1
|
Zhang L, An X, Xu Z, Niu C, Geng Z, Zhang J, Shi H, Chen Z, Zhang R, Yue Y. Transcriptome-Metabolome Analysis Reveals That Crossbreeding Improves Meat Quality in Hu Sheep and Their F 1-Generation Sheep. Foods 2025; 14:1384. [PMID: 40282783 PMCID: PMC12026837 DOI: 10.3390/foods14081384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Consumers are increasingly demanding higher-quality mutton. Crossbreeding has been recognized as an effective means to improve meat quality. However, the phenomenon underlying these molecular system mechanisms remains largely unidentified. In this study, 48 male lambs aged 3 months were selected, including ♂ Hu sheep × ♀ Hu (HH, n = 16), ♂ Polled Dorset × ♀ Hu sheep F1 hybrid lambs (DH, n = 16), and ♂ Southdown × ♀ Hu sheep (SH, n = 16) F1 hybrid lambs, and raised in a single pen under the same nutritional and management conditions for 95 days. Then, seven sheep close to the average weight of the group were selected and fasted for 12 h prior to slaughter. By comparing the muscle fiber characteristics of the Longissimus dorsi of the three groups of sheep, and through transcriptomic and metabolomic analyses, we revealed molecular differences in the meat quality of Hu sheep crossbred with different parent breeds. The results of this study showed that muscle fiber diameter and cross-sectional area were significantly greater in the DH group than in the HH group, and collagen fiber content in the DH group was also significantly higher than in the HH group (p < 0.05). A total of 163 differential genes and 823 differential metabolites were identified in the three groups, most of which were related to muscle development and lipid metabolism. These included the AMPK signaling pathway, the PI3K-Akt signaling pathway, glycerophospholipid metabolism, and the related genes EFHB, PER3, and PPARGC1A. The results of this study offer valuable insights into the molecular mechanisms underlying the impact of crossbreeding on meat quality and provide a theoretical foundation for sheep crossbreed production.
Collapse
Affiliation(s)
- Liwa Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.Z.); (X.A.); (H.S.); (Z.C.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xuejiao An
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.Z.); (X.A.); (H.S.); (Z.C.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Zhenfei Xu
- Qingyang Research Institute of Agricultural Sciences, Qingyang 745000, China; (Z.X.); (Z.G.); (J.Z.)
| | - Chune Niu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.Z.); (X.A.); (H.S.); (Z.C.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Zhiguang Geng
- Qingyang Research Institute of Agricultural Sciences, Qingyang 745000, China; (Z.X.); (Z.G.); (J.Z.)
| | - Jinxia Zhang
- Qingyang Research Institute of Agricultural Sciences, Qingyang 745000, China; (Z.X.); (Z.G.); (J.Z.)
| | - Haina Shi
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.Z.); (X.A.); (H.S.); (Z.C.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Zhenghan Chen
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.Z.); (X.A.); (H.S.); (Z.C.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Rui Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.Z.); (X.A.); (H.S.); (Z.C.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yaojing Yue
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.Z.); (X.A.); (H.S.); (Z.C.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| |
Collapse
|
2
|
Ma H, Lu Y, Chen W, Gao Z, Wu D, Chong Y, Wu J, Xi D, Deng W, Hong J. Multiple omics analysis reveals the regulation of SIRT4 on lipid deposition and metabolism during the differentiation of bovine preadipocytes. Genomics 2025; 117:111006. [PMID: 39875030 DOI: 10.1016/j.ygeno.2025.111006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 01/30/2025]
Abstract
The differentiation and lipid metabolism of preadipocytes are crucial processes in IMF deposition. Studies have demonstrated that SIRT4 plays essential roles in energy metabolism and redox homeostasis, with its expression being coordinately regulated by multiple transcription factors associated with energy and lipid metabolism. In this study, the findings of multiple omics analysis reveal that SIRT4 significantly up-regulates the expression of genes involved in adipogenesis and enhances the differentiation and lipid deposition of bovine preadipocytes. Furthermore, SIRT4 profoundly influences the expression pattern of metabolites by increasing the abundance of substances involved in lipid synthesis while decreasing those that promote lipid oxidative decomposition. Additionally, SIRT4 broadly up-regulates the expression levels of various lipid classes, including glycerolipids, glycerophospholipids, sphingolipids, and sterol lipids. These findings not only provide a theoretical basis for molecular breeding and genetic improvement in beef cattle, but also offer potential therapeutic approaches for energy homeostasis disorders and obesity.
