1
|
Kannenberg SA, Babst F, Barnes ML, Cabon A, Dannenberg MP, Johnston MR, Anderegg WRL. Stand density and local climate drive allocation of GPP to aboveground woody biomass. THE NEW PHYTOLOGIST 2025; 246:543-553. [PMID: 39854029 DOI: 10.1111/nph.20414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/08/2025] [Indexed: 01/26/2025]
Abstract
The partitioning of photosynthate among various forest carbon pools is a key process regulating long-term carbon sequestration, with allocation to aboveground woody biomass carbon (AGBC) in particular playing an outsized role in the global carbon cycle due to its slow residence time. However, directly estimating the fraction of gross primary productivity (GPP) that goes to AGBC has historically been difficult and time-consuming, leaving us with persistent uncertainties. We used an extensive dataset of tree-ring chronologies co-located at flux towers to assess the coupling between AGBC and GPP, calculate the fraction of fixed carbon that is allocated to AGBC, and understand the drivers of variability in this fraction. We found that annual AGBC and GPP were rarely correlated, and that annual AGBC represented only a small fraction (c. 9%) of fixed carbon. This fraction varied considerably across sites and was driven by differences in stand density and site climate. Annual AGBC was suppressed by c. 30% during drought and remained below average for years afterward. These results imply that assumptions of relatively stationary allocation of GPP to woody biomass and other plant tissues could lead to systematic biases in modeled carbon accumulation in different plant pools and thus in carbon residence time.
Collapse
Affiliation(s)
| | - Flurin Babst
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, 85721, USA
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ, 85721, USA
| | - Mallory L Barnes
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, 47405, USA
| | - Antoine Cabon
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Matthew P Dannenberg
- Department of Geographical and Sustainability Sciences, University of Iowa, Iowa City, IA, 52242, USA
| | - Miriam R Johnston
- Department of Geographical and Sustainability Sciences, University of Iowa, Iowa City, IA, 52242, USA
| | - William R L Anderegg
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
- Wilkes Center for Climate Science and Policy, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
2
|
Lu L, Yu L, Li X, Gao L, Bao L, Chang X, Gao X, Cai Z. Assessing Vegetation Canopy Growth Variations in Northeast China. PLANTS (BASEL, SWITZERLAND) 2025; 14:143. [PMID: 39795403 PMCID: PMC11723273 DOI: 10.3390/plants14010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Studying climate change's impact on vegetation canopy growth and senescence is significant for understanding and predicting vegetation dynamics. However, there is a lack of adequate research on canopy changes across the lifecycles of different vegetation types. Using GLASS LAI (leaf area index) data (2001-2020), we investigated canopy development (April-June), maturity (July-August), and senescence (September-October) rates in Northeast China, focusing on their responses to preseason climatic factors. We identified that early stages saw canopy development acceleration, with over 71% of areas experiencing such acceleration in April and May. As the vegetation grew, the accelerating canopy development slowed down, and the canopy reached its maturation earlier. By analyzing the partial correlation between canopy growth and preseason climatic factors, it was identified that changes in canopy growth were most significantly affected by preseason air temperature. A positive correlation was observed in the early stages, which shifted to a negative correlation during canopy maturation and senescence. Notably, the transition timing varied among different vegetation types, with grasslands (June) occurring earlier than forests (July) and farmlands (August). Additionally, grassland canopy growth showed a stronger response to precipitation than forests and farmlands, with a lagged effect of 2.50 months. Our findings improve understanding of vegetation canopy growth across different stages, holding significant importance for ecological environmental monitoring, land-use planning, and sustainable development.
Collapse
Affiliation(s)
- Lijie Lu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (L.L.); (X.L.); (L.G.); (L.B.); (X.C.); (X.G.); (Z.C.)
- Faculty of Computing, Harbin Institute of Technology, Harbin 150006, China
- National Key Laboratory of Smart Farm Technologies and Systems, Harbin 150006, China
| | - Lingxue Yu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (L.L.); (X.L.); (L.G.); (L.B.); (X.C.); (X.G.); (Z.C.)
| | - Xuan Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (L.L.); (X.L.); (L.G.); (L.B.); (X.C.); (X.G.); (Z.C.)
| | - Li Gao
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (L.L.); (X.L.); (L.G.); (L.B.); (X.C.); (X.G.); (Z.C.)
| | - Lun Bao
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (L.L.); (X.L.); (L.G.); (L.B.); (X.C.); (X.G.); (Z.C.)
| | - Xinyue Chang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (L.L.); (X.L.); (L.G.); (L.B.); (X.C.); (X.G.); (Z.C.)
| | - Xiaohong Gao
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (L.L.); (X.L.); (L.G.); (L.B.); (X.C.); (X.G.); (Z.C.)
| | - Zhongquan Cai
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (L.L.); (X.L.); (L.G.); (L.B.); (X.C.); (X.G.); (Z.C.)
| |
Collapse
|
3
|
Rezaie N, D'Andrea E, Scartazza A, Gričar J, Prislan P, Calfapietra C, Battistelli A, Moscatello S, Proietti S, Matteucci G. Upside down and the game of C allocation. TREE PHYSIOLOGY 2024; 44:192-203. [PMID: 36917230 DOI: 10.1093/treephys/tpad034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Non-structural carbohydrates (NSCs) represent the primary carbon (C) reserves and play a crucial role in plant functioning and resilience. Indeed, these compounds are involved in the regulation between C supply and demand, and in the maintenance of hydraulic efficiency. Non-structural carbohydrates are stored in parenchyma of woody organs, which is recognized as a proxy for reserve storage capacity of tree. Notwithstanding the importance of NSCs for tree physiology, their long-term regulation and trade-offs against growth were not deeply investigated. This work evaluated the long-term dynamics of mature tree reserves in stem and root, proxied by parenchyma features and focusing on the trade-off and interplay between the resources allocation in radial growth and reserves in stem and coarse root. In a Mediterranean beech forest, NSCs content, stem and root wood anatomy analysis and eddy covariance data were combined. The parenchyma fraction (RAP) of beech root and stem was different, due to differences in axial parenchyma (AP) and narrow ray parenchyma (nRP) fractions. However, these parenchyma components and radial growth showed synchronous inter-annual dynamics between the two organs. In beech stem, positive correlations were found among soluble sugars content and nRP and among starch content and the AP. Positive correlations were found among Net Ecosystem Exchange (NEE) and AP of both organs. In contrast, NEE was negatively correlated to radial growth of root and stem. Our results suggest a different contribution of stem and roots to reserves storage and a putative partitioning in the functional roles of parenchyma components. Moreover, a long-term trade-off of C allocation between growth and reserve pool was evidenced. Indeed, in case of C source reduction, trees preferentially allocate C toward reserves pool. Conversely, in high productivity years, growth represents the major C sink.
Collapse
Affiliation(s)
- Negar Rezaie
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), Via P. Castellino n. 111, 80131 Napoli, Italy
| | - Ettore D'Andrea
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), via Marconi 2, 05010 Porano, Italy
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Andrea Scartazza
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), Via Moruzzi 1, 56124 Pisa, Italy
| | - Jožica Gričar
- Department of Forest Physiology and Genetics, Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia
| | - Peter Prislan
- Department for Forest Technique and Economics, Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia
| | - Carlo Calfapietra
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), via Marconi 2, 05010 Porano, Italy
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Alberto Battistelli
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), via Marconi 2, 05010 Porano, Italy
| | - Stefano Moscatello
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), via Marconi 2, 05010 Porano, Italy
| | - Simona Proietti
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), via Marconi 2, 05010 Porano, Italy
| | - Giorgio Matteucci
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
- Institute of BioEconomy, National Research Council of Italy (CNR-IBE), via Madonna del Piano, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
4
|
Vangi E, Dalmonech D, Cioccolo E, Marano G, Bianchini L, Puchi PF, Grieco E, Cescatti A, Colantoni A, Chirici G, Collalti A. Stand age diversity (and more than climate change) affects forests' resilience and stability, although unevenly. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121822. [PMID: 39018839 DOI: 10.1016/j.jenvman.2024.121822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/17/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
Stand age significantly influences the functioning of forest ecosystems by shaping structural and physiological plant traits, affecting water and carbon budgets. Forest age distribution is determined by the interplay of tree mortality and regeneration, influenced by both natural and anthropogenic disturbances. Unfortunately, human-driven alteration of tree age distribution presents an underexplored avenue for enhancing forest stability and resilience. In our study, we investigated how age impacts the stability and resilience of the forest carbon budget under both current and future climate conditions. We employed a state-of-the-science biogeochemical, biophysical, validated process-based model on historically managed forest stands, projecting their future as undisturbed systems, i.e., left at their natural evolution with no management interventions (i.e., forests are left to develop undisturbed). Such a model, forced by climate data from five Earth System Models under four representative climate scenarios and one baseline scenario to disentangle the effect of climate change, spanned several age classes as representative of the current European forests' context, for each stand. Our findings indicate that Net Primary Production (NPP) peaks in the young and middle-aged classes (16- to 50-year-old), aligning with longstanding ecological theories, regardless of the climate scenario. Under climate change, the beech forest exhibited an increase in NPP and maintained stability across all age classes, while resilience remained constant with rising atmospheric CO2 and temperatures. However, NPP declined under climate change scenarios for the Norway spruce and Scots pine sites. In these coniferous forests, stability and resilience were more influenced. These results underscore the necessity of accounting for age class diversity -lacking in most, if not all, the current Global Vegetation Models - for reliable and robust assessments of the impacts of climate change on future forests' stability and resilience capacity. We, therefore, advocate for customized management strategies that enhance the adaptability of forests to changing climatic conditions, taking into account the diverse responses of different species and age groups to climate.
