1
|
Ma H, Gao G, Palti Y, Tripathi V, Birkett JE, Weber GM. Transcriptomic Response of the Ovarian Follicle Complex in Post-Vitellogenic Rainbow Trout to 17α,20β-Dihdroxy-4-pregnen-3-one In Vitro. Int J Mol Sci 2024; 25:12683. [PMID: 39684392 DOI: 10.3390/ijms252312683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Gonadotropins and progestins are the primary regulators of follicle maturation and ovulation in fish, and they require complex communication among the oocyte and somatic cells of the follicle. The major progestin and the maturation-inducing hormone in salmonids is 17α,20β-dihdroxy-4-pregnen-3-one (17,20βP), and traditional nuclear receptors and membrane steroid receptors for the progestin have been identified within the follicle. Herein, RNA-seq was used to conduct a comprehensive survey of changes in gene expression throughout the intact follicle in response to in vitro treatment with these hormones to provide a foundation for understanding the coordination of their actions in regulating follicle maturation and preparation for ovulation. A total of 5292 differentially expressed genes were identified from our transcriptome sequencing datasets comparing four treatments: fresh tissue; untreated control; 17,20βP-treated; and salmon pituitary homogenate-treated follicles. Extensive overlap in affected genes suggests many gonadotropin actions leading to the acquisition of maturational and ovulatory competence are mediated in part by gonadotropin induction of 17,20βP synthesis. KEGG analysis identified signaling pathways, including MAPK, TGFβ, FoxO, and Wnt signaling pathways, among the most significantly enriched pathways altered by 17,20βP treatment, suggesting pervasive influences of 17,20βP on actions of other endocrine and paracrine factors in the follicle complex.
Collapse
Affiliation(s)
- Hao Ma
- US Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ruminant Disease and Immunology Research Unit, Ames, IA 50010, USA
| | - Guangtu Gao
- US Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| | - Yniv Palti
- US Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| | - Vibha Tripathi
- US Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| | - Jill E Birkett
- US Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| | - Gregory M Weber
- US Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| |
Collapse
|
2
|
Takahashi T, Ogiwara K. cAMP signaling in ovarian physiology in teleosts: A review. Cell Signal 2023; 101:110499. [PMID: 36273754 DOI: 10.1016/j.cellsig.2022.110499] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/30/2022]
Abstract
Ovarian function in teleosts, like in other vertebrates, is regulated by two distinct gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Gonadotropin effects are mediated by membrane-bound G protein-coupled receptors localized on the surface of follicle cells. Gonadotropin receptor activation results in increased intracellular cAMP, the most important second cellular signaling molecule. FSH stimulation induces the production of 17β-estradiol in the cells of growing follicles to promote vitellogenesis in oocytes. In contrast, in response to LH, fully grown post-vitellogenic follicles gain the ability to synthesize maturation-inducing steroids, which induce meiotic resumption and ovulation. All these events were induced downstream of cAMP. In this review, we summarize studies addressing the role of the cAMP pathway in gonadotropin-induced processes in teleost ovarian follicles. Furthermore, we discuss future problems concerning cAMP signaling in relation to teleost ovarian function and the differences and similarities in the gonadotropin-induced cAMP signaling pathways between mammals and teleosts.
Collapse
Affiliation(s)
- Takayuki Takahashi
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Katsueki Ogiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
3
|
Nynca J, Słowińska M, Wiśniewska J, Jastrzębski J, Dobosz S, Ciereszko A. Ovarian transcriptome analysis of diploid and triploid rainbow trout revealed new pathways related to gonadal development and fertility. Animal 2022; 16:100594. [PMID: 35870268 DOI: 10.1016/j.animal.2022.100594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022] Open
Abstract
Triploidisation represents several advantages (e.g. sterility) and therefore is routinely applied in aquaculture of several commercially important fish species, including rainbow trout. The comparative transcriptomic analysis of ovaries of triploid (3N) and diploid (2N) female rainbow trout revealed a total of 9 075 differentially expressed genes (DEGs; 4 105 genes upregulated in 2N and 4 970 genes upregulated in 3N ovaries, respectively). Identified clusters for DEGs upregulated in 3N and 2N ovaries were different, including carbohydrate and lipid metabolic process and transport, protein modification, signalling (related to folliculogenesis) and response to stimulus for DEGs upregulated in 2N, and developmental process, signalling (related to apoptosis, cellular senescence and adherence junctions) and regulation of RNA metabolic process for DEGs upregulated in 3N. The enrichment of processes involved in carbohydrate and lipid metabolism in 2N ovaries indicated high metabolism of ovarian tissue and the energy reservoir generation indispensable during the earliest stages of development. Our results highlight the importance of oocyte hydration along with oestrogen, insulin, leptin, fibroblast growth factor, and Notch signalling and pathways related to the regulation of cyclic adenosine monophosphate (cAMP) levels in proper oocyte meiotic maturation prior to ovulation in 2N ovaries. Conversely, triploidisation may lead to an increase in ovarian cellular senescence and apoptosis, which in turn can result in abnormal gonadal morphology and fibrosis. The downregulation of genes responsible for the precise regulation of meiosis and proper chromosome segregation during meiosis probably affects meiotic maturation via irregular meiotic division of chromosomes. The induction of triploidy of the rainbow trout genome resulted in enhanced expression of male-specific genes, genes responsible for re-establishing the transcriptional balance after genome reorganisation and genes involved in regulatory mechanisms, including gene silencing and DNA methylation. To the best of our knowledge, this is the first genome-wide investigation providing in-depth comprehensive and comparative gene expression patterns in the ovary from 2N and 3N rainbow trout females helping in elucidating the molecular mechanisms leading to impaired gonadal development and sterility of female triploids.
Collapse
Affiliation(s)
- J Nynca
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| | - M Słowińska
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - J Wiśniewska
- Department of Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - J Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - S Dobosz
- Inland Fisheries Institute, Department of Salmonid Research, Żukowo, Poland
| | - A Ciereszko
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
4
|
Ribas L, Crespo B, Sánchez-Baizán N, Xavier D, Kuhl H, Rodríguez JM, Díaz N, Boltañá S, MacKenzie S, Morán F, Zanuy S, Gómez A, Piferrer F. Characterization of the European Sea Bass (Dicentrarchus labrax) Gonadal Transcriptome During Sexual Development. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:359-373. [PMID: 30919121 DOI: 10.1007/s10126-019-09886-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
The European sea bass is one of the most important cultured fish in Europe and has a marked sexual growth dimorphism in favor of females. It is a gonochoristic species with polygenic sex determination, where a combination between still undifferentiated genetic factors and environmental temperature determines sex ratios. The molecular mechanisms responsible for gonadal sex differentiation are still unknown. Here, we sampled fish during the gonadal developmental period (110 to 350 days post fertilization, dpf), and performed a comprehensive transcriptomic study by using a species-specific microarray. This analysis uncovered sex-specific gonadal transcriptomic profiles at each stage of development, identifying larger number of differentially expressed genes in ovaries when compared to testis. The expression patterns of 54 reproduction-related genes were analyzed. We found that hsd17β10 is a reliable marker of early ovarian differentiation. Further, three genes, pdgfb, snx1, and nfy, not previously related to fish sex differentiation, were tightly associated with testis development in the sea bass. Regarding signaling pathways, lysine degradation, bladder cancer, and NOD-like receptor signaling were enriched for ovarian development while eight pathways including basal transcription factors and steroid biosynthesis were enriched for testis development. Analysis of the transcription factor abundance showed an earlier increase in females than in males. Our results show that, although many players in the sex differentiation pathways are conserved among species, there are peculiarities in gene expression worth exploring. The genes identified in this study illustrate the diversity of players involved in fish sex differentiation and can become potential biomarkers for the management of sex ratios in the European sea bass and perhaps other cultured species.
Collapse
Affiliation(s)
- L Ribas
- Institute of Marine Sciences (ICM), Spanish National Research Council (CSIC), Barcelona, Catalonia, Spain
| | - B Crespo
- Institute of Aquaculture of Torre de la Sal (IATS-CSIC), Ribera de Cabanes s/n. Torre la Sal, 12595, Castellón, Spain
- UCL GOS Institute of Child Health, University College London, London, UK
| | - N Sánchez-Baizán
- Institute of Marine Sciences (ICM), Spanish National Research Council (CSIC), Barcelona, Catalonia, Spain
| | - D Xavier
- Department of Biochemistry and Molecular Biology I, Complutense University, Madrid, Spain
| | - H Kuhl
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Ecophysiology and Aquaculture, Leibniz Institute for Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - J M Rodríguez
- Spanish National Bioinformatics Institute, Madrid, Spain
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - N Díaz
- Institute of Marine Sciences (ICM), Spanish National Research Council (CSIC), Barcelona, Catalonia, Spain
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - S Boltañá
- Autonomous University of Barcelona, Barcelona, Spain
- Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, Biotechnology Center, University of Concepción, Concepción, Chile
| | - S MacKenzie
- Autonomous University of Barcelona, Barcelona, Spain
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK
| | - F Morán
- Department of Biochemistry and Molecular Biology I, Complutense University, Madrid, Spain
| | - S Zanuy
- Institute of Aquaculture of Torre de la Sal (IATS-CSIC), Ribera de Cabanes s/n. Torre la Sal, 12595, Castellón, Spain
| | - A Gómez
- Institute of Aquaculture of Torre de la Sal (IATS-CSIC), Ribera de Cabanes s/n. Torre la Sal, 12595, Castellón, Spain.
| | - F Piferrer
- Institute of Marine Sciences (ICM), Spanish National Research Council (CSIC), Barcelona, Catalonia, Spain.
| |
Collapse
|
5
|
Liang X, Feswick A, Simmons D, Martyniuk CJ. Reprint of: Environmental toxicology and omics: A question of sex. J Proteomics 2018:S1874-3919(18)30113-1. [PMID: 29650353 DOI: 10.1016/j.jprot.2018.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular initiating events and downstream transcriptional/proteomic responses provide valuable information for adverse outcome pathways, which can be used predict the effects of chemicals on physiological systems. There has been a paucity of research that addresses sex-specific expression profiling in toxicology and due to cost, time, and logistic considerations, sex as a variable has not been widely considered. In response to this deficiency, federal agencies in the United States, Canada, and Europe have highlighted the importance of including sex as a variable in scientific investigations. Using case studies from both aquatic and mammalian toxicology, we report that there can be less than ~20-25% consensus in how the transcriptome and proteome of each sex responds to chemicals. Chemicals that have been shown to elicit sex-specific responses in the transcriptome or proteome include pharmaceuticals, anti-fouling agents, anticorrosive agents, and fungicides, among others. Sex-specific responses in the transcriptome and proteome are not isolated to whole animals, as investigations demonstrate that primary cell cultures isolated from each sex responds differently to toxicants. This signifies that sex is important, even in cell lines. Sex has significant implications for predictive toxicology, and both male and female data are required to improve robustness of adverse outcome pathways. BIOLOGICAL SIGNIFICANCE Clinical toxicology recognizes that sex is an important variable, as pharmacokinetics (ADME; absorption, distribution, metabolism, and excretion) can differ between females and males. However, few studies in toxicology have explored the implication of sex in relation to the transcriptome and proteome of whole organisms. High-throughput molecular approaches are becoming more frequently applied in toxicity screens (e.g. pre-clinical experiments, fish embryos, cell lines, synthetic tissues) and such data are expected to build upon reporter-based cell assays (e.g. receptor activation, enzyme inhibition) used in toxicant screening programs (i.e. Tox21, ToxCast, REACH). Thus, computational models can more accurately predict the diversity of adverse effects that can occur from chemical exposure within the biological system. Our studies and those synthesized from the literature suggest that the transcriptome and proteome of females and males respond quite differentially to chemicals. This has significant implications for predicting adverse effects in one sex when using molecular data generated in the other sex. While molecular initiating events are not expected to differ dramatically between females and males (i.e. an estrogen binds estrogen receptors in both sexes), it is important to acknowledge that the downstream transcriptomic and proteomic responses can differ based upon the presence/absence of co-regulators and inherent sex-specific variability in regulation of transcriptional and translational machinery. Transcriptomic and proteomic studies also reveal that cell processes affected by chemicals can differ due to sex, and this can undoubtedly lead to sex-specific physiological responses.
