabolism and partitioning in citrus leaves and provided a theoretical basis for N management in citrus orchards.
Collapse
Affiliation(s)
- Huaye Xiong
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400716, China.
| | - Haotian Ma
- College of Forensic Medicine, Xi' an Jiaotong University, Xi'an, 710061, China
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Huanyu Zhao
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400716, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400716, China
| | - Jie Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400716, China; State Cultivation Base of Eco-agriculture for Southwest Mountainous Land, Southwest University, Chongqing, Chongqing, 400716, China; National Monitoring Station of Soil Fertility and Fertilizer Efficiency on Purple Soils, Southwest University, Chongqing, 400716, China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Xiaojun Shi
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400716, China; State Cultivation Base of Eco-agriculture for Southwest Mountainous Land, Southwest University, Chongqing, Chongqing, 400716, China; National Monitoring Station of Soil Fertility and Fertilizer Efficiency on Purple Soils, Southwest University, Chongqing, 400716, China.
| | - Yueqiang Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400716, China; State Cultivation Base of Eco-agriculture for Southwest Mountainous Land, Southwest University, Chongqing, Chongqing, 400716, China; National Monitoring Station of Soil Fertility and Fertilizer Efficiency on Purple Soils, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
7
|
Reuter R, Ferlian O, Tarkka M, Eisenhauer N, Pritsch K, Simon J. Tree species rather than type of mycorrhizal association drive inorganic and organic nitrogen acquisition in tree-tree interactions. TREE PHYSIOLOGY 2021; 41:2096-2108. [PMID: 33929538 DOI: 10.1093/treephys/tpab059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Mycorrhizal fungi play an important role for the nitrogen (N) supply of trees. The influence of different mycorrhizal types on N acquisition in tree-tree interactions is, however, not well understood, particularly with regard to the competition for growth-limiting N. We studied the effect of competition between temperate forest tree species on their inorganic and organic N acquisition in relation to their mycorrhizal type (i.e., arbuscular mycorrhiza or ectomycorrhiza). In a field experiment, we quantified net N uptake capacity from inorganic and organic N sources using 15N/13C stable isotopes for arbuscular mycorrhizal tree species (i.e., Acer pseudoplatanus L., Fraxinus excelsior L., and Prunus avium L.) as well as ectomycorrhizal tree species (i.e., Carpinus betulus L., Fagus sylvatica L., and Tilia platyphyllos Scop.). All species were grown in intra- and interspecific competition (i.e., monoculture or mixture). Our results showed that N sources were not used complementarily depending on a species' mycorrhizal association, but their uptake rather depended on the competitor, indicating species-specific effects. Generally, ammonium was preferred over glutamine and glutamine over nitrate. In conclusion, our findings suggest that the inorganic and organic N acquisition of the studied temperate tree species is less regulated by mycorrhizal association but rather by the availability of specific N sources in the soil as well as the competitive environment of different tree species.
Collapse
Affiliation(s)
- Robert Reuter
- Plant Interactions Ecophysiology Group, Department of Biology, University of Konstanz, Universitätsstraße 10, Konstanz 78457, Germany
| | - Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstraße 4, Leipzig 04103, Germany
| | - Mika Tarkka
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig 04103, Germany
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Theodor-Lieser-Straße 5, Halle 06120, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstraße 4, Leipzig 04103, Germany
| | - Karin Pritsch
- Institute of Biochemical Plant Pathology, HelmholtzZentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH, Ingolstaedter Landstraße 1, Oberschleiβheim 85764, Germany
| | - Judy Simon
- Plant Interactions Ecophysiology Group, Department of Biology, University of Konstanz, Universitätsstraße 10, Konstanz 78457, Germany
| |
Collapse
|
8
|
Legay N, Grassein F, Arnoldi C, Segura R, Laîné P, Lavorel S, Clément J. Studies of NH
4
+
and NO
3
−
uptake ability of subalpine plants and resource‐use strategy identified by their functional traits. OIKOS 2020. [DOI: 10.1111/oik.07282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Nicolas Legay
- Laboratoire d'Ecologie Alpine, CNRS UMR 5553, Université Joseph Fourier, BP 53 FR‐38041 Grenoble Cedex 09 France
- INSA Centre Val de Loire, Univ. de Tours, CNRS, UMR 7324 CITERES Tours France
| | - Fabrice Grassein
- Univ. de Caen Basse‐Normandie, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S Caen France
- INRA, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S Caen France
| | - Cindy Arnoldi
- Laboratoire d'Ecologie Alpine, CNRS UMR 5553, Université Joseph Fourier, BP 53 FR‐38041 Grenoble Cedex 09 France
| | - Raphael Segura
- Univ. de Caen Basse‐Normandie, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S Caen France
- INRA, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S Caen France
| | - Philippe Laîné
- Univ. de Caen Basse‐Normandie, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S Caen France
- INRA, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S Caen France
| | - Sandra Lavorel
- Laboratoire d'Ecologie Alpine, CNRS UMR 5553, Université Joseph Fourier, BP 53 FR‐38041 Grenoble Cedex 09 France
| | - Jean‐Christophe Clément
- Laboratoire d'Ecologie Alpine, CNRS UMR 5553, Université Joseph Fourier, BP 53 FR‐38041 Grenoble Cedex 09 France
- CARRTEL, UMR 0042 INRA‐Univ. Savoie Mont Blanc Le Bourget du Lac France
| |
Collapse
|
9
|
Du B, Pang J, Hu B, Allen DE, Bell TL, Pfautsch S, Netzer F, Dannenmann M, Zhang S, Rennenberg H. N 2-fixing black locust intercropping improves ecosystem nutrition at the vulnerable semi-arid Loess Plateau region, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:333-345. [PMID: 31233915 DOI: 10.1016/j.scitotenv.2019.06.245] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/12/2019] [Accepted: 06/15/2019] [Indexed: 06/09/2023]
Abstract
The Loess Plateau in northwestern China constitutes one of the most vulnerable semi-arid regions in the world due to long-term decline in forest cover, soil nutrient depletion by agricultural use, and attendant soil erosion. Here, we characterize the significance of N2-fixing Robinia pseudoacacia L. and non-N2-fixing Juglans regia L. for improving nutrient availability and water retention in soil by comparing a range of biological and physicochemical features in monoculture and mixed plantations of both species. We found that N2-fixing Robinia facilitates the nitrogen and phosphorus composition of non-N2-fixing Juglans in the mixed stand as a consequence of improved soil nutrient availability, evident as higher levels of nitrogen and labile carbon compared to mono-specific stands. This demonstrates that intercropping N2-fixing Robinia with non-N2-fixing woody plants can greatly improve soil carbon and nitrogen bioavailability as well as whole-plant nutrition and can potentially mediate water retention with additional sequestration of soil organic carbon in the range of 1 t C ha-1 year-1. Thus, intercropping N2-fixing woody species (e.g. Robinia pseudoacacia or Hippophae rhamnoides L.) with locally important non-N2-fixing tree and shrub species should be considered in afforestation strategies for landscape restoration.
Collapse
Affiliation(s)
- Baoguo Du
- College of Life Science and Biotechnology, Mianyang Normal University, 166 Mianxing Road West, Mianyang, 621000, China; Institute of Forest Sciences, Chair of Tree Physiology, University of Freiburg, Georges-Koehler-Allee 53/54, Freiburg, 79110, Germany
| | - Junzhu Pang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Bin Hu
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi, 712100, China; Institute of Forest Sciences, Chair of Tree Physiology, University of Freiburg, Georges-Koehler-Allee 53/54, Freiburg, 79110, Germany.