Collapse
Affiliation(s)
- Elia Vangi
- Forest Modelling Lab., Institute for Agriculture and Forestry Systems in the Mediterranean, National Research Council of Italy (CNR-ISAFOM), Via Madonna Alta 128, 06128, Perugia, Italy; geoLAB - Laboratory of Forest Geomatics, Dept. of Agriculture, Food, Environment and Forestry, Università degli Studi di Firenze, Via San Bonaventura 13, 50145, Firenze, Italy.
| | - Daniela Dalmonech
- Forest Modelling Lab., Institute for Agriculture and Forestry Systems in the Mediterranean, National Research Council of Italy (CNR-ISAFOM), Via Madonna Alta 128, 06128, Perugia, Italy; National Biodiversity Future Centre (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Elisa Cioccolo
- Forest Modelling Lab., Institute for Agriculture and Forestry Systems in the Mediterranean, National Research Council of Italy (CNR-ISAFOM), Via Madonna Alta 128, 06128, Perugia, Italy; Department of Agricultural and Forestry Sciences (UNITUS-DAFNE), Tuscia University of Viterbo, Via San Camillo de Lellis snc, 01100, Viterbo, Italy
| | - Gina Marano
- Forest Modelling Lab., Institute for Agriculture and Forestry Systems in the Mediterranean, National Research Council of Italy (CNR-ISAFOM), Via Madonna Alta 128, 06128, Perugia, Italy; Department of Environmental Systems Science, Forest Ecology, Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
| | - Leonardo Bianchini
- Department of Agricultural and Forestry Sciences (UNITUS-DAFNE), Tuscia University of Viterbo, Via San Camillo de Lellis snc, 01100, Viterbo, Italy
| | - Paulina F Puchi
- Forest Modelling Lab., Institute for Agriculture and Forestry Systems in the Mediterranean, National Research Council of Italy (CNR-ISAFOM), Via Madonna Alta 128, 06128, Perugia, Italy; Institute of BioEconomy, National Research Council of Italy (CNR-IBE), Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Elisa Grieco
- Forest Modelling Lab., Institute for Agriculture and Forestry Systems in the Mediterranean, National Research Council of Italy (CNR-ISAFOM), Via Madonna Alta 128, 06128, Perugia, Italy
| | - Alessandro Cescatti
- European Commission, Joint Research Centre, Directorate for Sustainable Resources, Ispra, Italy
| | - Andrea Colantoni
- Department of Agricultural and Forestry Sciences (UNITUS-DAFNE), Tuscia University of Viterbo, Via San Camillo de Lellis snc, 01100, Viterbo, Italy
| | - Gherardo Chirici
- geoLAB - Laboratory of Forest Geomatics, Dept. of Agriculture, Food, Environment and Forestry, Università degli Studi di Firenze, Via San Bonaventura 13, 50145, Firenze, Italy; Fondazione per il Futuro delle Città, Firenze, Italy
| | - Alessio Collalti
- Forest Modelling Lab., Institute for Agriculture and Forestry Systems in the Mediterranean, National Research Council of Italy (CNR-ISAFOM), Via Madonna Alta 128, 06128, Perugia, Italy; National Biodiversity Future Centre (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| |
Collapse
|
5
|
Drake JE, Vårhammar A, Aspinwall MJ, Pfautsch S, Ghannoum O, Tissue DT, Tjoelker MG. Pushing the envelope: do narrowly and widely distributed Eucalyptus species differ in response to climate warming? THE NEW PHYTOLOGIST 2024; 243:82-97. [PMID: 38666344 DOI: 10.1111/nph.19774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/29/2024] [Indexed: 06/07/2024]
Abstract
Contemporary climate change will push many tree species into conditions that are outside their current climate envelopes. Using the Eucalyptus genus as a model, we addressed whether species with narrower geographical distributions show constrained ability to cope with warming relative to species with wider distributions, and whether this ability differs among species from tropical and temperate climates. We grew seedlings of widely and narrowly distributed Eucalyptus species from temperate and tropical Australia in a glasshouse under two temperature regimes: the summer temperature at seed origin and +3.5°C. We measured physical traits and leaf-level gas exchange to assess warming influences on growth rates, allocation patterns, and physiological acclimation capacity. Warming generally stimulated growth, such that higher relative growth rates early in development placed seedlings on a trajectory of greater mass accumulation. The growth enhancement under warming was larger among widely than narrowly distributed species and among temperate rather than tropical provenances. The differential growth enhancement was primarily attributable to leaf area production and adjustments of specific leaf area. Our results suggest that tree species, including those with climate envelopes that will be exceeded by contemporary climate warming, possess capacity to physiologically acclimate but may have varying ability to adjust morphology.
Collapse
Affiliation(s)
- John E Drake
- Department of Sustainable Resources Management, College of Environmental Science and Forestry, State University of New York, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - Angelica Vårhammar
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | | | - Sebastian Pfautsch
- Urban Transformations Research Centre, Western Sydney University, Locked Bag 1797, Penrith, 2751, NSW, Australia
| | - Oula Ghannoum
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
6
|
Wei J, von Arx G, Fan Z, Ibrom A, Mund M, Knohl A, Peters RL, Babst F. Drought alters aboveground biomass production efficiency: Insights from two European beech forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170726. [PMID: 38331275 DOI: 10.1016/j.scitotenv.2024.170726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/03/2024] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
The fraction of photosynthetically assimilated carbon that trees allocate to long-lasting woody biomass pools (biomass production efficiency - BPE), is a key metric of the forest carbon balance. Its apparent simplicity belies the complex interplay between underlying processes of photosynthesis, respiration, litter and fruit production, and tree growth that respond differently to climate variability. Whereas the magnitude of BPE has been routinely quantified in ecological studies, its temporal dynamics and responses to extreme events such as drought remain less well understood. Here, we combine long-term records of aboveground carbon increment (ACI) obtained from tree rings with stand-level gross primary productivity (GPP) from eddy covariance (EC) records to empirically quantify aboveground BPE (= ACI/GPP) and its interannual variability in two European beech forests (Hainich, DE-Hai, Germany; Sorø, DK-Sor, Denmark). We found significant negative correlations between BPE and a daily-resolved drought index at both sites, indicating that woody growth is de-prioritized under water limitation. During identified extreme years, early-season drought reduced same-year BPE by 29 % (Hainich, 2011), 31 % (Sorø, 2006), and 14 % (Sorø, 2013). By contrast, the 2003 late-summer drought resulted in a 17 % reduction of post-drought year BPE at Hainich. Across the entire EC period, the daily-to-seasonal drought response of BPE resembled that of ACI, rather than that of GPP. This indicates that BPE follows sink dynamics more closely than source dynamics, which appear to be decoupled given the distinctive climate response patterns of GPP and ACI. Based on our observations, we caution against estimating the magnitude and variability of the carbon sink in European beech (and likely other temperate forests) based on carbon fluxes alone. We also encourage comparable studies at other long-term EC measurement sites from different ecosystems to further constrain the BPE response to rare climatic events.
Collapse
Affiliation(s)
- Jingshu Wei
- School of Natural Resources and the Environment, University of Arizona, 1064 E Lowell Street, Tucson, AZ 85721, USA; Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zuercherstrasse 111, CH-8903 Birmensdorf, Switzerland; CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun Town, Mengla County, Yunnan Province 666303, China.
| | - Georg von Arx
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zuercherstrasse 111, CH-8903 Birmensdorf, Switzerland; Oeschger Centre for Climate Change Research, University of Bern, Hochschulstrasse 4, CH-3012 Bern, Switzerland
| | - Zexin Fan
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun Town, Mengla County, Yunnan Province 666303, China
| | - Andreas Ibrom
- Biosystems Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark, Denmark
| | - Martina Mund
- Forestry Research and Competence Centre Gotha, Jägerstraße1, D-99867 Gotha, Germany
| | - Alexander Knohl
- Bioclimatology, University of Göttingen, Büsgenweg 2, D-37077 Göttingen, Germany
| | - Richard L Peters
- Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, Basel CH-4056, Switzerland
| | - Flurin Babst
- School of Natural Resources and the Environment, University of Arizona, 1064 E Lowell Street, Tucson, AZ 85721, USA; Laboratory of Tree-Ring Research, University of Arizona, 1215 E Lowell Street, Tucson, AZ 85721, USA
| |
Collapse
|
7
|
Puchi PF, Dalmonech D, Vangi E, Battipaglia G, Tognetti R, Collalti A. Contrasting patterns of water use efficiency and annual radial growth among European beech forests along the Italian peninsula. Sci Rep 2024; 14:6526. [PMID: 38499662 PMCID: PMC11350120 DOI: 10.1038/s41598-024-57293-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/16/2024] [Indexed: 03/20/2024] Open
Abstract
Tree mortality and forest dieback episodes are increasing due to drought and heat stress. Nevertheless, a comprehensive understanding of mechanisms enabling trees to withstand and survive droughts remains lacking. Our study investigated basal area increment (BAI), and δ13C-derived intrinsic water-use-efficiency (iWUE), to elucidate beech resilience across four healthy stands in Italy with varying climates and soil water availability. Additionally, fist-order autocorrelation (AR1) analysis was performed to detect early warning signals for potential tree dieback risks during extreme drought events. Results reveal a negative link between BAI and vapour pressure deficit (VPD), especially in southern latitudes. After the 2003 drought, BAI decreased at the northern site, with an increase in δ13C and iWUE, indicating conservative water-use. Conversely, the southern sites showed increased BAI and iWUE, likely influenced by rising CO2 and improved water availability. In contrast, the central site sustained higher transpiration rates due to higher soil water holding capacity (SWHC). Despite varied responses, most sites exhibited reduced resilience to future extreme events, indicated by increased AR1. Temperature significantly affected beech iWUE and BAI in northern Italy, while VPD strongly influenced the southern latitudes. The observed increase in BAI and iWUE in southern regions might be attributed to an acclimation response.
Collapse
Affiliation(s)
- Paulina F Puchi
- Forest Modelling Lab., Institute for Agriculture and Forestry Systems in the Mediterranean, National Research Council of Italy (CNR-ISAFOM), Via Madonna Alta 128, 06128, Perugia, Italy.