Collapse
Affiliation(s)
- Xuefang Liang
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - April Feswick
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Denina Simmons
- Department of Chemistry, McMaster University, Hamilton, Ontario, Canada
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
6
|
Liang X, Feswick A, Simmons D, Martyniuk CJ. Environmental toxicology and omics: A question of sex. J Proteomics 2018; 172:152-164. [DOI: 10.1016/j.jprot.2017.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 12/26/2022]
|
7
|
Zhu B, Pardeshi L, Chen Y, Ge W. Transcriptomic Analysis for Differentially Expressed Genes in Ovarian Follicle Activation in the Zebrafish. Front Endocrinol (Lausanne) 2018; 9:593. [PMID: 30364302 PMCID: PMC6193065 DOI: 10.3389/fendo.2018.00593] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/18/2018] [Indexed: 12/30/2022] Open
Abstract
In teleosts, the onset of puberty in females is marked by the appearance of the first wave of pre-vitellogenic (PV) follicles from the pool of primary growth (PG) follicles (follicle activation) in the ovary during sexual maturation. To understand the mechanisms underlying follicle activation and therefore puberty onset, we undertook this transcriptomic study to investigate gene expression profiles in the event. Our analysis revealed a total of 2,027 up-regulated and 859 down-regulated genes during the PG-PV transition. Gene Ontology (GO) analysis showed that in addition to basic cellular functions such as gene transcription, cell differentiation, and cell migration, other biological processes such as steroidogenesis, cell signaling and angiogenesis were also enriched in up-regulated genes; by comparison, some processes were down-regulated including piRNA metabolism, gene silencing and proteolysis. Further Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified a variety of signaling pathways that might play pivotal roles in PG-PV transition, including MAPK, TGF-β, Hedgehog, FoxO, VEGF, Jak-STAT, and phosphatidylinositol signaling pathways. Other pathways of particular interest included endocytosis and glycosaminoglycan biosynthesis. We also analyzed expression changes of genes expressed in different compartments viz. oocytes and follicle cells. Interestingly, most oocyte-specific genes remained unchanged in expression during follicle activation whereas a great number of genes specifically expressed in the follicle cells showed significant changes in expression. Overall, this study reported a comprehensive analysis for genes, biological processes and pathways involved in follicle activation, which also marks female puberty onset in the zebrafish when occurring for the first time in sexual maturation.
Collapse
Affiliation(s)
- Bo Zhu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, China
| | - Lakhansing Pardeshi
- Genomics and Bioinformatics Core, Faculty of Health Sciences, University of Macau, Taipa, China
| | - Yingying Chen
- Genomics and Bioinformatics Core, Faculty of Health Sciences, University of Macau, Taipa, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, China
- *Correspondence: Wei Ge ;
| |
Collapse
|
8
|
Monson C, Forsgren K, Goetz G, Harding L, Swanson P, Young G. A teleost androgen promotes development of primary ovarian follicles in coho salmon and rapidly alters the ovarian transcriptome†. Biol Reprod 2017; 97:731-745. [DOI: 10.1093/biolre/iox124] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/12/2017] [Indexed: 12/30/2022] Open
|
9
|
Subcellular localization and characterization of estrogenic pathway regulators and mediators in Atlantic salmon spermatozoal cells. Histochem Cell Biol 2017; 149:75-96. [DOI: 10.1007/s00418-017-1611-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2017] [Indexed: 12/26/2022]
|
10
|
Ogiwara K, Takahashi T. Involvement of the nuclear progestin receptor in LH-induced expression of membrane type 2-matrix metalloproteinase required for follicle rupture during ovulation in the medaka, Oryzias latipes. Mol Cell Endocrinol 2017; 450:54-63. [PMID: 28416325 DOI: 10.1016/j.mce.2017.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/12/2017] [Accepted: 04/12/2017] [Indexed: 11/16/2022]
Abstract
Hormonal regulation of the expression of Mmp15, a proteolytic enzyme indispensable for ovulation in the teleost medaka, was investigated. In an in vitro culture system using preovulatory follicles, Mmp15 expression and ovulation were induced in the presence of recombinant luteinizing hormone (rLh). Both rLh-induced Mmp15 expression and ovulation were 17α, 20β-dihydroxy-4-pregnen-3-one-dependent, suggesting the involvement of a nuclear progestin receptor (Pgr). In vitro follicle ovulation and Mmp15 expression were reduced by treatment with the Pgr antagonist RU-486. Like Pgr, the transcription factor CCAAT/enhancer-binding protein β (Cebpb) was induced by rLh. ChIP analyses indicated that Pgr and Cebpb bound to the mmp15 promoter region. These results indicate that the rLh-induced expression of Mmp15 is mediated by Pgr and Cebpb. A differential timing of expression of Pgr and Cebpb in the preovulatory follicles appears to explain the considerably long time-lag from the pgr gene activation to mmp15 gene expression.
Collapse
Affiliation(s)
- Katsueki Ogiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takayuki Takahashi
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
11
|
Gonadal Transcriptome Analysis in Sterile Double Haploid Japanese Flounder. PLoS One 2015; 10:e0143204. [PMID: 26580217 PMCID: PMC4651314 DOI: 10.1371/journal.pone.0143204] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 11/02/2015] [Indexed: 11/25/2022] Open
Abstract
Sterility is a serious problem that can affect all bionts. In teleosts, double haploids (DHs) induced by mitogynogenesis are often sterile. This sterility severely restricts the further application of DHs for production of clones, genetic analysis, and breeding. However, sterile DH individuals are good source materials for investigation of the molecular mechanisms of gonad development, especially for studies into the role of genes that are indispensable for fish reproduction. Here, we used the Illumina sequencing platform to analyze the transcriptome of sterile female DH Japanese flounder in order to identify major genes that cause sterility and to provide a molecular basis for an intensive study of gonadal development in teleosts. Through sequencing, assembly, and annotation, we obtained 52,474 contigs and found that 60.7% of these shared homologies with existing sequences. A total of 1225 differentially expressed unigenes were found, including 492 upregulated and 733 downregulated genes. Gene Ontology and KEGG analyses showed that genes showing significant upregulation, such as CYP11A1, CYP11B2, CYP17, CYP21, HSD3β, bcl2l1, and PRLR, principally correlated with sterol metabolic process, steroid biosynthetic process, and the Jak-stat signaling pathway. The significantly downregulated genes were primarily associated with immune response, antigen processing and presentation, cytokine–cytokine receptor interaction, and protein digestion and absorption. Using a co-expression network analysis, we conducted a comprehensive comparison of gene expression in the gonads of fertile and sterile female DH Japanese flounder. Identification of genes showing significantly different expression will provide further insights into DH reproductive dysfunction and oocyte maturation processes in teleosts.
Collapse
|
12
|
Heras J, McClintock K, Sunagawa S, Aguilar A. Gonadal transcriptomics elucidate patterns of adaptive evolution within marine rockfishes (Sebastes). BMC Genomics 2015; 16:656. [PMID: 26329285 PMCID: PMC4557894 DOI: 10.1186/s12864-015-1870-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 08/20/2015] [Indexed: 12/12/2022] Open
Abstract
Background The genetic mechanisms of speciation and adaptation in the marine environment are not well understood. The rockfish genus Sebastes provides a unique model system for studying adaptive evolution because of the extensive diversity found within this group, which includes morphology, ecology, and a broad range of life spans. Examples of adaptive radiations within marine ecosystems are considered an anomaly due to the absence of geographical barriers and the presence of gene flow. Using marine rockfishes, we identified signatures of natural selection from transcriptomes developed from gonadal tissue of two rockfish species (Sebastes goodei and S. saxicola). We predicted orthologous transcript pairs, and estimated their distributions of nonsynonymous (Ka) and synonymous (Ks) substitution rates. Results We identified 144 genes out of 1079 orthologous pairs under positive selection, of which 11 are functionally annotated to reproduction based on gene ontologies (GOs). One orthologous pair of the zona pellucida gene family, which is known for its role in the selection of sperm by oocytes, out of ten was identified to be evolving under positive selection. In addition to our results in the protein coding-regions of transcripts, we found substitution rates in 3’ and 5’ UTRs to be significantly lower than Ks substitution rates implying negative selection in these regions. Conclusions We were able to identify a series of candidate genes that are useful for the assessment of the critical genes that diverged and are responsible for the radiation within this genus. Genes associated with longevity hold potential for understanding the molecular mechanisms that have contributed to the radiation within this genus. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1870-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joseph Heras
- Department of Ecology and Evolutionary Biology, University of California Irvine, 321 Steinhaus Hall, Irvine, CA, 92697, USA.
| | - Kelly McClintock
- School of Natural Sciences and Graduate Group in Quantitative and Systems Biology, University of California Merced, 5200 N Lake Rd, Merced, CA, 95344, USA.
| | - Shinichi Sunagawa
- European Molecular Biology Laboratory, Meyerhofstr 1, 69117, Heidelberg, Germany.
| | - Andres Aguilar
- Department of Biological Sciences, California State University Los Angeles, 5151 State University Dr, Los Angeles, CA, 90032, USA.
| |
Collapse
|
13
|
Construction, De-Novo Assembly and Analysis of Transcriptome for Identification of Reproduction-Related Genes and Pathways from Rohu, Labeo rohita (Hamilton). PLoS One 2015; 10:e0132450. [PMID: 26148098 PMCID: PMC4509579 DOI: 10.1371/journal.pone.0132450] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 06/15/2015] [Indexed: 01/22/2023] Open
Abstract
Rohu is a leading candidate species for freshwater aquaculture in South-East Asia. Unlike common carp the monsoon breeding habit of rohu restricts its seed production beyond season indicating strong genetic control over spawning. Genetic information is limited in this regard. The problem is exacerbated by the lack of genomic-resources. We identified 182 reproduction-related genes previously by Sanger-sequencing which were less to address the issue of seasonal spawning behaviour of this important carp. Therefore, the present work was taken up to generate transcriptome profile by mRNAseq. 16 GB, 72 bp paired end (PE) data was generated from the pooled-RNA of twelve-tissues from pre-spawning rohu using IlluminaGA-II-platform. There were 64.97 million high-quality reads producing 62,283 contigs and 88,612 numbers of transcripts using velvet and oases programs, respectively. Gene ontology annotation identified 940 reproduction-related genes consisting of 184 mainly associated with reproduction, 223 related to hormone-activity and receptor-binding, 178 receptor-activity and 355 embryonic-development related-proteins. The important reproduction-relevant pathways found in KEGG analysis were GnRH-signaling, oocyte-meiosis, steroid-biosynthesis, steroid-hormone biosynthesis, progesterone-mediated oocyte-maturation, retinol-metabolism, neuroactive-ligand-receptor interaction, neurotrophin-signaling and photo-transduction. Twenty nine simple sequence repeat containing sequences were also found out of which 12 repeat loci were polymorphic with mean expected-&-observed heterozygosity of 0.471 and 0.983 respectively. Quantitative RT-PCR analyses of 13-known and 6-unknown transcripts revealed differences in expression level between preparatory and post-spawning phase. These transcriptomic sequences have significantly increased the genetic-&-genomic resources for reproduction-research in Labeo rohita.
