1
|
Jones DAB, Rybak K, Hossain M, Bertazzoni S, Williams A, Tan KC, Phan HTT, Hane JK. Repeat-induced point mutations driving Parastagonospora nodorum genomic diversity are balanced by selection against non-synonymous mutations. Commun Biol 2024; 7:1614. [PMID: 39627497 PMCID: PMC11615325 DOI: 10.1038/s42003-024-07327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024] Open
Abstract
Parastagonospora nodorum is necrotrophic fungal pathogen of wheat with significant genomic resources. Population-level pangenome data for 173 isolates, of which 156 were from Western Australia (WA) and 17 were international, were examined for overall genomic diversity and effector gene content. A heterothallic core population occurred across all regions of WA, with asexually-reproducing clonal clusters in dryer northern regions. High potential for SNP diversity in the form of repeat-induced point mutation (RIP)-like transitions, was observed across the genome, suggesting widespread 'RIP-leakage' from transposon-rich repetitive sequences into non-repetitive regions. The strong potential for RIP-like mutations was balanced by negative selection against non-synonymous SNPs, that was observed within protein-coding regions. Protein isoform profiles of known effector loci (SnToxA, SnTox1, SnTox3, SnTox267, and SnTox5) indicated low-levels of non-synonymous and high-levels of silent RIP-like mutations. Effector predictions identified 186 candidate secreted predicted effector proteins (CSEPs), 69 of which had functional annotations and included confirmed effectors. Pangenome-based effector isoform profiles across WA were distinct from global isolates and were conserved relative to population structure, and may enable new approaches for monitoring crop disease pathotypes.
Collapse
Affiliation(s)
- Darcy A B Jones
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, WA, Australia
| | - Kasia Rybak
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, WA, Australia
| | - Mohitul Hossain
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, WA, Australia
| | - Stefania Bertazzoni
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, WA, Australia
| | - Angela Williams
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, WA, Australia
| | - Kar-Chun Tan
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, WA, Australia
| | - Huyen T T Phan
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, WA, Australia
| | - James K Hane
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, WA, Australia.
| |
Collapse
|
2
|
Qiu M, Tian M, Sun Y, Li H, Huang W, Ouyang H, Lin S, Zhang C, Wang M, Wang Y. Decoding the biochemical dialogue: metabolomic insights into soybean defense strategies against diverse pathogens. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2234-2250. [PMID: 38965141 DOI: 10.1007/s11427-023-2596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/15/2024] [Indexed: 07/06/2024]
Abstract
Soybean, a crucial global leguminous crop, confronts persistent threats from diverse pathogens, exerting a profound impact on global yields. While genetic dimensions of soybean-pathogen interactions have garnered attention, the intricate biochemical responses remain poorly elucidated. In this study, we applied targeted and untargeted liquid chromatography coupled to mass spectrometry (LC-MS) metabolite profiling to dissect the complex interplay between soybeans and five distinct pathogens. Our analysis uncovered 627 idMS/MS spectra, leading to the identification of four main modules, encompassing flavonoids, isoflavonoids, triterpenoids, and amino acids and peptides, alongside other compounds such as phenolics. Profound shifts were observed in both primary and secondary metabolism in response to pathogenic infections. Particularly notable were the bidirectional changes in total flavonoids across diverse pathogenic inoculations, while triterpenoids exhibited a general declining trend. Noteworthy among the highly inducible total flavonoids were known representative anti-pathogen compounds (glyceollin I), backbone forms of isoflavonoids (daidzein, genistein, glycitein, formononetin), and newly purified compounds in this study (prunin). Subsequently, we delved into the biological roles of these five compounds, validating their diverse functions against pathogens: prunin significantly inhibited the vegetative growth and virulence of Phytophthora sojae; genistein exhibited a pronounced inhibitory effect on the vegetative growth and virulence of Phomopsis longicolla; daidzein and formononetin displayed significant repressive effects on the virulence of P. longicolla. This study underscores the potent utility of metabolomic tools, providing in-depth insights into plant-pathogen interactions from a biochemical perspective. The findings not only contribute to plant pathology but also offer strategic pathways for bolstering plant resistance against diseases on a broader scale.
Collapse
Affiliation(s)
- Min Qiu
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengjun Tian
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaru Sun
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huaibo Li
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenwen Huang
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haibing Ouyang
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaoyan Lin
- China State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chen Zhang
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ming Wang
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China.
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yuanchao Wang
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China.
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
3
|
Jackson E, Li J, Weerasinghe T, Li X. The Ubiquitous Wilt-Inducing Pathogen Fusarium oxysporum-A Review of Genes Studied with Mutant Analysis. Pathogens 2024; 13:823. [PMID: 39452695 PMCID: PMC11510031 DOI: 10.3390/pathogens13100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Fusarium oxysporum is one of the most economically important plant fungal pathogens, causing devastating Fusarium wilt diseases on a diverse range of hosts, including many key crop plants. Consequently, F. oxysporum has been the subject of extensive research to help develop and improve crop protection strategies. The sequencing of the F. oxysporum genome 14 years ago has greatly accelerated the discovery and characterization of key genes contributing to F. oxysporum biology and virulence. In this review, we summarize important findings on the molecular mechanisms of F. oxysporum growth, reproduction, and virulence. In particular, we focus on genes studied through mutant analysis, covering genes involved in diverse processes such as metabolism, stress tolerance, sporulation, and pathogenicity, as well as the signaling pathways that regulate them. In doing so, we hope to present a comprehensive review of the molecular understanding of F. oxysporum that will aid the future study of this and related species.
Collapse
Affiliation(s)
- Edan Jackson
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Josh Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Thilini Weerasinghe
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
4
|
You Y, Suraj HM, Matz L, Herrera Valderrama AL, Ruigrok P, Shi-Kunne X, Pieterse FPJ, Oostlander A, Beenen HG, Chavarro-Carrero EA, Qin S, Verstappen FWA, Kappers IF, Fleißner A, van Kan JAL. Botrytis cinerea combines four molecular strategies to tolerate membrane-permeating plant compounds and to increase virulence. Nat Commun 2024; 15:6448. [PMID: 39085234 PMCID: PMC11291775 DOI: 10.1038/s41467-024-50748-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Saponins are plant secondary metabolites comprising glycosylated triterpenoids, steroids or steroidal alkaloids with a broad spectrum of toxicity to microbial pathogens and pest organisms that contribute to basal plant defense to biotic attack. Secretion of glycosyl hydrolases that enzymatically convert saponins into less toxic products was thus far the only mechanism reported to enable fungal pathogens to colonize their saponin-containing host plant(s). We studied the mechanisms that the fungus Botrytis cinerea utilizes to be tolerant to well-characterized, structurally related saponins from tomato and Digitalis purpurea. By gene expression studies, comparative genomics, enzyme assays and testing a large panel of fungal (knockout and complemented) mutants, we unraveled four distinct cellular mechanisms that participate in the mitigation of the toxic activity of these saponins and in virulence on saponin-producing host plants. The enzymatic deglycosylation that we identified is novel and unique to this fungus-saponin combination. The other three tolerance mechanisms operate in the fungal membrane and are mediated by protein families that are widely distributed in the fungal kingdom. We present a spatial and temporal model on how these mechanisms jointly confer tolerance to saponins and discuss the repercussions of these findings for other plant pathogenic fungi, as well as human pathogens.
Collapse
Affiliation(s)
- Yaohua You
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
- Department of Biology, Institute for Molecular Plant Physiology, RWTH University, Aachen, Germany
| | - H M Suraj
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Linda Matz
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Paul Ruigrok
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Xiaoqian Shi-Kunne
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Frank P J Pieterse
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Anne Oostlander
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Henriek G Beenen
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | | | - Si Qin
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
- Department of Plant Pathology, University of California Davis, Davis, USA
| | | | - Iris F Kappers
- Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands
| | - André Fleißner
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jan A L van Kan
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
5
|
Wang LH, Tan DH, Zhong XS, Jia MQ, Ke X, Zhang YM, Cui T, Shi L. Review on toxicology and activity of tomato glycoalkaloids in immature tomatoes. Food Chem 2024; 447:138937. [PMID: 38492295 DOI: 10.1016/j.foodchem.2024.138937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 03/18/2024]
Abstract
Owing to the lack of selection and limited intelligence in mechanical picking, some immature tomatoes that contain alkaloids are thrown away. Tomatine alkaloids are steroidal alkaloids naturally present in Solanaceae plants, which are distributed in small amounts in immature tomato fruits and decrease as the fruits ripen. Tomato glycoalkaloids are harmful to human health. However, in small quantities, there is some evidence that these compounds might be beneficial, as other non-antioxidant bioactivities. This article considers recent research on the biological effects of tomato glycoalkaloids in immature tomatoes, providing reference value for the potential development of these compounds.
Collapse
Affiliation(s)
- Li-Hao Wang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - De-Hong Tan
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xue-Song Zhong
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Mei-Qi Jia
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xue Ke
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yu-Mei Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Tong Cui
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Lin Shi
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
6
|
Shiose L, Moreira JDR, Lira BS, Ponciano G, Gómez-Ocampo G, Wu RTA, Dos Santos Júnior JL, Ntelkis N, Clicque E, Oliveira MJ, Lubini G, Floh EIS, Botto JF, Ferreira MJP, Goossens A, Freschi L, Rossi M. A tomato B-box protein regulates plant development and fruit quality through the interaction with PIF4, HY5, and RIN transcription factors. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3368-3387. [PMID: 38492237 DOI: 10.1093/jxb/erae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/15/2024] [Indexed: 03/18/2024]
Abstract
During the last decade, knowledge about BBX proteins has greatly increased. Genome-wide studies identified the BBX gene family in several ornamental, industry, and food crops; however, reports regarding the role of these genes as regulators of agronomically important traits are scarce. Here, by phenotyping a knockout mutant, we performed a comprehensive functional characterization of the tomato locus Solyc12g089240, hereafter called SlBBX20. The data revealed the encoded protein as a positive regulator of light signaling affecting several physiological processes during the life span of plants. Through inhibition of PHYTOCHROME INTERACTING FACTOR 4 (SlPIF4)-auxin crosstalk, SlBBX20 regulates photomorphogenesis. Later in development, it controls the balance between cell division and expansion to guarantee correct vegetative and reproductive development. In fruits, SlBBX20 is transcriptionally induced by the master transcription factor RIPENING INHIBITOR (SlRIN) and, together with ELONGATED HYPOCOTYL 5 (SlHY5), up-regulates flavonoid biosynthetic genes. Finally, SlBBX20 promotes the accumulation of steroidal glycoalkaloids and attenuates Botrytis cinerea infection. This work clearly demonstrates that BBX proteins are multilayer regulators of plant physiology because they affect not only multiple processes during plant development but they also regulate other genes at the transcriptional and post-translational levels.