| | - Diane E Allen
- School of Agriculture and Food Sciences, University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Tina L Bell
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Sebastian Pfautsch
- School of Social Science and Psychology, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Florian Netzer
- Institute of Forest Sciences, Chair of Tree Physiology, University of Freiburg, Georges-Koehler-Allee 53/54, Freiburg, 79110, Germany
| | - Michael Dannenmann
- Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstrasse 19, Garmisch-Partenkirchen, 82467, Germany
| | - Shuoxin Zhang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Heinz Rennenberg
- Institute of Forest Sciences, Chair of Tree Physiology, University of Freiburg, Georges-Koehler-Allee 53/54, Freiburg, 79110, Germany; College of Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Scheerer U, Trube N, Netzer F, Rennenberg H, Herschbach C. ATP as Phosphorus and Nitrogen Source for Nutrient Uptake by Fagus sylvatica and Populus x canescens Roots. FRONTIERS IN PLANT SCIENCE 2019; 10:378. [PMID: 31019519 PMCID: PMC6458296 DOI: 10.3389/fpls.2019.00378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 03/12/2019] [Indexed: 05/08/2023]
Abstract
The present study elucidated whether roots of temperate forest trees can take up organic phosphorus in the form of ATP. Detached non-mycorrhizal roots of beech (Fagus sylvatica) and gray poplar (Populus x canescens) were exposed under controlled conditions to 33P-ATP and/or 13C/15N labeled ATP in the presence and absence of the acid phosphatase inhibitor MoO4 2-. Accumulation of the respective label in the roots was used to calculate 33P, 13C and 15N uptake rates in ATP equivalents for comparison reason. The present data shown that a significant part of ATP was cleaved outside the roots before phosphate (Pi) was taken up. Furthermore, nucleotide uptake seems more reasonable after cleavage of at least one Pi unit as ADP, AMP and/or as the nucleoside adenosine. Similar results were obtained when still attached mycorrhizal roots of adult beech trees and their natural regeneration of two forest stands were exposed to ATP in the presence or absence of MoO4 2-. Cleavage of Pi from ATP by enzymes commonly present in the rhizosphere, such as extracellular acid phosphatases, ecto-apyrase and/or nucleotidases, prior ADP/AMP/adenosine uptake is highly probable but depended on the soil type and the pH of the soil solution. Although uptake of ATP/ADP/AMP cannot be excluded, uptake of the nucleoside adenosine without breakdown into its constituents ribose and adenine is highly evident. Based on the 33P, 13C, and 15N uptake rates calculated as equivalents of ATP the 'pro and contra' for the uptake of nucleotides and nucleosides is discussed. Short Summary Roots take up phosphorus from ATP as Pi after cleavage but might also take up ADP and/or AMP by yet unknown nucleotide transporter(s) because at least the nucleoside adenosine as N source is taken up without cleavage into its constituents ribose and adenine.
Collapse
Affiliation(s)
- Ursula Scheerer
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Niclas Trube
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Florian Netzer
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Chair of Ecosystem Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Cornelia Herschbach
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Chair of Ecosystem Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Bueno A, Pritsch K, Simon J. Species-Specific Outcome in the Competition for Nitrogen Between Invasive and Native Tree Seedlings. FRONTIERS IN PLANT SCIENCE 2019; 10:337. [PMID: 30984215 PMCID: PMC6449475 DOI: 10.3389/fpls.2019.00337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 03/04/2019] [Indexed: 05/16/2023]
Abstract
The outcome of competition for nitrogen (N) between native and invasive tree species is a major concern when considering increasing anthropogenic N deposition. Our study investigated whether three native (i.e., Fagus sylvatica, Quercus robur, and Pinus sylvestris) and two invasive woody species (i.e., Prunus serotina and Robinia pseudoacacia) showed different responses regarding morphological and physiological parameters (i.e., biomass and growth indices, inorganic vs. organic N acquisition strategies, and N allocation to N pools) depending on the identity of the competing species, and whether these responses were mediated by soil N availability. In a greenhouse experiment, tree seedlings were planted either single or in native-invasive competition at low and high soil N availability. We measured inorganic and organic N acquisition using 15N labeling, total biomass, growth indices, as well as total soluble amino acid-N and protein-N levels in the leaves and fine roots of the seedlings. Our results indicate that invasive species have a competitive advantage via high growth rates, whereas native species could avoid competition with invasives via their higher organic N acquisition suggesting a better access to organic soil N sources. Moreover, native species responded to competition with distinct species- and parameter-specific strategies that were partly mediated by soil N availability. Native tree seedlings in general showed a stronger response to invasive P. serotina than R. pseudoacacia, and their strategies to cope with competition reflect the different species' life history strategies and physiological traits. Considering the responses of native and invasive species, our results suggest that specifically Q. robur seedlings have a competitive advantage over those of R. pseudoacacia but not P. serotina. Furthermore, native and invasive species show stronger responses to higher soil N availability under competition compared to when growing single. In conclusion, our study provides insights into the potential for niche differentiation between native and invasive species by using different N forms available in the soil, the combined effects of increased soil N availability and competition on tree seedling N nutrition, as well as the species-specific nature of competition between native and invasive tree seedlings which could be relevant for forest management strategies.
Collapse
Affiliation(s)
- Andrea Bueno
- Plant Interactions Ecophysiology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Karin Pritsch
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH, Neuherberg, Germany
| | - Judy Simon
- Plant Interactions Ecophysiology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
12
|
Bueno A, Greenfield L, Pritsch K, Schmidt S, Simon J. Responses to competition for nitrogen between subtropical native tree seedlings and exotic grasses are species-specific and mediated by soil N availability. TREE PHYSIOLOGY 2019; 39:404-416. [PMID: 30184191 DOI: 10.1093/treephys/tpy096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/25/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
Competitive interactions between native tree seedlings and exotic grasses frequently hinder forest restoration. We investigated the consequences of competition with exotic grasses on the growth and net nitrogen (N) uptake capacity of native rainforest seedlings used for reforestation depending on soil N availability and N source. Tree seedlings and grasses were grown in the greenhouse in different competition regimes (one tree species vs one grass species) and controls (grass monocultures or single tree seedlings) at low and high soil N. After 8 weeks, we quantified net N uptake capacity using 15N-labelled organic (i.e., glutamine and arginine) and inorganic (i.e., ammonium and nitrate) N sources and biomass indices. Depending on soil N availability, we observed different species-specific responses to growth and N acquisition. Tree seedlings generally increased their net N uptake capacity in response to competition with grasses, although overall seedling growth was unaffected. In contrast, the responses to competition by the grasses were species-specific and varied with soil N availability. The different N acquisition strategies suggest the avoidance of competition for N between trees and grasses. Overall, the results highlight that quantifying underlying mechanisms of N acquisition complements the information on biomass allocation as a measure of responses to competition, particularly with varying environmental conditions.
Collapse
Affiliation(s)
- Andrea Bueno
- Plant Interactions Ecophysiology Group, Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz, Germany
| | - Lucy Greenfield
- Plant Nutrition and Ecophysiology Group, School of Agriculture and Food Science, The University of Queensland, St Lucia Qld, Australia
- School of Earth and Environment, The University of Leeds, Leeds, UK
| | - Karin Pritsch
- Institute of Biochemical Plant Pathology, HelmholtzZentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH, Ingolstaedter Landstrasse 1, 85764 Oberschleiβheim, Germany
| | - Susanne Schmidt
- Plant Nutrition and Ecophysiology Group, School of Agriculture and Food Science, The University of Queensland, St Lucia Qld, Australia
| | - Judy Simon
- Plant Interactions Ecophysiology Group, Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz, Germany
| |
Collapse
|
13
|
Nitrogen Nutrition of European Beech Is Maintained at Sufficient Water Supply in Mixed Beech-Fir Stands. FORESTS 2018. [DOI: 10.3390/f9120733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Research highlights: Interaction effects of coniferous on deciduous species have been investigated before the background of climate change. Background and objectives: The cultivation of European beech (Fagus sylvatica L.) in mixed stands has currently received attention, since the future performance of beech in mid-European forest monocultures in a changing climate is under debate. We investigated water relations and nitrogen (N) nutrition of beech in monocultures and mixed with silver-fir (Abies alba Mill.) in the Black Forest at different environmental conditions, and in the Croatian Velebit at the southern distribution limit of beech, over a seasonal course at sufficient water availability. Material and methods: Water relations were analyzed via δ13C signatures, as integrative measures of water supply assuming that photosynthesis processes were not impaired. N nutrition was characterized by N partitioning between soluble N fractions and structural N. Results: In the relatively wet year 2016, water relations of beech leaves, fir needles and roots differed by season, but generally not between beech monocultures and mixed cultivation. At all sites, previous and current year fir needles revealed significantly lower total N contents over the entire season than beech leaves. Fir fine roots exhibited higher or similar amounts of total N compared to needles. Correlation analysis revealed a strong relationship of leaf and root δ13C signatures with soil parameters at the mixed beech stands, but not at pure beech stands. While glutamine (Gln) uptake capacity of beech roots was strongly related to soil N in the monoculture beech stands, arginine (Arg) uptake capacities of beech roots were strongly related to soil N in mixed stands. Conclusions: Leaf N contents indicated a facilitative effect of silver-fir on beech on sites where soil total N concentrations where low, but an indication of competition effect where it was high. This improvement could be partially attributed to protein contents, but not to differences in uptake capacity of an individual N source. From these results it is concluded that despite similar performance of beech trees at the three field sites investigated, the association with silver-fir mediated interactive effects between species association, climate and soil parameters even at sufficient water supply.
