1
|
Mukangwa M, Tetsuka M. Progesterone modulates HSD11B1-mediated cortisol production in luteinized bovine granulosa cells. J Reprod Dev 2023; 69:206-213. [PMID: 37344443 PMCID: PMC10435524 DOI: 10.1262/jrd.2023-005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
Progesterone (P4) and cortisol production increase in luteinized granulosa cells (LGCs) during the periovulatory period, but their interaction is not well established. Therefore, we investigated their interaction in cultured bovine LGCs. Granulosa cells were collected from follicles of 2-5 mm in diameter and cultured in DMEM/F-12 supplemented with 10% fetal calf serum for up to 14 days. P4 production and the expression of steroidogenic acute regulatory protein (STAR), cholesterol side-chain cleavage enzyme (CYP11A1), and 3β-hydroxysteroid dehydrogenase type 1 (HSD3B1) rapidly increased until day 10 and remained high thereafter. No de novo production of cortisol from P4 was detected during the culture period. The expression of 11β-hydroxysteroid dehydrogenase type 1 (HSD11B1), which converts cortisone to cortisol, increased dramatically on day two, decreased until day 8, and remained relatively constant. To investigate how P4 and cortisol influence each other's production, LGCs were treated with trilostane (a P4 synthesis inhibitor), nomegestrol acetate (NA, a synthetic progestogen), P4, and/or cortisol for 24 h on days 6 and 12 of culture. Trilostane suppressed P4 and STAR expression while elevating HSD11B1 and HSD3B1 expression and cortisol production. Concomitant treatment with NA or P4 dose-dependently decreased cortisol production and HSD11B1 and HSD3B1 expression but elevated STAR expression in both days 6 and 12. Conversely, cortisol treatment increased HSD11B1 and HSD3B1 expression and decreased STAR expression without influencing P4 production. These results indicate that progestogens suppress cortisol production by modulating HSD11B1 expression and that progestogens and cortisol differentially regulate STAR, HSD3B1, and HSD11B1 expression in bovine LGCs.
Collapse
Affiliation(s)
- Memory Mukangwa
- Department of Life and Food Science, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | - Masafumi Tetsuka
- Department of Life and Food Science, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| |
Collapse
|
2
|
Yakin K, Hela F, Oktem O. Progesterone signaling in the regulation of luteal steroidogenesis. Mol Hum Reprod 2023; 29:gaad022. [PMID: 37289566 PMCID: PMC10631818 DOI: 10.1093/molehr/gaad022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/23/2023] [Indexed: 06/10/2023] Open
Abstract
The corpus luteum is the major source of progesterone, the essential hormone for female reproductive function. While progesterone activity has been the subject of extensive research for decades, characterization of non-canonical progesterone receptor/signaling pathways provided a new perspective for understanding the complex signal transduction mechanisms exploited by the progesterone hormone. Deciphering these mechanisms has significant implications in the management of luteal phase disorders and early pregnancy complications. The purpose of this review is to highlight the complex mechanisms through which progesterone-induced signaling mediates luteal granulosa cell activity in the corpus luteum. Here, we review the literature and discuss the up-to-date evidence on how paracrine and autocrine effects of progesterone regulate luteal steroidogenic activity. We also review the limitations of the published data and highlight future research priorities.
Collapse
Affiliation(s)
- Kayhan Yakin
- Graduate School of Health Sciences, Koç University, Istanbul, Turkey
- School of Medicine, Department of Obstetrics and Gynecology, Koç University, Istanbul, Turkey
| | - Francesko Hela
- Graduate School of Health Sciences, Koç University, Istanbul, Turkey
- Harvard Medical School, Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Boston, MA, USA
| | - Ozgur Oktem
- Graduate School of Health Sciences, Koç University, Istanbul, Turkey
- School of Medicine, Department of Obstetrics and Gynecology, Koç University, Istanbul, Turkey
| |
Collapse
|
3
|
Kelulut Honey Regulates Sex Steroid Receptors in a Polycystic Ovary Syndrome Rat Model. Int J Mol Sci 2022; 23:ijms232314757. [PMID: 36499085 PMCID: PMC9738483 DOI: 10.3390/ijms232314757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Reproductive and metabolic anomalies in polycystic ovary syndrome (PCOS) have been associated with the dysregulation of sex steroid receptors. Kelulut honey (KH) has been shown to be beneficial in PCOS-induced rats by regulating folliculogenesis and the oestrus cycle. However, no study has been conducted to evaluate KH's effect on sex steroid receptors in PCOS. Therefore, the current study examined the effects of KH, metformin, or clomiphene alone and in combination on the mRNA expression and protein distribution of androgen receptor (AR), oestrogen receptor α (ERα), oestrogen receptor β (ERβ), and progesterone receptor (PR) in PCOS-induced rats. The study used female Sprague-Dawley rats, which were treated orally with 1 mg/kg/day of letrozole for 21 days to develop PCOS. PCOS-induced rats were then divided and treated orally for 35 days with KH, metformin, clomiphene, KH + metformin, KH+ clomiphene and distilled water. In this study, we observed aberrant AR, ERα, ERβ and PR expression in PCOS-induced rats compared with the normal control rats. The effects of KH treatment were comparable with clomiphene and metformin in normalizing the expression of AR, ERα, and ERβ mRNA. However, KH, clomiphene and metformin did not affect PR mRNA expression and protein distribution. Hence, this study confirms the aberrant expression of sex steroid receptors in PCOS and demonstrates that KH treatment could normalise the sex steroid receptors profile. The findings provide a basis for future clinical trials to utilize KH as a regulator of sex steroid receptors in patients with PCOS.
Collapse
|
4
|
Harrath AH, Jalouli M, Oueslati MH, Farah MA, Feriani A, Aldahmash W, Aldawood N, Al-Anazi K, Falodah F, Swelum A, Alwasel S. The flavonoid, kaempferol-3-O-apiofuranosyl-7-O-rhamnopyranosyl, as a potential therapeutic agent for breast cancer with a promoting effect on ovarian function. Phytother Res 2021; 35:6170-6180. [PMID: 33908658 DOI: 10.1002/ptr.7067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/06/2021] [Accepted: 02/12/2021] [Indexed: 12/24/2022]
Abstract
It is widely known that breast cancer cells eventually develop resistance to hormonal drugs and chemotherapies, which often compromise fertility. This study aimed to investigate the effect of the flavonoid, kaempferol-3-O-apiofuranosyl-7-O-rhamnopyranosyl (KARP), on 1) the viability of MCF-7 breast cancer cells and 2) ovarian function in rats. A dose-dependent decrease in MCF-7 cell survival was observed, and the IC50 value was found to be 48 μg/ml. Cells in the control group or those exposed to increasing concentrations of KARP experienced a similar generation of reactive oxygen species and induction of apoptosis. For the rats, estradiol levels correlated negatively to KARP dosages, although a recovery was obtained at administration of 30 mg/kg per day. Noteworthily, when compared against the control, this dosage led to significant increases in mRNA levels for CYP19, CYP17a, CCND2, GDF9, and INSL3 among the treatment groups, and ER1 and ER2 mRNA levels decreased in a dose-dependent manner. KARP shows great promise as an ideal therapy for breast cancer patients since it induced apoptosis and autophagy in cancerous cells without harming fertility in our animal model. Future investigations on humans are necessary to substantiate these findings and determine its efficacy as a general line of treatment.
Collapse
Affiliation(s)
- Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maroua Jalouli
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Anouar Feriani
- Research Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences, University of Gafsa, Tunisia
| | - Waleed Aldahmash
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nouf Aldawood
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Al-Anazi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fawaz Falodah
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ayman Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Abstract
Dynamic changes in microRNAs in oocyte and cumulus cells before and after maturation may explain the spatiotemporal post-transcriptional gene regulation within bovine follicular cells during the oocyte maturation process. miR-20a has been previously shown to regulate proliferation and differentiation as well as progesterone levels in cultured bovine granulosa cells. In the present study, we aimed to demonstrate the function of miR-20a during the bovine oocyte maturation process. Maturation of cumulus-oocyte complexes (COCs) was performed at 39°C in an humidified atmosphere with 5% CO2 in air. The expression of miR-20a was investigated in the cumulus cells and oocytes at 22 h post culture. The functional role of miR-20a was examined by modulating the expression of miR-20a in COCs during in vitro maturation (IVM). We found that the miR-20a expression was increased in cumulus cells but decreased in oocytes after IVM. Overexpression of miR-20a increased the oocyte maturation rate. Even though not statistically significant, miR-20a overexpression during IVM increased progesterone levels in the spent medium. This was further supported by the expression of STAR and CYP11A1 genes in cumulus cells. The phenotypes observed due to overexpression of miR-20a were validated by BMP15 supplementation during IVM and subsequent transfection of BMP15-treated COCs using miR-20a mimic or BMPR2 siRNA. We found that miR-20a mimic or BMPR2 siRNA transfection rescued BMP15-reduced oocyte maturation and progesterone levels. We concluded that miR-20a regulates oocyte maturation by increasing cumulus cell progesterone synthesis by simultaneous suppression of BMPR2 expression.
Collapse
|
6
|
Neto CC, Soares KL, Padilha RT, Botelho MA, Queiroz DB, Figueiredo JR, de Melo Magalhães-Padilha D. The effect of bioidentical nanostructured progesterone in the in vitro culture of preantral follicles and oocyte maturation. Cell Tissue Res 2020; 382:657-664. [PMID: 32696218 DOI: 10.1007/s00441-020-03233-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 05/18/2020] [Indexed: 11/30/2022]
Abstract
This study evaluated the effects of bioidentical nanostructured progesterone alone or in association with human chorionic gonadotropin (hCG) on the in vitro survival and development of preantral follicles (experiment 1) and oocyte maturation (experiment 2). Bioidentical hormones have a molecular structure identical with that of endogenous hormones; nanostructured substances refer to those reduced to a nanoscale. In experiment 1, fragments of goat ovarian tissue were cultured for 7 days in α-MEM+ alone or supplemented with nanoprogesterone (MEM+ + P4) or P4 and hCG (MEM+ + P4 + hCG). In experiment 2, two mediums of oocyte in vitro maturation (IVM) were compared. Medium 1 consisted of TCM 199+ + LH, and medium 2 consisted of TCM 199+ with nanoprogesterone and hCG. The MEM+ + P4 + hCG treatment showed the lowest percentage of follicular survival after 7 days of culture. MEM+ + P4 and MEM+ + P4 + hCG treatments showed higher percentage of follicular activation than MEM+. In experiment 2, there were no differences between mediums 1 and 2 for all endpoints evaluated. In conclusion, the addition of nanoprogesterone is advisable for in vitro culture of preantral follicles and oocyte maturation. However, the association of nanoprogesterone with hCG causes the cellular death of initial follicles but shows efficacy in IVM.
