1
|
Ibrahim A, Sasaki N, Schoelz JE, Nelson RS. Tobacco Mosaic Virus Movement: From Capsid Disassembly to Transport Through Plasmodesmata. Viruses 2025; 17:214. [PMID: 40006969 PMCID: PMC11861069 DOI: 10.3390/v17020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Determining mechanisms to establish an initial infection and form intracellular complexes for accumulation and movement of RNA plant viruses are important areas of study in plant virology. The impact of these findings on the basic understanding of plant molecular virology and its application in agriculture is significant. Studies with tobacco mosaic virus (TMV) and related tobamoviruses often provide important foundational knowledge for studies involving other viruses. Topics discussed here include capsid disassembly, establishment of a virus replication complex (VRC), and transport of the VRCs or virus components within the cell to locations at the plasmodesmata for intercellular virus RNA (vRNA) movement. Seminal findings with TMV and related tobamoviruses include detecting co-translational disassembly of the vRNA from the virus rod, full sequencing of genomic vRNA and production of infectious transcript for genetic studies determining virus components necessary for intercellular movement, and biochemical and cell biological studies determining the host factors, protein and membrane, needed for replication and movement. This review highlights many of the studies through the years on TMV and selected tobamoviruses that have impacted not only our understanding of tobamovirus accumulation and movement but also that of other plant viruses.
Collapse
Affiliation(s)
- Amr Ibrahim
- Department of Nucleic Acid and Protein Structure, Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Nobumitsu Sasaki
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu 183-8509, Japan;
| | - James E. Schoelz
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA;
| | | |
Collapse
|
2
|
Zheng X, Li Y, Liu Y. Plant Immunity against Tobamoviruses. Viruses 2024; 16:530. [PMID: 38675873 PMCID: PMC11054417 DOI: 10.3390/v16040530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Tobamoviruses are a group of plant viruses that pose a significant threat to agricultural crops worldwide. In this review, we focus on plant immunity against tobamoviruses, including pattern-triggered immunity (PTI), effector-triggered immunity (ETI), the RNA-targeting pathway, phytohormones, reactive oxygen species (ROS), and autophagy. Further, we highlight the genetic resources for resistance against tobamoviruses in plant breeding and discuss future directions on plant protection against tobamoviruses.
Collapse
Affiliation(s)
- Xiyin Zheng
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yiqing Li
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
3
|
Słupianek A, Myśkow E, Kasprowicz-Maluśki A, Dolzblasz A, Żytkowiak R, Turzańska M, Sokołowska K. Seasonal dynamics of cell-to-cell transport in angiosperm wood. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1331-1346. [PMID: 37996075 PMCID: PMC10901208 DOI: 10.1093/jxb/erad469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023]
Abstract
This study describes the seasonal changes in cell-to-cell transport in three selected angiosperm tree species, Acer pseudoplatanus (maple), Fraxinus excelsior (ash), and Populus tremula × tremuloides (poplar), with an emphasis on the living wood component, xylem parenchyma cells (XPCs). We performed anatomical studies, dye loading through the vascular system, measurements of non-structural carbohydrate content, immunocytochemistry, inhibitory assays and quantitative real-time PCR to analyse the transport mechanisms and seasonal variations in wood. The abundance of membrane dye in wood varied seasonally along with seasonally changing tree phenology, cambial activity, and non-structural carbohydrate content. Moreover, dyes internalized in vessel-associated cells and 'trapped' in the endomembrane system are transported farther between other XPCs via plasmodesmata. Finally, various transport mechanisms based on clathrin-mediated and clathrin-independent endocytosis, and membrane transporters, operate in wood, and their involvement is species and/or season dependent. Our study highlights the importance of XPCs in seasonally changing cell-to-cell transport in both ring-porous (ash) and diffuse-porous (maple, poplar) tree species, and demonstrates the involvement of both endocytosis and plasmodesmata in intercellular communication in angiosperm wood.
Collapse
Affiliation(s)
- Aleksandra Słupianek
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
| | - Elżbieta Myśkow
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
| | - Anna Kasprowicz-Maluśki
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań 61-614, Poland
| | - Alicja Dolzblasz
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
| | - Roma Żytkowiak
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Magdalena Turzańska
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
| | - Katarzyna Sokołowska
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
| |
Collapse
|
4
|
Spiegelman Z, Dinesh-Kumar SP. Breaking Boundaries: The Perpetual Interplay Between Tobamoviruses and Plant Immunity. Annu Rev Virol 2023; 10:455-476. [PMID: 37254097 DOI: 10.1146/annurev-virology-111821-122847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Plant viruses of the genus Tobamovirus cause significant economic losses in various crops. The emergence of new tobamoviruses such as the tomato brown rugose fruit virus (ToBRFV) poses a major threat to global agriculture. Upon infection, plants mount a complex immune response to restrict virus replication and spread, involving a multilayered defense system that includes defense hormones, RNA silencing, and immune receptors. To counter these defenses, tobamoviruses have evolved various strategies to evade or suppress the different immune pathways. Understanding the interactions between tobamoviruses and the plant immune pathways is crucial for the development of effective control measures and genetic resistance to these viruses. In this review, we discuss past and current knowledge of the intricate relationship between tobamoviruses and host immunity. We use this knowledge to understand the emergence of ToBRFV and discuss potential approaches for the development of new resistance strategies to cope with emerging tobamoviruses.
Collapse
Affiliation(s)
- Ziv Spiegelman
- Department of Plant Pathology and Weed Research, Agricultural Research Organization-The Volcani Institute, Rishon LeZion, Israel;
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and Genome Center, College of Biological Sciences, University of California, Davis, California, USA
| |
Collapse
|
5
|
Huang C, Sede AR, Elvira-González L, Yan Y, Rodriguez ME, Mutterer J, Boutant E, Shan L, Heinlein M. dsRNA-induced immunity targets plasmodesmata and is suppressed by viral movement proteins. THE PLANT CELL 2023; 35:3845-3869. [PMID: 37378592 PMCID: PMC10533371 DOI: 10.1093/plcell/koad176] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/24/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023]
Abstract
Emerging evidence indicates that in addition to its well-recognized functions in antiviral RNA silencing, dsRNA elicits pattern-triggered immunity (PTI), likely contributing to plant resistance against virus infections. However, compared to bacterial and fungal elicitor-mediated PTI, the mode-of-action and signaling pathway of dsRNA-induced defense remain poorly characterized. Here, using multicolor in vivo imaging, analysis of GFP mobility, callose staining, and plasmodesmal marker lines in Arabidopsis thaliana and Nicotiana benthamiana, we show that dsRNA-induced PTI restricts the progression of virus infection by triggering callose deposition at plasmodesmata, thereby likely limiting the macromolecular transport through these cell-to-cell communication channels. The plasma membrane-resident SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE 1, the BOTRYTIS INDUCED KINASE1/AVRPPHB SUSCEPTIBLE1-LIKE KINASE1 kinase module, PLASMODESMATA-LOCATED PROTEINs 1/2/3, as well as CALMODULIN-LIKE 41 and Ca2+ signals are involved in the dsRNA-induced signaling leading to callose deposition at plasmodesmata and antiviral defense. Unlike the classical bacterial elicitor flagellin, dsRNA does not trigger a detectable reactive oxygen species (ROS) burst, substantiating the idea that different microbial patterns trigger partially shared immune signaling frameworks with distinct features. Likely as a counter strategy, viral movement proteins from different viruses suppress the dsRNA-induced host response leading to callose deposition to achieve infection. Thus, our data support a model in which plant immune signaling constrains virus movement by inducing callose deposition at plasmodesmata and reveals how viruses counteract this layer of immunity.
Collapse
Affiliation(s)
- Caiping Huang
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Ana Rocío Sede
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Laura Elvira-González
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Yan Yan
- Department of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Miguel Eduardo Rodriguez
- Department of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Jérôme Mutterer
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Emmanuel Boutant
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Libo Shan
- Department of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Manfred Heinlein
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
6
|
Ham BK, Wang X, Toscano-Morales R, Lin J, Lucas WJ. Plasmodesmal endoplasmic reticulum proteins regulate intercellular trafficking of cucumber mosaic virus in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4401-4414. [PMID: 37210666 PMCID: PMC10838158 DOI: 10.1093/jxb/erad190] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Plasmodesmata (PD) are plasma membrane-lined cytoplasmic nanochannels that mediate cell-to-cell communication across the cell wall. A range of proteins are embedded in the PD plasma membrane and endoplasmic reticulum (ER), and function in regulating PD-mediated symplasmic trafficking. However, knowledge of the nature and function of the ER-embedded proteins in the intercellular movement of non-cell-autonomous proteins is limited. Here, we report the functional characterization of two ER luminal proteins, AtBiP1/2, and two ER integral membrane proteins, AtERdj2A/B, which are located within the PD. These PD proteins were identified as interacting proteins with cucumber mosaic virus (CMV) movement protein (MP) in co-immunoprecipitation studies using an Arabidopsis-derived plasmodesmal-enriched cell wall protein preparation (PECP). The AtBiP1/2 PD location was confirmed by TEM-based immunolocalization, and their AtBiP1/2 signal peptides (SPs) function in PD targeting. In vitro/in vivo pull-down assays revealed the association between AtBiP1/2 and CMV MP, mediated by AtERdj2A, through the formation of an AtBiP1/2-AtERdj2-CMV MP complex within PD. The role of this complex in CMV infection was established, as systemic infection was retarded in bip1/bip2w and erdj2b mutants. Our findings provide a model for a mechanism by which the CMV MP mediates cell-to-cell trafficking of its viral ribonucleoprotein complex.