Collapse
Affiliation(s)
- Lumi Shiose
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brasil
| | - Juliene Dos Reis Moreira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brasil
| | - Bruno Silvestre Lira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brasil
| | - Gabriel Ponciano
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brasil
| | - Gabriel Gómez-Ocampo
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Avenida San Martín 4453, Buenos Aires C1417DSE, Argentina
| | - Raquel Tsu Ay Wu
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brasil
| | - José Laurindo Dos Santos Júnior
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brasil
| | - Nikolaos Ntelkis
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark-Zwijnaarde 71, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark-Zwijnaarde 71, Ghent, Belgium
| | - Elke Clicque
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark-Zwijnaarde 71, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark-Zwijnaarde 71, Ghent, Belgium
| | - Maria José Oliveira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brasil
| | - Greice Lubini
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, 14040-901, Ribeirão Preto, Brasil
| | - Eny Iochevet Segal Floh
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brasil
| | - Javier Francisco Botto
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Avenida San Martín 4453, Buenos Aires C1417DSE, Argentina
| | - Marcelo José Pena Ferreira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brasil
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark-Zwijnaarde 71, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark-Zwijnaarde 71, Ghent, Belgium
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brasil
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brasil
| |
Collapse
|
7
|
Christian N, Perlin MH. Plant-endophyte communication: Scaling from molecular mechanisms to ecological outcomes. Mycologia 2024; 116:227-250. [PMID: 38380970 DOI: 10.1080/00275514.2023.2299658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/22/2023] [Indexed: 02/22/2024]
Abstract
Diverse communities of fungal endophytes reside in plant tissues, where they affect and are affected by plant physiology and ecology. For these intimate interactions to form and persist, endophytes and their host plants engage in intricate systems of communication. The conversation between fungal endophytes and plant hosts ultimately dictates endophyte community composition and function and has cascading effects on plant health and plant interactions. In this review, we synthesize our current knowledge on the mechanisms and strategies of communication used by endophytic fungi and their plant hosts. We discuss the molecular mechanisms of communication that lead to organ specificity of endophytic communities and distinguish endophytes, pathogens, and saprotrophs. We conclude by offering emerging perspectives on the relevance of plant-endophyte communication to microbial community ecology and plant health and function.
Collapse
Affiliation(s)
- Natalie Christian
- Department of Biology, University of Louisville, Louisville, Kentucky 40292
| | - Michael H Perlin
- Department of Biology, University of Louisville, Louisville, Kentucky 40292
| |
Collapse
|
8
|
Luo SH, Hua J, Liu Y, Li SH. The Chemical Ecology of Plant Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 124:57-183. [PMID: 39101984 DOI: 10.1007/978-3-031-59567-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Plants are excellent chemists with an impressive capability of biosynthesizing a large variety of natural products (also known as secondary or specialized metabolites) to resist various biotic and abiotic stresses. In this chapter, 989 plant natural products and their ecological functions in plant-herbivore, plant-microorganism, and plant-plant interactions are reviewed. These compounds include terpenoids, phenols, alkaloids, and other structural types. Terpenoids usually provide direct or indirect defense functions for plants, while phenolic compounds play important roles in regulating the interactions between plants and other organisms. Alkaloids are frequently toxic to herbivores and microorganisms, and can therefore also provide defense functions. The information presented should provide the basis for in-depth research of these plant natural products and their natural functions, and also for their further development and utilization.
Collapse
Affiliation(s)
- Shi-Hong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Panlong District, Kunming, 650201, Yunnan Province, P. R. China
| | - Juan Hua
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Dongling Road 120, Shenhe District, Shenyang, 110866, Liaoning Province, P. R. China
| | - Yan Liu
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, LiuTai Avenue 1166, Wenjiang District, Chengdu, 611137, Sichuan Province, P. R. China.
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Panlong District, Kunming, 650201, Yunnan Province, P. R. China.
| |
Collapse
|
9
|
Gutiérrez-Sánchez A, Plasencia J, Monribot-Villanueva JL, Rodríguez-Haas B, Ruíz-May E, Guerrero-Analco JA, Sánchez-Rangel D. Virulence factors of the genus Fusarium with targets in plants. Microbiol Res 2023; 277:127506. [PMID: 37783182 DOI: 10.1016/j.micres.2023.127506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Fusarium spp. comprise various species of filamentous fungi that cause severe diseases in plant crops of both agricultural and forestry interest. These plant pathogens produce a wide range of molecules with diverse chemical structures and biological activities. Genetic functional analyses of some of these compounds have shown their role as virulence factors (VF). However, their mode of action and contributions to the infection process for many of these molecules are still unknown. This review aims to analyze the state of the art in Fusarium VF, emphasizing their biological targets on the plant hosts. It also addresses the current experimental approaches to improve our understanding of their role in virulence and suggests relevant research questions that remain to be answered with a greater focus on species of agroeconomic importance. In this review, a total of 37 confirmed VF are described, including 22 proteinaceous and 15 non-proteinaceous molecules, mainly from Fusarium oxysporum and Fusarium graminearum and, to a lesser extent, in Fusarium verticillioides and Fusarium solani.
Collapse
Affiliation(s)
- Angélica Gutiérrez-Sánchez
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico; Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Javier Plasencia
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Juan L Monribot-Villanueva
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Benjamín Rodríguez-Haas
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Eliel Ruíz-May
- Laboratorio de Proteómica, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - José A Guerrero-Analco
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico.
| | - Diana Sánchez-Rangel
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico; Investigador por México - CONAHCyT en la Red de Estudios Moleculares Avanzados del Instituto de Ecología, A. C. (INECOL), Carretera antigua a Coatepec 351, El Haya, Xalapa, Veracruz 91073, Mexico.
| |
Collapse
|
10
|
Zou J, Jiang C, Qiu S, Duan G, Wang G, Li D, Yu S, Zhao D, Sun W. An Ustilaginoidea virens glycoside hydrolase 42 protein is an essential virulence factor and elicits plant immunity as a PAMP. MOLECULAR PLANT PATHOLOGY 2023; 24:1414-1429. [PMID: 37452482 PMCID: PMC10576179 DOI: 10.1111/mpp.13377] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/03/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
Rice false smut, caused by the ascomycete fungus Ustilaginoidea virens, which infects rice florets before heading, severely threatens rice grain yield and quality worldwide. The U. virens genome encodes a number of glycoside hydrolase (GH) proteins. So far, the functions of these GHs in U. virens are largely unknown. In this study, we identified a GH42 protein secreted by U. virens, named UvGHF1, that exhibits β-galactosidase activity. UvGHF1 not only functions as an essential virulence factor during U. virens infection, but also serves as a pathogen-associated molecular pattern (PAMP) in Nicotiana benthamiana and rice. The PAMP activity of UvGHF1 is independent of its β-galactosidase activity. Moreover, UvGHF1 triggers cell death in N. benthamiana in a BAK1-dependent manner. Ectopic expression of UvGHF1 in rice induces pattern-triggered immunity and enhances rice resistance to fungal and bacterial diseases. RNA-seq analysis revealed that UvGHF1 expression in rice not only activates expression of many defence-related genes encoding leucine-rich repeat receptor-like kinases and WRKY and ERF transcription factors, but also induces diterpenoid biosynthesis and phenylpropanoid biosynthesis pathways. Therefore, UvGHF1 contributes to U. virens virulence, but is also recognized by the rice surveillance system to trigger plant immunity.
Collapse
Affiliation(s)
- Jiaying Zou
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Chunquan Jiang
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Shanshan Qiu
- Department of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Guohua Duan
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Guanqun Wang
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Dayong Li
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Siwen Yu
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Dan Zhao
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Wenxian Sun
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
- Department of Plant PathologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
11
|
Delbrouck JA, Desgagné M, Comeau C, Bouarab K, Malouin F, Boudreault PL. The Therapeutic Value of Solanum Steroidal (Glyco)Alkaloids: A 10-Year Comprehensive Review. Molecules 2023; 28:4957. [PMID: 37446619 DOI: 10.3390/molecules28134957] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Steroidal (glycol)alkaloids S(G)As are secondary metabolites made of a nitrogen-containing steroidal skeleton linked to a (poly)saccharide, naturally occurring in the members of the Solanaceae and Liliaceae plant families. The genus Solanum is familiar to all of us as a food source (tomato, potato, eggplant), but a few populations have also made it part of their ethnobotany for their medicinal properties. The recent development of the isolation, purification and analysis techniques have shed light on the structural diversity among the SGAs family, thus attracting scientists to investigate their various pharmacological properties. This review aims to overview the recent literature (2012-2022) on the pharmacological benefits displayed by the SGAs family. Over 17 different potential therapeutic applications (antibiotic, antiviral, anti-inflammatory, etc.) were reported over the past ten years, and this unique review analyzes each pharmacological effect independently without discrimination of either the SGA's chemical identity or their sources. A strong emphasis is placed on the discovery of their biological targets and the subsequent cellular mechanisms, discussing in vitro to in vivo biological data. The therapeutic value and the challenges of the solanum steroidal glycoalkaloid family is debated to provide new insights for future research towards clinical development.
Collapse
Affiliation(s)
- Julien A Delbrouck
- Institut de Pharmacologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Michael Desgagné
- Institut de Pharmacologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Christian Comeau
- Institut de Pharmacologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Kamal Bouarab
- Centre SEVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, 2500 Boul de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - François Malouin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, 2500 Boul de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Pierre-Luc Boudreault
- Institut de Pharmacologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
12
|
Chen M, Kumakura N, Saito H, Muller R, Nishimoto M, Mito M, Gan P, Ingolia NT, Shirasu K, Ito T, Shichino Y, Iwasaki S. A parasitic fungus employs mutated eIF4A to survive on rocaglate-synthesizing Aglaia plants. eLife 2023; 12:81302. [PMID: 36852480 PMCID: PMC9977294 DOI: 10.7554/elife.81302] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/12/2023] [Indexed: 03/01/2023] Open
Abstract
Plants often generate secondary metabolites as defense mechanisms against parasites. Although some fungi may potentially overcome the barrier presented by antimicrobial compounds, only a limited number of examples and molecular mechanisms of resistance have been reported. Here, we found an Aglaia plant-parasitizing fungus that overcomes the toxicity of rocaglates, which are translation inhibitors synthesized by the plant, through an amino acid substitution in a eukaryotic translation initiation factor (eIF). De novo transcriptome assembly revealed that the fungus belongs to the Ophiocordyceps genus and that its eIF4A, a molecular target of rocaglates, harbors an amino acid substitution critical for rocaglate binding. Ribosome profiling harnessing a cucumber-infecting fungus, Colletotrichum orbiculare, demonstrated that the translational inhibitory effects of rocaglates were largely attenuated by the mutation found in the Aglaia parasite. The engineered C. orbiculare showed a survival advantage on cucumber plants with rocaglates. Our study exemplifies a plant-fungus tug-of-war centered on secondary metabolites produced by host plants.
Collapse
Affiliation(s)
- Mingming Chen
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of TokyoKashiwaJapan
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
| | - Naoyoshi Kumakura
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource ScienceYokohamaJapan
| | - Hironori Saito
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of TokyoKashiwaJapan
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
| | - Ryan Muller
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Madoka Nishimoto
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics ResearchYokohamaJapan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
| | - Pamela Gan
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource ScienceYokohamaJapan
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Ken Shirasu
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource ScienceYokohamaJapan
- Department of Biological Science, Graduate School of Science, The University of TokyoTokyoJapan
| | - Takuhiro Ito
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics ResearchYokohamaJapan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
| | - Shintaro Iwasaki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of TokyoKashiwaJapan
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
| |
Collapse
|
13
|
Kännaste A, Jürisoo L, Runno-Paurson E, Kask K, Talts E, Pärlist P, Drenkhan R, Niinemets Ü. Impacts of Dutch elm disease-causing fungi on foliage photosynthetic characteristics and volatiles in Ulmus species with different pathogen resistance. TREE PHYSIOLOGY 2023; 43:57-74. [PMID: 36106799 DOI: 10.1093/treephys/tpac108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Global warming affects the abiotic and biotic growth environment of plants, including the spread of fungal diseases such as Dutch elm disease (DED). Dutch elm disease-resistance of different Ulmus species varies, but how this is reflected in leaf-level physiological pathogen responses has not been investigated. We studied the impacts of mechanical injury alone and mechanical injury plus inoculation with the DED-causing pathogens Ophiostoma novo-ulmi subsp. novo-ulmi and O. novo-ulmi subsp. americana on Ulmus glabra, a more vulnerable species, and U. laevis, a more resistant species. Plant stress responses were evaluated for 12 days after stress application by monitoring leaf net CO2 assimilation rate (A), stomatal conductance (gs), ratio of ambient to intercellular CO2 concentration (Ca/Ci) and intrinsic water-use efficiency (A/gs), and by measuring biogenic volatile (VOC) release by plant leaves. In U. glabra and U. laevis, A was not affected by time, stressors or their interaction. Only in U. glabra, gs and Ca/Ci decreased in time, yet recovered by the end of the experiment. Although the emission compositions were affected in both species, the stress treatments enhanced VOC emission rates only in U. laevis. In this species, mechanical injury especially when combined with the pathogens increased the emission of lipoxygenase pathway volatiles and dimethylallyl diphosphate and geranyl diphosphate pathway volatiles. In conclusion, the more resistant species U. laevis had a more stable photosynthesis, but stronger pathogen-elicited volatile response, especially after inoculation by O. novo-ulmi subsp. novo-ulmi. Thus, stronger activation of defenses might underlay higher DED-resistance in this species.