Collapse
Affiliation(s)
- Carlos Cordeiro Neto
- Postgraduate Biotechnology, Potiguar University/Laureate International Universities, Av. Senador Salgado Filho, 1610, Lagoa Nova, Natal, Rio Grande do Norte, 59056-000, Brazil
| | - Kadja Lopes Soares
- Postgraduate Biotechnology, Potiguar University/Laureate International Universities, Av. Senador Salgado Filho, 1610, Lagoa Nova, Natal, Rio Grande do Norte, 59056-000, Brazil
| | - Rodrigo Tenório Padilha
- Postgraduate Biotechnology, Potiguar University/Laureate International Universities, Av. Senador Salgado Filho, 1610, Lagoa Nova, Natal, Rio Grande do Norte, 59056-000, Brazil
| | - Marco Antônio Botelho
- Postgraduate Biotechnology, Potiguar University/Laureate International Universities, Av. Senador Salgado Filho, 1610, Lagoa Nova, Natal, Rio Grande do Norte, 59056-000, Brazil
| | - Dinalva Brito Queiroz
- Postgraduate Biotechnology, Potiguar University/Laureate International Universities, Av. Senador Salgado Filho, 1610, Lagoa Nova, Natal, Rio Grande do Norte, 59056-000, Brazil
| | - José Ricardo Figueiredo
- Laboratory of Manipulation of Oocytes Enclosed in Preantral Follicles (LAMOFOPA), Veterinary Faculty, State University of Ceará, Av. Paranjana, 1700, Campus do Itaperi, Fortaleza, Ceará, 60740-000, Brazil
| | - Deborah de Melo Magalhães-Padilha
- Postgraduate Biotechnology, Potiguar University/Laureate International Universities, Av. Senador Salgado Filho, 1610, Lagoa Nova, Natal, Rio Grande do Norte, 59056-000, Brazil.
| |
Collapse
|
7
|
Huang J, Zhang TT, Jiang K, Hong WS, Chen SX. GFP expression pattern in pituitary and gonads under the control of nuclear progesterone receptor promoter in transgenic zebrafish. Dev Dyn 2020; 249:1365-1376. [PMID: 32506585 DOI: 10.1002/dvdy.213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The nuclear progesterone receptor (Pgr) is a ligand-dependent transcription factor primarily responsible for mediating progesterone actions relevant for reproduction across vertebrates. Information on the cellular localization of Pgr expression in the reproductive system is required for developing a comprehensive approach to elucidate the role of Pgr in reproduction. RESULTS We generated transgenic zebrafish Tg(pgr:eGFP) that express enhanced green fluorescent protein (eGFP) driven by promoter sequence of pgr gene. The tissue distribution pattern of egfp mRNA is consistent with the pgr mRNA expression in Tg(pgr:eGFP). In the pituitary, GFP signals are found in the proximal pars distalis. In order to better discern the cellular localization of GFP signals in gonads, Tg(pgr:eGFP) line was crossed with Tg(gsdf:nfsB-mCherry) line, specifically expressing nitroreductase-mCherry fusion protein in granulosa and Sertoli cells in ovary and testis, respectively. Imaging of testis tissue showed that GFP expression was confined to Leydig cells. In the ovary, GFP expression colocalized with the mCherry signal in granulosa cells. Intriguingly, we also identified some non-granulosa cells close to where blood vessels branched, expressing stronger GFP signals than granulosa cells. CONCLUSIONS Analyzing Tg(pgr:eGFP) expression in zebrafish provided leads toward new routes to study the role of Pgr in reproduction.
Collapse
Affiliation(s)
- Jing Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ting Ting Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ke Jiang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Wan Shu Hong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Shi Xi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, China
| |
Collapse
|
8
|
Motta CM, Tammaro S, Di Lorenzo M, Panzuto R, Verderame M, Migliaccio V, Simoniello P. Spring and Fall recrudescence in Podarcis siculus ovaries: A role for progesterone. Gen Comp Endocrinol 2020; 290:113393. [PMID: 31982398 DOI: 10.1016/j.ygcen.2020.113393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/04/2020] [Accepted: 01/15/2020] [Indexed: 11/18/2022]
Abstract
In the lacertid Podarcis siculus the reproductive cycle is typically biphasic, with alternate recrudescence (Spring and Fall) and resting (Summer and Winter) phases. This study aimed to shed some light on the role exerted by progesterone during the two recrudescence periods; to this purpose, exogenous progesterone was administered intraperitoneally and the effects on oogonial proliferation, oocyte recruitment, and follicle cells apoptosis were determined. The presence and distribution of progesterone receptors was also investigated by immunohistochemistry and western blotting. Results indicate that progesterone would play different roles and follow different route of action in the two recrudescence periods thus confirming the complexity of the mechanisms controlling oogenesis in this species of vertebrate.
Collapse
Affiliation(s)
- C M Motta
- Department of Biology, University of Naples Federico II, Italy
| | - S Tammaro
- Department of Biology, University of Naples Federico II, Italy
| | - M Di Lorenzo
- Department of Biology, University of Naples Federico II, Italy
| | - R Panzuto
- Department of Biology, University of Naples Federico II, Italy
| | - M Verderame
- Department of Biology, University of Naples Federico II, Italy
| | - V Migliaccio
- Department of Biology, University of Naples Federico II, Italy
| | - P Simoniello
- Department of Sciences and Technologies, University of Naples Parthenope, Italy.
| |
Collapse
|
9
|
Hu M, Zhang Y, Egecioglu E, Li X, Shao LR, Billig H. Uterine glycolytic enzyme expression is affected by knockout of different estrogen receptor subtypes. Biomed Rep 2019; 11:135-144. [PMID: 31565219 PMCID: PMC6759582 DOI: 10.3892/br.2019.1234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022] Open
Abstract
The estrogen signaling pathway via nuclear estrogen receptors (ER) α and β is considered to be the master regulator of the cellular glucose metabolism in the uterus. While in vivo animal studies have demonstrated that 17β-estradiol (E2) treatment increases the expression levels and activities of several glycolytic enzymes in the uterus, the specific ER subtype-dependent regulation of key glycolytic enzymes in the uterus has not been experimentally verified. In this study, the localization of ERα and ERβ in human and mouse endometria were evaluated using immunohistology. Given that ERα and ERβ are not functionally equivalent, ERα, ERβ and ERαβ knockout (ERα-/-, ERβ-/- and ERαβ-/-) mice were utilized to determine the expression pattern of glycolytic enzymes in the uterus. It was found that the level of ERα was higher than that of ERβ in the human and mouse endometrial epithelial and stromal cells, and both receptors were downregulated by E2 treatment in the mouse uterus. The expression of the hexokinase 1 and GAPDH was increased in ERα-/- and ERβ-/- mice compared with wild-type controls. Increased phosphofructokinase expression was observed in ERα-/- and ERαβ-/- mice, whereas increased pyruvate kinase isozyme M2 and pyruvate dehydrogenase expression was observed in ERβ-/- and ERαβ-/- mice. The findings indicated for the first time that while estrogen regulates ERα and ERβ expression in the uterus, ERα and ERβ selectively regulate uterine glycolytic enzyme expression during glycolysis. Additionally, the link between endometrial ER subtypes and glycolysis in women with polycystic ovary syndrome (PCOS) is discussed. The findings suggested that the E2-dependent ER-mediated regulation of glycolysis may be involved in the disturbance of the glucose metabolism in patients with PCOS with endometrial dysfunction.
Collapse
Affiliation(s)
- Min Hu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China.,Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Yuehui Zhang
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Emil Egecioglu
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Xin Li
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden.,Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, P.R. China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai 200011, P.R. China
| | - Linus R Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Håkan Billig
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
10
|
Nie X, Sheng W, Hou D, Liu Q, Wang R, Tan Y. Effect of Hyperin and Icariin on steroid hormone secretion in rat ovarian granulosa cells. Clin Chim Acta 2019; 495:646-651. [PMID: 29729232 DOI: 10.1016/j.cca.2018.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/01/2018] [Accepted: 05/01/2018] [Indexed: 10/17/2022]
Abstract
AIM OF THE STUDY This study was designed to investigate the effect of different concentrations of Hyperin and Icariin (ICA)on proliferation and the secretion of estrogen (E2), and progesterone (P) in granulosa cells, and to explore the effect of Hyperin and Icariin on the expression of CYP17 and CYP19. MATERIALS AND METHODS Rat ovary granulosa cells were cultured in vitro and treated with different concentrations of Hyperin and Icariin. The proliferation of ovarian granulosa cells was measured with the MTT assay. The concentration of estradiol was measured with a magnetic particle-based enzyme-linked immunosorbent assay (ELISA) kit. The CYP17 and CYP19 mRNA expression was detected by quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR). The CYP17 and CYP19 protein expression was determined with Western blotting. RESULTS Hyperin (50 μg/l) and Icariin (10 μg/l) significantly increased proliferation of ovarian granulosa cells and secretion of estrogen and progesterone. Hyperin and Icariin stimulated the mRNA and protein expression of CYP17 and CYP19. CONCLUSIONS These results showed that Hyperin and Icariin can promote the secretion of E2 and P through up-regulation of CYP17 and CYP19. Frequently used Chinese herbs like Cuscuta Chinensis Lam and Epimedium Brevicornu maxim, which contain Hyperin and Icariin, could improve the ovarian endocrine function through these effects.
Collapse
Affiliation(s)
- Xiaowei Nie
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing 210029, China
| | - Wenjie Sheng
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing 210029, China
| | - Daorong Hou
- Key laboratory of the Model Animal, Animal Core Facility of Nanjing Medical University, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Qiang Liu
- Key laboratory of the Model Animal, Animal Core Facility of Nanjing Medical University, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Ronggen Wang
- Key laboratory of the Model Animal, Animal Core Facility of Nanjing Medical University, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Yong Tan
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
11
|
Duffy DM, Ko C, Jo M, Brannstrom M, Curry TE. Ovulation: Parallels With Inflammatory Processes. Endocr Rev 2019; 40:369-416. [PMID: 30496379 PMCID: PMC6405411 DOI: 10.1210/er.2018-00075] [Citation(s) in RCA: 296] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 11/18/2018] [Indexed: 12/14/2022]
Abstract
The midcycle surge of LH sets in motion interconnected networks of signaling cascades to bring about rupture of the follicle and release of the oocyte during ovulation. Many mediators of these LH-induced signaling cascades are associated with inflammation, leading to the postulate that ovulation is similar to an inflammatory response. First responders to the LH surge are granulosa and theca cells, which produce steroids, prostaglandins, chemokines, and cytokines, which are also mediators of inflammatory processes. These mediators, in turn, activate both nonimmune ovarian cells as well as resident immune cells within the ovary; additional immune cells are also attracted to the ovary. Collectively, these cells regulate proteolytic pathways to reorganize the follicular stroma, disrupt the granulosa cell basal lamina, and facilitate invasion of vascular endothelial cells. LH-induced mediators initiate cumulus expansion and cumulus oocyte complex detachment, whereas the follicular apex undergoes extensive extracellular matrix remodeling and a loss of the surface epithelium. The remainder of the follicle undergoes rapid angiogenesis and functional differentiation of granulosa and theca cells. Ultimately, these functional and structural changes culminate in follicular rupture and oocyte release. Throughout the ovulatory process, the importance of inflammatory responses is highlighted by the commonalities and similarities between many of these events associated with ovulation and inflammation. However, ovulation includes processes that are distinct from inflammation, such as regulation of steroid action, oocyte maturation, and the eventual release of the oocyte. This review focuses on the commonalities between inflammatory responses and the process of ovulation.