Collapse
|
14
|
Gao Y, Guo W, Hu Q, Zou M, Tang R, Chi W, Li D. Characterization and differential expression patterns of conserved microRNAs and mRNAs in three genders of the rice field eel (Monopterus albus). Sex Dev 2014; 8:387-98. [PMID: 25427634 DOI: 10.1159/000369181] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2014] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous small RNAs that can regulate target mRNAs by binding to their sequences in the 3' untranslated region. The expression of miRNAs and their biogenetic pathway are involved in sexual differentiation and in the regulation of the development of germ cells and gonadal somatic cells. The rice field eel (Monopterus albus) undergoes a natural sexual transformation from female to male via an intersex stage during its life cycle. To investigate the molecular mechanisms of this sexual transformation, miRNAs present in the different sexual stages of the rice field eel were identified by high-throughput sequencing technology. A significantly differential expression among the 3 genders (p < 0.001) was observed for 48 unique miRNAs and 3 miRNAs*. Only 9 unique miRNAs showed a more than 8-fold change in their expression among the 3 genders, including mal-miR-430a and mal-miR-430c which were higher in females than in males. However, mal-miR-430b was only detected in males. Several potential miRNA target genes (cyp19a, cyp19b, nr5a1b, foxl2 amh, and vasa) were also investigated. Real-time RT-PCR demonstrated highly specific expression patterns of these genes in the 3 genders of the rice field eel. Many of these genes are targets of mal-miR-430b according to the TargetScan and miRTarBase. These results suggest that the miR-430 family may be involved in the sexual transformation of the rice field eel.
Collapse
Affiliation(s)
- Yu Gao
- College of Fisheries, Huazhong Agricultural University, and Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, PR China
| | | | | | | | | | | | | |
Collapse
|
15
|
Hagiwara A, Ogiwara K, Katsu Y, Takahashi T. Luteinizing Hormone-Induced Expression of Ptger4b, a Prostaglandin E2 Receptor Indispensable for Ovulation of the Medaka Oryzias latipes, Is Regulated by a Genomic Mechanism Involving Nuclear Progestin Receptor1. Biol Reprod 2014; 90:126. [DOI: 10.1095/biolreprod.113.115485] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
16
|
Kleppe L, Edvardsen RB, Furmanek T, Taranger GL, Wargelius A. Global transcriptome analysis identifies regulated transcripts and pathways activated during oogenesis and early embryogenesis in Atlantic cod. Mol Reprod Dev 2014; 81:619-35. [PMID: 24687555 PMCID: PMC4265210 DOI: 10.1002/mrd.22328] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/25/2014] [Indexed: 12/28/2022]
Abstract
The molecular mechanisms underlying oogenesis and maternally controlled embryogenesis in fish are not fully understood, especially in marine species. Our aim was to study the egg and embryo transcriptome during oogenesis and early embryogenesis in Atlantic cod. Follicles from oogenesis stages (pre-, early-, and late-vitellogenic), ovulated eggs, and two embryonic stages (blastula, gastrula) were collected from broodstock fish and fertilized eggs. Gene expression profiles were measured in a 44 K oligo microarray consisting of 23,000 cod genes. Hundreds of differentially expressed genes (DEGs) were identified in the follicle stages investigated, implicating a continuous accumulation and degradation of polyadenylated transcripts throughout oogenesis. Very few DEGs were identified from ovulated egg to blastula, showing a more stable maternal RNA pool in early embryonic stages. The highest induction of expression was observed between blastula and gastrula, signifying the onset of zygotic transcription. During early vitellogenesis, several of the most upregulated genes are linked to nervous system signaling, suggesting increasing requirements for ovarian synaptic signaling to stimulate the rapid growth of oocytes. Highly upregulated genes during late vitellogenesis are linked to protein processing, fat metabolism, osmoregulation, and arrested meiosis. One of the genes with the highest upregulation in the ovulated egg is involved in oxidative phosphorylation, reflecting increased energy requirements during fertilization and the first rapid cell divisions of early embryogenesis. In conclusion, this study provides a large-scale presentation of the Atlantic cod's maternally controlled transcriptome in ovarian follicles through oogenesis, ovulated eggs, and early embryos. Mol. Reprod. Dev. 81: 619–635, 2014. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lene Kleppe
- Institute of Marine Research, Bergen, Norway
| | | | | | | | | |
Collapse
|
17
|
Characterizing ovarian gene expression during oocyte growth in Atlantic cod (Gadus morhua). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2014; 9:1-10. [DOI: 10.1016/j.cbd.2013.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/30/2013] [Accepted: 11/06/2013] [Indexed: 11/18/2022]
|
18
|
Niu D, Jin K, Wang L, Feng B, Li J. Molecular characterization and expression analysis of four cathepsin L genes in the razor clam, Sinonovacula constricta. FISH & SHELLFISH IMMUNOLOGY 2013; 35:581-588. [PMID: 23765116 DOI: 10.1016/j.fsi.2013.06.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/29/2013] [Accepted: 06/02/2013] [Indexed: 06/02/2023]
Abstract
Cathepsin L (CTSL) is a lysosomal cysteine protease involved in immune responses in vertebrates. However, few studies exist regarding the role of cathepsin L in bivalves. In this study, we isolated and characterized four cathepsin L genes from the razor clam Sinonovacula constricta, referred to as CTSL1, CTSL2, CTSL3 and CTSL4. These four genes contained typical papain-like cysteine protease structure and enzyme activity sites with ERWNIN-like and GNFD-like motifs in the proregion domain and an oxyanion hole (Gln) and a catalytic triad (Cys, His and Asn) in the mature domain. Expression analysis of the four transcripts revealed a tissue-specific pattern with high expression of CTSL1 and CTSL3 in liver and gonad tissues and high expression of CTSL2 and CTSL4 in liver and gill tissues. During the developmental stages, the four transcripts showed the highest expression in the juvenile stage; however, CTSL3 had a much higher expression level than the other three transcripts during embryogenesis. The four transcripts showed significant changes in expression as early as 4 h or 8 h after infection with Vibrio anguillarum. The fact that bacterial infection can induce expression of the four CTSL transcripts suggests that these transcripts are important components of the innate immunity system of the clam.
Collapse
Affiliation(s)
- Donghong Niu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources and College of Fisheries and Life Science, Shanghai Ocean University, 999 Hucheng Ring Road, Shanghai 201306, China
| | | | | | | | | |
Collapse
|
19
|
Sahu DK, Panda SP, Panda S, Das P, Meher PK, Hazra RK, Peatman E, Liu ZJ, Eknath AE, Nandi S. Identification of reproduction-related genes and SSR-markers through expressed sequence tags analysis of a monsoon breeding carp rohu, Labeo rohita (Hamilton). Gene 2013; 524:1-14. [DOI: 10.1016/j.gene.2013.03.111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 03/20/2013] [Accepted: 03/25/2013] [Indexed: 12/20/2022]
|
20
|
Gene expression networks underlying ovarian development in wild largemouth bass (Micropterus salmoides). PLoS One 2013; 8:e59093. [PMID: 23527095 PMCID: PMC3604104 DOI: 10.1371/journal.pone.0059093] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 02/12/2013] [Indexed: 01/12/2023] Open
Abstract
Background Oocyte maturation in fish involves numerous cell signaling cascades that are activated or inhibited during specific stages of oocyte development. The objectives of this study were to characterize molecular pathways and temporal gene expression patterns throughout a complete breeding cycle in wild female largemouth bass to improve understanding of the molecular sequence of events underlying oocyte maturation. Methods Transcriptomic analysis was performed on eight morphologically diverse stages of the ovary, including primary and secondary stages of oocyte growth, ovulation, and atresia. Ovary histology, plasma vitellogenin, 17β-estradiol, and testosterone were also measured to correlate with gene networks. Results Global expression patterns revealed dramatic differences across ovarian development, with 552 and 2070 genes being differentially expressed during both ovulation and atresia respectively. Gene set enrichment analysis (GSEA) revealed that early primary stages of oocyte growth involved increases in expression of genes involved in pathways of B-cell and T-cell receptor-mediated signaling cascades and fibronectin regulation. These pathways as well as pathways that included adrenergic receptor signaling, sphingolipid metabolism and natural killer cell activation were down-regulated at ovulation. At atresia, down-regulated pathways included gap junction and actin cytoskeleton regulation, gonadotrope and mast cell activation, and vasopressin receptor signaling and up-regulated pathways included oxidative phosphorylation and reactive oxygen species metabolism. Expression targets for luteinizing hormone signaling were low during vitellogenesis but increased 150% at ovulation. Other networks found to play a significant role in oocyte maturation included those with genes regulated by members of the TGF-beta superfamily (activins, inhibins, bone morphogenic protein 7 and growth differentiation factor 9), neuregulin 1, retinoid X receptor, and nerve growth factor family. Conclusions This study offers novel insight into the gene networks underlying vitellogenesis, ovulation and atresia and generates new hypotheses about the cellular pathways regulating oocyte maturation.