Collapse
Affiliation(s)
- Astrid Kännaste
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Liina Jürisoo
- Chair of Silviculture and Forest Ecology, Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Eve Runno-Paurson
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Kaia Kask
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Eero Talts
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Piret Pärlist
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Rein Drenkhan
- Chair of Silviculture and Forest Ecology, Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Ülo Niinemets
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
- Estonian Academy of Sciences, Kohtu 6, Tallinn 10130, Estonia
| |
Collapse
|
14
|
Bradley EL, Ökmen B, Doehlemann G, Henrissat B, Bradshaw RE, Mesarich CH. Secreted Glycoside Hydrolase Proteins as Effectors and Invasion Patterns of Plant-Associated Fungi and Oomycetes. FRONTIERS IN PLANT SCIENCE 2022; 13:853106. [PMID: 35360318 PMCID: PMC8960721 DOI: 10.3389/fpls.2022.853106] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/14/2022] [Indexed: 05/06/2023]
Abstract
During host colonization, plant-associated microbes, including fungi and oomycetes, deliver a collection of glycoside hydrolases (GHs) to their cell surfaces and surrounding extracellular environments. The number and type of GHs secreted by each organism is typically associated with their lifestyle or mode of nutrient acquisition. Secreted GHs of plant-associated fungi and oomycetes serve a number of different functions, with many of them acting as virulence factors (effectors) to promote microbial host colonization. Specific functions involve, for example, nutrient acquisition, the detoxification of antimicrobial compounds, the manipulation of plant microbiota, and the suppression or prevention of plant immune responses. In contrast, secreted GHs of plant-associated fungi and oomycetes can also activate the plant immune system, either by acting as microbe-associated molecular patterns (MAMPs), or through the release of damage-associated molecular patterns (DAMPs) as a consequence of their enzymatic activity. In this review, we highlight the critical roles that secreted GHs from plant-associated fungi and oomycetes play in plant-microbe interactions, provide an overview of existing knowledge gaps and summarize future directions.
Collapse
Affiliation(s)
- Ellie L. Bradley
- Bioprotection Aotearoa, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Bilal Ökmen
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
- Department of Microbial Interactions, IMIT/ZMBP, University of Tübingen, Tübingen, Germany
| | - Gunther Doehlemann
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Bernard Henrissat
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
- Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257 Centre National de la Recherche Scientifique (CNRS), Université Aix-Marseille, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rosie E. Bradshaw
- Bioprotection Aotearoa, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Carl H. Mesarich
- Bioprotection Aotearoa, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| |
Collapse
|
15
|
Bailly C. The steroidal alkaloids α-tomatine and tomatidine: Panorama of their mode of action and pharmacological properties. Steroids 2021; 176:108933. [PMID: 34695457 DOI: 10.1016/j.steroids.2021.108933] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/03/2021] [Accepted: 10/14/2021] [Indexed: 01/04/2023]
Abstract
The steroidal glycoalkaloid α-tomatine (αTM) and its aglycone tomatidine (TD) are abundant in the skin of unripe green tomato and present in tomato leaves and flowers. They mainly serve as defensive agents to protect the plant against infections by insects, bacteria, parasites, viruses, and fungi. In addition, the two products display a range of pharmacological properties potentially useful to treat various human diseases. We have analyzed all known pharmacological activities of αTM and TD, and the corresponding molecular targets and pathways impacted by these two steroidal alkaloids. In experimental models, αTM displays anticancer effects, particularly strong against androgen-independent prostate cancer, as well as robust antifungal effects. αTM is a potent cholesterol binder, useful as a vaccine adjuvant to improve delivery of protein antigens or therapeutic oligonucleotides. TD is a much less cytotoxic compound, able to restrict the spread of certain viruses (such as dengue, chikungunya and porcine epidemic diarrhea viruses) and to provide cardio and neuro-protective effects toward human cells. Both αTM and TD exhibit marked anti-inflammatory activities. They proceed through multiple signaling pathways and protein targets, including the sterol C24 methyltransferase Erg6 and vitamin D receptor, both directly targeted by TD. αTM is a powerful regulator of the NFkB/ERK signaling pathway implicated in various diseases. Collectively, the analysis shed light on the multitargeted action of αTM/TD and their usefulness as chemo-preventive or chemotherapeutic agents. A novel medicinal application for αTM is proposed.
Collapse
|
16
|
Achari SR, Edwards J, Mann RC, Kaur JK, Sawbridge T, Summerell BA. Comparative transcriptomic analysis of races 1, 2, 5 and 6 of Fusarium oxysporum f.sp. pisi in a susceptible pea host identifies differential pathogenicity profiles. BMC Genomics 2021; 22:734. [PMID: 34627148 PMCID: PMC8502283 DOI: 10.1186/s12864-021-08033-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 09/23/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The fungal pathogen Fusarium oxysporum f.sp. pisi (Fop) causes Fusarium wilt in peas. There are four races globally: 1, 2, 5 and 6 and all of these races are present in Australia. Molecular infection mechanisms have been studied in a few other F. oxysporum formae speciales; however, there has been no transcriptomic Fop-pea pathosystem study. RESULTS A transcriptomic study was carried out to understand the molecular pathogenicity differences between the races. Transcriptome analysis at 20 days post-inoculation revealed differences in the differentially expressed genes (DEGs) in the Fop races potentially involved in fungal pathogenicity variations. Most of the DEGs in all the races were engaged in transportation, metabolism, oxidation-reduction, translation, biosynthetic processes, signal transduction, proteolysis, among others. Race 5 expressed the most virulence-associated genes. Most genes encoding for plant cell wall degrading enzymes, CAZymes and effector-like proteins were expressed in race 2. Race 6 expressed the least number of genes at this time point. CONCLUSION Fop races deploy various factors and complex strategies to mitigate host defences to facilitate colonisation. This investigation provides an overview of the putative pathogenicity genes in different Fop races during the necrotrophic stage of infection. These genes need to be functionally characterised to confirm their pathogenicity/virulence roles and the race-specific genes can be further explored for molecular characterisation.
Collapse
Affiliation(s)
- Saidi R Achari
- AgriBio, Agriculture Victoria Research, DJPR, Bundoora, Victoria, Australia.
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia.
| | - Jacqueline Edwards
- AgriBio, Agriculture Victoria Research, DJPR, Bundoora, Victoria, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
| | - Ross C Mann
- AgriBio, Agriculture Victoria Research, DJPR, Bundoora, Victoria, Australia
| | - Jatinder K Kaur
- AgriBio, Agriculture Victoria Research, DJPR, Bundoora, Victoria, Australia
| | - Tim Sawbridge
- AgriBio, Agriculture Victoria Research, DJPR, Bundoora, Victoria, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
| | - Brett A Summerell
- Australian Institute of Botanical Science, Royal Botanic Gardens & Domain Trust, Sydney, NSW, Australia
| |
Collapse
|
17
|
Nakayasu M, Ohno K, Takamatsu K, Aoki Y, Yamazaki S, Takase H, Shoji T, Yazaki K, Sugiyama A. Tomato roots secrete tomatine to modulate the bacterial assemblage of the rhizosphere. PLANT PHYSIOLOGY 2021; 186:270-284. [PMID: 33619554 PMCID: PMC8154044 DOI: 10.1093/plphys/kiab069] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/31/2021] [Indexed: 05/12/2023]
Abstract
Saponins are the group of plant specialized metabolites which are widely distributed in angiosperm plants and have various biological activities. The present study focused on α-tomatine, a major saponin present in tissues of tomato (Solanum lycopersicum) plants. α-Tomatine is responsible for defense against plant pathogens and herbivores, but its biological function in the rhizosphere remains unknown. Secretion of tomatine was higher at the early growth than the green-fruit stage in hydroponically grown plants, and the concentration of tomatine in the rhizosphere of field-grown plants was higher than that of the bulk soil at all growth stages. The effects of tomatine and its aglycone tomatidine on the bacterial communities in the soil were evaluated in vitro, revealing that both compounds influenced the microbiome in a concentration-dependent manner. Numerous bacterial families were influenced in tomatine/tomatidine-treated soil as well as in the tomato rhizosphere. Sphingomonadaceae species, which are commonly observed and enriched in tomato rhizospheres in the fields, were also enriched in tomatine- and tomatidine-treated soils. Moreover, a jasmonate-responsive ETHYLENE RESPONSE FACTOR 4 mutant associated with low tomatine production caused the root-associated bacterial communities to change with a reduced abundance of Sphingomonadaceae. Taken together, our results highlight the role of tomatine in shaping the bacterial communities of the rhizosphere and suggest additional functions of tomatine in belowground biological communication.
Collapse
Affiliation(s)
- Masaru Nakayasu
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Kohei Ohno
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Kyoko Takamatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Yuichi Aoki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan
| | - Shinichi Yamazaki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan
| | - Hisabumi Takase
- Faculty of Bioenvironmental Science, Kyoto University of Advanced Science, Kameoka, Kyoto 621-8555, Japan
| | - Tsubasa Shoji
- Department of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Akifumi Sugiyama
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
- Author for communication:
| |
Collapse
|
18
|
You Y, van Kan JA. Bitter and sweet make tomato hard to (b)eat. THE NEW PHYTOLOGIST 2021; 230:90-100. [PMID: 33220068 PMCID: PMC8126962 DOI: 10.1111/nph.17104] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/09/2020] [Indexed: 05/03/2023]
Abstract
The glycoalkaloid saponin α-tomatine is a tomato-specific secondary metabolite that accumulates to millimolar levels in vegetative tissues and has antimicrobial and antinutritional activity that kills microbial pathogens and deters herbivorous insects. We describe recent insights into the biosynthetic pathway of α-tomatine synthesis and its regulation. We discuss the mode of action of α-tomatine by physically interacting with sterols, thereby disrupting membranes, and how tomato protects itself from its toxic action. Tomato pathogenic microbes can enzymatically hydrolyze, and thereby inactivate, α-tomatine using either of three distinct types of glycosyl hydrolases. We also describe findings that extend well beyond the simple concept of plants producing toxins and pathogens inactivating them. There are reports that toxicity of α-tomatine is modulated by external pH, that α-tomatine can trigger programmed cell death in fungi, that cellular localization matters for the impact of α-tomatine on invading microbes, and that α-tomatine breakdown products generated by microbial hydrolytic enzymes can modulate plant immune responses. Finally, we address a number of outstanding questions that deserve attention in the future.