Collapse
Affiliation(s)
- Byung-Kook Ham
- Global Institute for Food Security (GIFS), University of Saskatchewan, 421 Downey Rd, Saskatoon, SK S7N 4L8, Canada
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Xiaohua Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Roberto Toscano-Morales
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Jinxing Lin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - William J Lucas
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
7
|
Hak H, Raanan H, Schwarz S, Sherman Y, Dinesh‐Kumar SP, Spiegelman Z. Activation of Tm-2 2 resistance is mediated by a conserved cysteine essential for tobacco mosaic virus movement. MOLECULAR PLANT PATHOLOGY 2023; 24:838-848. [PMID: 37086003 PMCID: PMC10346382 DOI: 10.1111/mpp.13318] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 05/03/2023]
Abstract
The tomato Tm-22 gene was considered to be one of the most durable resistance genes in agriculture, protecting against viruses of the Tobamovirus genus, such as tomato mosaic virus (ToMV) and tobacco mosaic virus (TMV). However, an emerging tobamovirus, tomato brown rugose fruit virus (ToBRFV), has overcome Tm-22 , damaging tomato production worldwide. Tm-22 encodes a nucleotide-binding leucine-rich repeat (NLR) class immune receptor that recognizes its effector, the tobamovirus movement protein (MP). Previously, we found that ToBRFV MP (MPToBRFV ) enabled the virus to overcome Tm-22 -mediated resistance. Yet, it was unknown how Tm-22 remained durable against other tobamoviruses, such as TMV and ToMV, for over 60 years. Here, we show that a conserved cysteine (C68) in the MP of TMV (MPTMV ) plays a dual role in Tm-22 activation and viral movement. Substitution of MPToBRFV amino acid H67 with the corresponding amino acid in MPTMV (C68) activated Tm-22 -mediated resistance. However, replacement of C68 in TMV and ToMV disabled the infectivity of both viruses. Phylogenetic and structural prediction analysis revealed that C68 is conserved among all Solanaceae-infecting tobamoviruses except ToBRFV and localizes to a predicted jelly-roll fold common to various MPs. Cell-to-cell and subcellular movement analysis showed that C68 is required for the movement of TMV by regulating the MP interaction with the endoplasmic reticulum and targeting it to plasmodesmata. The dual role of C68 in viral movement and Tm-22 immune activation could explain how TMV was unable to overcome this resistance for such a long period.
Collapse
Affiliation(s)
- Hagit Hak
- Department of Plant Pathology and Weed Research, Agricultural Research OrganizationThe Volcani InstituteRishon LeZionIsrael
| | - Hagai Raanan
- Department of Plant Pathology and Weed Research, Agricultural Research OrganizationThe Volcani InstituteRishon LeZionIsrael
- Gilat Research CenterAgricultural Research OrganizationNegevIsrael
| | - Shahar Schwarz
- Department of Plant Pathology and Weed Research, Agricultural Research OrganizationThe Volcani InstituteRishon LeZionIsrael
| | - Yifat Sherman
- Department of Plant Pathology and Weed Research, Agricultural Research OrganizationThe Volcani InstituteRishon LeZionIsrael
- The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Savithramma P. Dinesh‐Kumar
- Department of Plant Biology and Genome CenterCollege of Biological Sciences, University of CaliforniaDavisCaliforniaUSA
| | - Ziv Spiegelman
- Department of Plant Pathology and Weed Research, Agricultural Research OrganizationThe Volcani InstituteRishon LeZionIsrael
| |
Collapse
|
8
|
Ershova N, Kamarova K, Sheshukova E, Antimonova A, Komarova T. A novel cellular factor of Nicotiana benthamiana susceptibility to tobamovirus infection. FRONTIERS IN PLANT SCIENCE 2023; 14:1224958. [PMID: 37534286 PMCID: PMC10390835 DOI: 10.3389/fpls.2023.1224958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023]
Abstract
Viral infection, which entails synthesis of viral proteins and active reproduction of the viral genome, effects significant changes in the functions of many intracellular systems in plants. Along with these processes, a virus has to suppress cellular defense to create favorable conditions for its successful systemic spread in a plant. The virus exploits various cellular factors of a permissive host modulating its metabolism as well as local and systemic transport of macromolecules and photoassimilates. The Nicotiana benthamiana stress-induced gene encoding Kunitz peptidase inhibitor-like protein (KPILP) has recently been shown to be involved in chloroplast retrograde signaling regulation and stimulation of intercellular transport of macromolecules. In this paper we demonstrate the key role of KPILP in the development of tobamovius infection. Systemic infection of N. benthamiana plants with tobacco mosaic virus (TMV) or the closely related crucifer-infecting tobamovirus (crTMV) induces a drastic increase in KPILP mRNA accumulation. KPILP knockdown significantly reduces the efficiency of TMV and crTMV intercellular transport and reproduction. Plants with KPILP silencing become partially resistant to tobamovirus infection. Therefore, KPILP could be regarded as a novel proviral factor in the development of TMV and crTMV infection in N. benthamiana plants.
Collapse
Affiliation(s)
- Natalia Ershova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Kamila Kamarova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Sheshukova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Alexandra Antimonova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana Komarova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
9
|
Gupta R, Leibman-Markus M, Weiss D, Spiegelman Z, Bar M. Tobamovirus infection aggravates gray mold disease caused by Botrytis cinerea by manipulating the salicylic acid pathway in tomato. FRONTIERS IN PLANT SCIENCE 2023; 14:1196456. [PMID: 37377809 PMCID: PMC10291333 DOI: 10.3389/fpls.2023.1196456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023]
Abstract
Botrytis cinerea is the causative agent of gray mold disease, and infects more than 1400 plant species, including important crop plants. In tomato, B. cinerea causes severe damage in greenhouses and post-harvest storage and transport. Plant viruses of the Tobamovirus genus cause significant damage to various crop species. In recent years, the tobamovirus tomato brown rugose fruit virus (ToBRFV) has significantly affected the global tomato industry. Most studies of plant-microbe interactions focus on the interaction between the plant host and a single pathogen, however, in agricultural or natural environments, plants are routinely exposed to multiple pathogens. Here, we examined how preceding tobamovirus infection affects the response of tomato to subsequent infection by B. cinerea. We found that infection with the tobamoviruses tomato mosaic virus (ToMV) or ToBRFV resulted in increased susceptibility to B. cinerea. Analysis of the immune response of tobamovirus-infected plants revealed hyper-accumulation of endogenous salicylic acid (SA), upregulation of SA-responsive transcripts, and activation of SA-mediated immunity. Deficiency in SA biosynthesis decreased tobamovirus-mediated susceptibility to B. cinerea, while exogenous application of SA enhanced B. cinerea symptoms. These results suggest that tobamovirus-mediated accumulation of SA increases the plants' susceptibility to B. cinerea, and provide evidence for a new risk caused by tobamovirus infection in agriculture.
Collapse
Affiliation(s)
| | | | | | - Ziv Spiegelman
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
10
|
Bernardini C, Turner D, Wang C, Welker S, Achor D, Artiga YA, Turgeon R, Levy A. Candidatus Liberibacter asiaticus accumulation in the phloem inhibits callose and reactive oxygen species. PLANT PHYSIOLOGY 2022; 190:1090-1094. [PMID: 35880843 PMCID: PMC9516723 DOI: 10.1093/plphys/kiac346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
CLas inhibits callose deposition in the sieve pores and the accumulation of reactive oxygen species to favor its cell-to-cell movement.
Collapse
Affiliation(s)
- Chiara Bernardini
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida 33850, USA
| | - Donielle Turner
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida 33850, USA
| | - Chunxia Wang
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida 33850, USA
| | - Stacy Welker
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida 33850, USA
| | - Diann Achor
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida 33850, USA
| | - Yosvanis Acanda Artiga
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida 33850, USA
| | - Robert Turgeon
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
11
|
Integrative Physiological and Transcriptomic Analysis Reveals the Transition Mechanism of Sugar Phloem Unloading Route in Camellia oleifera Fruit. Int J Mol Sci 2022; 23:ijms23094590. [PMID: 35562980 PMCID: PMC9102078 DOI: 10.3390/ijms23094590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
Sucrose phloem unloading plays a vital role in photoassimilate distribution and storage in sink organs such as fruits and seeds. In most plants, the phloem unloading route was reported to shift between an apoplasmic and a symplasmic pattern with fruit development. However, the molecular transition mechanisms of the phloem unloading pathway still remain largely unknown. In this study, we applied RNA sequencing to profile the specific gene expression patterns for sucrose unloading in C. oleifera fruits in the apo- and symplasmic pathways that were discerned by CF fluoresce labelling. Several key structural genes were identified that participate in phloem unloading, such as PDBG11, PDBG14, SUT8, CWIN4, and CALS10. In particular, the key genes controlling the process were involved in callose metabolism, which was confirmed by callose staining. Based on the co-expression network analysis with key structural genes, a number of transcription factors belonging to the MYB, C2C2, NAC, WRKY, and AP2/ERF families were identified to be candidate regulators for the operation and transition of phloem unloading. KEGG enrichment analysis showed that some important metabolism pathways such as plant hormone metabolism, starch, and sucrose metabolism altered with the change of the sugar unloading pattern. Our study provides innovative insights into the different mechanisms responsible for apo- and symplasmic phloem unloading in oil tea fruit and represents an important step towards the omics delineation of sucrose phloem unloading transition in crops.
Collapse
|
12
|
Reagan BC, Dunlap JR, Burch-Smith TM. Focused Ion Beam-Scanning Electron Microscopy for Investigating Plasmodesmal Densities. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2457:109-123. [PMID: 35349135 DOI: 10.1007/978-1-0716-2132-5_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Plasmodesmata (PD) facilitate the exchange of nutrients and signaling molecules between neighboring plant cells, and they are therefore essential for proper growth and development. PD have been studied extensively in efforts to elucidate the ultrastructure of individual PD nanopores and the distribution of PD in a variety of cell walls. These studies often involved the use of serial ultrathin sections and manual quantification of PD by transmission electron microscopy (TEM). In recent years, a variety of techniques that offer more amenable approaches for quantifying PD distribution have been reported. Here, we describe the quantification of PD densities using the serial scanning electron microscopy technique called focused ion beam-scanning electron microscopy (FIB-SEM). For this, resin-embedded samples prepared by standard TEM methods undergo successive rounds of imaging by SEM interspersed with milling of the sample surface by a focused beam of gallium ions to reveal a new surface. In this way, the details of the sample are sequentially revealed and imaged. Over the course of a few hours, repetitive milling and imaging facilitates the automated collection of nanometer-resolution data of several μm of sample depth. FIB-SEM can be targeted to interrogate specific cell walls and cell wall junctions, and the subsequent three-dimensional renderings of the data can be used to visualize the ultrastructural details of the sample. PD densities can then be rapidly quantified by calculating the number of PD per μm2 of cell wall observed in the renderings.