Collapse
|
21
|
Ogiwara K, Fujimori C, Rajapakse S, Takahashi T. Characterization of luteinizing hormone and luteinizing hormone receptor and their indispensable role in the ovulatory process of the medaka. PLoS One 2013; 8:e54482. [PMID: 23372734 PMCID: PMC3553140 DOI: 10.1371/journal.pone.0054482] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 12/12/2012] [Indexed: 11/18/2022] Open
Abstract
The molecular properties and roles of luteinizing hormone (Lh) and its receptor (Lhcgrbb) have not been studied for the medaka (Oryzias latipes), which is an excellent animal model for ovulation studies. Here, we characterized the medaka Lh/Lhcgrbb system, with attention to its involvement in the ovulatory process of this teleost fish. In the medaka ovary, follicle-stimulating hormone receptor mRNA was expressed in small and medium-sized follicles, while lhcgrbb mRNA was expressed in the follicle layers of all growing follicles. Experiments using HEK 293T cells expressing medaka Lhcgrbb in vitro revealed that gonadotropin from pregnant mare's serum and medaka recombinant Lh (rLh) bound to the fish Lhcgrbb. The fish gonadotropin subunits Gtha, Fshb, and Lhb were essentially expressed at fairly constant levels in the pituitary of the fish during a 24-h spawning cycle. Using medaka rLh, we developed a follicle culture system that allowed us to follow the whole process of oocyte maturation and ovulation in vitro. This follicle culture method enabled us to determine that the Lh surge for the preovulatory follicle occurred in vivo between 19 and 15 h before ovulation. The present study also showed that oocyte maturation and ovulation were delayed several hours in vitro compared with in vivo. Treatment of large follicles with medaka rLh in vitro significantly increased the expression of Mmp15, which was previously demonstrated to be crucial for ovulation in the fish. These findings demonstrate that Lh/Lhcgrbb is critically involved in the induction of oocyte maturation and ovulation.
Collapse
Affiliation(s)
- Katsueki Ogiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Chika Fujimori
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Sanath Rajapakse
- Department of Molecular Biology and Biotechnology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Takayuki Takahashi
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
22
|
Robertson LS, McCormick SD. Transcriptional profiling of the parr-smolt transformation in Atlantic salmon. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2012; 7:351-60. [PMID: 22951584 DOI: 10.1016/j.cbd.2012.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 07/31/2012] [Accepted: 07/31/2012] [Indexed: 01/03/2023]
Abstract
The parr-smolt transformation in Atlantic salmon (Salmo salar) is a complex developmental process that culminates in the ability to migrate to and live in seawater. We used GRASP 16K cDNA microarrays to identify genes that are differentially expressed in the liver, gill, hypothalamus, pituitary, and olfactory rosettes of smolts compared to parr. Smolts had higher levels of gill Na(+)/K(+)-ATPase activity, plasma cortisol and plasma thyroid hormones relative to parr. Across all five tissues, stringent microarray analyses identified 48 features that were differentially expressed in smolts compared to parr. Using a less stringent method we found 477 features that were differentially expressed at least 1.2-fold in smolts, including 172 features in the gill. Smolts had higher mRNA levels of genes involved in transcription, protein biosynthesis and folding, electron transport, oxygen transport, and sensory perception and lower mRNA levels for genes involved in proteolysis. Quantitative RT-PCR was used to confirm differential expression in select genes identified by microarray analyses and to quantify expression of other genes known to be involved in smolting. This study expands our understanding of the molecular processes that underlie smolting in Atlantic salmon and identifies genes for further investigation.
Collapse
|
23
|
Deloffre LAM, Andrade A, Filipe AI, Canario AVM. Reference genes to quantify gene expression during oogenesis in a teleost fish. Gene 2012; 506:69-75. [PMID: 22750322 DOI: 10.1016/j.gene.2012.06.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 06/17/2012] [Accepted: 06/18/2012] [Indexed: 01/01/2023]
Abstract
Understanding the molecular events involved in the acquisition of competence during oogenesis is a key step to determine the secret of 'high quality' eggs for aquaculture. Quantitative real time polymerase chain reaction (qPCR) is the technique of election to determine changes in transcript abundance in such studies, but choosing reference genes for normalization, in particular during oogenesis, remains a challenge. In the present study, transcription of 6 functionally distinct genes, β actin (ACTB), cathepsin D (CTSD), cathepsin Z (CTSZ), elongation factor 1 α (EEF1A), TATA binding protein (TBP) and tubulin A (TUBA1A) was assessed as normalizers of bone morphogenetic protein (BMP) and activin membrane-bound inhibitor (BAMBI) gene expression in mRNA from Mozambique tilapia oocytes during oogenesis. Reverse transcription was equally efficient and varies little in all samples. Most of the genes considered for reference were stable during early stages of oogenesis but variations were observed during vitellogenesis. A single gene and up to 3 genes were shown to be insufficient for reliable normalization throughout the whole oogenesis. The combination of the genes ACTB, CTSD, EEF1A and CTSZ as reference was found to minimize variation and has the most stable expression pattern between maturation stages.
Collapse
Affiliation(s)
- Laurence A M Deloffre
- Centre of Marine Sciences (CCMar), University of the Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | | | | | | |
Collapse
|
24
|
Levi L, Ziv T, Admon A, Levavi-Sivan B, Lubzens E. Insight into molecular pathways of retinal metabolism, associated with vitellogenesis in zebrafish. Am J Physiol Endocrinol Metab 2012; 302:E626-44. [PMID: 22205629 DOI: 10.1152/ajpendo.00310.2011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Retinal is the main retinoid stored in oviparous eggs of fish, amphibians, and reptiles, reaching the oocytes in association with vitellogenins, the yolk precursor proteins. During early presegmentation stages of zebrafish embryos, retinal is metabolized to retinoic acid (RA), which regulates genes involved in cell proliferation, differentiation, and tissue function and is therefore essential for normal embryonic development. While synthesis of vitellogenin and its regulation by 17β-estradiol (E(2)) were extensively investigated, pathways for retinal synthesis remain obscure. We determined the expression pattern of 46 candidate genes, aiming at identifying enzymes associated with retinal synthesis, ascertaining whether they were regulated by E(2), and finding pathways that could fulfill the demand for retinoids during vitellogenesis. Genes associated with retinal synthesis were upregulated in liver (rdh10, rdh13, sdr) and surprisingly also in intestine (rdh13) and ovary (rdh1, sdr), concomitantly with higher gene expression and synthesis of vitellogenins in liver but also in extrahepatic tissues, shown here for the first time. Vitellogenin synthesis in the ovary was regulated by E(2). Gene expression studies suggest that elevated retinal synthesis in liver, intestine, and ovary also depends on cleavage of carotenoids (by Bcdo2 or Bmco1), but in the ovary it may also be contingent on higher uptake of retinol from the circulatory system (via Stra6) and retinol synthesis from retinyl esters (by Lpl). Decrease in oxidation (by Raldh2 or Raldh3) of retinal to RA and/or degradation of RA (by Cyp26a1) may also facilitate higher hepatic retinal levels. Together, these processes enable meeting the putative demands of retinal for binding to vitellogenins. Bioinformatic tools reveal multiple hormone response elements in the studied genes, suggesting complex and intricate regulation of these processes.
Collapse
Affiliation(s)
- Liraz Levi
- Dept. of Marine Biology and Biotechnology, Israel Oceanographic and Limnological Research, Haifa, Israel
| | | | | | | | | |
Collapse
|
25
|
An ovary transcriptome for all maturational stages of the striped bass (Morone saxatilis), a highly advanced perciform fish. BMC Res Notes 2012; 5:111. [PMID: 22353237 PMCID: PMC3305648 DOI: 10.1186/1756-0500-5-111] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 02/21/2012] [Indexed: 12/30/2022] Open
Abstract
Background The striped bass and its relatives (genus Morone) are important fisheries and aquaculture species native to estuaries and rivers of the Atlantic coast and Gulf of Mexico in North America. To open avenues of gene expression research on reproduction and breeding of striped bass, we generated a collection of expressed sequence tags (ESTs) from a complementary DNA (cDNA) library representative of their ovarian transcriptome. Results Sequences of a total of 230,151 ESTs (51,259,448 bp) were acquired by Roche 454 pyrosequencing of cDNA pooled from ovarian tissues obtained at all stages of oocyte growth, at ovulation (eggs), and during preovulatory atresia. Quality filtering of ESTs allowed assembly of 11,208 high-quality contigs ≥ 100 bp, including 2,984 contigs 500 bp or longer (average length 895 bp). Blastx comparisons revealed 5,482 gene orthologues (E-value < 10-3), of which 4,120 (36.7% of total contigs) were annotated with Gene Ontology terms (E-value < 10-6). There were 5,726 remaining unknown unique sequences (51.1% of total contigs). All of the high-quality EST sequences are available in the National Center for Biotechnology Information (NCBI) Short Read Archive (GenBank: SRX007394). Informative contigs were considered to be abundant if they were assembled from groups of ESTs comprising ≥ 0.15% of the total short read sequences (≥ 345 reads/contig). Approximately 52.5% of these abundant contigs were predicted to have predominant ovary expression through digital differential display in silico comparisons to zebrafish (Danio rerio) UniGene orthologues. Over 1,300 Gene Ontology terms from Biological Process classes of Reproduction, Reproductive process, and Developmental process were assigned to this collection of annotated contigs. Conclusions This first large reference sequence database available for the ecologically and economically important temperate basses (genus Morone) provides a foundation for gene expression studies in these species. The predicted predominance of ovary gene expression and assignment of directly relevant Gene Ontology classes suggests a powerful utility of this dataset for analysis of ovarian gene expression related to fundamental questions of oogenesis. Additionally, a high definition Agilent 60-mer oligo ovary 'UniClone' microarray with 8 × 15,000 probe format has been designed based on this striped bass transcriptome (eArray Group: Striper Group, Design ID: 029004).
Collapse
|
26
|
Veldhoen N, Ikonomou MG, Helbing CC. Molecular profiling of marine fauna: integration of omics with environmental assessment of the world's oceans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 76:23-38. [PMID: 22036265 DOI: 10.1016/j.ecoenv.2011.10.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 09/16/2011] [Accepted: 10/06/2011] [Indexed: 05/31/2023]
Abstract
Many species that contribute to the commercial and ecological richness of our marine ecosystems are harbingers of environmental change. The ability of organisms to rapidly detect and respond to changes in the surrounding environment represents the foundation for application of molecular profiling technologies towards marine sentinel species in an attempt to identify signature profiles that may reside within the transcriptome, proteome, or metabolome and that are indicative of a particular environmental exposure event. The current review highlights recent examples of the biological information obtained for marine sentinel teleosts, mammals, and invertebrates. While in its infancy, such basal information can provide a systems biology framework in the detection and evaluation of environmental chemical contaminant effects on marine fauna. Repeated evaluation across different seasons and local marine environs will lead to discrimination between signature profiles representing normal variation within the complex milieu of environmental factors that trigger biological response in a given sentinel species and permit a greater understanding of normal versus anthropogenic-associated modulation of biological pathways, which prove detrimental to marine fauna. It is anticipated that incorporation of contaminant-specific molecular signatures into current risk assessment paradigms will lead to enhanced wildlife management strategies that minimize the impacts of our industrialized society on marine ecosystems.