- Institute of Bioeconomy, Italian National Research Council (CNR-IBE), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy.
| | - Daniela Dalmonech
- Forest Modelling Lab., Institute for Agriculture and Forestry Systems in the Mediterranean, National Research Council of Italy (CNR-ISAFOM), Via Madonna Alta 128, 06128, Perugia, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Elia Vangi
- Forest Modelling Lab., Institute for Agriculture and Forestry Systems in the Mediterranean, National Research Council of Italy (CNR-ISAFOM), Via Madonna Alta 128, 06128, Perugia, Italy
| | - Giovanna Battipaglia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'L. Vanvitelli', Caserta, Italy
| | - Roberto Tognetti
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100, Bolzano, Italy
| | - Alessio Collalti
- Forest Modelling Lab., Institute for Agriculture and Forestry Systems in the Mediterranean, National Research Council of Italy (CNR-ISAFOM), Via Madonna Alta 128, 06128, Perugia, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| |
Collapse
|
8
|
Meng F, Liu D, Wang Y, Wang S, Wang T. Negative relationship between photosynthesis and late-stage canopy development and senescence over Tibetan Plateau. GLOBAL CHANGE BIOLOGY 2023; 29:3147-3158. [PMID: 36883758 DOI: 10.1111/gcb.16668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 05/03/2023]
Abstract
Canopy greening, which is associated with significant canopy structure changes, is the most notable signal of ecosystem changes in response to anthropogenic climate change. However, our knowledge of the changing pattern of canopy development and senescence, and its endogenous and climatic drivers is still limited. Here, we used the Normalized Difference Vegetation Index (NDVI) to quantify the changes in the speed of canopy development and senescence over the Tibetan Plateau (TP) during 2000-2018, and used a solar-induced chlorophyll fluorescence dataset as a proxy for photosynthesis, in combination with climate datasets to decipher the endogenous and climatic drivers of the interannual variation in canopy changes. We found that the canopy development during the early green-up stage (April-May) is accelerating at a rate of 0.45-0.8 × 10-3 month-1 year-1 . However, this accelerating canopy development was largely offset by a decelerating canopy development during June and July (-0.61 to -0.51 × 10-3 month-1 year-1 ), leading to the peak NDVI over the TP increasing at a rate of only one fifth of that in northern temperate regions, and less than one tenth of that in the Arctic and boreal regions. During the green-down period, we observed a significant accelerating canopy senescence during October. Photosynthesis was found to be the dominant driver for canopy changes over the TP. Increasing photosynthesis stimulates canopy development during the early green-up stage. However, slower canopy development and accelerated senescence was found with larger photosynthesis in late growth stages. This negative relationship between photosynthesis and canopy development is probably linked to the source-sink balance of plants and shifts in the allocation regime. These results suggest a sink limitation for plant growth over the TP. The impact of canopy greening on the carbon cycle may be more complicated than the source-oriented paradigm used in current ecosystem models.
Collapse
Affiliation(s)
- Fandong Meng
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Dan Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Yilong Wang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Shiping Wang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Tao Wang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Konôpka B, Murgaš V, Pajtík J, Šebeň V, Barka I. Tree Biomass and Leaf Area Allometric Relations for Betula pendula Roth Based on Samplings in the Western Carpathians. PLANTS (BASEL, SWITZERLAND) 2023; 12:1607. [PMID: 37111832 PMCID: PMC10140978 DOI: 10.3390/plants12081607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
Biomass allometric relations are necessary for precise estimations of biomass forest stocks, as well as for the quantification of carbon sequestered by forest cover. Therefore, we attempted to create allometric models of total biomass in young silver birch (Betula pendula Roth) trees and their main components, i.e., leaves, branches, stem under bark, bark, and roots. The models were based on data from 180 sample trees with ages up to 15 years originating from natural regeneration at eight sites in the Western Carpathians (Slovakia). Sample trees represented individuals with stem base diameters (diameter D0) from about 4.0 to 113.0 mm and tree heights between 0.4 to 10.7 m. Each tree component was dried to constant mass and weighed. Moreover, subsamples of leaves (15 pieces of each tree) were scanned, dried, and weighed. Thus, we also obtained data for deriving a model expressing total leaf area at the tree level. The allometric models were in the form of regression relations using diameter D0 or tree height as predictors. The models, for instance, showed that while the total tree biomass of birches with a D0 of 50 mm (and a tree height of 4.06 m) was about 1653 g, the total tree biomass of those with a D0 of 100 mm (tree height 6.79 m) reached as much as 8501 g. Modeled total leaf areas for the trees with the above-mentioned dimensions were 2.37 m2 and 8.54 m2, respectively. The results prove that diameter D0 was a better predictor than tree height for both models of tree component biomass and total leaf area. Furthermore, we found that the contribution of individual tree components to total biomass changed with tree size. Specifically, while shares of leaves and roots decreased, those of all other components, especially stems with bark, increased. The derived allometric relations may be implemented for the calculation of biomass stock in birch-dominant or birch-admixed stands in the Western Carpathians or in other European regions, especially where no species- and region-specific models are available.
Collapse
Affiliation(s)
- Bohdan Konôpka
- National Forest Centre, Forest Research Institute Zvolen, T. G. Masaryka 2175/22, 960 01 Zvolen, Slovakia; (B.K.); (V.M.); (J.P.); (I.B.)
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic
| | - Vlastimil Murgaš
- National Forest Centre, Forest Research Institute Zvolen, T. G. Masaryka 2175/22, 960 01 Zvolen, Slovakia; (B.K.); (V.M.); (J.P.); (I.B.)
| | - Jozef Pajtík
- National Forest Centre, Forest Research Institute Zvolen, T. G. Masaryka 2175/22, 960 01 Zvolen, Slovakia; (B.K.); (V.M.); (J.P.); (I.B.)
| | - Vladimír Šebeň
- National Forest Centre, Forest Research Institute Zvolen, T. G. Masaryka 2175/22, 960 01 Zvolen, Slovakia; (B.K.); (V.M.); (J.P.); (I.B.)
| | - Ivan Barka
- National Forest Centre, Forest Research Institute Zvolen, T. G. Masaryka 2175/22, 960 01 Zvolen, Slovakia; (B.K.); (V.M.); (J.P.); (I.B.)
| |
Collapse
|
10
|
Larson ER, Armstrong EM, Harper H, Knapp S, Edwards KJ, Grierson D, Poppy G, Chase MW, Jones JDG, Bastow R, Jellis G, Barnes S, Temple P, Clarke M, Oldroyd G, Grierson CS. One hundred important questions for plant science - reflecting on a decade of plant research. THE NEW PHYTOLOGIST 2023; 238:464-469. [PMID: 36924326 DOI: 10.1111/nph.18663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/14/2022] [Indexed: 06/18/2023]
Affiliation(s)
- Emily R Larson
- School of Biological Sciences, Bristol University, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Emily May Armstrong
- School of Biological Sciences, Bristol University, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Helen Harper
- School of Biological Sciences, Bristol University, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Sandra Knapp
- Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Keith J Edwards
- School of Biological Sciences, Bristol University, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Don Grierson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, nr Loughborough, LE12 5RD, UK
| | - Guy Poppy
- Biological Sciences, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Mark W Chase
- Department of Environment and Agriculture, Curtin University, Perth, WA, 6845, Australia
- Royal Botanic Gardens Kew, Richmond, London, TW9 3AE, UK
| | | | - Ruth Bastow
- Crop Health and Protection Ltd, York Biotech Campus, Sand Hutton, York, YO41 1LZ, UK
| | - Graham Jellis
- Agrifood Charities Partnership, The Bullock Building, University Way, Cranfield, Bedford, MK43 OGH, UK
| | | | - Paul Temple
- Wold Farm, Driffield, East Yorkshire, YO25 3BB, UK
| | - Matthew Clarke
- Bayer - Crop Science, Monsanto UK Ltd, 230 Science Park, Cambridge, CB4 0WB, UK
| | - Giles Oldroyd
- Crop Science Centre, Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Claire S Grierson
- School of Biological Sciences, Bristol University, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
11
|
Cabon A, Anderegg WRL. Large volcanic eruptions elucidate physiological controls of tree growth and photosynthesis. Ecol Lett 2023; 26:257-267. [PMID: 36453236 DOI: 10.1111/ele.14149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 12/05/2022]
Abstract
Forest productivity projections remain highly uncertain, notably because underpinning physiological controls are delicate to disentangle. Transient perturbation of global climate by large volcanic eruptions provides a unique opportunity to retrospectively isolate underlying processes. Here, we use a multi-proxy dataset of tree-ring records distributed over the Northern Hemisphere to investigate the effect of eruptions on tree growth and photosynthesis and evaluate CMIP6 models. Tree-ring isotope records denoted a widespread 2-4 years increase of photosynthesis following eruptions, likely as a result of diffuse light fertilization. We found evidence that enhanced photosynthesis transiently drove ring width, but the latter further exhibited a decadal anomaly that evidenced independent growth and photosynthesis responses. CMIP6 simulations reproduced overall tree growth decline but did not capture observed photosynthesis anomaly, its decoupling from tree growth or the climate sensitivities of either processes, highlighting key disconnects that deserve further attention to improve forest productivity projections under climate change.
Collapse
Affiliation(s)
- Antoine Cabon
- Wilkes Center for Climate Science and Policy, University of Utah, Salt Lake City, Utah, USA.,School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - William R L Anderegg
- Wilkes Center for Climate Science and Policy, University of Utah, Salt Lake City, Utah, USA.,School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
12
|
Fang X, Lin T, Zhang B, Lai Y, Chen X, Xiao Y, Xie Y, Zhu J, Yang Y, Wang J. Regulating carbon and water balance as a strategy to cope with warming and drought climate in Cunninghamia lanceolata in southern China. FRONTIERS IN PLANT SCIENCE 2022; 13:1048930. [PMID: 36466246 PMCID: PMC9714357 DOI: 10.3389/fpls.2022.1048930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Human activities have increased the possibility of simultaneous warming and drought, which will lead to different carbon (C) allocation and water use strategies in plants. However, there is no conclusive information from previous studies. To explore C and water balance strategies of plants in response to warming and drought, we designed a 4-year experiment that included control (CT), warming (W, with a 5°C increase in temperature), drought (D, with a 50% decrease in precipitation), and warming and drought conditions (WD) to investigate the non-structural carbohydrate (NSC), C and nitrogen (N) stoichiometry, and intrinsic water use efficiency (iWUE) of leaves, roots, and litter of Cunninghamia lanceolata, a major tree species in southern China. We found that W significantly increased NSC and starch in the leaves, and increased NSC and soluble sugar is one of the components of NSC in the roots. D significantly increased leaves' NSC and starch, and increased litter soluble sugar. The NSC of the WD did not change significantly, but the soluble sugar was significantly reduced. The iWUE of leaves increased under D, and surprisingly, W and D significantly increased the iWUE of litter. The iWUE was positively correlated with NSC and soluble sugar. In addition, D significantly increased N at the roots and litter, resulting in a significant decrease in the C/N ratio. The principal component analysis showed that NSC, iWUE, N, and C/N ratio can be used as identifying indicators for C. lanceolata in both warming and drought periods. This study stated that under warming or drought, C. lanceolata would decline in growth to maintain high NSC levels and reduce water loss. Leaves would store starch to improve the resiliency of the aboveground parts, and the roots would increase soluble sugar and N accumulation to conserve water and to help C sequestration in the underground part. At the same time, defoliation was potentially beneficial for maintaining C and water balance. However, when combined with warming and drought, C. lanceolata growth will be limited by C, resulting in decreased NSC. This study provides a new insight into the coping strategies of plants in adapting to warming and drought environments.
