1
|
Papadaki M, Le NS, Mylonas CC, Sarropoulou E. Exploring the Fanconi Anemia Gene Expression and Regulation by MicroRNAs in Gilthead Seabream (Sparus aurata) at Different Gonadal Development Stages. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:74. [PMID: 40214817 PMCID: PMC11991948 DOI: 10.1007/s10126-025-10444-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/12/2025] [Indexed: 04/14/2025]
Abstract
Fanconi anaemia (FA) is a rare autosomal recessive disease in humans that is distributed worldwide. Fanconi anemia complementation (Fanc) proteins are essential for the appropriate functioning of the FA DNA repair pathway. They are also linked to a number of other biological processes, including oxygen metabolism, cell cycle regulation, haematopoiesis and apoptosis. So far, little research has been conducted on teleosts, but evidence shows that Fanc proteins play a significant role in immune response and sex reversal. For the examination of the expression of three fanc genes (fancc, fancl, and fancd2), as well as the potential regulation of these genes by microRNAs (miRNAs) in gonadal tissues at different stages of development, the present study has selected the gilthead seabream (Sparus aurata), a significant aquaculture species that exhibits protandrous hermaphroditism. The obtained data suggested the role of fancl and fancd2 in the maturation of female gonads and the miRNAs miR-210, miR-217 and miR-10926 have been identified as putative regulators of fancd2, fancc and fancl, respectively. Overall, the data indicated the potential use of fancl and fancd2 genes as sex biomarkers in conjunction with their respective regulation by miRNAs. To the best of our knowledge, this is the first study demonstrating the importance of fanc genes, along with putative regulatory miRNAs, in the reproduction of an important marine aquaculture species.
Collapse
Affiliation(s)
- Maria Papadaki
- Biology Department, University of Crete, P.O. Box 2208, 70013, Heraklion, Crete, Greece
- Hellenic Center for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Thalassocosmos, Gournes Pediados, P.O. Box 2214, 71003, Heraklion, Crete, Greece
| | - Ngoc-Son Le
- Biology Department, University of Crete, P.O. Box 2208, 70013, Heraklion, Crete, Greece
| | - Constantinos C Mylonas
- Hellenic Center for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Thalassocosmos, Gournes Pediados, P.O. Box 2214, 71003, Heraklion, Crete, Greece
| | - Elena Sarropoulou
- Hellenic Center for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Thalassocosmos, Gournes Pediados, P.O. Box 2214, 71003, Heraklion, Crete, Greece.
| |
Collapse
|
2
|
Qiu Y, Duan P, Ding X, Li Z, Wang X, Li L, Liu Y, Wang L, Tian Y. Comparative Transcriptome Analysis of the Hypothalamic-Pituitary-Gonadal Axis of Jinhu Grouper ( Epinephelus fuscoguttatus ♀ × Epinephelus tukula ♂) and Tiger Grouper ( Epinephelus fuscoguttatus). Genes (Basel) 2024; 15:929. [PMID: 39062708 PMCID: PMC11275438 DOI: 10.3390/genes15070929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Jinhu groupers, the hybrid offspring of tiger groupers (Epinephelus fuscoguttatus) and potato groupers (Epinephelus tukula), have excellent heterosis in fast growth and strong stress resistance. However, compared with the maternal tiger grouper, Jinhu groupers show delayed gonadal development. To explore the interspecific difference in gonadal development, we compared the transcriptomes of brain, pituitary, and gonadal tissues between Jinhu groupers and tiger groupers at 24-months old. In total, 3034 differentially expressed genes (DEGs) were obtained. KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analyses showed that the osteoclast differentiation, oocyte meiosis, and ovarian steroidogenesis may be involved in the difference in gonadal development. Trend analysis showed that the DEGs were mainly related to signal transduction and cell growth and death. Additionally, differences in expression levels of nr4a1, pgr, dmrta2, tbx19, and cyp19a1 may be related to gonadal retardation in Jinhu groupers. A weighted gene co-expression network analysis revealed three modules (i.e., saddlebrown, paleturquoise, and greenyellow) that were significantly related to gonadal development in the brain, pituitary, and gonadal tissues, respectively, of Jinhu groupers and tiger groupers. Network diagrams of the target modules were constructed and the respective hub genes were determined (i.e., cdh6, col18a1, and hat1). This study provides additional insight into the molecular mechanism underlying ovarian stunting in grouper hybrids.
Collapse
Affiliation(s)
- Yishu Qiu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.Q.)
| | - Pengfei Duan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.Q.)
| | - Xiaoyu Ding
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.Q.)
| | - Zhentong Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.Q.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Hainan Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572000, China
| | - Xinyi Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.Q.)
| | - Linlin Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.Q.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Hainan Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572000, China
| | - Yang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.Q.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Hainan Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572000, China
| | - Linna Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.Q.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Hainan Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572000, China
| | - Yongsheng Tian
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.Q.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Hainan Innovation Research Institute, Chinese Academy of Fishery Sciences, Sanya 572000, China
| |
Collapse
|
3
|
Jeng SR, Wu GC, Yueh WS, Liu PH, Kuo SF, Dufour S, Chang CF. The expression profiles of cyp19a1, sf-1, esrs and gths in the brain-pituitary during gonadal sex differentiation in juvenile Japanese eels. Gen Comp Endocrinol 2024; 353:114512. [PMID: 38582176 DOI: 10.1016/j.ygcen.2024.114512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/08/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Eels are gonochoristic species whose gonadal differentiation initiates at the yellow eel stage and is influenced by environmental factors. We revealed some sex-related genes were sex dimorphically expressed in gonads during gonadal sex differentiation of Japanese eel (Anguilla japonica); however, the expression of sex-related genes in the brain-pituitary during gonadal sex differentiation in eels is still unclear. This study aimed to investigate the sex-related gene expressions in the brain-pituitary and tried to clarify their roles in the brain and gonads during gonadal sex differentiation. Based on our previous histological study, the control eels developed as males, and estradiol-17β (E2) was used for feminization. Our results showed that during testicular differentiation, the brain cyp19a1 transcripts and aromatase proteins were increased significantly; moreover, the cyp19a1, sf-1, foxl2s, and esrs (except gperb) transcripts in the midbrain/pituitary also were increased significantly. Forebrain gnrh1 transcripts increased slightly during gonadal differentiation of both sexes, but the gnrhr1b and gnrhr2 transcripts in the midbrain/pituitary were stable during gonadal differentiation. The expression levels of gths and gh in the midbrain/pituitary were significantly increased during testicular differentiation and were much higher in males than in E2-feminized females. These results implied that endogenous estrogens might play essential roles in the brain/pituitary during testicular differentiation, sf-1, foxl2s, and esrs may have roles in cyp19a1 regulation in the midbrain/pituitary of Japanese eels. For the GnRH-GTH axis, gths, especially fshb, may be regulated by esrs and involved in regulating testicular differentiation and development in Japanese eels.
Collapse
Affiliation(s)
- Shan-Ru Jeng
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan.
| | - Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan.
| | - Wen-Shiun Yueh
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Pei-Hua Liu
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Shu-Fen Kuo
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Sylvie Dufour
- Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d'Histoire Naturelle, Sorbonne Université, CNRS, IRD, Paris, France; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan.
| |
Collapse
|
4
|
Lai X, Peng S, Liu L, Zou Z, Cao L, Wang Y. Tissue-specific promoters regulate the transcription of cyp19a1 in the brain-pituitary-gonad axis of Japanese eel (Anguilla japonica). J Steroid Biochem Mol Biol 2023; 232:106334. [PMID: 37236374 DOI: 10.1016/j.jsbmb.2023.106334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
Aromatase is a key enzyme that catalyzes the biosynthesis of estrogens. Previous study indicated that putative tissue-specific promoters of the one aromatase gene (cyp19a1) may drive the differential regulatory mechanisms of cyp19a1 expression in Anguilla japonica. In the present study, for elucidating the transcription characteristics and the function of putative tissue-specific promoters of cyp19a1 in the brain-pituitary-gonad (BPG) axis during vitellogenesis, we investigated the transcriptional regulation of cyp19a1 by 17β-estrogen (E2), testosterone (T), or human chorionic gonadotropin (HCG) in A. japonica. The expression of estrogen receptor (esra), androgen receptor (ara), or luteinizing hormone receptor (lhr) was up-regulated as cyp19a1 in response to E2, T, or HCG, respectively in the telencephalon, diencephalon, and pituitary. The expression of cyp19a1 was also upregulated in the ovary by HCG or T in a dose-dependent manner. Unlike in the brain and pituitary, the expression of esra and lhr, rather than ara, was upregulated by T in the ovary. Subsequently, four primary subtypes of 5'-untranslated terminal regions of cyp19a1 transcripts and the corresponding two 5' flanking regions (promoter P.I and P.II) were identified. The P.II existed in all BPG axis tissues, whereas the P.I with strong transcriptional activity was brain- and pituitary-specific. Furthermore, the transcriptional activity of promoters, the core promoter region, and the three putative hormone receptor response elements were validated. The transcriptional activity did not change when the HEK291T cells co-transfected with P.II and ar vector were exposed to T. These results suggested that the expression of cyp19a1 was upregulated indirectly through esra and lhr rather than ara by T in the ovary, whereas the expression of cyp19a1 was upregulated directly through androgen receptor and the downstream androgen response element of tissue-specific P.I in the brain and pituitary. The results of the study reveal the regulatory mechanisms of estrogen biosynthesis and provide a reference for optimizing the technology of artificially induced maturation in eels.