Collapse
Affiliation(s)
- Nik Veldhoen
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055 Stn CSC, Victoria, B.C., Canada
| | | | | |
Collapse
|
27
|
Elisio M, Soria FN, Fernandino JI, Strüssmann CA, Somoza GM, Miranda LA. Extrahypophyseal expression of gonadotropin subunits in pejerrey Odontesthes bonariensis and effects of high water temperatures on their expression. Gen Comp Endocrinol 2012; 175:329-36. [PMID: 22154644 DOI: 10.1016/j.ygcen.2011.11.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 11/10/2011] [Accepted: 11/19/2011] [Indexed: 01/14/2023]
Abstract
It has been traditionally accepted that the gonadotropins (GtHs), follicle stimulating hormone (FSH) and luteinizing hormone (LH), are synthesized and secreted only by the pituitary. However, the presence of theses hormones in extrapituitary tissues has been demonstrated in mammals, and more recently also in fish. In this study, we cloned the cDNAs and characterized the expression of FSH-β, LH-β, and glycoprotein hormone α (GPH-α) subunits from brain and gonads of male and female pejerrey Odontesthes bonariensis at different stages of gonadal maturation. In situ hybridization revealed that, in addition to their classical location in pituitary cells, the three GtH transcripts were also located in the gonads. FSH-β and GPH-α subunits were found in the cytoplasm of oogonia, previtellogenic and vitellogenic oocytes in ovaries. LH-β expression was detected in previtellogenic and vitellogenic oocytes but not in oogonia. In males, the three subunits were expressed in spermatogonia and to a lesser extent in spermatocytes. Exposure of fish to high water temperatures that impair pejerrey reproduction also induced a decrease of extrahypophyseal expression of GtH subunits.
Collapse
Affiliation(s)
- Mariano Elisio
- Laboratorio de Ictiofisiología y Acuicultura, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, (B7130IWA) Chascomús, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
28
|
Hale MC, Xu P, Scardina J, Wheeler PA, Thorgaard GH, Nichols KM. Differential gene expression in male and female rainbow trout embryos prior to the onset of gross morphological differentiation of the gonads. BMC Genomics 2011; 12:404. [PMID: 21824436 PMCID: PMC3166948 DOI: 10.1186/1471-2164-12-404] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 08/08/2011] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND There are large differences between the sexes at the genetic level; these differences include heterogametic sex chromosomes and/or differences in expression of genes between the sexes. In rainbow trout (Oncorhynchus mykiss) qRT-PCR studies have found significant differences in expression of several candidate sex determining genes. However, these genes represent a very small fraction of the genome and research in other species suggests there are large portions of the transcriptome that are differentially expressed between the sexes. These differences are especially noticeable once gonad differentiation and maturation has occurred, but less is known at earlier stages of development. Here we use data from a microarray and qRT-PCR to identify genes differentially expressed between the sexes at three time points in pre-hatch embryos, prior to the known timing of sexual differentiation in this species. RESULTS The microarray study revealed 883 differentially expressed features between the sexes with roughly equal numbers of male and female upregulated features across time points. Most of the differentially expressed genes on the microarray were not related to sex function, suggesting large scale differences in gene expression between the sexes are present early in development. Candidate gene analysis revealed sox9, DMRT1, Nr5a1 and wt1 were upregulated in males at some time points and foxl2, ovol1, fst and cyp19a1a were upregulated in females at some time points. CONCLUSION This is the first study to identify sexual dimorphism in expression of the genome during embryogenesis in any fish and demonstrates that transcriptional differences are present before the completion of gonadogenesis.
Collapse
Affiliation(s)
- Matthew C Hale
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Bittner D, Cossins AR, Segner H, Excoffier L, Largiadèr CR. Identification of candidate genes and physiological pathways involved in gonad deformation in whitefish (Coregonus spp.) from Lake Thun, Switzerland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2011; 8:2706-33. [PMID: 21845154 PMCID: PMC3155325 DOI: 10.3390/ijerph8072706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/07/2011] [Accepted: 06/15/2011] [Indexed: 11/17/2022]
Abstract
In 2000, fishermen reported the appearance of deformed reproductive organs in whitefish (Coregonus spp.) from Lake Thun, Switzerland. Despite intensive investigations, the causes of these abnormalities remain unknown. Using gene expression profiling, we sought to identify candidate genes and physiological processes possibly associated with the observed gonadal deformations, in order to gain insights into potential causes. Using in situ-synthesized oligonucleotide arrays, we compared the expression levels at 21,492 unique transcript probes in liver and head kidney tissue of male whitefish with deformed and normally developed gonads, respectively. The fish had been collected on spawning sites of two genetically distinct whitefish forms of Lake Thun. We contrasted the gene expression profiles of 56 individuals, i.e., 14 individuals of each phenotype and of each population. Gene-by-gene analysis revealed weak expression differences between normal and deformed fish, and only one gene, ictacalcin, was found to be up-regulated in head kidney tissue of deformed fish from both whitefish forms, However, this difference could not be confirmed with quantitative real-time qPCR. Enrichment analysis on the level of physiological processes revealed (i) the involvement of immune response genes in both tissues, particularly those linked to complement activation in the liver, (ii) proteolysis in the liver and (iii) GTPase activity and Ras protein signal transduction in the head kidney. In comparison with current literature, this gene expression pattern signals a chronic autoimmune disease in the testes. Based on the recent observations that gonad deformations are induced through feeding of zooplankton from Lake Thun we hypothesize that a xenobiotic accumulated in whitefish via the plankton triggering autoimmunity as the likely cause of gonad deformations. We propose several experimental strategies to verify or reject this hypothesis.
Collapse
Affiliation(s)
- David Bittner
- Computational and Molecular Populations Genetics Lab, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland; E-Mails: (D.B.); (L.E.)
| | - Andrew R. Cossins
- Liverpool Microarray Facility, School of Biological Sciences, University of Liverpool, L69 7ZB Liverpool, UK; E-Mail:
| | - Helmut Segner
- Centre for Fish and Wildlife Health, University of Bern, Laenggass-Strasse 122, PO-Box 8466, 3001 Bern, Switzerland; E-Mail:
| | - Laurent Excoffier
- Computational and Molecular Populations Genetics Lab, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland; E-Mails: (D.B.); (L.E.)
| | - Carlo R. Largiadèr
- Institute of Clinical Chemistry, University Hospital, University of Bern, Inselspital, 3010 Bern, Switzerland
| |
Collapse
|
30
|
Xu J, Huang W, Zhong C, Luo D, Li S, Zhu Z, Hu W. Defining global gene expression changes of the hypothalamic-pituitary-gonadal axis in female sGnRH-antisense transgenic common carp (Cyprinus carpio). PLoS One 2011; 6:e21057. [PMID: 21695218 PMCID: PMC3112210 DOI: 10.1371/journal.pone.0021057] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 05/18/2011] [Indexed: 11/24/2022] Open
Abstract
Background The hypothalamic-pituitary-gonadal (HPG) axis is critical in the development and regulation of reproduction in fish. The inhibition of neuropeptide gonadotropin-releasing hormone (GnRH) expression may diminish or severely hamper gonadal development due to it being the key regulator of the axis, and then provide a model for the comprehensive study of the expression patterns of genes with respect to the fish reproductive system. Methodology/Principal Findings In a previous study we injected 342 fertilized eggs from the common carp (Cyprinus carpio) with a gene construct that expressed antisense sGnRH. Four years later, we found a total of 38 transgenic fish with abnormal or missing gonads. From this group we selected the 12 sterile females with abnormal ovaries in which we combined suppression subtractive hybridization (SSH) and cDNA microarray analysis to define changes in gene expression of the HPG axis in the present study. As a result, nine, 28, and 212 genes were separately identified as being differentially expressed in hypothalamus, pituitary, and ovary, of which 87 genes were novel. The number of down- and up-regulated genes was five and four (hypothalamus), 16 and 12 (pituitary), 119 and 93 (ovary), respectively. Functional analyses showed that these genes involved in several biological processes, such as biosynthesis, organogenesis, metabolism pathways, immune systems, transport links, and apoptosis. Within these categories, significant genes for neuropeptides, gonadotropins, metabolic, oogenesis and inflammatory factors were identified. Conclusions/Significance This study indicated the progressive scaling-up effect of hypothalamic sGnRH antisense on the pituitary and ovary receptors of female carp and provided comprehensive data with respect to global changes in gene expression throughout the HPG signaling pathway, contributing towards improving our understanding of the molecular mechanisms and regulative pathways in the reproductive system of teleost fish.
Collapse
Affiliation(s)
- Jing Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Wei Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Chengrong Zhong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Daji Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shuangfei Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- * E-mail:
| |
Collapse
|
31
|
Hook SE, Nagler JJ, Cavileer T, Verducci J, Liu Y, Hayton W, Schultz IR. Relationships between the transcriptome and physiological indicators of reproduction in female rainbow trout over an annual cycle. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:309-318. [PMID: 21086553 DOI: 10.1002/etc.407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Normal transcriptomic patterns along the brain-pituitary-gonad-liver (BPGL) axis should be better characterized if endocrine-disrupting compound-induced changes in gene expression are to be understood. Female rainbow trout were studied over a complete year-long reproductive cycle. Tissue samples from pituitary, ovary, and liver were collected for microarray analysis using the 16K Genomic Research on Atlantic Salmon Project (GRASP) microarray and for quantitative polymerase chain reaction measures of estrogen receptor (ER) isoform messenger RNA (mRNA) levels. Plasma was collected to determine levels of circulating estradiol-17β (E2), follicle-stimulating hormone (FSH), and luteinizing hormone (LH). As an a priori hypothesis, changes in gene expression were correlated to either circulating levels of E2, FSH, and LH, or ER mRNAs quantified by quantitative polymerase chain reaction. In the liver, most transcriptomic patterns correlated to levels of either E2, LH, or ERs. Fewer ovarian transcripts could be correlated to levels of E2, ERα, or FSH. No significant associations were obvious in the pituitary. As a post hoc hypothesis, changes in transcript abundance were compared with microarray features with known roles in gonadal maturation. Many altered transcripts in the ovary correlated to transcript levels of estradiol 17-beta-dehydrogenase 8 or 17 B HSD12, or to glycoprotein alpha chain 1 or 2. In the pituitary, genes involved with the growth axis (e.g., growth hormone, insulin-related growth factor binding protein) correlated with the most transcripts. These results suggest that transcriptional networks along the BPGL axis may be regulated by factors other than circulating steroid hormones.
