1
|
Zhang Y, Wu L, Wang J, Bai Y, Xiao J, Coutard B, Pei H, Deng F, Shen S. Latitude-driven patterns and dynamics in Jingmen group viral lineages: Spatial correlation, recombination, and phylogeography. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 130:105744. [PMID: 40188900 DOI: 10.1016/j.meegid.2025.105744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/03/2025] [Accepted: 03/23/2025] [Indexed: 04/12/2025]
Abstract
The global emergence of Jingmen group viruses (JMVs), including Jingmen tick virus (JMTV), Alongshan virus (ALSV), and Yanggou tick virus (YGTV), has significantly broadened our perspective on the potential public health risks posed by segmented flaviviruses. However, the global evolutionary and genetic epidemiology of JMVs remains unclear. In this study, we conducted a comprehensive analysis of the spatial correlation, recombination, and phylogeography of JMVs. Our phylogenetic analysis identified three latitudinal lineages: (1) a mid-high-latitude group with YGTV and ALSV, prevalent in Europe and Asia; (2) a mid-latitude group with JMTV in Romania, Turkey, Kosovo, Trinidad, and Tobago; and (3) a mid-low-latitude group with JMTV and the Sichuan tick virus in Brazil, Japan, China, Kenya, and Uganda. The strong correlation between genetic distance and latitude also supports a latitude-dependent evolutionary pattern. Notably, concordance between the phylogenies of dominant tick species and JMVs underscores the pivotal role of tick species in the evolution of JMVs. Furthermore, the detection of frequent intra-lineage recombination and global migration events underscores the ecological pressures and tick-mediated evolutionary mechanisms that propel the global dissemination of emerging segmented flaviviruses. Additionally, the complex interplay of JMV recombination and migration events of JMVs identified here, particularly the recombination between JMTV and ALSV from disparate regions and viral migration across different regions and continents, complicates their evolutionary interrelationships and heightens potential health risks. Overall, our study provides valuable insights into ecological factors and tick species-mediated evolution and transmission that shape the global spread of emerging segmented flaviviruses.
Collapse
Affiliation(s)
- You Zhang
- Department of Medical laboratory, the Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - LvYing Wu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, China
| | - Jun Wang
- State Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Yuan Bai
- State Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Jian Xiao
- State Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China
| | - Burno Coutard
- Unité des Virus émergents (UVE : Aix-Marseille Univ, Università di Corsica, Corte, IRD 190, Inserm 1207, IRBA), France
| | - Hua Pei
- Department of Medical laboratory, the Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, China.
| | - Fei Deng
- State Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China.
| | - Shu Shen
- State Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China.
| |
Collapse
|
2
|
Li W, Li R, Liu C, Cheng J, Zhan L, Shang Z, Wu J. Distribution prediction of the habitat of Jingmen tick virus in China. Microbiol Spectr 2025:e0343024. [PMID: 40401936 DOI: 10.1128/spectrum.03430-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/03/2025] [Indexed: 05/23/2025] Open
Abstract
Jingmen tick virus (JMTV) is widely distributed in China, and human cases have been reported. Therefore, the objectives of this study were to understand the distribution of the JMTV in suitable areas in China under the current and projected future climates. We used two pairs of JMTV primers to detect ticks in Guizhou Province via PCR and obtained data on JMTV detection in other regions through literature research. We obtained climate data from China. Finally, maximum entropy, a boosted regression tree model, and a random forest model were used for prediction. The predictive performance of the model was evaluated by the area under the curve (AUC) of the receiver operating characteristic (ROC) curve. The JMTV positivity rate in Guizhou Province was 11.02%, which was lower than the overall national positivity rate of 16.9%. The predicted probability increased monotonically with increasing monthly mean temperature. China's high JMTV habitat is concentrated in the Daxinganling region of Heilongjiang, Shanghai, and Hainan Provinces, with the total area of high JMTV habitat accounting for 1.94% of the country's total land area. In the future, from 2021 to 2040, the area of JMTV habitat area in China will show an expanding trend. Our maps of JMTV distributions provide effective early warning information for monitoring JMTV and rapidly detecting outbreaks. The potential distribution of JMTV in China is expected to increase in size in the future, requiring continuous attention and surveillance.IMPORTANCESince the first detection of the Jingmen tick virus (JMTV) in ticks in 2014, it has been detected on several continents around the world. JMTV has also been detected in several regions of China, and human cases have been reported. JMTV has many types of hosts, including ticks, mice, bats, and turtles. It can be spread with these hosts in close proximity or over long distances. As a segmented virus, JMTV is capable not only of genetic mutation and recombination but also of genetic reassortment, resulting in changes in viral infectivity or pathogenicity. However, many uninvestigated areas still exist in China. Therefore, we investigated ticks carrying JMTV in Guizhou Province. We also predicted the distribution of JMTV in China by combining previous data.
Collapse
Affiliation(s)
- Weiyi Li
- Key Laboratory of Modern Pathogen Biology and Characteristics, Basic Medical College, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Human Parasitology, Basic Medical College, Guizhou Medical University, Guiyang, Guizhou, China
| | - Rongting Li
- Key Laboratory of Modern Pathogen Biology and Characteristics, Basic Medical College, Guizhou Medical University, Guiyang, Guizhou, China
- School of Public Health, The Key Laboratory of Environmental Pollution Surveillance and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Chengyao Liu
- Key Laboratory of Modern Pathogen Biology and Characteristics, Basic Medical College, Guizhou Medical University, Guiyang, Guizhou, China
- School of Public Health, The Key Laboratory of Environmental Pollution Surveillance and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jinzhi Cheng
- Key Laboratory of Modern Pathogen Biology and Characteristics, Basic Medical College, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Human Parasitology, Basic Medical College, Guizhou Medical University, Guiyang, Guizhou, China
| | - Lin Zhan
- School of Public Health, The Key Laboratory of Environmental Pollution Surveillance and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
- Central Laboratory, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Zhengling Shang
- Department of Immunology, Basic Medical College, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jiahong Wu
- Key Laboratory of Modern Pathogen Biology and Characteristics, Basic Medical College, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Human Parasitology, Basic Medical College, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
3
|
Chen P, Wei X, Que T, Yan T, Li S, Zhong Y, Li Y, He M, Liu W, Hu Y. Molecular detection of novel Jingmen tick virus in hard ticks from diverse hosts in Guangxi, southwestern China. Virol J 2025; 22:143. [PMID: 40375193 PMCID: PMC12080052 DOI: 10.1186/s12985-025-02751-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/21/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Ticks are the second most important vectors of arboviruses after mosquitoes, and they also serve as reservoir hosts for some zoonotic diseases. It is essential to understand the prevalence of tick-borne viruses in ticks from different sampling sites and vectors, as this information can facilitate the surveillance and prevention of arboviral infectious diseases. METHODS We systematically collected ticks from a variety of animals, including wildlife and domestic livestock, across 18 distinct regions in Guangxi Zhuang Autonomous Region(Guangxi). We then identified the ticks using traditional morphological classification and molecular biology methods to investigate the diversity of ticks in the regionWe also systematically examined the diversity of viruses carried by ticks using comprehensive virological methods based on viral metagenomics. We performed phylogenetic and recombination analyses for the assembled viral sequences. RESULTS We collected 1286 Ixodidae from 18 sampling sites in 17 districts of Guangxi. We identified 4 genera and 6 species of Ixodidae. We annotated 2 unclassified viruses and 13 known viral families. We assembled 208 nucleotide sequences and obtained six near full-length sequences of Jingmen tick virus (JMTV). Among these sequences, GXTV-PC4.2 and GXTV-43 were new mutant strains of JMTV. We detected genetic recombination of JMTV in segments 2, 3, and 4 of JMTV. CONCLUSIONS Our study uncovers a diverse tick fauna in Guangxi, including 4 genera and 6 species, and a broad virome with 13 viral families and 2 novel viruses. The JMTV, in particular, shows significant genetic diversity and potential for cross-species transmission, marked by new strains and recombination events. These findings underscore the need for vigilant tick-borne disease surveillance in Guangxi.
Collapse
Affiliation(s)
- Panyu Chen
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, 530003, China
| | - Xihua Wei
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, 530021, China
- The 923th, Hospital of the Joint Logistics Support Force of the People's Liberation Army, Nanning, Guangxi, 530021, China
| | - Tengcheng Que
- Faculty of Data Science, City University of Macau, Macau, 999078, China
- Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, 530003, China
| | - Tengyue Yan
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Shousheng Li
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, 530003, China
| | - Yanli Zhong
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, 530003, China
| | - Yingjiao Li
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, 530003, China
| | - Meihong He
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, 530003, China
| | - Wenjian Liu
- Faculty of Data Science, City University of Macau, Macau, 999078, China.
| | - Yanling Hu
- Faculty of Data Science, City University of Macau, Macau, 999078, China.
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
4
|
Ogola EO, Roy A, Wollenberg K, Ochwoto M, Bloom ME. Strange relatives: the enigmatic arbo-jingmenviruses and orthoflaviviruses. NPJ VIRUSES 2025; 3:24. [PMID: 40295693 PMCID: PMC11971299 DOI: 10.1038/s44298-025-00106-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/05/2025] [Indexed: 04/30/2025]
Abstract
Arthropod - and vertebrate-associated jingmenviruses (arbo-JMV) have segmented positive-strand RNA genomes and are provisional members of the genus Orthoflavivirus (family Flaviviridae). Current investigations have described arbo-JMV infection in vertebrate hosts in proximity to humans. This raises concerns about the virus host range and public health implications. This review explores the genomic and evolutionary relationship between arbo-JMV and orthoflaviviruses and evaluates the potential of arbo-JMV to pose a public health threat.
Collapse
Affiliation(s)
- Edwin O Ogola
- Biology of Vector Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, 903 South 4th Street, Hamilton, MT, 59840, USA.
| | - Amitava Roy
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, NIAID, NIH, 31 Center Drive, Room 3B62, Bethesda, MD, 20892-0485, USA
| | - Kurt Wollenberg
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, NIAID, NIH, 31 Center Drive, Room 3B62, Bethesda, MD, 20892-0485, USA
| | - Missiani Ochwoto
- Biology of Vector Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, 903 South 4th Street, Hamilton, MT, 59840, USA
| | - Marshall E Bloom
- Biology of Vector Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, 903 South 4th Street, Hamilton, MT, 59840, USA.
| |
Collapse
|
5
|
Liu YT, Wang YF, Zhang MZ, Zhu DY, Sun Y, Gong CW, Zhan L, Cui XM, Cao WC. High Diversity and Prevalence of Rickettsial Agents in Rhipicephalus microplus Ticks from Livestock in Karst Landscapes of Southwest China. Microorganisms 2025; 13:765. [PMID: 40284602 PMCID: PMC12029551 DOI: 10.3390/microorganisms13040765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Ticks and tick-borne pathogens pose a significant threat to human and animal health, yet the diversity and prevalence of tick-borne microorganisms in karst regions remains inadequately explored. In October 2023, a total of 274 Rhipicephalus microplus ticks were collected from livestock in Guizhou Province, which boasts the largest karst area in China. Pathogen identification was subsequently performed using PCR amplification, Sanger sequencing, and phylogenetic analysis. High microbial diversity was noted, with five bacterial species from the order Rickettsiales detected, including those from the genera Rickettsia (family Rickettsiaceae), Anaplasma, and Ehrlichia (family Anaplasmataceae). The overall prevalence of infection with at least one pathogen was remarkably high at 94.5%. The highest positive rate was observed for Candidatus Rickettsia jingxinensis at 90.9%. A novel Ehrlichia species, provisionally designated as Candidatus Ehrlichia carsus, was identified with a positive rate of 16.8%. In addition, Anaplasma marginale, Ehrlchia minasensis and Ehrlichia canis were detected in 15.3%, 4.7% and 1.5%, respectively. The co-infections involving two or three rickettsial species were observed in 34.3% ticks. These findings highlight the high diversity and prevalence of tick-borne rickettsial agents in the karst area, underscoring the need for enhanced surveillance and effective tick control to mitigate disease risks to both humans and livestock.
Collapse
Affiliation(s)
- Ya-Ting Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (Y.-T.L.)
| | - Yi-Fei Wang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (Y.-F.W.)
| | - Ming-Zhu Zhang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (Y.-F.W.)
| | - Dai-Yun Zhu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (Y.-T.L.)
| | - Yi Sun
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (Y.-T.L.)
| | - Cai-Wei Gong
- Animal Husbandry Development Center of Qiannan Buyei and Miao Autonomous Prefecture, Duyun 558000, China
| | - Lin Zhan
- National Health Commission Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People’s Hospital, Guiyang 550001, China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (Y.-T.L.)
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (Y.-T.L.)
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (Y.-F.W.)
| |
Collapse
|
6
|
Laredo-Tiscareño SV, Garza-Hernandez JA, Tangudu CS, Dankaona W, Rodríguez-Alarcón CA, Gonzalez-Peña R, Adame-Gallegos JR, Beristain-Ruiz DM, Barajas-López IN, Hargett AM, Munderloh UG, Blitvich BJ. Detection of multiple novel viruses in argasid and ixodid ticks in Mexico. Ticks Tick Borne Dis 2025; 16:102455. [PMID: 39946816 DOI: 10.1016/j.ttbdis.2025.102455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 02/02/2025] [Accepted: 02/06/2025] [Indexed: 03/22/2025]
Abstract
We examined ticks from Mexico using viral metagenomics to increase our understanding of the composition and diversity of the tick virome. The analysis was performed using 3,127 ticks of four Ixodidae spp. and one Argasidae spp. collected in 2019 to 2021 from domestic animals in four states of Mexico (Chiapas, Chihuahua, Guerrero, and Michoacán). All ticks were homogenized and tested for viruses using two approaches. In the first approach, an aliquot of each homogenate underwent two blind passages in Ixodes scapularis (ISE6) cells. Supernatants from all second passage cultures were subjected to polyethylene glycol (PEG) precipitation to enrich for virions then RNAs were extracted from the precipitates and analyzed by unbiased high-throughput sequencing (UHTS). In the second approach, an aliquot of every homogenate was subjected to PEG precipitation then RNAs were extracted and analyzed by UHTS, allowing for the detection of viruses unable to replicate in ISE6 cells. We identified seven novel species of viruses from multiple taxonomic groups (Bunyavirales, Flaviviridae, Nodaviridae, Nyamivirdae, Rhabdoviridae, Solemoviridae, and Totiviridae), some of which are highly divergent from all classified viruses and cannot be assigned to any established genus. Twelve recognized species of viruses were also identified. In summary, multiple novel and recognized viruses were detected in ticks from Mexico, highlighting the remarkable diversity of the tick virome.
Collapse
Affiliation(s)
- S Viridiana Laredo-Tiscareño
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Javier A Garza-Hernandez
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua, Mexico
| | - Chandra S Tangudu
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Wichan Dankaona
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA; Animal Virome and Diagnostic Development Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Carlos A Rodríguez-Alarcón
- Departamento de Ciencias Veterinarias, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua, Mexico
| | - Rodolfo Gonzalez-Peña
- Laboratorio de Arbovirologia, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Merida, Yucatán, Mexico
| | - Jaime R Adame-Gallegos
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, Chihuahua, Mexico
| | - Diana M Beristain-Ruiz
- Departamento de Ciencias Veterinarias, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua, Mexico
| | | | - Alissa M Hargett
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Ulrike G Munderloh
- Department of Entomology, College of Food, Agricultural, and Natural Resource Sciences, University of Minnesota, Saint Paul, Minnesota, USA
| | - Bradley J Blitvich
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA.
| |
Collapse
|
7
|
Wang T, Guo Y, Xu Y, Sun H, Peng P, Qin S, Zhu G, Tu C, Tu Z. Geographical distribution and characterization of Jingmen tick virus in wild boars in China. Virol Sin 2025; 40:137-140. [PMID: 39753193 PMCID: PMC11963027 DOI: 10.1016/j.virs.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/30/2024] [Indexed: 02/14/2025] Open
Abstract
•JMTV RNA was identified in 9 out of 26 provinces with an average wild boar infection rate of 5.45% (25/459). •Phylogenetic analysis indicated that JMTV strains could be divided into two groups, but have a complex evolutionary history. •Wild boars are a potential reservoir host for JMTV.