Collapse
Affiliation(s)
- Xiaojian Lai
- Fisheries College, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education P. R. China, Xiamen 361021, China.
| | - Shuai Peng
- Fisheries College, Jimei University, Xiamen 361021, China
| | - Liping Liu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Zhihua Zou
- Fisheries College, Jimei University, Xiamen 361021, China
| | - Le Cao
- Fisheries College, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education P. R. China, Xiamen 361021, China
| | - Yilei Wang
- Fisheries College, Jimei University, Xiamen 361021, China.
| |
Collapse
|
5
|
Takahashi T, Ogiwara K. cAMP signaling in ovarian physiology in teleosts: A review. Cell Signal 2023; 101:110499. [PMID: 36273754 DOI: 10.1016/j.cellsig.2022.110499] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/30/2022]
Abstract
Ovarian function in teleosts, like in other vertebrates, is regulated by two distinct gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Gonadotropin effects are mediated by membrane-bound G protein-coupled receptors localized on the surface of follicle cells. Gonadotropin receptor activation results in increased intracellular cAMP, the most important second cellular signaling molecule. FSH stimulation induces the production of 17β-estradiol in the cells of growing follicles to promote vitellogenesis in oocytes. In contrast, in response to LH, fully grown post-vitellogenic follicles gain the ability to synthesize maturation-inducing steroids, which induce meiotic resumption and ovulation. All these events were induced downstream of cAMP. In this review, we summarize studies addressing the role of the cAMP pathway in gonadotropin-induced processes in teleost ovarian follicles. Furthermore, we discuss future problems concerning cAMP signaling in relation to teleost ovarian function and the differences and similarities in the gonadotropin-induced cAMP signaling pathways between mammals and teleosts.
Collapse
Affiliation(s)
- Takayuki Takahashi
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Katsueki Ogiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
6
|
Dynamics of sexual development in teleosts with a note on Mugil cephalus. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Ji X, Bu S, Zhu Y, Wang Y, Wen X, Song F, Luo J. Identification of SF-1 and FOXL2 and Their Effect on Activating P450 Aromatase Transcription via Specific Binding to the Promoter Motifs in Sex Reversing Cheilinus undulatus. Front Endocrinol (Lausanne) 2022; 13:863360. [PMID: 35620392 PMCID: PMC9127060 DOI: 10.3389/fendo.2022.863360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
The giant wrasse Cheilinus undulatus is a protogynous socially hermaphroditic fish. However, the physiological basis of its sex reversal remains largely unknown. cyp19 is a key gender-related gene encoding P450 aromatase, which converts androgens to estrogens. cyp19 transcription regulation is currently unknown in socially sexually reversible fish. We identified NR5A1 by encoding SF-1, and FOXL2 from giant wrasse cDNA and cyp19a1a and cyp19a1b promoter regions were cloned from genomic DNA to determine the function of both genes in cyp19a1 regulation. Structural analysis showed that SF-1 contained a conserved DNA-binding domain (DBD) and a C-terminal ligand-binding domain (LBD). FOXL2 was comprised of an evolutionarily conserved Forkhead domain. In vitro transfection assays showed that SF-1 could upregulate cyp19a1 promoter activities, but FOXL2 could only enhance cyp19a1b promoter transcriptional activity in the HEK293T cell line. Furthermore, HEK293T and COS-7 cell lines showed that co-transfecting the two transcription factors significantly increased cyp19a1 promoter activity. The -120 to -112 bp (5'-CAAGGGCAC-3') and -890 to -872 bp (5'-AGAGGAGAACAAGGGGAG-3') regions of the cyp19a1a promoter were the core regulatory elements for SF-1 and FOXL2, respectively, to regulate cyp19a1b promoter transcriptional activity. Collectively, these results suggest that both FOXL2 and SF-1 are involved in giant wrasse sex reversal.
Collapse
|
8
|
Casas L, Saborido-Rey F. Environmental Cues and Mechanisms Underpinning Sex Change in Fish. Sex Dev 2021; 15:108-121. [PMID: 34111868 DOI: 10.1159/000515274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/07/2021] [Indexed: 11/19/2022] Open
Abstract
Fishes are the only vertebrates that undergo sex change during their lifetime, but even within this group, a unique reproductive strategy is displayed by only 1.5% of the teleosts. This lability in alternating sexual fate is the result of the simultaneous suppression and activation of opposing male and female networks. Here, we provide a brief review summarizing recent advances in our understanding of the environmental cues that trigger sex change and their perception, integration, and translation into molecular cascades that convert the sex of an individual. We particularly focus on molecular events underpinning the complex behavioral and morphological transformation involved in sex change, dissecting the main molecular players and regulatory networks that shape the transformation of one sex into the opposite. We show that histological changes and molecular pathways governing gonadal reorganization are better described than the neuroendocrine basis of sex change and that, despite important advances, information is lacking for the majority of hermaphrodite species. We highlight significant gaps in our knowledge of how sex change takes place and suggest future research directions.
Collapse
Affiliation(s)
- Laura Casas
- Ecology and Marine Resources, Institute of Marine Research (IIM-CSIC), Vigo, Spain
| | - Fran Saborido-Rey
- Ecology and Marine Resources, Institute of Marine Research (IIM-CSIC), Vigo, Spain
| |
Collapse
|
9
|
Zohar Y. Fish reproductive biology - Reflecting on five decades of fundamental and translational research. Gen Comp Endocrinol 2021; 300:113544. [PMID: 32615136 PMCID: PMC7324349 DOI: 10.1016/j.ygcen.2020.113544] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022]
Abstract
Driven by the broad diversity of species and physiologies and by reproduction-related bottlenecks in aquaculture, the field of fish reproductive biology has rapidly grown over the last five decades. This review provides my perspective on the field during this period, integrating fundamental and applied developments and milestones. Our basic understanding of the brain-pituitary-gonadal axis led to overcoming the failure of farmed fish to ovulate and spawn in captivity, allowing us to close the fish life cycle and establish a predictable, year-round production of eggs. Dissecting the molecular and hormonal mechanisms associated with sex determination and differentiation drove technologies for producing better performing mono-sex and reproductively-sterile fish. The growing contingent of passionate fish biologists, together with the availability of innovative platforms such as transgenesis and gene editing, as well as new models such as the zebrafish and medaka, have generated many discoveries, also leading to new insights of reproductive biology in higher vertebrates including humans. Consequently, fish have now been widely accepted as vertebrate reproductive models. Perhaps the best testament of the progress in our discipline is demonstrated at the International Symposia on Reproductive Physiology of Fish (ISRPF), at which our scientific family has convened every four years since the grandfather of the field, the late Ronald Billard, organized the inaugural 1977 meeting in Paimpont, France. As the one person who has been fortunate enough to attend all of these meetings since their inception, I have witnessed first-hand the astounding evolution of our field as we capitalized on the molecular and biotechnological revolutions in the life sciences, which enabled us to provide a higher resolution of fish reproductive and endocrine processes, answer more questions, and dive into deeper comprehension. Undoubtedly, the next (five) decades will be similarly exciting as we continue to integrate physiology with genomics, basic and translational research, and the small fish models with the aquacultured species.
Collapse
Affiliation(s)
- Yonathan Zohar
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland, Baltimore County, Baltimore, MD 21202, United States
| |
Collapse
|
10
|
García Hernández MP, Cabas I, Rodenas MC, Arizcun M, Chaves-Pozo E, Power DM, García Ayala A. 17α-ethynylestradiol prevents the natural male-to-female sex change in gilthead seabream (Sparus aurata L.). Sci Rep 2020; 10:20067. [PMID: 33208754 PMCID: PMC7676269 DOI: 10.1038/s41598-020-76902-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/26/2020] [Indexed: 11/08/2022] Open
Abstract
Exposure to 17α-ethynylestradiol (EE2, 5 μg/g food) impairs some reproductive events in the protandrous gilthead seabream and a short recovery period does not allow full recovery. In this study, spermiating seabream males in the second reproductive cycle (RC) were fed a diet containing 5 or 2.5 μg EE2/g food for 28 days and then a commercial diet without EE2 for the remaining RC. Individuals were sampled at the end of the EE2 treatment and then at the end of the RC and at the beginning of the third RC, 146 and 333 days after the cessation of treatment, respectively. Increased hepatic transcript levels of the gene coding for vitellogenin (vtg) and plasma levels of Vtg indicated both concentrations of EE2 caused endocrine disruption. Modifications in the histological organization of the testis, germ cell proliferation, plasma levels of the sex steroids and pituitary expression levels of the genes coding for the gonadotropin β-subunits, fshβ and lhβ were detected. The plasma levels of Vtg and most of the reproductive parameters were restored 146 days after treatments. However, although 50% of the control fish underwent sex reversal as expected at the third RC, male-to female sex change was prevented by both EE2 concentrations.
Collapse
Affiliation(s)
- M Pilar García Hernández
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain.
| | - Isabel Cabas
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - M Carmen Rodenas
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Marta Arizcun
- Oceanographic Center of Murcia, Spanish Institute of Oceanography (IEO), Carretera de la Azohía s/n, Puerto de Mazarrón, 30860, Murcia, Spain
| | - Elena Chaves-Pozo
- Oceanographic Center of Murcia, Spanish Institute of Oceanography (IEO), Carretera de la Azohía s/n, Puerto de Mazarrón, 30860, Murcia, Spain
| | - Deborah M Power
- Centro de Ciências Do Mar, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Alfonsa García Ayala
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
11
|
Rutherford R, Lister A, Bosker T, Blewett T, Gillio Meina E, Chehade I, Kanagasabesan T, MacLatchy D. Mummichog (Fundulus heteroclitus) are less sensitive to 17α-ethinylestradiol (EE 2) than other common model teleosts: A comparative review of reproductive effects. Gen Comp Endocrinol 2020; 289:113378. [PMID: 31899193 DOI: 10.1016/j.ygcen.2019.113378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/08/2019] [Accepted: 12/27/2019] [Indexed: 12/28/2022]
Abstract
The environmental estrogen 17α-ethinylestradiol (EE2) will depress or completely inhibit egg production in many common model teleosts at low concentrations (≤0.5 ng/L; Runnalls et al., 2015). This inhibition is not seen in the estuarine killifish, or mummichog (Fundulus heteroclitus), even when exposed to 100 ng/L EE2. This relative insensitivity to EE2 exposure indicates species-specific mechanisms for compensating for exogenous estrogenic exposure. This review compares various reproductive responses elicited by EE2 in mummichog to other common model teleosts, such as zebrafish (Danio rerio) and fathead minnow (Pimephales promelas), identifying key endpoints where mummichog differ from other studied fish. For example, EE2 accumulates primarily in the liver/gall bladder of mummichog, which is different than zebrafish and fathead minnow in which accumulation is predominantly in the carcass. Despite causing species-specific differences in fecundity, EE2 has been shown to consistently induce hepatic vitellogenin in males and cause feminization/sex reversal during gonadal differentiation in larval mummichog, similar to other species. In addition, while gonadal steroidogenesis and plasma steroid levels respond to exogenous EE2, it is generally at higher concentrations than observed in other species. In mummichog, production of 17β-estradiol (E2) by full grown ovarian follicles remains high; unlike other teleost models where E2 synthesis decreases as 17α,20β-dihydroxy-4-prenen-3-on levels increase to induce oocyte maturation. New evidence in mummichog indicates some dissimilarity in gonadal steroidogenic gene expression responses compared to gene expression responses in zebrafish and fathead minnow exposed to EE2. The role of ovarian physiology continues to warrant investigation regarding the tolerance of mummichog to exogenous EE2 exposure. Here we present a comprehensive review, highlighting key biological differences in response to EE2 exposure between mummichog and other commonly used model teleosts.