Collapse
Affiliation(s)
- Brandon C Reagan
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA.,Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - John R Dunlap
- The Joint Institute for Advanced Materials, University of Tennessee, Knoxville, TN, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA. .,Donald Danforth Plant Science Center, Saint Louis, MO, USA.
| |
Collapse
|
13
|
Kang BH, Anderson CT, Arimura SI, Bayer E, Bezanilla M, Botella MA, Brandizzi F, Burch-Smith TM, Chapman KD, Dünser K, Gu Y, Jaillais Y, Kirchhoff H, Otegui MS, Rosado A, Tang Y, Kleine-Vehn J, Wang P, Zolman BK. A glossary of plant cell structures: Current insights and future questions. THE PLANT CELL 2022; 34:10-52. [PMID: 34633455 PMCID: PMC8846186 DOI: 10.1093/plcell/koab247] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/29/2021] [Indexed: 05/03/2023]
Abstract
In this glossary of plant cell structures, we asked experts to summarize a present-day view of plant organelles and structures, including a discussion of outstanding questions. In the following short reviews, the authors discuss the complexities of the plant cell endomembrane system, exciting connections between organelles, novel insights into peroxisome structure and function, dynamics of mitochondria, and the mysteries that need to be unlocked from the plant cell wall. These discussions are focused through a lens of new microscopy techniques. Advanced imaging has uncovered unexpected shapes, dynamics, and intricate membrane formations. With a continued focus in the next decade, these imaging modalities coupled with functional studies are sure to begin to unravel mysteries of the plant cell.
Collapse
Affiliation(s)
- Byung-Ho Kang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Charles T Anderson
- Department of Biology and Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, Pennsylvania 16802 USA
| | - Shin-ichi Arimura
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Emmanuelle Bayer
- Université de Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, Villenave d'Ornon F-33140, France
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Miguel A Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortifruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Málaga 29071, Spain
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan 48824 USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Kent D Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, USA
| | - Kai Dünser
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Yangnan Gu
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin 53706, USA
| | - Abel Rosado
- Department of Botany, University of British Columbia, Vancouver V6T1Z4, Canada
| | - Yu Tang
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Jürgen Kleine-Vehn
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Bethany Karlin Zolman
- Department of Biology, University of Missouri, St. Louis, St. Louis, Missouri 63121, USA
| |
Collapse
|
14
|
Huang C, Heinlein M. Function of Plasmodesmata in the Interaction of Plants with Microbes and Viruses. Methods Mol Biol 2022; 2457:23-54. [PMID: 35349131 DOI: 10.1007/978-1-0716-2132-5_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plasmodesmata (PD) are gated plant cell wall channels that allow the trafficking of molecules between cells and play important roles during plant development and in the orchestration of cellular and systemic signaling responses during interactions of plants with the biotic and abiotic environment. To allow gating, PD are equipped with signaling platforms and enzymes that regulate the size exclusion limit (SEL) of the pore. Plant-interacting microbes and viruses target PD with specific effectors to enhance their virulence and are useful probes to study PD functions.
Collapse
Affiliation(s)
- Caiping Huang
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Manfred Heinlein
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
15
|
Tomkins M, Hughes A, Morris RJ. An update on passive transport in and out of plant cells. PLANT PHYSIOLOGY 2021; 187:1973-1984. [PMID: 35235675 PMCID: PMC8644452 DOI: 10.1093/plphys/kiab406] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/30/2021] [Indexed: 05/09/2023]
Abstract
Transport across membranes is critical for plant survival. Membranes are the interfaces at which plants interact with their environment. The transmission of energy and molecules into cells provides plants with the source material and power to grow, develop, defend, and move. An appreciation of the physical forces that drive transport processes is thus important for understanding the plant growth and development. We focus on the passive transport of molecules, describing the fundamental concepts and demonstrating how different levels of abstraction can lead to different interpretations of the driving forces. We summarize recent developments on quantitative frameworks for describing diffusive and bulk flow transport processes in and out of cells, with a more detailed focus on plasmodesmata, and outline open questions and challenges.
Collapse
Affiliation(s)
- Melissa Tomkins
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, NR4 7UH Norwich, UK
| | - Aoife Hughes
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, NR4 7UH Norwich, UK
| | - Richard J Morris
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, NR4 7UH Norwich, UK
- Author for communication:
| |
Collapse
|
16
|
Kumar G, Dasgupta I. Variability, Functions and Interactions of Plant Virus Movement Proteins: What Do We Know So Far? Microorganisms 2021; 9:microorganisms9040695. [PMID: 33801711 PMCID: PMC8066623 DOI: 10.3390/microorganisms9040695] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Of the various proteins encoded by plant viruses, one of the most interesting is the movement protein (MP). MPs are unique to plant viruses and show surprising structural and functional variability while maintaining their core function, which is to facilitate the intercellular transport of viruses or viral nucleoprotein complexes. MPs interact with components of the intercellular channels, the plasmodesmata (PD), modifying their size exclusion limits and thus allowing larger particles, including virions, to pass through. The interaction of MPs with the components of PD, the formation of transport complexes and the recruitment of host cellular components have all revealed different facets of their functions. Multitasking is an inherent property of most viral proteins, and MPs are no exception. Some MPs carry out multitasking, which includes gene silencing suppression, viral replication and modulation of host protein turnover machinery. This review brings together the current knowledge on MPs, focusing on their structural variability, various functions and interactions with host proteins.
Collapse
|
17
|
Chen C, Vanneste S, Chen X. Review: Membrane tethers control plasmodesmal function and formation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110800. [PMID: 33568299 DOI: 10.1016/j.plantsci.2020.110800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Cell-to-cell communication is crucial in coordinating diverse biological processes in multicellular organisms. In plants, communication between adjacent cells occurs via nanotubular passages called plasmodesmata (PD). The PD passage is composed of an appressed endoplasmic reticulum (ER) internally, and plasma membrane (PM) externally, that traverses the cell wall, and associates with the actin-cytoskeleton. The coordination of the ER, PM and cytoskeleton plays a potential role in maintaining the architecture and conductivity of PD. Many data suggest that PD-associated proteins can serve as tethers that connect these structures in a functional PD, to regulate cell-to-cell communication. In this review, we summarize the organization and regulation of PD activity via tethering proteins, and discuss the importance of PD-mediated cell-to-cell communication in plant development and defense against environmental stress.
Collapse
Affiliation(s)
- Chaofan Chen
- College of Life Science and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China; FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Department of Plants and Crops, Ghent University, Coupure links 653, 9000 Ghent, Belgium; Lab of Plant Growth Analysis, Ghent University Global Campus, Songdomunhwa-Ro, 119, Yeonsu-gu, Incheon 21985, Republic of Korea
| | - Xu Chen
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
18
|
Amari K, Huang C, Heinlein M. Potential Impact of Global Warming on Virus Propagation in Infected Plants and Agricultural Productivity. FRONTIERS IN PLANT SCIENCE 2021; 12:649768. [PMID: 33868349 PMCID: PMC8045756 DOI: 10.3389/fpls.2021.649768] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/03/2021] [Indexed: 05/14/2023]
Abstract
The increasing pace of global warming and climate instability will challenge the management of pests and diseases of cultivated plants. Several reports have shown that increases in environmental temperature can enhance the cell-to-cell and systemic propagation of viruses within their infected hosts. These observations suggest that earlier and longer periods of warmer weather may cause important changes in the interaction between viruses and their host's plants, thus posing risks of new viral diseases and outbreaks in agriculture and the wild. As viruses target plasmodesmata (PD) for cell-to-cell spread, these cell wall pores may play yet unknown roles in the temperature-sensitive regulation of intercellular communication and virus infection. Understanding the temperature-sensitive mechanisms in plant-virus interactions will provide important knowledge for protecting crops against diseases in a warmer climate.
Collapse
|
19
|
Wu X, Cheng X. Intercellular movement of plant RNA viruses: Targeting replication complexes to the plasmodesma for both accuracy and efficiency. Traffic 2020; 21:725-736. [PMID: 33090653 DOI: 10.1111/tra.12768] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/10/2020] [Accepted: 10/10/2020] [Indexed: 02/06/2023]
Abstract
Replication and movement are two critical steps in plant virus infection. Recent advances in the understanding of the architecture and subcellular localization of virus-induced inclusions and the interactions between viral replication complex (VRC) and movement proteins (MPs) allow for the dissection of the intrinsic relationship between replication and movement, which has revealed that recruitment of VRCs to the plasmodesma (PD) via direct or indirect MP-VRC interactions is a common strategy used for cell-to-cell movement by most plant RNA viruses. In this review, we summarize the recent advances in the understanding of virus-induced inclusions and their roles in virus replication and cell-to-cell movement, analyze the advantages of such coreplicational movement from a viral point of view and discuss the possible mechanical force by which MPs drive the movement of virions or viral RNAs through the PD. Finally, we highlight the missing pieces of the puzzle of viral movement that are especially worth investigating in the near future.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Xiaofei Cheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
20
|
Abstract
The modern view of the mechanism of intercellular movement of viruses is based largely on data from the study of the tobacco mosaic virus (TMV) 30-kDa movement protein (MP). The discovered properties and abilities of TMV MP, namely, (a) in vitro binding of single-stranded RNA in a non-sequence-specific manner, (b) participation in the intracellular trafficking of genomic RNA to the plasmodesmata (Pd), and (c) localization in Pd and enhancement of Pd permeability, have been used as a reference in the search and analysis of candidate proteins from other plant viruses. Nevertheless, although almost four decades have passed since the introduction of the term “movement protein” into scientific circulation, the mechanism underlying its function remains unclear. It is unclear why, despite the absence of homology, different MPs are able to functionally replace each other in trans-complementation tests. Here, we consider the complexity and contradictions of the approaches for assessment of the ability of plant viral proteins to perform their movement function. We discuss different aspects of the participation of MP and MP/vRNA complexes in intra- and intercellular transport. In addition, we summarize the essential MP properties for their functioning as “conditioners”, creating a favorable environment for viral reproduction.
Collapse
|
21
|
Sheshukova EV, Ershova NM, Kamarova KA, Dorokhov YL, Komarova TV. The Tobamoviral Movement Protein: A "Conditioner" to Create a Favorable Environment for Intercellular Spread of Infection. FRONTIERS IN PLANT SCIENCE 2020; 11:959. [PMID: 32670343 PMCID: PMC7328123 DOI: 10.3389/fpls.2020.00959] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
During their evolution, viruses acquired genes encoding movement protein(s) (MPs) that mediate the intracellular transport of viral genetic material to plasmodesmata (Pd) and initiate the mechanisms leading to the increase in plasmodesmal permeability. Although the current view on the role of the viral MPs was primarily formed through studies on tobacco mosaic virus (TMV), the function of its MP has not been fully elucidated. Given the intercellular movement of MPs independent of genomic viral RNA (vRNA), this characteristic may induce favorable conditions ahead of the infection front for the accelerated movement of the vRNA (i.e. the MP plays a role as a "conditioner" of viral intercellular spread). This idea is supported by (a) the synthesis of MP from genomic vRNA early in infection, (b) the Pd opening and the MP transfer to neighboring cells without formation of the viral replication complex (VRC), and (c) the MP-mediated movement of VRCs beyond the primary infected cell. Here, we will consider findings that favor the TMV MP as a "conditioner" of enhanced intercellular virus movement. In addition, we will discuss the mechanism by which TMV MP opens Pd for extraordinary transport of macromolecules. Although there is no evidence showing direct effects of TMV MP on Pd leading to their dilatation, recent findings indicate that MPs exert their influence indirectly by modulating Pd external and structural macromolecules such as callose and Pd-associated proteins. In explaining this phenomenon, we will propose a mechanism for TMV MP functioning as a conditioner for virus movement.