Collapse
Affiliation(s)
- Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - CheMyong Ko
- Department of Comparative Biosciences, University of Illinois Urbana Champaign, Urbana, Illinois
| | - Misung Jo
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, Kentucky
| | - Mats Brannstrom
- Department of Obstetrics and Gynecology, University of Gothenburg, Gothenburg, Sweden.,Stockholm IVF, Stockholm, Sweden
| | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
12
|
The Biological Role of Hyaluronan-Rich Oocyte-Cumulus Extracellular Matrix in Female Reproduction. Int J Mol Sci 2018; 19:ijms19010283. [PMID: 29346283 PMCID: PMC5796229 DOI: 10.3390/ijms19010283] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/16/2022] Open
Abstract
Fertilization of the mammalian oocyte requires interactions between spermatozoa and expanded cumulus extracellular matrix (ECM) that surrounds the oocyte. This review focuses on key molecules that play an important role in the formation of the cumulus ECM, generated by the oocyte-cumulus complex. In particular, the specific inhibitors (AG1478, lapatinib, indomethacin and MG132) and progesterone receptor antagonist (RU486) exerting their effects through the remodeling of the ECM of the cumulus cells surrounding the oocyte have been described. After gonadotropin stimulus, cumulus cells expand and form hyaluronan (HA)-rich cumulus ECM. In pigs, the proper structure of the cumulus ECM depends on the interaction between HA and serum-derived proteins of the inter-alpha-trypsin inhibitor (IαI) protein family. We have demonstrated the synthesis of HA by cumulus cells, and the presence of the IαI, tumor necrosis factor-alpha-induced protein 6 and pentraxin 3 in expanding oocyte-cumulus complexes (OCC). We have evaluated the covalent linkage of heavy chains of IαI proteins to HA, as the principal component of the expanded HA-rich cumulus ECM, in porcine OCC cultured in medium with specific inhibitors: AG1478 and lapatinib (both inhibitors of epidermal growth factor receptor tyrosine kinase activity); MG132 (a specific proteasomal inhibitor), indomethacin (cyclooxygenase inhibitor); and progesterone receptor antagonist (RU486). We have found that both RU486 and indomethacin does not disrupt the formation of the covalent linkage between the heavy chains of IαI to HA in the expanded OCC. In contrast, the inhibitors AG1478 and lapatinib prevent gonadotropin-induced cumulus expansion. Finally, the formation of oocyte-cumulus ECM relying on the covalent transfer of heavy chains of IαI molecules to HA has been inhibited in the presence of MG132.
Collapse
|
13
|
Komatsu K, Masubuchi S. The concentration-dependent effect of progesterone on follicle growth in the mouse ovary. J Reprod Dev 2017; 63:271-277. [PMID: 28321005 PMCID: PMC5481629 DOI: 10.1262/jrd.2016-154] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Follicle growth in the mammalian ovary is coordinately controlled by multiple factors to sustain periodic ovulation. In this study, we investigated the role of progesterone on follicle growth in the mouse ovary. As the concentration of progesterone changes during the estrus cycle, we cultured the sliced mouse ovary in a medium containing 10 ng/ml, 100 ng/ml, and 1 μg/ml progesterone. Progesterone promoted the growth of primordial to primary follicles at 100 ng/ml, while it suppressed the growth of secondary follicles at 1 μg/ml. Follicles at other developmental stages in the cultured ovary were unaffected with different concentrations of progesterone. The number of ovulated oocytes increased in the medium containing 100 ng/ml progesterone but decreased in the presence of 1 μg/ml progesterone. Follicles expressed two types of progesterone receptors, progesterone receptor (PGR) and PGR membrane component 1 (PGRMC1). While PGR shows transient expression on granulosa cells of Graafian follicles, PGRMC1 expresses in granulosa cells of developing follicles. These results suggest that progesterone controls the growth of developing follicles through PGRMC1. Our study shows that the effect of progesterone on ovulation and follicle growth in mouse ovary is dependent on the concentration of progesterone and the follicle stage.
Collapse
Affiliation(s)
- Kouji Komatsu
- Department of Physiology, Aichi Medical University, Aichi 480-1195, Japan
| | - Satoru Masubuchi
- Department of Physiology, Aichi Medical University, Aichi 480-1195, Japan
| |
Collapse
|
14
|
Toda K, Hayashi Y, Ono M, Saibara T. Characterization of Ovarian Responses to Equine Chorionic Gonadotropin of Aromatase-Deficient Mice With or Without 17β-Estradiol Supplementation. Endocrinology 2016; 157:2093-103. [PMID: 26919384 DOI: 10.1210/en.2015-1701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aromatase is an enzyme catalyzing the final step of 17β-estradiol (E2) biosynthesis. Aromatase-deficient (ArKO) mice displayed vital roles of E2 at various tissue sites, including ovary. Here, we report attenuated responses of ArKO ovary to equine chorionic gonadotropin (eCG), an alternative to FSH. Ovarian contents of cAMP and anti-Müllerian hormone (AMH), putative factors reducing sensitivity to gonadotropins, were significantly elevated in ArKO mice compared with those in wild type (WT) mice in the basal state. Accordingly, eCG-induced ovarian alterations in cAMP contents, phosphorylation levels of signaling molecules, and mRNA expression of eCG-targeted genes were blunted in ArKO mice compared with those in WT mice. Treatment of ArKO mice with E2 decreased ovarian cAMP and AMH contents to the WT levels but did not restore the sensitivity. Microarray analysis coupled with quantitative RT-PCR analysis identified 7 genes of which the mRNA expression levels in ArKO ovaries were significantly different from those in the WT ovaries in the basal state and were not normalized by E2 supplementation, indicating possible involvement of these gene products in the determination of ovarian sensitivity to eCG. Thus, present analyses revealed that estrogen deficiency attenuates sensitivity of the ovary to gonadotropin, which might be associated with alterations in the ovarian contents of multiple molecules including cAMP and AMH. Given the importance of the ovarian responses to gonadotropins in reproductive function, detailed knowledge about the underlying mechanisms of abnormalities in the ArKO ovary might help to develop potential targets for infertility treatments.
Collapse
Affiliation(s)
- Katsumi Toda
- Departments of Biochemistry (K.T.), Pathology (Y.H.), and Gastroenterology and Hepatology (M.O., T.S.), Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan
| | - Yoshihiro Hayashi
- Departments of Biochemistry (K.T.), Pathology (Y.H.), and Gastroenterology and Hepatology (M.O., T.S.), Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan
| | - Masafumi Ono
- Departments of Biochemistry (K.T.), Pathology (Y.H.), and Gastroenterology and Hepatology (M.O., T.S.), Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan
| | - Toshiji Saibara
- Departments of Biochemistry (K.T.), Pathology (Y.H.), and Gastroenterology and Hepatology (M.O., T.S.), Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan
| |
Collapse
|
15
|
Gevaert T, Rietjens R, Voets T, Everaerts W, De Ridder D. Topographies and isoforms of the progesterone receptor in female human, rat and mouse bladder. Cell Tissue Res 2015; 364:385-94. [PMID: 26650465 DOI: 10.1007/s00441-015-2329-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 11/10/2015] [Indexed: 10/22/2022]
Abstract
Steroid hormones such as progesterone are known to influence bladder function. Progesterone effects are mediated by the progesterone receptor (PR) but no detailed studies of PR in bladder exist. We have investigated the presence, topography and subtypes of PR in mouse, rat and human bladder. Fresh tissue samples were obtained from cystectomies in female humans, rats and mice (n = 7 per group). Tissue samples were processed for immunohistochemistry (IHC), immunofluorescence (IF) and western blot (WB) and, for each species, a panel of specific PR antibody clones was used. Interpretation of IHC/IF was carried out by light/fluorescent microscopy and of WB via standard WB software. IHC/IF in female human bladder showed PR on the interstitial cells in the lamina propria and between detrusor smooth muscle cells, whereas in female rat and mouse bladder, PR was only found on the urothelium. WB in human bladder showed a 78-kD and a 60-kDa band, respectively, corresponding to a modified PR isoform A and PR isoform C. WB in rat and mice bladder showed a 60 kDa band and a 37 kDa band, respectively corresponding with PR isoform C and an unknown isoform. This is the first detailed investigation of the precise location and presence of several isoforms of PR in bladder, together with a comparison of these data between human, rat and mouse. Our study has revealed complex PR families in bladders from the various species studied and demonstrates obvious inter-species differences in PR topography and isoforms.
Collapse
Affiliation(s)
- Thomas Gevaert
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.
- Department of Pathology, AZ Klina, Brasschaat, Belgium.
| | - Roma Rietjens
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), KU Leuven, Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), KU Leuven, Leuven, Belgium
| | - Wouter Everaerts
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), KU Leuven, Leuven, Belgium
| | - Dirk De Ridder
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
16
|
Ting AY, Xu J, Stouffer RL. Differential effects of estrogen and progesterone on development of primate secondary follicles in a steroid-depleted milieu in vitro. Hum Reprod 2015; 30:1907-17. [PMID: 26040480 PMCID: PMC4507328 DOI: 10.1093/humrep/dev119] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 03/19/2015] [Accepted: 05/01/2015] [Indexed: 12/22/2022] Open
Abstract
STUDY QUESTION What are the direct effects of progesterone (P4) and estradiol (E2) on the development and function of primate follicles in vitro from the pre-antral to early antral stage? SUMMARY ANSWER In a steroid-depleted milieu, E2 improved follicle survival, growth, antrum formation and oocyte health, whereas P4 exerted minimal beneficial effects on follicle survival and reduced oocyte health. WHAT IS KNOWN ALREADY Effects of P4 and E2 on follicle development have been studied primarily in large antral and pre-ovulatory follicles. Chronic P4 exposure suppresses antral follicle growth, but acute P4 exposure promotes oocyte maturation in pre-ovulatory follicles. Effects of E2 can be stimulatory or inhibitory depending upon species, dose and duration of exposure. STUDY DESIGN, SIZE, DURATION Non-human primate model, randomized, control versus treatment. Macaque (n = 6) secondary follicles (n = 24 per animal per treatment group) were cultured for 5 weeks. PARTICIPANTS/MATERIALS, SETTING, METHODS Adult rhesus macaque secondary follicles were encapsulated in 0.25% alginate and cultured individually in media containing follicle stimulating hormone plus (i) vehicle, (ii) a steroid-synthesis inhibitor, trilostane (TRL, 250 ng/ml), (iii) TRL + low E2 (100 pg/ml) or progestin (P, 10 ng/ml R5020) and (iv) TRL + high E2 (1 ng/ml E2) or P (100 ng/ml R5020). Follicles reaching the antral stage (≥750 µm) were treated with human chorionic gonadotrophin for 34 h. End-points included follicle survival, antrum formation, growth pattern, plus oocyte health and maturation status, as well as media concentrations of P4, E2 and anti-Müllerian hormone (AMH). MAIN RESULTS AND THE ROLE OF CHANCE In a steroid-depleted milieu, low dose, but not high dose, P improved (P < 0.05) follicle survival, but had no effect (P > 0.05) on antrum formation and AMH production. Low-dose P increased (P < 0.05) P4 production in fast-grow follicles, and both doses of P elevated (P < 0.05) E2 production in slow-grow follicles. Additionally, low-dose P increased (P < 0.05) the percentage of no-grow follicles, and high-dose P promoted oocyte degeneration. In contrast, E2, in a steroid-depleted milieu, improved (P < 0.05) follicle survival, growth, antrum formation and oocyte health. E2 had no effect on P4 or E2 production. Follicles exposed to E2 yielded mature oocytes capable of fertilization and early cleavage, at a rate similar to untreated control follicles. LIMITATIONS, REASONS FOR CAUTION This study is limited to in vitro effects of P and E2 during the interval from the secondary to small antral stage of macaque follicles. WIDER IMPLICATIONS OF THE FINDINGS This study provides novel information on the direct actions of P4 and E2 on primate pre-antral follicle development. Combined with our previous report on the actions of androgens, our findings suggest that androgens appear to be a survival factor but hinder antral follicle differentiation, E2 appears to be a survival and growth factor at the pre-antral and early antral stage, whereas P4 may not be essential during early folliculogenesis in primates. STUDY FUNDING/COMPETING INTERESTS NIH P50 HD071836 (NCTRI), NIH ORWH/NICHD 2K12HD043488 (BIRCWH), ONPRC 8P51OD011092. There are no conflicts of interest.