Collapse
|
14
|
Dion PP, Jämtgård S, Bertrand A, Pepin S, Dorais M. Organic Nitrogen Uptake and Assimilation in Cucumis sativus Using Position-Specific Labeling and Compound-Specific Isotope Analysis. FRONTIERS IN PLANT SCIENCE 2018; 9:1596. [PMID: 30459787 PMCID: PMC6232311 DOI: 10.3389/fpls.2018.01596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/15/2018] [Indexed: 05/18/2023]
Abstract
Organic nitrogen is now considered a significant source of N for plants. Although organic management practices increase soil organic C and N content, the importance of organic N as a source of crop N under organic farming management systems is still poorly understood. While dual-labeled (13C and 15N) molecule methods have been developed to study amino acid uptake by plants, multiple biases may arise from pre-uptake mineralization by microorganisms or post-uptake metabolism by the plant. We propose the combination of different isotopic analysis methods with molecule isotopologues as a novel approach to improve the accuracy of measured amino acid uptake rates in the total N budget of cucumber seedlings and provide a better characterization of post-uptake metabolism. Cucumber seedlings were exposed to solutions containing L-Ala-1-13C,15N or U-L-Ala-13C3,15N, in combination with ammonium nitrate, at total N concentrations ranging from 0 to 15 mM N and at inorganic/organic N ratios from 10:1 to 500:1. Roots and shoots were then subjected to bulk stable isotope analysis (BSIA) by Isotope Ratio Mass Spectrometry (IRMS), and to compound-specific stable isotope analysis (CSIA) of the free amino acids by Gas Chromatography - Combustion - Isotope Ratio Mass Spectrometry (GC-C-IRMS). Plants exposed to a lower inorganic:organic N ratio acquired up to 6.84% of their N from alanine, compared with 0.94% at higher ratio. No 13C from L-Ala-1-13C,15N was found in shoot tissues suggesting that post-uptake metabolism of Ala leads to the loss of the carboxyl-C as CO2. CSIA of the free amino acids in roots confirmed that intact Ala is indeed taken up by the roots, but that it is rapidly metabolized. C atoms other than from the carboxyl group and amino-N from Ala are assimilated in other amino acids, predominantly Glu, Gln, Asp, and Asn. Uptake rates reported by CSIA of the free amino acids are nevertheless much lower (16-64 times) than those reported by BSIA. Combining the use of isotopologues of amino acids with compound-specific isotope analysis helps reduce the bias in the assessment of organic N uptake and improves the understanding of organic N assimilation especially in the context of organic horticulture.
Collapse
Affiliation(s)
- Pierre-Paul Dion
- Department of Plant Sciences, Centre de recherche et d’innovation sur les végétaux, Université Laval, Québec, QC, Canada
| | - Sandra Jämtgård
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Annick Bertrand
- Agriculture and Agri-Food Canada, Quebec Research and Development Centre, Québec, QC, Canada
| | - Steeve Pepin
- Department of Soil and Agri-Food Engineering, Centre de recherche et d’innovation sur les végétaux, Université Laval, Québec, QC, Canada
| | - Martine Dorais
- Department of Plant Sciences, Centre de recherche et d’innovation sur les végétaux, Université Laval, Québec, QC, Canada
| |
Collapse
|
15
|
Han R, Khalid M, Juan J, Huang D. Exogenous glycine inhibits root elongation and reduces nitrate-N uptake in pak choi (Brassica campestris ssp. Chinensis L.). PLoS One 2018; 13:e0204488. [PMID: 30240454 PMCID: PMC6150514 DOI: 10.1371/journal.pone.0204488] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 09/10/2018] [Indexed: 11/19/2022] Open
Abstract
Nitrogen (N) supply, including NO3--N and organic N in the form of amino acids can influence the morphological attributes of plants. For example, amino acids contribute to plant nutrition; however, the effects of exogenous amino acids on NO3--N uptake and root morphology have received little attention. In this study, we evaluated the effects of exogenous glycine (Gly) on root growth and NO3--N uptake in pak choi (Brassica campestris ssp. Chinensis L.). Addition of Gly to NO3--N agar medium or hydroponic solution significantly decreased pak choi seedling root length; these effects of Gly on root morphology were not attributed to the proportion of N supply derived from Gly. When pak choi seedlings were exposed to mixtures of Gly and NO3--N in hydroponic culture, Gly significantly reduced 15NO3--N uptake but significantly increased the number of root tips per unit root length, root activity and 15NO3--N uptake rate per unit root length. In addition, 15N-Gly was taken up into the plants. In contrast to absorbed NO3--N, which was mostly transported to the shoots, a larger proportion of absorbed Gly was retained in the roots. Exogenous Gly enhanced root 1-aminocyclopropane-1-carboxylic acid synthase (ACS) and oxidase (ACO) activities and ethylene production. The ethylene antagonists aminoethoxyvinylglycine (0.5 μM AVG) and silver nitrate (10 μM AgNO3) partly reversed Gly-induced inhibition of primary root elongation on agar plates and increased the NO3--N uptake rate under hydroponic conditions, indicating exogenous Gly exerts these effects at least partly by enhancing ethylene production in roots. These findings suggest Gly substantially affects root morphology and N uptake and provide new information on the specific responses elicited by organic N sources.
Collapse
Affiliation(s)
- Ruifeng Han
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P. R. China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, P. R. China
| | - Muhammad Khalid
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P. R. China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, P. R. China
| | - Jiaxiang Juan
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P. R. China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, P. R. China
| | - Danfeng Huang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P. R. China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, P. R. China
| |
Collapse
|
16
|
Expression of novel nitrate reductase genes in the harmful alga, Chattonella subsalsa. Sci Rep 2018; 8:13417. [PMID: 30194416 PMCID: PMC6128913 DOI: 10.1038/s41598-018-31735-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 08/23/2018] [Indexed: 12/20/2022] Open
Abstract
Eukaryotic nitrate reductase (NR) catalyzes the first step in nitrate assimilation and is regulated transcriptionally in response to external cues and intracellular metabolic status. NRs are also regulated post-translationally in plants by phosphorylation and binding of 14-3-3 proteins at conserved serine residues. 14-3-3 binding motifs have not previously been identified in algal NRs. A novel NR (NR2-2/2HbN) with a 2/2 hemoglobin domain was recently described in the alga Chattonella subsalsa. Here, a second NR (NR3) in C. subsalsa is described with a 14-3-3 binding motif but lacking the Heme-Fe domain found in other NRs. Transcriptional regulation of both NRs was examined in C. subsalsa, revealing differential gene expression over a diel light cycle, but not under constant light. NR2 transcripts increased with a decrease in temperature, while NR3 remained unchanged. NR2 and NR3 transcript levels were not inhibited by growth on ammonium, suggesting constitutive expression of these genes. Results indicate that Chattonella responds to environmental conditions and intracellular metabolic status by differentially regulating NR transcription, with potential for post-translational regulation of NR3. A survey of algal NRs also revealed the presence of 14-3-3 binding motifs in other algal species, indicating the need for future research on regulation of algal NRs.
Collapse
|
17
|
Ma Z, Guo D, Xu X, Lu M, Bardgett RD, Eissenstat DM, McCormack ML, Hedin LO. Evolutionary history resolves global organization of root functional traits. Nature 2018; 555:94-97. [PMID: 29466331 DOI: 10.1038/nature25783] [Citation(s) in RCA: 277] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/24/2018] [Indexed: 12/26/2022]
Abstract
Plant roots have greatly diversified in form and function since the emergence of the first land plants, but the global organization of functional traits in roots remains poorly understood. Here we analyse a global dataset of 10 functionally important root traits in metabolically active first-order roots, collected from 369 species distributed across the natural plant communities of 7 biomes. Our results identify a high degree of organization of root traits across species and biomes, and reveal a pattern that differs from expectations based on previous studies of leaf traits. Root diameter exerts the strongest influence on root trait variation across plant species, growth forms and biomes. Our analysis suggests that plants have evolved thinner roots since they first emerged in land ecosystems, which has enabled them to markedly improve their efficiency of soil exploration per unit of carbon invested and to reduce their dependence on symbiotic mycorrhizal fungi. We also found that diversity in root morphological traits is greatest in the tropics, where plant diversity is highest and many ancestral phylogenetic groups are preserved. Diversity in root morphology declines sharply across the sequence of tropical, temperate and desert biomes, presumably owing to changes in resource supply caused by seasonally inhospitable abiotic conditions. Our results suggest that root traits have evolved along a spectrum bounded by two contrasting strategies of root life: an ancestral 'conservative' strategy in which plants with thick roots depend on symbiosis with mycorrhizal fungi for soil resources and a more-derived 'opportunistic' strategy in which thin roots enable plants to more efficiently leverage photosynthetic carbon for soil exploration. These findings imply that innovations of belowground traits have had an important role in preparing plants to colonize new habitats, and in generating biodiversity within and across biomes.