Collapse
Affiliation(s)
- Yaohua You
- Laboratory of PhytopathologyWageningen UniversityWageningen6708 PBthe Netherlands
| | - Jan A.L. van Kan
- Laboratory of PhytopathologyWageningen UniversityWageningen6708 PBthe Netherlands
| |
Collapse
|
19
|
Murugan L, Krishnan N, Venkataravanappa V, Saha S, Mishra AK, Sharma BK, Rai AB. Molecular characterization and race identification of Fusarium oxysporum f. sp. lycopersici infecting tomato in India. 3 Biotech 2020; 10:486. [PMID: 33123453 DOI: 10.1007/s13205-020-02475-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 10/12/2020] [Indexed: 11/29/2022] Open
Abstract
Fourteen isolates of Fusarium were isolated from wilt affected tomato samples collected from 10 different states of India. Characterization of the fungal cultures based on morphology and sequencing of ITS rDNA revealed that they belonged to Fusarium oxysporum f.sp. lycopersici (Fol). Pathogenicity assay on two susceptible tomato cultivars showed all the 14 isolates were pathogenic and categorized in high-, moderate- and low-virulent groups. Differential host assay on Bonny Best (no resistant gene), UC82-L (harboring I-1), Fla.MH1 (harboring I-1 and I-2) and I3R-1 (harboring I-1, I-2 and I-3) tomato genotypes and PCR amplification with race-specific primers indicated that all the Fusarium isolates infecting tomato in India were belonging to race 1. Molecular diversity analysis based on ISSR markers revealed the presence of 3 distinct groups of Fol isolates. Abundant diversity was observed among the Fol isolates in harboring the virulence-related genes (endo-polygalacturonase gene pg1 and tomatinases) and toxin production (fumonisin). However, presence of pg1 does not correlate with virulence and the isolates carrying tomatinase 4 (tom-4) in combination with other tomatinase genes were of virulent group. Detection of fumonisin gene in six isolates of Fusarium infecting tomato indicated their toxigenic nature.
Collapse
Affiliation(s)
- Loganathan Murugan
- Division of Crop Protection, ICAR-Indian Institute of Vegetable Research, Uttar Pradesh, Varanasi, 221305 India
- Present Address: Division of Crop Protection, ICAR-National Research Centre for Banana, Tamil Nadu, Tiruchirappalli, India
| | - Nagendran Krishnan
- Division of Crop Protection, ICAR-Indian Institute of Vegetable Research, Uttar Pradesh, Varanasi, 221305 India
| | - V Venkataravanappa
- Division of Crop Protection, ICAR-Indian Institute of Vegetable Research, Uttar Pradesh, Varanasi, 221305 India
- Present Address: CHES, Chettalli, ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, India
| | - S Saha
- Division of Crop Protection, ICAR-Indian Institute of Vegetable Research, Uttar Pradesh, Varanasi, 221305 India
- Present Address: Division of Crop Protection, ICAR-National Research Centre for Grapes, Pune, Maharashtra India
| | - A K Mishra
- Division of Crop Protection, ICAR-Indian Institute of Vegetable Research, Uttar Pradesh, Varanasi, 221305 India
| | - B K Sharma
- Division of Crop Protection, ICAR-Indian Institute of Vegetable Research, Uttar Pradesh, Varanasi, 221305 India
| | - A B Rai
- Division of Crop Protection, ICAR-Indian Institute of Vegetable Research, Uttar Pradesh, Varanasi, 221305 India
| |
Collapse
|
20
|
Méndez V, Valenzuela M, Salvà-Serra F, Jaén-Luchoro D, Besoain X, Moore ERB, Seeger M. Comparative Genomics of Pathogenic Clavibacter michiganensis subsp. michiganensis Strains from Chile Reveals Potential Virulence Features for Tomato Plants. Microorganisms 2020; 8:microorganisms8111679. [PMID: 33137950 PMCID: PMC7692107 DOI: 10.3390/microorganisms8111679] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
The genus Clavibacter has been associated largely with plant diseases. The aims of this study were to characterize the genomes and the virulence factors of Chilean C. michiganensis subsp. michiganensis strains VL527, MSF322 and OP3, and to define their phylogenomic positions within the species, Clavibacter michiganensis. VL527 and MSF322 genomes possess 3,396,632 and 3,399,199 bp, respectively, with a pCM2-like plasmid in strain VL527, with pCM1- and pCM2-like plasmids in strain MSF322. OP3 genome is composed of a chromosome and three plasmids (including pCM1- and pCM2-like plasmids) of 3,466,104 bp. Genomic analyses confirmed the phylogenetic relationships of the Chilean strains among C.michiganensis subsp. michiganensis and showed their low genomic diversity. Different virulence levels in tomato plants were observable. Phylogenetic analyses of the virulence factors revealed that the pelA1 gene (chp/tomA region)—that grouped Chilean strains in three distinct clusters—and proteases and hydrolases encoding genes, exclusive for each of the Chilean strains, may be involved in these observed virulence levels. Based on genomic similarity (ANIm) analyses, a proposal to combine and reclassify C. michiganensis subsp. phaseoli and subsp. chilensis at the species level, as C. phaseoli sp. nov., as well as to reclassify C. michiganensis subsp. californiensis as the species C. californiensis sp. nov. may be justified.
Collapse
Affiliation(s)
- Valentina Méndez
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile;
- Correspondence: (V.M.); (M.S.)
| | - Miryam Valenzuela
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile;
| | - Francisco Salvà-Serra
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden; (F.S.-S.); (D.J.-L.); (E.R.B.M.)
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden
- Microbiology, Department of Biology, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Daniel Jaén-Luchoro
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden; (F.S.-S.); (D.J.-L.); (E.R.B.M.)
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden
| | - Ximena Besoain
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile;
| | - Edward R. B. Moore
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden; (F.S.-S.); (D.J.-L.); (E.R.B.M.)
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden
| | - Michael Seeger
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile;
- Correspondence: (V.M.); (M.S.)
| |
Collapse
|
21
|
Thiosulfinate Tolerance Is a Virulence Strategy of an Atypical Bacterial Pathogen of Onion. Curr Biol 2020; 30:3130-3140.e6. [PMID: 32619480 DOI: 10.1016/j.cub.2020.05.092] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/07/2020] [Accepted: 05/29/2020] [Indexed: 01/01/2023]
Abstract
Unlike most characterized bacterial plant pathogens, the broad-host-range plant pathogen Pantoea ananatis lacks both the virulence-associated type III and type II secretion systems. In the absence of these typical pathogenicity factors, P. ananatis induces necrotic symptoms and extensive cell death in onion tissue dependent on the HiVir proposed secondary metabolite synthesis gene cluster. Onion (Allium. cepa L), garlic (A. sativum L.), and other members of the Allium genus produce volatile antimicrobial thiosulfinates upon cellular damage. However, the roles of endogenous thiosulfinate production in host-bacterial pathogen interactions have not been described. We found a strong correlation between the genetic requirements for P. ananatis to colonize necrotized onion tissue and its capacity for tolerance to the thiosulfinate "allicin" based on the presence of an eleven-gene, plasmid-borne, virulence cluster of sulfur redox genes. We have designated them "alt" genes for allicin tolerance. We show that allicin and onion thiosulfinates restrict bacterial growth with similar kinetics. The alt gene cluster is sufficient to confer allicin tolerance and protects the glutathione pool during allicin treatment. Independent alt genes make partial phenotypic contributions indicating that they function as a collective cohort to manage thiol stress. Our work implicates endogenous onion thiosulfinates produced during cellular damage as major mediators of interactions with bacteria. The P. ananatis-onion pathosystem can be modeled as a chemical arms race of pathogen attack, host chemical counterattack, and pathogen defense.
Collapse
|
22
|
Ewald J, Sieber P, Garde R, Lang SN, Schuster S, Ibrahim B. Trends in mathematical modeling of host-pathogen interactions. Cell Mol Life Sci 2020; 77:467-480. [PMID: 31776589 PMCID: PMC7010650 DOI: 10.1007/s00018-019-03382-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022]
Abstract
Pathogenic microorganisms entail enormous problems for humans, livestock, and crop plants. A better understanding of the different infection strategies of the pathogens enables us to derive optimal treatments to mitigate infectious diseases or develop vaccinations preventing the occurrence of infections altogether. In this review, we highlight the current trends in mathematical modeling approaches and related methods used for understanding host-pathogen interactions. Since these interactions can be described on vastly different temporal and spatial scales as well as abstraction levels, a variety of computational and mathematical approaches are presented. Particular emphasis is placed on dynamic optimization, game theory, and spatial modeling, as they are attracting more and more interest in systems biology. Furthermore, these approaches are often combined to illuminate the complexities of the interactions between pathogens and their host. We also discuss the phenomena of molecular mimicry and crypsis as well as the interplay between defense and counter defense. As a conclusion, we provide an overview of method characteristics to assist non-experts in their decision for modeling approaches and interdisciplinary understanding.
Collapse
Affiliation(s)
- Jan Ewald
- Matthias Schleiden Institute, Bioinformatics, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, 07743, Jena, Germany
| | - Patricia Sieber
- Matthias Schleiden Institute, Bioinformatics, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, 07743, Jena, Germany
| | - Ravindra Garde
- Matthias Schleiden Institute, Bioinformatics, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, 07743, Jena, Germany
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Stefan N Lang
- Matthias Schleiden Institute, Bioinformatics, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, 07743, Jena, Germany
| | - Stefan Schuster
- Matthias Schleiden Institute, Bioinformatics, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, 07743, Jena, Germany.
| | - Bashar Ibrahim
- Matthias Schleiden Institute, Bioinformatics, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, 07743, Jena, Germany.
- Centre for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, 32093, Hawally, Kuwait.
| |
Collapse
|
23
|
Li Y, Liu J, Díaz-Cruz G, Cheng Z, Bignell DRD. Virulence mechanisms of plant-pathogenic Streptomyces species: an updated review. MICROBIOLOGY-SGM 2019; 165:1025-1040. [PMID: 31162023 DOI: 10.1099/mic.0.000818] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Gram-positive Actinobacteria from the genus Streptomyces are best known for their morphological complexity and for their ability to produce numerous bioactive specialized metabolites with useful applications in human and veterinary medicine and in agriculture. In contrast, the ability to infect living plant tissues and to cause diseases of root and tuber crops such as potato common scab (CS) is a rare attribute among members of this genus. Research on the virulence mechanisms of plant-pathogenic Streptomyces spp. has revealed the importance of the thaxtomin phytotoxins as key pathogenicity determinants produced by several species. In addition, other phytotoxic specialized metabolites may contribute to the development or severity of disease caused by Streptomyces spp., along with the production of phytohormones and secreted proteins. A thorough understanding of the molecular mechanisms of plant pathogenicity will enable the development of better management procedures for controlling CS and other plant diseases caused by the Streptomyces.
Collapse
Affiliation(s)
- Yuting Li
- Department of Biology, Memorial University of Newfoundland, St John's, NL A1B 3X9, Canada
| | - Jingyu Liu
- Department of Biology, Memorial University of Newfoundland, St John's, NL A1B 3X9, Canada
| | - Gustavo Díaz-Cruz
- Department of Biology, Memorial University of Newfoundland, St John's, NL A1B 3X9, Canada
| | - Zhenlong Cheng
- Department of Biology, Memorial University of Newfoundland, St John's, NL A1B 3X9, Canada
| | - Dawn R D Bignell
- Department of Biology, Memorial University of Newfoundland, St John's, NL A1B 3X9, Canada
| |
Collapse
|
24
|
The repertoire of effector candidates in Colletotrichum lindemuthianum reveals important information about Colletotrichum genus lifestyle. Appl Microbiol Biotechnol 2019; 103:2295-2309. [DOI: 10.1007/s00253-019-09639-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 01/04/2023]
|
25
|
Nandi M, Macdonald J, Liu P, Weselowski B, Yuan Z. Clavibacter michiganensis ssp. michiganensis: bacterial canker of tomato, molecular interactions and disease management. MOLECULAR PLANT PATHOLOGY 2018; 19:2036-2050. [PMID: 29528201 PMCID: PMC6638088 DOI: 10.1111/mpp.12678] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 05/11/2023]
Abstract
Bacterial canker disease is considered to be one of the most destructive diseases of tomato (Solanum lycopersicum), and is caused by the seed-borne Gram-positive bacterium Clavibacter michiganensis ssp. michiganensis (Cmm). This vascular pathogen generally invades and proliferates in the xylem through natural openings or wounds, causing wilt and canker symptoms. The incidence of symptomless latent infections and the invasion of tomato seeds by Cmm are widespread. Pathogenicity is mediated by virulence factors and transcriptional regulators encoded by the chromosome and two natural plasmids. The virulence factors include serine proteases, cell wall-degrading enzymes (cellulases, xylanases, pectinases) and others. Mutational analyses of these genes and gene expression profiling (via quantitative reverse transcription-polymerase chain reaction, transcriptomics and proteomics) have begun to shed light on their roles in colonization and virulence, whereas the expression of tomato genes in response to Cmm infection suggests plant factors involved in the defence response. These findings may aid in the generation of target-specific bactericides or new resistant varieties of tomato. Meanwhile, various chemical and biological controls have been researched to control Cmm. This review presents a detailed investigation regarding the pathogen Cmm, bacterial canker infection, molecular interactions between Cmm and tomato, and current perspectives on improved disease management.