Collapse
Affiliation(s)
- Xuan Fang
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou, China
- School of Life Sciences, Fujian Normal University, Fuzhou, China
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, China
| | - Tian Lin
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, China
| | - Biyao Zhang
- School of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yongru Lai
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou, China
- School of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Xupeng Chen
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou, China
- School of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yixin Xiao
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou, China
- School of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yiqing Xie
- Institute of Economic Forestry, Fujian Academy of Forestry, Fuzhou, China
| | - Jinmao Zhu
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou, China
- School of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yusheng Yang
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, China
- State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fuzhou, China
- School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Jian Wang
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou, China
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, China
- School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
13
|
Miao G, Noormets A, Gavazzi M, Mitra B, Domec JC, Sun G, McNulty S, King JS. Beyond carbon flux partitioning: Carbon allocation and nonstructural carbon dynamics inferred from continuous fluxes. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2655. [PMID: 35567435 DOI: 10.1002/eap.2655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/04/2022] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
Carbon (C) allocation and nonstructural carbon (NSC) dynamics play essential roles in plant growth and survival under stress and disturbance. However, quantitative understanding of these processes remains limited. Here we propose a framework where we connect commonly measured carbon cycle components (eddy covariance fluxes of canopy CO2 exchange, soil CO2 efflux, and allometry-based biomass and net primary production) by a simple mass balance model to derive ecosystem-level NSC dynamics (NSCi ), C translocation (dCi ), and the biomass production efficiency (BPEi ) in above- and belowground plant (i = agp and bgp) compartments. We applied this framework to two long-term monitored loblolly pine (Pinus taeda) plantations of different ages in North Carolina and characterized the variations of NSC and allocation in years under normal and drought conditions. The results indicated that the young stand did not have net NSC flux at the annual scale, whereas the mature stand stored a near-constant proportion of new assimilates as NSC every year under normal conditions, which was comparable in magnitude to new structural growth. Roots consumed NSC in drought and stored a significant amount of NSC post drought. The above- and belowground dCi and BPEi varied more from year to year in the young stand and approached a relatively stable pattern in the mature stand. The belowground BPEbgp differed the most between the young and mature stands and was most responsive to drought. With the internal C dynamics quantified, this framework may also improve biomass production estimation, which reveals the variations resulting from droughts. Overall, these quantified ecosystem-scale dynamics were consistent with existing evidence from tree-based manipulative experiments and measurements and demonstrated that combining the continuous fluxes as proposed here can provide additional information about plant internal C dynamics. Given that it is based on broadly available flux data, the proposed framework is promising to improve the allocation algorithms in ecosystem C cycle models and offers new insights into observed variability in soil-plant-climate interactions.
Collapse
Affiliation(s)
- Guofang Miao
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou, Fujian Province, China
- School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian Province, China
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, USA
| | - Asko Noormets
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, USA
- Department of Ecosystem Science and Management, Texas A&M University, College Station, Texas, USA
| | - Michael Gavazzi
- Eastern Forest Environmental Threat Assessment Center, Southern Research Station, USDA Forest Service, Research Triangle Park, North Carolina, USA
| | - Bhaskar Mitra
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, Arizona, USA
| | - Jean-Christophe Domec
- Bordeaux Sciences AGRO, UMR1391 ISPA INRA, Gradignan Cedex, France
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Ge Sun
- Eastern Forest Environmental Threat Assessment Center, Southern Research Station, USDA Forest Service, Research Triangle Park, North Carolina, USA
| | - Steve McNulty
- Eastern Forest Environmental Threat Assessment Center, Southern Research Station, USDA Forest Service, Research Triangle Park, North Carolina, USA
| | - John S King
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
14
|
Bugmann H, Seidl R. The evolution, complexity and diversity of models of long-term forest dynamics. THE JOURNAL OF ECOLOGY 2022; 110:2288-2307. [PMID: 36632361 PMCID: PMC9826524 DOI: 10.1111/1365-2745.13989] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 08/01/2022] [Indexed: 06/17/2023]
Abstract
To assess the impacts of climate change on vegetation from stand to global scales, models of forest dynamics that include tree demography are needed. Such models are now available for 50 years, but the currently existing diversity of model formulations and its evolution over time are poorly documented. This hampers systematic assessments of structural uncertainties in model-based studies.We conducted a meta-analysis of 28 models, focusing on models that were used in the past five years for climate change studies. We defined 52 model attributes in five groups (basic assumptions, growth, regeneration, mortality and soil moisture) and characterized each model according to these attributes. Analyses of model complexity and diversity included hierarchical cluster analysis and redundancy analysis.Model complexity evolved considerably over the past 50 years. Increases in complexity were largest for growth processes, while complexity of modelled establishment processes increased only moderately. Model diversity was lowest at the global scale, and highest at the landscape scale. We identified five distinct clusters of models, ranging from very simple models to models where specific attribute groups are rendered in a complex manner and models that feature high complexity across all attributes.Most models in use today are not balanced in the level of complexity with which they represent different processes. This is the result of different model purposes, but also reflects legacies in model code, modelers' preferences, and the 'prevailing spirit of the epoch'. The lack of firm theories, laws and 'first principles' in ecology provides high degrees of freedom in model development, but also results in high responsibilities for model developers and the need for rigorous model evaluation. Synthesis. The currently available model diversity is beneficial: convergence in simulations of structurally different models indicates robust projections, while convergence of similar models may convey a false sense of certainty. The existing model diversity-with the exception of global models-can be exploited for improved projections based on multiple models. We strongly recommend balanced further developments of forest models that should particularly focus on establishment and mortality processes, in order to provide robust information for decisions in ecosystem management and policymaking.
Collapse
Affiliation(s)
- Harald Bugmann
- Forest Ecology, Institute of Terrestrial Ecosystems, Department of Environmental Systems ScienceETH ZurichZürichSwitzerland
- Ecosystem Dynamics and Forest ManagementTechnical University of MunichFreisingGermany
| | - Rupert Seidl
- Ecosystem Dynamics and Forest ManagementTechnical University of MunichFreisingGermany
- Berchtesgaden National ParkBerchtesgadenGermany
| |
Collapse
|
15
|
Cho N, Agossou C, Kim E, Lim JH, Hwang T, Kang S. Recent field findings and modeling on non-structural carbohydrates (NSCs): How to synthesize? ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
De Marco A, Sicard P, Feng Z, Agathokleous E, Alonso R, Araminiene V, Augustatis A, Badea O, Beasley JC, Branquinho C, Bruckman VJ, Collalti A, David‐Schwartz R, Domingos M, Du E, Garcia Gomez H, Hashimoto S, Hoshika Y, Jakovljevic T, McNulty S, Oksanen E, Omidi Khaniabadi Y, Prescher A, Saitanis CJ, Sase H, Schmitz A, Voigt G, Watanabe M, Wood MD, Kozlov MV, Paoletti E. Strategic roadmap to assess forest vulnerability under air pollution and climate change. GLOBAL CHANGE BIOLOGY 2022; 28:5062-5085. [PMID: 35642454 PMCID: PMC9541114 DOI: 10.1111/gcb.16278] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/02/2022] [Accepted: 05/18/2022] [Indexed: 05/13/2023]
Abstract
Although it is an integral part of global change, most of the research addressing the effects of climate change on forests have overlooked the role of environmental pollution. Similarly, most studies investigating the effects of air pollutants on forests have generally neglected the impacts of climate change. We review the current knowledge on combined air pollution and climate change effects on global forest ecosystems and identify several key research priorities as a roadmap for the future. Specifically, we recommend (1) the establishment of much denser array of monitoring sites, particularly in the South Hemisphere; (2) further integration of ground and satellite monitoring; (3) generation of flux-based standards and critical levels taking into account the sensitivity of dominant forest tree species; (4) long-term monitoring of N, S, P cycles and base cations deposition together at global scale; (5) intensification of experimental studies, addressing the combined effects of different abiotic factors on forests by assuring a better representation of taxonomic and functional diversity across the ~73,000 tree species on Earth; (6) more experimental focus on phenomics and genomics; (7) improved knowledge on key processes regulating the dynamics of radionuclides in forest systems; and (8) development of models integrating air pollution and climate change data from long-term monitoring programs.