Collapse
Affiliation(s)
- Robert Rutherford
- Wilfrid Laurier University, 75 University Ave W, Waterloo, ON N2L 3C5, Canada.
| | - Andrea Lister
- Wilfrid Laurier University, 75 University Ave W, Waterloo, ON N2L 3C5, Canada.
| | - Thijs Bosker
- Leiden University College/Institute of Environmental Sciences, Leiden University, P.O. Box 13228, 2501 EE, The Hague, the Netherlands.
| | - Tamzin Blewett
- University of Alberta, Edmonton, AB, 116 St & 85 Ave, T6G 2R3, Canada.
| | | | - Ibrahim Chehade
- New York University Abu Dhabi, Saadiyat Island, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
| | | | - Deborah MacLatchy
- Wilfrid Laurier University, 75 University Ave W, Waterloo, ON N2L 3C5, Canada.
| |
Collapse
|
12
|
Guchhait R, Chatterjee A, Mukherjee D, Pramanick K. Seasonal ovarian development in relation to the gonadotropins, steroids, aromatase and steroidogenic factor 1 (SF-1) in the banded gourami, Trichogaster fasciata. Gen Comp Endocrinol 2018; 268:40-49. [PMID: 30055147 DOI: 10.1016/j.ygcen.2018.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/22/2018] [Accepted: 07/24/2018] [Indexed: 02/07/2023]
Abstract
The endocrine regulation of gonadal development and annual variation of key sex steroids is the basic knowledge to understand the reproductive cycle of teleost fish. Present study was aimed to investigate the levels of gonadotropins in relation to the follicular development and plasma steroids during the reproductive cycle of female Trichogaster fasciata. Female fish were sampled and ovarian development is described histologically throughout the year in relation to the seasonal variations of gonadosomatic index (GSI); follicle stimulating hormone (FSH) and luteinizing hormone (LH); three key steroids for folliculogenesis and maturation i.e. testosterone (T), 17β-estradiol (E2) and 17α20βdihydroxy4pregnen3one (17,20β-P). Relatively higher level of FSH was observed till the ovary reaches in late vitellogenic stage confirms that FSH regulates the early folliculogenesis of the ovary, whereas LH peak was observed in the postvitellogenic stage, which indicates that maturation and ovulation were controlled by LH. Seasonal steroid profiles show that both T and E2 reach its maximum level prior to the 17,20β-P which attain its peak value in the month of August. Thus, single peak values of LH and 17,20β-P coinciding with GSI peak, clearly indicates that T. fasciata breeds only once in a year. Furthermore, to elucidate the molecular basis of the reproductive cycle, this study analyzes the other key factors of ovarian function such as cyp19a1a gene expression, aromatase activity and SF-1 localization throughout the year. cyp19a1a gene expression and the aromatase activity were highest in vitellogenic stages indicate that relatively higher E2 production in this stage is regulated by FSH. Immunohistochemical localizations of aromatase and SF-1 in the cellular layer of oocytes demonstrated that aromatase is FSH-dependent and SF-1 could be regulated by both FSH and LH as relatively higher amount of aromatase was localized in the vitellogenic stage oocytes than the postvitellogenic and post germinal vesicle breakdown (post-GVBD) stages; whereas, high amount of SF-1 was observed in vitellogenic, postvitellogenic and post-GVBD stages. These data regarding the reproductive endocrinology of T. fasciata may be useful to understand the interaction between gonadotropins, steroids, aromatase and SF-1 in teleost fishes and may contribute to restoration of the ecologically important fish through artificial reproduction.
Collapse
Affiliation(s)
- Rajkumar Guchhait
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Ankit Chatterjee
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Dilip Mukherjee
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, India
| | - Kousik Pramanick
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India.
| |
Collapse
|
13
|
Pal P, Moulik SR, Gupta S, Guha P, Majumder S, Kundu S, Mallick B, Pramanick K, Mukherjee D. Estrogen-regulated expression of P450arom genes in the brain and ovaries of adult female Indian climbing perch, Anabas testudineus. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2018; 329:29-42. [PMID: 29667754 DOI: 10.1002/jez.2158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 02/06/2023]
Abstract
Cytochrome P450arom (CYP19), a product of cyp19a1 gene, catalyzes the conversion of androgens to estrogens and is essential for regulation of reproductive function in vertebrates. In the present study, we isolated partial cDNA encoding the ovarian (cyp19a1a) and brain (cyp19a1b) P450arom genes from adult female perch, Anabas testudineus and investigated their regulation by estrogen in vivo. Results demonstrated that cyp19a1a and cyp19a1b predominate in ovary and brain respectively, with quantity of both attuned to reproductive cycle. To elucidate estrogen-regulated expression of cyp19a1b in brain and cyp19a1a in ovary, dose- and time-dependent studies were conducted with estrogen in vitellogenic-stage fish in the presence or absence of specific aromatase inhibitor fadrozole. Results demonstrated that treatment of fish with 17β-estradiol (E2; 1.0 μM)) for 6 days caused significant upregulation of cyp19a1b transcripts, aromatase B protein, and aromatase activity in brain in a dose- and time-dependent manner. Ovarian cyp19a1a mRNA, aromatase protein, and aromatase activity, however, was less responsive to E2 than brain. Treatment of fish with an aromatase inhibitor fadrozole for 6 days attenuated both brain and ovarian cyp19a1 mRNAs expression and stimulatory effects of E2 was also significantly reduced. These results indicate that expression of cyp19a1b in brain and cyp19a1a in ovary of adult female A. testudineus was closely associated to plasma E2 levels and seasonal reproductive cycle. Results further show apparent differential regulation of cyp19a1a and cyp19a1b expression by E2/fadrozole manipulation.
Collapse
Affiliation(s)
- Puja Pal
- Department of Zoology, Taki Government College, Taki, India
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani, India
| | - Sujata Roy Moulik
- Department of Zoology, Chandernagore College, Chandannagar, India
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani, India
| | - Shreyasi Gupta
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani, India
| | - Payel Guha
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani, India
| | - Suravi Majumder
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani, India
| | - Sourav Kundu
- Department of Botany, West Bengal State University, Barasat, India
| | - Buddhadev Mallick
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani, India
| | | | - Dilip Mukherjee
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani, India
| |
Collapse
|
14
|
Reyes-Tomassini JJ, Wong TT, Zohar Y. Seasonal expression of arginine vasotocin mRNA and its correlations to gonadal steroidogenic enzymes and sexually dimorphic coloration during sex reversal in the gilthead seabream (Sparus aurata). FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:823-832. [PMID: 28315977 DOI: 10.1007/s10695-017-0338-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 11/29/2016] [Indexed: 06/06/2023]
Abstract
Arginine vasotocin is a hormone produced in the hypothalamus of teleost fish that has been shown to regulate gonad development and sexual behavior. To study the role of arginine vasotocin in the gonadal cycle of the hermaphrodite gilthead seabream, Sparus aurata, we cloned the seabream arginine vasotocin (avt) complementary DNA (cDNA). We investigated the expression of brain avt throughout the gonad cycle using real-time quantitative PCR and compared its expression levels to the expression levels of two key gonadal steroidogenic enzymes, cyp19a1a and cyp11b2. In July, when the process of sex reversal is thought to begin, avt expression was elevated over the previous 2 months. Avt in the brain remained at or above the level of July until November then peaked again in December. There was no difference between males and females in the expression levels of brain avt throughout the year. However, only in ambisexual fish was the expression of the cyp19a1a gonadal aromatase correlated to the expression of avt in the brain. Cyp11b2 did not show any correlation to brain avt expression. We also found that females had more intense body coloration than males and that this intensity peaked prior to spawning. Avt expression and female coloration were positively correlated. The fact that brain avt expression was lowest during gonad quiescence, together with the observation of a correlation between brain avt with gonadal cyp19a1a and body coloration during that time suggests that avt may play a role during the process of sex reversal and spawning of the gilthead seabream.
Collapse
Affiliation(s)
- José J Reyes-Tomassini
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, 21208, USA.