Collapse
Affiliation(s)
| | - Natalia M. Ershova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Kamila A. Kamarova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Yuri L. Dorokhov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana V. Komarova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
22
|
Reagan BC, Burch-Smith TM. Viruses Reveal the Secrets of Plasmodesmal Cell Biology. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:26-39. [PMID: 31715107 DOI: 10.1094/mpmi-07-19-0212-fi] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plasmodesmata (PD) are essential for intercellular trafficking of molecules required for plant life, from small molecules like sugars and ions to macromolecules including proteins and RNA molecules that act as signals to regulate plant development and defense. As obligate intracellular pathogens, plant viruses have evolved to manipulate this communication system to facilitate the initial cell-to-cell and eventual systemic spread in their plant hosts. There has been considerable interest in how viruses manipulate the PD that connect the protoplasts of neighboring cells, and viruses have yielded invaluable tools for probing the structure and function of PD. With recent advances in biochemistry and imaging, we have gained new insights into the composition and structure of PD in the presence and absence of viruses. Here, we first discuss viral strategies for manipulating PD for their intercellular movement and examine how this has shed light on our understanding of native PD function. We then address the controversial role of the cytoskeleton in trafficking to and through PD. Finally, we address how viruses could alter PD structure and consider possible mechanisms of the phenomenon described as 'gating'. This discussion supports the significance of virus research in elucidating the properties of PD, these persistently enigmatic plant organelles.
Collapse
Affiliation(s)
- Brandon C Reagan
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, U.S.A
| |
Collapse
|
23
|
Navarro JA, Sanchez-Navarro JA, Pallas V. Key checkpoints in the movement of plant viruses through the host. Adv Virus Res 2019; 104:1-64. [PMID: 31439146 DOI: 10.1016/bs.aivir.2019.05.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plant viruses cannot exploit any of the membrane fusion-based routes of entry described for animal viruses. In addition, one of the distinctive structures of plant cells, the cell wall, acts as the first barrier against the invasion of pathogens. To overcome the rigidity of the cell wall, plant viruses normally take advantage of the way of life of different biological vectors. Alternatively, the physical damage caused by environmental stresses can facilitate virus entry. Once inside the cell and taking advantage of the characteristic symplastic continuity of plant cells, viruses need to remodel and/or modify the restricted pore size of the plasmodesmata (channels that connect plant cells). In a successful interaction for the virus, it can reach the vascular tissue to systematically invade the plant. The connections between the different cell types in this path are not designed to allow the passage of molecules with the complexity of viruses. During this process, viruses face different cell barriers that must be overcome to reach the distal parts of the plant. In this review, we highlight the current knowledge about how plant RNA viruses enter plant cells, move between them to reach vascular cells and overcome the different physical and cellular barriers that the phloem imposes. Finally, we update the current research on cellular organelles as key regulator checkpoints in the long-distance movement of plant viruses.
Collapse
Affiliation(s)
- Jose A Navarro
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Jesus A Sanchez-Navarro
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain.
| |
Collapse
|
24
|
Wei Y, Shi Y, Han X, Chen S, Li H, Chen L, Sun B, Shi Y. Identification of cucurbit chlorotic yellows virus P4.9 as a possible movement protein. Virol J 2019; 16:82. [PMID: 31221223 PMCID: PMC6587283 DOI: 10.1186/s12985-019-1192-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/14/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cucurbit chlorotic yellows virus (CCYV) is a bipartite cucurbit-infecting crinivirus within the family Closteroviridae. The crinivirus genome varies among genera. P4.9 is the first protein encoded by CCYV RNA2. P5, which is encoded by LIYV, is necessary for efficient viral infectivity in plants; however, it remains unknown whether CCYV P4.9 is involved in movement. FINDING In this study, we used green fluorescent protein (GFP) to examine the intracellular distribution of P4.9-GFP in plant cells, and observed fluorescence in the cytoplasm and nucleus. Transient expression of P4.9 was localized to the plasmodesmata. Co-infiltration of agrobacterium carrying binary plasmids of P4.9 and GFP facilitated GFP diffusion between cells. Besides P4.9 was able to spread by itself to neighboring cells, and co-localized with a marker specific to the endoplasmic reticulum, HDEL-mCherry, but not with the Golgi marker Man49-mCherry. CONCLUSIONS Together, these results demonstrate that CCYV P4.9 is involved in cell-cell movement.
Collapse
Affiliation(s)
- Ying Wei
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yajuan Shi
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xaioyu Han
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Siyu Chen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Honglian Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Linlin Chen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Bingjian Sun
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yan Shi
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
25
|
Han X, Huang LJ, Feng D, Jiang W, Miu W, Li N. Plasmodesmata-Related Structural and Functional Proteins: The Long Sought-After Secrets of a Cytoplasmic Channel in Plant Cell Walls. Int J Mol Sci 2019; 20:ijms20122946. [PMID: 31212892 PMCID: PMC6627144 DOI: 10.3390/ijms20122946] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/29/2022] Open
Abstract
Plant cells are separated by cellulose cell walls that impede direct cell-to-cell contact. In order to facilitate intercellular communication, plant cells develop unique cell-wall-spanning structures termed plasmodesmata (PD). PD are membranous channels that link the cytoplasm, plasma membranes, and endoplasmic reticulum of adjacent cells to provide cytoplasmic and membrane continuity for molecular trafficking. PD play important roles for the development and physiology of all plants. The structure and function of PD in the plant cell walls are highly dynamic and tightly regulated. Despite their importance, plasmodesmata are among the few plant cell organelles that remain poorly understood. The molecular properties of PD seem largely elusive or speculative. In this review, we firstly describe the general PD structure and its protein composition. We then discuss the recent progress in identification and characterization of PD-associated plant cell-wall proteins that regulate PD function, with particular emphasis on callose metabolizing and binding proteins, and protein kinases targeted to and around PD.
Collapse
Affiliation(s)
- Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China.
| | - Li-Jun Huang
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Dan Feng
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Wenhan Jiang
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Wenzhuo Miu
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Ning Li
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
26
|
Ganusova EE, Burch-Smith TM. Review: Plant-pathogen interactions through the plasmodesma prism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:70-80. [PMID: 30709495 DOI: 10.1016/j.plantsci.2018.05.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/18/2018] [Accepted: 05/23/2018] [Indexed: 06/09/2023]
Abstract
Plasmodesmata (PD) allow membrane and cytoplasmic continuity between plant cells, and they are essential for intercellular communication and signaling in addition to metabolite partitioning. Plant pathogens have evolved a variety of mechanisms to subvert PD to facilitate their infection of plant hosts. PD are implicated not only in local spread around infection sites but also in the systemic spread of pathogens and pathogen-derived molecules. In turn, plants have developed strategies to limit pathogen spread via PD, and there is increasing evidence that PD may also be active players in plant defense responses. The last few years have seen important advances in understanding the roles of PD in plant-pathogen infection. Nonetheless, several critical areas remain to be addressed. Here we highlight some of these, focusing on the need to consider the effects of pathogen-PD interaction on the trafficking of endogenous molecules, and the involvement of chloroplasts in regulating PD during pathogen defense. By their very nature, PD are recalcitrant to most currently used investigative techniques, therefore answering these questions will require creative imaging and novel quantification approaches.
Collapse
Affiliation(s)
- Elena E Ganusova
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, United States
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, United States.
| |
Collapse
|
27
|
Robles Luna G, Peña EJ, Borniego MB, Heinlein M, García ML. Citrus Psorosis Virus Movement Protein Contains an Aspartic Protease Required for Autocleavage and the Formation of Tubule-Like Structures at Plasmodesmata. J Virol 2018; 92:e00355-18. [PMID: 30135122 PMCID: PMC6189509 DOI: 10.1128/jvi.00355-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/07/2018] [Indexed: 12/15/2022] Open
Abstract
Plant virus cell-to-cell movement is an essential step in viral infections. This process is facilitated by specific virus-encoded movement proteins (MPs), which manipulate the cell wall channels between neighboring cells known as plasmodesmata (PD). Citrus psorosis virus (CPsV) infection in sweet orange involves the formation of tubule-like structures within PD, suggesting that CPsV belongs to "tubule-forming" viruses that encode MPs able to assemble a hollow tubule extending between cells to allow virus movement. Consistent with this hypothesis, we show that the MP of CPsV (MPCPsV) indeed forms tubule-like structures at PD upon transient expression in Nicotiana benthamiana leaves. Tubule formation by MPCPsV depends on its cleavage capacity, mediated by a specific aspartic protease motif present in its primary sequence. A single amino acid mutation in this motif abolishes MPCPsV cleavage, alters the subcellular localization of the protein, and negatively affects its activity in facilitating virus movement. The amino-terminal 34-kDa cleavage product (34KCPsV), but not the 20-kDa fragment (20KCPsV), supports virus movement. Moreover, similar to tubule-forming MPs of other viruses, MPCPsV (and also the 34KCPsV cleavage product) can homooligomerize, interact with PD-located protein 1 (PDLP1), and assemble tubule-like structures at PD by a mechanism dependent on the secretory pathway. 20KCPsV retains the protease activity and is able to cleave a cleavage-deficient MPCPsV in trans Altogether, these results demonstrate that CPsV movement depends on the autolytic cleavage of MPCPsV by an aspartic protease activity, which removes the 20KCPsV protease and thereby releases the 34KCPsV protein for PDLP1-dependent tubule formation at PD.IMPORTANCE Infection by citrus psorosis virus (CPsV) involves a self-cleaving aspartic protease activity within the viral movement protein (MP), which results in the production of two peptides, termed 34KCPsV and 20KCPsV, that carry the MP and viral protease activities, respectively. The underlying protease motif within the MP is also found in the MPs of other members of the Aspiviridae family, suggesting that protease-mediated protein processing represents a conserved mechanism of protein expression in this virus family. The results also demonstrate that CPsV and potentially other ophioviruses move by a tubule-guided mechanism. Although several viruses from different genera were shown to use this mechanism for cell-to-cell movement, our results also demonstrate that this mechanism is controlled by posttranslational protein cleavage. Moreover, given that tubule formation and virus movement could be inhibited by a mutation in the protease motif, targeting the protease activity for inactivation could represent an important approach for ophiovirus control.