Collapse
Affiliation(s)
| | | | - Zhaozhong Feng
- Key Laboratory of Agro‐Meteorology of Jiangsu Province, School of Applied MeteorologyNanjing University of Information Science & TechnologyNanjingChina
| | - Evgenios Agathokleous
- Key Laboratory of Agro‐Meteorology of Jiangsu Province, School of Applied MeteorologyNanjing University of Information Science & TechnologyNanjingChina
| | - Rocio Alonso
- Ecotoxicology of Air Pollution, CIEMATMadridSpain
| | - Valda Araminiene
- Lithuanian Research Centre for Agriculture and ForestryKaunasLithuania
| | - Algirdas Augustatis
- Faculty of Forest Sciences and EcologyVytautas Magnus UniversityKaunasLithuania
| | - Ovidiu Badea
- “Marin Drăcea” National Institute for Research and Development in ForestryVoluntariRomania
- Faculty of Silviculture and Forest Engineering“Transilvania” UniversityBraşovRomania
| | - James C. Beasley
- Savannah River Ecology Laboratory and Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAikenSouth CarolinaUSA
| | - Cristina Branquinho
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
| | - Viktor J. Bruckman
- Commission for Interdisciplinary Ecological StudiesAustrian Academy of SciencesViennaAustria
| | | | | | - Marisa Domingos
- Instituto de BotanicaNucleo de Pesquisa em EcologiaSao PauloBrazil
| | - Enzai Du
- Faculty of Geographical ScienceBeijing Normal UniversityBeijingChina
| | | | - Shoji Hashimoto
- Department of Forest SoilsForestry and Forest Products Research InstituteTsukubaJapan
| | | | | | | | - Elina Oksanen
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
| | - Yusef Omidi Khaniabadi
- Department of Environmental Health EngineeringIndustrial Medial and Health, Petroleum Industry Health Organization (PIHO)AhvazIran
| | | | - Costas J. Saitanis
- Lab of Ecology and Environmental ScienceAgricultural University of AthensAthensGreece
| | - Hiroyuki Sase
- Ecological Impact Research DepartmentAsia Center for Air Pollution Research (ACAP)NiigataJapan
| | - Andreas Schmitz
- State Agency for Nature, Environment and Consumer Protection of North Rhine‐WestphaliaRecklinghausenGermany
| | | | - Makoto Watanabe
- Institute of AgricultureTokyo University of Agriculture and Technology (TUAT)FuchuJapan
| | - Michael D. Wood
- School of Science, Engineering and EnvironmentUniversity of SalfordSalfordUK
| | | | - Elena Paoletti
- Department of Forest SoilsForestry and Forest Products Research InstituteTsukubaJapan
| |
Collapse
|
17
|
Improving a Process-Based Model to Simulate Forest Carbon Allocation under Varied Stand Density. FORESTS 2022. [DOI: 10.3390/f13081212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Carbon allocation is an important mechanism through which plants respond to environmental changes. To enhance our understanding of maximizing carbon uptake by controlling planting densities, the carbon allocation module of a process-based model, TRIPLEX-Management, was modified and improved by introducing light, soil water, and soil nitrogen availability factors to quantify the allocation coefficients for different plant organs. The modified TRIPLEX-Management model simulation results were verified against observations from northern Jiangsu Province, China, and then the model was used to simulate dynamic changes in forest carbon under six density scenarios (200, 400, 600, 800, 1000, and 1200 stems ha−1). The mean absolute errors between the predicted and observed variables of the mean diameter at breast height, mean height, and estimated aboveground biomass ranged from 15.0% to 26.6%, and were lower compared with the original model simulated results, which ranged from 24.4% to 60.5%. The normalized root mean square errors ranged from 0.2 to 0.3, and were lower compared with the original model simulated results, which ranged from 0.3 to 0.6. The Willmott index between the predicted and observed variables also varied from 0.5 to 0.8, indicating that the modified TRIPLEX-Management model could accurately simulate the dynamic changes in poplar (Populus spp.) plantations with different densities in northern Jiangsu Province. The density scenario results showed that the leaf and fine root allocation coefficients decreased with the increase in stand density, while the stem allocation increased. Overall, our study showed that the optimum stand density (approximately 400 stems ha−1) could reach the highest aboveground biomass for poplar stands and soil organic carbon storage, leading to higher ecological functions related to carbon sequestration without sacrificing wood production in an economical way in northern Jiangsu Province. Therefore, reasonable density control with different soil and climate conditions should be recommended to maximize carbon sequestration.
Collapse
|
18
|
Gea‐Izquierdo G, Sánchez‐González M. Forest disturbances and climate constrain carbon allocation dynamics in trees. GLOBAL CHANGE BIOLOGY 2022; 28:4342-4358. [PMID: 35322511 PMCID: PMC9541293 DOI: 10.1111/gcb.16172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Forest disturbances such as drought, fire, and logging affect the forest carbon dynamics and the terrestrial carbon sink. Forest mortality after disturbances creates uncertainties that need to be accounted for to understand forest dynamics and their associated C-sink. We combined data from permanent resampling plots and biomass oriented dendroecological plots to estimate time series of annual woody biomass growth (ABI) in several forests. ABI time series were used to benchmark a vegetation model to analyze dynamics in forest productivity and carbon allocation forced by environmental variability. The model implements source and sink limitations explicitly by dynamically constraining carbon allocation of assimilated photosynthates as a function of temperature and moisture. Bias in tree-ring reconstructed ABI increased back in time from data collection and with increasing disturbance intensity. ABI bias ranged from zero, in open stands without recorded mortality, to over 100% in stands with major disturbances such as thinning or snowstorms. Stand leaf area was still lower than in control plots decades after heavy thinning. Disturbances, species life-history strategy and climatic variability affected carbon-partitioning patterns in trees. Resprouting broadleaves reached maximum biomass growth at earlier ages than nonresprouting conifers. Environmental variability and leaf area explained much variability in woody biomass allocation. Effects of stand competition on C-allocation were mediated by changes in stand leaf area except after major disturbances. Divergence between tree-ring estimated and simulated ABI were caused by unaccounted changes in allocation or misrepresentation of some functional process independently of the model calibration approach. Higher disturbance intensity produced greater modifications of the C-allocation pattern, increasing error in reconstructed biomass dynamics. Legacy effects from disturbances decreased model performance and reduce the potential use of ABI as a proxy to net primary productivity. Trait-based dynamics of C-allocation in response to environmental variability need to be refined in vegetation models.
Collapse
|
19
|
Rau EP, Fischer F, Joetzjer É, Maréchaux I, Sun IF, Chave J. Transferability of an individual- and trait-based forest dynamics model: A test case across the tropics. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2021.109801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
D'Andrea E, Scartazza A, Battistelli A, Collalti A, Proietti S, Rezaie N, Matteucci G, Moscatello S. Unravelling resilience mechanisms in forests: role of non-structural carbohydrates in responding to extreme weather events. TREE PHYSIOLOGY 2021; 41:1808-1818. [PMID: 33823054 DOI: 10.1093/treephys/tpab044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/02/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Extreme weather events are increasing in frequency and intensity due to global climate change. We hypothesized that tree carbon reserves are crucial for resilience of beech, buffering the source-sink imbalance due to late frosts and summer droughts, and that different components of non-structural carbohydrates (NSCs) play specific roles in coping with stressful situations. To assess the compound effects on mature trees of two extreme weather events, first a late frost in spring 2016 and then a drought in summer 2017, we monitored the phenology, radial growth and the dynamics of starch and soluble sugars in a Mediterranean beech forest. A growth reduction of 85% was observed after the spring late frost, yet not after the drought event. We observed a strong impact of late frost on starch, which also affected its dynamic at the beginning of the subsequent vegetative season. In 2017, the increase of soluble sugars, associated with starch hydrolysis, played a crucial role in coping with the severe summer drought. Non-structural carbohydrates helped to counteract the negative effects of both events, supporting plant survival and buffering source-sink imbalances under stressful conditions. Our findings indicate a strong trade-off between growth and NSC storage in trees. Overall, our results highlight the key role of NSCs on beech trees, response to extreme weather events, confirming the resilience of this species to highly stressful events. These insights are useful for assessing how forests may respond to the potential impacts of climate change on ecosystem processes in the Mediterranean area.
Collapse
Affiliation(s)
- Ettore D'Andrea
- Institute for Agriculture and Forestry Systems in the Mediterranean, National Research Council of Italy (CNR-ISAFOM), P. le Enrico Fermi 1 - Loc. Porto del Granatello, 80055 Portici, Naples, Italy
| | - Andrea Scartazza
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), Via Moruzzi 1, 56124 Pisa, Italy
| | - Alberto Battistelli
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), via Marconi 2, 05010 Porano, Terni, Italy
| | - Alessio Collalti
- Forest Modelling Laboratory, Institute for Agriculture and Forestry Systems in the Mediterranean, National Research Council of Italy (CNR-ISAFOM), Via Madonna Alta 128, 06128 Perugia, Italy
- Department of Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Simona Proietti
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), via Marconi 2, 05010 Porano, Terni, Italy
| | - Negar Rezaie
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), via Marconi 2, 05010 Porano, Terni, Italy
| | - Giorgio Matteucci
- Institute for BioEconomy, National Research Council of Italy (CNR-IBE), via Madonna del Piano, 10 50019 Sesto Fiorentino, Florence, Italy
| | - Stefano Moscatello
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), via Marconi 2, 05010 Porano, Terni, Italy
| |
Collapse
|
21
|
Furze ME, Wainwright DK, Huggett BA, Knipfer T, McElrone AJ, Brodersen CR. Ecologically driven selection of nonstructural carbohydrate storage in oak trees. THE NEW PHYTOLOGIST 2021; 232:567-578. [PMID: 34235751 DOI: 10.1111/nph.17605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Leaf habit is a major axis of plant diversity that has consequences for carbon balance since the leaf is the primary site of photosynthesis. Nonstructural carbohydrates (NSCs) produced by photosynthesis can be allocated to storage and serve as a resiliency mechanism to future abiotic and biotic stress. However, how leaf habit affects NSC storage in an evolutionary context has not been shown. Using a comparative physiological framework and an analysis of evolutionary model fitting, we examined if variation in NSC storage is explained by leaf habit. We measured sugar and starch concentrations in 51 oak species (Quercus spp.) growing in a common garden and representing multiple evolutions of three different leaf habits (deciduous, brevideciduous and evergreen). The best fitting evolutionary models indicated that deciduous oak species are evolving towards higher NSC concentrations than their brevideciduous and evergreen relatives. Notably, this was observed for starch (the primary storage molecule) in the stem (a long-term C storage organ). Overall, our work provides insight into the evolutionary drivers of NSC storage and suggests that a deciduous strategy may confer an advantage against stress associated with a changing world. Future work should examine additional clades to further corroborate this idea.