- Department of Biology, Wartburg College, 100 Wartburg Blvd, Waverly, IA, 50677, USA.
| | - Ten-Tsao Wong
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, 21208, USA
| | - Yonathan Zohar
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, 21208, USA
| |
Collapse
|
15
|
Roy Moulik S, Pal P, Majumder S, Mallick B, Gupta S, Guha P, Roy S, Mukherjee D. Gonadotropin and sf-1 regulation of cyp19a1a gene and aromatase activity during oocyte development in the rohu, L. rohita. Comp Biochem Physiol A Mol Integr Physiol 2016; 196:1-10. [PMID: 26916215 DOI: 10.1016/j.cbpa.2016.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 02/05/2016] [Accepted: 02/07/2016] [Indexed: 11/26/2022]
Abstract
Cytochrome P450 aromatase (P450arom), a product of cyp19a1 gene, plays pivotal roles in vertebrate steroidogenesis and reproduction. In this study, we isolated partial cDNA encoding the ovarian (cyp19a1a) and brain (cyp19a1b) P450arom genes from adult female rohu, Labeo rohita and investigated the regulation of cyp19a1a by gonadotropin and SF-1. The cyp19a1a and cyp19a1b were expressed predominantly in the ovary and brain respectively, with quantity of the former attuned to reproductive cycle. To elucidate gonadotropin regulation of cyp19a1a mRNA expression and P450 aromatase activity for 17β-estradiol (E2) biosynthesis in vitro by the vitellogenic ovarian follicles, time- and dose-dependent studies were conducted with HCG and porcine FSH. Results demonstrated that HCG stimulated significantly higher expression of cyp19a1a mRNA and aromatase activity leading to increased biosynthesis of E2 than FSH. To understand the involvement of SF-1 to in the regulation of cyp19a1a and aromatase activity, ovarian follicles were incubated with increasing concentrations of HCG and expression of sf1gene and activation of SF-1 protein were measured. Results demonstrated that HCG significantly induced expression of sf-1 gene and activation of SF-1 protein suggesting a link between SF-1 and P450 aromatase activation in this fish ovary during gonadotropin-induced steroidogenesis.
Collapse
Affiliation(s)
- Sujata Roy Moulik
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India; Department of Zoology, Chandernagore College, Chandannagar, Hooghly, West Bengal 712136, India
| | - Puja Pal
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India; Department of Zoology, Taki Government College, Taki, Hasnabad, West Bengal 743429, India
| | - Suravi Majumder
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Buddhadev Mallick
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Shreyasi Gupta
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Payel Guha
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Sibsankar Roy
- Molecular Endocrinology Laboratory, Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Dilip Mukherjee
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India.
| |
Collapse
|
16
|
Si Y, Ding Y, He F, Wen H, Li J, Zhao J, Huang Z. DNA methylation level of cyp19a1a and Foxl2 gene related to their expression patterns and reproduction traits during ovary development stages of Japanese flounder (Paralichthys olivaceus). Gene 2015; 575:321-30. [PMID: 26343797 DOI: 10.1016/j.gene.2015.09.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 01/14/2023]
Abstract
Foxl2 and cyp19a1a genes are crucial for the ovarian development, and Foxl2 could play a direct regulatory role on cyp19a1a transcription. In this study, we aimed to study DNA methylation status and mRNA expression patterns of Foxl2 and cyp19a1a genes during ovarian development of female Japanese flounder. The relative expression level of cyp19a1a and Foxl2 gene during the gonadal development stages was measured by quantitative PCR. Moreover, DNA methylation status in the promoter and coding regions of the two genes was detected by bisulfite sequencing. The estradiol-17β (E2) was measured by radioimmunoassay. The results showed low expression levels of cyp19a1a and Foxl2 genes in stages II and V, while the highest expression levels were detected in stage IV. The variation trend of the methylation level of all CpG sites in promoter and exon 1 of cyp19a1a gene and three CpG rich regions in coding region of Foxl2 gene was negatively associated with their expression levels during the ovarian development. In addition, two CpG sites in promoter and seven CpG sites in exon 1 of cyp19a1a were on the putative transcription factors binding sequence. Further studies showed that the forkhead domain, which is important for Foxl2 binding to cyp19a1a was located in the F1 and F2 region. These results provide a powerful theoretical basis for the regulatory mechanism on Foxl2 regulating cyp19a1a and promoting gonadal differentiation towards the female pathway, and further reveal that Foxl2 and cyp19a1a play a vital role in the female Japanese flounder gonad development.
Collapse
Affiliation(s)
- Yufeng Si
- The Key Laboratory of Mariculture,Ministry of Education,Ocean University of China,Qingdao 266003,China; Fisheries College,Ocean University of China,Qingdao 266003,China
| | - Yuxia Ding
- The Key Laboratory of Mariculture,Ministry of Education,Ocean University of China,Qingdao 266003,China; Fisheries College,Ocean University of China,Qingdao 266003,China
| | - Feng He
- The Key Laboratory of Mariculture,Ministry of Education,Ocean University of China,Qingdao 266003,China; Fisheries College,Ocean University of China,Qingdao 266003,China.
| | - Haishen Wen
- The Key Laboratory of Mariculture,Ministry of Education,Ocean University of China,Qingdao 266003,China; Fisheries College,Ocean University of China,Qingdao 266003,China
| | - Jifang Li
- The Key Laboratory of Mariculture,Ministry of Education,Ocean University of China,Qingdao 266003,China; Fisheries College,Ocean University of China,Qingdao 266003,China
| | - Junli Zhao
- The Key Laboratory of Mariculture,Ministry of Education,Ocean University of China,Qingdao 266003,China; Fisheries College,Ocean University of China,Qingdao 266003,China
| | - Zhengju Huang
- The Key Laboratory of Mariculture,Ministry of Education,Ocean University of China,Qingdao 266003,China; Fisheries College,Ocean University of China,Qingdao 266003,China
| |
Collapse
|
17
|
Wang Z, Zhang X, Tian H, Wang W, Ru S. Effects of monocrotophos pesticide on steroidogenesis and transcription of steroidogenic enzymes in rainbow trout RTG-2 cells involving the protein kinase A signal pathway. Toxicol In Vitro 2015; 29:155-61. [DOI: 10.1016/j.tiv.2014.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 09/17/2014] [Accepted: 10/04/2014] [Indexed: 11/29/2022]
|
18
|
Zhang Y, Zhang S, Lu H, Zhang L, Zhang W. Genes encoding aromatases in teleosts: evolution and expression regulation. Gen Comp Endocrinol 2014; 205:151-8. [PMID: 24859258 DOI: 10.1016/j.ygcen.2014.05.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/29/2014] [Accepted: 05/07/2014] [Indexed: 11/17/2022]
Abstract
Cytochrome P450 aromatases, encoded by cyp19a1 genes, catalyzes the conversion of androgens to estrogens and plays important roles in the reproduction of vertebrates. Vertebrate cyp19a1 genes showed high synteny in chromosomal locations and conservation in sequences during evolution. However, amphioxus cyp19a1 does not show synteny to vertebrate cyp19a1. Teleost fish possess two copies of the cyp19a1 gene, which were postulated to result from a fish-specific genome duplication. The duplicated copies of fish cyp19a1 genes evolved into the brain and ovarian forms of cytochrome P450 aromatase genes, cyp19a1a and cyp19a1b, respectively, with different regulatory mechanisms of expression, through subfunctionalization under long-term selective pressure. In addition to the estradiol (E2) auto-regulatory loop, there may be other mechanisms responsible for the high expression of aromatase in the teleost brain. The study of the two cyp19a1 copies in teleost fish will shed light on the general evolution, function, and regulation of vertebrate cyp19a1.
Collapse
Affiliation(s)
- Yang Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shen Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Huijie Lu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Lihong Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Weimin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
19
|
Reyes-Tomassini J, Wong TT, Zohar Y. GnRH isoforms expression in relation to the gonadal cycle and to dominance rank in the gilthead seabream, Sparus aurata. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:993-1005. [PMID: 23248050 DOI: 10.1007/s10695-012-9757-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 12/04/2012] [Indexed: 06/01/2023]
Abstract
The manner in which behavior influences the gonadotropin-releasing hormone (GnRH) axis in hermaphroditic fishes is not understood. The Gilthead seabream, Sparus aurata, is a protandrous hermaphrodite with a complex gonadal cycle consisting of a quiescent, pre-spawning, spawning, and post-spawning stage. On two separate experiments, I used real-time quantitative PCR to measure the mRNA expression of three GnRH isoforms in homogenized seabream whole-brain extracts. In the first experiment, I measured the levels of GnRH-1, GnRH-2, and GnRH-3 mRNA throughout the gonad cycle. All three GnRH mRNAs increase around the peak of the spawning season (December). GnRH-3 mRNA expression is also elevated in August, which coincides with the beginning of gonad differentiation. All three GnRH mRNAs have the lowest expression levels in the month of September. There was no difference between males and females in the expression levels of any of the three GnRH mRNA. In the second experiment, I measured individual dominance ranks in six groups of fish, three during quiescence and three during spawning. GnRH-1 mRNA expression was positively correlated with dominance rank only during the quiescent period. The more dominant fish tended to have higher GnRH-1 mRNA expression. The existence of a quiescent-only correlation between GnRH-1 mRNA and dominance rank suggests a mechanism by which activation of gonad maturation could occur first in the most dominant ambisexual fish.
Collapse
Affiliation(s)
- José Reyes-Tomassini
- NOAA Northwest Fisheries Science Center, Manchester Research Station, PO Box 130, Manchester, WA 98353, USA.
| | | | | |
Collapse
|
20
|
Das S, Majumder S, Mukherjee D. Effect of phenol on ovarian secretion of 17β-estradiol in common carp Cyprinus carpio. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 65:132-141. [PMID: 23423282 DOI: 10.1007/s00244-013-9875-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 01/15/2013] [Indexed: 06/01/2023]
Abstract
Phenol is a common substance present in many industrial wastewaters and in nonspecific pesticides. Due to its solubility and volatility phenol is often found in marine and freshwater environment. It is lipophilic compound and has a high potential for accumulating along the trophic chain. Phenol thus is not only a threat to natural environment but also to human health. The effects of phenol on the secretion of 17β-estradiol were examined in female common carp Cyprinus carpio. Vitellogenic stage fish were exposed to physiological safe dose of phenol for 0, 24, 48 and 96 h. In the in vitro experiments, vitellogenic follicles were incubated with phenol and dose- and time-course effects on leuteinising hormone (LH) induced steroid production were examined. Exposure of fish with phenol gradually attenuated serum and ovarian 17β-estradiol levels with increasing time and maximum inhibition was noticed after 96 h. Administration of phenol significantly inhibited LH-induced secretion of 17β-estradiol by the ovarian follicles in vitro. To clarify the mechanism of attenuated production of 17β-estradiol in phenol-treated follicles, stimulated by LH, in vitro effect phenol and LH on aromatase activity (conversion of testosterone to 17β-estradiol) and cytochrome P450arom gene expression in carp ovarian follicles were investigated. Physiological safe dose of phenol significantly inhibited LH-stimulated aromatase activity and P450arom gene expression in ovarian follicles. The present study further demonstrated that LH-induced activation of ovarian steroidogenic factor-1 (SF-1) is strongly inhibited by phenol treatment. These results suggest that physiological safe dose of phenol as endocrine disruption (ED) potential and the effect can be mediated via several cellular pathways including the inhibition of SF-1 activity, aromatase activity and P450arom gene expression.