Collapse
Affiliation(s)
- Zeqing Ma
- Center for Forest Ecosystem Studies and Qianyanzhou Ecological Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Dali Guo
- Center for Forest Ecosystem Studies and Qianyanzhou Ecological Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xingliang Xu
- Center for Forest Ecosystem Studies and Qianyanzhou Ecological Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Mingzhen Lu
- Department of Ecology and Evolutionary Biology, Princeton University, New Jersey 08544, USA
| | - Richard D Bardgett
- School of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PT, UK
| | - David M Eissenstat
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - M Luke McCormack
- Center for Forest Ecosystem Studies and Qianyanzhou Ecological Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.,Department of Plant and Microbial Biology, University of Minnesota, St Paul, Minnesota 55108, USA
| | - Lars O Hedin
- Department of Ecology and Evolutionary Biology, Princeton University, New Jersey 08544, USA
| |
Collapse
|
18
|
Jiao Y, Chen Y, Ma C, Qin J, Nguyen THN, Liu D, Gan H, Ding S, Luo ZB. Phenylalanine as a nitrogen source induces root growth and nitrogen-use efficiency in Populus × canescens. TREE PHYSIOLOGY 2018; 38:66-82. [PMID: 29036367 DOI: 10.1093/treephys/tpx109] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 08/12/2017] [Indexed: 05/09/2023]
Abstract
To investigate the physiological responses of poplars to amino acids as sole nitrogen (N) sources, Populus × canescens (Ait.) Smith plants were supplied with one of three nitrogen fertilizers (NH4NO3, phenylalanine (Phe) or the mixture of NH4NO3 and Phe) in sand culture. A larger root system, and decreased leaf size and CO2 assimilation rate was observed in Phe- versus NH4NO3-treated poplars. Consistently, a greater root biomass and a decreased shoot growth were detected in Phe-supplied poplars. Decreased enzymatic activities of nitrate reductase (NR), glutamate synthase (GOGAT) and glutamate dehydrogenase (GDH) and elevated activities of nitrite reductase (NiR), phenylalanine ammonia lyase (PAL), glutamine synthetase (GS) and asparagine synthase (AS) were found in Phe-treated roots. Accordingly, reduced concentrations of NH4+, NO3- and total N, and enhanced N-use efficiencies (NUEs) were detected in Phe-supplied poplars. Moreover, the transcript levels of putative Phe transporters ANT1 and ANT3 were upregulated, and the mRNA levels of NR, glutamine synthetase 2 (GS2), NADH-dependent glutamate synthase (NADH-GOGAT), GDH and asparagine synthetase 2 (ASN2) were downexpressed in Phe-treated roots and/or leaves. The 15N-labeled Phe was mainly allocated in the roots and only a small amount of 15N-Phe was translocated to poplar aerial parts. These results indicate that poplar roots can acquire Phe as an N source to support plant growth and that Phe-induced NUEs in the poplars are probably associated with NH4+ re-utilization after Phe deamination and the carbon bonus simultaneously obtained during Phe uptake.
Collapse
Affiliation(s)
- Yu Jiao
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yinghao Chen
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Chaofeng Ma
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jingjing Qin
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | | | - Di Liu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Honghao Gan
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Shen Ding
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhi-Bin Luo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| |
Collapse
|
19
|
Grüning MM, Simon J, Rennenberg H, l-M-Arnold A. Defoliating Insect Mass Outbreak Affects Soil N Fluxes and Tree N Nutrition in Scots Pine Forests. FRONTIERS IN PLANT SCIENCE 2017; 8:954. [PMID: 28638396 PMCID: PMC5461291 DOI: 10.3389/fpls.2017.00954] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/22/2017] [Indexed: 03/27/2024]
Abstract
Biotic stress by mass outbreaks of defoliating pest insects does not only affect tree performance by reducing its photosynthetic capacity, but also changes N cycling in the soil of forest ecosystems. However, how insect induced defoliation affects soil N fluxes and, in turn, tree N nutrition is not well-studied. In the present study, we quantified N input and output fluxes via dry matter input, throughfall, and soil leachates. Furthermore, we investigated the effects of mass insect herbivory on tree N acquisition (i.e., organic and inorganic 15N net uptake capacity of fine roots) as well as N pools in fine roots and needles in a Scots pine (Pinus sylvestris L.) forest over an entire vegetation period. Plots were either infested by the nun moth (Lymantria monacha L.) or served as controls. Our results show an increased N input by insect feces, litter, and throughfall at the infested plots compared to controls, as well as increased leaching of nitrate. However, the additional N input into the soil did not increase, but reduce inorganic and organic net N uptake capacity of Scots pine roots. N pools in the fine roots and needles of infested trees showed an accumulation of total N, amino acid-N, protein-N, and structural N in the roots and the remaining needles as a compensatory response triggered by defoliation. Thus, although soil N availability was increased via surplus N input, trees did not respond with an increased N acquisition, but rather invested resources into defense by accumulation of amino acid-N and protein-N as a survival strategy.
Collapse
Affiliation(s)
- Maren M. Grüning
- Department of Soil Science of Temperate Ecosystems, Georg-August Universität GöttingenGöttingen, Germany
| | - Judy Simon
- Ecology, Department of Biology, University of KonstanzKonstanz, Germany
| | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, University of FreiburgFreiburg, Germany
- King Saud UniversityRiyadh, Saudi Arabia
| | - Anne l-M-Arnold
- Department of Soil Science of Temperate Ecosystems, Georg-August Universität GöttingenGöttingen, Germany
| |
Collapse
|
20
|
Netzer F, Schmid C, Herschbach C, Rennenberg H. Phosphorus-nutrition of European beech ( Fagus sylvatica L.) during annual growth depends on tree age and P-availability in the soil. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2017; 137:194-207. [PMID: 0 DOI: 10.1016/j.envexpbot.2017.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
21
|
Leberecht M, Dannenmann M, Tejedor J, Simon J, Rennenberg H, Polle A. Segregation of nitrogen use between ammonium and nitrate of ectomycorrhizas and beech trees. PLANT, CELL & ENVIRONMENT 2016; 39:2691-2700. [PMID: 27569258 DOI: 10.1111/pce.12820] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 08/21/2016] [Accepted: 08/22/2016] [Indexed: 05/04/2023]
Abstract
Here, we characterized nitrogen (N) uptake of beech (Fagus sylvatica) and their associated ectomycorrhizal (EM) communities from NH4+ and NO3- . We hypothesized that a proportional fraction of ectomycorrhizal N uptake is transferred to the host, thereby resulting in the same uptake patterns of plants and their associated mycorrhizal communities. 15 N uptake was studied under various field conditions after short-term and long-term exposure to a pulse of equimolar NH4+ and NO3- concentrations, where one compound was replaced by 15 N. In native EM assemblages, long-term and short-term 15 N uptake from NH4+ was higher than that from NO3- , regardless of season, water availability and site exposure, whereas in beech long-term 15 N uptake from NO3- was higher than that from NH4+ . The transfer rates from the EM to beech were lower for 15 N from NH4+ than from NO3- . 15 N content in EM was correlated with 15 N uptake of the host for 15 NH4+ , but not for 15 NO3- -derived N. These findings suggest stronger control of the EM assemblage on N provision to the host from NH4+ than from NO3- . Different host and EM accumulation patterns for inorganic N will result in complementary resource use, which might be advantageous in forest ecosystems with limited N availability.