Collapse
Affiliation(s)
- Gabriel Robles Luna
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, CONICET UNLP, La Plata, Argentina
| | - Eduardo José Peña
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, CONICET UNLP, La Plata, Argentina
| | - María Belén Borniego
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, CONICET UNLP, La Plata, Argentina
| | - Manfred Heinlein
- Université de Strasbourg, CNRS, IBMP UPR 2357, Strasbourg, France
| | - María Laura García
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, CONICET UNLP, La Plata, Argentina
| |
Collapse
|
28
|
Reagan BC, Ganusova EE, Fernandez JC, McCray TN, Burch-Smith TM. RNA on the move: The plasmodesmata perspective. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 275:1-10. [PMID: 30107876 DOI: 10.1016/j.plantsci.2018.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/25/2018] [Accepted: 07/04/2018] [Indexed: 05/11/2023]
Abstract
It is now widely accepted that plant RNAs can have effects at sites far away from their sites of synthesis. Cellular mRNA transcripts, endogenous small RNAs and defense-related small RNAs all move from cell to cell via plasmodesmata (PD), and may even move long distances in the phloem. Despite their small size, PD have complicated substructures, and the area of the pore available for RNA trafficking can be remarkably small. The intent of this review is to bring into focus the role of PD in cell-to-cell and long distance communication in plants. We consider how cellular RNAs could move through the cell to the PD and thence through PD. The protein composition of PD and the possible roles of PD proteins in RNA trafficking are also discussed. Recent evidence for RNA metabolism in organelles acting as a factor in controlling PD flux is also presented, highlighting new aspects of plant intra- and intercellular communication. It is clear that while the phenomenon of RNA mobility is common and essential, many questions remain, and these have been highlighted throughout this review.
Collapse
Affiliation(s)
- Brandon C Reagan
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States
| | - Elena E Ganusova
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States
| | - Jessica C Fernandez
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States
| | - Tyra N McCray
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, United States
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States; School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, United States.
| |
Collapse
|
29
|
Leastro MO, Kitajima EW, Silva MS, Resende RO, Freitas-Astúa J. Dissecting the Subcellular Localization, Intracellular Trafficking, Interactions, Membrane Association, and Topology of Citrus Leprosis Virus C Proteins. FRONTIERS IN PLANT SCIENCE 2018; 9:1299. [PMID: 30254655 PMCID: PMC6141925 DOI: 10.3389/fpls.2018.01299] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/17/2018] [Indexed: 05/17/2023]
Abstract
Citrus leprosis (CL) is a re-emergent viral disease affecting citrus crops in the Americas, and citrus leprosis virus C (CiLV-C), belonging to the genus Cilevirus, is the main pathogen responsible for the disease. Despite the economic importance of CL to the citrus industry, very little is known about the performance of viral proteins. Here, we present a robust in vivo study around functionality of p29, p15, p61, MP, and p24 CiLV-C proteins in the host cells. The intracellular sub-localization of all those viral proteins in plant cells are shown, and their co-localization with the endoplasmic reticulum (ER), Golgi complex (GC) (p15, MP, p61 and p24), actin filaments (p29, p15 and p24), nucleus (p15), and plasmodesmata (MP) are described. Several features are disclosed, including i) ER remodeling and redistribution of GC apparatus, ii) trafficking of the p29 and MP along the ER network system, iii) self-interaction of the p29, p15, and p24 and hetero-association between p29-p15, p29-MP, p29-p24, and p15-MP proteins in vivo. We also showed that all proteins are associated with biological membranes; whilst p15 is peripherally associated, p29, p24, and MP are integrally bound to cell membranes. Furthermore, while p24 exposes an N-cytoplasm-C-lumen topology, p29, and p15 are oriented toward the cytoplasmic face of the biological membrane. Based on our findings, we discuss the possible performance of each protein in the context of infection and a hypothetical model encompassing the virus spread and sites for replication and particle assembly is suggested.
Collapse
Affiliation(s)
| | - Elliot Watanabe Kitajima
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Marilia Santos Silva
- Laboratório de Bioimagem, Embrapa Recursos Genéticos e Biotecnologia, Brasilia, Brazil
| | | | - Juliana Freitas-Astúa
- Departamento de Bioquímica Fitopatológica, Instituto Biológico, São Paulo, Brazil
- Embrapa Mandioca e Fruticultura, Cruz das Almas, Bahia, Brazil
| |
Collapse
|
30
|
Benítez M, Hernández-Hernández V, Newman SA, Niklas KJ. Dynamical Patterning Modules, Biogeneric Materials, and the Evolution of Multicellular Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:871. [PMID: 30061903 PMCID: PMC6055014 DOI: 10.3389/fpls.2018.00871] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/04/2018] [Indexed: 05/18/2023]
Abstract
Comparative analyses of developmental processes across a broad spectrum of organisms are required to fully understand the mechanisms responsible for the major evolutionary transitions among eukaryotic photosynthetic lineages (defined here as the polyphyletic algae and the monophyletic land plants). The concepts of dynamical patterning modules (DPMs) and biogeneric materials provide a framework for studying developmental processes in the context of such comparative analyses. In the context of multicellularity, DPMs are defined as sets of conserved gene products and molecular networks, in conjunction with the physical morphogenetic and patterning processes they mobilize. A biogeneric material is defined as mesoscale matter with predictable morphogenetic capabilities that arise from complex cellular conglomerates. Using these concepts, we outline some of the main events and transitions in plant evolution, and describe the DPMs and biogeneric properties associated with and responsible for these transitions. We identify four primary DPMs that played critical roles in the evolution of multicellularity (i.e., the DPMs responsible for cell-to-cell adhesion, identifying the future cell wall, cell differentiation, and cell polarity). Three important conclusions emerge from a broad phyletic comparison: (1) DPMs have been achieved in different ways, even within the same clade (e.g., phycoplastic cell division in the Chlorophyta and phragmoplastic cell division in the Streptophyta), (2) DPMs had their origins in the co-option of molecular species present in the unicellular ancestors of multicellular plants, and (3) symplastic transport mediated by intercellular connections, particularly plasmodesmata, was critical for the evolution of complex multicellularity in plants.
Collapse
Affiliation(s)
- Mariana Benítez
- Centro de Ciencias de la Complejidad – Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Valeria Hernández-Hernández
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Lyon, France
| | - Stuart A. Newman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, United States
| | - Karl J. Niklas
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
31
|
Abstract
Plasmodesmata are cytoplasmic communication channels that are vital for the physiology and development of all plants. They facilitate the intercellular movement of various cargos - ranging from small molecules, such as sugars, ions and other essential nutrients and chemicals, to large complex molecules, such as proteins and different types of RNA species - by bridging neighboring cells across their cell walls. Structurally, an individual channel consists of the cytoplasmic sleeve that is formed between the endoplasmic reticulum and the plasma membrane leaflets. Plasmodesmata are highly versatile channels; they vary in number and structure, and undergo constant adjustments to their permeability in response to many internal and external cues. In this Cell Science at a Glance article and accompanying poster, we provide an overview of plasmodesmata form and function, with highlights on their development and variation, associated components and mobile factors. In addition, we present methodologies that are currently used to study plasmodesmata-mediated intercellular communication.
Collapse
Affiliation(s)
- Ross E Sager
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Jung-Youn Lee
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| |
Collapse
|
32
|
Anjanappa RB, Mehta D, Okoniewski MJ, Szabelska‐Berȩsewicz A, Gruissem W, Vanderschuren H. Molecular insights into Cassava brown streak virus susceptibility and resistance by profiling of the early host response. MOLECULAR PLANT PATHOLOGY 2018; 19:476-489. [PMID: 28494519 PMCID: PMC6638049 DOI: 10.1111/mpp.12565] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 05/19/2023]
Abstract
Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV) are responsible for significant cassava yield losses in eastern sub-Saharan Africa. To study the possible mechanisms of plant resistance to CBSVs, we inoculated CBSV-susceptible and CBSV-resistant cassava varieties with a mixed infection of CBSVs using top-cleft grafting. Transcriptome profiling of the two cassava varieties was performed at the earliest time point of full infection (28 days after grafting) in the susceptible scions. The expression of genes encoding proteins in RNA silencing, salicylic acid pathways and callose deposition was altered in the susceptible cassava variety, but transcriptional changes were limited in the resistant variety. In total, the expression of 585 genes was altered in the resistant variety and 1292 in the susceptible variety. Transcriptional changes led to the activation of β-1,3-glucanase enzymatic activity and a reduction in callose deposition in the susceptible cassava variety. Time course analysis also showed that CBSV replication in susceptible cassava induced a strong up-regulation of RDR1, a gene previously reported to be a susceptibility factor in other potyvirus-host pathosystems. The differences in the transcriptional responses to CBSV infection indicated that susceptibility involves the restriction of callose deposition at plasmodesmata. Aniline blue staining of callose deposits also indicated that the resistant variety displays a moderate, but significant, increase in callose deposition at the plasmodesmata. Transcriptome data suggested that resistance does not involve typical antiviral defence responses (i.e. RNA silencing and salicylic acid). A meta-analysis of the current RNA-sequencing (RNA-seq) dataset and selected potyvirus-host and virus-cassava RNA-seq datasets revealed that the conservation of the host response across pathosystems is restricted to genes involved in developmental processes.