Collapse
Affiliation(s)
- Sumana Das
- Department of Zoology, Maulana Azad College, Kolkata 700013, West Bengal, India.
| | | | | |
Collapse
|
21
|
Das S, Mukherjee D. Effect of cadmium chloride on secretion of 17β-estradiol by the ovarian follicles of common carp, Cyprinus carpio. Gen Comp Endocrinol 2013; 181:107-14. [PMID: 23146792 DOI: 10.1016/j.ygcen.2012.10.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 10/05/2012] [Accepted: 10/06/2012] [Indexed: 11/24/2022]
Abstract
Cadmium (Cd(2+)) is a common environmental pollutant present in wastes associated with mining, smelting and electroplating. It is a major constituent of the tobacco smoke. Exposure of this heavy metal has been linked to wide range of detrimental effects on mammalian reproduction particularly on ovarian steroidogenesis. Low doses of Cd(2+) are reported to stimulate ovarian luteal progesterone synthesis whereas high doses inhibited it. Cd(2+) exposure is also reported to inhibit gonadal function in fish. In the present study the effects of cadmium chloride (CdCl(2)) on the secretion of gonadotropin-induced 17β-estradiol was examined in female common carp Cyprinus carpio. Vitellogenic stage fish were exposed to physiological safe dose of CdCl(2) for 0, 24, 48 and 96 h and serum and ovarian 17β-estradiol levels were estimated. In the in vitro experiments, vitellogenic follicles were incubated with CdCl(2) and a dose- and time-dependent effects on steroid production were estimated induced by LH. Exposure of fish with CdCl(2) gradually attenuated serum and ovarian 17β-estradiol levels with increasing time and maximum inhibition was noticed after 96 h. Administration of CdCl(2) to the incubations significantly inhibited LH-induced release of 17β-estradiol in vitro. To clarify the mechanism of attenuated production of 17β-estradiol, in vitro effects of CdCl(2) on LH induced P450 aromatase activity (conversion of testosterone to 17β-estradiol) and cytochrome P450arom gene expression in carp ovarian follicles were evaluated. Results show that LH-stimulated P450 aromatase activity and P450arom gene expression in ovarian follicles were significantly inhibited by CdCl(2). The present study further demonstrated that LH-induced stimulation of ovarian steroidogenic factor-1 (SF-1) which activates aromatase enzyme, is strongly inhibited by cadmium chloride treatment.
Collapse
Affiliation(s)
- Sumana Das
- Department of Zoology, Maulana Azad College, Kolkata 700013, West Bengal, India.
| | | |
Collapse
|
22
|
Yan H, Ijiri S, Wu Q, Kobayashi T, Li S, Nakaseko T, Adachi S, Nagahama Y. Expression Patterns of Gonadotropin Hormones and Their Receptors During Early Sexual Differentiation in Nile Tilapia Oreochromis niloticus1. Biol Reprod 2012; 87:116. [DOI: 10.1095/biolreprod.112.101220] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
23
|
Zapater C, Chauvigné F, Scott AP, Gómez A, Katsiadaki I, Cerdà J. Piscine Follicle-Stimulating Hormone Triggers Progestin Production in Gilthead Seabream Primary Ovarian Follicles1. Biol Reprod 2012; 87:111. [DOI: 10.1095/biolreprod.112.102533] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
24
|
Wang H, Wu T, Qin F, Wang L, Wang Z. Molecular cloning of Foxl2 gene and the effects of endocrine-disrupting chemicals on its mRNA level in rare minnow, Gobiocypris rarus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:653-664. [PMID: 21850400 DOI: 10.1007/s10695-011-9548-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 08/03/2011] [Indexed: 05/31/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) can affect normal sexual differentiation in fish. Foxl2, one forkhead transcription factor, plays an important role in ovarian differentiation in the early development of the female gonad in mammals and fish. How EDCs affect Foxl2 expression is little known. In this study, we isolated a Foxl2 cDNA from the ovary of rare minnow Gobiocypris rarus and examined its expression during early development stages and in different adult tissues. Then, we analyzed Foxl2 expression in G. rarus juvenile following 3-day exposure to 17α- ethinylestradiol (EE2), 4-n-nonylphenol (NP), and bisphenol A (BPA). Alignment of known Foxl2 sequences among vertebrates showed high identity in forkhead domain and C-terminal region with other vertebrate proteins. Quantitative RT-PCR analysis showed that Foxl2 expression was linear decrease and cyp19a1a, the downstream target gene of Foxl2, had no correlation with Foxl2 from 18 to 50 days post fertilization (dpf). Among different adult tissues, Foxl2 is mainly expressed in ovary, brain, gill, eye, and male spleen. In the 3-day exposure, the juvenile fish to EDCs, 0.1 nM EE2, and 1 nM BPA significantly up-regulated the expression of Foxl2 gene, while NP had no effect on Foxl2 expression. Altogether, these results provide basic data for further study on how Foxl2 mediates EDCs impact on the sexual differentiation in G. rarus.
Collapse
Affiliation(s)
- Houpeng Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi, China
| | | | | | | | | |
Collapse
|
25
|
Loukovitis D, Sarropoulou E, Batargias C, Apostolidis AP, Kotoulas G, Tsigenopoulos CS, Chatziplis D. Quantitative trait loci for body growth and sex determination in the hermaphrodite teleost fish Sparus aurata L. Anim Genet 2012; 43:753-9. [PMID: 22497460 DOI: 10.1111/j.1365-2052.2012.02346.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2012] [Indexed: 12/01/2022]
Abstract
Gilthead sea bream (Sparus aurata L.) is an important marine fish in Mediterranean aquaculture. Sex determination by age and/or body weight is a critical life-history trait, the genetic basis for which is largely unknown in this sequential hermaphrodite species. Herein, we performed a partial genome scan to map quantitative trait loci (QTL) affecting body weight and sex using 74 informative microsatellite markers from 10 paternal half-sib families to construct nine linkage groups (LG). In total, four growth-related QTL (two chromosome-wide and two genome-wide) and six QTL related to sex determination (three pairs in three different LGs) were detected (two chromosome-wide and one genome-wide). The proportion of phenotypic variation explained by the body-weight QTL ranged from 9.3% to 17.2%, showing their potential for use in marker-assisted selection. The results obtained offer solid ground to investigate the structure and function of the genomic regions involved in the mechanisms of sex reversal.
Collapse
Affiliation(s)
- D Loukovitis
- Animal Breeding and Genetics, Department of Animal Production, School of Agricultural Technology, Alexander Technological Educational Institute of Thessaloniki, Sindos, 57400, Greece
| | | | | | | | | | | | | |
Collapse
|
26
|
Zhang W, Lu H, Jiang H, Li M, Zhang S, Liu Q, Zhang L. Isolation and characterization of cyp19a1a and cyp19a1b promoters in the protogynous hermaphrodite orange-spotted grouper (Epinephelus coioides). Gen Comp Endocrinol 2012; 175:473-87. [PMID: 22197207 DOI: 10.1016/j.ygcen.2011.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 11/20/2011] [Accepted: 12/02/2011] [Indexed: 11/25/2022]
Abstract
Aromatase (CYP19A1) catalyzes the conversion of androgens to estrogens. In teleosts, duplicated copies of cyp19a1 genes, namely cyp19a1a and cyp19a1b, were identified, however, the transcriptional regulation of these two genes remains poorly understood. In the present study, the 5'-flanking regions of the orange-spotted grouper cyp19a1a (gcyp19a1a) and cyp19a1b (gcyp19a1b) genes were isolated and characterized. The proximal promoter regions of both genes were relatively conserved when compared to those of the other teleosts. Notably, a conserved FOXO transcriptional factor binding site was firstly reported in the proximal promoter of gcyp19a1a, and deletion of the region (-112 to -60) containing this site significantly decreased the promoter activities. The deletion of the region (-246 to -112) containing the two conserved FTZ-F1 sites also dramatically decreased the transcriptional activities of gcyp19a1a promoter, and both two FTZ-F1 sites were shown to be stimulatory cis-acting elements. A FTZ-F1 homologue isolated from ricefield eel (eFTZ-F1) up-regulated gcyp19a1a promoter activities possibly via the FTZ-F1 sites, however, a previously identified orange-spotted grouper FTZ-F1 homologue (gFTZ-F1) did not activate the transcription of gcyp19a1a promoter unexpectedly. As to gcyp19a1b promoter, all the deletion constructs did not show good promoter activities in either TM4 or U251-MG cells. Estradiol (100nM) up-regulated gcyp19a1b promoter activities by about 13- and 36-fold in TM4 and U251-MG cells, respectively, via the conserved ERE motif, but did not stimulate gcyp19a1a promoter activities. These results are helpful to further elucidate the regulatory mechanisms of cyp19a1a and cyp19a1b expression in the orange-spotted grouper as well as other teleosts.