Collapse
Affiliation(s)
- Martin Leberecht
- Forstbotanik und Baumphysiologie, Georg-August Universität Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
- Hochschule Geisenheim, Institut für Urbanen Gartenbau und Zierpflanzenforschung, Von-Lade-Str. 1, 65366, Geisenheim
| | - Michael Dannenmann
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstrasse 19, 82467, Garmisch-Partenkirchen, Germany
| | - Javier Tejedor
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstrasse 19, 82467, Garmisch-Partenkirchen, Germany
| | - Judy Simon
- Institute of Forest Science, Chair of Tree Physiology, University of Freiburg, Georges-Koehler-Allee 53/54, 79110, Freiburg, Germany
- Plant Physiology and Biochemistry Group, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Heinz Rennenberg
- Institute of Forest Science, Chair of Tree Physiology, University of Freiburg, Georges-Koehler-Allee 53/54, 79110, Freiburg, Germany
| | - Andrea Polle
- Forstbotanik und Baumphysiologie, Georg-August Universität Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
| |
Collapse
|
22
|
Shakoor A, Abdullah M, Yousaf B, Amina, Ma Y. Atmospheric emission of nitric oxide and processes involved in its biogeochemical transformation in terrestrial environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016:10.1007/s11356-016-7823-6. [PMID: 27771880 DOI: 10.1007/s11356-016-7823-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
Nitric oxide (NO) is an intra- and intercellular gaseous signaling molecule with a broad spectrum of regulatory functions in biological system. Its emissions are produced by both natural and anthropogenic sources; however, soils are among the most important sources of NO. Nitric oxide plays a decisive role in environmental-atmospheric chemistry by controlling the tropospheric photochemical production of ozone and regulates formation of various oxidizing agents such as hydroxyl radical (OH), which contributes to the formation of acid of precipitates. Consequently, for developing strategies to overcome the deleterious impact of NO on terrestrial ecosystem, it is mandatory to have reliable information about the exact emission mechanism and processes involved in its transformation in soil-atmospheric system. Although the formation process of NO is a complex phenomenon and depends on many physicochemical characteristics, such as organic matter, soil pH, soil moisture, soil temperature, etc., this review provides comprehensive updates about the emission characteristics and biogeochemical transformation mechanism of NO. Moreover, this article will also be helpful to understand the processes involved in the consumption of NO in soils. Further studies describing the functions of NO in biological system are also discussed.
Collapse
Affiliation(s)
- Awais Shakoor
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Muhammad Abdullah
- State-Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Amina
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Youhua Ma
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
23
|
Dannenmann M, Bimüller C, Gschwendtner S, Leberecht M, Tejedor J, Bilela S, Gasche R, Hanewinkel M, Baltensweiler A, Kögel-Knabner I, Polle A, Schloter M, Simon J, Rennenberg H. Climate Change Impairs Nitrogen Cycling in European Beech Forests. PLoS One 2016; 11:e0158823. [PMID: 27410969 PMCID: PMC4943676 DOI: 10.1371/journal.pone.0158823] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 06/16/2016] [Indexed: 11/25/2022] Open
Abstract
European beech forests growing on marginal calcareous soils have been proposed to be vulnerable to decreased soil water availability. This could result in a large-scale loss of ecological services and economical value in a changing climate. In order to evaluate the potential consequences of this drought-sensitivity, we investigated potential species range shifts for European beech forests on calcareous soil in the 21st century by statistical species range distribution modelling for present day and projected future climate conditions. We found a dramatic decline by 78% until 2080. Still the physiological or biogeochemical mechanisms underlying the drought sensitivity of European beech are largely unknown. Drought sensitivity of beech is commonly attributed to plant physiological constraints. Furthermore, it has also been proposed that reduced soil water availability could promote nitrogen (N) limitation of European beech due to impaired microbial N cycling in soil, but this hypothesis has not yet been tested. Hence we investigated the influence of simulated climate change (increased temperatures, reduced soil water availability) on soil gross microbial N turnover and plant N uptake in the beech-soil interface of a typical mountainous beech forest stocking on calcareous soil in SW Germany. For this purpose, triple 15N isotope labelling of intact beech seedling-soil-microbe systems was combined with a space-for-time climate change experiment. We found that nitrate was the dominant N source for beech natural regeneration. Reduced soil water content caused a persistent decline of ammonia oxidizing bacteria and therefore, a massive attenuation of gross nitrification rates and nitrate availability in the soil. Consequently, nitrate and total N uptake of beech seedlings were strongly reduced so that impaired growth of beech seedlings was observed already after one year of exposure to simulated climatic change. We conclude that the N cycle in this ecosystem and here specifically nitrification is vulnerable to reduced water availability, which can directly lead to nutritional limitations of beech seedlings. This tight link between reduced water availability, drought stress for nitrifiers, decreased gross nitrification rates and nitrate availability and finally nitrate uptake by beech seedlings could represent the Achilles' heel for beech under climate change stresses.
Collapse
Affiliation(s)
- Michael Dannenmann
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstrasse 19, 82467 Garmisch-Partenkirchen, Germany
- Institute of Forest Sciences, Chair of Tree Physiology, University of Freiburg; Georges-Koehler-Allee 53/54, 79110 Freiburg, Germany
| | - Carolin Bimüller
- Lehrstuhl für Bodenkunde, Department für Ökologie und Ökosystemmanagement, Wissenschaftszentrum Weihenstephan. Technische Universität München, 85350 Freising-Weihenstephan, Germany
| | - Silvia Gschwendtner
- Environmental Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Martin Leberecht
- Forest Botany and Tree Physiology, Büsgen-Institute, Georg-August Universität Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Javier Tejedor
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstrasse 19, 82467 Garmisch-Partenkirchen, Germany
| | - Silvija Bilela
- Institute of Forest Sciences, Chair of Tree Physiology, University of Freiburg; Georges-Koehler-Allee 53/54, 79110 Freiburg, Germany
| | - Rainer Gasche
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstrasse 19, 82467 Garmisch-Partenkirchen, Germany
| | - Marc Hanewinkel
- Chair of Forestry Economics and Forest Planning, University of Freiburg, 79110 Freiburg, Germany
- Research Unit Forest Resources and Management, Swiss Federal Research Institute WSL, Zuercherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Andri Baltensweiler
- Research Unit Forest Resources and Management, Swiss Federal Research Institute WSL, Zuercherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Ingrid Kögel-Knabner
- Lehrstuhl für Bodenkunde, Department für Ökologie und Ökosystemmanagement, Wissenschaftszentrum Weihenstephan. Technische Universität München, 85350 Freising-Weihenstephan, Germany
- IAS-Institute for Advanced Study, Technische Universität München, Lichtenbergstraße 2a, D-85748 Garching, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, Büsgen-Institute, Georg-August Universität Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Michael Schloter
- Environmental Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Judy Simon
- Institute of Forest Sciences, Chair of Tree Physiology, University of Freiburg; Georges-Koehler-Allee 53/54, 79110 Freiburg, Germany
| | - Heinz Rennenberg
- Institute of Forest Sciences, Chair of Tree Physiology, University of Freiburg; Georges-Koehler-Allee 53/54, 79110 Freiburg, Germany
- King Saud University, PO Box 2454, Riyadh 11451, Saudi Arabia
| |
Collapse
|
24
|
Li X, Rennenberg H, Simon J. Seasonal variation in N uptake strategies in the understorey of a beech-dominated N-limited forest ecosystem depends on N source and species. TREE PHYSIOLOGY 2016; 36:589-600. [PMID: 26786538 PMCID: PMC4886285 DOI: 10.1093/treephys/tpv132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 11/20/2015] [Indexed: 05/31/2023]
Abstract
In forest ecosystems, species use different strategies to increase their competitive ability for nitrogen (N) acquisition. The acquisition of N by trees is regulated by tree internal and environmental factors including mycorrhizae. In this study, we investigated the N uptake strategies of three co-occurring tree species [European beech (Fagus sylvatica L.), sycamore maple (Acer pseudoplatanus L.) and Norway maple (Acer platanoides L.)] in the understorey of a beech-dominated, N-limited forest on calcareous soil over two consecutive seasons. For this purpose, we studied (15)N uptake capacity as well as the allocation to N pools in the fine roots. Our results show that European beech had a higher capacity for both inorganic and organic N acquisition throughout the whole growing season compared with sycamore maple and Norway maple. The higher capacity of N acquisition in beech indicates a better adaption of beech to the understorey conditions of beech forests compared with the seedlings of other tree competitors under N-limited conditions. Despite these differences, all three species preferred organic over inorganic N sources throughout the growing season and showed similar seasonal patterns of N acquisition with an increased N uptake capacity in summer. However, this pattern varied with N source and year indicating that other environmental factors not assessed in this study further influenced N acquisition by the seedlings of the three tree species.
Collapse
Affiliation(s)
- Xiuyuan Li
- Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, 79098 Freiburg, Germany
| | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, 79098 Freiburg, Germany
| | - Judy Simon
- Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, 79098 Freiburg, Germany Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
25
|
Brackin R, Näsholm T, Robinson N, Guillou S, Vinall K, Lakshmanan P, Schmidt S, Inselsbacher E. Nitrogen fluxes at the root-soil interface show a mismatch of nitrogen fertilizer supply and sugarcane root uptake capacity. Sci Rep 2015; 5:15727. [PMID: 26496834 PMCID: PMC4620560 DOI: 10.1038/srep15727] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 10/01/2015] [Indexed: 01/26/2023] Open
Abstract
Globally only ≈50% of applied nitrogen (N) fertilizer is captured by crops, and the remainder can cause pollution via runoff and gaseous emissions. Synchronizing soil N supply and crop demand will address this problem, however current soil analysis methods provide little insight into delivery and acquisition of N forms by roots. We used microdialysis, a novel technique for in situ quantification of soil nutrient fluxes, to measure N fluxes in sugarcane cropping soils receiving different fertilizer regimes, and compare these with N uptake capacities of sugarcane roots. We show that in fertilized sugarcane soils, fluxes of inorganic N exceed the uptake capacities of sugarcane roots by several orders of magnitude. Contrary, fluxes of organic N closely matched roots' uptake capacity. These results indicate root uptake capacity constrains plant acquisition of inorganic N. This mismatch between soil N supply and root N uptake capacity is a likely key driver for low N efficiency in the studied crop system. Our results also suggest that (i) the relative contribution of inorganic N for plant nutrition may be overestimated when relying on soil extracts as indicators for root-available N, and (ii) organic N may contribute more to crop N supply than is currently assumed.