Collapse
Affiliation(s)
- A Y Ting
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - J Xu
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - R L Stouffer
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
17
|
Toms D, Xu S, Pan B, Wu D, Li J. Progesterone receptor expression in granulosa cells is suppressed by microRNA-378-3p. Mol Cell Endocrinol 2015; 399:95-102. [PMID: 25150622 DOI: 10.1016/j.mce.2014.07.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/02/2014] [Accepted: 07/30/2014] [Indexed: 02/05/2023]
Abstract
In developing ovarian follicles, the progesterone receptor (PGR) is essential for mediating transcription of key factors that coordinate cellular functions including follicular remodeling. With recent investigations examining the role of microRNA (miRNA) in regulating ovarian function we used a lentiviral approach to over express miR-378 in cultured primary porcine granulosa cells to study the role this miRNA may play in granulosa cell development. We revealed that miR-378-3p decreased protein levels and mRNA levels of PGR via targeting its 3'UTR. We observed that this regulation of PGR by miR-378-3p resulted in a corresponding decrease in gene transcripts of ADAMTS1, CTSL1, and PPARG, all known to be regulated by PGR and important for follicular maturation and remodeling. Our study provides the first evidence for post-transcriptional regulation of PGR and further elucidates the role of miR-378-3p in the ovary.
Collapse
Affiliation(s)
- Derek Toms
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Shengyu Xu
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1; Institute of Animal Nutrition, Sichuan Agricultural University, 625014, China
| | - Bo Pan
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - De Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, 625014, China.
| | - Julang Li
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| |
Collapse
|
18
|
Nagyova E, Scsukova S, Kalous J, Mlynarcikova A. Effects of RU486 and indomethacin on meiotic maturation, formation of extracellular matrix, and progesterone production by porcine oocyte-cumulus complexes. Domest Anim Endocrinol 2014; 48:7-14. [PMID: 24906923 DOI: 10.1016/j.domaniend.2014.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/13/2014] [Accepted: 01/13/2014] [Indexed: 01/18/2023]
Abstract
This study was designed to determine whether inhibition of either cyclooxygenase-2 (COX-2) by indomethacin or progesterone receptor (PR) by PR antagonist, RU486, affects oocyte maturation, progesterone production, and covalent binding between hyaluronan (HA) and heavy chains of inter-α trypsin inhibitor, as well as expression of cumulus expansion-associated proteins (HA-binding protein, tumor necrosis factor α-induced protein 6, pentraxin 3) in oocyte-cumulus complexes (OCCs). The experiments were based on freshly isolated porcine OCC cultures in which the consequences of PR and COX-2 inhibition on the final processes of oocyte maturation were determined. Granulosa cells (GCs) and OCCs were cultured in medium supplemented with FSH/LH (both 100 ng/mL) in the presence/absence of RU486 or indomethacin. Western blot analysis, (3)H-glucosamine hydrochloride assay, immunofluorescence, and radioimmunoassay were performed. Only treatment with RU486 (25 μM) caused a decrease in the number of oocytes that reached germinal vesicle breakdown and metaphase II stage compared with indomethacin (100 μM) or FSH/LH treatment alone after 44 h. All treated OCCs synthesized an almost equal amount of HA. Heavy chains (of inter-α trypsin inhibitor)-HA covalent complexes were formed during in vitro FSH/LH-stimulated expansion in RU486- or indomethacin-treated OCCs. Follicle-stimulating hormone/LH-induced progesterone production by OCCs was increased in the presence of RU486 after 44 h. In contrast, a decrease of FSH/LH-stimulated progesterone production by GCs was detected in the presence of either RU486 or indomethacin after 72 h. We suggest that the PR-dependent pathway may be involved in the regulation of oocyte maturation. Both PR and COX-2 regulate FSH/LH-stimulated progesterone production by OCCs and GCs.
Collapse
Affiliation(s)
- E Nagyova
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, 27721 Libechov, Czech Republic.
| | - S Scsukova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, 83301 Bratislava, Slovakia
| | - J Kalous
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, 27721 Libechov, Czech Republic
| | - A Mlynarcikova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, 83301 Bratislava, Slovakia
| |
Collapse
|
19
|
Peluso JJ, Pru JK. Non-canonical progesterone signaling in granulosa cell function. Reproduction 2014; 147:R169-78. [PMID: 24516175 DOI: 10.1530/rep-13-0582] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
It has been known for over 3 decades that progesterone (P4) suppresses follicle growth. It has been assumed that P4 acts directly on granulosa cells of developing follicles to slow their development, as P4 inhibits both mitosis and apoptosis of cultured granulosa cells. However, granulosa cells of developing follicles of mice, rats, monkeys, and humans do not express the A or B isoform of the classic nuclear receptor for P4 (PGR). By contrast, these granulosa cells express other P4 binding proteins, one of which is referred to as PGR membrane component 1 (PGRMC1). PGRMC1 specifically binds P4 with high affinity and mediates P4's anti-mitotic and anti-apoptotic action as evidenced by the lack of these P4-dependent effects in PGRMC1-depleted cells. In addition, mice in which PGRMC1 is conditionally depleted in granulosa cells show diminished follicle development. While the mechanism through which P4 activation of PGRMC1 affects granulosa cell function is not well defined, it appears that PGRMC1 controls granulosa cell function in part by regulating gene expression in T-cell-specific transcription factor/lymphoid enhancer factor-dependent manner. Clinically, altered PGRMC1 expression has been correlated with premature ovarian failure/insufficiency, polycystic ovarian syndrome, and infertility. These collective studies provide strong evidence that PGRMC1 functions as a receptor for P4 in granulosa cells and that altered expression results in compromised reproductive capacity. Ongoing studies seek to define the components of the signal transduction cascade through which P4 activation of PGRMC1 results in the regulation of granulosa cell function.
Collapse
|
20
|
Bali N, Arimoto JM, Morgan TE, Finch CE. Progesterone antagonism of neurite outgrowth depends on microglial activation via Pgrmc1/S2R. Endocrinology 2013; 154:2468-80. [PMID: 23653459 PMCID: PMC3689281 DOI: 10.1210/en.2012-2109] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neuronal plasticity is regulated by the ovarian steroids estradiol (E2) and progesterone (P4) in many normal brain functions, as well as in acute response to injury and chronic neurodegenerative disease. In a female rat model of axotomy, the E2-dependent compensatory neuronal sprouting is antagonized by P4. To resolve complex glial-neuronal cell interactions, we used the "wounding-in-a-dish" model of neurons cocultured with astrocytes or mixed glia (microglia to astrocytes, 1:3). Although both astrocytes and mixed glia supported E2-enhanced neurite outgrowth, P4 antagonized E2-induced neurite outgrowth only with mixed glia, but not astrocytes alone. We now show that P4-E2 antagonism of neurite outgrowth is mediated by microglial expression of progesterone receptor (Pgr) membrane component 1 (Pgrmc1)/S2R, a putative nonclassical Pgr mediator with multiple functions. The P4-E2 antagonism of neurite outgrowth was restored by add-back of microglia to astrocyte-neuron cocultures. Because microglia do not express the classical Pgr, we examined the role of Pgrmc1, which is expressed in microglia in vitro and in vivo. Knockdown by siRNA-Pgrmc1 in microglia before add-back to astrocyte-neuron cocultures suppressed the P4-E2 antagonism of neurite outgrowth. Conditioned media from microglia restored the P4-E2 activity, but only if microglia were activated by lipopolysaccharide or by wounding. Moreover, the microglial activation was blocked by Pgmrc1-siRNA knockdown. These findings explain why nonwounded cultures without microglial activation lack P4 antagonism of E2-induced neurite outgrowth. We suggest that microglial activation may influence brain responses to exogenous P4, which is a prospective therapy in traumatic brain injury.
Collapse
Affiliation(s)
- N Bali
- Molecular Biology Program, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | |
Collapse
|
21
|
Akison LK, Robker RL. The Critical Roles of Progesterone Receptor (PGR) in Ovulation, Oocyte Developmental Competence and Oviductal Transport in Mammalian Reproduction. Reprod Domest Anim 2012; 47 Suppl 4:288-96. [DOI: 10.1111/j.1439-0531.2012.02088.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Shao R, Wang X, Weijdegård B, Norström A, Fernandez-Rodriguez J, Brännström M, Billig H. Coordinate regulation of heterogeneous nuclear ribonucleoprotein dynamics by steroid hormones in the human fallopian tube and endometrium in vivo and in vitro. Am J Physiol Endocrinol Metab 2012; 302:E1269-82. [PMID: 22436695 DOI: 10.1152/ajpendo.00673.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs), which are chromatin-associated RNA-binding proteins, participate in mRNA stability, transport, intracellular localization, and translation by acting as transacting factors. Several studies have shown that steroid hormones can regulate hnRNP expression. However, to date, the regulation of hnRNPs and their interactions with steroid hormone signaling in fallopian tubes and endometrium are not fully elucidated. In the present study, we determined whether hnRNP expression is regulated during the menstrual cycle and correlates with estrogen receptor (ER) and progesterone receptor (PR) levels in human fallopian tubes in vivo. Because of the limited availability of human tubal tissues for the research, we also explored the mechanisms of hnRNP regulation in human endometrium in vitro. Fallopian tissue was obtained from patients in the early, late, and postovulatory phases and the midsecretory phase and endometrial tissue from premenopausal and postmenopausal women undergoing hysterectomy. We measured expression of hnRNPs and assessed their intracellular localization and interactions with ERs and PRs. We also determined the effects of human chorionic gonadotropin, 17β-estradiol (E(2)), and progesterone (P(4)) on hnRNP expression. In fallopian tubes, mRNA and protein levels of hnRNP A1, AB, D, G, H, and U changed dynamically during ovulation and in the midsecretory phase. In coimmunolocation and coimmunoprecipitation experiments, hnRNPs interacted with each other and with ERs and PRs in fallopian tubes. After treatment with E(2) and/or P(4) to activate ERs and PRs, hnRNP A1, AB, D, G, and U proteins displayed overlapping but distinct patterns of regulation in the endometrium in vitro. Our findings expand the physiological repertoire of hnRNPs in human fallopian tubes and endometrium and suggest that steroid hormones regulate different hnRNPs directly by interacting with ERs and/or PRs or indirectly by binding other hnRNPs. Both actions may contribute to regulation of gene transcription.