Collapse
Affiliation(s)
- Weimin Zhang
- School of Life Sciences, Sun Yat-Sen University, Guanghzhou 510275, PR China.
| | | | | | | | | | | | | |
Collapse
|
27
|
Shanthanagouda A, Patil J, Nugegoda D. Ontogenic and sexually dimorphic expression of cyp19 isoforms in the rainbowfish, Melanotaenia fluviatilis (Castelnau 1878). Comp Biochem Physiol A Mol Integr Physiol 2012; 161:250-8. [DOI: 10.1016/j.cbpa.2011.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Revised: 11/05/2011] [Accepted: 11/06/2011] [Indexed: 10/15/2022]
|
28
|
Loukovitis D, Sarropoulou E, Tsigenopoulos CS, Batargias C, Magoulas A, Apostolidis AP, Chatziplis D, Kotoulas G. Quantitative trait loci involved in sex determination and body growth in the gilthead sea bream (Sparus aurata L.) through targeted genome scan. PLoS One 2011; 6:e16599. [PMID: 21304996 PMCID: PMC3031595 DOI: 10.1371/journal.pone.0016599] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 01/05/2011] [Indexed: 11/22/2022] Open
Abstract
Among vertebrates, teleost fish exhibit a considerably wide range of sex determination patterns that may be influenced by extrinsic parameters. However even for model fish species like the zebrafish Danio rerio the precise mechanisms involved in primary sex determination have not been studied extensively. The zebrafish, a gonochoristic species, is lacking discernible sex chromosomes and the sex of juvenile fish is difficult to determine. Sequential protandrous hermaphrodite species provide distinct determination of the gender and allow studying the sex determination process by looking at the mechanism of sex reversal. This is the first attempt to understand the genetic basis of phenotypic variation for sex determination and body weight in a sequential protandrous hermaphrodite species, the gilthead sea bream (Sparus aurata). This work demonstrates a fast and efficient strategy for Quantitative Trait Loci (QTL) detection in the gilthead sea bream, a non-model but target hermaphrodite fish species. Therefore a comparative mapping approach was performed to query syntenies against two other Perciformes, the European sea bass (Dicentrarchus labrax), a gonochoristic species and the Asian sea bass (Lates calcarifer) a protandrous hermaphrodite. In this manner two significant QTLs, one QTL affecting both body weight and sex and one QTL affecting sex, were detected on the same linkage group. The co-segregation of the two QTLs provides a genomic base to the observed genetic correlation between these two traits in sea bream as well as in other teleosts. The identification of QTLs linked to sex reversal and growth, will contribute significantly to a better understanding of the complex nature of sex determination in S. aurata where most individuals reverse to the female sex at the age of two years through development and maturation of the ovarian portion of the gonad and regression of the testicular area. [Genomic sequences reported in this manuscript have been submitted to GenBank under accession numbers HQ021443-HQ021749.].
Collapse
Affiliation(s)
- Dimitrios Loukovitis
- Animal Breeding and Genetics, Department of Animal Production, School of Agricultural Technology, Alexander Technological Institute of Thessaloniki, Sindos, Greece
- Laboratory of Ichthyology and Fisheries, Department of Animal Production, Faculty of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Elena Sarropoulou
- Institute of Marine Biology and Genetics, Hellenic Center for Marine Research, Heraklion, Crete, Greece
| | - Costas S. Tsigenopoulos
- Institute of Marine Biology and Genetics, Hellenic Center for Marine Research, Heraklion, Crete, Greece
| | - Costas Batargias
- Molecular Population and Quantitative Genetics, Department of Aquaculture and Fisheries, School of Agricultural Technology, Technological Educational Institute of Messolonghi, Messolonghi, Greece
| | - Antonios Magoulas
- Institute of Marine Biology and Genetics, Hellenic Center for Marine Research, Heraklion, Crete, Greece
| | - Apostolos P. Apostolidis
- Laboratory of Ichthyology and Fisheries, Department of Animal Production, Faculty of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Chatziplis
- Animal Breeding and Genetics, Department of Animal Production, School of Agricultural Technology, Alexander Technological Institute of Thessaloniki, Sindos, Greece
| | - Georgios Kotoulas
- Institute of Marine Biology and Genetics, Hellenic Center for Marine Research, Heraklion, Crete, Greece
| |
Collapse
|
29
|
von Schalburg KR, Yasuike M, Yazawa R, de Boer JG, Reid L, So S, Robb A, Rondeau EB, Phillips RB, Davidson WS, Koop BF. Regulation and expression of sexual differentiation factors in embryonic and extragonadal tissues of Atlantic salmon. BMC Genomics 2011; 12:31. [PMID: 21232142 PMCID: PMC3034696 DOI: 10.1186/1471-2164-12-31] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 01/13/2011] [Indexed: 12/14/2022] Open
Abstract
Background The products of cyp19, dax, foxl2, mis, sf1 and sox9 have each been associated with sex-determining processes among vertebrates. We provide evidence for expression of these regulators very early in salmonid development and in tissues outside of the hypothalamic-pituitary-adrenal/gonadal (HPAG) axis. Although the function of these factors in sexual differentiation have been defined, their roles in early development before sexual fate decisions and in tissues beyond the brain or gonad are essentially unknown. Results Bacterial artificial chromosomes containing salmon dax1 and dax2, foxl2b and mis were isolated and the regulatory regions that control their expression were characterized. Transposon integrations are implicated in the shaping of the dax and foxl2 loci. Splice variants for cyp19b1 and mis in both embryonic and adult tissues were detected and characterized. We found that cyp19b1 transcripts are generated that contain 5'-untranslated regions of different lengths due to cryptic splicing of the 3'-end of intron 1. We also demonstrate that salmon mis transcripts can encode prodomain products that present different C-termini and terminate before translation of the MIS hormone. Regulatory differences in the expression of two distinct aromatases cyp19a and cyp19b1 are exerted, despite transcription of their transactivators (ie; dax1, foxl2, sf1) occurring much earlier during embryonic development. Conclusions We report the embryonic and extragonadal expression of dax, foxl2, mis and other differentiation factors that indicate that they have functions that are more general and not restricted to steroidogenesis and gonadogenesis. Spliced cyp19b1 and mis transcripts are generated that may provide regulatory controls for tissue- or development-specific activities. Selection of cyp19b1 transcripts may be regulated by DAX-1, FOXL2 and SF-1 complexes that bind motifs in intron 1, or by signals within exon 2 that recruit splicing factors, or both. The potential translation of proteins bearing only the N-terminal MIS prodomain may modulate the functions of other TGF β family members in different tissues. The expression patterns of dax1 early in salmon embryogenesis implicate its role as a lineage determination factor. Other roles for these factors during embryogenesis and outside the HPAG axis are discussed.
Collapse
Affiliation(s)
- Kristian R von Schalburg
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abalos M, Parera J, Estévez A, Solé M, Fabregat MC, Piña B, Navarro A, Abad E. Decontamination trends in the aquacultured fish gilthead seabream (Sparus aurata) after feeding long-term a PCDD/F spiked feed. CHEMOSPHERE 2011; 82:64-71. [PMID: 21051073 DOI: 10.1016/j.chemosphere.2010.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 09/22/2010] [Accepted: 10/03/2010] [Indexed: 05/30/2023]
Abstract
Aquacultured fish gilthead seabream (Sparusaurata), previously exposed to low levels of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) trough the diet for a 13 months period, were fed on a clean feed for another 22 months. Gilthead seabream is a protandrous hermaphrodite species and this "decontamination" period coincided with the stages of sex differentiation, maturity and reproduction of the fish. PCDD/F levels in the fish tissues (i.e. muscle, liver, perivisceral fat and gonads), expressed in pg WHO-TEQg⁻¹ fresh weight, showed a general decreasing trend during the "decontamination" period. However, this general trend varied among tissues and was also dependent on sex and lipid contents. Toxicological effects affecting fish behaviour and hepatic marker responses were also evaluated. The results pointed out that exposure to PCDD/Fs did not have an impact on fish development and reproduction, since the proportion of sexes found after the sex reversal process was within the normal range described for this species. In addition, long-term exposure to low PCDD/F levels did not significantly affect the response of most of the biochemical markers considered. On the contrary, some of them (e.g. EROD activity) showed variations in their responses during the sex differentiation process and onwards. Finally, the hepatic AhR mRNA levels increased during dioxin exposure but they returned to values typical for non-exposed fish after the "decontamination" period.
Collapse
Affiliation(s)
- Manuela Abalos
- Environmental Chemistry Department, IDAEA-CSIC, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Shinoda T, Miranda LA, Okuma K, Hattori RS, Fernandino JI, Yoshizaki G, Somoza GM, Strüssmann CA. Molecular cloning and expression analysis ofFshrandLhrin relation toFshbandLhbsubunits during the period of temperature-dependent sex determination in pejerreyOdontesthes bonariensis. Mol Reprod Dev 2010; 77:521-32. [DOI: 10.1002/mrd.21179] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
von Schalburg KR, Yasuike M, Davidson WS, Koop BF. Regulation, expression and characterization of aromatase (cyp19b1) transcripts in ovary and testis of rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol B Biochem Mol Biol 2010; 155:118-25. [PMID: 19895900 DOI: 10.1016/j.cbpb.2009.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 10/17/2009] [Accepted: 10/20/2009] [Indexed: 10/20/2022]
Abstract
Cytochrome P450 aromatase is the key enzyme in the pathway that converts androgens to estrogens. The enzyme functions in the smooth endoplasmic reticulum in a complex with NADPH-cytochrome P450 reductase. In teleost fish, at least two separate loci, cyp19a and cyp19b, encode distinct aromatase isoforms. The activity of cyp19a and cyp19b are predominantly associated with the ovary and brain, respectively, although their expression is not confined solely to these tissues. We found that at least five cyp19b1 transcripts with different 5'-UTRs are generated in the ovary and testis of rainbow trout. Regulation for selection of these variants may be through signals present in exon 2 that recruit alternative splicing factors. Also, binding elements for FOXL2 and SF-1 located within the cyp19b1 intron 1 may influence formation of transcripts that contain the 3'-end of the intron. Another transcript devoid of the exon 2 methionine initiator codon may utilize other downstream in-frame start codons. Less developed stages of ovarian and testicular tissues express only the intron-containing transcripts whereas precocious and more mature gonads express all five cyp19b1 messages. The function of these different 5'-UTRs may be for regulation of cyp19b1 at particular developmental stages or to specify control in distinct gonadal cell-types.