Collapse
Affiliation(s)
- Tong Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130122, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yu Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130122, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yu Xu
- Biological Disaster Control and Prevention Center, National Forestry and Grassland Administration, Shenyang 110034, China
| | - Heting Sun
- Biological Disaster Control and Prevention Center, National Forestry and Grassland Administration, Shenyang 110034, China
| | - Peng Peng
- Biological Disaster Control and Prevention Center, National Forestry and Grassland Administration, Shenyang 110034, China
| | - Siyuan Qin
- Biological Disaster Control and Prevention Center, National Forestry and Grassland Administration, Shenyang 110034, China
| | - Guoqiang Zhu
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130122, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Zhongzhong Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130122, China.
| |
Collapse
|
8
|
Xia B, Li Z, Zhu W, Wu Z, Zhang Y, Zhu Y, Sun H, Niu G. Identification and phylogenetic analysis of Jingmen tick virus in ticks and sheep from Henan Province, China. Virol J 2024; 21:325. [PMID: 39707432 PMCID: PMC11662433 DOI: 10.1186/s12985-024-02587-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024] Open
Abstract
Jingmen tick virus (JMTV) is a novel segmented Flavivirus that was first identified from Rhipicephalus microplus in the Jingmen region of Hubei Province, China, in 2010. Subsequently, it was detected in a variety of countries and regions around the world. Meanwhile, JMTV has been proved to be pathogenic to humans and animals and could cause viremia in animals. However, the pathogenic mechanism of JMTV and what role animals play in the viral cycle have not yet been elucidated. In this study, 38 sheep sera were collected from Xinyang region of Henan Province, China and 204 ticks attached to the sheep were collected. The qRT-PCR and nested PCR were used to confirm the presence of JMTV in serum and tick samples. The results showed that the positive rate of JMTV in serum and ticks was 13.16% (5/38) and 7.84% (16/204), respectively. Phylogenetic analysis showed that JMTV sequences in sheep and ticks shared a high degree of identity with each other, and JMTV was relatively conserved in evolution. These results enriched the evidence for the prevalence of JMTV in animals and further deepened our understanding of the mechanisms and routes of JMTV transmission.
Collapse
Affiliation(s)
- Baicheng Xia
- Shandong Second Medical University, Weifang, 261053, China
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Zhenhua Li
- Shandong Second Medical University, Weifang, 261053, China
| | - Wenbing Zhu
- Shandong Second Medical University, Weifang, 261053, China
| | - Zhen Wu
- Shandong Second Medical University, Weifang, 261053, China
| | - Yuli Zhang
- Shandong Second Medical University, Weifang, 261053, China
| | - Yujing Zhu
- Suqian First Hospital, Suqian, 223812, China.
| | - Hengyi Sun
- Shandong Second Medical University, Weifang, 261053, China.
| | - Guoyu Niu
- Shandong Second Medical University, Weifang, 261053, China.
| |
Collapse
|
9
|
Gömer A, Lang A, Janshoff S, Steinmann J, Steinmann E. Epidemiology and global spread of emerging tick-borne Alongshan virus. Emerg Microbes Infect 2024; 13:2404271. [PMID: 39259276 PMCID: PMC11423535 DOI: 10.1080/22221751.2024.2404271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
The emergence and spread of novel viral pathogens is a major threat to human health, particularly in the context of climate and human-induced change in land use. Alongshan virus (ALSV) is a tick-borne virus associated with human disease, which was first identified in northeast China. More recently, several studies reported the emergence of ALSV in mammalian and arthropod hosts in multiple different countries outside of Asia, and the first viral genome sequencing data has become available. ALSV is a member of the Jingmenvirus group closely related to the Flaviviridae family. Unusually, the positive-sense, single-stranded RNA genome of ALSV is segmented and consists of four distinct segments, two of which show homology with the NS3 and NS5 protein encoding regions of non-segmented flaviviruses. Transmission of arthropod-borne pathogens will likely increase in the future due to environmental change mediated by a variety of environmental and ecological factors and increasing human encroachment into wild animal habitats. In this review, we present current knowledge of global ALSV distribution and emergence patterns, highlight genetic diversity, evolution and susceptible species. Finally, we discuss the role of this emerging tick-borne virus in the context of urbanization and global health.
Collapse
Affiliation(s)
- André Gömer
- Department for Molecular und Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Arthur Lang
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, General Hospital Nuremberg, Paracelsus Medical University, Nuremberg, Germany
| | - Saskia Janshoff
- Department for Molecular und Medical Virology, Ruhr University Bochum, Bochum, Germany
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Joerg Steinmann
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, General Hospital Nuremberg, Paracelsus Medical University, Nuremberg, Germany
- Institute of Medical Microbiology, University Hospital of Essen, Essen, Germany
| | - Eike Steinmann
- Department for Molecular und Medical Virology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
10
|
Zhang L, Xu W, Zhao Y, Sui L, Song M, Liu Q. Identification and characterization of Jingmen tick virus from Rhipicephalus microplus in Hunan, China. Acta Trop 2024; 260:107378. [PMID: 39245157 DOI: 10.1016/j.actatropica.2024.107378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024]
Abstract
Jingmen tick virus (JMTV) is a tick-borne pathogen known to affect human beings, characterized by a segmented genome structure that defies the conventional understanding of the Flaviviridae family. In the present study, we employed metagenomic analysis to screen for tick-borne viruses in Hunan Province, China, and identified five JMTV variants with complete genomes from Rhipicephalus microplus ticks sampled from cattle. These viral strains exhibited the highest sequence similarity to JMTV isolates previously reported in Hubei Province, China. However, evidence of genomic reassortment was detected, particularly with the S2 segment showing greater similarity to the strains from Japan. Phylogenetic analysis demonstrated that JMTV strains cluster predominantly based on their geographic origin. In agreement with the homology data, the S1, S3, and S4 segments of the strains identified in this study grouped with those from Hubei Province, while the S2 segment displayed a distinct topological structure. Moreover, JMTV displayed limited replication in mammal-derived cells, but thrived in tick-derived cell lines. In addition to the commonly used R. microplus-derived BME/CTVM23 cells, we found that JMTV also proliferated robustly in both Ixodes scapularis-derived ISE6 and Ixodes ricinus-derived IRE/CTVM19 cells, offering new avenues for in vitro production of the virus. In summary, this study expands the known geographic distribution and genetic diversity of JMTV, providing valuable insights into its epidemiology and potential for in vitro cultivation.
Collapse
Affiliation(s)
- Li Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wenbo Xu
- Department of Infectious Diseases and Center for Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Yinghua Zhao
- Department of Infectious Diseases and Center for Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Liyan Sui
- Department of Infectious Diseases and Center for Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Mingxin Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| | - Quan Liu
- Department of Infectious Diseases and Center for Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, The First Hospital of Jilin University, Changchun, China; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China.
| |
Collapse
|
11
|
Cicculli V, Colmant AMG, Piorkowski G, Amaral R, Maitre A, Decarreaux D, Thirion L, Moureau G, Falchi A, de Lamballerie X, Charrel RN, Ayhan N. First detection of Jingmen tick virus in Corsica with a new generic RTqPCR system. NPJ VIRUSES 2024; 2:44. [PMID: 40295835 PMCID: PMC11721387 DOI: 10.1038/s44298-024-00053-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/12/2024] [Indexed: 04/30/2025]
Abstract
Jingmen tick virus (JMTV) is a recently discovered segmented RNA virus, closely related to flaviviruses. It was identified for the first time in 2014, in China and subsequently in Brazil. Following this discovery, JMTV-related sequences have been identified in arthropods, vertebrates (including humans), plants, fungus, and environmental samples from Asia, America, Africa, Europe, and Oceania. Several studies suggest an association between these segmented flavi-like viruses, termed jingmenviruses, and febrile illness in humans. The development of rapid diagnostic assays for these viruses is therefore crucial to be prepared for a potential epidemic, for the early detection of these viruses via vector surveillance or hospital diagnosis. In this study, we designed a RT-qPCR assay to detect tick-associated jingmenviruses, validated it and tested its range and limit of detection with six tick-associated jingmenviruses using in vitro transcripts. Then, we screened ticks collected in Corsica (France) from different livestock species, in order to determine the distribution of these viruses on the island. In total, 6269 ticks from eight species were collected from 763 cattle, 538 horses, 106 sheep, and 218 wild boars and grouped in 1715 pools. We report the first detection of JMTV in Corsica, in Rhipicephalus bursa, Hyalomma marginatum and R. sanguineus ticks collected from cattle and sheep. The highest prevalence was found in the Rhipicephalus genus. The complete genome of a Corsican JMTV was obtained from a pool of Rhipicephalus bursa ticks and shares between 94.7% and 95.1% nucleotide identity with a JMTV sequence corresponding to a human patient in Kosovo and groups phylogenetically with European JMTV strains. These results show that a Mediterranean island such as Corsica could act as a sentinel zone for future epidemics.
Collapse
Grants
- EVA GLOBAL, #871029 European Commission
- EVA GLOBAL, #871029 European Commission
- EVA GLOBAL, #871029 European Commission
- EVA GLOBAL, #871029 European Commission
- EVA GLOBAL, #871029 European Commission
- EVA GLOBAL, #871029 European Commission
- EVA GLOBAL, #871029 European Commission
- EVA GLOBAL, #871029 European Commission
- EVA GLOBAL, #871029 European Commission
- EVA GLOBAL, #871029 European Commission
- EVA GLOBAL, #871029 European Commission
- EVA GLOBAL, #871029 European Commission
- European Virus Archive-Marseille Aix-Marseille Université
- European Virus Archive-Marseille Aix-Marseille Université
- European Virus Archive-Marseille Aix-Marseille Université
- European Virus Archive-Marseille Aix-Marseille Université
- European Virus Archive-Marseille Aix-Marseille Université
- European Virus Archive-Marseille Aix-Marseille Université
- European Virus Archive-Marseille Aix-Marseille Université
- European Virus Archive-Marseille Aix-Marseille Université
- European Virus Archive-Marseille Aix-Marseille Université
- European Virus Archive-Marseille Aix-Marseille Université
- European Virus Archive-Marseille Aix-Marseille Université
- European Virus Archive-Marseille Aix-Marseille Université
Collapse
Affiliation(s)
- Vincent Cicculli
- Unite des Virus Emergents, (UVE: Aix-Marseille Univ, Universita di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| | - Agathe M G Colmant
- Unite des Virus Emergents, (UVE: Aix-Marseille Univ, Universita di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France.
| | - Géraldine Piorkowski
- Unite des Virus Emergents, (UVE: Aix-Marseille Univ, Universita di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| | - Rayane Amaral
- Unite des Virus Emergents, (UVE: Aix-Marseille Univ, Universita di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| | - Apolline Maitre
- Unite des Virus Emergents, (UVE: Aix-Marseille Univ, Universita di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
- INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L'Elevage (SELMET-LRDE), Corte, France
| | - Dorine Decarreaux
- Unite des Virus Emergents, (UVE: Aix-Marseille Univ, Universita di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| | - Laurence Thirion
- Unite des Virus Emergents, (UVE: Aix-Marseille Univ, Universita di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| | - Gregory Moureau
- Unite des Virus Emergents, (UVE: Aix-Marseille Univ, Universita di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| | - Alessandra Falchi
- Unite des Virus Emergents, (UVE: Aix-Marseille Univ, Universita di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| | - Xavier de Lamballerie
- Unite des Virus Emergents, (UVE: Aix-Marseille Univ, Universita di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
- Centre National de Référence des Arbovirus, Inserm-IRBA, Marseille, France
| | - Remi N Charrel
- Unite des Virus Emergents, (UVE: Aix-Marseille Univ, Universita di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| | - Nazli Ayhan
- Unite des Virus Emergents, (UVE: Aix-Marseille Univ, Universita di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France.
- Centre National de Référence des Arbovirus, Inserm-IRBA, Marseille, France.
| |
Collapse
|
12
|
Matsumura R, Kobayashi D, Itoyama K, Isawa H. First Detection of the Jingmen Tick Virus in Amblyomma testudinarium Ticks from the Kanto Region, Japan. Jpn J Infect Dis 2024; 77:174-177. [PMID: 38171848 DOI: 10.7883/yoken.jjid.2023.347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In 2010, Jingmen tick virus (JMTV) was discovered in ticks in China and has been shown to be distributed in several regions worldwide. Recently, cases of JMTV infection in humans have been reported in China and Kosovo, and have attracted much attention as an emerging tick-borne disease. In this study, we detected the JMTV genome in Amblyomma testudinarium ticks collected in Kanagawa Prefecture, Japan, during tick-borne virus surveillance conducted in the Kanto Region. Phylogenetic analysis revealed that the new JMTV strain was closely related to previous strains detected in Japan. This suggests that JMTV may have been maintained during an independent natural transmission cycle in Japan. In addition, unlike other countries and regions, all JMTV strains in Japan were detected only in A. testudinarium ticks, suggesting that this tick species is the primary JMTV vector in Japan. This is the first report of JMTV in the Kanto Region. Further studies are required to elucidate the potential risk of infection with this tick-borne virus in Japan. In particular, the prevalence of JMTV in wild animals should be examined to clarify its geographical distribution, host range, and transmission cycle.
Collapse
Affiliation(s)
- Ryo Matsumura
- Graduate School of Agriculture, Meiji University, Japan
- Department of Medical Entomology, National Institute of Infectious Diseases, Japan
| | - Daisuke Kobayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, Japan
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Japan
| | - Kyo Itoyama
- Graduate School of Agriculture, Meiji University, Japan
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, Japan
| |
Collapse
|
13
|
Liu Z, Hu R, Cao H, Huang P, Yan H, Meng P, Xiong Z, Dai X, Yang F, Wang L, Qiu Q, Yan L, Zhang T. Identification and phylogenetic analysis of Jingmen tick virus in Jiangxi Province, China. Front Vet Sci 2024; 11:1375852. [PMID: 38756509 PMCID: PMC11096534 DOI: 10.3389/fvets.2024.1375852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024] Open
Abstract
Jingmen tick virus (JMTV) is a newly identified segmented flavivirus that has been recognized in multiple hosts, such as humans, buffalos, bats, rodents, mosquitos and ticks. Various clinical cases and studies manifested that JMTV is a true arbovirus with wide host spectrum and showed potential threats toward public health. JMTV has been reported in multiple countries in Asia, Europe, Africa, and America. Moreover, wild boars serve as an important intermediary between humans and the wild ecological system. In China, it has been reported in nine provinces, while the prevalence and the distribution of JMTV in most regions including Jiangxi Province are still unknown. Thus, to profile the distribution of JMTV in Jiangxi Province, an epidemiological investigation was carried out from 2020 to 2022. In current study, 66 ticks were collected from 17 wild boars in Jiangxi Province. The results showed that 12 out of 66 ticks were JMTV positive, indicating JMTV is prevalent in ticks and boars in Jiangxi Province. The genome sequences of JMTV strain WY01 were sequenced to profile viral evolution of JMTV in China. Phylogenetic analysis divided JMTV strains into two genotypes, Group I and Group II. WY01 belongs to Group II and it shares the closest evolutionary relationship with the Japan strains rather than the strains from neighboring provinces in China suggesting that JMTV might have complex transmission routes. Overall, current study, for the first time, reported that JMTV is prevalent in Jiangxi Province and provided additional information concerning JMTV distribution and evolution in China.