Collapse
Affiliation(s)
- Ruijin Shao
- Dept. of Physiology/Endocrinology, Sahlgrenska Academy, Univ. of Gothenburg, Box 434, Gothenburg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
23
|
Lima-Verde IB, Matos MH, Celestino JJ, Rossetto R, Name KP, Báo SN, Campello CC, Figueiredo JR. Progesterone and Follicle Stimulating Hormone interact and promote goat preantral follicles survival and development in vitro. PESQUISA VETERINARIA BRASILEIRA 2012. [DOI: 10.1590/s0100-736x2012000400015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the effects of progesterone and follicle stimulating hormone (FSH) on survival and growth of caprine preantral follicles. Pieces of ovarian tissue were cultured for 1 or 7 days in minimum essential medium (MEM) alone or containing progesterone (1, 2.5, 5, 10 or 20ng/mL), FSH (50ng/mL) or the interaction between progesterone and FSH. Fresh (non-cultured control) and cultured ovarian tissues were processed for histological and ultrastructural studies. After 7 days the addition of FSH to all progesterone concentrations maintained the percentage of normal follicles similar to fresh control. At day 7 of culture, a higher percentage of developing follicles was observed only in 2.5ng/ml of progesterone associated with FSH or 10ng/ml of progesterone alone when compared with control. From day 1 to day 7 of culture, a significant increase in the percentage of developing follicles was observed in MEM and 2.5ng/ml of progesterone + FSH. In addition, after 7 days, in all treatments, there was a significant increase in follicular diameter when compared with control, except for MEM alone and in 5ng/ml of progesterone + FSH or 10ng/ml of progesterone alone. Ultrastructural studies confirmed follicular integrity after 7 days of culture in 2.5ng/ml of progesterone with FSH. In conclusion, this study demonstrated that the interaction between progesterone and FSH maintains ultrastructural integrity, stimulates primordial follicles activation and further growth of cultured caprine preantral follicles.
Collapse
|
24
|
Effects of RU486 in the expression of progesterone receptor isoforms in the hypothalamus and the preoptic area of the rat during postpartum estrus. Neurosci Lett 2011; 504:127-130. [DOI: 10.1016/j.neulet.2011.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/09/2011] [Accepted: 09/12/2011] [Indexed: 11/23/2022]
|
25
|
Abe T, Toida D, Satoh H, Yonezawa T, Kawaminami M, Kurusu S. An early single dose of progesterone agonist attenuates endogenous progesterone surge and reduces ovulation rate in immature rat model of induced ovulation. Steroids 2011; 76:1116-25. [PMID: 21600908 DOI: 10.1016/j.steroids.2011.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 10/18/2022]
Abstract
Inhibition of preovulatory synthesis and action of progesterone impairs ovulation in rodents. We evaluated effects of supplementation of exogenous progesterone on human chorionic gonadotropin (hCG)-induced ovulatory response in immature rats. Equine CG-primed mature follicles responded to hCG with induction of immunoreactive steroidogenic acute regulatory protein (StAR) mainly in thecal layers and a transient enhancement in progesterone synthesis peaking at 6h after hCG (hCG6h). A single dose of natural progesterone or a synthetic agonist (MP) at hCG0h both decreased ovulation rates in dose-dependent manners. MP was still effective when treated at hCG4h. Treatment with these agents at hCG0h reduced circulating progesterone and thecal expression of StAR at hCG6h. The treatments further attenuated induction of cyclooxygenase (COX)-2 in mural granulosa cells and ovarian prostaglandin (PG) E(2) level at hCG8h. We also found a significant reduction in bromo-deoxyuridine incorporation by mural granulosa cells. Obtained results show that the early treatment with exogenous progesterone agonist caused attenuated amplitude of endogenous progesterone surge, reduced COX-2/PGE(2) system, dysregulated mitosis of granulosa cells, and decreased oocytes release. We suggest that optimal progesterone synthesis and action are an early critical component of hCG-initiated ovulatory cascade that regulates biochemical function of granulosa cells.
Collapse
Affiliation(s)
- Tadatsugu Abe
- Laboratory of Veterinary Physiology, Kitasato University School of Veterinary Medicine, Towada, Aomori 034-8628, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Chowdhury I, Branch A, Olatinwo M, Thomas K, Matthews R, Thompson WE. Prohibitin (PHB) acts as a potent survival factor against ceramide induced apoptosis in rat granulosa cells. Life Sci 2011; 89:295-303. [PMID: 21763324 PMCID: PMC3169651 DOI: 10.1016/j.lfs.2011.06.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 05/19/2011] [Accepted: 06/20/2011] [Indexed: 01/25/2023]
Abstract
AIM Ceramide is a key factor in inducing germ cell apoptosis by translocating from cumulus cells into the adjacent oocyte and lipid rafts through gap junctions. Therefore studies designed to elucidate the mechanistic pathways in ceramide induced granulosa cell (GC) apoptosis and follicular atresia may potentially lead to the development of novel lipid-based therapeutic strategies that will prevent infertility and premature menopause associated with chemo and/or radiation therapy in female cancer patients. Our previous studies have shown that Prohibitin (PHB) is intimately involved in GCs differentiation, atresia, and luteolysis. MAIN METHODS In the present study, we have examined the functional effects of loss-/gain-of-function of PHB using adenoviral technology in delaying apoptosis induced by the physiological ligand ceramide in rat GCs. KEY FINDINGS Under these experimental conditions, exogenous ceramide C-8 (50 μM) augmented the expression of mitochondrial PHB and subsequently cause the physical destruction of GC by the release of mitochondrial cytochrome c and activation of caspase-3. In further studies, silencing of PHB expression by adenoviral small interfering RNA (shRNA) sensitized GCs to ceramide C8-induce apoptosis. In contrast, adenovirus (Ad) directed overexpression of PHB in GCs resulted in increased PHB content in mitochondria and delayed the onset of ceramide induced apoptosis in the infected GCs. SIGNIFICANCE Taken together, these results provide novel evidences that a critical level of PHB expression within the mitochondria plays a key intra-molecular role in GC fate by mediating the inhibition of apoptosis and may therefore, contribute significantly to ceramide induced follicular atresia.
Collapse
Affiliation(s)
- Indrajit Chowdhury
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, Georgia
- Cooperative Reproductive Science Research Center, Morehouse School of Medicine, Atlanta, Georgia
| | - Alicia Branch
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, Georgia
- Cooperative Reproductive Science Research Center, Morehouse School of Medicine, Atlanta, Georgia
| | - Moshood Olatinwo
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, Georgia
- Cooperative Reproductive Science Research Center, Morehouse School of Medicine, Atlanta, Georgia
- Summit ObGyn, Natchitoches LA
| | - Kelwyn Thomas
- Cooperative Reproductive Science Research Center, Morehouse School of Medicine, Atlanta, Georgia
- Department of Anatomy and Neurobiology, Morehouse School of Medicine, Atlanta, Georgia
| | - Roland Matthews
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, Georgia
| | - Winston E. Thompson
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, Georgia
- Cooperative Reproductive Science Research Center, Morehouse School of Medicine, Atlanta, Georgia
| |
Collapse
|
27
|
Induction of G protein-coupled estrogen receptor (GPER) and nuclear steroid hormone receptors by gonadotropins in human granulosa cells. Histochem Cell Biol 2011; 136:289-99. [PMID: 21809103 DOI: 10.1007/s00418-011-0846-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2011] [Indexed: 10/17/2022]
Abstract
Estradiol and progesterone mediate their actions by binding to classical nuclear receptors, estrogen receptor α (ERα) and estrogen receptor β (ERβ) and progesterone receptor A and B (PR-A and PR-B) and the non-classical G protein-coupled estrogen receptor (GPER). Several animal knock-out models have shown the importance of the receptors for growth of the oocyte and ovulation. The aim of our study was to identify GPER in human granulosa cells (GC) for the first time. Moreover, the effect of different doses of gonadotropins on estrogen and progesterone receptors in the human ovary should be investigated as follicle stimulating hormone (FSH) and luteinizing hormone (LH) are also responsible for numerous mechanisms in the ovary like induction of the steroid biosynthesis. Human GC were cultured in vitro and stimulated with different doses of recombinant human FSH or LH. Receptor expression was analyzed by immunocytochemistry and quantitative real-time RT-PCR. GPER could be identified for the first time in human GC. It could be shown that high concentrations of LH increase GPER protein expression. Furthermore FSH and LH increased ERβ, PR-A and PR-B significantly on protein level. These findings were verified for high doses of FSH and LH on mRNA level. ERα was not affected with FSH or LH. We assume that gonadotropins induce GPER, ERβ and PR in luteinized granulosa cells.
Collapse
|
28
|
Rota A, Pregel P, Cannizzo FT, Sereno A, Appino S. Unusual case of uterine stump pyometra in a cat. J Feline Med Surg 2011; 13:448-50. [PMID: 21256784 PMCID: PMC10832701 DOI: 10.1016/j.jfms.2010.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 11/22/2010] [Accepted: 11/25/2010] [Indexed: 11/16/2022]
Abstract
This report describes an unusual case of uterine stump pyometra in a cat whose main clinical sign at presentation was abdominal straining. At the time of ovariohysterectomy, the surgeon reported that the uterine body had a purulent content. Nearly a month after the surgery the cat showed abdominal straining. The enlarged uterine stump, filled with purulent fluid, had caused a compression of the rectum and secondary intestinal sub-occlusion. Surgical revision consisted of draining the purulent content of the remnant of the uterine body and ablating as much of it as possible; checking of the ovarian pedicles revealed the presence of a small fragment of whitish tissue on the right side, which was shown to contain, by means of histological observation and immunohistochemical staining, ovarian tissue. Four months after surgical revision the queen did not show any pathological signs and 1 year later she is still in good health.
Collapse
Affiliation(s)
- Ada Rota
- Dipartimento di Patologia Animale, via Leonardo da Vinci 44, 10090 Grugliasco, Torino, Italy.
| | | | | | | | | |
Collapse
|
29
|
Aparicio I, Garcia-Herreros M, O'Shea L, Hensey C, Lonergan P, Fair T. Expression, Regulation, and Function of Progesterone Receptors in Bovine Cumulus Oocyte Complexes During In Vitro Maturation1. Biol Reprod 2011; 84:910-21. [DOI: 10.1095/biolreprod.110.087411] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
30
|
Hanna RN, Zhu Y. Controls of meiotic signaling by membrane or nuclear progestin receptor in zebrafish follicle-enclosed oocytes. Mol Cell Endocrinol 2011; 337:80-8. [PMID: 21335056 DOI: 10.1016/j.mce.2011.02.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 01/24/2011] [Accepted: 02/03/2011] [Indexed: 01/29/2023]
Abstract
Both membrane progestin receptors (mPRs) and the nuclear progestin receptor (nPR or Pgr) decode the non-genomic progestin signaling (NGPS) in vertebrates. However, the receptor for deciphering extracellular NGPS and initiating meiosis resumption in vertebrate oocytes is still contested hotly. We studied the roles of nPR and mPRs by determining their localization, changes of expression, and activation of NGPS during final oocyte maturation (FOM) in zebrafish. The nPR transcript and protein were expressed abundantly in follicular cells that were surrounding stage IV oocytes, but nPR transcript appeared absent within stage IV oocytes. The most significant daily changes of nPR transcript were observed in stage IV follicular cells, with the highest level observed just prior to ovulation. In contrast, the expressions of mPRα and mPRβ transcripts and proteins were abundant and increased significantly in late stage denuded oocytes prior to oocyte maturation, consistent with the purported role of mPRs in interpreting NGPS. Moreover, over-expression of mPRα in follicle-enclosed oocytes significantly increased the activity of MAPK, the production of cyclin B protein, and the number of oocytes that underwent FOM without exogenous progestin, while over-expression of mPRβ or nPR alone had no such effect. Intriguingly, significant acceleration of FOM was observed when follicle-enclosed oocytes were incubated with the maturation inducing steroid, 4-pregnen-17, 20β-diol-3-one (DHP) following over-expression of nPR or mPRα. Interestingly, this acceleration in oocyte maturation was observed approximately 1h later in oocytes over-expressing nPR compared to those over-expressing mPRα. Importantly, the acceleration of maturation in the nPR injected group was blocked by treatment with the transcription inhibitor actinomycin D, implying a requirement of the genomic signaling pathway, while the same treatment did not affect the accelerated rate of maturation in mPRα injected oocytes. Taken together, these results imply that nPR and mPRβ are unlikely receptors for inducing FOM, while mPRα is the long-sought-after nongenomic progestin receptor that deciphers extracellular NGPS to initiate meiosis resumption in follicle-enclosed zebrafish oocytes.