Collapse
Affiliation(s)
| | - Devang Mehta
- Department of BiologyETH Zurich8092 ZurichSwitzerland
| | - Michal J. Okoniewski
- ID Scientific IT ServicesETH Zurich8092 ZurichSwitzerland
- Functional Genomics Center Zurich8057 ZurichSwitzerland
| | - Alicja Szabelska‐Berȩsewicz
- Functional Genomics Center Zurich8057 ZurichSwitzerland
- Department of Mathematical and Statistical MethodsPoznan University of Life Sciences60‐637 PoznanPoland
| | | | - Hervé Vanderschuren
- Department of BiologyETH Zurich8092 ZurichSwitzerland
- AgroBioChem Department, Gembloux Agro‐Bio TechUniversity of Liège5030 GemblouxBelgium
| |
Collapse
|
33
|
Sasaki N, Takashima E, Nyunoya H. Altered Subcellular Localization of a Tobacco Membrane Raft-Associated Remorin Protein by Tobamovirus Infection and Transient Expression of Viral Replication and Movement Proteins. FRONTIERS IN PLANT SCIENCE 2018; 9:619. [PMID: 29868075 PMCID: PMC5962775 DOI: 10.3389/fpls.2018.00619] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 04/18/2018] [Indexed: 05/20/2023]
Abstract
Remorins are plant specific proteins found in plasma membrane microdomains (termed lipid or membrane rafts) and plasmodesmata. A potato remorin is reported to be involved in negatively regulating potexvirus movement and plasmodesmal permeability. In this study, we isolated cDNAs of tobacco remorins (NtREMs) and examined roles of an NtREM in infection by tomato mosaic virus (ToMV). Subcellular localization analysis using fluorescently tagged NtREM, ToMV, and viral replication and movement proteins (MPs) indicated that virus infection and transient expression of the viral proteins promoted the formation of NtREM aggregates by altering the subcellular distribution of NtREM, which was localized uniformly on the plasma membrane under normal conditions. NtREM aggregates were often observed associated closely with endoplasmic reticulum networks and bodies of the 126K replication and MPs. The bimolecular fluorescence complementation assay indicated that NtREM might interact directly with the MP on the plasma membrane and around plasmodesmata. In addition, transient overexpression of NtREM facilitated ToMV cell-to-cell movement. Based on these results, we discuss possible roles of the tobacco remorin in tobamovirus movement.
Collapse
Affiliation(s)
- Nobumitsu Sasaki
- Gene Research Center, Tokyo University of Agriculture and Technology, Fuchu, Japan
- *Correspondence: Nobumitsu Sasaki,
| | - Eita Takashima
- Gene Research Center, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Hiroshi Nyunoya
- Gene Research Center, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
34
|
Hong JS, Ju HJ. The Plant Cellular Systems for Plant Virus Movement. THE PLANT PATHOLOGY JOURNAL 2017; 33:213-228. [PMID: 28592941 PMCID: PMC5461041 DOI: 10.5423/ppj.rw.09.2016.0198] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 11/05/2016] [Accepted: 11/13/2016] [Indexed: 05/24/2023]
Abstract
Plasmodesmata (PDs) are specialized intercellular channels that facilitate the exchange of various molecules, including sugars, ribonucleoprotein complexes, transcription factors, and mRNA. Their diameters, estimated to be 2.5 nm in the neck region, are too small to transfer viruses or viral genomes. Tobacco mosaic virus and Potexviruses are the most extensively studied viruses. In viruses, the movement protein (MP) is responsible for the PD gating that allows the intercellular movement of viral genomes. Various host factors interact with MP to regulate complicated mechanisms related to PD gating. Virus replication and assembly occur in viral replication complex (VRC) with membrane association, especially in the endoplasmic reticulum. VRC have a highly organized structure and are highly regulated by interactions among the various host factors, proteins encoded by the viral genome, and the viral genome. Virus trafficking requires host machineries, such as the cytoskeleton and the secretory systems. MP facilitates the virus replication and movement process. Despite the current level of understanding of virus movement, there are still many unknown and complex interactions between virus replication and virus movement. While numerous studies have been conducted to understand plant viruses with regards to cell-to-cell movement and replication, there are still many knowledge gaps. To study these interactions, adequate research tools must be used such as molecular, and biochemical techniques. Without such tools, virologists will not be able to gain an accurate or detailed understanding of the virus infection process.
Collapse
Affiliation(s)
- Jin-Sung Hong
- Department of Applied Biology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Ho-Jong Ju
- Department of Agricultural Biology, College of Agricultural Life Science, Chonbuk National University, Jeonju 54896, Korea
- Plant Medicinal Research Center, College of Agricultural Life Science, Chonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
35
|
Lazareva EA, Lezzhov AA, Komarova TV, Morozov SY, Heinlein M, Solovyev AG. A novel block of plant virus movement genes. MOLECULAR PLANT PATHOLOGY 2017; 18:611-624. [PMID: 27118327 PMCID: PMC6638293 DOI: 10.1111/mpp.12418] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 04/14/2016] [Accepted: 04/21/2016] [Indexed: 05/10/2023]
Abstract
Hibiscus green spot virus (HGSV) is a recently discovered and so far poorly characterized bacilliform plant virus with a positive-stranded RNA genome consisting of three RNA species. Here, we demonstrate that the proteins encoded by the ORF2 and ORF3 in HGSV RNA2 are necessary and sufficient to mediate cell-to-cell movement of transport-deficient Potato virus X in Nicotiana benthamiana. These two genes represent a specialized transport module called a 'binary movement block' (BMB), and ORF2 and ORF3 are termed BMB1 and BMB2 genes. In agroinfiltrated epidermal cells of N. benthamiana, green fluorescent protein (GFP)-BMB1 fusion protein was distributed diffusely in the cytoplasm and the nucleus. However, in the presence of BMB2, GFP-BMB1 was directed to cell wall-adjacent elongated bodies at the cell periphery, to cell wall-embedded punctate structures co-localizing with callose deposits at plasmodesmata, and to cells adjacent to the initially transformed cell. Thus, BMB2 can mediate the transport of BMB1 to and through plasmodesmata. In general, our observations support the idea that cell-to-cell trafficking of movement proteins involves an initial delivery to membrane compartments adjacent to plasmodesmata, subsequent entry of the plasmodesmata cavity and, finally, transport to adjacent cells. This process, as an alternative to tubule-based transport, has most likely evolved independently in triple gene block (TGB), double gene block (DGB), BMB and the single gene-coded transport system.
Collapse
Affiliation(s)
| | - Alexander A. Lezzhov
- Department of Virology, Biological FacultyMoscow State UniversityMoscow119234Russia
| | - Tatiana V. Komarova
- A. N. Belozersky Institute of Physico‐Chemical Biology, Moscow State UniversityMoscow119992Russia
- N. I. Vavilov Institute of General Genetics, Russian Academy of ScienceMoscow119991Russia
| | - Sergey Y. Morozov
- Department of Virology, Biological FacultyMoscow State UniversityMoscow119234Russia
- A. N. Belozersky Institute of Physico‐Chemical Biology, Moscow State UniversityMoscow119992Russia
| | - Manfred Heinlein
- Centre National de la Recherche ScientifiqueInstitut de Biologie Moléculaire des Plantes (IBMP)Strasbourg67084France
| | - Andrey G. Solovyev
- A. N. Belozersky Institute of Physico‐Chemical Biology, Moscow State UniversityMoscow119992Russia
| |
Collapse
|
36
|
Conti G, Rodriguez MC, Venturuzzi AL, Asurmendi S. Modulation of host plant immunity by Tobamovirus proteins. ANNALS OF BOTANY 2017; 119:737-747. [PMID: 27941090 PMCID: PMC5378186 DOI: 10.1093/aob/mcw216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 06/10/2016] [Accepted: 09/19/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND To establish successful infection, plant viruses produce profound alterations of host physiology, disturbing unrelated endogenous processes and contributing to the development of disease. In tobamoviruses, emerging evidence suggests that viral-encoded proteins display a great variety of functions beyond the canonical roles required for virus structure and replication. Among these, their modulation of host immunity appears to be relevant in infection progression. SCOPE In this review, some recently described effects on host plant physiology of Tobacco mosaic virus (TMV)-encoded proteins, namely replicase, movement protein (MP) and coat protein (CP), are summarized. The discussion is focused on the effects of each viral component on the modulation of host defense responses, through mechanisms involving hormonal imbalance, innate immunity modulation and antiviral RNA silencing. These effects are described taking into consideration the differential spatial distribution and temporality of viral proteins during the dynamic process of replication and spread of the virus. CONCLUSION In discussion of these mechanisms, it is shown that both individual and combined effects of viral-encoded proteins contribute to the development of the pathogenesis process, with the host plant's ability to control infection to some extent potentially advantageous to the invading virus.
Collapse
Affiliation(s)
- G. Conti
- Instituto de Biotecnologia, CICVyA, INTA, Argentina
- CONICET, Argentina
| | | | - A. L. Venturuzzi
- Instituto de Biotecnologia, CICVyA, INTA, Argentina
- CONICET, Argentina
| | - S. Asurmendi
- Instituto de Biotecnologia, CICVyA, INTA, Argentina
- CONICET, Argentina
- For correspondence. E-mail
| |
Collapse
|
37
|
Liu DYT, Smith PMC, Barton DA, Day DA, Overall RL. Characterisation of Arabidopsis calnexin 1 and calnexin 2 in the endoplasmic reticulum and at plasmodesmata. PROTOPLASMA 2017; 254:125-136. [PMID: 26680228 DOI: 10.1007/s00709-015-0921-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 12/01/2015] [Indexed: 05/06/2023]
Abstract
Calnexin (CNX) is a highly conserved endoplasmic reticulum (ER) chaperone protein. Both calnexin and the homologous ER-lumenal protein, calreticulin, bind calcium ions and participate in protein folding. There are two calnexins in Arabidopsis thaliana, CNX1 and CNX2. GUS expression demonstrated that these are expressed in most Arabidopsis tissues throughout development. Calnexin transfer DNA (T-DNA) mutant lines exhibited increased transcript abundances of a number of other ER chaperones, including calreticulins, suggesting a degree of redundancy. CNX1 and CNX2 localised to the ER membrane including that within plasmodesmata, the intercellular channels connecting plant cells. This is comparable with the previous localisations of calreticulin in the ER lumen and at plasmodesmata. However, from green fluorescent protein (GFP) diffusion studies in single and double T-DNA insertion mutant lines, as well as overexpression lines, we found no evidence that CNX1 or CNX2 play a role in intercellular transport through plasmodesmata. In addition, calnexin T-DNA mutant lines showed no change in transcript abundance of a number of plasmodesmata-related proteins. CNX1 and CNX2 do not appear to have a specific localisation or function at plasmodesmata-rather the association of calnexin with the ER is simply maintained as the ER passes through plasmodesmata.