Collapse
|
33
|
Kobayashi Y, Horiguchi R, Miura S, Nakamura M. Sex- and tissue-specific expression of P450 aromatase (cyp19a1a) in the yellowtail clownfish, Amphiprion clarkii. Comp Biochem Physiol A Mol Integr Physiol 2010; 155:237-44. [DOI: 10.1016/j.cbpa.2009.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 11/06/2009] [Accepted: 11/06/2009] [Indexed: 11/24/2022]
|
34
|
Guiguen Y, Fostier A, Piferrer F, Chang CF. Ovarian aromatase and estrogens: a pivotal role for gonadal sex differentiation and sex change in fish. Gen Comp Endocrinol 2010; 165:352-66. [PMID: 19289125 DOI: 10.1016/j.ygcen.2009.03.002] [Citation(s) in RCA: 428] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 02/23/2009] [Accepted: 03/03/2009] [Indexed: 10/21/2022]
Abstract
The present review focuses on the roles of estrogens and aromatase (Cyp19a1a), the enzyme needed for their synthesis, in fish gonadal sex differentiation. Based on the recent literature, we extend the already well accepted hypothesis of an implication of estrogens and Cyp19a1a in ovarian differentiation to a broader hypothesis that would place estrogens and Cyp19a1a in a pivotal position to control not only ovarian, but also testicular differentiation, in both gonochoristic and hermaphrodite fish species. This working hypothesis states that cyp19a1a up-regulation is needed not only for triggering but also for maintaining ovarian differentiation and that cyp19a1a down-regulation is the only necessary step for inducing a testicular differentiation pathway. When considering arguments for and against, most of the information available for fish supports this hypothesis since either suppression of cyp19a1a gene expression, inhibition of Cyp19a1a enzymatic activity, or blockage of estrogen receptivity are invariably associated with masculinization. This is also consistent with reports on normal gonadal differentiation, and steroid-modulated masculinization with either androgens, aromatase inhibitors or estrogen receptor antagonists, temperature-induced masculinization and protogynous sex change in hermaphrodite species. Concerning the regulation of fish cyp19a1a during gonadal differentiation, the transcription factor foxl2 has been characterized as an ovarian specific upstream regulator of a cyp19a1a promoter that would co-activate cyp19a1a expression, along with some additional partners such as nr5a1 (sf1) or cAMP. In contrast, upstream factors potentially down-regulating cyp19a1a during testicular differentiation are still hypothetical, such as the dmrt1 gene, but their definitive characterization as testicular repressors of cyp19a1a would strongly strengthen the hypothesis that early testicular differentiation would need active repression of cyp19a1a expression.
Collapse
Affiliation(s)
- Yann Guiguen
- INRA, UR1037 SCRIBE, IFR140, Ouest-Genopole, F-35000 Rennes, France.
| | | | | | | |
Collapse
|
35
|
Lee KH, Yamaguchi A, Rashid H, Kadomura K, Yasumoto S, Matsuyama M. Estradiol-17beta treatment induces intersexual gonadal development in the pufferfish, Takifugu rubripes. Zoolog Sci 2010; 26:639-45. [PMID: 19799515 DOI: 10.2108/zsj.26.639] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Estrogens are responsible for most characteristics of the female sex of a species, such as metabolic, behavioral, and morphological changes during reproduction. Artificial estradiol-17beta (E2) treatment Induces sex reversal in some fish. The Japanese pufferfish (Takifugu rubripes) has the most compact genome among vertebrates and great pottial for comparative genome analysis. In this paper, we describe the Influence of E2 treatment during gonadal development in the pufferfish. After hatching, fry were treated with no (control) or a 0.1, 1, 10, or 100 microg/g diet from 21 to 80 days after hatching (dah). Doublesex-mab3-related transcription factor (DMRT1) is Involved in testicular development. VASA is responsible for germ cell development, and CYP19A plays a role in E2 biosynthesis during ovarian development across animal phyla as well as in gonadal morphology after E2 treatment. DMRT1, VASA, and CYP19A were Investigated in the gonads of E2-treated pufferfish. Fish fed with the highest dose (E2 100 microg/g diet) developed Intersexual gonads in the testis; the majority of germ cells were oocytes, but some spermatocytes were detected. RT-PCR results showed the expression of VASA and CYP19A in all intersexual gonads and DMRT1 in some. Furthermore, abnormalities in the epithelium-tunica layer were detected, and gonadal somatic cells (e.g., granulosa cells, theca cells, or germinal epithelium) proliferated extensively in the intersexual gonad. These results suggest that E2 treatment Induces ovarian development in the bipotential gonads of genetic males by modification of gonadal somatic cells and E2 production, mediated by CYP19A.
Collapse
Affiliation(s)
- Kyung-Hoon Lee
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Piferrer F, Guiguen Y. Fish Gonadogenesis. Part II: Molecular Biology and Genomics of Sex Differentiation. ACTA ACUST UNITED AC 2008. [DOI: 10.1080/10641260802324644] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Kojima Y, Bhandari RK, Kobayashi Y, Nakamura M. Sex change of adult initial-phase male wrasse, Halichoeres trimaculatus by estradiol-17 beta treatment. Gen Comp Endocrinol 2008; 156:628-32. [PMID: 18353327 DOI: 10.1016/j.ygcen.2008.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 08/15/2007] [Accepted: 02/04/2008] [Indexed: 11/16/2022]
Abstract
Sex steroids are considered major regulators of sex change processes in fish. Estrogen depletion is shown to be crucial for female-male sex change initiation; however, its role in male-female sex change is largely unknown. In the present study, we examined the effects of estradiol-17 beta (E2) treatments on testes of initial-phase (IP) males of the three-spot wrasse (Halichoeres trimaculatus), which naturally do not undergo male-female sex change. Sexually mature IP males were fed a diet containing E2 (low, 20 microg/g feed; high, 200 microg/g feed) for 6 or 12 weeks, and changes in gonadal structures were examined. Percentage of sex change varied with the dosage of E2 and the duration of treatment. All individuals treated with high-dose E2 for 6 weeks had ovaries with many immature oocytes; whereas 75% of individuals treated with low-dose of E2 for 6 weeks and sampled on the 12th week had ovaries with yolky oocytes and an ovarian cavity indicating a typical mature ovary. No testicular tissue was observed in sex-reversed gonads in both treatment groups. Contrary to the previous assumptions, present results suggest that IP male wrasses have the potential to undergo male-female sex change in response to exogenous estrogen. How the presence or absence of estrogen creates sexual plasticity in gonadal germ and somatic cells remains to be clarified.
Collapse
Affiliation(s)
- Y Kojima
- Tropical Biosphere Research Center, Sesoko Station, University of the Ryukyus, Sesoko 3422, Motobu, Okinawa 907-0227, Japan
| | | | | | | |
Collapse
|
38
|
Cheshenko K, Pakdel F, Segner H, Kah O, Eggen RIL. Interference of endocrine disrupting chemicals with aromatase CYP19 expression or activity, and consequences for reproduction of teleost fish. Gen Comp Endocrinol 2008; 155:31-62. [PMID: 17459383 DOI: 10.1016/j.ygcen.2007.03.005] [Citation(s) in RCA: 224] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 03/05/2007] [Accepted: 03/09/2007] [Indexed: 11/28/2022]
Abstract
Many natural and synthetic compounds present in the environment exert a number of adverse effects on the exposed organisms, leading to endocrine disruption, for which they were termed endocrine disrupting chemicals (EDCs). A decrease in reproduction success is one of the most well-documented signs of endocrine disruption in fish. Estrogens are steroid hormones involved in the control of important reproduction-related processes, including sexual differentiation, maturation and a variety of others. Careful spatial and temporal balance of estrogens in the body is crucial for proper functioning. At the final step of estrogen biosynthesis, cytochrome P450 aromatase, encoded by the cyp19 gene, converts androgens into estrogens. Modulation of aromatase CYP19 expression and function can dramatically alter the rate of estrogen production, disturbing the local and systemic levels of estrogens. In the present review, the current progress in CYP19 characterization in teleost fish is summarized and the potential of several classes of EDCs to interfere with CYP19 expression and activity is discussed. Two cyp19 genes are present in most teleosts, cyp19a and cyp19b, primarily expressed in the ovary and brain, respectively. Both aromatase CYP19 isoforms are involved in the sexual differentiation and regulation of the reproductive cycle and male reproductive behavior in diverse teleost species. Alteration of aromatase CYP19 expression and/or activity, be it upregulation or downregulation, may lead to diverse disturbances of the above mentioned processes. Prediction of multiple transcriptional regulatory elements in the promoters of teleost cyp19 genes suggests the possibility for several EDC classes to affect cyp19 expression on the transcriptional level. These sites include cAMP responsive elements, a steroidogenic factor 1/adrenal 4 binding protein site, an estrogen-responsive element (ERE), half-EREs, dioxin-responsive elements, and elements related to diverse other nuclear receptors (peroxisome proliferator activated receptor, retinoid X receptor, retinoic acid receptor). Certain compounds including phytoestrogens, xenoestrogens, fungicides and organotins may modulate aromatase CYP19 activity on the post-transcriptional level. As is shown in this review, diverse EDCs may affect the expression and/or activity of aromatase cyp19 genes through a variety of mechanisms, many of which need further characterization in order to improve the prediction of risks posed by a contaminated environment to teleost fish population.
Collapse
Affiliation(s)
- Ksenia Cheshenko
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, Postfach 611, CH 8600 Dübendorf, Switzerland
| | | | | | | | | |
Collapse
|
39
|
Yamaguchi T, Yamaguchi S, Hirai T, Kitano T. Follicle-stimulating hormone signaling and Foxl2 are involved in transcriptional regulation of aromatase gene during gonadal sex differentiation in Japanese flounder, Paralichthys olivaceus. Biochem Biophys Res Commun 2007; 359:935-40. [PMID: 17574208 DOI: 10.1016/j.bbrc.2007.05.208] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 05/31/2007] [Indexed: 11/19/2022]
Abstract
Japanese flounder (Paralichthys olivaceus), a teleost fish that has XX (female)/XY (male) sex determination system, exhibits temperature-dependent sex determination. We have previously shown that high water temperature or an aromatase inhibitor treatment causes the sex-reversal from genetic females to phenotypic males and suppression of mRNA expression of ovary-type P450 aromatase (cyp19a1), a steroidogenic enzyme responsible for the conversion of androgens to estrogens, in Japanese flounder. In the present study, we demonstrate that high water temperature treatment suppresses specifically mRNA expression of the forkhead transcription factor gene foxl2, and follicle-stimulating hormone receptor (fshr) in gonads during early sex differentiation. Moreover, transient transfection assay shows that the flounder Foxl2 and cAMP analog can activate the cyp19a1 gene transcription in vitro. These results strongly suggest that FSH signaling and Foxl2 are involved in the transcriptional regulation of cyp19a1 gene during gonadal sex differentiation in Japanese flounder with temperature-dependent sex determination.