Collapse
Affiliation(s)
- Richard N Hanna
- Department of Biology, East Carolina University, Howell Science Complex, Greenville, NC 27858, USA
| | | |
Collapse
|
31
|
Mori D, Ogino N, Yonezawa T, Kawaminami M, Kurusu S. Anti-ovulatory effects of RU486 and trilostane involve impaired cyclooxygenase-2 expression and mitotic activity of follicular granulosa cells in rats. Prostaglandins Other Lipid Mediat 2011; 94:118-23. [DOI: 10.1016/j.prostaglandins.2011.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/07/2011] [Accepted: 02/07/2011] [Indexed: 10/18/2022]
|
32
|
Assidi M, Dieleman SJ, Sirard MA. Cumulus cell gene expression following the LH surge in bovine preovulatory follicles: potential early markers of oocyte competence. Reproduction 2010; 140:835-52. [PMID: 20724459 DOI: 10.1530/rep-10-0248] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cumulus cells (CCs) are essential for oocytes to reach full development competency and become fertilized. Many major functional properties of CCs are triggered by gonadotropins and governed by the oocyte. Consequently, cumulus may reflect oocyte quality and is often used for oocyte selection. The most visible function of CCs is their ability for rapid extracellular matrix expansion after the LH surge. Although unexplained, LH induces the final maturation and improves oocyte quality. To study the LH signaling and gene expression cascade patterns close to the germinal vesicle breakdown, bovine CCs collected at 2 h before and 6 h after the LH surge were hybridized to a custom-made microarray to better understand the LH genomic action and find differentially expressed genes associated with the LH-induced oocyte final maturation. Functional genomic analysis of the 141 overexpressed and 161 underexpressed clones was performed according to their molecular functions, gene networks, and cell compartments. Following real-time PCR validation of our gene lists, some interesting pathways associated with the LH genomic action on CCs and their possible roles in oocyte final maturation, ovulation, and fertilization are discussed. A list of early potential markers of oocyte competency in vivo and in vitro is thereafter suggested. These early biomarkers are a preamble to understand the LH molecular pathways that trigger the final oocyte competence acquisition process in bovine.
Collapse
Affiliation(s)
- Mourad Assidi
- Centre de Recherche en Biologie de la Reproduction, Université Laval, Québec, Québec, G1K 7P4, Canada
| | | | | |
Collapse
|
33
|
Immunohistochemical study on differential distribution of progesterone receptor A and progesterone receptor B within the porcine ovary. Anim Reprod Sci 2010; 121:167-73. [DOI: 10.1016/j.anireprosci.2010.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/25/2010] [Accepted: 04/09/2010] [Indexed: 11/18/2022]
|
34
|
Peluso JJ, Liu X, Gawkowska A, Lodde V, Wu CA. Progesterone inhibits apoptosis in part by PGRMC1-regulated gene expression. Mol Cell Endocrinol 2010; 320:153-61. [PMID: 20144686 PMCID: PMC2844455 DOI: 10.1016/j.mce.2010.02.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 01/27/2010] [Accepted: 02/01/2010] [Indexed: 11/25/2022]
Abstract
Progesterone receptor membrane component-1 (PGRMC1) is present in both the cytoplasm and nucleus of spontaneously immortalized granulosa cells (SIGCs). PGRMC1 is detected as a monomer in the cytoplasm and a DTT-resistant PGRMC1 dimer in the nucleus. Transfected PGRMC1-GFP localizes mainly to the cytoplasm and does not form a DTT-resistant dimer. Moreover, forced expression of PGRMC1-GFP increases the sensitivity of the SIGCs to progesterone (P4)'s anti-apoptotic action, indicating that the PGRMC1 monomer is functional. However, when endogenous PGRMC1 is depleted by siRNA treatment and replaced with PGRMC1-GFP, P4 responsiveness is not enhanced, although overall levels of PGRMC1 are increased. P4's anti-apoptotic action is also attenuated by actinomycin D, an inhibitor of RNA synthesis, and P4 activation of PGRMC1 suppresses Bad and increases Bcl2a1d expression. Taken together, the present studies suggest a genomic component to PGRMC1's anti-apoptotic mechanism of action, which requires the presence of the PGRMC1 dimer.
Collapse
Affiliation(s)
- J J Peluso
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | | | | | | | | |
Collapse
|
35
|
Friberg PA, Larsson DGJ, Billig H. Transcriptional effects of progesterone receptor antagonist in rat granulosa cells. Mol Cell Endocrinol 2010; 315:121-30. [PMID: 19818377 DOI: 10.1016/j.mce.2009.09.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 09/25/2009] [Accepted: 09/25/2009] [Indexed: 11/15/2022]
Abstract
Progesterone, acting via the nuclear progesterone receptor (PGR), reduces apoptosis in periovulatory granulosa cells, and is a likely mediator of the anti-atretic actions of LH. The underlying mechanisms, however, have not been clearly defined. In this study, we sought to identify progesterone-mediated transcriptional changes involved in apoptosis regulation. Granulosa cells from immature, gonadotropin-primed female rats were treated in vitro with 100 nM of the PGR antagonist Org 31710. Transcriptional effects were analyzed after 5 and 22 h of incubation using microarrays, and the expression of 85 genes was subsequently measured by quantitative PCR. Follow-up experiments focused on genes related to the functional group "apoptosis". We have identified novel, early gene targets of PGR that may be involved in the control of apoptosis and other biologically significant functions in periovulatory granulosa cells. This study expands our knowledge of events that occur during the processes of ovulation and luteinization.
Collapse
Affiliation(s)
- P Anders Friberg
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | | | | |
Collapse
|
36
|
Robker RL, Akison LK, Russell DL. Control of oocyte release by progesterone receptor-regulated gene expression. NUCLEAR RECEPTOR SIGNALING 2009; 7:e012. [PMID: 20087433 PMCID: PMC2807638 DOI: 10.1621/nrs.07012] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Accepted: 12/16/2009] [Indexed: 01/21/2023]
Abstract
The progesterone receptor (PGR) is a nuclear receptor transcription factor that is essential for female fertility, in part due to its control of oocyte release from the ovary, or ovulation. In all mammals studied to date, ovarian expression of PGR is restricted primarily to granulosa cells of follicles destined to ovulate. Granulosa cell expression of PGR is induced by the pituitary Luteinizing Hormone (LH) surge via mechanisms that are not entirely understood, but which involve activation of Protein Kinase A and modification of Sp1/Sp3 transcription factors on the PGR promoter. Null mutations for PGR or treatment with PGR antagonists block ovulation in all species analyzed, including humans. The cellular mechanisms by which PGR regulates ovulation are currently under investigation, with several downstream pathways having been identified as PGR-regulated and potentially involved in follicular rupture. Interestingly, none of these PGR-regulated genes has been demonstrated to be a direct transcriptional target of PGR. Rather, in ovarian granulosa cells, PGR may act as an inducible coregulator for constitutively bound Sp1/Sp3 transcription factors, which are key regulators for a discrete cohort of ovulatory genes.
Collapse
Affiliation(s)
- Rebecca L Robker
- The Robinson Institute, School of Paediatrics and Reproductive Health, University of Adelaide, SA, Australia.
| | | | | |
Collapse
|
37
|
Kim J, Bagchi IC, Bagchi MK. Control of ovulation in mice by progesterone receptor-regulated gene networks. Mol Hum Reprod 2009; 15:821-8. [PMID: 19815644 DOI: 10.1093/molehr/gap082] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The mid-cycle surge of luteinizing hormone (LH) induces ovulation, a process during which a fertilizable oocyte is released from a mature ovarian follicle. Although ovulation is a physiologically well-characterized event, the underlying molecular pathways remain poorly understood. Progesterone receptor (PGR), which mediates the biological effects of the steroid hormone progesterone, has emerged as a key regulator of ovulation in mice. The development of a progesterone-receptor-null (Pgr-null) mouse model confirmed a critical role of this hormone in ovulation because in these mutant mice, mature pre-ovulatory follicles fail to release the oocytes. This animal model has thus presented a unique opportunity to study the molecular pathways underlying ovulation. Gene-expression profiling experiments by several groups, using the ovaries of Pgr-null mice, revealed novel gene networks, which act downstream of PGR to control ovulation. These genes encode diverse molecules such as proteases, transcription factors, cell-adhesion molecules, modulators of vascular activities and regulators of inflammation. Functional analyses using gene-knockout mouse models have confirmed that some of these factors play critical roles during ovulation. The knowledge gained from these studies has helped us to understand better the molecular mechanisms that facilitate the release of oocytes from pre-ovulatory follicles. Further analysis of the role of molecular regulators of ovulation will help identify useful molecular targets that would allow the development of improved contraceptives and new therapeutics for anovulatory infertility.
Collapse
Affiliation(s)
- Jaeyeon Kim
- Department of Molecular and Integrative Physiology, Center for Research in Reproduction and Infertility, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
38
|
Hanna RN, Daly SCJ, Pang Y, Anglade I, Kah O, Thomas P, Zhu Y. Characterization and expression of the nuclear progestin receptor in zebrafish gonads and brain. Biol Reprod 2009; 82:112-22. [PMID: 19741205 DOI: 10.1095/biolreprod.109.078527] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The zebrafish nuclear progestin receptor (nPR; official symbol PGR) was identified and characterized to better understand its role in regulating reproduction in this well-established teleost model. A full-length cDNA was identified that encoded a 617-amino acid residue protein with high homology to PGRs in other vertebrates, and contained five domains characteristic of nuclear steroid receptors. In contrast to the multiplicity of steroid receptors often found in euteleosts and attributed to probable genome duplication, only a single locus encoding the full-length zebrafish pgr was identified. Cytosolic proteins from pgr-transfected cells showed a high affinity (K(d) = 2 nM), saturable, single-binding site specific for a native progestin in euteleosts, 4-pregnen-17,20 beta-diol-3-one (17,20 beta-DHP). Both 17,20 beta-DHP and progesterone were potent inducers of transcriptional activity in cells transiently transfected with pgr in a dual luciferase reporter assay, whereas androgens and estrogens had little potency. The pgr transcript and protein were abundant in the ovaries, testis, and brain and were scarce or undetectable in the intestine, muscle, and gills. Further analyses indicate that Pgr was expressed robustly in the preoptic region of the hypothalamus in the brain; proliferating spermatogonia and early spermatocytes in the testis; and in follicular cells and early-stage oocytes (stages I and II), with very low levels within maturationally competent late-stage oocytes (IV) in the ovary. The localization of Pgr suggests that it mediates progestin regulation of reproductive signaling in the brain, early germ cell proliferation in testis, and ovarian follicular functions, but not final oocyte or sperm maturation.