Collapse
Affiliation(s)
- Morgan E Furze
- School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Dylan K Wainwright
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511, USA
| | - Brett A Huggett
- Department of Biology, Bates College, Lewiston, ME, 04240, USA
| | - Thorsten Knipfer
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, 95616, USA
| | - Andrew J McElrone
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, 95616, USA
- US Department of Agriculture - Agricultural Research Service, Crops Pathology and Genetics Research Unit, Davis, CA, 95618, USA
| | - Craig R Brodersen
- School of the Environment, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
22
|
Evaluation of the Terrestrial Ecosystem Model Biome-BGCMuSo for Modelling Soil Organic Carbon under Different Land Uses. LAND 2021. [DOI: 10.3390/land10090968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Soil organic carbon (SOC) is a mandatory pool in national inventory reports on greenhouse gas (GHG) emissions and removals to the UNFCCC. Hence, its accurate assessment is important. Modelling SOC changes for national GHG reports is encouraged, but the uncertainty related to this pool still presents a significant challenge; thus, verifying modelling results with field observations is essential. We used the process-based model Biome-BGCMuSo and assessed its suitability for use in Croatia’s GHG reporting. We modelled SOC stocks in the top 30 cm of the mineral soil layer (SOC30) for four different land-use (LU) categories (Deciduous/Coniferous Forest, Grassland and Annual Cropland) distributed in three biogeographical regions (Alpine, Continental and Mediterranean) and compared them with results of a national soil survey. A total of 573 plot level simulations were undertaken and results were evaluated at three stratification levels (LU, LU × biogeographical region, and plot). The model reproduced the overall country mean of SOC30 with no overall bias, and showed good performance at the LU level with no significant (p < 0.05) difference for all LUs except Deciduous Forest (11% overestimation). At finer stratifications, the model performance considerably worsened. Further model calibration, improvement and testing, as well as repeated soil survey are needed in order to assess the changes in SOC30 and to evaluate the potential of the Biome-BGCMuSo model for use in GHG reporting.
Collapse
|
23
|
Potkay A, Trugman AT, Wang Y, Venturas MD, Anderegg WRL, Mattos CRC, Fan Y. Coupled whole-tree optimality and xylem hydraulics explain dynamic biomass partitioning. THE NEW PHYTOLOGIST 2021; 230:2226-2245. [PMID: 33521942 DOI: 10.1111/nph.17242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Trees partition biomass in response to resource limitation and physiological activity. It is presumed that these strategies evolved to optimize some measure of fitness. If the optimization criterion can be specified, then allometry can be modeled from first principles without prescribed parameterization. We present the Tree Hydraulics and Optimal Resource Partitioning (THORP) model, which optimizes allometry by estimating allocation fractions to organs as proportional to their ratio of marginal gain to marginal cost, where gain is net canopy photosynthesis rate, and costs are senescence rates. Root total biomass and profile shape are predicted simultaneously by a unified optimization. Optimal partitioning is solved by a numerically efficient analytical solution. THORP's predictions agree with reported tree biomass partitioning in response to size, water limitations, elevated CO2 and pruning. Roots were sensitive to soil moisture profiles and grew down to the groundwater table when present. Groundwater buffered against water stress regardless of meteorology, stabilizing allometry and root profiles as deep as c. 30 m. Much of plant allometry can be explained by hydraulic considerations. However, nutrient limitations cannot be fully ignored. Rooting mass and profiles were synchronized with hydrological conditions and groundwater even at considerable depths, illustrating that the below ground shapes whole-tree allometry.
Collapse
Affiliation(s)
- Aaron Potkay
- Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ, 08854, USA
| | - Anna T Trugman
- Department of Geography, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Yujie Wang
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Martin D Venturas
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - William R L Anderegg
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Caio R C Mattos
- Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ, 08854, USA
| | - Ying Fan
- Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ, 08854, USA
| |
Collapse
|
24
|
Maréchaux I, Langerwisch F, Huth A, Bugmann H, Morin X, Reyer CP, Seidl R, Collalti A, Dantas de Paula M, Fischer R, Gutsch M, Lexer MJ, Lischke H, Rammig A, Rödig E, Sakschewski B, Taubert F, Thonicke K, Vacchiano G, Bohn FJ. Tackling unresolved questions in forest ecology: The past and future role of simulation models. Ecol Evol 2021; 11:3746-3770. [PMID: 33976773 PMCID: PMC8093733 DOI: 10.1002/ece3.7391] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/04/2021] [Accepted: 02/20/2021] [Indexed: 12/13/2022] Open
Abstract
Understanding the processes that shape forest functioning, structure, and diversity remains challenging, although data on forest systems are being collected at a rapid pace and across scales. Forest models have a long history in bridging data with ecological knowledge and can simulate forest dynamics over spatio-temporal scales unreachable by most empirical investigations.We describe the development that different forest modelling communities have followed to underpin the leverage that simulation models offer for advancing our understanding of forest ecosystems.Using three widely applied but contrasting approaches - species distribution models, individual-based forest models, and dynamic global vegetation models - as examples, we show how scientific and technical advances have led models to transgress their initial objectives and limitations. We provide an overview of recent model applications on current important ecological topics and pinpoint ten key questions that could, and should, be tackled with forest models in the next decade.Synthesis. This overview shows that forest models, due to their complementarity and mutual enrichment, represent an invaluable toolkit to address a wide range of fundamental and applied ecological questions, hence fostering a deeper understanding of forest dynamics in the context of global change.
Collapse
Affiliation(s)
| | - Fanny Langerwisch
- Department of Ecology and Environmental SciencesPalacký University OlomoucOlomoucCzech Republic
- Department of Water Resources and Environmental ModelingCzech University of Life SciencesPragueCzech Republic
| | - Andreas Huth
- Helmholtz Centre for Environmental Research ‐ UFZLeipzigGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of Environmental Systems ResearchOsnabrück UniversityOsnabrückGermany
| | - Harald Bugmann
- Forest EcologyInstitute of Terrestrial EcosystemsETH ZürichZurichSwitzerland
| | - Xavier Morin
- EPHECEFECNRSUniv MontpellierUniv Paul Valéry MontpellierIRDMontpellierFrance
| | - Christopher P.O. Reyer
- Potsdam Institute for Climate Impact Research (PIK)Member of the Leibniz AssociationPotsdamGermany
| | - Rupert Seidl
- Institute of SilvicultureUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
- TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Alessio Collalti
- Forest Modelling LabInstitute for Agriculture and Forestry Systems in the MediterraneanNational Research Council of Italy (CNR‐ISAFOM)Perugia (PG)Italy
- Department of Innovation in Biological, Agro‐food and Forest SystemsUniversity of TusciaViterboItaly
| | | | - Rico Fischer
- Helmholtz Centre for Environmental Research ‐ UFZLeipzigGermany
| | - Martin Gutsch
- Potsdam Institute for Climate Impact Research (PIK)Member of the Leibniz AssociationPotsdamGermany
| | | | - Heike Lischke
- Dynamic MacroecologyLand Change ScienceSwiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Anja Rammig
- TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Edna Rödig
- Helmholtz Centre for Environmental Research ‐ UFZLeipzigGermany
| | - Boris Sakschewski
- Potsdam Institute for Climate Impact Research (PIK)Member of the Leibniz AssociationPotsdamGermany
| | | | - Kirsten Thonicke
- Potsdam Institute for Climate Impact Research (PIK)Member of the Leibniz AssociationPotsdamGermany
| | | | | |
Collapse
|
25
|
Eckes-Shephard AH, Tiavlovsky E, Chen Y, Fonti P, Friend AD. Direct response of tree growth to soil water and its implications for terrestrial carbon cycle modelling. GLOBAL CHANGE BIOLOGY 2021; 27:121-135. [PMID: 33065763 DOI: 10.1111/gcb.15397] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Wood growth constitutes the main process for long-term atmospheric carbon sequestration in vegetation. However, our understanding of the process of wood growth and its response to environmental drivers is limited. Current dynamic global vegetation models (DGVMs) are mainly photosynthesis-driven and thus do not explicitly include a direct environmental effect on tree growth. However, physiological evidence suggests that, to realistically model vegetation carbon allocation under increased climatic stressors, it is crucial to treat growth responses independently from photosynthesis. A plausible growth response function suitable for global simulations in DGVMs has been lacking. Here, we present the first soil water-growth response function and parameter range for deciduous and evergreen conifers. The response curve was calibrated against European larch and Norway spruce in a dry temperate forest in the Swiss Alps. We present a new data-driven approach based on a combination of tree ring width (TRW) records, growing season length and simulated subdaily soil hydrology to parameterize ring width increment simulations. We found that a simple linear response function, with an intercept at zero moisture stress, used in growth simulations reproduced 62.3% and 59.4% of observed TRW variability for larch and spruce respectively and, importantly, the response function slope was much steeper than literature values for soil moisture effects on photosynthesis and stomatal conductance. Specifically, we found stem growth stops at soil moisture potentials of -0.47 MPa for larch and -0.66 MPa for spruce, whereas photosynthesis in trees continues down to -1.2 MPa or lower, depending on species and measurement method. These results are strong evidence that the response functions of source and sink processes are indeed very different in trees, and need to be considered separately to correctly assess vegetation responses to environmental change. The results provide a parameterization for the explicit representation of growth responses to soil water in vegetation models.
Collapse
Affiliation(s)
| | | | - Yizhao Chen
- Department of Geography, University of Cambridge, Cambridge, UK
| | - Patrick Fonti
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Andrew D Friend
- Department of Geography, University of Cambridge, Cambridge, UK
| |
Collapse
|
26
|
Dale R, Oswald S, Jalihal A, LaPorte MF, Fletcher DM, Hubbard A, Shiu SH, Nelson ADL, Bucksch A. Overcoming the Challenges to Enhancing Experimental Plant Biology With Computational Modeling. FRONTIERS IN PLANT SCIENCE 2021; 12:687652. [PMID: 34354723 PMCID: PMC8329482 DOI: 10.3389/fpls.2021.687652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/01/2021] [Indexed: 05/10/2023]
Abstract
The study of complex biological systems necessitates computational modeling approaches that are currently underutilized in plant biology. Many plant biologists have trouble identifying or adopting modeling methods to their research, particularly mechanistic mathematical modeling. Here we address challenges that limit the use of computational modeling methods, particularly mechanistic mathematical modeling. We divide computational modeling techniques into either pattern models (e.g., bioinformatics, machine learning, or morphology) or mechanistic mathematical models (e.g., biochemical reactions, biophysics, or population models), which both contribute to plant biology research at different scales to answer different research questions. We present arguments and recommendations for the increased adoption of modeling by plant biologists interested in incorporating more modeling into their research programs. As some researchers find math and quantitative methods to be an obstacle to modeling, we provide suggestions for easy-to-use tools for non-specialists and for collaboration with specialists. This may especially be the case for mechanistic mathematical modeling, and we spend some extra time discussing this. Through a more thorough appreciation and awareness of the power of different kinds of modeling in plant biology, we hope to facilitate interdisciplinary, transformative research.