Collapse
Affiliation(s)
- Zirui Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Ruiming Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Engineering Research Center for Animal Health Products, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Peng Huang
- Jiangxi Wildlife and Plant Conservation Center, Nanchang, China
| | - Hui Yan
- Jiangxi Wildlife and Plant Conservation Center, Nanchang, China
| | - Puyan Meng
- Jiangxi Academy of Forestry, Nanchang, China
| | - Zhiwei Xiong
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Biotechnology Vocational College, Nanchang, China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Li Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Qian Qiu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Linjie Yan
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Tao Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
14
|
Xiao J, Yao X, Guan X, Xiong J, Fang Y, Zhang J, Zhang Y, Moming A, Su Z, Jin J, Ge Y, Wang J, Fan Z, Tang S, Shen S, Deng F. Viromes of Haemaphysalis longicornis reveal different viral abundance and diversity in free and engorged ticks. Virol Sin 2024; 39:194-204. [PMID: 38360150 PMCID: PMC11074643 DOI: 10.1016/j.virs.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/08/2024] [Indexed: 02/17/2024] Open
Abstract
Haemaphysalis longicornis ticks, commonly found in East Asia, can transmit various pathogenic viruses, including the severe fever with thrombocytopenia syndrome virus (SFTSV) that has caused febrile diseases among humans in Hubei Province. However, understanding of the viromes of H. longicornis was limited, and the prevalence of viruses among H. longicornis ticks in Hubei was not well clarified. This study investigates the viromes of both engorged (fed) and free (unfed) H. longicornis ticks across three mountainous regions in Hubei Province from 2019 to 2020. RNA-sequencing analysis identified viral sequences that were related to 39 reference viruses belonging to unclassified viruses and seven RNA viral families, namely Chuviridae, Nairoviridae, Orthomyxoviridae, Parvoviridae, Phenuiviridae, Rhabdoviridae, and Totiviridae. Viral abundance and diversity in these ticks were analysed, and phylogenetic characteristics of the Henan tick virus (HNTV), Dabieshan tick virus (DBSTV), Okutama tick virus (OKTV), and Jingmen tick virus (JMTV) were elucidated based on their full genomic sequences. Prevalence analysis demonstrated that DBSTV was the most common virus found in individual H. longicornis ticks (12.59%), followed by HNTV (0.35%), whereas JMTV and OKTV were not detected. These results improve our understanding of H. longicornis tick viromes in central China and highlight the role of tick feeding status and geography in shaping the viral community. The findings of new viral strains and their potential impact on public health raise the need to strengthen surveillance efforts for comprehensively assessing their spillover potentials.
Collapse
Affiliation(s)
- Jian Xiao
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xuan Yao
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430070, China
| | - Xuhua Guan
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430070, China
| | - Jinfeng Xiong
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430070, China
| | - Yaohui Fang
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jingyuan Zhang
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - You Zhang
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Current address: Department of Medical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, 57000, China
| | - Abulimiti Moming
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Xinjiang Key Laboratory of Vector-borne Infectious Diseases, Urumqi, 830002, China
| | - Zhengyuan Su
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jiayin Jin
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yingying Ge
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jun Wang
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhaojun Fan
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Shuang Tang
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Shu Shen
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Hubei Jiangxia Laboratory, Wuhan, 430200, China; Xinjiang Key Laboratory of Vector-borne Infectious Diseases, Urumqi, 830002, China.
| | - Fei Deng
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
15
|
Cicculli V, Colmant AMG, Piorkowski G, Amaral R, Maitre A, Decarreaux D, Thirion L, Moureau G, Falchi A, de Lamballerie X, Charrel RN, Ayhan N. First detection of Jingmen tick virus in Corsica, France and development of a real time detection system for multiple tick-associated jingmenviruses. RESEARCH SQUARE 2024:rs.3.rs-4136487. [PMID: 38585799 PMCID: PMC10996808 DOI: 10.21203/rs.3.rs-4136487/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Jingmen tick virus (JMTV) is a recently discovered segmented RNA virus, closely related to flaviviruses. It was identified for the first time in 2014, in China and subsequently in Brazil. Following this discovery, JMTV-related sequences have been identified in arthropods, vertebrates (including humans), plants, fungus and environmental samples from Asia, America, Africa, Europe and Oceania. Several studies suggest an association between these segmented flavi-like viruses, termed jingmenviruses, and febrile illness in humans. The development of rapid diagnostic assays for these viruses is therefore crucial to be prepared for a potential epidemic, for the early detection of these viruses via vector surveillance or hospital diagnosis. In this study, we designed a RT-qPCR assay to detect tick-associated jingmenviruses, validated it and tested its range and limit of detection with six tick-associated jingmenviruses using in vitro transcripts. Then we screened ticks collected in Corsica (France) from different livestock species, in order to determine the distribution of these viruses on the island. In total, 6,269 ticks from eight species were collected from 763 cattle, 538 horses, 106 sheep and 218 wild boars and grouped in 1,715 pools. We report the first detection of JMTV in Corsica, in Rhipicephalus bursa, Hyalomma marginatum and R. sanguineus ticks collected from cattle and sheep. The highest prevalence was found in the Rhipicephalus genus. The complete genome of a Corsican JMTV was obtained from a pool of Rhipicephalus bursa ticks and shares between 94.7% and 95.1% nucleotide identity with a JMTV sequence corresponding to a human patient in Kosovo and groups phylogenetically with European JMTV strains. These results show that a Mediterranean island such as Corsica could act as a sentinel zone for future epidemics.
Collapse
Affiliation(s)
- Vincent Cicculli
- Unite des Virus Emergents (UVE: Aix-Marseille Univ, Universita di Corsica, IRD 190, Inserm 1207, IRBA)
| | - Agathe M G Colmant
- Unite des Virus Emergents (UVE: Aix-Marseille Univ, Universita di Corsica, IRD 190, Inserm 1207, IRBA)
| | - Geraldine Piorkowski
- Unite des Virus Emergents (UVE: Aix-Marseille Univ, Universita di Corsica, IRD 190, Inserm 1207, IRBA)
| | - Rayane Amaral
- Unite des Virus Emergents (UVE: Aix-Marseille Univ, Universita di Corsica, IRD 190, Inserm 1207, IRBA)
| | - Apolline Maitre
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale
| | - Dorine Decarreaux
- Unite des Virus Emergents (UVE: Aix-Marseille Univ, Universita di Corsica, IRD 190, Inserm 1207, IRBA)
| | - Laurence Thirion
- Unite des Virus Emergents (UVE: Aix-Marseille Univ, Universita di Corsica, IRD 190, Inserm 1207, IRBA)
| | - Gregory Moureau
- Unite des Virus Emergents (UVE: Aix-Marseille Univ, Universita di Corsica, IRD 190, Inserm 1207, IRBA)
| | - Alessandra Falchi
- Unite des Virus Emergents (UVE: Aix-Marseille Univ, Universita di Corsica, IRD 190, Inserm 1207, IRBA)
| | - Xavier de Lamballerie
- Unite des Virus Emergents (UVE: Aix-Marseille Univ, Universita di Corsica, IRD 190, Inserm 1207, IRBA)
| | - Remi N Charrel
- Unite des Virus Emergents (UVE: Aix-Marseille Univ, Universita di Corsica, IRD 190, Inserm 1207, IRBA)
| | - Nazli Ayhan
- Unite des Virus Emergents (UVE: Aix-Marseille Univ, Universita di Corsica, IRD 190, Inserm 1207, IRBA)
| |
Collapse
|
16
|
Wu Y, Zhou Q, Mao M, Chen H, Qi R. Diversity of species and geographic distribution of tick-borne viruses in China. Front Microbiol 2024; 15:1309698. [PMID: 38476950 PMCID: PMC10929907 DOI: 10.3389/fmicb.2024.1309698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction Tick-borne pathogens especially viruses are continuously appearing worldwide, which have caused severe public health threats. Understanding the species, distribution and epidemiological trends of tick-borne viruses (TBVs) is essential for disease surveillance and control. Methods In this study, the data on TBVs and the distribution of ticks in China were collected from databases and literature. The geographic distribution of TBVs in China was mapped based on geographic locations of viruses where they were prevalent or they were detected in vector ticks. TBVs sequences were collected from The National Center for Biotechnology Information and used to structure the phylogenetic tree. Results Eighteen TBVs from eight genera of five families were prevalent in China. Five genera of ticks played an important role in the transmission of TBVs in China. According to phylogenetic analysis, some new viral genotypes, such as the Dabieshan tick virus (DTV) strain detected in Liaoning Province and the JMTV strain detected in Heilongjiang Province existed in China. Discussion TBVs were widely distributed but the specific ranges of viruses from different families still varied in China. Seven TBVs belonging to the genus Orthonairovirus of the family Nairoviridae such as Nairobi sheep disease virus (NSDV) clustered in the Xinjiang Uygur Autonomous Region (XUAR) and northeastern areas of China. All viruses of the family Phenuiviridae except Severe fever with thrombocytopenia syndrome virus (SFTSV) were novel viruses that appeared in the last few years, such as Guertu virus (GTV) and Tacheng tick virus 2 (TcTV-2). They were mainly distributed in the central plains of China. Jingmen tick virus (JMTV) was distributed in at least fourteen provinces and had been detected in more than ten species of tick such as Rhipicephalus microplus and Haemaphysalis longicornis, which had the widest distribution and the largest number of vector ticks among all TBVs. Parainfluenza virus 5 (PIV5) and Lymphatic choriomeningitis virus (LCMV) were two potential TBVs in Northeast China that could cause serious diseases in humans or animals. Ixodes persulcatus carried the highest number of TBVs, followed by Dermacentor nuttalli and H. longicornis. They could carry as many as ten TBVs. Three strains of Tick-borne encephalitis (TBEV) from Inner Mongolia Province clustered with ones from Russia, Japan and Heilongjiang Province, respectively. Several SFTSV strains from Zhejiang Province clustered with strains from Korea and Japan. Specific surveillance of dominant TBVs should be established in different areas in China.
Collapse
Affiliation(s)
| | | | | | | | - Rui Qi
- Institute of Microbiome Frontiers and One Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
17
|
Zhang J, Xie Z, Pan Y, Chen Z, Huang Y, Li L, Dong J, Xiang Y, Zhai Q, Li X, Sun M, Huang S, Liao M. Prevalence, genomic characteristics, and pathogenicity of fowl adenovirus 2 in Southern China. Poult Sci 2024; 103:103177. [PMID: 37980763 PMCID: PMC10685031 DOI: 10.1016/j.psj.2023.103177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 11/21/2023] Open
Abstract
In recent years, the occurrence of fowl adenovirus 2 (FAdV-2) has been on the rise in China, posing a significant threat to the poultry industry. This study aimed to investigate the epidemiology, phylogenetic relationship, genomic characteristics, and pathogenicity of FAdV-2. The epidemiological analysis revealed the detection of multiple FAdV serotypes, including FAdV-1, FAdV-2, FAdV-3, FAdV-4, FAdV-8a, FAdV-8b, and FAdV-11 serotypes. Among them, FAdV-2 exhibited the highest proportion, accounting for 21.05% (8/38). The complete genomes of these 8 FAdV-2 strains were sequenced. Genetic evolution analysis indicated that these FAdV-2 strains formed a separate branch within the FAdV-D group, sharing 94.60 to 97.90% nucleotide similarity with the reference FAdV-2 and FAdV-11 strains. Notably, the recombination analysis revealed that 5 out of the 8 FAdV-2 strains, exhibited recombination events between FAdV-2 and FAdV-11. The recombination regions involved Hexon, Fiber, ORF19 genes and 3' end. Furthermore, pathogenicity experiments demonstrated that recombinant FAdV-2 XX strain is capable of inducing mortality rate of 66.70% and causing more severe hepatitis hydropericardium syndrome (HHS) in 6-wk-old specific-pathogen-free chickens. These findings contribute to our understanding of the prevalence, genomic characteristics, and the pathogenicity of FAdV-2, providing foundations for FAdV-2 vaccine development.
Collapse
Affiliation(s)
- Junqin Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong, PR China
| | - Zimin Xie
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong, PR China; South China Agricultural University, Guangzhou, PR China
| | - Yanlin Pan
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong, PR China; Zhongkai University of Agriculture and Engineering, Guangzhou, PR China
| | - Zuoxin Chen
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong, PR China; College of Life Science and Engineering, Foshan University, Foshan, PR China
| | - Yunzhen Huang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong, PR China
| | - Linlin Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong, PR China
| | - Jiawen Dong
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong, PR China
| | - Yong Xiang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong, PR China
| | - Qi Zhai
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong, PR China
| | - Xingying Li
- Guangdong VETCELL Bio-Tech Co., Ltd., Foshan, PR China
| | - Minhua Sun
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong, PR China
| | - Shujian Huang
- College of Life Science and Engineering, Foshan University, Foshan, PR China
| | - Ming Liao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs; Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Guangzhou, Guangdong, PR China; Zhongkai University of Agriculture and Engineering, Guangzhou, PR China.
| |
Collapse
|
18
|
Wang J, Wang J, Kuang G, Wu W, Yang L, Yang W, Pan H, Han X, Yang T, Shi M, Feng Y. Meta-transcriptomics for the diversity of tick-borne virus in Nujiang, Yunnan Province. Front Cell Infect Microbiol 2023; 13:1283019. [PMID: 38179426 PMCID: PMC10766107 DOI: 10.3389/fcimb.2023.1283019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/17/2023] [Indexed: 01/06/2024] Open
Abstract
Ticks, an arthropod known for transmitting various pathogens such as viruses, bacteria, and fungi, pose a perpetual public health concern. A total of 2,570 ticks collected from Nujiang Prefecture in Yunnan Province between 2017 and 2022 were included in the study. Through the meta-transcriptomic sequencing of four locally distributed tick species, we identified 13 RNA viruses belonging to eight viral families, namely, Phenuiviridae, Nairoviridae, Peribunyaviridae, Flaviviridae, Chuviridae, Rhabdoviridae, Orthomyxoviridae, and Totiviridae. The most prevalent viruses were members of the order Bunyavirales, including three of Phenuiviridae, two were classified as Peribunyaviridae, and one was associated with Nairoviridae. However, whether they pose a threat to human health still remains unclear. Indeed, this study revealed the genetic diversity of tick species and tick-borne viruses in Nujiang Prefecture based on COI gene and tick-borne virus research. These data clarified the genetic evolution of some RNA viruses and furthered our understanding of the distribution pattern of tick-borne pathogens, highlighting the importance and necessity of monitoring tick-borne pathogens.