Collapse
Affiliation(s)
- Richard Brackin
- School of Agriculture and Food Sciences, The University of Queensland, QLD, 4072, Australia
| | - Torgny Näsholm
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Nicole Robinson
- School of Agriculture and Food Sciences, The University of Queensland, QLD, 4072, Australia
| | - Stéphane Guillou
- School of Agriculture and Food Sciences, The University of Queensland, QLD, 4072, Australia
| | - Kerry Vinall
- School of Agriculture and Food Sciences, The University of Queensland, QLD, 4072, Australia
| | - Prakash Lakshmanan
- Sugar Research Australia, 50 Meiers Road, Indooroopilly, QLD 4068, Australia
| | - Susanne Schmidt
- School of Agriculture and Food Sciences, The University of Queensland, QLD, 4072, Australia
| | - Erich Inselsbacher
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
- University of Vienna, Department of Geography and Regional Research, Vienna, AT-1090, Austria
| |
Collapse
|
26
|
Leberecht M, Dannenmann M, Gschwendtner S, Bilela S, Meier R, Simon J, Rennenberg H, Schloter M, Polle A. Ectomycorrhizal Communities on the Roots of Two Beech (Fagus sylvatica) Populations from Contrasting Climates Differ in Nitrogen Acquisition in a Common Environment. Appl Environ Microbiol 2015; 81:5957-67. [PMID: 26092464 PMCID: PMC4551248 DOI: 10.1128/aem.01481-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/16/2015] [Indexed: 11/20/2022] Open
Abstract
Beech (Fagus sylvatica), a dominant forest species in Central Europe, competes for nitrogen with soil microbes and suffers from N limitation under dry conditions. We hypothesized that ectomycorrhizal communities and the free-living rhizosphere microbes from beech trees from sites with two contrasting climatic conditions exhibit differences in N acquisition that contribute to differences in host N uptake and are related to differences in host belowground carbon allocation. To test these hypotheses, young trees from the natural regeneration of two genetically similar populations, one from dryer conditions (located in an area with a southwest exposure [SW trees]) and the other from a cooler, moist climate (located in an area with a northeast exposure [NE trees]), were transplanted into a homogeneous substrate in the same environment and labeled with (13)CO2 and (15)NH4 (+). Free-living rhizosphere microbes were characterized by marker genes for the N cycle, but no differences between the rhizospheres of SW or NE trees were found. Lower (15)N enrichment was found in the ectomycorrhizal communities of the NE tree communities than the SW tree communities, whereas no significant differences in (15)N enrichment were observed for nonmycorrhizal root tips of SW and NE trees. Neither the ectomycorrhizal communities nor the nonmycorrhizal root tips originating from NE and SW trees showed differences in (13)C signatures. Because the level of (15)N accumulation in fine roots and the amount transferred to leaves were lower in NE trees than SW trees, our data support the suggestion that the ectomycorrhizal community influences N transfer to its host and demonstrate that the fungal community from the dry condition was more efficient in N acquisition when environmental constraints were relieved. These findings highlight the importance of adapted ectomycorrhizal communities for forest nutrition in a changing climate.
Collapse
Affiliation(s)
- Martin Leberecht
- Forest Botany and Tree Physiology, Büsgen-Institut, Georg August University Göttingen, Göttingen, Germany
| | - Michael Dannenmann
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany Institute of Forest Science, University of Freiburg, Freiburg, Germany
| | - Silvia Gschwendtner
- Research Unit Environmental Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Silvija Bilela
- Institute of Forest Science, University of Freiburg, Freiburg, Germany
| | - Rudolf Meier
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| | - Judy Simon
- Institute of Forest Science, University of Freiburg, Freiburg, Germany
| | - Heinz Rennenberg
- Institute of Forest Science, University of Freiburg, Freiburg, Germany King Saud University, Riyadh, Saudi Arabia
| | - Michael Schloter
- Research Unit Environmental Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, Büsgen-Institut, Georg August University Göttingen, Göttingen, Germany
| |
Collapse
|
27
|
Liu B, Rennenberg H, Kreuzwieser J. Hypoxia Affects Nitrogen Uptake and Distribution in Young Poplar (Populus × canescens) Trees. PLoS One 2015; 10:e0136579. [PMID: 26308462 PMCID: PMC4550380 DOI: 10.1371/journal.pone.0136579] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/05/2015] [Indexed: 01/06/2023] Open
Abstract
The present study with young poplar trees aimed at characterizing the effect of O2 shortage in the soil on net uptake of NO3- and NH4+ and the spatial distribution of the N taken up. Moreover, we assessed biomass increment as well as N status of the trees affected by O2 deficiency. For this purpose, an experiment was conducted in which hydroponically grown young poplar trees were exposed to hypoxic and normoxic (control) conditions for 14 days. 15N-labelled NO3- and NH4+ were used to elucidate N uptake and distribution of currently absorbed N and N allocation rates in the plants. Whereas shoot biomass was not affected by soil O2 deficiency, it significantly reduced root biomass and, consequently, the root-to-shoot ratio. Uptake of NO3- but not of NH4+ by the roots of the trees was severely impaired by hypoxia. As a consequence of reduced N uptake, the N content of all poplar tissues was significantly diminished. Under normoxic control conditions, the spatial distribution of currently absorbed N and N allocation rates differed depending on the N source. Whereas NO3- derived N was mainly transported to the younger parts of the shoot, particularly to the developing and young mature leaves, N derived from NH4+ was preferentially allocated to older parts of the shoot, mainly to wood and bark. Soil O2 deficiency enhanced this differential allocation pattern. From these results we assume that NO3- was assimilated in developing tissues and preferentially used to maintain growth and ensure plant survival under hypoxia, whereas NH4+ based N was used for biosynthesis of storage proteins in bark and wood of the trees. Still, further studies are needed to understand the mechanistic basis as well as the eco-physiological advantages of such differential allocation patterns.
Collapse
Affiliation(s)
- Bin Liu
- Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, Freiburg, Germany
| | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, Freiburg, Germany
| | - Jürgen Kreuzwieser
- Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, Freiburg, Germany
| |
Collapse
|
28
|
Nitrogen Nutrition of Trees in Temperate Forests—The Significance of Nitrogen Availability in the Pedosphere and Atmosphere. FORESTS 2015. [DOI: 10.3390/f6082820] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Dong F, Simon J, Rienks M, Lindermayr C, Rennenberg H. Effects of rhizopheric nitric oxide (NO) on N uptake in Fagus sylvatica seedlings depend on soil CO2 concentration, soil N availability and N source. TREE PHYSIOLOGY 2015; 35:910-20. [PMID: 26093371 DOI: 10.1093/treephys/tpv051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 05/12/2015] [Indexed: 05/09/2023]
Abstract
Rhizospheric nitric oxide (NO) and carbon dioxide (CO2) are signalling compounds known to affect physiological processes in plants. Their joint influence on tree nitrogen (N) nutrition, however, is still unknown. Therefore, this study investigated, for the first time, the combined effect of rhizospheric NO and CO2 levels on N uptake and N pools in European beech (Fagus sylvatica L.) seedlings depending on N availability. For this purpose, roots of seedlings were exposed to one of the nine combinations (i.e., low, ambient, high NO plus CO2 concentration) at either low or high N availability. Our results indicate a significant effect of rhizospheric NO and/or CO2 concentration on organic and inorganic N uptake. However, this effect depends strongly on NO and CO2 concentration, N availability and N source. Similarly, allocation of N to different N pools in the fine roots of beech seedlings also shifted with varying rhizospheric gas concentrations and N availability.