Collapse
|
32
|
von Schalburg KR, Yasuike M, Yazawa R, de Boer JG, Reid L, So S, Robb A, Rondeau EB, Phillips RB, Davidson WS, Koop BF. Regulation and expression of sexual differentiation factors in embryonic and extragonadal tissues of Atlantic salmon. BMC Genomics 2011; 12:31. [PMID: 21232142 PMCID: PMC3034696 DOI: 10.1186/1471-2164-12-31] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 01/13/2011] [Indexed: 12/14/2022] Open
Abstract
Background The products of cyp19, dax, foxl2, mis, sf1 and sox9 have each been associated with sex-determining processes among vertebrates. We provide evidence for expression of these regulators very early in salmonid development and in tissues outside of the hypothalamic-pituitary-adrenal/gonadal (HPAG) axis. Although the function of these factors in sexual differentiation have been defined, their roles in early development before sexual fate decisions and in tissues beyond the brain or gonad are essentially unknown. Results Bacterial artificial chromosomes containing salmon dax1 and dax2, foxl2b and mis were isolated and the regulatory regions that control their expression were characterized. Transposon integrations are implicated in the shaping of the dax and foxl2 loci. Splice variants for cyp19b1 and mis in both embryonic and adult tissues were detected and characterized. We found that cyp19b1 transcripts are generated that contain 5'-untranslated regions of different lengths due to cryptic splicing of the 3'-end of intron 1. We also demonstrate that salmon mis transcripts can encode prodomain products that present different C-termini and terminate before translation of the MIS hormone. Regulatory differences in the expression of two distinct aromatases cyp19a and cyp19b1 are exerted, despite transcription of their transactivators (ie; dax1, foxl2, sf1) occurring much earlier during embryonic development. Conclusions We report the embryonic and extragonadal expression of dax, foxl2, mis and other differentiation factors that indicate that they have functions that are more general and not restricted to steroidogenesis and gonadogenesis. Spliced cyp19b1 and mis transcripts are generated that may provide regulatory controls for tissue- or development-specific activities. Selection of cyp19b1 transcripts may be regulated by DAX-1, FOXL2 and SF-1 complexes that bind motifs in intron 1, or by signals within exon 2 that recruit splicing factors, or both. The potential translation of proteins bearing only the N-terminal MIS prodomain may modulate the functions of other TGF β family members in different tissues. The expression patterns of dax1 early in salmon embryogenesis implicate its role as a lineage determination factor. Other roles for these factors during embryogenesis and outside the HPAG axis are discussed.
Collapse
Affiliation(s)
- Kristian R von Schalburg
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Callaghan TR, Degnan BM, Sellars MJ. Expression of sex and reproduction-related genes in Marsupenaeus japonicus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:664-677. [PMID: 20091331 DOI: 10.1007/s10126-009-9254-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 12/11/2009] [Indexed: 05/28/2023]
Abstract
Expressed sequence tags (ESTs) were identified from reciprocal suppression subtractive hybridization cDNA libraries from Marsupenaeus japonicus (Kuruma shrimp) female and male gonads. The expression profiles of 24 of these ESTs were determined in female and male gonads and developing postlarvae by real-time quantitative reverse transcription-polymerase chain reaction. When expression was determined in gonads, six of the ESTs were expressed in ovaries only, and five of the ESTs were expressed in testes only. When expression was determined in whole individuals during postlarval development, expression of the ESTs was low and inconsistent until stage PL110 (110 days since metamorphosis from mysis stage to the first postlarval stage). At PL110, seven of the ESTs were detected in females only, and seven ESTs were detected in males only. Sex-specific expression at this developmental stage indicates that these ESTs act as important gonadal development markers and may have a role in gametogenesis.
Collapse
Affiliation(s)
- Tamera R Callaghan
- CSIRO Food Futures National Research Flagship, 5 Julius Avenue, North Ryde, Sydney, New South Wales 2113, Australia.
| | | | | |
Collapse
|
34
|
Davidson WS, Koop BF, Jones SJM, Iturra P, Vidal R, Maass A, Jonassen I, Lien S, Omholt SW. Sequencing the genome of the Atlantic salmon (Salmo salar). Genome Biol 2010; 11:403. [PMID: 20887641 PMCID: PMC2965382 DOI: 10.1186/gb-2010-11-9-403] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The International Collaboration to Sequence the Atlantic Salmon Genome (ICSASG) will produce a genome sequence that identifies and physically maps all genes in the Atlantic salmon genome and acts as a reference sequence for other salmonids.
Collapse
Affiliation(s)
- William S Davidson
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby BC, V5A 1S6, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Use of microarray technology to assess the time course of liver stress response after confinement exposure in gilthead sea bream (Sparus aurata L.). BMC Genomics 2010; 11:193. [PMID: 20307314 PMCID: PMC2860363 DOI: 10.1186/1471-2164-11-193] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 03/22/2010] [Indexed: 01/11/2023] Open
Abstract
Background Selection programs for growth and stress traits in cultured fish are fundamental to the improvement of aquaculture production. The gilthead sea bream (Sparus aurata) is the main aquacultured species in the Mediterranean area and there is considerable interest in the genetic improvement of this species. With the aim of increasing the genomic resources in gilthead sea bream and identifying genes and mechanisms underlying the physiology of the stress response, we developed a cDNA microarray for gilthead sea bream that is enriched by suppression substractive hybridization with stress and immunorelevant genes. This microarray is used to analyze the dynamics of gilthead sea bream liver expression profile after confinement exposure. Results Groups of confined and control juvenile fish were sampled at 6, 24, 72 and 120 h post exposure. GeneSpring analyses identified 202 annotated genes that appeared differentially expressed at least at one sampling time (P < 0.05). Gene expression results were validated by quantitative PCR of 10 target genes, and K-means clustering of differently expressed genes identified four major temporal gene expression profiles. Set 1 encompassed a rapid metabolic readjustment with enhanced uptake and intracellular transport of fatty acids as metabolic fuels. Set 2 was associated with a wide variety of tissue repair and remodeling processes that were mostly mediated by the stress response of the endoplasmic reticulum (ER). Sets 3 and 4 encompassed the re-establishment of cellular homeostasis with increased intracellular trafficking and scavenging of reactive oxygen species (ROS), accompanied by a bidirectional regulation of the immune system and a general decline of ROS production. Conclusions Collectively, these findings show the complex nature of the adaptive stress response with a clear indication that the ER is an important control point for homeostatic adjustments. The study also identifies metabolic pathways which could be analyzed in greater detail to provide new insights regarding the transcriptional regulation of the stress response in fish.
Collapse
|
36
|
Lubzens E, Young G, Bobe J, Cerdà J. Oogenesis in teleosts: how eggs are formed. Gen Comp Endocrinol 2010; 165:367-89. [PMID: 19505465 DOI: 10.1016/j.ygcen.2009.05.022] [Citation(s) in RCA: 566] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 05/07/2009] [Accepted: 05/29/2009] [Indexed: 11/25/2022]
Abstract
One of the major objectives of the aquaculture industry is the production of a large number of viable eggs with high survival. Major achievements have been made in recent years in improving protocols for higher efficiency of egg production and viability of progeny. Main gaps remain, however, in understanding the dynamic processes associated with oogenesis, the formation of an egg, from the time that germ cells turn into oogonia, until the release of ova during spawning in teleosts. Recent studies on primordial germ-cells, yolk protein precursors and their processing within the developing oocyte, the deposition of vitamins in eggs, structure and function of egg envelopes and oocyte maturation processes, further reveal the complexity of oogenesis. Moreover, numerous circulating endocrine and locally-acting paracrine and autocrine factors regulate the various stages of oocyte development and maturation. Though it is clear that the major regulators during vitellogenesis and oocyte maturation are the pituitary gonadotropins (LH and FSH) and sex steroids, the picture emerging from recent studies is of complex hormonal cross-talk at all stages between the developing oocyte and its surrounding follicle layers to ensure coordination of the various processes that are involved in the production of a fertilizable egg. In this review we aim at highlighting recent advances on teleost fish oocyte differentiation, maturation and ovulation, including those involved in the degeneration and reabsorption of ovarian follicles (atresia). The role of blood-borne and local ovarian factors in the regulation of the key steps of development reveal new aspects associated with egg formation.
Collapse
Affiliation(s)
- Esther Lubzens
- Department of Marine Biology, Israel Oceanographic and Limnological Research, 81080 Haifa, Israel.
| | | | | | | |
Collapse
|
37
|
Aluru N, Vijayan MM. Stress transcriptomics in fish: a role for genomic cortisol signaling. Gen Comp Endocrinol 2009; 164:142-50. [PMID: 19341738 DOI: 10.1016/j.ygcen.2009.03.020] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 03/09/2009] [Accepted: 03/23/2009] [Indexed: 01/17/2023]
Abstract
The physiological responses to stressors, including hormonal profiles and associated tissue responsiveness have been extensively studied in teleosts, but the molecular mechanisms associated with this adaptive response are not well understood. The advent of cDNA microarray technology has transformed the field of functional genomics by revealing global gene expression changes in response to stressor exposures even in non-mammalian vertebrates, including fish. A unifying response in studies related to stressor exposure is activation of the hypothalamus-pituitary-interrenal (HPI) axis in fish, leading to cortisol release into the circulation. Here we will discuss the implications of some of the gene expression changes observed in response to acute stress in fish, while highlighting a role for cortisol in this adaptive stress response. As liver is a key organ for metabolic adjustments to stressors and also is a major target for cortisol action, the genomic studies pertaining to stress and glucocorticoid regulation have focused mainly on this tissue. The studies have identified several genes that are altered transiently after an acute stressor exposure in fish. A number of these stress-responsive genes were also modulated by glucocorticoid receptor activation, suggesting that elevation in cortisol levels during stressor exposure may be a key signal for target tissue molecular programming, essential for stress adaptation. The identification of regulatory gene networks that are stress activated, and modulated by cortisol, both in hepatic and extra-hepatic tissues, including gonads, brain, immune cells and gills, will provide a mechanistic framework to characterize the multifaceted role of cortisol during stress adaptation.
Collapse
|
38
|
New insights into molecular pathways associated with flatfish ovarian development and atresia revealed by transcriptional analysis. BMC Genomics 2009; 10:434. [PMID: 19754951 PMCID: PMC2751788 DOI: 10.1186/1471-2164-10-434] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 09/15/2009] [Indexed: 12/16/2022] Open
Abstract
Background The Senegalese sole (Solea senegalensis) is a marine flatfish of increasing commercial interest. However, the reproduction of this species in captivity is not yet controlled mainly because of the poor knowledge on its reproductive physiology, as it occurs for other non-salmonid marine teleosts that exhibit group-synchronous ovarian follicle development. In order to investigate intra-ovarian molecular mechanisms in Senegalese sole, the aim of the present study was to identify differentially expressed genes in the ovary during oocyte growth (vitellogenesis), maturation and ovarian follicle atresia using a recently developed oligonucleotide microarray. Results Microarray analysis led to the identification of 118 differentially expressed transcripts, of which 20 and 8 were monitored by real-time PCR and in situ hybridization, respectively. During vitellogenesis, many up-regulated ovarian transcripts had putative mitochondrial function/location suggesting high energy production (NADH dehydrogenase subunits, cytochromes) and increased antioxidant protection (selenoprotein W2a), whereas other regulated transcripts were related to cytoskeleton and zona radiata organization (zona glycoprotein 3, alpha and beta actin, keratin 8), intracellular signalling pathways (heat shock protein 90, Ras homolog member G), cell-to-cell and cell-to-matrix interactions (beta 1 integrin, thrombospondin 4b), and the maternal RNA pool (transducer of ERBB2 1a, neurexin 1a). Transcripts up-regulated in the ovary during oocyte maturation included ion transporters (Na+-K+-ATPase subunits), probably required for oocyte hydration, as well as a proteinase inhibitor (alpha-2-macroglobulin) and a vesicle calcium sensor protein (extended synaptotagmin-2-A). During follicular atresia, few transcripts were found to be up-regulated, but remarkably most of them were localized in follicular cells of atretic follicles, and they had inferred roles in lipid transport (apolipoprotein C-I), chemotaxis (leukocyte cell-derived chemotaxin 2,), angiogenesis (thrombospondin), and prevention of apoptosis (S100a10 calcium binding protein). Conclusion This study has identified a number of differentially expressed genes in the ovary that were not previously found to be regulated during ovarian development in marine fish. Specifically, we found evidence, for the first time in teleosts, of the activation of chemoattractant, angiogenic and antiapoptotic pathways in hypertrophied follicular cells at the onset of ovarian atresia.