Collapse
Affiliation(s)
- Munmun Nandi
- Department of Microbiology & Immunology, Schulich School of Medicine & DentistryUniversity of Western OntarioLondonONCanada, N6A 5C1
| | - Jacqueline Macdonald
- Department of Microbiology & Immunology, Schulich School of Medicine & DentistryUniversity of Western OntarioLondonONCanada, N6A 5C1
| | - Peng Liu
- Department of Microbiology & Immunology, Schulich School of Medicine & DentistryUniversity of Western OntarioLondonONCanada, N6A 5C1
| | - Brian Weselowski
- London Research and Development Centre, Agriculture & Agri‐Food CanadaLondonONCanada, N5V 4T3
| | - Ze‐Chun Yuan
- Department of Microbiology & Immunology, Schulich School of Medicine & DentistryUniversity of Western OntarioLondonONCanada, N6A 5C1
- London Research and Development Centre, Agriculture & Agri‐Food CanadaLondonONCanada, N5V 4T3
| |
Collapse
|
26
|
Wang J, Chen H, Gao J, Guo J, Zhao X, Zhou Y. Ginsenosides and ginsenosidases in the pathobiology of ginseng-Cylindrocarpon destructans (Zinss) Scholten. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:406-413. [PMID: 29306188 DOI: 10.1016/j.plaphy.2017.12.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/15/2017] [Accepted: 12/26/2017] [Indexed: 06/07/2023]
Abstract
To investigate the role that ginsenosides (and some of their metabolites) play in interactions between plants and phytopathogenic fungi (e.g. Cylindrocarpon destructans (Zinss) Scholten), we systematically determined the anti-fungal activities of six major ginsenosides (Rb1, Rb2, Rc, Rd, Re and Rg1), along with the metabolites of ginsenoside Rb1 (Gypenoside XVII (G-XVII) and F2), against the ginseng root pathogen C. destructans (Zinss) Scholten and non-ginseng pathogens Fusarium graminearum Schw., Exserohilum turcicum (Pass.) Leonard et Suggs, Phytophthora megasperma Drech. and Pyricularia oryzae Cav. Our results showed that the growth of both ginseng pathogens and non-pathogens could be inhibited by using the proto-panaxatriol (PPT) ginsenosides Re and Rg1. In addition, the growth of the non-pathogens could also be inhibited by using proto-panaxadiol (PPD) ginsenosides Rb1, Rb2, Rc and Rd, whereas the growth of ginseng pathogen C. destructans (Zinss) Scholten was enhanced by ginsenosides Rb1 and Rb2. In contrast, ginsenoside G-XVII and F2 strongly inhibited the hyphal growth of both C. destructans (Zinss) Scholten and the non-pathogens tested. Furthermore, addition of sucrose to the media increased the growth of C. destructans (Zinss) Scholten, whereas glucose did not affect the growth. Moreover, C. destructans (Zinss) Scholten and all four non-pathogens were able to deglycosylate PPD ginsenosides using a similar transformation pathway, albeit with different sensitivities. We also discussed the anti-fungal structure-activity relationships of the ginsenosides. Our results suggest that the pathogenicity of C. destructans (Zinss) Scholten against ginseng root is independent of its ability to deglycosylate ginsenosides.
Collapse
Affiliation(s)
- Jiao Wang
- School of Life Sciences, Northeast Normal University, Changchun, 130024, PR China
| | - Honglei Chen
- School of Life Sciences, Northeast Normal University, Changchun, 130024, PR China
| | - Juan Gao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China
| | - Jixun Guo
- School of Life Sciences, Northeast Normal University, Changchun, 130024, PR China
| | - Xuesong Zhao
- School of Sciences, Liaoning Technical University, Fuxin, 123000, PR China.
| | - Yifa Zhou
- School of Life Sciences, Northeast Normal University, Changchun, 130024, PR China.
| |
Collapse
|
27
|
Wang Y, Wang Y. Trick or Treat: Microbial Pathogens Evolved Apoplastic Effectors Modulating Plant Susceptibility to Infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:6-12. [PMID: 29090656 DOI: 10.1094/mpmi-07-17-0177-fi] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The apoplastic space between the plant cell wall and the plasma membrane constitutes a major battleground for plant-pathogen interactions. To survive in harsh conditions in the plant apoplast, pathogens must cope with various immune responses. During infection, plant pathogens secrete an arsenal of effector proteins into the apoplast milieu, some of which are detected by the plant surveillance system and, thus, activate plant innate immunity. Effectors that evade plant perception act in modulating plant apoplast immunity to favor successful pathogen infection. The concerted actions of apoplastic effectors often determine the outcomes of plant-pathogen interactions. In this review, we summarize current advances on the understanding of apoplastic effectors and highlight the strategies employed by pathogens to counter host apoplastic defense.
Collapse
Affiliation(s)
- Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| |
Collapse
|
28
|
Zhang Y, Ma LJ. Deciphering Pathogenicity of Fusarium oxysporum From a Phylogenomics Perspective. ADVANCES IN GENETICS 2017; 100:179-209. [PMID: 29153400 DOI: 10.1016/bs.adgen.2017.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fusarium oxysporum is a large species complex of both plant and human pathogens that attack a diverse array of species in a host-specific manner. Comparative genomic studies have revealed that the host-specific pathogenicity of the F. oxysporum species complex (FOSC) was determined by distinct sets of supernumerary (SP) chromosomes. In contrast to common vertical transfer, where genetic materials are transmitted via cell division, SP chromosomes can be transmitted horizontally between phylogenetic lineages, explaining the polyphyletic nature of the host-specific pathogenicity of the FOSC. The existence of a diverse array of SP chromosomes determines the broad host range of this species complex, while the conserved core genome maintains essential house-keeping functions. Recognition of these SP chromosomes enables the functional and structural compartmentalization of F. oxysporum genomes. In this review, we examine the impact of this group of cross-kingdom pathogens on agricultural productivity and human health. Focusing on the pathogenicity of F. oxysporum in the phylogenomic framework of the genus Fusarium, we elucidate the evolution of pathogenicity within the FOSC. We conclude that a population genomics approach within a clearly defined phylogenomic framework is essential not only for understanding the evolution of the pathogenicity mechanism but also for identifying informative candidates associated with pathogenicity that can be developed as targets in disease management programs.
Collapse
Affiliation(s)
- Yong Zhang
- University of Massachusetts Amherst, Amherst, MA, United States
| | - Li-Jun Ma
- University of Massachusetts Amherst, Amherst, MA, United States.
| |
Collapse
|
29
|
Abstract
The interactions between fungi and plants encompass a spectrum of ecologies ranging from saprotrophy (growth on dead plant material) through pathogenesis (growth of the fungus accompanied by disease on the plant) to symbiosis (growth of the fungus with growth enhancement of the plant). We consider pathogenesis in this article and the key roles played by a range of pathogen-encoded molecules that have collectively become known as effectors.
Collapse
|
30
|
Dahlin P, Müller MC, Ekengren S, McKee LS, Bulone V. The Impact of Steroidal Glycoalkaloids on the Physiology of Phytophthora infestans, the Causative Agent of Potato Late Blight. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:531-542. [PMID: 28510502 DOI: 10.1094/mpmi-09-16-0186-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Steroidal glycoalkaloids (SGAs) are plant secondary metabolites known to be toxic to animals and humans and that have putative roles in defense against pests. The proposed mechanisms of SGA toxicity are sterol-mediated disruption of membranes and inhibition of cholinesterase activity in neurons. It has been suggested that phytopathogenic microorganisms can overcome SGA toxicity by enzymatic deglycosylation of SGAs. Here, we have explored SGA-mediated toxicity toward the invasive oomycete Phytophthora infestans, the causative agent of the late blight disease in potato and tomato, as well as the potential for SGA deglycosylation by this species. Our growth studies indicate that solanidine, the nonglycosylated precursor of the potato SGAs α-chaconine and α-solanine, has a greater physiological impact than its glycosylated forms. All of these compounds were incorporated into the mycelium, but only solanidine could strongly inhibit the growth of P. infestans in liquid culture. Genes encoding several glycoside hydrolases with potential activity on SGAs were identified in the genome of P. infestans and were shown to be expressed. However, we found no indication that deglycosylation of SGAs takes place. We present additional evidence for apparent host-specific adaptation to potato SGAs and assess all results in terms of future pathogen management strategies.
Collapse
Affiliation(s)
- Paul Dahlin
- 1 Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 10691 Stockholm, Sweden
- 2 Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Marion C Müller
- 1 Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 10691 Stockholm, Sweden
- 2 Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Sophia Ekengren
- 1 Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 10691 Stockholm, Sweden
- 2 Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Lauren S McKee
- 1 Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 10691 Stockholm, Sweden
- 3 Wallenberg Wood Science Centre, Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden; and
| | - Vincent Bulone
- 1 Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 10691 Stockholm, Sweden
- 4 ARC Centre of Excellence in Plant Cell Walls and School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064 Australia
| |
Collapse
|
31
|
Carere J, Benfield AH, Ollivier M, Liu CJ, Kazan K, Gardiner DM. A tomatinase-like enzyme acts as a virulence factor in the wheat pathogen Fusarium graminearum. Fungal Genet Biol 2017; 100:33-41. [DOI: 10.1016/j.fgb.2017.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 11/26/2022]
|
32
|
Lee HA, Lee HY, Seo E, Lee J, Kim SB, Oh S, Choi E, Choi E, Lee SE, Choi D. Current Understandings of Plant Nonhost Resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:5-15. [PMID: 27925500 DOI: 10.1094/mpmi-10-16-0213-cr] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nonhost resistance, a resistance of plant species against all nonadapted pathogens, is considered the most durable and efficient immune system of plants but yet remains elusive. The underlying mechanism of nonhost resistance has been investigated at multiple levels of plant defense for several decades. In this review, we have comprehensively surveyed the latest literature on nonhost resistance in terms of preinvasion, metabolic defense, pattern-triggered immunity, effector-triggered immunity, defense signaling, and possible application in crop protection. Overall, we summarize the current understanding of nonhost resistance mechanisms. Pre- and postinvasion is not much deviated from the knowledge on host resistance, except for a few specific cases. Further insights on the roles of the pattern recognition receptor gene family, multiple interactions between effectors from nonadapted pathogen and plant factors, and plant secondary metabolites in host range determination could expand our knowledge on nonhost resistance and provide efficient tools for future crop protection using combinational biotechnology approaches. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .
Collapse
Affiliation(s)
- Hyun-Ah Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Hye-Young Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Eunyoung Seo
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Joohyun Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Saet-Byul Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Soohyun Oh
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Eunbi Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Eunhye Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - So Eui Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| |
Collapse
|
33
|
De Wit PJGM. Apoplastic fungal effectors in historic perspective; a personal view. THE NEW PHYTOLOGIST 2016; 212:805-813. [PMID: 27523582 DOI: 10.1111/nph.14144] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Affiliation(s)
- Pierre J G M De Wit
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| |
Collapse
|
34
|
Carere J, Colgrave ML, Stiller J, Liu C, Manners JM, Kazan K, Gardiner DM. Enzyme-driven metabolomic screening: a proof-of-principle method for discovery of plant defence compounds targeted by pathogens. THE NEW PHYTOLOGIST 2016; 212:770-779. [PMID: 27353742 DOI: 10.1111/nph.14067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/19/2016] [Indexed: 06/06/2023]
Abstract
Plants produce a variety of secondary metabolites to defend themselves from pathogen attack, while pathogens have evolved to overcome plant defences by producing enzymes that degrade or modify these defence compounds. However, many compounds targeted by pathogen enzymes currently remain enigmatic. Identifying host compounds targeted by pathogen enzymes would enable us to understand the potential importance of such compounds in plant defence and modify them to make them insensitive to pathogen enzymes. Here, a proof of concept metabolomics-based method was developed to discover plant defence compounds modified by pathogens using two pathogen enzymes with known targets in wheat and tomato. Plant extracts treated with purified pathogen enzymes were subjected to LC-MS, and the relative abundance of metabolites before and after treatment were comparatively analysed. Using two enzymes from different pathogens the in planta targets could be found by combining relatively simple enzymology with the power of untargeted metabolomics. Key to the method is dataset simplification based on natural isotope occurrence and statistical filtering, which can be scripted. The method presented here will aid in our understanding of plant-pathogen interactions and may lead to the development of new plant protection strategies.
Collapse
Affiliation(s)
- Jason Carere
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Agriculture, Queensland Bioscience Precinct, Brisbane, Qld, 4067, Australia.
| | - Michelle L Colgrave
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Agriculture, Queensland Bioscience Precinct, Brisbane, Qld, 4067, Australia
| | - Jiri Stiller
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Agriculture, Queensland Bioscience Precinct, Brisbane, Qld, 4067, Australia
| | - Chunji Liu
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Agriculture, Queensland Bioscience Precinct, Brisbane, Qld, 4067, Australia
| | - John M Manners
- CSIRO Agriculture, Black Mountain, Canberra, ACT, 2601, Australia
| | - Kemal Kazan
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Agriculture, Queensland Bioscience Precinct, Brisbane, Qld, 4067, Australia
| | - Donald M Gardiner
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Agriculture, Queensland Bioscience Precinct, Brisbane, Qld, 4067, Australia
| |
Collapse
|
35
|
Dai Y, Cao Z, Huang L, Liu S, Shen Z, Wang Y, Wang H, Zhang H, Li D, Song F. CCR4-Not Complex Subunit Not2 Plays Critical Roles in Vegetative Growth, Conidiation and Virulence in Watermelon Fusarium Wilt Pathogen Fusarium oxysporum f. sp. niveum. Front Microbiol 2016; 7:1449. [PMID: 27695445 PMCID: PMC5025516 DOI: 10.3389/fmicb.2016.01449] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/30/2016] [Indexed: 11/24/2022] Open
Abstract
CCR4-Not complex is a multifunctional regulator that plays important roles in multiple cellular processes in eukaryotes. In the present study, the biological function of FonNot2, a core subunit of the CCR4-Not complex, was explored in Fusarium oxysporum f. sp. niveum (Fon), the causal agent of watermelon wilt disease. FonNot2 was expressed at higher levels in conidia and germinating conidia and during infection in Fon-inoculated watermelon roots than in mycelia. Targeted disruption of FonNot2 resulted in retarded vegetative growth, reduced conidia production, abnormal conidial morphology, and reduced virulence on watermelon. Scanning electron microscopy observation of infection behaviors and qRT-PCR analysis of in planta fungal growth revealed that the ΔFonNot2 mutant was defective in the ability to penetrate watermelon roots and showed reduced fungal biomass in root and stem of the inoculated plants. Phenotypic and biochemical analyses indicated that the ΔFonNot2 mutant displayed hypersensitivity to cell wall perturbing agents (e.g., Congo Red and Calcofluor White) and oxidative stress (e.g., H2O2 and paraquat), decreased fusaric acid content, and reduced reactive oxygen species (ROS) production during spore germination. Our data demonstrate that FonNot2 plays critical roles in regulating vegetable growth, conidiogenesis and conidia morphology, and virulence on watermelon via modulating cell wall integrity, oxidative stress response, ROS production and FA biosynthesis through the regulation of transcription of genes involved in multiple pathways.
Collapse
Affiliation(s)
- Yi Dai
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Zhongye Cao
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Lihong Huang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Shixia Liu
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Zhihui Shen
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Yuyan Wang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Hui Wang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Huijuan Zhang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Dayong Li
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Fengming Song
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| |
Collapse
|
36
|
Kettle AJ, Batley J, Benfield AH, Manners JM, Kazan K, Gardiner DM. Degradation of the benzoxazolinone class of phytoalexins is important for virulence of Fusarium pseudograminearum towards wheat. MOLECULAR PLANT PATHOLOGY 2015; 16:946-62. [PMID: 25727347 PMCID: PMC6638480 DOI: 10.1111/mpp.12250] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Wheat, maize, rye and certain other agriculturally important species in the Poaceae family produce the benzoxazolinone class of phytoalexins on pest and pathogen attack. Benzoxazolinones can inhibit the growth of pathogens. However, certain fungi can actively detoxify these compounds. Despite this, a clear link between the ability to detoxify benzoxazolinones and pathogen virulence has not been shown. Here, through comparative genome analysis of several Fusarium species, we have identified a conserved genomic region around the FDB2 gene encoding an N-malonyltransferase enzyme known to be involved in benzoxazolinone degradation in the maize pathogen Fusarium verticillioides. Expression analyses demonstrated that a cluster of nine genes was responsive to exogenous benzoxazolinone in the important wheat pathogen Fusarium pseudograminearum. The analysis of independent F. pseudograminearum FDB2 knockouts and complementation of the knockout with FDB2 homologues from F. graminearum and F. verticillioides confirmed that the N-malonyltransferase enzyme encoded by this gene is central to the detoxification of benzoxazolinones, and that Fdb2 contributes quantitatively to virulence towards wheat in head blight inoculation assays. This contrasts with previous observations in F. verticillioides, where no effect of FDB2 mutations on pathogen virulence towards maize was observed. Overall, our results demonstrate that the detoxification of benzoxazolinones is a strategy adopted by wheat-infecting F. pseudograminearum to overcome host-derived chemical defences.
Collapse
Affiliation(s)
- Andrew J Kettle
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Agriculture Flagship, Queensland Bioscience Precinct, Level 4, 306 Carmody Road, St. Lucia, Brisbane, Qld, 4067, Australia
- School of Agriculture and Food Sciences, University of Queensland, St. Lucia, Brisbane, Qld, 4067, Australia
| | - Jacqueline Batley
- School of Agriculture and Food Sciences, University of Queensland, St. Lucia, Brisbane, Qld, 4067, Australia
- School of Plant Biology, University of Western Australia, Crawley, WA, 6009, Australia
| | - Aurelie H Benfield
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Agriculture Flagship, Queensland Bioscience Precinct, Level 4, 306 Carmody Road, St. Lucia, Brisbane, Qld, 4067, Australia
| | - John M Manners
- CSIRO Agriculture Flagship, Black Mountain, Canberra, ACT, 2601, Australia
| | - Kemal Kazan
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Agriculture Flagship, Queensland Bioscience Precinct, Level 4, 306 Carmody Road, St. Lucia, Brisbane, Qld, 4067, Australia
- Queensland Alliance for Agriculture & Food Innovation, The University of Queensland, St. Lucia, Brisbane, Qld, 4067, Australia
| | - Donald M Gardiner
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Agriculture Flagship, Queensland Bioscience Precinct, Level 4, 306 Carmody Road, St. Lucia, Brisbane, Qld, 4067, Australia
| |
Collapse
|
37
|
de Sain M, Rep M. The Role of Pathogen-Secreted Proteins in Fungal Vascular Wilt Diseases. Int J Mol Sci 2015; 16:23970-93. [PMID: 26473835 PMCID: PMC4632733 DOI: 10.3390/ijms161023970] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 01/07/2023] Open
Abstract
A limited number of fungi can cause wilting disease in plants through colonization of the vascular system, the most well-known being Verticillium dahliae and Fusarium oxysporum. Like all pathogenic microorganisms, vascular wilt fungi secrete proteins during host colonization. Whole-genome sequencing and proteomics screens have identified many of these proteins, including small, usually cysteine-rich proteins, necrosis-inducing proteins and enzymes. Gene deletion experiments have provided evidence that some of these proteins are required for pathogenicity, while the role of other secreted proteins remains enigmatic. On the other hand, the plant immune system can recognize some secreted proteins or their actions, resulting in disease resistance. We give an overview of proteins currently known to be secreted by vascular wilt fungi and discuss their role in pathogenicity and plant immunity.
Collapse
Affiliation(s)
- Mara de Sain
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098XH, The Netherlands.
| | - Martijn Rep
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098XH, The Netherlands.
| |
Collapse
|
38
|
Comparative proteomic analyses reveal that Gnt2-mediated N-glycosylation affects cell wall glycans and protein content in Fusarium oxysporum. J Proteomics 2015; 128:189-202. [PMID: 26254006 DOI: 10.1016/j.jprot.2015.07.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/09/2015] [Accepted: 07/29/2015] [Indexed: 01/22/2023]
Abstract
Protein N-glycosylation is a ubiquitous post-translational modification that contributes to appropriate protein folding, stability, functionality and localization. N-glycosylation has been identified as an important process for morphogenesis and virulence in several fungal pathogens including Fusarium oxysporum. Here we conducted comparative chemical and proteome-based analyses to better understand the physiological changes associated with protein hypo-N-glycosylation in F. oxysporum N-glycosyltransferase Gnt2-deficient mutant. The results suggest that lack of functional Gnt2 alters the size of galactofuranose chains in cell wall glycans, resulting in polysaccharides with a broad range of polymerization degrees and differential protein glycosylation patterns. Functional Gnt2 is necessary for normal conidium size and morphology and wild-type hyphal fusion rates. Hypo-N-glycosylation in ∆gnt2 mutant results in enhanced oxidative stress resistance and reduced levels of proteins involved in cell wall organization, biogenesis and remodelling. Deletion of gnt2 gene led to accumulation of trafficking vesicles at hyphal tips, reduced secretion of extracellular proteins related to detoxification of antifungal compounds and degradation of plant cell walls, and lowered extracellular polygalacturonase activity. Altogether, the results confirm that Gnt2-mediated N-glycosylation plays a crucial role in morphogenesis and virulence, and demonstrate that Gnt2 is essential for protein function, transport and relative abundance in F. oxysporum.
Collapse
|
39
|
Moses T, Papadopoulou KK, Osbourn A. Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Crit Rev Biochem Mol Biol 2014; 49:439-62. [PMID: 25286183 PMCID: PMC4266039 DOI: 10.3109/10409238.2014.953628] [Citation(s) in RCA: 267] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/01/2014] [Accepted: 08/07/2014] [Indexed: 01/11/2023]
Abstract
Saponins are widely distributed plant natural products with vast structural and functional diversity. They are typically composed of a hydrophobic aglycone, which is extensively decorated with functional groups prior to the addition of hydrophilic sugar moieties, to result in surface-active amphipathic compounds. The saponins are broadly classified as triterpenoids, steroids or steroidal glycoalkaloids, based on the aglycone structure from which they are derived. The saponins and their biosynthetic intermediates display a variety of biological activities of interest to the pharmaceutical, cosmetic and food sectors. Although their relevance in industrial applications has long been recognized, their role in plants is underexplored. Recent research on modulating native pathway flux in saponin biosynthesis has demonstrated the roles of saponins and their biosynthetic intermediates in plant growth and development. Here, we review the literature on the effects of these molecules on plant physiology, which collectively implicate them in plant primary processes. The industrial uses and potential of saponins are discussed with respect to structure and activity, highlighting the undoubted value of these molecules as therapeutics.