Collapse
Affiliation(s)
- Danny Y T Liu
- School of Biological Sciences, University of Sydney, Macleay Building A12, Sydney, NSW, 2006, Australia
- Learning and Teaching Centre, Macquarie University, Building C3B 417, Sydney, NSW, 2109, Australia
| | - Penelope M C Smith
- School of Biological Sciences, University of Sydney, Macleay Building A12, Sydney, NSW, 2006, Australia
| | - Deborah A Barton
- School of Biological Sciences, University of Sydney, Macleay Building A12, Sydney, NSW, 2006, Australia
| | - David A Day
- School of Biological Sciences, University of Sydney, Macleay Building A12, Sydney, NSW, 2006, Australia
- School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | - Robyn L Overall
- School of Biological Sciences, University of Sydney, Macleay Building A12, Sydney, NSW, 2006, Australia.
| |
Collapse
|
38
|
Leastro MO, Pallás V, Resende RO, Sánchez-Navarro JA. The functional analysis of distinct tospovirus movement proteins (NS M) reveals different capabilities in tubule formation, cell-to-cell and systemic virus movement among the tospovirus species. Virus Res 2016; 227:57-68. [PMID: 27697453 DOI: 10.1016/j.virusres.2016.09.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 12/22/2022]
Abstract
The lack of infectious tospovirus clones to address reverse genetic experiments has compromised the functional analysis of viral proteins. In the present study we have performed a functional analysis of the movement proteins (NSM) of four tospovirus species Bean necrotic mosaic virus (BeNMV), Chrysanthemum stem necrosis virus (CSNV), Tomato chlorotic spot virus (TCSV) and Tomato spotted wilt virus (TSWV), which differ biologically and molecularly, by using the Alfalfa mosaic virus (AMV) model system. All NSM proteins were competent to: i) support the cell-to-cell and systemic transport of AMV, ii) generate tubular structures on infected protoplast and iii) transport only virus particles. However, the NSM of BeNMV (one of the most phylogenetically distant species) was very inefficient to support the systemic transport. Deletion assays revealed that the C-terminal region of the BeNMV NSM, but not that of the CSNV, TCSV and TSWV NSM proteins, was dispensable for cell-to-cell transport, and that all the non-functional C-terminal NSM mutants were unable to generate tubular structures. Bimolecular fluorescence complementation analysis revealed that the C-terminus of the BeNMV NSM was not required for the interaction with the cognate nucleocapsid protein, showing a different protein organization when compared with other movement proteins of the '30K family'. Overall, our results revealed clearly differences in functional aspects among movement proteins from divergent tospovirus species that have a distinct biological behavior.
Collapse
Affiliation(s)
- Mikhail O Leastro
- Departamento de Biologia Celular, Universidade de Brasília, 70910-900 Brasília, Brazil.
| | - Vicente Pallás
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain.
| | - Renato O Resende
- Departamento de Biologia Celular, Universidade de Brasília, 70910-900 Brasília, Brazil.
| | - Jesús A Sánchez-Navarro
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain.
| |
Collapse
|
39
|
Dall'Ara M, Ratti C, Bouzoubaa SE, Gilmer D. Ins and Outs of Multipartite Positive-Strand RNA Plant Viruses: Packaging versus Systemic Spread. Viruses 2016; 8:E228. [PMID: 27548199 PMCID: PMC4997590 DOI: 10.3390/v8080228] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/29/2016] [Accepted: 08/09/2016] [Indexed: 11/16/2022] Open
Abstract
Viruses possessing a non-segmented genome require a specific recognition of their nucleic acid to ensure its protection in a capsid. A similar feature exists for viruses having a segmented genome, usually consisting of viral genomic segments joined together into one viral entity. While this appears as a rule for animal viruses, the majority of segmented plant viruses package their genomic segments individually. To ensure a productive infection, all viral particles and thereby all segments have to be present in the same cell. Progression of the virus within the plant requires as well a concerted genome preservation to avoid loss of function. In this review, we will discuss the "life aspects" of chosen phytoviruses and argue for the existence of RNA-RNA interactions that drive the preservation of viral genome integrity while the virus progresses in the plant.
Collapse
Affiliation(s)
- Mattia Dall'Ara
- Institut de Biologie Moléculaire des Plantes, Integrative Virology, CNRS UPR2367, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
- Dipartimento di Scienze Agrarie, Area Patologia Vegetale, Università di Bologna, Viale Fanin 40, 40127 Bologna, Italy.
| | - Claudio Ratti
- Dipartimento di Scienze Agrarie, Area Patologia Vegetale, Università di Bologna, Viale Fanin 40, 40127 Bologna, Italy.
| | - Salah E Bouzoubaa
- Institut de Biologie Moléculaire des Plantes, Integrative Virology, CNRS UPR2367, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - David Gilmer
- Institut de Biologie Moléculaire des Plantes, Integrative Virology, CNRS UPR2367, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| |
Collapse
|
40
|
Tilsner J, Nicolas W, Rosado A, Bayer EM. Staying Tight: Plasmodesmal Membrane Contact Sites and the Control of Cell-to-Cell Connectivity in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:337-64. [PMID: 26905652 DOI: 10.1146/annurev-arplant-043015-111840] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Multicellularity differs in plants and animals in that the cytoplasm, plasma membrane, and endomembrane of plants are connected between cells through plasmodesmal pores. Plasmodesmata (PDs) are essential for plant life and serve as conduits for the transport of proteins, small RNAs, hormones, and metabolites during developmental and defense signaling. They are also the only pathways available for viruses to spread within plant hosts. The membrane organization of PDs is unique, characterized by the close apposition of the endoplasmic reticulum and the plasma membrane and spoke-like filamentous structures linking the two membranes, which define PDs as membrane contact sites (MCSs). This specialized membrane arrangement is likely critical for PD function. Here, we review how PDs govern developmental and defensive signaling in plants, compare them with other types of MCSs, and discuss in detail the potential functional significance of the MCS nature of PDs.
Collapse
Affiliation(s)
- Jens Tilsner
- Biomedical Sciences Research Complex, University of St Andrews, Fife KY16 9ST, United Kingdom;
- Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom
| | - William Nicolas
- Laboratory of Membrane Biogenesis, UMR5200 CNRS, University of Bordeaux, 33883 Villenave d'Ornon Cedex, France; ,
| | - Abel Rosado
- Department of Botany, Faculty of Sciences, University of British Columbia, Vancouver V6T 1Z4, Canada;
| | - Emmanuelle M Bayer
- Laboratory of Membrane Biogenesis, UMR5200 CNRS, University of Bordeaux, 33883 Villenave d'Ornon Cedex, France; ,
| |
Collapse
|
41
|
Feng Z, Xue F, Xu M, Chen X, Zhao W, Garcia-Murria MJ, Mingarro I, Liu Y, Huang Y, Jiang L, Zhu M, Tao X. The ER-Membrane Transport System Is Critical for Intercellular Trafficking of the NSm Movement Protein and Tomato Spotted Wilt Tospovirus. PLoS Pathog 2016; 12:e1005443. [PMID: 26863622 PMCID: PMC4749231 DOI: 10.1371/journal.ppat.1005443] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/17/2016] [Indexed: 12/15/2022] Open
Abstract
Plant viruses move through plasmodesmata to infect new cells. The plant endoplasmic reticulum (ER) is interconnected among cells via the ER desmotubule in the plasmodesma across the cell wall, forming a continuous ER network throughout the entire plant. This ER continuity is unique to plants and has been postulated to serve as a platform for the intercellular trafficking of macromolecules. In the present study, the contribution of the plant ER membrane transport system to the intercellular trafficking of the NSm movement protein and Tomato spotted wilt tospovirus (TSWV) is investigated. We showed that TSWV NSm is physically associated with the ER membrane in Nicotiana benthamiana plants. An NSm-GFP fusion protein transiently expressed in single leaf cells was trafficked into neighboring cells. Mutations in NSm that impaired its association with the ER or caused its mis-localization to other subcellular sites inhibited cell-to-cell trafficking. Pharmacological disruption of the ER network severely inhibited NSm-GFP trafficking but not GFP diffusion. In the Arabidopsis thaliana mutant rhd3 with an impaired ER network, NSm-GFP trafficking was significantly reduced, whereas GFP diffusion was not affected. We also showed that the ER-to-Golgi secretion pathway and the cytoskeleton transport systems were not involved in the intercellular trafficking of TSWV NSm. Importantly, TSWV cell-to-cell spread was delayed in the ER-defective rhd3 mutant, and this reduced viral infection was not due to reduced replication. On the basis of robust biochemical, cellular and genetic analysis, we established that the ER membrane transport system serves as an important direct route for intercellular trafficking of NSm and TSWV.
Collapse
Affiliation(s)
- Zhike Feng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Fan Xue
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Min Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xiaojiao Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Wenyang Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Maria J. Garcia-Murria
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Spain
| | - Ismael Mingarro
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Spain
| | - Yong Liu
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, People's Republic of China
| | - Ying Huang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Lei Jiang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Min Zhu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
42
|
Bak A, Folimonova SY. The conundrum of a unique protein encoded by citrus tristeza virus that is dispensable for infection of most hosts yet shows characteristics of a viral movement protein. Virology 2015; 485:86-95. [PMID: 26210077 DOI: 10.1016/j.virol.2015.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 07/03/2015] [Accepted: 07/04/2015] [Indexed: 11/22/2022]
Abstract
Citrus tristeza virus (CTV), one of the most economically important viruses, produces a unique protein, p33, which is encoded only in the genomes of isolates of CTV. Recently, we demonstrated that membrane association of the p33 protein confers virus ability to extend its host range. In this work we show that p33 shares characteristics of viral movement proteins. Upon expression in a host cell, the protein localizes to plasmodesmata and displays the ability to form extracellular tubules. Furthermore, p33 appears to traffic via the cellular secretory pathway and the actin network to plasmodesmata locations and is likely being recycled through the endocytic pathway. Finally, our study reveals that p33 colocalizes with a putative movement protein of CTV, the p6 protein. These results suggest a potential role of p33 as a noncanonical viral movement protein, which mediates virus translocation in the specific hosts.