Collapse
Affiliation(s)
- Fang Dong
- Institute of Forest Sciences, University of Freiburg, Georges-Koehler-Allee 53/54, 79119 Freiburg, Germany
| | - Judy Simon
- Institute of Forest Sciences, University of Freiburg, Georges-Koehler-Allee 53/54, 79119 Freiburg, Germany Present address: Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Michael Rienks
- Institute of Forest Sciences, University of Freiburg, Georges-Koehler-Allee 53/54, 79119 Freiburg, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Heinz Rennenberg
- Institute of Forest Sciences, University of Freiburg, Georges-Koehler-Allee 53/54, 79119 Freiburg, Germany
| |
Collapse
|
30
|
Gao P, Loeffler TS, Honsel A, Kruse J, Krol E, Scherzer S, Kreuzer I, Bemm F, Buegger F, Burzlaff T, Hedrich R, Rennenberg H. Integration of trap- and root-derived nitrogen nutrition of carnivorous Dionaea muscipula. THE NEW PHYTOLOGIST 2015; 205:1320-1329. [PMID: 25345872 DOI: 10.1111/nph.13120] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 09/15/2014] [Indexed: 06/04/2023]
Abstract
Carnivorous Dionaea muscipula operates active snap traps for nutrient acquisition from prey; so what is the role of D. muscipula's reduced root system? We studied the capacity for nitrogen (N) acquisition via traps, and its effect on plant allometry; the capacity of roots to absorb NO₃(-), NH₄(+) and glutamine from the soil solution; and the fate and interaction of foliar- and root-acquired N. Feeding D. muscipula snap traps with insects had little effect on the root : shoot ratio, but promoted petiole relative to trap growth. Large amounts of NH₄(+) and glutamine were absorbed upon root feeding. The high capacity for root N uptake was maintained upon feeding traps with glutamine. High root acquisition of NH₄(+) was mediated by 2.5-fold higher expression of the NH₄(+) transporter DmAMT1 in the roots compared with the traps. Electrophysiological studies confirmed a high constitutive capacity for NH₄(+) uptake by roots. Glutamine feeding of traps inhibited the influx of (15)N from root-absorbed (15)N/(13)C-glutamine into these traps, but not that of (13)C. Apparently, fed traps turned into carbon sinks that even acquired organic carbon from roots. N acquisition at the whole-plant level is fundamentally different in D. muscipula compared with noncarnivorous species, where foliar N influx down-regulates N uptake by roots.
Collapse
Affiliation(s)
- Peng Gao
- Institut für Forstwissenschaften, Professur für Baumphysiologie, Universität Freiburg, Georges-Koehler-Allee 53/54, 79110, Freiburg, Germany
| | - Theresa Sofi Loeffler
- Institut für Forstwissenschaften, Professur für Baumphysiologie, Universität Freiburg, Georges-Koehler-Allee 53/54, 79110, Freiburg, Germany
| | - Anne Honsel
- Institut für Forstwissenschaften, Professur für Baumphysiologie, Universität Freiburg, Georges-Koehler-Allee 53/54, 79110, Freiburg, Germany
| | - Jörg Kruse
- Institut für Forstwissenschaften, Professur für Baumphysiologie, Universität Freiburg, Georges-Koehler-Allee 53/54, 79110, Freiburg, Germany
| | - Elzbieta Krol
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, D-97070, Würzburg, Germany
| | - Sönke Scherzer
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, D-97070, Würzburg, Germany
| | - Ines Kreuzer
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, D-97070, Würzburg, Germany
| | - Felix Bemm
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, D-97070, Würzburg, Germany
| | - Franz Buegger
- German Research Center for Environmental Health, Institut für Bodenökologie, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Tim Burzlaff
- Institut für Forstwissenschaften, Forstzoologisches Institut, Tennenbacher Strasse 4, 79085, Freiburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, D-97070, Würzburg, Germany
| | - Heinz Rennenberg
- Institut für Forstwissenschaften, Professur für Baumphysiologie, Universität Freiburg, Georges-Koehler-Allee 53/54, 79110, Freiburg, Germany
| |
Collapse
|
31
|
Li X, Rennenberg H, Simon J. Competition for nitrogen between Fagus sylvatica and Acer pseudoplatanus seedlings depends on soil nitrogen availability. FRONTIERS IN PLANT SCIENCE 2015; 6:302. [PMID: 25983738 PMCID: PMC4415404 DOI: 10.3389/fpls.2015.00302] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/15/2015] [Indexed: 05/09/2023]
Abstract
Competition for nitrogen (N), particularly in resource-limited habitats, might be avoided by different N acquisition strategies of plants. In our study, we investigated whether slow-growing European beech and fast-growing sycamore maple seedlings avoid competition for growth-limiting N by different N uptake patterns and the potential alteration by soil N availability in a microcosm experiment. We quantified growth and biomass indices, (15)N uptake capacity and N pools in the fine roots. Overall, growth indices, N acquisition and N pools in the fine roots were influenced by species-specific competition depending on soil N availability. With inter-specific competition, growth of sycamore maple reduced regardless of soil N supply, whereas beech only showed reduced growth when N was limited. Both species responded to inter-specific competition by alteration of N pools in the fine roots; however, sycamore maple showed a stronger response compared to beech for almost all N pools in roots, except for structural N at low soil N availability. Beech generally preferred organic N acquisition while sycamore maple took up more inorganic N. Furthermore, with inter-specific competition, beech had an enhanced organic N uptake capacity, while in sycamore maple inorganic N uptake capacity was impaired by the presence of beech. Although sycamore maple could tolerate the suboptimal conditions at the cost of reduced growth, our study indicates its reduced competitive ability for N compared to beech.
Collapse
Affiliation(s)
- Xiuyuan Li
- Institute of Forest Sciences, Chair of Tree Physiology, University of FreiburgFreiburg, Germany
| | - Heinz Rennenberg
- Institute of Forest Sciences, Chair of Tree Physiology, University of FreiburgFreiburg, Germany
| | - Judy Simon
- Institute of Forest Sciences, Chair of Tree Physiology, University of FreiburgFreiburg, Germany
- Plant Physiology and Biochemistry, Department of Biology, University of KonstanzKonstanz, Germany
- *Correspondence: Judy Simon, Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| |
Collapse
|
32
|
Xu X, Li Q, Wang J, Zhang L, Tian S, Zhi L, Li Q, Sun Y. Inorganic and organic nitrogen acquisition by a fern Dicranopteris dichotoma in a subtropical forest in South China. PLoS One 2014; 9:e90075. [PMID: 24829044 PMCID: PMC4020760 DOI: 10.1371/journal.pone.0090075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 01/31/2014] [Indexed: 11/18/2022] Open
Abstract
The fern Dicranopteris dichotoma is an important pioneer species of the understory in Masson pine (Pinus massoniana) forests growing on acidic soils in the subtropical and tropical China. To improve our understanding of the role of D. dichotoma in nitrogen (N) uptake of these forests, a short-term (15)N experiment was conducted at mountain ridge (MR, with low N level) and mountain foot (MF, with high N level). We injected (15)N tracers as (15)NH4, (15)NO3 or (15)N-glycine into the soil surrounding each plant at both MR and MF sites. Three hours after tracer injection, the fern D. dichotoma took up 15NH4+ significantly faster at MF than at MR, but it showed significantly slower uptake of (15)NO3- at MF than at MR. Consequently, (15)NO3- made greater contribution to the total N uptake (50% to the total N uptake) at MR than at MF, but (15)N-glycine only contributed around 11% at both sites. Twenty-four hours after tracer injection, D. dichotoma preferred (15)NH4+ (63%) at MR, whereas it preferred (15)NO3- (47%) at MF. We concluded that the D. dichotoma responds distinctly in its uptake pattern for three available N species over temporal and spatial scales, but mainly relies on inorganic N species in the subtropical forest. This suggests that the fern employs different strategies to acquire available N which depends on N levels and time.
Collapse
Affiliation(s)
- Xingliang Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Qingkang Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Jingyuan Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Leiming Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Shengni Tian
- College of Life Science, Anhui Agriculture University, Hefei, Anhui Province, China
| | - Lin Zhi
- College of Life Science, Anhui Agriculture University, Hefei, Anhui Province, China
- Xikou Junior Middle School, Xikou City, Zhejiang Province, China
| | - Qianru Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Yue Sun
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
33
|
Gruffman L, Jämtgård S, Näsholm T. Plant nitrogen status and co-occurrence of organic and inorganic nitrogen sources influence root uptake by Scots pine seedlings. TREE PHYSIOLOGY 2014; 34:205-13. [PMID: 24488801 DOI: 10.1093/treephys/tpt121] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Insights into how the simultaneous presence of organic and inorganic nitrogen (N) forms influences root absorption will help elucidate the relative importance of these N forms for plant nutrition in the field as well as for nursery cultivation of seedlings. Uptake of the individual N forms arginine, ammonium (NH4(+)) and nitrate (NO3(-)) was studied in Scots pine (Pinus sylvestris (L.)) seedlings supplied as single N sources and additionally in mixtures of NO3(-) and NH4(+) or NO3(-) and arginine. Scots pine seedlings displayed a strong preference for NH4(+)-N and arginine-N as compared with NO3(-)-N. Thus, NO3(-) uptake was generally low and decreased in the presence of NH4(+) in the high-concentration range (500 µM N), but not in the presence of arginine. Moreover, uptake of NO3(-) and NH4(+) was lower in seedlings displaying a high internal N status as a result of high N pre-treatment, while arginine uptake was high in seedlings with a high internal N status when previously exposed to organic N. These findings may have practical implications for commercial cultivation of conifers.