Collapse
Affiliation(s)
- Tessa Moses
- Department of Metabolic Biology, John Innes CentreColney Lane, NorwichUK
| | | | - Anne Osbourn
- Department of Metabolic Biology, John Innes CentreColney Lane, NorwichUK
| |
Collapse
|
40
|
Gupta S, Bhar A, Das S. Understanding the molecular defence responses of host during chickpea-Fusarium interplay: where do we stand? FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:1285-1297. [PMID: 32481195 DOI: 10.1071/fp13063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 07/04/2013] [Indexed: 06/11/2023]
Abstract
Fusarium oxysporum is known to cause vascular wilt and root rot of many important plants. Although extensive studies have been reported for the model plant Arabidopsis thaliana (L.) Heynh., the question of whether those experimental interpretations are extendable to other crop species requires experimentation. Chickpea is the most important crop legume of Indian subcontinent and ranks third in the world list of important legumes. However, productivity of this crop is severely curtailed by vascular wilt caused by Fusarium oxysporum f. sp. ciceri. Based on earlier reports, the present review discusses about the external manifestations of the disease, in planta fungal progression and establishment, and the molecular responses of chickpea that occur during Fusarium oxysporum f. sp. ciceri Race 1(Foc1) interaction. Foc1, known to enter the roots through the breaches of tap root, colonise the xylem vessels and block upward translocation of essential solutes causing wilt in compatible hosts. In contrast, pathogen invasion is readily perceived by the resistant host, which activates defence signalling cascades that are directed towards protecting its primary metabolism from the harmful consequences of pathogenic mayhem. Hence, understanding the dynamic complexities of chickpea-Foc1 interplay is prerequisite to providing sustainable solutions in wilt management programs.
Collapse
Affiliation(s)
- Sumanti Gupta
- Division of Plant Biology, Bose Institute, Centenary Campus, P1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata-700054, West Bengal, India
| | - Anirban Bhar
- Division of Plant Biology, Bose Institute, Centenary Campus, P1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata-700054, West Bengal, India
| | - Sampa Das
- Division of Plant Biology, Bose Institute, Centenary Campus, P1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata-700054, West Bengal, India
| |
Collapse
|
41
|
Gauthier GM, Keller NP. Crossover fungal pathogens: the biology and pathogenesis of fungi capable of crossing kingdoms to infect plants and humans. Fungal Genet Biol 2013; 61:146-57. [PMID: 24021881 DOI: 10.1016/j.fgb.2013.08.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 12/13/2022]
Abstract
The outbreak of fungal meningitis associated with contaminated methylprednisolone acetate has thrust the importance of fungal infections into the public consciousness. The predominant pathogen isolated from clinical specimens, Exserohilum rostratum (teleomorph: Setosphaeria rostrata), is a dematiaceous fungus that infects grasses and rarely humans. This outbreak highlights the potential for fungal pathogens to infect both plants and humans. Most crossover or trans-kingdom pathogens are soil saprophytes and include fungi in Ascomycota and Mucormycotina phyla. To establish infection, crossover fungi must overcome disparate, host-specific barriers, including protective surfaces (e.g. cuticle, skin), elevated temperature, and immune defenses. This review illuminates the underlying mechanisms used by crossover fungi to cause infection in plants and mammals, and highlights critical events that lead to human infection by these pathogens. Several genes including veA, laeA, and hapX are important in regulating biological processes in fungi important for both invasive plant and animal infections.
Collapse
|
42
|
Ökmen B, Etalo DW, Joosten MHAJ, Bouwmeester HJ, de Vos RCH, Collemare J, de Wit PJGM. Detoxification of α-tomatine by Cladosporium fulvum is required for full virulence on tomato. THE NEW PHYTOLOGIST 2013; 198:1203-1214. [PMID: 23448507 DOI: 10.1111/nph.12208] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 01/31/2013] [Indexed: 05/18/2023]
Abstract
· α-Tomatine is an antifungal glycoalkaloid that provides basal defense to tomato (Solanum lycopersicum). However, tomato pathogens overcome this basal defense barrier by the secretion of tomatinases that degrade α-tomatine into the less fungitoxic compounds β-tomatine and tomatidine. Although pathogenic on tomato, it has been reported that the biotrophic fungus Cladosporium fulvum is unable to detoxify α-tomatine. · Here, we present a functional analysis of the glycosyl hydrolase (GH10), CfTom1, which is orthologous to fungal tomatinases. · We show that C. fulvum hydrolyzes α-tomatine into tomatidine in vitro and during the infection of tomato, which is fully attributed to the activity of CfTom1, as shown by the heterologous expression of this enzyme in tomato. Accordingly, ∆cftom1 mutants of C. fulvum are more sensitive to α-tomatine and are less virulent than the wild-type fungus on tomato. · Although α-tomatine is thought to be localized in the vacuole, we show that it is also present in the apoplast, where it is hydrolyzed by CfTom1 on infection. The accumulation of tomatidine during infection appears to be toxic to tomato cells and does not suppress defense responses, as suggested previously. Altogether, our results show that CfTom1 is responsible for the detoxification of α-tomatine by C. fulvum, and is required for full virulence of this fungus on tomato.
Collapse
Affiliation(s)
- Bilal Ökmen
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708, PB Wageningen, the Netherlands
| | - Desalegn W Etalo
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708, PB Wageningen, the Netherlands
- Centre for BioSystems Genomics, PO Box 98, 6700, AB Wageningen, the Netherlands
- Netherlands Metabolomics Centre, Einsteinweg 55, 2333, CC Leiden, the Netherlands
| | - Matthieu H A J Joosten
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708, PB Wageningen, the Netherlands
- Centre for BioSystems Genomics, PO Box 98, 6700, AB Wageningen, the Netherlands
| | - Harro J Bouwmeester
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708, PB Wageningen, the Netherlands
- Centre for BioSystems Genomics, PO Box 98, 6700, AB Wageningen, the Netherlands
| | - Ric C H de Vos
- Centre for BioSystems Genomics, PO Box 98, 6700, AB Wageningen, the Netherlands
- Netherlands Metabolomics Centre, Einsteinweg 55, 2333, CC Leiden, the Netherlands
- Plant Research International, Bioscience, PO Box 16, 6700, AA Wageningen, the Netherlands
| | - Jérôme Collemare
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708, PB Wageningen, the Netherlands
- Centre for BioSystems Genomics, PO Box 98, 6700, AB Wageningen, the Netherlands
| | - Pierre J G M de Wit
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708, PB Wageningen, the Netherlands
- Centre for BioSystems Genomics, PO Box 98, 6700, AB Wageningen, the Netherlands
| |
Collapse
|
43
|
Augustin JM, Drok S, Shinoda T, Sanmiya K, Nielsen JK, Khakimov B, Olsen CE, Hansen EH, Kuzina V, Ekstrøm CT, Hauser T, Bak S. UDP-glycosyltransferases from the UGT73C subfamily in Barbarea vulgaris catalyze sapogenin 3-O-glucosylation in saponin-mediated insect resistance. PLANT PHYSIOLOGY 2012; 160:1881-95. [PMID: 23027665 PMCID: PMC3510118 DOI: 10.1104/pp.112.202747] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/30/2012] [Indexed: 05/18/2023]
Abstract
Triterpenoid saponins are bioactive metabolites that have evolved recurrently in plants, presumably for defense. Their biosynthesis is poorly understood, as is the relationship between bioactivity and structure. Barbarea vulgaris is the only crucifer known to produce saponins. Hederagenin and oleanolic acid cellobioside make some B. vulgaris plants resistant to important insect pests, while other, susceptible plants produce different saponins. Resistance could be caused by glucosylation of the sapogenins. We identified four family 1 glycosyltransferases (UGTs) that catalyze 3-O-glucosylation of the sapogenins oleanolic acid and hederagenin. Among these, UGT73C10 and UGT73C11 show highest activity, substrate specificity and regiospecificity, and are under positive selection, while UGT73C12 and UGT73C13 show lower substrate specificity and regiospecificity and are under purifying selection. The expression of UGT73C10 and UGT73C11 in different B. vulgaris organs correlates with saponin abundance. Monoglucosylated hederagenin and oleanolic acid were produced in vitro and tested for effects on P. nemorum. 3-O-β-d-Glc hederagenin strongly deterred feeding, while 3-O-β-d-Glc oleanolic acid only had a minor effect, showing that hydroxylation of C23 is important for resistance to this herbivore. The closest homolog in Arabidopsis thaliana, UGT73C5, only showed weak activity toward sapogenins. This indicates that UGT73C10 and UGT73C11 have neofunctionalized to specifically glucosylate sapogenins at the C3 position and demonstrates that C3 monoglucosylation activates resistance. As the UGTs from both the resistant and susceptible types of B. vulgaris glucosylate sapogenins and are not located in the known quantitative trait loci for resistance, the difference between the susceptible and resistant plant types is determined at an earlier stage in saponin biosynthesis.
Collapse
|
44
|
The genomes of the fungal plant pathogens Cladosporium fulvum and Dothistroma septosporum reveal adaptation to different hosts and lifestyles but also signatures of common ancestry. PLoS Genet 2012; 8:e1003088. [PMID: 23209441 PMCID: PMC3510045 DOI: 10.1371/journal.pgen.1003088] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 09/19/2012] [Indexed: 01/07/2023] Open
Abstract
We sequenced and compared the genomes of the Dothideomycete fungal plant pathogens Cladosporium fulvum (Cfu) (syn. Passalora fulva) and Dothistroma septosporum (Dse) that are closely related phylogenetically, but have different lifestyles and hosts. Although both fungi grow extracellularly in close contact with host mesophyll cells, Cfu is a biotroph infecting tomato, while Dse is a hemibiotroph infecting pine. The genomes of these fungi have a similar set of genes (70% of gene content in both genomes are homologs), but differ significantly in size (Cfu >61.1-Mb; Dse 31.2-Mb), which is mainly due to the difference in repeat content (47.2% in Cfu versus 3.2% in Dse). Recent adaptation to different lifestyles and hosts is suggested by diverged sets of genes. Cfu contains an α-tomatinase gene that we predict might be required for detoxification of tomatine, while this gene is absent in Dse. Many genes encoding secreted proteins are unique to each species and the repeat-rich areas in Cfu are enriched for these species-specific genes. In contrast, conserved genes suggest common host ancestry. Homologs of Cfu effector genes, including Ecp2 and Avr4, are present in Dse and induce a Cf-Ecp2- and Cf-4-mediated hypersensitive response, respectively. Strikingly, genes involved in production of the toxin dothistromin, a likely virulence factor for Dse, are conserved in Cfu, but their expression differs markedly with essentially no expression by Cfu in planta. Likewise, Cfu has a carbohydrate-degrading enzyme catalog that is more similar to that of necrotrophs or hemibiotrophs and a larger pectinolytic gene arsenal than Dse, but many of these genes are not expressed in planta or are pseudogenized. Overall, comparison of their genomes suggests that these closely related plant pathogens had a common ancestral host but since adapted to different hosts and lifestyles by a combination of differentiated gene content, pseudogenization, and gene regulation.
Collapse
|
45
|
Abstract
Saponins are one of the most numerous and diverse groups of plant natural products. They serve a range of ecological roles including plant defence against disease and herbivores and possibly as allelopathic agents in competitive interactions between plants. Some saponins are also important pharmaceuticals, and the underexplored biodiversity of plant saponins is likely to prove to be a vital resource for future drug discovery. The biological activity of saponins is normally attributed to the amphipathic properties of these molecules, which consist of a hydrophobic triterpene or sterol backbone and a hydrophilic carbohydrate chain, although some saponins are known to have potent biological activities that are dependent on other aspects of their structure. This chapter will focus on the biological activity and the synthesis of some of the best-studied examples of plant saponins and on recent developments in the identification of the genes and enzymes responsible for saponin synthesis.