Collapse
Affiliation(s)
- Toshiya Yamaguchi
- Department of Materials and Life Science, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | | | | | | |
Collapse
|
40
|
Liarte S, Chaves-Pozo E, García-Alcazar A, Mulero V, Meseguer J, García-Ayala A. Testicular involution prior to sex change in gilthead seabream is characterized by a decrease in DMRT1 gene expression and by massive leukocyte infiltration. Reprod Biol Endocrinol 2007; 5:20. [PMID: 17547755 PMCID: PMC1894798 DOI: 10.1186/1477-7827-5-20] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 06/04/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Leukocytes are found within the testis of most, if not all, mammals and are involved in immunological surveillance, physiological regulation and tissue remodelling. The testis of seasonal breeding fish undergoes a regression process. In the present study, the second reproductive cycle (RC) of the protandrous seasonal teleost fish, gilthead seabream, was investigated and the presence of leukocytes analysed. Special attention has been paid to the testicular degenerative process which is particularly active in the last stage of the second RC probably due to the immediacy of the sex change process. METHODS Sexually mature specimens (n = 10-18 fish/month) were sampled during the second RC. Some specimens were intraperitoneally injected with bromodeoxyuridin (BrdU) before sampling. Light and electron microscopy was used to determine the different stages of gonadal development and the presence of leukocytes and PCR was used to analyse the gene expression of a testis-differentiating gene and of specific markers for macrophages and B and T lymphocytes. Immunocytochemistry and flow cytometry were performed using a specific antibody against acidophilic granulocytes from the gilthead seabream. Cell proliferation was detected by immunocytochemistry using an anti-BrdU antibody and apoptotic cells by in situ detection of DNA fragmentation. RESULTS The fish in the western Mediterranean area developed as males during the first two RCs. The testis of all the specimens during the second RC underwent a degenerative process, which started at post-spawning and was enhanced during the testicular involution stage, when vitellogenic oocytes appeared in the ovary accompanied by a progressive increase in the ovarian index. However, only 40% of specimens were females in the third RC. Leukocytes (acidophilic granulocytes, macrophages and lymphocytes) were present in the gonad and acidophilic granulocyte infiltration occurred during the last two stages. At the same time DMRT1 gene expression decreased. CONCLUSIONS The results demonstrate that innate and adaptive immune cells are present in the gonads of gilthead seabream. Moreover, the whole fish population underwent a testicular degenerative process prior to sex change, characterized by high rates of apoptosis and necrosis and accompanied by an infiltration of acidophilic granulocytes and a decrease in DMRT1 levels.
Collapse
Affiliation(s)
- Sergio Liarte
- Department of Cell Biology, Faculty of Biology, University of Murcia, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - Elena Chaves-Pozo
- Department of Cell Biology, Faculty of Biology, University of Murcia, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - Alicia García-Alcazar
- Oceanographic Centre of Murcia, Spanish Oceanographic Institute (IEO), Carretera de la Azohía s/n. Puerto de Mazarrón, 30860 Murcia, Spain
| | - Victoriano Mulero
- Department of Cell Biology, Faculty of Biology, University of Murcia, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - José Meseguer
- Department of Cell Biology, Faculty of Biology, University of Murcia, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - Alfonsa García-Ayala
- Department of Cell Biology, Faculty of Biology, University of Murcia, Campus Universitario de Espinardo, 30100 Murcia, Spain
| |
Collapse
|
41
|
Aizen J, Kasuto H, Golan M, Zakay H, Levavi-Sivan B. Tilapia Follicle-Stimulating Hormone (FSH): Immunochemistry, Stimulation by Gonadotropin-Releasing Hormone, and Effect of Biologically Active Recombinant FSH on Steroid Secretion1. Biol Reprod 2007; 76:692-700. [PMID: 17192515 DOI: 10.1095/biolreprod.106.055822] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In fish, FSH is generally important for early gonadal development and vitellogenesis. As in mammals, FSH is a heterodimer composed of an alpha subunit that is noncovalently associated with the hormone-specific beta subunit. The objective of the present study was to express glycosylated, properly folded, and biologically active tilapia FSH (tFSH) using the Pichia pastoris expression system. Using this material, we aimed to develop a specific ELISA and to enable the study of FSH response to GnRH. The methylotrophic yeast P. pastoris was used to coexpress recombinant genes formed by fusion of mating factor alpha leader and tilapia fshb and cga coding sequences. Western blot analysis of tilapia pituitary FSH, resolved by SDS-PAGE, yielded a band of 15 kDa, while recombinant tFSH beta (rtFSH beta) and rtFSH beta alpha had molecular masses of 17-18 kDa and 26-30 kDa, respectively. Recombinant tFSH beta alpha was found to bear only N-linked carbohydrates. Recombinant tFSH beta alpha significantly enhanced 11-ketotestosterone (11-KT) and estradiol secretion from tilapia testes and ovaries, respectively, in a dose-dependent manner (similar to tilapia pituitary extract, affinity-purified pituitary FSH, and porcine FSH). Using antibodies raised against rtFSH beta, FSH-containing cells were localized adjacent to hypothalamic nerve fibers ramifying in the proximal pars distalis (PPD), while LH cells were localized in a more peripheral region of the PPD. Moreover, FSH is under the control of hypothalamic decapeptide GnRH, an effect that was abolished through the use of specific bioneutralizing antisera, anti-rtFSH beta. It also reduced basal secretion of 11-KT.
Collapse
Affiliation(s)
- Joseph Aizen
- Department of Animal Sciences, Faculty of Agricultural, Food and Environmental Quality Sciences, Hebrew University, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
42
|
Ruggeri B, Soverchia L, Mosconi G, Franzoni MF, Cottone E, Polzonetti-Magni AM. Changes of gonadal CB1 cannabinoid receptor mRNA in the gilthead seabream, Sparus aurata, during sex reversal. Gen Comp Endocrinol 2007; 150:263-9. [PMID: 17078952 DOI: 10.1016/j.ygcen.2006.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 09/05/2006] [Accepted: 09/10/2006] [Indexed: 11/30/2022]
Abstract
Two cannabinoid receptor-like genes (CB1-like), named CB1A and CB1B, have been isolated in teleost fish, specifically in the puffer fish, Fugu rubripes. However, information on the physiological roles, such as the control of reproduction and development in fish is still scarce. Therefore, the aim of the present study was to investigate the presence of CB1-like mRNA in the gonads of a marine teleost species, the gilthead seabream, Sparus aurata, a hermaphrodite species in which the gonadal tissues first develop as testes, and then as functional ovary. We isolated an 890 bp fragment (GenBank accession number ); that corresponded to the open reading frame of the teleost CB1 receptor gene, encoding for the central portion of the protein, which was aligned with the other bony fish sequence. Using "in situ" hybridization, CB1-like mRNA was localized in both mature and sex-reversing gonads, and relative changes in CB1-like expression levels were detected through semi-quantitative RT-PCR. In the mature testis and in the testicular part of the sex-reversing gonad, CB1 expression levels were found to be much higher compared to the ovarian portion. This suggests that the CB1 signaling is likely involved in the process of testicular regression of the S. aurata, but its actual role has yet to be determined.
Collapse
Affiliation(s)
- B Ruggeri
- Dipartimento di Scienze Morfologiche e Biochimiche Comparate, Università degli Studi di Camerino, via Camerini 2, 62032 Camerino (MC), Italy
| | | | | | | | | | | |
Collapse
|
43
|
Nocillado JN, Elizur A, Avitan A, Carrick F, Levavi-Sivan B. Cytochrome P450 aromatase in grey mullet: cDNA and promoter isolation; brain, pituitary and ovarian expression during puberty. Mol Cell Endocrinol 2007; 263:65-78. [PMID: 17079073 DOI: 10.1016/j.mce.2006.08.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 08/24/2006] [Indexed: 11/22/2022]
Abstract
In a study towards elucidating the role of aromatases during puberty in female grey mullet, the cDNAs of the brain (muCyp19b) and ovarian (muCyp19a) aromatase were isolated by RT-PCR and their relative expression levels were determined by quantitative real-time RT-PCR. The muCyp19a ORF of 1515bp encoded 505 predicted amino acid residues, while that of muCyp19b was 1485 bp and encoded 495 predicted amino acid residues. The expression level of muCyp19b significantly increased in the brain as puberty advanced; however, its expression level in the pituitary increased only slightly with pubertal development. In the ovary, the muCyp19a expression level markedly increased as puberty progressed. The promoter regions of the two genes were also isolated and their functionality evaluated in vitro using luciferase as the reporter gene. The muCyp19a promoter sequence (650 bp) contained a consensus TATA box and putative transcription factor binding sites, including two half EREs, an SF-1, an AhR/Arnt, a PR and two GATA-3 s. The muCyp19b promoter sequence (2500 bp) showed consensus TATA and CCAAT boxes and putative transcription binding sites, namely: a PR, an ERE, a half ERE, a SP-1, two GATA-binding factor, one half GATA-1, two C/EBPs, a GRE, a NFkappaB, three STATs, a PPAR/RXR, an Ahr/Arnt and a CRE. Basal activity of serially deleted promoter constructs transiently transfected into COS-7, alphaT3 and TE671 cells demonstrated the enhancing and silencing roles of the putative transcription factor binding sites. Quinpirole, a dopamine agonist, significantly reduced the promoter activity of muCyp19b in TE671. The results suggest tissue-specific regulation of the muCyp19 genes and a putative alternative promoter for muCyp19b.
Collapse
Affiliation(s)
- Josephine N Nocillado
- Department of Primary Industries and Fisheries, Bribie Island Aquaculture Research Centre, 144 North Street, Woorim, Qld 4507, Australia
| | | | | | | | | |
Collapse
|