Collapse
Affiliation(s)
- Linda Gruffman
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | | | | |
Collapse
|
34
|
Simon J, Li X, Rennenberg H. Competition for nitrogen between European beech and sycamore maple shifts in favour of beech with decreasing light availability. TREE PHYSIOLOGY 2014; 34:49-60. [PMID: 24391164 DOI: 10.1093/treephys/tpt112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Plant species use different strategies for maximizing growth and fitness under changing environmental conditions. At the ecosystem level, seedlings in particular compete with other vegetation components for light and nitrogen (N), which often constitute growth-limiting resources. In this study, we investigated the effect of light availability on the competition for N between seedlings of European beech and sycamore maple and analysed the consequences of this competition for the composition of N metabolites in fine roots. Our results show different strategies in N acquisition between beech and sycamore maple. Both species responded to reduced light availability by adapting their morphological and physiological traits with a decrease in biomass and net assimilation rate and an increase in specific leaf area and leaf area ratio. For beech seedlings, competition with sycamore maple led to a reduction in organic N uptake capacity. Reduced light availability led to a decrease in ammonium, but an increase in glutamine-N uptake capacity in sycamore maple. However, this response was stronger compared with that of beech and was accompanied by reduced growth. Thus, our results suggest better adaptation of N acquisition to reduced light availability in beech compared with sycamore maple seedlings.
Collapse
Affiliation(s)
- Judy Simon
- Institute of Forest Sciences, Chair of Tree Physiology, University of Freiburg, Georges-Koehler-Allee 53/54, 79110 Freiburg, Germany
| | | | | |
Collapse
|
35
|
Rennenberg H, Herschbach C. Phosphorus nutrition of woody plants: many questions - few answers. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:785-788. [PMID: 23902300 DOI: 10.1111/plb.12078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/21/2013] [Indexed: 06/02/2023]
Abstract
Phosphorus (P) acquisition, cycling and use efficiency has been investigated intensively with herbaceous plants. It is known that local as well as systemic signalling contributes to the control of P acquisition. Woody plants are long-lived organisms that adapt their life cycle to the changing environment during their annual growth cycle. Little is known about P acquisition and P cycling in perennial plants, especially regarding storage and mobilisation, its control by systemic and environmental factors, and its interaction with the largely closed ecosystem-level P cycle. The present report presents a view on open questions on plant internal P cycling in woody plants.
Collapse
Affiliation(s)
- H Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, Freiburg, Germany.
| | | |
Collapse
|
36
|
Simon J, Dong F, Buegger F, Rennenberg H. Rhizospheric NO affects N uptake and metabolism in Scots pine (Pinus sylvestris L.) seedlings depending on soil N availability and N source. PLANT, CELL & ENVIRONMENT 2013; 36:1019-26. [PMID: 23146102 DOI: 10.1111/pce.12034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 10/29/2012] [Accepted: 10/31/2012] [Indexed: 05/15/2023]
Abstract
We investigated the interaction of rhizospheric nitric oxide (NO) concentration (i.e. low, ambient or high) and soil nitrogen (N) availability (i.e. low or high) with organic and inorganic N uptake by fine roots of Pinus sylvestris L. seedlings by (15) N feeding experiments under controlled conditions. N metabolites in fine roots were analysed to link N uptake to N nutrition. NO affected N uptake depending on N source and soil N availability. The suppression of nitrate uptake in the presence of ammonium and glutamine was overruled by high NO. The effects of NO on N uptake with increasing N availability showed different patterns: (1) increasing N uptake regardless of NO concentration (i.e. ammonium); (2) increasing N uptake only with high NO concentration (i.e. nitrate and arginine); and (3) decreasing N uptake (i.e. glutamine). At low N availability and high NO nitrate accumulated in the roots indicating insufficient substrates for nitrate reduction or its storage in root vacuoles. Individual amino acid concentrations were negatively affected with increasing NO (i.e. asparagine and glutamine with low N availability, serine and proline with high N availability). In conclusion, this study provides first evidence that NO affects N uptake and metabolism in a conifer.
Collapse
Affiliation(s)
- Judy Simon
- Institute of Forest Botany and Tree Physiology, Chair of Tree Physiology, University of Freiburg, Georges-Koehler-Allee 53/54, 79110 Freiburg, Germany.
| | | | | | | |
Collapse
|
37
|
Schmidt S, Raven JA, Paungfoo-Lonhienne C. The mixotrophic nature of photosynthetic plants. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:425-438. [PMID: 32481119 DOI: 10.1071/fp13061] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 03/22/2013] [Indexed: 06/11/2023]
Abstract
Plants typically have photosynthetically competent green shoots. To complement resources derived from the atmospheric environment, plants also acquire essential elements from soil. Inorganic ions and molecules are generally considered to be the sources of soil-derived nutrients, and plants tested in this respect can grow with only inorganic nutrients and so can live as autotrophs. However, mycorrhizal symbionts are known to access nutrients from organic matter. Furthermore, specialist lineages of terrestrial photosynthetically competent plants are mixotrophic, including species that obtain organic nutrition from animal prey (carnivores), fungal partners (mycoheterotrophs) or plant hosts (hemi-parasites). Although mixotrophy is deemed the exception in terrestrial plants, it is a common mode of nutrition in aquatic algae. There is mounting evidence that non-specialist plants acquire organic compounds as sources of nutrients, taking up and metabolising a range of organic monomers, oligomers, polymers and even microbes as sources of nitrogen and phosphorus. Plasma-membrane located transporter proteins facilitate the uptake of low-molecular mass organic compounds, endo- and phagocytosis may enable the acquisition of larger compounds, although this has not been confirmed. Identifying the mechanisms involved in the acquisition of organic nutrients will provide understanding of the ecological significance of mixotrophy. Here, we discuss mixotrophy in the context of nitrogen and phosphorus nutrition drawing parallels between algae and plants.
Collapse
Affiliation(s)
- Susanne Schmidt
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Qld 4072, Australia
| | - John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | | |
Collapse
|
38
|
Kuster TM, Schleppi P, Hu B, Schulin R, Günthardt-Goerg MS. Nitrogen dynamics in oak model ecosystems subjected to air warming and drought on two different soils. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15 Suppl 1:220-9. [PMID: 23279296 DOI: 10.1111/j.1438-8677.2012.00686.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 09/15/2012] [Indexed: 05/11/2023]
Abstract
Being tolerant to heat and drought, oaks are promising candidates for future forestry in view of climate change in Central Europe. Air warming is expected to increase, and drought decrease soil N availability and thus N supply to trees. Here, we conducted a model ecosystem experiment, in which mixed stands of young oaks (Quercus robur, Q. petraea and Q. pubescens) were grown on two different soils and subjected to four climate treatments during three growing seasons: air warming by 1-2 °C, drought periods (average precipitation reduction of 43-60%), a combination of these two treatments, and a control. In contrast to our hypotheses, neither air warming nor drought significantly affected N availability, whereas total amounts, vertical distribution and availability of soil N showed substantial differences between the two soils. While air warming had no effect on tree growth and N accumulation, the drought treatment reduced tree growth and increased, or tended to increase, N accumulation in the reduced biomass, indicating that growth was not limited by N. Furthermore, (15) N-labelling revealed that this accumulation was associated with an increased uptake of nitrate. On the basis of our results, climate change effects on N dynamics are expected to be less important in oak stands than reduced soil water availability.
Collapse
Affiliation(s)
- T M Kuster
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland.
| | | | | | | | | |
Collapse
|
39
|
Herschbach C, Gessler A, Rennenberg H. Long-Distance Transport and Plant Internal Cycling of N- and S-Compounds. PROGRESS IN BOTANY 2012. [DOI: 10.1007/978-3-642-22746-2_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
40
|
Rennenberg H, Schmidt S. Perennial lifestyle--an adaptation to nutrient limitation? TREE PHYSIOLOGY 2010; 30:1047-9. [PMID: 20696885 DOI: 10.1093/treephys/tpq076] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
|