Collapse
|
46
|
Zhao X, Gao J, Song C, Fang Q, Wang N, Zhao T, Liu D, Zhou Y. Fungal sensitivity to and enzymatic deglycosylation of ginsenosides. PHYTOCHEMISTRY 2012; 78:65-71. [PMID: 22449289 DOI: 10.1016/j.phytochem.2012.02.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 12/13/2011] [Accepted: 02/29/2012] [Indexed: 05/31/2023]
Abstract
A ginseng pathogen, Cylindrocarpon destructans, and five nonpathogens were tested for their sensitivity to a total ginsenoside fraction (T-GF), a protopanaxadiol-type ginsenoside fraction (PPD-GF) and a protopanaxatriol-type ginsenoside fraction (PPT-GF) from the roots of Panax ginseng C.A. Meyer. The results showed that T-GF inhibited growth of the five ginseng nonpathogens, while it promoted growth of the ginseng pathogen C. destructans. PPT-GF and PPD-GF both inhibited the growth of the five ginseng nonpathogens, although the activity of PPT-GF was higher than that of PPD-GF. PPT-GF and PPD-GF exhibited different activities on C. destructans: PPT-GF inhibited its growth, whereas PPD-GF significantly enhanced its growth. The subsequent analysis of enzymatic degradation of ginsenosides by the test fungi showed that C. destructans can consecutively hydrolyze the terminal monosaccharide units from the sugar chains attached at C3 and C20 in PPD-type ginsenosides by extracellular glycosidase activity to yield four major products, gypenoside XVII (G-XVII), compound O, compound Mb and the ginsenoside F(2). By contrast, the ginseng nonpathogens Aspergillus nidulans and Cladosporium fulvum have no extracellular glycosidase activity toward sugar chains attached to C3 in PPD-type ginsenosides. These results indicated that ginsenosides might act as host chemical defenses, while the ginseng root pathogenic fungi might counter their toxicity by converting PPD-type ginsenosides into growth or host recognition factors. The ability of ginseng root pathogens to deglycosylate PPD-type ginsenosides may be a pathogenicity factor.
Collapse
Affiliation(s)
- Xuesong Zhao
- School of Life Sciences, Northeast Normal University, Changchun 130024, PR China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Choi SH, Ahn JB, Kozukue N, Kim HJ, Nishitani Y, Zhang L, Mizuno M, Levin CE, Friedman M. Structure-activity relationships of α-, β(1)-, γ-, and δ-tomatine and tomatidine against human breast (MDA-MB-231), gastric (KATO-III), and prostate (PC3) cancer cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:3891-9. [PMID: 22482398 DOI: 10.1021/jf3003027] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Partial acid hydrolysis of the tetrasaccharide (lycotetraose) side chain of the tomato glycoalkaloid α-tomatine resulted in the formation of four products with three, two, one, and zero carbohydrate side chains, which were separated by high-performance liquid chromatography (HPLC) and identified by thin-layer chromatography (TLC) and liquid chromatography ion-trap time-of-flight mass spectrometry (LCMS-IT-TOF). The inhibitory activities in terms of IC(50) values (concentration that inhibits 50% of the cells under the test conditions) of the parent compound and the hydrolysates, isolated by preparative HPLC, against normal human liver and lung cells and human breast, gastric, and prostate cancer cells indicate that (a) the removal of sugars significantly reduced the concentration-dependent cell-inhibiting effects of the test compounds, (b) PC3 prostate cancer cells were about 10 times more susceptible to inhibition by α-tomatine than the breast and gastric cancer cells or the normal cells, (c) the activity of α-tomatine against the prostate cancer cells was 200 times greater than that of the aglycone tomatidine, and (d) the activity increased as the number of sugars on the aglycone increased, but this was only statistically significant at p < 0.05 for the normal lung Hel299 cell line. The effect of the alkaloids on tumor necrosis factor α (TNF-α) was measured in RAW264.7 macrophage cells. There was a statistically significant negative correlation between the dosage of γ- and α-tomatine and the level of TNF-α. α-Tomatine was the most effective compound at reducing TNF-α. The dietary significance of the results and future research needs are discussed.
Collapse
Affiliation(s)
- Suk Hyun Choi
- Department of Food Service Industry, and Bio Organic Material and Food Center, Seowon University, Cheongju-city, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Itkin M, Rogachev I, Alkan N, Rosenberg T, Malitsky S, Masini L, Meir S, Iijima Y, Aoki K, de Vos R, Prusky D, Burdman S, Beekwilder J, Aharoni A. GLYCOALKALOID METABOLISM1 is required for steroidal alkaloid glycosylation and prevention of phytotoxicity in tomato. THE PLANT CELL 2011; 23:4507-25. [PMID: 22180624 PMCID: PMC3269880 DOI: 10.1105/tpc.111.088732] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 11/06/2011] [Accepted: 11/29/2011] [Indexed: 05/18/2023]
Abstract
Steroidal alkaloids (SAs) are triterpene-derived specialized metabolites found in members of the Solanaceae family that provide plants with a chemical barrier against a broad range of pathogens. Their biosynthesis involves the action of glycosyltransferases to form steroidal glycoalkaloids (SGAs). To elucidate the metabolism of SGAs in the Solanaceae family, we examined the tomato (Solanum lycopersicum) GLYCOALKALOID METABOLISM1 (GAME1) gene. Our findings imply that GAME1 is a galactosyltransferase, largely performing glycosylation of the aglycone tomatidine, resulting in SGA production in green tissues. Downregulation of GAME1 resulted in an almost 50% reduction in α-tomatine levels (the major SGA in tomato) and a large increase in its precursors (i.e., tomatidenol and tomatidine). Surprisingly, GAME1-silenced plants displayed growth retardation and severe morphological phenotypes that we suggest occur as a result of altered membrane sterol levels caused by the accumulation of the aglycone tomatidine. Together, these findings highlight the role of GAME1 in the glycosylation of SAs and in reducing the toxicity of SA metabolites to the plant cell.
Collapse
Affiliation(s)
- Maxim Itkin
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ilana Rogachev
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Noam Alkan
- Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | - Tally Rosenberg
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Sergey Malitsky
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Laura Masini
- Plant Research International, Wageningen 6700 AA, The Netherlands
| | - Sagit Meir
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yoko Iijima
- Kazusa DNA Research Institute, Kisarazu 292-0818, Japan
| | - Koh Aoki
- Kazusa DNA Research Institute, Kisarazu 292-0818, Japan
| | - Ric de Vos
- Plant Research International, Wageningen 6700 AA, The Netherlands
| | - Dov Prusky
- Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | - Saul Burdman
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Jules Beekwilder
- Plant Research International, Wageningen 6700 AA, The Netherlands
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
- Address correspondence to
| |
Collapse
|
49
|
Sestili S, Polverari A, Luongo L, Ferrarini A, Scotton M, Hussain J, Delledonne M, Ficcadenti N, Belisario A. Distinct colonization patterns and cDNA-AFLP transcriptome profiles in compatible and incompatible interactions between melon and different races of Fusarium oxysporum f. sp. melonis. BMC Genomics 2011; 12:122. [PMID: 21338485 PMCID: PMC3048547 DOI: 10.1186/1471-2164-12-122] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 02/21/2011] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Fusarium oxysporum f. sp. melonis Snyd. & Hans. (FOM) causes Fusarium wilt, the most important infectious disease of melon (Cucumis melo L.). The four known races of this pathogen can be distinguished only by infection on appropriate cultivars. No molecular tools are available that can discriminate among the races, and the molecular basis of compatibility and disease progression are poorly understood. Resistance to races 1 and 2 is controlled by a single dominant gene, whereas only partial polygenic resistance to race 1,2 has been described. We carried out a large-scale cDNA-AFLP analysis to identify host genes potentially related to resistance and susceptibility as well as fungal genes associated with the infection process. At the same time, a systematic reisolation procedure on infected stems allowed us to monitor fungal colonization in compatible and incompatible host-pathogen combinations. RESULTS Melon plants (cv. Charentais Fom-2), which are susceptible to race 1,2 and resistant to race 1, were artificially infected with a race 1 strain of FOM or one of two race 1,2 w strains. Host colonization of stems was assessed at 1, 2, 4, 8, 14, 16, 18 and 21 days post inoculation (dpi), and the fungus was reisolated from infected plants. Markedly different colonization patterns were observed in compatible and incompatible host-pathogen combinations. Five time points from the symptomless early stage (2 dpi) to obvious wilting symptoms (21 dpi) were considered for cDNA-AFLP analysis. After successful sequencing of 627 transcript-derived fragments (TDFs) differentially expressed in infected plants, homology searching retrieved 305 melon transcripts, 195 FOM transcripts expressed in planta and 127 orphan TDFs. RNA samples from FOM colonies of the three strains grown in vitro were also included in the analysis to facilitate the detection of in planta-specific transcripts and to identify TDFs differentially expressed among races/strains. CONCLUSION Our data suggest that resistance against FOM in melon involves only limited transcriptional changes, and that wilting symptoms could derive, at least partially, from an active plant response.We discuss the pathogen-derived transcripts expressed in planta during the infection process and potentially related to virulence functions, as well as transcripts that are differentially expressed between the two FOM races grown in vitro. These transcripts provide candidate sequences that can be further tested for their ability to distinguish between races.Sequence data from this article have been deposited in GenBank, Accession Numbers: HO867279-HO867981.
Collapse
Affiliation(s)
- Sara Sestili
- Agricultural Research Council (CRA), Research Unit for Vegetable Crop in Central Areas, Via Salaria 1, 63030 Monsampolo del Tronto (AP), Italy
| | - Annalisa Polverari
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Laura Luongo
- Agricultural Research Council (CRA), Plant Pathology Research Center, Via C.G. Bertero 22, 00156 Roma, Italy
| | - Alberto Ferrarini
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Michele Scotton
- Department of Environmental Agronomy and Crop Production, University of Padova, Viale dell'Università 16, 35020 Legnaro, Padova, Italy
| | - Jamshaid Hussain
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Massimo Delledonne
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Nadia Ficcadenti
- Agricultural Research Council (CRA), Research Unit for Vegetable Crop in Central Areas, Via Salaria 1, 63030 Monsampolo del Tronto (AP), Italy
| | - Alessandra Belisario
- Agricultural Research Council (CRA), Plant Pathology Research Center, Via C.G. Bertero 22, 00156 Roma, Italy
| |
Collapse
|
50
|
Eichenlaub R, Gartemann KH. The Clavibacter michiganensis subspecies: molecular investigation of gram-positive bacterial plant pathogens. ANNUAL REVIEW OF PHYTOPATHOLOGY 2011; 49:445-64. [PMID: 21438679 DOI: 10.1146/annurev-phyto-072910-095258] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Clavibacter michiganensis subspecies are actinomycete plant pathogens residing mainly in the xylem vessels that infect economically important host plants. In the Clavibacter subspecies michiganensis and sepedonicus, infecting tomato and potato, respectively, essential factors for disease induction are plasmid encoded and loss of the virulence plasmids converts these biotrophic pathogens into endophytes. The genes responsible for successful colonization of the host plant, including evasion/suppression of plant defense reactions, are chromosomally encoded. Several serine proteases seem to be involved in colonization. They are secreted by Clavibacter, but their targets remain unknown. A type 3 secretion system (T3SS) translocating effectors into the plant cells is absent in these gram-positive pathogens. With the development of the modern 'omics technologies for RNA and proteins based on the known genome sequences, a new phase in the investigation of the mechanisms of plant pathogenicity has begun to allow the genome-wide investigation of the Clavibacter-host interaction.
Collapse
Affiliation(s)
- Rudolf Eichenlaub
- Department of Genetechnology/Microbiology, Faculty of Biology, University of Bielefeld, 33501 Bielefeld, Germany.
| | | |
Collapse
|