Collapse
Affiliation(s)
- Richard N Hanna
- Department of Biology, East Carolina University, Greenville, North Carolina 27858, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Shao R, Nutu M, Karlsson-Lindahl L, Benrick A, Weijdegård B, Lager S, Egecioglu E, Fernandez-Rodriguez J, Gemzell-Danielsson K, Ohlsson C, Jansson JO, Billig H. Downregulation of cilia-localized Il-6Rα by 17β-estradiol in mouse and human fallopian tubes. Am J Physiol Cell Physiol 2009; 297:C140-51. [DOI: 10.1152/ajpcell.00047.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The action of interleukin-6 (IL-6) impacts female reproduction. Although IL-6 was recently shown to inhibit cilia activity in human fallopian tubes in vitro, the molecular mechanisms underlying IL-6 signaling to tubal function remain elusive. Here, we investigate the cellular localization, regulation, and possible function of two IL-6 receptors (IL-6Rα and gp130) in mouse and human fallopian tubes in vivo. We show that IL-6Rα is restricted to the cilia of epithelial cells in both mouse and human fallopian tubes. Exogenous 17β-estradiol (E2), but not progesterone (P4), causes a time-dependent decrease in IL-6Rα expression, which is blocked by the estrogen receptor (ER) antagonist ICI-182,780. Exposure of different ER-selective agonists propyl-(1H)-pyrazole-1,3,5-triyl-trisphenol or 2,3-bis-(4-hydroxyphenyl)-propionitrile demonstrated an ER subtype-specific regulation of IL-6Rα in mouse fallopian tubes. In contrast to IL-6Rα, gp130 was detected in tubal epithelial cells in mice but not in humans. In humans, gp130 was found in the muscle cells and was decreased in the periovulatory and luteal phases during the reproductive cycles, indicating a species-specific expression and regulation of gp130 in the fallopian tube. Expression of tubal IL-6Rα and gp130 in IL-6 knockout mice was found to be normal; however, E2 treatment increased IL-6Rα, but not gp130, in IL-6 knockout mice when compared with wild-type mice. Furthermore, expression levels of IL-6Rα, but not gp130, decreased in parallel with estrogenic accelerated oocyte-cumulus complex (OCC) transport in mouse fallopian tubes. Our findings open the posibility that cilia-specific IL-6Rα may play a role in the regulation of OCC transport and suggest an estrogen-regulatory pathway of IL-6Rα in the fallopian tube.
Collapse
|
40
|
Friberg PA, Larsson DJ, Billig H. Dominant Role of Nuclear Progesterone Receptor in the Control of Rat Periovulatory Granulosa Cell Apoptosis1. Biol Reprod 2009; 80:1160-7. [DOI: 10.1095/biolreprod.108.073932] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
41
|
Assidi M, Dufort I, Ali A, Hamel M, Algriany O, Dielemann S, Sirard MA. Identification of potential markers of oocyte competence expressed in bovine cumulus cells matured with follicle-stimulating hormone and/or phorbol myristate acetate in vitro. Biol Reprod 2008; 79:209-22. [PMID: 18417710 DOI: 10.1095/biolreprod.108.067686] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Oocyte competence is the ability of the oocyte to complete maturation, undergo successful fertilization, and reach the blastocyst stage. Cumulus cells are indispensable for this process. Their removal significantly affects the blastocyst rates. Moreover, the properties and functions of cumulus cells are regulated by the oocyte. They also reflect the oocyte's degree of maturation. Our study was aimed at identifying markers of oocyte competence that are expressed in bovine cumulus cells. In a previous study in our laboratory, the blastocyst yield following FSH or phorbol myristate acetate (PMA) treatment was 45%%. Therefore, we tested four sets of conditions during the first 6 h of in vitro maturation (IVM): FSH (0.1 microg/ml), PMA (0.1 microM), FSH ++ PMA, and negative control. Extracts from each IVM treatment were hybridized against the same negative control on a microarray containing a partial library of differentially expressed transcripts in the cumulus of competent oocytes collected at 6 h after LH in vivo. Common positive clones between diffrentially treated cells were selected, and 15 candidates were validated by real-time PCR. Based on this, the main candidates expressed in cumulus cells and that could be valuable and indirect markers of oocyte competence are hyaluronan synthase 2 (HAS2), inhibin betaA (INHBA), epidermal growth factor receptor (EGFR), gremlin 1 (GREM1), betacellulin (BTC), CD44, tumor necrosis factor-induced protein 6 (TNFAIP6), and prostaglandin-endoperoxide synthase 2 (PTGS2). These biomarkers could be potential candidates to predict oocyte competence and to select higher-quality embryos for transfer. Additionally, these indirect predictors of oocyte competence and follicular health could improve our knowledge of gene expression patterns in the cumulus and yield insights into the molecular pathways controlling oocyte competence.
Collapse
Affiliation(s)
- Mourad Assidi
- Centre de Recherche en Biologie de la Reproduction, Université Laval, Québec, Québec, Canada G1K 7P4
| | | | | | | | | | | | | |
Collapse
|
42
|
Johansson ME, Andersson IJ, Alexanderson C, Skøtt O, Holmäng A, Bergström G. Hyperinsulinemic rats are normotensive but sensitized to angiotensin II. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1240-7. [DOI: 10.1152/ajpregu.00493.2007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of insulin on blood pressure (BP) is debated, and an involvement of an activated renin-angiotensin aldosterone system (RAAS) has been suggested. We studied the effect of chronic insulin infusion on telemetry BP and assessed sympathetic activity and dependence of the RAAS. Female Sprague-Dawley rats received insulin (2 units/day, INS group, n = 12) or insulin combined with losartan (30 mg·kg−1·day−1, INS+LOS group, n = 10), the angiotensin II receptor antagonist, for 6 wk. Losartan-treated (LOS group, n = 10) and untreated rats served as controls ( n = 11). We used telemetry to measure BP and heart rate (HR), and acute ganglion blockade and air-jet stress to investigate possible control of BP by the sympathetic nervous system. In addition, we used myograph technique to study vascular function ex vivo. The INS and INS+LOS groups developed euglycemic hyperinsulinemia. Insulin did not affect BP but increased HR (27 beats/min on average). Ganglion blockade reduced mean arterial pressure (MAP) similarly in all groups. Air-jet stress did not increase sympathetic reactivity but rather revealed possible blunting of the stress response in hyperinsulinemia. Chronic losartan markedly reduced 24-h-MAP in the INS+LOS group (−38 ± 1 mmHg P < 0.001) compared with the LOS group (−18 ± 1 mmHg, P ≤ 0.05). While insulin did not affect vascular function per se, losartan improved endothelial function in the aorta of insulin-treated rats. Our results raise doubt regarding the role of hyperinsulinemia in hypertension. Moreover, we found no evidence that insulin affects sympathetic nervous system activity. However, chronic losartan treatment revealed an important interaction between insulin and RAAS in BP control.
Collapse
|
43
|
Peluso JJ, Romak J, Liu X. Progesterone receptor membrane component-1 (PGRMC1) is the mediator of progesterone's antiapoptotic action in spontaneously immortalized granulosa cells as revealed by PGRMC1 small interfering ribonucleic acid treatment and functional analysis of PGRMC1 mutations. Endocrinology 2008; 149:534-43. [PMID: 17991724 PMCID: PMC2219306 DOI: 10.1210/en.2007-1050] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Progesterone (P4) receptor membrane component-1 (PGRMC1) and its binding partner, plasminogen activator inhibitor 1 RNA binding protein (PAIRBP1) are thought to form a complex that functions as membrane receptor for P4. The present investigations confirm PGRMC1's role in this membrane receptor complex by demonstrating that depleting PGMRC1 with PGRMC1 small interfering RNA results in a 60% decline in [(3)H]P4 binding and the loss of P4's antiapoptotic action. Studies conducted on partially purified GFP-PGRMC1 fusion protein indicate that [(3)H]P4 specifically binds to PGRMC1 at a single site with an apparent K(d) of about 35 nm. In addition, experiments using various deletion mutations reveal that the entire PGRMC1 molecule is required for maximal [(3)H]P4 binding and P4 responsiveness. Analysis of the binding data also suggests that the P4 binding site is within a segment of PGRMC1 that is composed of the transmembrane domain and the initial segment of the C terminus. Interestingly, PAIRBP1 appears to bind to the C terminus between amino acids 70-130, which is distal to the putative P4 binding site. Taken together, these data provide compelling evidence that PGRMC1 is the P4 binding protein that mediates P4's antiapoptotic action. Moreover, the deletion mutation studies indicate that each domain of PGRMC1 plays an essential role in modulating PGRMC1's capacity to both bind and respond to P4. Additional studies are required to more precisely delineate the role of each PGRMC1 domain in transducing P4's antiapoptotic action.
Collapse
Affiliation(s)
- John J Peluso
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | | | | |
Collapse
|
44
|
Peluso JJ, Liu X, Romak J. Progesterone maintains basal intracellular adenosine triphosphate levels and viability of spontaneously immortalized granulosa cells by promoting an interaction between 14-3-3sigma and ATP synthase beta/precursor through a protein kinase G-dependent mechanism. Endocrinology 2007; 148:2037-44. [PMID: 17303654 DOI: 10.1210/en.2006-1603] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The present studies were designed to 1) describe changes in both the mitochondrial membrane potential and ATP content of spontaneously immortalized granulosa cells as they undergo apoptosis, 2) identify some of the downstream events that are activated by progesterone (P4), and 3) relate these downstream events to changes in mitochondrial function and apoptotic cell death. These studies revealed that in response to serum deprivation, the mitochondrial membrane potential initially hyperpolarizes and ATP content increases. That this increase in ATP is required for apoptosis was demonstrated by the finding that oligomycin inhibited the increase in ATP and apoptosis. Piridoxalphosphate-6-azopeyl-2'-4'-disulfonic acid, an inhibitor of purinergic receptors, which are activated by ATP, also inhibited apoptosis due to serum withdrawal. This study provides additional support for ATP's causative role in apoptosis. Moreover, 8-Br-cGMP, a protein kinase G (PKG) activator, mimicked P4's action, whereas a PKG antagonist, DT-3, attenuated P4's suppressive effect on ATP and apoptosis. Finally, DT-3 treatment was shown to attenuate P4-regulated phosphorylation of 14-3-3sigma and its binding partner, ATP synthasebeta/precursor and the amount of ATP synthasebeta/precursor that bound to 14-3-3sigma. Based on these data, it is proposed that P4 prevents apoptosis in part by activating PKG, which in turn maintains the interaction between ATP synthasebeta/precursor and 14-3-3sigma. In the absence of P4-induced PKG activity, we further propose that some ATP synthasebeta precursor dissociates from 14-3-3sigma, resulting in its activation and incorporation into the ATP synthase complex, which ultimately results in an increase in ATP and apoptosis.