Collapse
Affiliation(s)
- Renee Dale
- Donald Danforth Plant Science Center, St. Louis, MO, United States
- *Correspondence: Renee Dale
| | - Scott Oswald
- Warnell School of Forestry and Natural Resources and Institute of Bioinformatics, University of Georgia, Athens, GA, United States
| | - Amogh Jalihal
- Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Mary-Francis LaPorte
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Daniel M. Fletcher
- Bioengineering Sciences Research Group, Department of Mechanical Engineering, School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, United Kingdom
| | - Allen Hubbard
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| | - Shin-Han Shiu
- Department of Plant Biology and Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, MI, United States
| | | | - Alexander Bucksch
- Warnell School of Forestry and Natural Resources and Institute of Bioinformatics, University of Georgia, Athens, GA, United States
- Department of Plant Biology, University of Georgia, Athens, GA, United States
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
| |
Collapse
|
27
|
Model-Based Estimation of Amazonian Forests Recovery Time after Drought and Fire Events. FORESTS 2020. [DOI: 10.3390/f12010008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent decades, droughts, deforestation and wildfires have become recurring phenomena that have heavily affected both human activities and natural ecosystems in Amazonia. The time needed for an ecosystem to recover from carbon losses is a crucial metric to evaluate disturbance impacts on forests. However, little is known about the impacts of these disturbances, alone and synergistically, on forest recovery time and the resulting spatiotemporal patterns at the regional scale. In this study, we combined the 3-PG forest growth model, remote sensing and field derived equations, to map the Amazonia-wide (3 km of spatial resolution) impact and recovery time of aboveground biomass (AGB) after drought, fire and a combination of logging and fire. Our results indicate that AGB decreases by 4%, 19% and 46% in forests affected by drought, fire and logging + fire, respectively, with an average AGB recovery time of 27 years for drought, 44 years for burned and 63 years for logged + burned areas and with maximum values reaching 184 years in areas of high fire intensity. Our findings provide two major insights in the spatial and temporal patterns of drought and wildfire in the Amazon: (1) the recovery time of the forests takes longer in the southeastern part of the basin, and, (2) as droughts and wildfires become more frequent—since the intervals between the disturbances are getting shorter than the rate of forest regeneration—the long lasting damage they cause potentially results in a permanent and increasing carbon losses from these fragile ecosystems.
Collapse
|
28
|
Gains or Losses in Forest Productivity under Climate Change? The Uncertainty of CO2 Fertilization and Climate Effects. CLIMATE 2020. [DOI: 10.3390/cli8120141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Global warming poses great challenges for forest managers regarding adaptation strategies and species choices. More frequent drought events and heat spells are expected to reduce growth and increase mortality. Extended growing seasons, warming and elevated CO2 (eCO2) can also positively affect forest productivity. We studied the growth, productivity and mortality of beech (Fagus sylvatica L.) and fir (Abies alba Mill.) in the Black Forest (Germany) under three climate change scenarios (representative concentration pathways (RCP): RCP2.6, RCP4.5, RCP8.5) using the detailed biogeochemical forest growth model GOTILWA+. Averaged over the entire simulation period, both species showed productivity losses in RCP2.6 (16–20%) and in RCP4.5 (6%), but productivity gains in RCP8.5 (11–17%). However, all three scenarios had a tipping point (between 2035–2060) when initial gains in net primary productivity (NPP) (6–29%) eventually turned into losses (1–26%). With eCO2 switched off, the losses in NPP were 26–51% in RCP2.6, 36–45% in RCP4.5 and 33–71% in RCP8.5. Improved water-use efficiency dampened drought effects on NPP between 4 and 5%. Tree mortality increased, but without notably affecting forest productivity. Concluding, cultivation of beech and fir may still be possible in the study region, although severe productivity losses can be expected in the coming decades, which will strongly depend on the dampening CO2 fertilization effect.
Collapse
|
29
|
Collalti A, Ibrom A, Stockmarr A, Cescatti A, Alkama R, Fernández-Martínez M, Matteucci G, Sitch S, Friedlingstein P, Ciais P, Goll DS, Nabel JEMS, Pongratz J, Arneth A, Haverd V, Prentice IC. Forest production efficiency increases with growth temperature. Nat Commun 2020; 11:5322. [PMID: 33087724 PMCID: PMC7578801 DOI: 10.1038/s41467-020-19187-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 09/18/2020] [Indexed: 01/23/2023] Open
Abstract
Forest production efficiency (FPE) metric describes how efficiently the assimilated carbon is partitioned into plants organs (biomass production, BP) or-more generally-for the production of organic matter (net primary production, NPP). We present a global analysis of the relationship of FPE to stand-age and climate, based on a large compilation of data on gross primary production and either BP or NPP. FPE is important for both forest production and atmospheric carbon dioxide uptake. We find that FPE increases with absolute latitude, precipitation and (all else equal) with temperature. Earlier findings-FPE declining with age-are also supported by this analysis. However, the temperature effect is opposite to what would be expected based on the short-term physiological response of respiration rates to temperature, implying a top-down regulation of carbon loss, perhaps reflecting the higher carbon costs of nutrient acquisition in colder climates. Current ecosystem models do not reproduce this phenomenon. They consistently predict lower FPE in warmer climates, and are therefore likely to overestimate carbon losses in a warming climate.
Collapse
Affiliation(s)
- A Collalti
- National Research Council of Italy, Institute for Agriculture and Forestry Systems in the Mediterranean (ISAFOM), 06128, Perugia (PG), Italy
- University of Tuscia, Department of Innovation in Biological, Agro-food and Forest Systems (DIBAF), 01100, Viterbo, Italy
| | - A Ibrom
- Technical University of Denmark (DTU), Department of Environmental Engineering, Lyngby, Denmark.
| | - A Stockmarr
- Technical University of Denmark (DTU), Department of Applied Mathematics and Computer Science, Lyngby, Denmark
| | - A Cescatti
- European Commission, Joint Research Centre, Directorate for Sustainable Resources, Ispra, Italy
| | - R Alkama
- European Commission, Joint Research Centre, Directorate for Sustainable Resources, Ispra, Italy
| | - M Fernández-Martínez
- Research group PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, 2610, Wilrijk, Belgium
| | - G Matteucci
- National Research Council of Italy, Institute for BioEconomy (IBE), 50019, Sesto Fiorentino, FI, Italy
| | - S Sitch
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4RJ, UK
| | - P Friedlingstein
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK
| | - P Ciais
- Laboratoire des Sciences du Climat et del'Environnement, CEA CNRS UVSQ, Gif-sur-Yvette, 91191, France
| | - D S Goll
- Department of Geography, University of Augsburg, Augsburg, Germany
| | - J E M S Nabel
- Max Planck Institute for Meteorology, Hamburg, Germany
| | - J Pongratz
- Max Planck Institute for Meteorology, Hamburg, Germany
- Ludwig-Maximilians-Universität München, Luisenstr 37, 80333, Munich, Germany
| | - A Arneth
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research/Atmospheric Environmental Research, 82467, Garmisch-Partenkirchen, Germany
| | - V Haverd
- CSIRO Oceans and Atmosphere, Canberra, ACT, 2601, Australia
| | - I C Prentice
- Department of Life Sciences, Imperial College London, Silwood Park Campus, London, Ascot SL5 7PY, UK
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Department of Earth System Science, Tsinghua University, 100084, Beijing, China
| |
Collapse
|
30
|
Wood vs. Canopy Allocation of Aboveground Net Primary Productivity in a Mediterranean Forest during 21 Years of Experimental Rainfall Exclusion. FORESTS 2020. [DOI: 10.3390/f11101094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A Mediterranean holm oak forest was subjected to experimental partial rainfall exclusion during 21 consecutive years to study the effects of the expected decrease in water availability for Mediterranean vegetation in the coming decades. Allocation in woody structures and total aboveground allocation were correlated with annual rainfall, whereas canopy allocation and the ratio of wood/canopy allocation were not dependent on rainfall. Fruit productivity was also correlated with annual rainfall, but only in Quercus ilex. In the studied site, there were two types of forest structure: high canopy stand clearly dominated by Quercus ilex, and low canopy stand with more abundance of a tall shrub species, Phillyrea latifolia. In the tall canopy stand, the allocation to woody structures decreased in the experimental rainfall exclusion, but not the allocation to canopy. In the low canopy stand, wood allocation in Quercus ilex was very small in both control and plots with rainfall exclusion, but wood allocation in Phillyrea latifolia was even higher than that obtained in tall canopy plots, especially in the plots receiving the experimental rainfall exclusion. These results highlight likely future changes in the structure and functioning of this ecosystem induced by the decrease in water availability. A serious drop in the capacity to mitigate climate change for this Mediterranean forest can be expected, and the ability of Phillyrea latifolia to take advantage of the limited capacity to cope with drought conditions detected in Quercus ilex makes likely a forthcoming change in species dominance, especially in the low canopy stands.
Collapse
|
31
|
D'Andrea E, Rezaie N, Prislan P, Gričar J, Collalti A, Muhr J, Matteucci G. Frost and drought: Effects of extreme weather events on stem carbon dynamics in a Mediterranean beech forest. PLANT, CELL & ENVIRONMENT 2020; 43:2365-2379. [PMID: 32705694 DOI: 10.1111/pce.13858] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
The effects of short-term extreme events on tree functioning and physiology are still rather elusive. European beech is one of the most sensitive species to late frost and water shortage. We investigated the intra-annual C dynamics in stems under such conditions. Wood formation and stem CO2 efflux were monitored in a Mediterranean beech forest for 3 years (2015-2017), including a late frost (2016) and a summer drought (2017). The late frost reduced radial growth and, consequently, the amount of carbon fixed in the stem biomass by 80%. Stem carbon dioxide efflux in 2016 was reduced by 25%, which can be attributed to the reduction of effluxes due to growth respiration. Counter to our expectations, we found no effects of the 2017 summer drought on radial growth and stem carbon efflux. The studied extreme weather events had various effects on tree growth. Even though late spring frost had a strong impact on beech radial growth in the current year, trees fully recovered in the following growing season, indicating high resilience of beech to this stressful event.