Collapse
Affiliation(s)
- Aurélie Bak
- University of Florida, Plant Pathology Department, Gainesville, FL 32611, USA
| | | |
Collapse
|
43
|
Levy A. Turnip vein clearing virus movement protein nuclear activity: Do Tobamovirus movement proteins play a role in immune response suppression? PLANT SIGNALING & BEHAVIOR 2015; 10:e1066951. [PMID: 26237173 PMCID: PMC4883906 DOI: 10.1080/15592324.2015.1066951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 06/23/2015] [Indexed: 05/11/2023]
Abstract
Plant viruses' cell-to-cell movement requires the function of virally encoded movement proteins (MPs). The Tobamovirus, Tobacco mosaic virus (TMV) has served as the model virus to study the activities of single MPs. However, since TMV does not infect the model plant Arabidopsis thaliana I have used a related Tobamovirus, Turnip vein-clearing virus (TVCV). I recently showed that, despite belonging to the same genus, the behavior of the 2 viruses MPs differ significantly during infection. Most notably, MP(TVCV), but not MP(TMV), targets the nucleus and induces the formation of F actin-containing filaments that associate with chromatin. Mutational analyses showed that nuclear localization of MP(TVCV) was necessary for TVCV local and systemic infection in both Nicotiana benthamiana and Arabidopsis. In this addendum, I propose possible targets for the MP(TVCV) nuclear activity, and suggest viewing MPs as viral effector-like proteins, playing a role in the inhibition of plant defense.
Collapse
Affiliation(s)
- Amit Levy
- Boyce Thompson Institute for Plant Research; Ithaca, NY USA
- Section of Plant Pathology and Plant Microbe Biology; School of Integrative Plant Science; Cornell University; Ithaca, NY USA
| |
Collapse
|
44
|
Plant virus replication and movement. Virology 2015; 479-480:657-71. [DOI: 10.1016/j.virol.2015.01.025] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/19/2015] [Accepted: 01/28/2015] [Indexed: 01/10/2023]
|
45
|
Iriti M, Varoni EM. Chitosan-induced antiviral activity and innate immunity in plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:2935-44. [PMID: 25226839 DOI: 10.1007/s11356-014-3571-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 09/05/2014] [Indexed: 05/23/2023]
Abstract
Immunity represents a trait common to all living organisms, and animals and plants share some similarities. Therefore, in susceptible host plants, complex defence machinery may be stimulated by elicitors. Among these, chitosan deserves particular attention because of its proved efficacy. This survey deals with the antiviral activity of chitosan, focusing on its perception by the plant cell and mechanism of action. Emphasis has been paid to benefits and limitations of this strategy in crop protection, as well as to the potential of chitosan as a promising agent in virus disease control.
Collapse
Affiliation(s)
- Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, Via G. Celoria 2, 20133, Milan, Italy,
| | | |
Collapse
|
46
|
Abstract
The symplastic communication network established by plasmodesmata (PD) and connected phloem provides an essential pathway for spatiotemporal intercellular signaling in plant development but is also exploited by viruses for moving their genomes between cells in order to infect plants systemically. Virus movement depends on virus-encoded movement proteins (MPs) that target PD and therefore represent important keys to the cellular mechanisms underlying the intercellular trafficking of viruses and other macromolecules. Viruses and their MPs have evolved different mechanisms for intracellular transport and interaction with PD. Some viruses move from cell to cell by interacting with cellular mechanisms that control the size exclusion limit of PD whereas other viruses alter the PD architecture through assembly of specialized transport structures within the channel. Some viruses move between cells in the form of assembled virus particles whereas other viruses may interact with nucleic acid transport mechanisms to move their genomes in a non-encapsidated form. Moreover, whereas several viruses rely on the secretory pathway to target PD, other viruses interact with the cortical endoplasmic reticulum and associated cytoskeleton to spread infection. This chapter provides an introduction into viruses and their role in studying the diverse cellular mechanisms involved in intercellular PD-mediated macromolecular trafficking.
Collapse
Affiliation(s)
- Manfred Heinlein
- Institut de Biologie Moléculaire des Plantes (IBMP), Centre National de la Recherche Scientifique (CNRS), 12 rue du Général Zimmer, 67084, Strasbourg, France,
| |
Collapse
|
47
|
Sevilem I, Yadav SR, Helariutta Y. Plasmodesmata: channels for intercellular signaling during plant growth and development. Methods Mol Biol 2015; 1217:3-24. [PMID: 25287193 DOI: 10.1007/978-1-4939-1523-1_1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Plants have evolved strategies for short- and long-distance communication to coordinate plant development and to adapt to changing environmental conditions. Plasmodesmata (PD) are intercellular nanochannels that provide an effective pathway for both selective and nonselective movement of various molecules that function in diverse biological processes. Numerous non-cell-autonomous proteins (NCAP) and small RNAs have been identified that have crucial roles in cell fate determination and organ patterning during development. Both the density and aperture size of PD are developmentally regulated, allowing formation of spatial symplastic domains for establishment of tissue-specific developmental programs. The PD size exclusion limit (SEL) is controlled by reversible deposition of callose, as well as by some PD-associated proteins. Although a large number of PD-associated proteins have been identified, many of their functions remain unknown. Despite the fact that PD are primarily membranous structures, surprisingly very little is known about their lipid composition. Thus, future studies in PD biology will provide deeper insights into the high-resolution structure and tightly regulated functions of PD and the evolution of PD-mediated cell-to-cell communication in plants.
Collapse
Affiliation(s)
- Iris Sevilem
- Department of Bio and Environmental Sciences, Institute of Biotechnology, University of Helsinki, Helsinki, 00014, Finland
| | | | | |
Collapse
|
48
|
Amari K, Di Donato M, Dolja VV, Heinlein M. Myosins VIII and XI play distinct roles in reproduction and transport of tobacco mosaic virus. PLoS Pathog 2014; 10:e1004448. [PMID: 25329993 PMCID: PMC4199776 DOI: 10.1371/journal.ppat.1004448] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 09/04/2014] [Indexed: 12/02/2022] Open
Abstract
Viruses are obligatory parasites that depend on host cellular factors for their replication as well as for their local and systemic movement to establish infection. Although myosin motors are thought to contribute to plant virus infection, their exact roles in the specific infection steps have not been addressed. Here we investigated the replication, cell-to-cell and systemic spread of Tobacco mosaic virus (TMV) using dominant negative inhibition of myosin activity. We found that interference with the functions of three class VIII myosins and two class XI myosins significantly reduced the local and long-distance transport of the virus. We further determined that the inactivation of myosins XI-2 and XI-K affected the structure and dynamic behavior of the ER leading to aggregation of the viral movement protein (MP) and to a delay in the MP accumulation in plasmodesmata (PD). The inactivation of myosin XI-2 but not of myosin XI-K affected the localization pattern of the 126k replicase subunit and the level of TMV accumulation. The inhibition of myosins VIII-1, VIII-2 and VIII-B abolished MP localization to PD and caused its retention at the plasma membrane. These results suggest that class XI myosins contribute to the viral propagation and intracellular trafficking, whereas myosins VIII are specifically required for the MP targeting to and virus movement through the PD. Thus, TMV appears to recruit distinct myosins for different steps in the cell-to-cell spread of the infection.
Collapse
Affiliation(s)
- Khalid Amari
- Zürich-Basel Plant Science Center, Botany, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Martin Di Donato
- Zürich-Basel Plant Science Center, Botany, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Valerian V. Dolja
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Manfred Heinlein
- Zürich-Basel Plant Science Center, Botany, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
49
|
Shen Y, Zhao X, Yao M, Li C, Miriam K, Zhang X, Tao X. A versatile complementation assay for cell-to-cell and long distance movements by cucumber mosaic virus based agro-infiltration. Virus Res 2014; 190:25-33. [PMID: 25014544 DOI: 10.1016/j.virusres.2014.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 11/22/2022]
Abstract
Microinjection, bombardment or tobamovirus and potexvirus based assay has been developed to identify the putative movement protein (MP) or to characterize plasmodesma-mediated macromolecular transport. In this study, we developed a versatile complementation assay for the cell-to-cell and long distance movements of macromolecules by agro-infiltration based on the infectious clones of cucumber mosaic virus (CMV). The movement-deficient CMV reporter was constructed by replacing the MP on RNA 3 with ER targeted GFP. The ectopic expression of CMV MP was able to efficiently move the RNA3-MP::erGFP reporter from the original cell to neighboring cells, whereas CMV MP-M5 mutant was unable to initiate the movement. Importantly, the presence of CMV RNA1 and RNA2 can dramatically amplify the movement signals once the RNA3-MP::erGFP reporter moves out of the original cell. The appropriate observation time for this movement complementation assay was at 48-72 hours post infiltration (hpi), whereas the optimal incubation temperature was between 25 and 28 °C. The ectopic co-expression of MPs from other virus genera, NSm from tomato spotted wilt tospovirus (TSWV) or NSvc4 from rice stripe tenuivirus (RSV), could also facilitate the movement of the RNA3::erGFP reporter from the original cell into other cells. The chimeric mutant virus created by substituting the MP of CMV RNA3 with NSm from TSWV or NSvc4 from RSV move systemically in Nicotiana benthamiana plants by agro-infiltration. This agro-infiltration complementation assay is simple, efficient and reliable. Our approach provides an alternative and powerful tool with great potentials in identifying putative movement protein and characterizing macromolecular trafficking.
Collapse
Affiliation(s)
- Yan Shen
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohui Zhao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Yao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chun Li
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Karwitha Miriam
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xue Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaorong Tao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
50
|
Verchot J. The ER quality control and ER associated degradation machineries are vital for viral pathogenesis. FRONTIERS IN PLANT SCIENCE 2014; 5:66. [PMID: 24653727 DOI: 10.3389/fpls.2014.00066/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/07/2014] [Indexed: 05/24/2023]
Abstract
The endoplasmic reticulum (ER) is central to protein production and membrane lipid synthesis. The unfolded protein response (UPR) supports cellular metabolism by ensuring protein quality control in the ER. Most positive strand RNA viruses cause extensive remodeling of membranes and require active membrane synthesis to promote infection. How viruses interact with the cellular machinery controlling membrane metabolism is largely unknown. Furthermore, there is mounting data pointing to the importance of the UPR and ER associated degradation (ERAD) machineries in viral pathogenesis in eukaryotes emerging topic. For many viruses, the UPR is an early event that is essential for persistent infection and benefits virus replication. In addition, many viruses are reported to commandeer ER resident chaperones to contribute to virus replication and intercellular movement. In particular, calreticulin, the ubiquitin machinery, and the 26S proteasome are most commonly identified components of the UPR and ERAD machinery that also regulate virus infection. In addition, researchers have noted a link between UPR and autophagy. It is well accepted that positive strand RNA viruses use autophagic membranes as scaffolds to support replication and assembly. However this topic has yet to be explored using plant viruses. The goal of research on this topic is to uncover how viruses interact with this ER-related machinery and to use this information for designing novel strategies to boost immune responses to virus infection.
Collapse
Affiliation(s)
- Jeanmarie Verchot
- Department of Entomology and Plant Pathology, Oklahoma State University Stillwater, OK, USA
| |
Collapse
|