Collapse
|
39
|
Kortner TM, Rocha E, Arukwe A. Androgenic modulation of early growth of Atlantic cod (Gadus morhua L.) previtellogenic oocytes and zona radiata-related genes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2009; 72:184-195. [PMID: 19184733 DOI: 10.1080/15287390802539020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Available evidence suggests that androgens play critical roles in early oocyte growth and development in fish. However, the molecular mechanisms underlying this important aspect of reproductive endocrinology have not yet been established. In this study the effects of androgens (11-ketotestosterone [11-KT] and testosterone [T]) were determined on gene expression patterns and growth of cod previtellogenic oocytes, using an in vitro oocyte culture technique. Previtellogenic ovarian tissue was cultured for 5 and 10 d at different concentrations of 11-KT and T (0, 1, or 1000 microM) dissolved in ethanol (0.3%). The androgen concentrations were selected as they represent physiological and supra-physiological concentrations, respectively. Quantitative polymerase chain reaction (PCR) demonstrated increased mRNA expression for five genes recently identified as androgen responsive in our subtracted cDNA library in previtellogenic cod ovary exposed in vitro to androgens. Quantitative histological analyses showed a consistent stereological validation of oocyte growth and development after exposure to androgens. In general, both 11-KT and T induced previtellogenic oocyte growth and development, and these effects were more pronounced with 11-KT exposure. Taken together, our study reveals some novel roles of androgens on the development of previtellogenic oocytes, indicating control of early follicular and oocyte growth in cod ovary. The potent effects of 11-KT on oocyte growth support our earlier hypothesis that non-aromatizable androgens play significant roles in regulating early oocyte growth with potential consequences for the fecundity process. Therefore, these novel roles of androgens as promoters of ovarian growth and development presented in this study may be useful for the aquaculture industry and for breeding of new captive and endangered species. From a toxicological point of view, the cod is a marine species and exposure to complex chemical mixtures that may exert androgenic and/or anti-androgenic effects represents an environmental issue of reasonable concern in the marine environment. Therefore, the findings in the present study represent a novel basis that can be used to determine the effects of xenoandrogens on oocyte development and fecundity in this important marine species.
Collapse
Affiliation(s)
- Trond M Kortner
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | | |
Collapse
|
40
|
Bobe J, Nguyen T, Fostier A. Ovarian function of the trout preovulatory ovary: new insights from recent gene expression studies. Comp Biochem Physiol A Mol Integr Physiol 2008; 153:63-8. [PMID: 19027867 DOI: 10.1016/j.cbpa.2008.10.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 10/24/2008] [Accepted: 10/25/2008] [Indexed: 10/21/2022]
Abstract
During the preovulatory period the follicle-enclosed oocyte progressively acquires maturational and developmental competence. In addition, the follicle is also preparing for the release of the oocyte from the follicle at ovulation. Using real-time PCR and cDNA microarrays we have investigated the molecular mechanisms of oocyte competence acquisition and ovulation in rainbow trout (Oncorhynchus mykiss) by monitoring gene expression in the preovulatory ovary. These studies have demonstrated that many molecular events related to maturational competence and developmental competence acquisition, and ovulation occur concomitantly in the preovulatory ovarian follicle. Oocyte maturational competence acquisition is associated with a decrease of estrogen synthesis and signaling capacities. We also observed a differential expression of genes encoding for igfs and related binding protein, members of the TGF beta superfamily, proteins involved in ion and water transport, bone morphogenetic proteins, and cathepsins. In addition, our observation of a strong up-regulation, prior to ovulation, of genes encoding for proteins putatively involved in proteolysis, inflammation, coagulation, vasodilatation, and angiogenesis further supports the hypothesis comparing ovulation with an inflammatory-like reaction. Together, our results suggest that a finely tuned cross-talk exists between oocyte and follicular layers and between the ovulatory process and the oocyte maturational and developmental competence acquisition processes.
Collapse
Affiliation(s)
- Julien Bobe
- Institut National de la Recherche Agronomique, UR1037 SCRIBE, IFR140, Genopole Ouest, Rennes, France.
| | | | | |
Collapse
|
41
|
Cerdà J, Bobe J, Babin PJ, Admon A, Lubzens E. Functional Genomics and Proteomic Approaches for the Study of Gamete Formation and Viability in Farmed Finfish. ACTA ACUST UNITED AC 2008. [DOI: 10.1080/10641260802324685] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
42
|
Levi L, Levavi-Sivan B, Lubzens E. Expression of Genes Associated with Retinoid Metabolism in the Trout Ovarian Follicle1. Biol Reprod 2008; 79:570-7. [DOI: 10.1095/biolreprod.107.066548] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
43
|
Kortner TM, Rocha E, Silva P, Castro LFC, Arukwe A. Genomic approach in evaluating the role of androgens on the growth of Atlantic cod (Gadus morhua) previtellogenic oocytes. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2008; 3:205-18. [DOI: 10.1016/j.cbd.2008.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 04/14/2008] [Accepted: 04/15/2008] [Indexed: 11/27/2022]
|
44
|
Pervasive sex-linked effects on transcription regulation as revealed by expression quantitative trait loci mapping in lake whitefish species pairs (Coregonus sp., Salmonidae). Genetics 2008; 179:1903-17. [PMID: 18660540 DOI: 10.1534/genetics.107.086306] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mapping of expression quantitative trait loci (eQTL) is a powerful means for elucidating the genetic architecture of gene regulation. Yet, eQTL mapping has not been applied toward investigating the regulation architecture of genes involved in the process of population divergence, ultimately leading to speciation events. Here, we conducted an eQTL mapping experiment to compare the genetic architecture of transcript regulation in adaptive traits, differentiating the recently evolved limnetic (dwarf) and benthic (normal) species pairs of lake whitefish. The eQTL were mapped in three data sets derived from an F(1) hybrid-dwarf backcrossed family: the entire set of 66 genotyped individuals and the two sexes treated separately. We identified strikingly more eQTL in the female data set (174), compared to both male (54) and combined (33) data sets. The majority of these genes were not differentially expressed between male and female progeny of the backcross family, thus providing evidence for a strong pleiotropic sex-linked effect in transcriptomic regulation. The subtelomeric region of a linkage group segregating in females encompassed >50% of all eQTL, which exhibited the most pronounced additive effects. We also conducted a direct comparison of transcriptomic profiles between pure dwarf and normal progeny reared in controlled conditions. We detected 34 differentially expressed transcripts associated with eQTL segregating only in sex-specific data sets and mostly belonging to functional groups that differentiate dwarf and normal whitefish in natural populations. Therefore, these eQTL are not related to interindividual variation, but instead to the adaptive and historical genetic divergence between dwarf and normal whitefish. This study exemplifies how the integration of genetic and transcriptomic data offers a strong means for dissecting the functional genomic response to selection by separating mapping family-specific effects from genetic factors under selection, potentially involved in the phenotypic divergence of natural populations.
Collapse
|
45
|
Wynne JW, O'Sullivan MG, Cook MT, Stone G, Nowak BF, Lovell DR, Elliott NG. Transcriptome analyses of amoebic gill disease-affected Atlantic salmon (Salmo salar) tissues reveal localized host gene suppression. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2008; 10:388-403. [PMID: 18219527 DOI: 10.1007/s10126-007-9075-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 12/04/2007] [Accepted: 12/07/2007] [Indexed: 05/25/2023]
Abstract
The transcriptome response of Atlantic salmon (Salmo salar) displaying advanced stages of amoebic gill disease (AGD) was investigated. Naïve smolt were challenged with AGD for 19 days, at which time all fish were euthanized and their severity of infection quantified through histopathological scoring. Gene expression profiles were compared between heavily infected and naïve individuals using a 17 K Atlantic salmon cDNA microarray with real-time quantitative RT-PCR (qPCR) verification. Expression profiles were examined in the gill, anterior kidney, and liver. Twenty-seven transcripts were significantly differentially expressed within the gill; 20 of these transcripts were down-regulated in the AGD-affected individuals compared with naïve individuals. In contrast, only nine transcripts were significantly differentially expressed within the anterior kidney and five within the liver. Again the majority of these transcripts were down-regulated within the diseased individuals. A down-regulation of transcripts involved in apoptosis (procathepsin L, cathepsin H precursor, and cystatin B) was observed in AGD-affected Atlantic salmon. Four transcripts encoding genes with antioxidant properties also were down-regulated in AGD-affected gill tissue according to qPCR analysis. The most up-regulated transcript within the gill was an unknown expressed sequence tag (EST) whose expression was 218-fold (+/- SE 66) higher within the AGD affected gill tissue. Our results suggest that Atlantic salmon experiencing advanced stages of AGD demonstrate general down-regulation of gene expression, which is most pronounced within the gill. We propose that this general gene suppression is parasite-mediated, thus allowing the parasite to withstand or ameliorate the host response.
Collapse
Affiliation(s)
- James W Wynne
- CSIRO National Food Futures Flagship, CSIRO Marine and Atmospheric Research, Hobart, Tasmania, Australia.
| | | | | | | | | | | | | |
Collapse
|
46
|
Wynne JW, O'Sullivan MG, Stone G, Cook MT, Nowak BF, Lovell DR, Taylor RS, Elliott NG. Resistance to amoebic gill disease (AGD) is characterised by the transcriptional dysregulation of immune and cell cycle pathways. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:1539-1560. [PMID: 18621418 DOI: 10.1016/j.dci.2008.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 05/03/2008] [Accepted: 05/21/2008] [Indexed: 05/26/2023]
Abstract
Amoebic gill disease (AGD) is a parasite-mediated proliferative gill disease capable of affecting a range of teleost hosts. While a moderate heritability for AGD resistance in Atlantic salmon has been reported previously, the mechanisms by which individuals resist the proliferative effects remain poorly understood. To gain more knowledge of this commercially important trait, we compared gill transcriptomes of two groups of Atlantic salmon, one designated putatively resistant, and one designated putatively susceptible to AGD. Utilising a 17k Atlantic salmon cDNA microarray we identified 196 transcripts that were differentially expressed between the two groups. Expression of 11 transcripts were further examined with real-time quantitative RT-PCR (qPCR) in the AGD-resistant and AGD-susceptible animals, as well as non-infected naïve fish. Gene expression determined by qPCR was in strong agreement with the microarray analysis. A large number of differentially expressed genes were involved in immune and cell cycle responses. Resistant individuals displayed significantly higher expression of genes involved in adaptive immunity and negative regulation of the cell cycle. In contrast, AGD-susceptible individuals showed higher expression of acute phase proteins and positive regulators of the cell cycle. Combined with the gill histopathology, our results suggest AGD resistance is acquired rather than innately present, and that this resistance is for the most part associated with the dysregulation of immune and cell cycle pathways.