Collapse
Affiliation(s)
- Ettore D'Andrea
- National Research Council of Italy, Institute for Agriculture and Forestry Systems in the Mediterranean (CNR-ISAFOM), Ercolano, Naples, Italy
| | - Negar Rezaie
- National Research Council of Italy, Institute for Agriculture and Forestry Systems in the Mediterranean (CNR-ISAFOM), Ercolano, Naples, Italy
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro Ricerca Ingegneria e Trasformazioni Agroalimentari (CREA-IT), Monterotondo Scalo, Rome, Italy
| | | | | | - Alessio Collalti
- National Research Council of Italy, Institute for Agriculture and Forestry Systems in the Mediterranean (CNR-ISAFOM), Perugia, Perugia, Italy
- Department of Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Jan Muhr
- Bioclimatology, University of Göttingen, Göttingen, Germany
- Department of Biogeochemical Processes, Max-Planck-Institute for Biogeochemistry, Jena, Germany
| | - Giorgio Matteucci
- National Research Council of Italy, Institute for Agriculture and Forestry Systems in the Mediterranean (CNR-ISAFOM), Ercolano, Naples, Italy
- Institute for BioEconomy (CNR-IBE), National Research Council of Italy, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
32
|
Štursová M, Kohout P, Human ZR, Baldrian P. Production of Fungal Mycelia in a Temperate Coniferous Forest Shows Distinct Seasonal Patterns. J Fungi (Basel) 2020; 6:E190. [PMID: 32993121 PMCID: PMC7712845 DOI: 10.3390/jof6040190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
In temperate forests, climate seasonality restricts the photosynthetic activity of primary producers to the warm season from spring to autumn, while the cold season with temperatures below the freezing point represents a period of strongly reduced plant activity. Although soil microorganisms are active all-year-round, their expressions show seasonal patterns. This is especially visible on the ectomycorrhizal fungi, the most abundant guild of fungi in coniferous forests. We quantified the production of fungal mycelia using ingrowth sandbags in the organic layer of soil in temperate coniferous forest and analysed the composition of fungal communities in four consecutive seasons. We show that fungal biomass production is as low as 0.029 µg g-1 of sand in December-March, while it reaches 0.122 µg g-1 in June-September. The majority of fungi show distinct patterns of seasonal mycelial production, with most ectomycorrhizal fungi colonising ingrowth bags in the spring or summer, while the autumn and winter colonisation was mostly due to moulds. Our results indicate that fungal taxa differ in their seasonal patterns of mycelial production. Although fungal biomass turnover appears all-year-round, its rates are much faster in the period of plant activity than in the cold season.
Collapse
Affiliation(s)
- Martina Štursová
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; (P.K.); (Z.R.H.)
| | | | | | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; (P.K.); (Z.R.H.)
| |
Collapse
|
33
|
Towards better representations of carbon allocation in vegetation: a conceptual framework and mathematical tool. THEOR ECOL-NETH 2020. [DOI: 10.1007/s12080-020-00455-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AbstractThe representation of carbon allocation (CA) in ecosystem differs tremendously among models, resulting in diverse responses of carbon cycling and storage to global change. Several studies have highlighted discrepancies between empirical observations and model predictions, attributing these differences to problems of model structure. We analyzed the mathematical representation of CA in models using concepts from dynamical systems theory; we reviewed a representative sample of models of CA in vegetation and developed a model database within the Python package bgc-md. We asked whether these representations can be generalized as a linear system, or whether a more general framework is needed to accommodate nonlinearities. Some of the vegetation systems simulated with the reviewed models have a fixed partitioning of photosynthetic products, independent of environmental forcing. Vegetation is often represented as a linear system without storage compartments. Yet, other structures with nonlinearities have also been proposed, with important consequences on the temporal trajectories of ecosystem carbon compartments. The proposed mathematical framework unifies the representation of alternative CA schemes, facilitating their classification according to mathematical properties as well as their potential temporal behaviour. It can represent complex processes in a compact form, which can potentially facilitate dialog among empiricists, theoreticians, and modellers.
Collapse
|
34
|
Collalti A, Tjoelker MG, Hoch G, Mäkelä A, Guidolotti G, Heskel M, Petit G, Ryan MG, Battipaglia G, Matteucci G, Prentice IC. Plant respiration: Controlled by photosynthesis or biomass? GLOBAL CHANGE BIOLOGY 2020; 26:1739-1753. [PMID: 31578796 DOI: 10.1111/gcb.14857] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Two simplifying hypotheses have been proposed for whole-plant respiration. One links respiration to photosynthesis; the other to biomass. Using a first-principles carbon balance model with a prescribed live woody biomass turnover, applied at a forest research site where multidecadal measurements are available for comparison, we show that if turnover is fast the accumulation of respiring biomass is low and respiration depends primarily on photosynthesis; while if turnover is slow the accumulation of respiring biomass is high and respiration depends primarily on biomass. But the first scenario is inconsistent with evidence for substantial carry-over of fixed carbon between years, while the second implies far too great an increase in respiration during stand development-leading to depleted carbohydrate reserves and an unrealistically high mortality risk. These two mutually incompatible hypotheses are thus both incorrect. Respiration is not linearly related either to photosynthesis or to biomass, but it is more strongly controlled by recent photosynthates (and reserve availability) than by total biomass.
Collapse
Affiliation(s)
- Alessio Collalti
- Institute for Agriculture and Forestry Systems in the Mediterranean, National Research Council of Italy (CNR-ISAFOM), Rende (CS), Italy
- Department of Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Günter Hoch
- Department of Environmental Sciences - Botany, University of Basel, Basel, Switzerland
| | - Annikki Mäkelä
- Institute for Atmospheric and Earth System Research (INAR), Faculty of Science and Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Gabriele Guidolotti
- Institute of Research on Terrestrial Ecosystem, National Research Council of Italy (CNR-IRET), Rome, Italy
| | - Mary Heskel
- Department of Biology, Macalester College, Saint Paul, MN, USA
| | - Giai Petit
- Department of Land, Environment, Agriculture and Forestry, University of Padova, Padua, Italy
| | - Michael G Ryan
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, USA
- USDA Forest Service, Rocky Mountain Experiment Station, Fort Collins, CO, USA
| | - Giovanna Battipaglia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Giorgio Matteucci
- Institute for Agriculture and Forestry Systems in the Mediterranean, National Research Council of Italy (CNR-ISAFOM), Rende (CS), Italy
| | - Iain Colin Prentice
- AXA Chair of Biosphere and Climate Impacts, Department of Life Sciences, Imperial College London, Ascot, UK
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Tsinghua University, Beijing, China
| |
Collapse
|
35
|
Small-Scale Forest Structure Influences Spatial Variability of Belowground Carbon Fluxes in a Mature Mediterranean Beech Forest. FORESTS 2020. [DOI: 10.3390/f11030255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The tree belowground compartment, especially fine roots, plays a relevant role in the forest ecosystem carbon (C) cycle, contributing largely to soil CO2 efflux (SR) and to net primary production (NPP). Beyond the well-known role of environmental drivers on fine root production (FRP) and SR, other determinants such as forest structure are still poorly understood. We investigated spatial variability of FRP, SR, forest structural traits, and their reciprocal interactions in a mature beech forest in the Mediterranean mountains. In the year of study, FRP resulted in the main component of NPP and explained about 70% of spatial variability of SR. Moreover, FRP was strictly driven by leaf area index (LAI) and soil water content (SWC). These results suggest a framework of close interactions between structural and functional forest features at the local scale to optimize C source–sink relationships under climate variability in a Mediterranean mature beech forest.
Collapse
|
36
|
Bogdziewicz M, Ascoli D, Hacket‐Pain A, Koenig WD, Pearse I, Pesendorfer M, Satake A, Thomas P, Vacchiano G, Wohlgemuth T, Tanentzap A. From theory to experiments for testing the proximate mechanisms of mast seeding: an agenda for an experimental ecology. Ecol Lett 2020; 23:210-220. [PMID: 31858712 PMCID: PMC6973031 DOI: 10.1111/ele.13442] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/22/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022]
Abstract
Highly variable and synchronised production of seeds by plant populations, known as masting, is implicated in many important ecological processes, but how it arises remains poorly understood. The lack of experimental studies prevents underlying mechanisms from being explicitly tested, and thereby precludes meaningful predictions on the consequences of changing environments for plant reproductive patterns and global vegetation dynamics. Here we review the most relevant proximate drivers of masting and outline a research agenda that takes the biology of masting from a largely observational field of ecology to one rooted in mechanistic understanding. We divide the experimental framework into three main processes: resource dynamics, pollen limitation and genetic and hormonal regulation, and illustrate how specific predictions about proximate mechanisms can be tested, highlighting the few successful experiments as examples. We envision that the experiments we outline will deliver new insights into how and why masting patterns might respond to a changing environment.
Collapse
Affiliation(s)
- Michał Bogdziewicz
- Department of Systematic ZoologyFaculty of BiologyAdam Mickiewicz University in PoznańUmutlowska 8961‐614PoznańPoland
| | - Davide Ascoli
- Department of Agricultural, Forest and Food SciencesUniversity of Turin10095 GrugliascoTorinoItaly
| | - Andrew Hacket‐Pain
- Department of Geography and PlanningSchool of Environmental SciencesUniversity of LiverpoolLiverpoolUK
| | | | - Ian Pearse
- Fort Collins Science Center U.S. Geological SurveyFort CollinsCOUSA
| | - Mario Pesendorfer
- Lab of OrnithologyCornell UniversityIthacaNY14850USA
- Institute of Forest EcologyDepartment of Forest and Soil SciencesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Akiko Satake
- Department of BiologyFaculty of ScienceKyushu University819‐0395FukuokaJapan
| | - Peter Thomas
- School of Life SciencesKeele UniversityStaffordshireST5 5BGUK
| | | | - Thomas Wohlgemuth
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLForest Dynamics, Zürcherstrasse 111CH‐8903BirmensdorfSwitzerland
| | - Andrew Tanentzap
- Department of Plant SciencesUniversity of CambridgeDowning StCambridgeCB2 3EAUK
| |
Collapse
|