Collapse
Affiliation(s)
- John J Peluso
- Department of Physiology, University of Connecticut Health Center, Farmington, Connecticut 06030-1230, USA.
| | | | | |
Collapse
|
45
|
Shao R, Ljungström K, Weijdegård B, Egecioglu E, Fernandez-Rodriguez J, Zhang FP, Thurin-Kjellberg A, Bergh C, Billig H. Estrogen-induced upregulation of AR expression and enhancement of AR nuclear translocation in mouse fallopian tubes in vivo. Am J Physiol Endocrinol Metab 2007; 292:E604-14. [PMID: 17047162 DOI: 10.1152/ajpendo.00350.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Female mice lacking AR display alterations in ovarian and uterine function. However, the biology of AR in the fallopian tube is not fully understood. To gain an insight into potential roles of AR in this tissue, we demonstrated that eCG treatment increased AR expression in a time-dependent manner and subsequent treatment with hCG decreased AR expression in mouse fallopian tubes. This expression pattern was positively associated with 17beta-estradiol and testosterone levels in vivo. Immunohistochemical analysis of fallopian tube epithelial cells revealed that nuclear localization of AR increased in parallel with decreased AR in the cytoplasm following eCG treatment. Moreover, we found that treatment with flutamide upregulated AR expression in immature mice in association with a decrease in serum testosterone levels, whereas the same treatment resulted in downregulation of AR expression in gonadotropin-stimulated mice with concomitant decreases in serum 17beta-estradiol concentrations, suggesting that androgen differs from estrogen in the regulation of AR expression. Furthermore, we demonstrated that DES increased both AR protein expression and nuclear location over a 48-h time course. DHT had rapid effects, with induction of AR expression and translocation at 6 h after injection, but unlike DES it had prolonged efficacy. In addition, we provided direct in vivo evidence that nuclear protein interaction between AR and p21(Cip1), a previously reported AR-regulated gene, was enhanced by gonadotropin stimulation. To our knowledge, this study provides the first demonstration to illustrate that estrogen as a principal regulator may contribute to regulate and activate AR in the fallopian tubes in vivo.
Collapse
Affiliation(s)
- Ruijin Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at Göteborg University, SE-40530 Gothenburg, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Nutu M, Weijdegård B, Thomas P, Bergh C, Thurin-Kjellberg A, Pang Y, Billig H, Larsson DGJ. Membrane progesterone receptor gamma: Tissue distribution and expression in ciliated cells in the fallopian tube. Mol Reprod Dev 2007; 74:843-50. [PMID: 17154304 DOI: 10.1002/mrd.20685] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Non-genomic, rapid actions of steroids have long been known, suggesting the possible presence of non-classical steroid receptors. A membrane receptor for progestins (mPR) was recently described in the spotted seatrout, and transcripts of three related receptors (alpha, beta, and gamma) were subsequently identified in other species including human and mouse. To begin exploring the roles of mPRgamma in mammals, we have generated an antibody against this receptor. The specificity of the antibody was demonstrated by both overexpression and RNA interference experiments. Using the antibody, we show that mPRgamma is expressed in female mouse reproductive tissues such as ovary and fallopian tube, and also in the lung and liver of both sexes. Immunohistochemical studies revealed that mPRgamma is associated with the apical membrane of ciliated cells facing the lumen of the fallopian tube. The presence of mPRgamma in ciliated cells of the fallopian tube was also demonstrated in human samples. Rapid effects of progesterone on ciliary beat frequency in the fallopian tube have recently been reported. Together, this suggests a common role for mPRgamma in the regulation of ciliary activity in the fallopian tube and thus gamete transport in mammals. The presence of mPRgamma in lung and liver of mice suggests that the receptor mediates the actions of progesterone outside the reproductive tract as well.
Collapse
Affiliation(s)
- Magdalena Nutu
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at Göteborg University, Göteborg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Friberg PA, Larsson DGJ, Rung E, Billig H. Apoptotic effects of a progesterone receptor antagonist on rat granulosa cells are not mediated via reduced protein isoprenylation. Mol Reprod Dev 2007; 74:1317-26. [PMID: 17342739 DOI: 10.1002/mrd.20711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Progesterone is a survival factor in rat periovulatory granulosa cells. The mechanisms involved are unclear but progesterone receptor (PGR) antagonists have been shown to inhibit cholesterol synthesis and induce apoptosis. Furthermore, reports suggest that statins induce apoptosis by inhibition of protein isoprenylation. Statins inhibit the rate-limiting step of the cholesterol synthesis, thereby reducing availability of intermediates used for the post-translational isoprenylation process. It has been suggested that PGR antagonists in a similar manner induce apoptosis by decreasing cholesterol synthesis and thereby protein isoprenylation. In this study we hypothesized that the mechanism by which the nuclear PGR antagonist Org 31,710 induces apoptosis in rat periovulatory granulosa cells, is by decreasing cholesterol synthesis and thereby general cell protein isoprenylation. Incubation of isolated granulosa cells with Org 31,710 or simvastatin for 22 hr resulted in increased apoptosis and reduced cholesterol synthesis. However, simvastatin caused a substantial inhibition of cholesterol synthesis after 6 hr in culture without inducing apoptosis. In contrast, Org 31,710 had only a modest effect on cholesterol synthesis after 6 hr while it significantly induced apoptosis. Addition of isoprenylation substrates partially reversed apoptosis induced by simvastatin and to a lesser extent apoptosis induced by Org 31,710. In addition, and in contrast to Org 31,710, simvastatin caused a decrease in isoprenylation of a selected isoprenylation marker protein, the Ras-related protein RAB11. In conclusion, we demonstrate that the PGR antagonist inhibits cholesterol synthesis in granulosa cells but reduced protein isoprenylation is not the mediating mechanism of increased apoptosis as previously hypothesized.
Collapse
Affiliation(s)
- P Anders Friberg
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at Göteborg University, Göteborg, Sweden
| | | | | | | |
Collapse
|
48
|
Baravalle C, Salvetti NR, Mira GA, Pezzone N, Ortega HH. Microscopic characterization of follicular structures in letrozole-induced polycystic ovarian syndrome in the rat. Arch Med Res 2006; 37:830-9. [PMID: 16971221 DOI: 10.1016/j.arcmed.2006.04.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Accepted: 04/24/2006] [Indexed: 02/08/2023]
Abstract
BACKGROUND Our objective was to characterize the tissular distribution of relevant cytoskeletal proteins, cellular adhesion molecules and proliferation markers and conduct a histomorphometrical study of the follicular wall of letrozole-induced polycystic ovaries. METHODS Twenty rats were divided into two groups: a control group (C) of ten rats that received vehicle only (0.9% NaCl solution) once daily p.o. and a treatment group (T) of ten animals administered letrozole at a concentration of 1 mg/kg p.o. dissolved in 0.9% NaCl solution once daily during 21 days. Twenty four h after the last administration, all animals were sacrificed. Control animals were sacrificed in proestrous (n = 5) and diestrous (n = 5). Serum hormone levels, histomorphometrical changes and immunoexpression of intermediate filaments (vimentin, cytokeratins and desmin), cadherins and proliferation cellular nuclear antigen were examined. RESULTS The granulosa cell layer of cystic follicles had a greater significant immunostaining for vimentin and cytokeratins. Immunohistochemical localization of desmin was restricted to the theca externa. Positive immunoreactivity for cadherins rises gradually and significantly, together with the follicular development, and immunoreactivity was comparatively stronger in follicular cysts. A significantly higher immunostaining for PCNA cells was observed in secondary and tertiary follicles as compared with atretic and cystic follicles. An increase in the LH, FSH and testosterone serum concentrations was observed in letrozole-treated rats. Estradiol and progesterone showed a considerable reduction. CONCLUSIONS The changes observed are probably due to structural and functional alterations that occur during the process of cystogenesis and may be associated with important modifications in the expression of cytoskeletal proteins, cellular adhesion molecules and proliferation markers that may be essential for proper cellular functioning.
Collapse
Affiliation(s)
- Celina Baravalle
- Department of Anatomy and Histology, Faculty of Veterinary Sciences, National University of Litoral, Esperanza, Santa Fe, Argentina
| | | | | | | | | |
Collapse
|
49
|
Shao R, Rung E, Weijdegård B, Billig H. Induction of apoptosis increases SUMO-1 protein expression and conjugation in mouse periovulatory granulosa cells in vitro. Mol Reprod Dev 2006; 73:50-60. [PMID: 16175636 DOI: 10.1002/mrd.20386] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The small ubiquitin-related modifier-1 (SUMO-1) with broad cellular expression has been implicated in a range of cellular processes, such as cell proliferation, differentiation, and apoptosis. As shown recently, SUMO-1 is expressed and regulated by gonadotropins, in particular an ovulatory hCG stimulus in mouse granulosa cells in vivo. To test the hypothesis that modulation of granulosa cell apoptosis changes SUMO-1 expression during granulosa cell differentiation in the mouse ovary, we demonstrate that progesterone receptor (PR) proteins are absent in pre-ovulatory granulosa cell nuclei, whereas they are expressed in periovulatory granulosa cell nuclei in parallel with decreases in SUMO-1 expression, caspase-3 activation, and DNA fragmentation in vivo. Second, treatment with either PR antagonists or a cell permeable ceramide analog consistently increases SUMO-1 expression in parallel with an increase in apoptosis as well as a decrease in cell proliferation in periovulatory granulosa cells in vitro. However, we do not observe an increase in SUMO-1 expression in pre-ovulatory granulosa cells that have undergone the same treatment. Third, we have also demonstrated, in pre-ovulatory granulosa cells in vitro, neither induction of spontaneous apoptosis nor the protective effect of EGF against spontaneous apoptosis changes SUMO-1 protein expression. Fourth, we show that induction of apoptosis enhances SUMO-1 conjugation in periovulatory granulosa cells in vitro, pointing to the pivotal link between the SUMO-1 conjugation and cell death. Taken together, our observations suggest that SUMO-1 via sumoylation has an important role in the regulation of granulosa cell apoptosis during granulosa cell differentiation in the mouse ovary.
Collapse
Affiliation(s)
- Ruijin Shao
- Department of Physiology, Section of Endocrinology, The Sahlgrenska Academy, Göteborg University, Göteborg, Sweden.
| | | | | | | |
Collapse
|
50
|
Banerjee J, Komar CM. Effects of luteinizing hormone on peroxisome proliferator-activated receptor gamma in the rat ovary before and after the gonadotropin surge. Reproduction 2006; 131:93-101. [PMID: 16388013 DOI: 10.1530/rep.1.00730] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have shown previously that mRNA for peroxisome proliferator-activated receptor gamma (PPARgamma) is expressed in granulosa cells and downregulated by the luteinizing hormone (LH) surge. The current studies were undertaken to test the hypothesis that LH stimulates a decrease in the expression of PPARgamma, as well as its activity, in granulosa cells. Ovaries were collected from immature rats 0 and 48 h after they received pregnant mares' serum gonadotropin (PMSG), and 4 and 24 h after administration of human chorionic gonadotropin (hCG), and used for protein isolation or processed for immunolocalization of PPARgamma. The amount of phosphorylated PPARgamma was measured by immunoblot analysis to determine how LH affects the phosphorylation status, and therefore the activity, of PPARgamma. Granulosa cells were also collected from immature rats 48 h after PMSG. Cells were cultured with LH in the absence and presence of H89 and cycloheximide to investigate the role of PKA and protein synthesis in the LH-mediated decline in mRNA for PPARgamma respectively. Protein corresponding to PPARgamma was localized to nuclei of granulosa cells 0 and 48 h after PMSG. Expression was greatly reduced by 4 h after hCG, with expression in mural granulosa cells lost before that in cumulus cells. The amount of phosphorylated PPARgamma did not change during the periovulatory period. Blocking PKA activity had no effect on levels of mRNA for PPARgamma. However, levels of mRNA for PPARgamma were significantly increased in cells treated with cycloheximide (P < 0.05, ANOVA followed by Tukey's HSD). These data suggest that PPARgamma is tightly regulated in the ovary and that its expression is the primary mechanism by which LH influences the activity of PPARgamma. In addition, protein synthesis may be involved in modulating levels of PPARgamma in granulosa cells.
Collapse
Affiliation(s)
- Jayeeta Banerjee
- Department of Animal Science, Iowa State University, 2356 Kildee Hall, Ames, 50011-3150, USA
| | | |
Collapse
|