Collapse
Affiliation(s)
- James W Wynne
- CSIRO National Food Futures Flagship, CSIRO Marine and Atmospheric Research Hobart, GPO Box 1538, Hobart, Tasmania 7001, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Sreenivasan R, Cai M, Bartfai R, Wang X, Christoffels A, Orban L. Transcriptomic analyses reveal novel genes with sexually dimorphic expression in the zebrafish gonad and brain. PLoS One 2008; 3:e1791. [PMID: 18335061 PMCID: PMC2262149 DOI: 10.1371/journal.pone.0001791] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 02/07/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Our knowledge on zebrafish reproduction is very limited. We generated a gonad-derived cDNA microarray from zebrafish and used it to analyze large-scale gene expression profiles in adult gonads and other organs. METHODOLOGY/PRINCIPAL FINDINGS We have identified 116638 gonad-derived zebrafish expressed sequence tags (ESTs), 21% of which were isolated in our lab. Following in silico normalization, we constructed a gonad-derived microarray comprising 6370 unique, full-length cDNAs from differentiating and adult gonads. Labeled targets from adult gonad, brain, kidney and 'rest-of-body' from both sexes were hybridized onto the microarray. Our analyses revealed 1366, 881 and 656 differentially expressed transcripts (34.7% novel) that showed highest expression in ovary, testis and both gonads respectively. Hierarchical clustering showed correlation of the two gonadal transcriptomes and their similarities to those of the brains. In addition, we have identified 276 genes showing sexually dimorphic expression both between the brains and between the gonads. By in situ hybridization, we showed that the gonadal transcripts with the strongest array signal intensities were germline-expressed. We found that five members of the GTP-binding septin gene family, from which only one member (septin 4) has previously been implicated in reproduction in mice, were all strongly expressed in the gonads. CONCLUSIONS/SIGNIFICANCE We have generated a gonad-derived zebrafish cDNA microarray and demonstrated its usefulness in identifying genes with sexually dimorphic co-expression in both the gonads and the brains. We have also provided the first evidence of large-scale differential gene expression between female and male brains of a teleost. Our microarray would be useful for studying gonad development, differentiation and function not only in zebrafish but also in related teleosts via cross-species hybridizations. Since several genes have been shown to play similar roles in gonadogenesis in zebrafish and other vertebrates, our array may even provide information on genetic disorders affecting gonadal phenotypes and fertility in mammals.
Collapse
Affiliation(s)
- Rajini Sreenivasan
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Minnie Cai
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Richard Bartfai
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Xingang Wang
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Alan Christoffels
- Computational Biology, Temasek Life Sciences Laboratory, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Laszlo Orban
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
48
|
Gallagher EP, LaVire HM, Bammler TK, Stapleton PL, Beyer RP, Farin FM. Hepatic expression profiling in smolting and adult coho salmon (Onchorhynchus kisutch). ENVIRONMENTAL RESEARCH 2008; 106:365-78. [PMID: 18241857 PMCID: PMC3321376 DOI: 10.1016/j.envres.2007.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 09/12/2007] [Accepted: 10/04/2007] [Indexed: 05/20/2023]
Abstract
Coho salmon are a critical Pacific salmon species that undergo complex physiological transformations as they migrate towards seawater and enter adult life stages. During these periods, coho may receive exposure to waterborne pollutants that coincide with outmigration through contaminated waterways and return to natal streams. However, little is known regarding the ontogenic modulation of gene expression during these critical life stages. Accordingly, the purpose of the present study was to characterize the hepatic transcriptome of smolting coho, adult males, and adult females by carrying out microarray analysis with a commercially available 16,000 cDNA element platform. Quantitative PCR (Q-PCR) analysis of genes involved in chemical biotransformation (cytochrome P450 isoforms 1A, and 2M1, glutathione S-transferase pi, microsomal GST), defense against metal exposure (metallothionein-A), and reproductive function (vitellogenin receptor) were developed for the purpose of analyzing specific genes of interest and to validate the microarray data. Microarray analysis identified 842 genes that were differentially expressed between smolts and adult males or females (p<0.001 and more than 2-fold difference). These 842 genes were not differentially expressed between adult males and females and, therefore, can be interpreted as a smolt-specific transcriptional profile. Of these 842 genes, 275 were well annotated and formed the basis for further bioinformatics analysis. Many of the differentially expressed genes were involved in basic cellular processes related to protein biosynthesis and degradation (24%), ion transport (12%), transcription (8%), cell structure (8%) and cellular energetics (6%). The majority of differentially expressed genes involved in signal transduction and energy metabolism were expressed at higher levels in adult coho relative to smolts. However, genes associated with cellular protection against chemical injury (i.e. biotransformation, DNA damage repair, and protection against oxidative stress) did not generally differ among the groups. Q-PCR studies revealed extensive interindividual variation in mRNA expression, but were consistent with the microarray results (R(2)=0.74). Collectively, our results indicate differences in liver gene expression in young smolting coho salmon relative to adults and extensive interindividual variation in biotransformation gene expression. However, we did not find a global lack of hepatic biotransformation capacity or poor cellular detoxification response capacity in smolting cohos based on mRNA profiles.
Collapse
Affiliation(s)
- Evan P Gallagher
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Discovery of genes implicated in whirling disease infection and resistance in rainbow trout using genome-wide expression profiling. BMC Genomics 2008; 9:37. [PMID: 18218127 PMCID: PMC2257940 DOI: 10.1186/1471-2164-9-37] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 01/24/2008] [Indexed: 12/03/2022] Open
Abstract
Background Whirling disease, caused by the pathogen Myxobolus cerebralis, afflicts several salmonid species. Rainbow trout are particularly susceptible and may suffer high mortality rates. The disease is persistent and spreading in hatcheries and natural waters of several countries, including the U.S.A., and the economic losses attributed to whirling disease are substantial. In this study, genome-wide expression profiling using cDNA microarrays was conducted for resistant Hofer and susceptible Trout Lodge rainbow trout strains following pathogen exposure with the primary objective of identifying specific genes implicated in whirling disease resistance. Results Several genes were significantly up-regulated in skin following pathogen exposure for both the resistant and susceptible rainbow trout strains. For both strains, response to infection appears to be linked with the interferon system. Expression profiles for three genes identified with microarrays were confirmed with qRT-PCR. Ubiquitin-like protein 1 was up-regulated over 100 fold and interferon regulating factor 1 was up-regulated over 15 fold following pathogen exposure for both strains. Expression of metallothionein B, which has known roles in inflammation and immune response, was up-regulated over 5 fold in the resistant Hofer strain but was unchanged in the susceptible Trout Lodge strain following pathogen exposure. Conclusion The present study has provided an initial view into the genetic basis underlying immune response and resistance of rainbow trout to the whirling disease parasite. The identified genes have allowed us to gain insight into the molecular mechanisms implicated in salmonid immune response and resistance to whirling disease infection.
Collapse
|
50
|
Luckenbach JA, Iliev DB, Goetz FW, Swanson P. Identification of differentially expressed ovarian genes during primary and early secondary oocyte growth in coho salmon, Oncorhynchus kisutch. Reprod Biol Endocrinol 2008; 6:2. [PMID: 18205936 PMCID: PMC2262088 DOI: 10.1186/1477-7827-6-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 01/18/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of this study was to identify differentially expressed ovarian genes during primary and early secondary oocyte growth in coho salmon, a semelparous teleost that exhibits synchronous follicle development. METHODS Reciprocal suppression subtractive hybridization (SSH) libraries were generated from ovaries with perinucleolus (P) or cortical alveolus (CA) stage follicles and selected genes were assessed with quantitative PCR (qPCR). An assessment of changes in RNA composition during oocyte growth and its relationship to transcript levels was also conducted. RESULTS SSH revealed several differentially expressed genes during early oogenesis, some which will not likely be utilized until 1-3 years later in salmon. Zona pellucida glycoprotein (zp) genes, vitellogenin receptor (vldlr) isoforms, cathepsin B (ctsba), cyclin E (ccne), a DnaJ transcript (dnaja2), and a ferritin subunit (fth3) were significantly elevated at the P stage, while a C-type lectin, retinol dehydrogenase (rdh1), and a coatomer protein subunit (cope) were upregulated at the CA stage. Putative follicle cell transcripts such as anti-Müllerian hormone (amh), lipoprotein lipase (lpl), apolipoprotein E (apoe), gonadal soma-derived growth factor (gsdf) and follicle-stimulating hormone receptor (fshr) also increased significantly at the CA stage. The analysis of RNA composition during oocyte growth showed that the total RNA yield and proportion of messenger RNA relative to non-polyadenylated RNAs declined as oogenesis progressed. This influenced apparent transcript levels depending on the type of RNA template used and normalization method. CONCLUSION In coho salmon, which exhibit a dramatic change in oocyte size and RNA composition during oogenesis, use of messenger RNA as template and normalization of qPCR data to a housekeeping gene, ef1a, yielded results that best reflected transcript abundance within the ovarian follicle. Synthesis of zp transcripts and proteins involved in yolk incorporation and processing occurred during primary growth, while increased expression of a CA component and genes related to lipid incorporation occurred concomitant with the appearance of CA, but prior to lipid accumulation. Significant increases in transcripts for fshr, gsdf, and amh at the CA stage suggest a role of FSH and TGFbeta peptides in previtellogenic oocyte growth and puberty onset in female salmon.
Collapse
Affiliation(s)
- John A Luckenbach
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington 98195, USA
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration-National Marine Fisheries Service, Seattle, Washington 98112, USA
| | - Dimitar B Iliev
- Great Lakes WATER Institute, University of Wisconsin, Milwaukee, Wisconsin 53204, USA
| | - Frederick W Goetz
- Great Lakes WATER Institute, University of Wisconsin, Milwaukee, Wisconsin 53204, USA
| | - Penny Swanson
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration-National Marine Fisheries Service, Seattle, Washington 98112, USA
- Center of Reproductive Biology, Washington State University, Pullman, Washington 98164, USA
| |
Collapse
|