Collapse
Affiliation(s)
- Juan Wang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, China
| | - Jing Wang
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Sun Yat-sen University, Shenzhen, China
| | - Guopeng Kuang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, China
| | - Weichen Wu
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Sun Yat-sen University, Shenzhen, China
| | - Lifen Yang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, China
| | - Weihong Yang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, China
| | - Hong Pan
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, China
| | - Xi Han
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, China
| | - Tian Yang
- School of Public Health, Dali University, Dali, China
| | - Mang Shi
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Sun Yat-sen University, Shenzhen, China
| | - Yun Feng
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, China
- School of Public Health, Dali University, Dali, China
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| |
Collapse
|
19
|
Li W, Li R, Tang X, Cheng J, Zhan L, Shang Z, Wu J. Genomics evolution of Jingmen viruses associated with ticks and vertebrates. Genomics 2023; 115:110734. [PMID: 37890641 DOI: 10.1016/j.ygeno.2023.110734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/08/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Jingmen virus (JMV) associated with ticks and vertebrates have been found to be related to human disease. We obtained the genome of a Jingmen tick virus (JMTV) strain from Rhipicephalus microplus in Guizhou province and compared the genomes of seven JMV species associated with ticks and vertebrates to understand the evolutionary relationships. The topology of the phylogenetic tree of segment 1 and segment 3 is similar, and segment 2 and segment 4 formed two different topologies, with the main differences being between Alongshan virus (ALSV), Takachi virus, Yanggou tick virus and Pteropus lylei jingmen virus (PLJV), and the possibility of genetic reassortment among these viruses. Moreover, we detected recombination within JMTV and between PLJV and ALSV. The genetic reassortment and recombination that occurs during cross-species transmission of these JMV associated with ticks and vertebrates not only complicates their evolutionary relationships, but also raises the risk of these viruses to humans.
Collapse
Affiliation(s)
- Weiyi Li
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Key Laboratory of Modern Pathogen Biology and Characteristics, Basic Medical College, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Rongting Li
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Key Laboratory of Modern Pathogen Biology and Characteristics, Basic Medical College, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Xiaomin Tang
- Key Laboratory of Modern Pathogen Biology and Characteristics, Basic Medical College, Guizhou Medical University, Guiyang, Guizhou 550025, China; Department of Human Parasitology, Basic Medical College, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Jinzhi Cheng
- Key Laboratory of Modern Pathogen Biology and Characteristics, Basic Medical College, Guizhou Medical University, Guiyang, Guizhou 550025, China; Department of Human Parasitology, Basic Medical College, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Lin Zhan
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Central Laboratory, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Zhengling Shang
- Department of Immunology, Basic Medical College, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Jiahong Wu
- Key Laboratory of Modern Pathogen Biology and Characteristics, Basic Medical College, Guizhou Medical University, Guiyang, Guizhou 550025, China; Department of Human Parasitology, Basic Medical College, Guizhou Medical University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
20
|
Wu Z, Zhang M, Zhang Y, Lu K, Zhu W, Feng S, Qi J, Niu G. Jingmen tick virus: an emerging arbovirus with a global threat. mSphere 2023; 8:e0028123. [PMID: 37702505 PMCID: PMC10597410 DOI: 10.1128/msphere.00281-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Jingmen tick virus (JMTV), belonging to the Flaviviridae family, is a novel segmented RNA virus identified in 2014 in the Jingmen region of Hubei Province, China. Up to now, JMTV has been detected in a variety of countries or regions in Asia, Europe, Africa, and the Americas, involving a wide range of arthropods and mammals, and even humans. The JMTV genome is composed of four linear RNA segments, two of which are derived from flaviviruses, while the other two segments are unique to JMTV and has no matching virus. Currently, JMTV has been shown to have a pathogenic effect on humans. Humans who had been infected would develop viremia and variable degrees of clinical symptoms. However, the pathogenic mechanism of JMTV has not been elucidated yet. Therefore, it is crucial to strengthen the epidemiological surveillance and laboratory studies of JMTV.
Collapse
Affiliation(s)
- Zhen Wu
- WeiFang Medical University, Weifang, Shandong, China
| | - Ming Zhang
- WeiFang Medical University, Weifang, Shandong, China
| | - Yuli Zhang
- WeiFang Medical University, Weifang, Shandong, China
| | - Ke Lu
- WeiFang Medical University, Weifang, Shandong, China
| | - Wenbing Zhu
- WeiFang Medical University, Weifang, Shandong, China
| | - Shuo Feng
- WeiFang Medical University, Weifang, Shandong, China
| | - Jun Qi
- Tianjin Customs Port Out-Patient Department, Tianjin International Travel Healthcare Center, Tianjin, Hebei, China
| | - Guoyu Niu
- WeiFang Medical University, Weifang, Shandong, China
| |
Collapse
|
21
|
Stockdale SR, Blanchard AM, Nayak A, Husain A, Nashine R, Dudani H, McClure CP, Tarr AW, Nag A, Meena E, Sinha V, Shrivastava SK, Hill C, Singer AC, Gomes RL, Acheampong E, Chidambaram SB, Bhatnagar T, Vetrivel U, Arora S, Kashyap RS, Monaghan TM. RNA-Seq of untreated wastewater to assess COVID-19 and emerging and endemic viruses for public health surveillance. THE LANCET REGIONAL HEALTH. SOUTHEAST ASIA 2023; 14:100205. [PMID: 37193348 PMCID: PMC10150210 DOI: 10.1016/j.lansea.2023.100205] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/10/2023] [Accepted: 04/24/2023] [Indexed: 05/18/2023]
Abstract
Background The COVID-19 pandemic showcased the power of genomic sequencing to tackle the emergence and spread of infectious diseases. However, metagenomic sequencing of total microbial RNAs in wastewater has the potential to assess multiple infectious diseases simultaneously and has yet to be explored. Methods A retrospective RNA-Seq epidemiological survey of 140 untreated composite wastewater samples was performed across urban (n = 112) and rural (n = 28) areas of Nagpur, Central India. Composite wastewater samples were prepared by pooling 422 individual grab samples collected prospectively from sewer lines of urban municipality zones and open drains of rural areas from 3rd February to 3rd April 2021, during the second COVID-19 wave in India. Samples were pre-processed and total RNA was extracted prior to genomic sequencing. Findings This is the first study that has utilised culture and/or probe-independent unbiased RNA-Seq to examine Indian wastewater samples. Our findings reveal the detection of zoonotic viruses including chikungunya, Jingmen tick and rabies viruses, which have not previously been reported in wastewater. SARS-CoV-2 was detectable in 83 locations (59%), with stark abundance variations observed between sampling sites. Hepatitis C virus was the most frequently detected infectious virus, identified in 113 locations and co-occurring 77 times with SARS-CoV-2; and both were more abundantly detected in rural areas than urban zones. Concurrent identification of segmented virus genomic fragments of influenza A virus, norovirus, and rotavirus was observed. Geographical differences were also observed for astrovirus, saffold virus, husavirus, and aichi virus that were more prevalent in urban samples, while the zoonotic viruses chikungunya and rabies, were more abundant in rural environments. Interpretation RNA-Seq can effectively detect multiple infectious diseases simultaneously, facilitating geographical and epidemiological surveys of endemic viruses that could help direct healthcare interventions against emergent and pre-existent infectious diseases as well as cost-effectively and qualitatively characterising the health status of the population over time. Funding UK Research and Innovation (UKRI) Global Challenges Research Fund (GCRF) grant number H54810, as supported by Research England.
Collapse
Affiliation(s)
| | - Adam M. Blanchard
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Amit Nayak
- Research Centre, Dr G.M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur, Maharashtra, India
| | - Aliabbas Husain
- Research Centre, Dr G.M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur, Maharashtra, India
| | - Rupam Nashine
- Research Centre, Dr G.M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur, Maharashtra, India
| | - Hemanshi Dudani
- Research Centre, Dr G.M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur, Maharashtra, India
| | - C. Patrick McClure
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Hospitals National Health Service Trust, Nottingham, United Kingdom
- Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham, United Kingdom
| | - Alexander W. Tarr
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Hospitals National Health Service Trust, Nottingham, United Kingdom
- Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham, United Kingdom
- Queen's Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Aditi Nag
- Dr. B. Lal Institute of Biotechnology, 6-E, Malviya Industrial Area, Malviya Nagar, Jaipur, India
| | - Ekta Meena
- Dr. B. Lal Institute of Biotechnology, 6-E, Malviya Industrial Area, Malviya Nagar, Jaipur, India
| | - Vikky Sinha
- Dr. B. Lal Institute of Biotechnology, 6-E, Malviya Industrial Area, Malviya Nagar, Jaipur, India
| | - Sandeep K. Shrivastava
- Centre for Innovation, Research & Development, Dr. B. Lal Clinical Laboratory Pvt. Ltd., Malviya Industrial Area, Malviya Nagar, Jaipur, India
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - Andrew C. Singer
- UK Centre for Ecology and Hydrology, Wallingford, United Kingdom
| | - Rachel L. Gomes
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, United Kingdom
| | - Edward Acheampong
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, United Kingdom
- Department of Statistics and Actuarial Science, University of Ghana, P.O. Box, LG 115, Legon, Ghana
| | - Saravana B. Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, KA, India
| | - Tarun Bhatnagar
- ICMR-National Institute of Epidemiology, Chennai, Tamil Nadu, India
| | - Umashankar Vetrivel
- National Institute of Traditional Medicine, Indian Council of Medical Research, Belagavi, 590010, India
- Virology and Biotechnology Division, ICMR-National Institute for Research in Tuberculosis, Chennai, 600031, India
| | - Sudipti Arora
- Dr. B. Lal Institute of Biotechnology, 6-E, Malviya Industrial Area, Malviya Nagar, Jaipur, India
| | - Rajpal Singh Kashyap
- Research Centre, Dr G.M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur, Maharashtra, India
| | - Tanya M. Monaghan
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Hospitals National Health Service Trust, Nottingham, United Kingdom
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
22
|
Huang L, Liu S, Chen L, Wang F, Ye P, Xia L, Jiang B, Tang H, Zhang Q, Ruan X, Chen W, Jiang J. Identification of novel Jingmen tick virus from parasitic ticks fed on a giant panda and goats in Sichuan Province, southwestern China. Front Microbiol 2023; 14:1179173. [PMID: 37389347 PMCID: PMC10305807 DOI: 10.3389/fmicb.2023.1179173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/12/2023] [Indexed: 07/01/2023] Open
Abstract
Introduction Tick-borne viruses (TBVs) pose a significant risk to the health of humans and other vertebrates. A class of multisegmented flavi-like viruses, Jingmen tick virus (JMTV) was first discovered in Rhipicephalus microplus ticks collected from Jingmen of Hubei Province, China in 2010. JMTV has been confirmed to have a relatively wide distribution in vectors and hosts and is associated with human diseases. Methods Parasitic and host-seeking ticks were collected in Wolong Nature Reserve, Sichuan Province. Total RNA was extracted and then enriched the viral RNA. The DNA library was constructed and then were sequenced with MGI High-throughput Sequencing Set (PE150). After the adaptor sequences,low-quality bases and host genome were removed, resulting reads classified as a virus were subsequently de novo assembled into contigs, which were then compared to the NT database. Those annotated under the kingdom virus were initially identified as potential virus-associated sequences. Phylogenetic and Reassortment analysis of sequences were performed using MEGA and SimPlot software, respectively. Results and discussion Two host-seeking ticks and 17 ticks that fed on giant pandas and goats were collected. Through high-throughput sequencing, whole virus genomes were attained from four tick samples (PC-13, PC-16, PC-18, and PC-19) that shared 88.7-96.3% similarity with known JMTV. Phylogenetic tree showed that it was a novel JMTV-like virus, referred to as Sichuan tick virus, which also had the signals of reassortment with other JMTV strains, suggesting a cross-species transmission and co-infection of segmented flavi-like viruses among multiple tick hosts. Conclusion We discovered and confirmed one new Jingmen tick virus, Sichuan tick virus. Further investigation is required to determine the pathogenicity of Sichuan tick virus to humans and animals, as well as its epidemiological characteristics in nature.
Collapse
Affiliation(s)
- Lin Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shunshuai Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lu Chen
- Beijing Macro & Micro-test Bio-Tech Co., Ltd., Beijing, China
| | - Fei Wang
- Sichuan Forestry and Grassland Pest Control and Quarantine Station, Chengdu, China
| | - Ping Ye
- Wolong National Natural Reserve Administration Bureau, Wenchuan, China
| | - Luoyuan Xia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Baogui Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hao Tang
- Wolong National Natural Reserve Administration Bureau, Wenchuan, China
| | - Qingyu Zhang
- Wolong National Natural Reserve Administration Bureau, Wenchuan, China
| | - Xiangdong Ruan
- Academy of Inventory and Planning, National Forestry and Grassland Administration, Beijing, China
| | - Weijun Chen
- BGI PathoGenesis Pharmaceutical Technology, BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiafu Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
23
|
Ergunay K, Dincer E, Justi SA, Bourke BP, Nelson SP, Liao HM, Timurkan MO, Oguz B, Sahindokuyucu I, Gokcecik OF, Reinbold-Wasson DD, Jiang L, Achee NL, Grieco JP, Linton YM. Impact of nanopore-based metagenome sequencing on tick-borne virus detection. Front Microbiol 2023; 14:1177651. [PMID: 37323891 PMCID: PMC10267750 DOI: 10.3389/fmicb.2023.1177651] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/28/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction We evaluated metagenomic nanopore sequencing (NS) in field-collected ticks and compared findings from amplification-based assays. Methods Forty tick pools collected in Anatolia, Turkey and screened by broad-range or nested polymerase chain reaction (PCR) for Crimean-Congo Hemorrhagic Fever Virus (CCHFV) and Jingmen tick virus (JMTV) were subjected to NS using a standard, cDNA-based metagenome approach. Results Eleven viruses from seven genera/species were identified. Miviruses Bole tick virus 3 and Xinjiang mivirus 1 were detected in 82.5 and 2.5% of the pools, respectively. Tick phleboviruses were present in 60% of the pools, with four distinct viral variants. JMTV was identified in 60% of the pools, where only 22.5% were PCR-positive. CCHFV sequences characterized as Aigai virus were detected in 50%, where only 15% were detected by PCR. NS produced a statistically significant increase in detection of these viruses. No correlation of total virus, specific virus, or targeted segment read counts was observed between PCR-positive and PCR-negative samples. NS further enabled the initial description of Quaranjavirus sequences in ticks, where human and avian pathogenicity of particular isolates had been previously documented. Discussion NS was observed to surpass broad-range and nested amplification in detection and to generate sufficient genome-wide data for investigating virus diversity. It can be employed for monitoring pathogens in tick vectors or human/animal clinical samples in hot-spot regions for examining zoonotic spillover.
Collapse
Affiliation(s)
- Koray Ergunay
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, MD, United States
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- Department of Entomology, Smithsonian Institution–National Museum of Natural History (NMNH), Washington, DC, United States
- Department of Medical Microbiology, Virology Unit, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Ender Dincer
- Department of Virology, Faculty of Veterinary Medicine, Dokuz Eylül University, Izmir, Türkiye
| | - Silvia A. Justi
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, MD, United States
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- Department of Entomology, Smithsonian Institution–National Museum of Natural History (NMNH), Washington, DC, United States
| | - Brian P. Bourke
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, MD, United States
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- Department of Entomology, Smithsonian Institution–National Museum of Natural History (NMNH), Washington, DC, United States
| | - Suppaluck P. Nelson
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, MD, United States
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- Department of Entomology, Smithsonian Institution–National Museum of Natural History (NMNH), Washington, DC, United States
| | - Hsiao-Mei Liao
- Naval Medical Research Center (NMRC), Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Mehmet Ozkan Timurkan
- Department of Virology, Faculty of Veterinary Medicine, Ataturk University, Yakutiye, Erzurum, Türkiye
| | - Bekir Oguz
- Department of Parasitology, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Türkiye
| | - Ismail Sahindokuyucu
- Bornova Veterinary Control Institute, Veterinary Control Institute Directorates, Ministry of Agriculture and Forestry, Izmir, Türkiye
| | - Omer Faruk Gokcecik
- Bornova Veterinary Control Institute, Veterinary Control Institute Directorates, Ministry of Agriculture and Forestry, Izmir, Türkiye
| | | | - Le Jiang
- Naval Medical Research Center (NMRC), Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Nicole L. Achee
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - John P. Grieco
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Yvonne-Marie Linton
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, MD, United States
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- Department of Entomology, Smithsonian Institution–National Museum of Natural History (NMNH), Washington, DC, United States
| |
Collapse
|
24
|
Qu L, Li X, Huang B, Liu Y, Li Q, Shah T, Ning Y, Li J, Lu Y, Yan L, Wang B, Xia X. Identification and Characterization of Jingmen Tick Virus in Ticks from Yunnan Imported Cattle. Vector Borne Zoonotic Dis 2023; 23:298-302. [PMID: 37172285 DOI: 10.1089/vbz.2022.0076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
Jingmen tick virus (JMTV) is a tick-borne segmented positive-sense ssRNA virus that can cause human disease. This virus has been confirmed to be widespread, having a wide host range. In human it can cause fever, headache, lymphadenopathy, and asthenia. Therefore, JMTV poses a threat to public health. In this study, we collected 478 ticks from imported cattle on three quarantine farms near the Yunnan border to detect medically significant tick-borne viruses. Our findings show that JMTV was the only detected virus, with an incidence rate of 56.67%. Phylogenetic analysis showed that our JMTV is more closely related to previously reported JMTV strains from Yunnan Province and neighboring Laos, implying that the tick-borne virus was most likely imported from Laos. In conclusion, we identified and characterized a novel JMTV strain in tick (Rhipicephalus microplus) from Yunnan imported cattle, emphasizing the importance of arbovirus quarantine of livestock imports.
Collapse
Affiliation(s)
- Linyu Qu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
| | - Xiaofei Li
- The Third People's Hospital of Kunming, Kunming, P.R. China
| | - Baoyang Huang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
| | - Yufu Liu
- Yunnan International Travel Healthcare Center & Kunming Customs Port Outpatient Department, Kunming, P.R. China
| | - Qian Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
| | - Taif Shah
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
| | - Yuting Ning
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
| | - Jie Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
- Yunnan International Travel Healthcare Center & Kunming Customs Port Outpatient Department, Kunming, P.R. China
| | - Yunlan Lu
- Yunnan International Travel Healthcare Center & Kunming Customs Port Outpatient Department, Kunming, P.R. China
| | - Linghua Yan
- Yunnan International Travel Healthcare Center & Kunming Customs Port Outpatient Department, Kunming, P.R. China
| | - Binghui Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
| |
Collapse
|
25
|
Rong Lee M, Kim JC, Eun Park S, Kim WJ, Su Kim J. Detection of Viral Genes in Metarhizium anisopliae JEF-290-infected longhorned tick, Haemaphysalis longicornis using transcriptome analysis. J Invertebr Pathol 2023; 198:107926. [PMID: 37087092 DOI: 10.1016/j.jip.2023.107926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 04/24/2023]
Abstract
Ticks are carriers of viruses that can cause disease in humans and animals. The longhorned ticks (Haemaphysalis longicornis; LHT), for example, mediates the severe fever with thrombocytopenia syndrome virus (SFTSV) in humans, and the population of ticks is growing due to increases in temperature caused by climate change. As ticks carry primarily RNA viruses, there is a need to study the possibility of detecting new viruses through tick virome analysis. In this study, viruses in LHTs collected in Korea were investigated and virus titers in ticks exposed to the entomopathogenic fungus Metarhizium anisopliae JEF-290 were analyzed. Total RNA was extracted from the collected ticks, and short reads were obtained from Illumina sequencing. A total of 50,024 contigs with coding capacity were obtained after de novo assembly of the reads in the metaSPAdes genome assembler. A series of BLAST-based analyses using the GenBank database was performed to screen viral contigs, and three putative virus species were identified from the tick meta-transcriptome, such as Alongshan virus (ALSV), Denso virus and Taggert virus. Measurements of virus-expression levels of infected and non-infected LHTs failed to detect substantial differences in expression levels. However, we suggest that LHT can spread not only SFTSV, but also various other disease-causing viruses over large areas of the world. From the phylogenetic analysis of ALSV glycoproteins, genetic differences in the ALSV could be due to host differences as well as regional differences. Viral metagenome analysis can be used as a tool to manage future outbreaks of disease caused by ticks by detecting unknown viruses.
Collapse
Affiliation(s)
- Mi Rong Lee
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54596, Korea
| | - Jong-Cheol Kim
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54596, Korea
| | - So Eun Park
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54596, Korea
| | | | - Jae Su Kim
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54596, Korea; Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54596, Republic of Korea.
| |
Collapse
|
26
|
Gladysheva AA, Gladysheva AV, Ternovoi VA, Loktev VB. [Structural Motifs and Spatial Structures of Helicase (NS3) and RNA-dependent RNA-polymerase (NS5) of a Flavi-like Kindia tick virus (unclassified Flaviviridae)]. Vopr Virusol 2023; 68:7-17. [PMID: 36961231 DOI: 10.36233/0507-4088-142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 03/13/2023]
Abstract
INTRODUCTION Kindia tick virus (KITV) is a novel segmented unclassified flavi-like virus of the Flaviviridae family. This virus is associated with ixodes ticks and is potentially pathogenic to humans. The main goal of this work was to search for structural motifs of viral polypeptides and to develop a 3D-structure for viral proteins of the flavi-like KITV. MATERIALS AND METHODS The complete genome sequences for KITV, Zika, dengue, Japanese encephalitis, West Nile and yellow fever viruses were retrieved from GenBank. Bioinformatics analysis was performed using the different software packages. RESULTS Analysis of the KITV structural proteins showed that they have no analogues among currently known viral proteins. Spatial models of NS3 and NS5 KITV proteins have been obtained. These models had a high level of topological similarity to the tick-borne encephalitis and dengue viral proteins. The methyltransferase and RNA-dependent RNA-polymerase domains were found in the NS5 KITV. The latter was represented by fingers, palm and thumb subdomains, and motifs A-F. The helicase domain and its main structural motifs IVI were identified in NS3 KITV. However, the protease domain typical of NS3 flaviviruses was not detected. The highly conserved amino acid motives were detected in the NS3 and NS5 KITV. Also, eight amino acid substitutions characteristic of KITV/2018/1 and KITV/2018/2 were detected, five of them being localized in alpha-helix and three in loops of nonstructural proteins. CONCLUSION Nonstructural proteins of KITV have structural and functional similarities with unsegmented flaviviruses. This confirms their possible evolutionary and taxonomic relationships.
Collapse
Affiliation(s)
- A A Gladysheva
- State Scientific Center of Virology and Biotechnology «Vector»
- Novosibirsk National Research State University
| | - A V Gladysheva
- State Scientific Center of Virology and Biotechnology «Vector»
| | - V A Ternovoi
- State Scientific Center of Virology and Biotechnology «Vector»
| | - V B Loktev
- State Scientific Center of Virology and Biotechnology «Vector»
- Novosibirsk National Research State University
| |
Collapse
|
27
|
Wu Z, Chen J, Zhang L, Zhang Y, Liu L, Niu G. Molecular evidence for potential transovarial transmission of Jingmen tick virus in Haemaphysalis longicornis fed on cattle from Yunnan Province, China. J Med Virol 2023; 95:e28357. [PMID: 36443647 DOI: 10.1002/jmv.28357] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022]
Abstract
Jingmen tick virus (JMTV) is a novel tick-borne virus first identified from Jingmen city, Hubei Province of China in 2010. It has been proved that JMTV can cause human diseases and is widely distributed both inside and outside of China. However, the survival mode and transmission characteristics of JMTV still need further research, particularly in terms of transovarial transmission. In this study, an investigation was conducted to explore the presence of JMTV from engorged female ticks to their offspring. All engorged female adult ticks were collected from domestic cattle and allowed to lay eggs in appropriate humidity and temperature conditions. Maternal ticks, eggs and larvae were screened for JMTV RNA through real-time polymerase chain reaction (RT-PCR) and nested PCR methods. The results revealed the positive rate of 10.53% (10/95) in engorged ticks, 9.09% (2/22) in eggs and 8% (4/50) in larvae pools, respectively. Phylogenetic analysis confirmed that sequences from eggs and larvae had closer relationship with those isolates from maternal engorged ticks with more than 99.7% homology and JMTV manifested with evolutional conservatism. Our study has identified for the first time that JMTV could be transmitted from mother generation to offspring of Haemaphysalis Longicornis. Nonetheless, the efficiency of transovarial transmission in JMTV and the significance of ticks as amplification hosts still need to be further illustrated.
Collapse
Affiliation(s)
- Zhen Wu
- School of Public Health, WeiFang Medical University, Weifang, China
| | - Junhao Chen
- School of Public Health, WeiFang Medical University, Weifang, China
| | | | - Yuli Zhang
- School of Public Health, WeiFang Medical University, Weifang, China
| | - Lin Liu
- Immune-Path Biotechnology (Suzhou) Co., Ltd, Suzhou, China
| | - Guoyu Niu
- School of Public Health, WeiFang Medical University, Weifang, China
| |
Collapse
|
28
|
Zhang J, Zheng YC, Chu YL, Cui XM, Wei R, Bian C, Liu HB, Yao NN, Jiang RR, Huo QB, Yuan TT, Li J, Zhao L, Li LF, Wang Q, Wei W, Zhu JG, Chen MC, Gao Y, Wang F, Ye JL, Song JL, Jiang JF, Lam TTY, Ni XB, Jia N. Skin infectome of patients with a tick bite history. Front Cell Infect Microbiol 2023; 13:1113992. [PMID: 36923591 PMCID: PMC10008932 DOI: 10.3389/fcimb.2023.1113992] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
Introduction Ticks are the most important obligate blood-feeding vectors of human pathogens. With the advance of high-throughput sequencing, more and more bacterial community and virome in tick has been reported, which seems to pose a great threat to people. Methods A total of 14 skin specimens collected from tick-bite patients with mild to severe symptoms were analyzed through meta-transcriptomic sequencings. Results Four bacteria genera were both detected in the skins and ticks, including Pseudomonas, Acinetobacter, Corynebacterium and Propionibacterium, and three tick-associated viruses, Jingmen tick virus (JMTV), Bole tick virus 4 (BLTV4) and Deer tick mononegavirales-like virus (DTMV) were identified in the skin samples. Except of known pathogens such as pathogenic rickettsia, Coxiella burnetii and JMTV, we suggest Roseomonas cervicalis and BLTV4 as potential new agents amplified in the skins and then disseminated into the blood. As early as 1 day after a tick-bite, these pathogens can transmit to skins and at most four ones can co-infect in skins. Discussion Advances in sequencing technologies have revealed that the diversity of tick microbiome and virome goes far beyond our previous understanding. This report not only identifies three new potential pathogens in humans but also shows that the skin barrier is vital in preventing horizontal transmissions of tick-associated bacteria or virus communities to the host. It is the first research on patients' skin infectome after a tick bite and demonstrates that more attention should be paid to the cutaneous response to prevent tick-borne illness.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuan-Chun Zheng
- Department of Cardiology, Mudanjiang Forestry Central Hospital, Mudanjiang, China
| | - Yan-Li Chu
- Department of Cardiology, Mudanjiang Forestry Central Hospital, Mudanjiang, China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ran Wei
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cai Bian
- Department of Cardiology, Mudanjiang Forestry Central Hospital, Mudanjiang, China
| | - Hong-Bo Liu
- Department of Infectious Diseases Control and Prevention, Chinese People's Liberation Army of China (PLA) Center for Disease Control and Prevention, Beijing, China
| | - Nan-Nan Yao
- Department of Cardiology, Mudanjiang Forestry Central Hospital, Mudanjiang, China
| | - Rui-Ruo Jiang
- Institute of Nuclear, Biological, and Chemical weapons (NBC) Defence, PLA Army, Beijing, China
| | - Qiu-Bo Huo
- Department of Cardiology, Mudanjiang Forestry Central Hospital, Mudanjiang, China
| | | | - Jie Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lin Zhao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lian-Feng Li
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qian Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wei Wei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jin-Guo Zhu
- Department of Health Quarantine, ManZhouLi Customs District, Manzhouli, China
| | - Mei-Chao Chen
- Department of Health Quarantine, ManZhouLi Customs District, Manzhouli, China
| | - Yan Gao
- Department of Health Quarantine, ManZhouLi Customs District, Manzhouli, China
| | - Fei Wang
- Department of Health Quarantine, ManZhouLi Customs District, Manzhouli, China
| | - Jin-Ling Ye
- Department of Cardiology, Mudanjiang Forestry Central Hospital, Mudanjiang, China
| | - Ju-Liang Song
- Department of Cardiology, Mudanjiang Forestry Central Hospital, Mudanjiang, China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tommy Tsan-Yuk Lam
- State Key Laboratory of Emerging Infectious Diseases and Centre of Influenza Research, School of Public Health, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- *Correspondence: Na Jia, ; Xue-Bing Ni, ; Tommy Tsan-Yuk Lam,
| | - Xue-Bing Ni
- State Key Laboratory of Emerging Infectious Diseases and Centre of Influenza Research, School of Public Health, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- *Correspondence: Na Jia, ; Xue-Bing Ni, ; Tommy Tsan-Yuk Lam,
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- *Correspondence: Na Jia, ; Xue-Bing Ni, ; Tommy Tsan-Yuk Lam,
| |
Collapse
|
29
|
Liu Z, Li L, Xu W, Yuan Y, Liang X, Zhang L, Wei Z, Sui L, Zhao Y, Cui Y, Yin Q, Li D, Li Q, Hou Z, Wei F, Liu Q, Wang Z. Extensive diversity of RNA viruses in ticks revealed by metagenomics in northeastern China. PLoS Negl Trop Dis 2022; 16:e0011017. [PMID: 36542659 PMCID: PMC9836300 DOI: 10.1371/journal.pntd.0011017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 01/12/2023] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Ticks act as important vectors of infectious agents, and several emerging tick-borne viruses have recently been identified to be associated with human diseases in northeastern China. However, little is known about the tick virome in northeastern China. METHODS Ticks collected from April 2020 to July 2021 were pooled for metagenomic analysis to investigate the virome diversity in northeastern China. RESULTS In total, 22 RNA viruses were identified, including four each in the Nairoviridae and Phenuiviridae families, three each in the Flaviviridae, Rhabdoviridae, and Solemoviridae families, two in the Chuviridae family, and one each in the Partitiviridae, Tombusviridae families and an unclassified virus. Of these, eight viruses were of novel species, belonging to the Nairoviridae (Ji'an nairovirus and Yichun nairovirus), Phenuiviridae (Mudanjiang phlebovirus), Rhabdoviridae (Tahe rhabdovirus 1-3), Chuviridae (Yichun mivirus), and Tombusviridae (Yichun tombus-like virus) families, and five members were established human pathogens, including Alongshan virus, tick-borne encephalitis virus, Songling virus, Beiji nairovirus, and Nuomin virus. I. persulcatus ticks had significant higher number of viral species than H. japonica, H. concinna, and D. silvarum ticks. Significant differences in tick viromes were observed among Daxing'an, Xiaoxing'an and Changbai mountains. CONCLUSIONS These findings showed an extensive diversity of RNA viruses in ticks in northeastern China, revealing potential public health threats from the emerging tick-borne viruses. Further studies are needed to explain the natural circulation and pathogenicity of these viruses.
Collapse
Affiliation(s)
- Ziyan Liu
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of education, The First Hospital of Jilin University, State Key Laboratory of Zoonotic Diseases, Changchun, Jilin Province, People’s Republic of China
- Laboratory of Pathogen Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, Jilin Province, People’s Republic of China
| | - Liang Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, People’s Republic of China
| | - Wenbo Xu
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of education, The First Hospital of Jilin University, State Key Laboratory of Zoonotic Diseases, Changchun, Jilin Province, People’s Republic of China
| | - Yongxu Yuan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province, People’s Republic of China
| | - Xiaojie Liang
- Laboratory of Pathogen Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, Jilin Province, People’s Republic of China
| | - Li Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, People’s Republic of China
| | - Zhengkai Wei
- School of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, People’s Republic of China
| | - Liyan Sui
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of education, The First Hospital of Jilin University, State Key Laboratory of Zoonotic Diseases, Changchun, Jilin Province, People’s Republic of China
| | - Yinghua Zhao
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of education, The First Hospital of Jilin University, State Key Laboratory of Zoonotic Diseases, Changchun, Jilin Province, People’s Republic of China
| | - Yanyan Cui
- College of Food Science and Engineering, Tonghua Normal University, Tonghua, Jilin Province, People’s Republic of China
| | - Qing Yin
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of education, The First Hospital of Jilin University, State Key Laboratory of Zoonotic Diseases, Changchun, Jilin Province, People’s Republic of China
| | - Dajun Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province, People’s Republic of China
| | - Qianxue Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, People’s Republic of China
| | - Zhijun Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang Province, People’s Republic of China
| | - Feng Wei
- Laboratory of Pathogen Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, Jilin Province, People’s Republic of China
| | - Quan Liu
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of education, The First Hospital of Jilin University, State Key Laboratory of Zoonotic Diseases, Changchun, Jilin Province, People’s Republic of China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, People’s Republic of China
- School of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, People’s Republic of China
| | - Zedong Wang
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of education, The First Hospital of Jilin University, State Key Laboratory of Zoonotic Diseases, Changchun, Jilin Province, People’s Republic of China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, People’s Republic of China
| |
Collapse
|
30
|
Kholodilov IS, Belova OA, Ivannikova AY, Gadzhikurbanov MN, Makenov MT, Yakovlev AS, Polienko AE, Dereventsova AV, Litov AG, Gmyl LV, Okhezin EV, Luchinina SV, Klimentov AS, Karganova GG. Distribution and Characterisation of Tick-Borne Flavi-, Flavi-like, and Phenuiviruses in the Chelyabinsk Region of Russia. Viruses 2022; 14:v14122699. [PMID: 36560703 PMCID: PMC9780909 DOI: 10.3390/v14122699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
In this work, we presented data from a two-year study of flavi-, flavi-like, and phenuiviruses circulation in the population of ixodid ticks in the Chelyabinsk region. We isolated three tick-borne encephalitis virus (TBEV) strains from I. persulcatus, which was not detected in the ticks of the genus Dermacentor. The virus prevalence ranged from 0.66% to 2.28%. The Yanggou tick virus (YGTV) is widespread in steppe and forest-steppe zones and is mainly associated with ticks of the genus Dermacentor. We isolated 26 strains from D. reticulatus, D. marginatus, and I. persulcatus ticks in the HAE/CTVM8 tick cell line. The virus prevalence ranged from 1.58% to 4.18% in D. reticulatus, ranged from 0.78% to 3.93% in D. marginatus, and was 0.66% in I. persulcatus. There was combined focus of TBEV and YGTV in the territory of the Chelyabinsk region. The Alongshan virus (ALSV) was found to be associated with I. persulcatus ticks and is spread in forest zone. We detected 12 amplicons and isolated 7 strains of ALSV in tick cells. The virus prevalence ranged from 1.13% to 6.00%. The phlebovirus Gomselga and unclassified phenuivirus Stavropol were associated with I. persulcatus and D. reticulatus ticks, respectively. Virus prevalence of the unclassified phenuivirus Stavropol in the Chelyabinsk region is lower than that in neighbouring regions.
Collapse
Affiliation(s)
- Ivan S. Kholodilov
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Oxana A. Belova
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Anna Y. Ivannikova
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Magomed N. Gadzhikurbanov
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Marat T. Makenov
- Department of Molecular Diagnostics and Epidemiology, Central Research Institute of Epidemiology, 111123 Moscow, Russia
| | - Alexander S. Yakovlev
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Alexandra E. Polienko
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Alena V. Dereventsova
- Laboratory of Biochemistry, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Alexander G. Litov
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Larissa V. Gmyl
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Egor V. Okhezin
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | | | - Alexander S. Klimentov
- Laboratory of Biochemistry, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Galina G. Karganova
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
- Correspondence:
| |
Collapse
|
31
|
Colmant AMG, Charrel RN, Coutard B. Jingmenviruses: Ubiquitous, understudied, segmented flavi-like viruses. Front Microbiol 2022; 13:997058. [PMID: 36299728 PMCID: PMC9589506 DOI: 10.3389/fmicb.2022.997058] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/22/2022] [Indexed: 11/21/2022] Open
Abstract
Jingmenviruses are a group of viruses identified recently, in 2014, and currently classified by the International Committee on Taxonomy of Viruses as unclassified Flaviviridae. These viruses closely related to flaviviruses are unique due to the segmented nature of their genome. The prototype jingmenvirus, Jingmen tick virus (JMTV), was discovered in Rhipicephalus microplus ticks collected from China in 2010. Jingmenviruses genomes are composed of four to five segments, encoding for up to seven structural proteins and two non-structural proteins, both of which display strong similarities with flaviviral non-structural proteins (NS2B/NS3 and NS5). Jingmenviruses are currently separated into two phylogenetic clades. One clade includes tick- and vertebrate-associated jingmenviruses, which have been detected in ticks and mosquitoes, as well as in humans, cattle, monkeys, bats, rodents, sheep, and tortoises. In addition to these molecular and serological detections, over a hundred human patients tested positive for jingmenviruses after developing febrile illness and flu-like symptoms in China and Serbia. The second phylogenetic clade includes insect-associated jingmenvirus sequences, which have been detected in a wide range of insect species, as well as in crustaceans, plants, and fungi. In addition to being found in various types of hosts, jingmenviruses are endemic, as they have been detected in a wide range of environments, all over the world. Taken together, all of these elements show that jingmenviruses correspond exactly to the definition of emerging viruses at risk of causing a pandemic, since they are already endemic, have a close association with arthropods, are found in animals in close contact with humans, and have caused sporadic cases of febrile illness in multiple patients. Despite these arguments, the vast majority of published data is from metagenomics studies and many aspects of jingmenvirus replication remain to be elucidated, such as their tropism, cycle of transmission, structure, and mechanisms of replication and restriction or epidemiology. It is therefore crucial to prioritize jingmenvirus research in the years to come, to be prepared for their emergence as human or veterinary pathogens.
Collapse
|
32
|
Zhang Y, Li Z, Pang Z, Wu Z, Lin Z, Niu G. Identification of Jingmen tick virus (JMTV) in Amblyomma testudinarium from Fujian Province, southeastern China. Parasit Vectors 2022; 15:339. [PMID: 36167570 PMCID: PMC9513871 DOI: 10.1186/s13071-022-05478-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
Background Jingmen tick virus (JMTV) is a newly discovered tick-borne virus that can cause disease in humans. This virus has been authenticated as being extremely widespread worldwide and as posing a significant threat to public health and safety. Methods We collected 35 ticks belonging to two tick species from wild boars in Nanping, Fujian Province, China. JMTV-specific genes were amplified by qRT-PCR and nested PCR to confirm the presence of this pathogen. Results More than one third of of all ticks collected (11/35) were positive for JMTV. Viral sequences were obtained from three of the JMTV-positive ticks, including the complete genomic sequence from one tick. This was the first time that JMTV was identified in the hard-bodied tick Amblyomma testudinarium. Phylogenetic analysis revealed that JMTV from Fujian Province shared > 90% identity with other isolates derived from China, but was distinct from those reported in France and Cambodia. Conclusions JMTV is characterized by relatively low mutations and has its own local adaptive characteristics in different regions. Our findings provide molecular evidence of the presence of JMTV in an overlooked tick species from an area not unrecognized as being endemic. They also suggest that JMTV occupies a wider geographical distribution than currently believed and is a potential disease vector. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05478-2.
Collapse
Affiliation(s)
- Yuli Zhang
- WeiFang Medical University, Weifang, 261053, China
| | - Zhenfeng Li
- Department of Public Health, Gaomi People's Hospital, Weifang, 261500, China
| | - Zheng Pang
- Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Zhen Wu
- WeiFang Medical University, Weifang, 261053, China
| | - Zhijuan Lin
- WeiFang Medical University, Weifang, 261053, China.
| | - Guoyu Niu
- WeiFang Medical University, Weifang, 261053, China.
| |
Collapse
|
33
|
Integrated Jingmenvirus Polymerase Gene in Ixodes ricinus Genome. Viruses 2022; 14:v14091908. [PMID: 36146715 PMCID: PMC9501327 DOI: 10.3390/v14091908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Members of the jingmenviruses group have been found in arthropods and mammals on all continents except Australia and Antarctica. Two viruses of this group were isolated from patients with fever after a tick bite. Using a nested RT-PCR assay targeting a jingmenvirus polymerase gene fragment, we screened ticks collected in seven regions of Russia and found that the abundant jingmenvirus-positive were of Ixodes ricinus species, with the prevalence ranging from 19.8% to 34.3%. In all cases, DNase/RNase treatment suggested that the detected molecule was DNA and subsequent next generation sequencing (NGS) proved that the viral polymerase gene was integrated in the I. ricinus genome. The copy number of the integrated polymerase gene was quantified by qPCR relative to the ITS2 gene and estimated as 1.32 copies per cell. At least three different genetic variants of the integrated polymerase gene were found in the territory of Russia. Phylogenetic analysis of the integrated jingmenvirus polymerase gene showed the highest similarity with the sequence of the correspondent gene obtained in Serbia from I. ricinus.
Collapse
|
34
|
Pang Z, Jin Y, Pan M, Zhang Y, Wu Z, Liu L, Niu G. Geographical distribution and phylogenetic analysis of Jingmen tick virus in China. iScience 2022; 25:105007. [PMID: 36097615 PMCID: PMC9463580 DOI: 10.1016/j.isci.2022.105007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/08/2022] [Accepted: 08/19/2022] [Indexed: 11/26/2022] Open
Abstract
Jingmen tick virus (JMTV) is a novel tick-borne segmented RNA virus that is closely related to un-segmental RNA virus in evolution. It has been confirmed that JMTV could be a causative agent of human disease. In this study, a total of 3658 ticks were sampled from 7 provinces of China and then divided into 545 pools according to the location and species. QRT-PCR and nested PCR were performed to confirm the presence of JMTV. The results showed JMTV was identified in 5 out of 7 provinces with an average infection rate of 1.4% (51/3658). Phylogenetic analysis indicated that all JMTV strains identified in this study were closely related to each other and formed a well-supported sub-lineage. Our results provide molecular evidence of JMTV in different species of ticks from endemic and non-endemic regions and demonstrate that JMTV, as a natural foci pathogen, may be widely distributed all over China. JMTV was first identified in unrecognized endemic regions of China Two complete genomes and 13 partial S1 segments of JMTV were sequenced and analyzed JMTV was relatively conservative in evolution JMTV was widely distributed in China as a potential health threat to humans and animals
Collapse
|
35
|
Ergunay K, Mutinda M, Bourke B, Justi SA, Caicedo-Quiroga L, Kamau J, Mutura S, Akunda IK, Cook E, Gakuya F, Omondi P, Murray S, Zimmerman D, Linton YM. Metagenomic Investigation of Ticks From Kenyan Wildlife Reveals Diverse Microbial Pathogens and New Country Pathogen Records. Front Microbiol 2022; 13:932224. [PMID: 35847110 PMCID: PMC9283121 DOI: 10.3389/fmicb.2022.932224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Focusing on the utility of ticks as xenosurveillance sentinels to expose circulating pathogens in Kenyan drylands, host-feeding ticks collected from wild ungulates [buffaloes, elephants, giraffes, hartebeest, impala, rhinoceros (black and white), zebras (Grévy’s and plains)], carnivores (leopards, lions, spotted hyenas, wild dogs), as well as regular domestic and Boran cattle were screened for pathogens using metagenomics. A total of 75 host-feeding ticks [Rhipicephalus (97.3%) and Amblyomma (2.7%)] collected from 15 vertebrate taxa were sequenced in 46 pools. Fifty-six pathogenic bacterial species were detected in 35 pools analyzed for pathogens and relative abundances of major phyla. The most frequently observed species was Escherichia coli (62.8%), followed by Proteus mirabilis (48.5%) and Coxiella burnetii (45.7%). Francisella tularemia and Jingmen tick virus (JMTV) were detected in 14.2 and 13% of the pools, respectively, in ticks collected from wild animals and cattle. This is one of the first reports of JMTV in Kenya, and phylogenetic reconstruction revealed significant divergence from previously known isolates and related viruses. Eight fungal species with human pathogenicity were detected in 5 pools (10.8%). The vector-borne filarial pathogens (Brugia malayi, Dirofilaria immitis, Loa loa), protozoa (Plasmodium spp., Trypanosoma cruzi), and environmental and water-/food-borne pathogens (Entamoeba histolytica, Encephalitozoon intestinalis, Naegleria fowleri, Schistosoma spp., Toxoplasma gondii, and Trichinella spiralis) were detected. Documented viruses included human mastadenovirus C, Epstein-Barr virus and bovine herpesvirus 5, Trinbago virus, and Guarapuava tymovirus-like virus 1. Our findings confirmed that host-feeding ticks are an efficient sentinel for xenosurveillance and demonstrate clear potential for wildlife-livestock-human pathogen transfer in the Kenyan landscape.
Collapse
Affiliation(s)
- Koray Ergunay
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution Museum Support Center, Suitland, MD, United States
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- Department of Medical Microbiology, Virology Unit, Faculty of Medicine, Hacettepe University, Ankara, Turkey
- Department of Entomology, Smithsonian Institution, National Museum of Natural History (NMNH), Washington, DC, United States
- *Correspondence: Koray Ergunay,
| | | | - Brian Bourke
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution Museum Support Center, Suitland, MD, United States
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- Department of Entomology, Smithsonian Institution, National Museum of Natural History (NMNH), Washington, DC, United States
| | - Silvia A. Justi
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution Museum Support Center, Suitland, MD, United States
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- Department of Entomology, Smithsonian Institution, National Museum of Natural History (NMNH), Washington, DC, United States
| | - Laura Caicedo-Quiroga
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution Museum Support Center, Suitland, MD, United States
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- Department of Entomology, Smithsonian Institution, National Museum of Natural History (NMNH), Washington, DC, United States
| | - Joseph Kamau
- One Health Centre, Institute of Primate Research (IPR), Nairobi, Kenya
| | - Samson Mutura
- One Health Centre, Institute of Primate Research (IPR), Nairobi, Kenya
| | | | - Elizabeth Cook
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Francis Gakuya
- Wildlife Research and Training Institute (WRTI), Naivasha, Kenya
| | - Patrick Omondi
- Wildlife Research and Training Institute (WRTI), Naivasha, Kenya
| | - Suzan Murray
- Global Health Program, Smithsonian Conservation Biology Unit, Fort Royal, VA, United States
| | - Dawn Zimmerman
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution Museum Support Center, Suitland, MD, United States
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- Department of Entomology, Smithsonian Institution, National Museum of Natural History (NMNH), Washington, DC, United States
- Department of Epidemiology of Microbial Disease, Yale School of Public Health, New Haven, CT, United States
| | - Yvonne-Marie Linton
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution Museum Support Center, Suitland, MD, United States
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- Department of Entomology, Smithsonian Institution, National Museum of Natural History (NMNH), Washington, DC, United States
| |
Collapse
|
36
|
Li LF, Zhang MZ, Zhu JG, Cui XM, Zhang CF, Niu TY, Li J, Sun Y, Wei W, Liu HB, Yuan TT, Wei R, Wang Q, Xia LY, Zhao L, Lesley BS, Jiang BG, Jiang JF, Frans J, Jia N, Cao WC. Dermacentor silvarum, a Medically Important Tick, May Not Be a Competent Vector to Transmit Jingmen Tick Virus. Vector Borne Zoonotic Dis 2022; 22:402-407. [PMID: 35834662 DOI: 10.1089/vbz.2021.0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Jingmen tick virus (JMTV) has attracted great attention due to its potential pathogenicity in humans and its transmission by ticks. Dermacentor silvarum (D. silvarum) is one of the dominant tick species in northeastern China, and can transmit many pathogens to humans and animals. However, there have been no report of transmission of JMTV by D. silvarum. Materials and Methods: Ticks were collected from vegetation at the Aershan Port in Inner Mongolia in April 2019. And we do attempt to infect D. silvarum with JMTV by the immersion technique in laboratory conditions. The transmission of JMTV was examined by reverse transcriptase PCR, fluorescence in situ hybridization, and indirect immunofluorescence assay. Statistical analysis was performed using SPSS 24.0. Results: We found that JMTV may only be maintained in the tick without replication, and could not be transmitted to a host following transstadial transmission. Moreover, no virus colonization was found in the midgut or salivary glands of unfed D. silvarum; therefore, D. silvarum may not be susceptible to JMTV infection and therefore unlikely to carry and transmit JMTV. Conclusion: Our study has to some extent filled the knowledge gap regarding the possibility of JMTV transmission by a medically important tick vector, D. silvarum.
Collapse
Affiliation(s)
- Lian-Feng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai, China
| | - Ming-Zhu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| | - Jin-Guo Zhu
- ManZhouLi Customs District, Manzhouli, P.R. China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| | | | | | - Jie Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| | - Yi Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| | - Wei- Wei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China.,Center for Medical Genetics and Genomics, The Second Afliated Hospital of Guangxi Medical University, Nanning, China
| | - Hong-Bo Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China.,Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Ting-Ting Yuan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai, China
| | - Ran Wei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China.,The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China.,School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Luo-Yuan Xia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China.,School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lin Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China.,School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bell-Sakyi Lesley
- Department of Infection Biology and Microbiomes, Institute of Infection, Ecological and Veterinary Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Bao-Gui Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| | - Jongejan Frans
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Sciences, University of Pretoria, Onderstepoort, South Africa
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| |
Collapse
|
37
|
Ogola EO, Kopp A, Bastos ADS, Slothouwer I, Marklewitz M, Omoga D, Rotich G, Getugi C, Sang R, Torto B, Junglen S, Tchouassi DP. Jingmen Tick Virus in Ticks from Kenya. Viruses 2022; 14:1041. [PMID: 35632782 PMCID: PMC9147648 DOI: 10.3390/v14051041] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 01/29/2023] Open
Abstract
Jingmen tick virus (JMTV) is an arbovirus with a multisegmented genome related to those of unsegmented flaviviruses. The virus first described in Rhipicephalus microplus ticks collected in Jingmen city (Hubei Province, China) in 2010 is associated with febrile illness in humans. Since then, the geographic range has expanded to include Trinidad and Tobago, Brazil, and Uganda. However, the ecology of JMTV remains poorly described in Africa. We screened adult ticks (n = 4550, 718 pools) for JMTV infection by reverse transcription polymerase chain reaction (RT-PCR). Ticks were collected from cattle (n = 859, 18.88%), goats (n = 2070, 45.49%), sheep (n = 1574, 34.59%), and free-ranging tortoises (Leopard tortoise, Stigmochelys pardalis) (n = 47, 1.03%) in two Kenyan pastoralist-dominated areas (Baringo and Kajiado counties) with a history of undiagnosed febrile human illness. Surprisingly, ticks collected from goats (0.3%, 95% confidence interval (CI) 0.1-0.5), sheep (1.8%, 95% CI 1.2-2.5), and tortoise (74.5%, 95% CI 60.9-85.4, were found infected with JMTV, but ticks collected from cattle were all negative. JMTV ribonucleic acid (RNA) was also detected in blood from tortoises (66.7%, 95% CI 16.1-97.7). Intragenetic distance of JMTV sequences originating from tortoise-associated ticks was greater than that of sheep-associated ticks. Phylogenetic analyses of seven complete-coding genome sequences generated from tortoise-associated ticks formed a monophyletic clade within JMTV strains from other countries. In summary, our findings confirm the circulation of JMTV in ticks in Kenya. Further epidemiological surveys are needed to assess the potential public health impact of JMTV in Kenya.
Collapse
Affiliation(s)
- Edwin O. Ogola
- International Centre of Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya; (E.O.O.); (D.O.); (G.R.); (C.G.); (R.S.); (B.T.)
- Department of Zoology and Entomology, University of Pretoria, Private Bag 20, Pretoria 0028, South Africa;
| | - Anne Kopp
- Berlin Institute of Health, Institute of Virology, Charité—Universitätsmedizin Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin, Chariteplatz 1, 10117 Berlin, Germany; (A.K.); (I.S.); (M.M.)
- German Centre for Infection Research (DZIF), Associated Partner Site Charité, 10117 Berlin, Germany
| | - Armanda D. S. Bastos
- Department of Zoology and Entomology, University of Pretoria, Private Bag 20, Pretoria 0028, South Africa;
| | - Inga Slothouwer
- Berlin Institute of Health, Institute of Virology, Charité—Universitätsmedizin Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin, Chariteplatz 1, 10117 Berlin, Germany; (A.K.); (I.S.); (M.M.)
- German Centre for Infection Research (DZIF), Associated Partner Site Charité, 10117 Berlin, Germany
| | - Marco Marklewitz
- Berlin Institute of Health, Institute of Virology, Charité—Universitätsmedizin Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin, Chariteplatz 1, 10117 Berlin, Germany; (A.K.); (I.S.); (M.M.)
- German Centre for Infection Research (DZIF), Associated Partner Site Charité, 10117 Berlin, Germany
| | - Dorcus Omoga
- International Centre of Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya; (E.O.O.); (D.O.); (G.R.); (C.G.); (R.S.); (B.T.)
| | - Gilbert Rotich
- International Centre of Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya; (E.O.O.); (D.O.); (G.R.); (C.G.); (R.S.); (B.T.)
| | - Caroline Getugi
- International Centre of Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya; (E.O.O.); (D.O.); (G.R.); (C.G.); (R.S.); (B.T.)
| | - Rosemary Sang
- International Centre of Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya; (E.O.O.); (D.O.); (G.R.); (C.G.); (R.S.); (B.T.)
- Kenya Medical Research Institute (KEMRI), Off Raila Odinga Way, Nairobi P.O. Box 54840-00200, Kenya
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya; (E.O.O.); (D.O.); (G.R.); (C.G.); (R.S.); (B.T.)
- Department of Zoology and Entomology, University of Pretoria, Private Bag 20, Pretoria 0028, South Africa;
| | - Sandra Junglen
- Berlin Institute of Health, Institute of Virology, Charité—Universitätsmedizin Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin, Chariteplatz 1, 10117 Berlin, Germany; (A.K.); (I.S.); (M.M.)
- German Centre for Infection Research (DZIF), Associated Partner Site Charité, 10117 Berlin, Germany
| | - David P. Tchouassi
- International Centre of Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya; (E.O.O.); (D.O.); (G.R.); (C.G.); (R.S.); (B.T.)
| |
Collapse
|
38
|
Dinçer E, Timurkan MÖ, Oğuz B, Şahindokuyucu İ, Şahan A, Ekinci M, Polat C, Ergünay K. Several Tick-Borne Pathogenic Viruses in Circulation in Anatolia, Turkey. Vector Borne Zoonotic Dis 2022; 22:148-158. [PMID: 35133905 DOI: 10.1089/vbz.2021.0082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Introduction: We screened host-collected ticks for tick-borne viruses, including those recently documented as human pathogens. Methods: During 2020-2021, ticks removed form cattle, sheep, dogs, and cats in 11 provinces in 5 geographically distinct regions of Anatolia were identified, pooled, and screened using pan-nairovirus, pan-flavivirus and individual assays for Jingmen tick virus (JMTV), and Tacheng tick virus 1 and 2 (TcTV-1 and TcTV-2). Results: A total of 901 tick specimens, comprising 6 species were included. Rhipicephalus sanguineus complex was the most abundant species (44.1%), followed by Rhipicephalus bursa (38.3%), Haemaphysalis parva (7.2%), and others. The specimens were screened in 158 pools with 12 pools (7.6%) being positive. Crimean-Congo hemorrhagic fever virus (CCHFV) lineage Europe 2 (genotype VI) sequences were detected in R. bursa in five (3.2%) of the pools, with similar prevalences in central and Mediterranean Anatolian provinces. JMTV was identified in four R. bursa and one Rhipicephalus turanicus pools, collected from Mediterranean and southeastern Anatolia, with a CCHFV and JMTV coinfected R. bursa pool. The JMTV segment 1 sequences formed a separate cluster with those from Turkey and the Balkan peninsula in the maximum likelihood analysis. TcTV-2 was detected in two Dermacentor marginatus specimens (1.3%) collected in central Anatolia, with nucleocapsid sequences forming a phylogenetically segregated group among viruses from humans and ticks from China and Kazakhstan. Discussion: CCHFV Europe 2 was initially documented in ticks from central Anatolian locations, where related orthonairoviruses had been previously recorded. Ongoing activity and a wider distribution of JMTV and TcTV-2 were observed. These viruses should be screened as potential etiological agents in human infections associated with tick bites.
Collapse
Affiliation(s)
- Ender Dinçer
- Department of Virology, Faculty of Veterinary Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Mehmet Özkan Timurkan
- Department of Virology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Bekir Oğuz
- Department of Parasitology, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - İsmail Şahindokuyucu
- Bornova Veterinary Control Institute, Veterinary Control Institute Directorates, Ministry of Agriculture and Forestry, Izmir, Turkey
| | - Adem Şahan
- Department of Internal Medicine, Faculty of Veterinary Medicine, Harran University, Şanlıurfa, Turkey
| | - Mustafa Ekinci
- Department of Animal Breeding, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Ceylan Polat
- Virology Unit, Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Koray Ergünay
- Virology Unit, Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
39
|
Yao XY, Yang JC, Yuan S, Zeng FC, Zhang YQ, Liu H, Sun J, Lv ZH, Huang SJ, Zhang XL. Extensive Genetic Diversity and Recombination Events Identified in Goose Circoviruses Circulating in partial areas of Guangdong province, southern China. Poult Sci 2022; 101:101767. [PMID: 35240356 PMCID: PMC8889405 DOI: 10.1016/j.psj.2022.101767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 11/28/2022] Open
|
40
|
Detection of Jingmenviruses in Japan with Evidence of Vertical Transmission in Ticks. Viruses 2021; 13:v13122547. [PMID: 34960816 PMCID: PMC8709010 DOI: 10.3390/v13122547] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/03/2021] [Accepted: 12/17/2021] [Indexed: 12/04/2022] Open
Abstract
Jingmen tick virus (JMTV) and the related jingmenvirus-termed Alongshan virus are recognized as globally emerging human pathogenic tick-borne viruses. These viruses have been detected in various mammals and invertebrates, although their natural transmission cycles remain unknown. JMTV and a novel jingmenvirus, tentatively named Takachi virus (TAKV), have now been identified during a surveillance of tick-borne viruses in Japan. JMTV was shown to be distributed across extensive areas of Japan and has been detected repeatedly at the same collection sites over several years, suggesting viral circulation in natural transmission cycles in these areas. Interestingly, these jingmenviruses may exist in a host tick species-specific manner. Vertical transmission of the virus in host ticks in nature was also indicated by the presence of JMTV in unfed host-questing Amblyomma testudinarium larvae. Further epidemiological surveillance and etiological studies are necessary to assess the status and risk of jingmenvirus infection in Japan.
Collapse
|
41
|
Xu L, Guo M, Hu B, Zhou H, Yang W, Hui L, Huang R, Zhan J, Shi W, Wu Y. Tick virome diversity in Hubei Province, China, and the influence of host ecology. Virus Evol 2021; 7:veab089. [PMID: 34804590 PMCID: PMC8599308 DOI: 10.1093/ve/veab089] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/14/2021] [Accepted: 11/02/2021] [Indexed: 12/16/2022] Open
Abstract
Ticks are important vector hosts of pathogens which cause human and animal
diseases worldwide. Diverse viruses have been discovered in ticks; however,
little is known about the ecological factors that affect the tick virome
composition and evolution. Herein, we employed RNA sequencing to study the
virome diversity of the Haemaphysalis longicornis and
Rhipicephalus microplus ticks sampled in Hubei Province in
China. Twelve RNA viruses with complete genomes were identified, which belonged
to six viral families: Flaviviridae, Matonaviridae, Peribunyaviridae,
Nairoviridae, Phenuiviridae, and Rhabdoviridae.
These viruses showed great diversity in their genome organization and evolution,
four of which were proposed to be novel species. The virome diversity and
abundance of R. microplus ticks fed on cattle were evidently
high. Further ecological analyses suggested that host species and feeding status
may be key factors affecting the tick virome structure. This study described a
number of novel viral species and variants from ticks and, more importantly,
provided insights into the ecological factors shaping the virome structures of
ticks, although it clearly warrants further investigation.
Collapse
Affiliation(s)
- Lin Xu
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271016, China
| | - Moujian Guo
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Bing Hu
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Hong Zhou
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271000, China
| | - Wei Yang
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Lixia Hui
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Rui Huang
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Jianbo Zhan
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Weifeng Shi
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271016, China
| | - Ying Wu
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
42
|
Shao JW, Guo LY, Yuan YX, Ma J, Chen JM, Liu Q. A Novel Subtype of Bovine Hepacivirus Identified in Ticks Reveals the Genetic Diversity and Evolution of Bovine Hepacivirus. Viruses 2021; 13:v13112206. [PMID: 34835012 PMCID: PMC8623979 DOI: 10.3390/v13112206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 12/15/2022] Open
Abstract
Hepaciviruses represent a group of viruses that pose a significant threat to the health of humans and animals. New members of the genus Hepacivirus in the family Flaviviridae have recently been identified in a wide variety of host species worldwide. Similar to the Hepatitis C virus (HCV), bovine hepacivirus (BovHepV) is hepatotropic and causes acute or persistent infections in cattle. BovHepVs are distributed worldwide and classified into two genotypes with seven subtypes in genotype 1. In this study, three BovHepV strains were identified in the samples of ticks sucking blood on cattle in the Guangdong province of China, through unbiased high-throughput sequencing. Genetic analysis revealed the polyprotein-coding gene of these viral sequences herein shared 67.7–84.8% nt identity and 76.1–95.6% aa identity with other BovHepVs identified worldwide. As per the demarcation criteria adopted for the genotyping and subtyping of HCV, these three BovHepV strains belonged to a novel subtype within the genotype 1. Additionally, purifying selection was the dominant evolutionary pressure acting on the genomes of BovHepV, and genetic recombination was not common among BovHepVs. These results expand the knowledge about the genetic diversity and evolution of BovHepV distributed globally, and also indicate genetically divergent BovHepV strains were co-circulating in cattle populations in China.
Collapse
|
43
|
Wang J, Li C, Qiu R, Li X, Zhao J, Bai J, Chen Y, Li S. Complete genome sequence of a novel mitovirus from the phytopathogenic fungus Fusarium oxysporum. Arch Virol 2021; 166:3211-3216. [PMID: 34495411 DOI: 10.1007/s00705-021-05210-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/02/2021] [Indexed: 11/26/2022]
Abstract
Fusarium oxysporum is a cosmopolitan plant pathogen that causes fusarium wilt and fusarium root rot in many economically important crops. There is still limited information about mycoviruses that infect F. oxysporum. Here, a novel mitovirus tentatively named "Fusarium oxysporum mitovirus 1" (FoMV1) was identified in F. oxysporum strain B2-10. The genome of FoMV1 is 2,453 nt in length with a predicted AU content of 71.6% and contains one large open reading frame (ORF) using the fungal mitochondrial genetic code. The ORF putatively encodes an RNA-dependent RNA polymerase (RdRp) of 723 aa with a molecular mass of 84.98 kDa. The RdRp domain of FoMV1 shares 29.01% to 68.43% sequence identity with the members of the family Mitoviridae. Phylogenetic analysis further suggested that FoMV1 is a new member of a distinct species in the genus Mitovirus.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory for Green Preservation and Control of Tobacco Diseases and Pest in Huanghuai Growing Area, Institute of Tobacco, Henan Academy of Agricultural Sciences, No. 116, Garden road, Jingshui District, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Chengjun Li
- Key Laboratory for Green Preservation and Control of Tobacco Diseases and Pest in Huanghuai Growing Area, Institute of Tobacco, Henan Academy of Agricultural Sciences, No. 116, Garden road, Jingshui District, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Rui Qiu
- Key Laboratory for Green Preservation and Control of Tobacco Diseases and Pest in Huanghuai Growing Area, Institute of Tobacco, Henan Academy of Agricultural Sciences, No. 116, Garden road, Jingshui District, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Xiaojie Li
- Key Laboratory for Green Preservation and Control of Tobacco Diseases and Pest in Huanghuai Growing Area, Institute of Tobacco, Henan Academy of Agricultural Sciences, No. 116, Garden road, Jingshui District, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Jun Zhao
- Key Laboratory for Green Preservation and Control of Tobacco Diseases and Pest in Huanghuai Growing Area, Institute of Tobacco, Henan Academy of Agricultural Sciences, No. 116, Garden road, Jingshui District, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Jingke Bai
- Key Laboratory for Green Preservation and Control of Tobacco Diseases and Pest in Huanghuai Growing Area, Institute of Tobacco, Henan Academy of Agricultural Sciences, No. 116, Garden road, Jingshui District, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Yuguo Chen
- Key Laboratory for Green Preservation and Control of Tobacco Diseases and Pest in Huanghuai Growing Area, Institute of Tobacco, Henan Academy of Agricultural Sciences, No. 116, Garden road, Jingshui District, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Shujun Li
- Key Laboratory for Green Preservation and Control of Tobacco Diseases and Pest in Huanghuai Growing Area, Institute of Tobacco, Henan Academy of Agricultural Sciences, No. 116, Garden road, Jingshui District, Zhengzhou, 450002, Henan Province, People's Republic of China.
| |
Collapse
|
44
|
Correa AMS, Howard-Varona C, Coy SR, Buchan A, Sullivan MB, Weitz JS. Revisiting the rules of life for viruses of microorganisms. Nat Rev Microbiol 2021; 19:501-513. [PMID: 33762712 DOI: 10.1038/s41579-021-00530-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 02/01/2023]
Abstract
Viruses that infect microbial hosts have traditionally been studied in laboratory settings with a focus on either obligate lysis or persistent lysogeny. In the environment, these infection archetypes are part of a continuum that spans antagonistic to beneficial modes. In this Review, we advance a framework to accommodate the context-dependent nature of virus-microorganism interactions in ecological communities by synthesizing knowledge from decades of virology research, eco-evolutionary theory and recent technological advances. We discuss that nuanced outcomes, rather than the extremes of the continuum, are particularly likely in natural communities given variability in abiotic factors, the availability of suboptimal hosts and the relevance of multitrophic partnerships. We revisit the 'rules of life' in terms of how long-term infections shape the fate of viruses and microbial cells, populations and ecosystems.
Collapse
Affiliation(s)
| | | | - Samantha R Coy
- BioSciences Department, Rice University, Houston, TX, USA
| | - Alison Buchan
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA.
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, USA. .,Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, USA.
| | - Joshua S Weitz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA. .,School of Physics, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
45
|
Kholodilov IS, Belova OA, Morozkin ES, Litov AG, Ivannikova AY, Makenov MT, Shchetinin AM, Aibulatov SV, Bazarova GK, Bell-Sakyi L, Bespyatova LA, Bugmyrin SV, Chernetsov N, Chernokhaeva LL, Gmyl LV, Khaisarova AN, Khalin AV, Klimentov AS, Kovalchuk IV, Luchinina SV, Medvedev SG, Nafeev AA, Oorzhak ND, Panjukova EV, Polienko AE, Purmak KA, Romanenko EN, Rozhdestvenskiy EN, Saryglar AA, Shamsutdinov AF, Solomashchenko NI, Trifonov VA, Volchev EG, Vovkotech PG, Yakovlev AS, Zhurenkova OB, Gushchin VA, Karan LS, Karganova GG. Geographical and Tick-Dependent Distribution of Flavi-Like Alongshan and Yanggou Tick Viruses in Russia. Viruses 2021; 13:458. [PMID: 33799742 PMCID: PMC7998622 DOI: 10.3390/v13030458] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 02/03/2023] Open
Abstract
The genus Flavivirus includes related, unclassified segmented flavi-like viruses, two segments of which have homology with flavivirus RNA-dependent RNA polymerase NS5 and RNA helicase-protease NS3. This group includes such viruses as Jingmen tick virus, Alongshan virus, Yanggou tick virus and others. We detected the Yanggou tick virus in Dermacentor nuttalli and Dermacentor marginatus ticks in two neighbouring regions of Russia. The virus prevalence ranged from 0.5% to 8.0%. We detected RNA of the Alongshan virus in 44 individuals or pools of various tick species in eight regions of Russia. The virus prevalence ranged from 0.6% to 7.8%. We demonstrated the successful replication of the Yanggou tick virus and Alongshan virus in IRE/CTVM19 and HAE/CTVM8 tick cell lines without a cytopathic effect. According to the phylogenetic analysis, we divided the Alongshan virus into two groups: an Ixodes persulcatus group and an Ixodes ricinus group. In addition, the I. persulcatus group can be divided into European and Asian subgroups. We found amino acid signatures specific to the I. ricinus and I. persulcatus groups and also distinguished between the European and Asian subgroups of the I. persulcatus group.
Collapse
Affiliation(s)
- Ivan S. Kholodilov
- Laboratory of Biology of Arboviruses, “Chumakov Institute of Poliomyelitis and Viral Encephalitides” FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (I.S.K.); (O.A.B.); (A.G.L.); (A.Y.I.); (L.L.C.); (L.V.G.); (A.E.P.); (A.S.Y.)
| | - Oxana A. Belova
- Laboratory of Biology of Arboviruses, “Chumakov Institute of Poliomyelitis and Viral Encephalitides” FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (I.S.K.); (O.A.B.); (A.G.L.); (A.Y.I.); (L.L.C.); (L.V.G.); (A.E.P.); (A.S.Y.)
| | - Evgeny S. Morozkin
- Department of Molecular Diagnostics and Epidemiology, Central Research Institute of Epidemiology, 111123 Moscow, Russia; (E.S.M.); (M.T.M.); (O.B.Z.); (L.S.K.)
| | - Alexander G. Litov
- Laboratory of Biology of Arboviruses, “Chumakov Institute of Poliomyelitis and Viral Encephalitides” FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (I.S.K.); (O.A.B.); (A.G.L.); (A.Y.I.); (L.L.C.); (L.V.G.); (A.E.P.); (A.S.Y.)
| | - Anna Y. Ivannikova
- Laboratory of Biology of Arboviruses, “Chumakov Institute of Poliomyelitis and Viral Encephalitides” FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (I.S.K.); (O.A.B.); (A.G.L.); (A.Y.I.); (L.L.C.); (L.V.G.); (A.E.P.); (A.S.Y.)
| | - Marat T. Makenov
- Department of Molecular Diagnostics and Epidemiology, Central Research Institute of Epidemiology, 111123 Moscow, Russia; (E.S.M.); (M.T.M.); (O.B.Z.); (L.S.K.)
| | - Alexey M. Shchetinin
- Pathogenic Microorganisms Variability Laboratory, Gamaleya Federal Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (A.M.S.); (V.A.G.)
| | - Sergey V. Aibulatov
- Laboratory of Parasitic Arthropods, Zoological Institute, Russian Academy of Sciences, 199034 St. Petersburg, Russia; (S.V.A.); (A.V.K.); (S.G.M.)
| | - Galina K. Bazarova
- Laboratory of Bacteriology, Altai Antiplague Station of Rospotrebnadzor, 649000 Gorno-Altaisk, Russia;
| | - Lesley Bell-Sakyi
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK;
| | - Liubov A. Bespyatova
- Laboratory for Animal and Plant Parasitology, Institute of Biology of Karelian Research Centre, Russian Academy of Sciences (IB KarRC RAS), 185910 Petrozavodsk, Russia; (L.A.B.); (S.V.B.)
| | - Sergey V. Bugmyrin
- Laboratory for Animal and Plant Parasitology, Institute of Biology of Karelian Research Centre, Russian Academy of Sciences (IB KarRC RAS), 185910 Petrozavodsk, Russia; (L.A.B.); (S.V.B.)
| | - Nikita Chernetsov
- Laboratory of Ornithology, Zoological Institute, Russian Academy of Sciences, 199034 St. Petersburg, Russia;
- Department of Vertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Liubov L. Chernokhaeva
- Laboratory of Biology of Arboviruses, “Chumakov Institute of Poliomyelitis and Viral Encephalitides” FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (I.S.K.); (O.A.B.); (A.G.L.); (A.Y.I.); (L.L.C.); (L.V.G.); (A.E.P.); (A.S.Y.)
| | - Larissa V. Gmyl
- Laboratory of Biology of Arboviruses, “Chumakov Institute of Poliomyelitis and Viral Encephalitides” FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (I.S.K.); (O.A.B.); (A.G.L.); (A.Y.I.); (L.L.C.); (L.V.G.); (A.E.P.); (A.S.Y.)
| | - Anna N. Khaisarova
- Center for Hygiene and Epidemiology in the Ulyanovsk Region, 432005 Ulyanovsk, Russia; (A.N.K.); (A.A.N.); (P.G.V.)
| | - Alexei V. Khalin
- Laboratory of Parasitic Arthropods, Zoological Institute, Russian Academy of Sciences, 199034 St. Petersburg, Russia; (S.V.A.); (A.V.K.); (S.G.M.)
| | - Alexander S. Klimentov
- Laboratory of Biochemistry, “Chumakov Institute of Poliomyelitis and Viral Encephalitides” FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia;
- Laboratory of Biology and Indication of Arboviruses, Department Ivanovsky Institute of Virology, Gamaleya Federal Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Irina V. Kovalchuk
- Office of Rospotrebnadzor in the Stavropol Territory, 355008 Stavropol, Russia; (I.V.K.); (N.I.S.)
- Stavropol State Medical University, 355017 Stavropol, Russia
| | | | - Sergey G. Medvedev
- Laboratory of Parasitic Arthropods, Zoological Institute, Russian Academy of Sciences, 199034 St. Petersburg, Russia; (S.V.A.); (A.V.K.); (S.G.M.)
| | - Alexander A. Nafeev
- Center for Hygiene and Epidemiology in the Ulyanovsk Region, 432005 Ulyanovsk, Russia; (A.N.K.); (A.A.N.); (P.G.V.)
| | | | - Elena V. Panjukova
- Institute of Biology, Komi Science Center, Ural Branch of Russian Academy of Sciences, 167982 Syktyvkar, Russia;
| | - Alexandra E. Polienko
- Laboratory of Biology of Arboviruses, “Chumakov Institute of Poliomyelitis and Viral Encephalitides” FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (I.S.K.); (O.A.B.); (A.G.L.); (A.Y.I.); (L.L.C.); (L.V.G.); (A.E.P.); (A.S.Y.)
| | - Kristina A. Purmak
- FBIH “Center for Hygiene and Epidemiology in the Stavropol kray”, 355008 Stavropol, Russia; (K.A.P.); (E.N.R.)
| | - Evgeniya N. Romanenko
- FBIH “Center for Hygiene and Epidemiology in the Stavropol kray”, 355008 Stavropol, Russia; (K.A.P.); (E.N.R.)
| | | | - Anna A. Saryglar
- Infectious Disease Hospital, 667003 Kyzyl, Russia; (N.D.O.); (A.A.S.)
| | - Anton F. Shamsutdinov
- Kazan Scientific Research Institute of Epidemiology and Microbiology of Rospotrebnadzor, 420015 Kazan, Russia; (A.F.S.); (V.A.T.)
| | - Nataliya I. Solomashchenko
- Office of Rospotrebnadzor in the Stavropol Territory, 355008 Stavropol, Russia; (I.V.K.); (N.I.S.)
- FBIH “Center for Hygiene and Epidemiology in the Stavropol kray”, 355008 Stavropol, Russia; (K.A.P.); (E.N.R.)
| | - Vladimir A. Trifonov
- Kazan Scientific Research Institute of Epidemiology and Microbiology of Rospotrebnadzor, 420015 Kazan, Russia; (A.F.S.); (V.A.T.)
- Kazan State Medical Academy—Branch Campus of the FSBEI FPE «Russian Medical Academy of Continuous Postgraduate Education» of the Ministry of Healthcare of the Russian Federation, 420012 Kazan, Russia
| | - Evgenii G. Volchev
- Institute of Living Systems Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia;
| | - Pavel G. Vovkotech
- Center for Hygiene and Epidemiology in the Ulyanovsk Region, 432005 Ulyanovsk, Russia; (A.N.K.); (A.A.N.); (P.G.V.)
| | - Alexander S. Yakovlev
- Laboratory of Biology of Arboviruses, “Chumakov Institute of Poliomyelitis and Viral Encephalitides” FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (I.S.K.); (O.A.B.); (A.G.L.); (A.Y.I.); (L.L.C.); (L.V.G.); (A.E.P.); (A.S.Y.)
| | - Olga B. Zhurenkova
- Department of Molecular Diagnostics and Epidemiology, Central Research Institute of Epidemiology, 111123 Moscow, Russia; (E.S.M.); (M.T.M.); (O.B.Z.); (L.S.K.)
| | - Vladimir A. Gushchin
- Pathogenic Microorganisms Variability Laboratory, Gamaleya Federal Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (A.M.S.); (V.A.G.)
- Faculty of Biology, Lomonosov MSU, 119991 Moscow, Russia
| | - Lyudmila S. Karan
- Department of Molecular Diagnostics and Epidemiology, Central Research Institute of Epidemiology, 111123 Moscow, Russia; (E.S.M.); (M.T.M.); (O.B.Z.); (L.S.K.)
| | - Galina G. Karganova
- Laboratory of Biology of Arboviruses, “Chumakov Institute of Poliomyelitis and Viral Encephalitides” FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (I.S.K.); (O.A.B.); (A.G.L.); (A.Y.I.); (L.L.C.); (L.V.G.); (A.E.P.); (A.S.Y.)
- Institute for Translational Medicine and Biotechnology, Sechenov University, 119146 Moscow, Russia
| |
Collapse
|