Collapse
Affiliation(s)
- Hongming Ma
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Ying Lu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Wei Chen
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Zhendong Gao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Dongwang Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yuqing Chong
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Jiao Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Dongmei Xi
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Weidong Deng
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Jieyun Hong
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
3
|
Li J, Yang D, Chen C, Wang J, Wang Z, Yang C, Yu C, Li Z. Single-cell RNA transcriptome uncovers distinct developmental trajectories in the embryonic skeletal muscle of Daheng broiler and Tibetan chicken. BMC Genomics 2025; 26:187. [PMID: 39994525 PMCID: PMC11854108 DOI: 10.1186/s12864-025-11363-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
Different chicken breeds exhibit distinct muscle phenotypes resulting from selective breeding, but little is known about the molecular mechanisms responsible for this phenotypic difference. Skeletal muscle is composed of a large number of heterogeneous cell populations. Differences in differentiation and interaction of cell populations play a key role in the difference of skeletal muscle phenotype. In the current study, we performed a single-cell RNA sequencing (scRNA-seq) on the leg muscle of Daheng broiler (DH, cultivated breed) and Tibetan chicken (TC, native breed) at embryonic (E) 10, E14 and E18. A comprehensive cell atlas of embryonic chicken skeletal muscle, consisting of 29,579 high-quality cells representing 6 distinct cell types was built. The differentiation trajectory of Myoblasts and fibro-adipogenic progenitors (FAPs) was constructed through pseudotemporal trajectory analysis. Our results revealed the different developmental trajectories and dynamic gene expression profiles in 3 subtypes of myoblasts and 5 FAPs subtypes of the two chicken breeds. Tibetan chicken showed earlier embryonic myogenesis and less myoblasts compared with Daheng broiler. By comparing the switch status and switch time of genes in the two breeds, SNRPG,SNRPE,EIF4EBP1 and HSP90AB1 were considered as potentially critical genes for embryonic myogenesis, and the genes MYOG,MYBPH,APOA1, and MGP played dominant roles in the embryonic adipogenesis. Intercellular interaction networks showed that strong and complex intercellular communication was contained during embryonic skeletal muscle growth and development. These findings revealed the differences of molecular mechanisms in the skeletal muscle development between TC and DH chickens. Our data provide a better understanding of skeletal muscle developmental differences between cultivated and native breeds and valuable information for genetic breeding of chicken.
Collapse
Affiliation(s)
- Jie Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, 610041, China
| | - Dongmei Yang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610041, China
| | - Chuwen Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, 610041, China
| | - Jiayan Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610041, China
| | - Zi Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610041, China
| | - Chaowu Yang
- Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Chunlin Yu
- Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Zhixiong Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, 610041, China.
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China.
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Sun H, Chen M, Liao J, He L, Wan B, Yin J, Zhang X. The maternal lifestyle in pregnancy: Implications for foetal skeletal muscle development. J Cachexia Sarcopenia Muscle 2024; 15:1641-1650. [PMID: 39155495 PMCID: PMC11446712 DOI: 10.1002/jcsm.13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/20/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024] Open
Abstract
The world is facing a global nutrition crisis, as evidenced by the rising incidence of metabolic disorders such as obesity, insulin resistance and chronic inflammation. Skeletal muscle is the largest tissue in humans and plays an important role in movement and host metabolism. Muscle fibre formation occurs mainly during the embryonic stage. Therefore, maternal lifestyle, especially nutrition and exercise during pregnancy, has a critical influence on foetal skeletal muscle development and the subsequent metabolic health of the offspring. In this review, the influence of maternal obesity, malnutrition and micronutrient intake on foetal skeletal muscle development is systematically summarized. We also aim to describe how maternal exercise shapes foetal muscle development and metabolic health in the offspring. The role of maternal gut microbiota and its metabolites on foetal muscle development is further discussed, although this field is still in its 'infancy'. This review will provide new insights to reduce the global crisis of metabolic disorders and highlight current gaps to promote further research.
Collapse
Affiliation(s)
- Haijun Sun
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Meixia Chen
- Institute of Animal Husbandry and Veterinary MedicineBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Jialong Liao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Linjuan He
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Boyang Wan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
- Frontiers Science Center for Molecular Design Breeding (MOE)BeijingChina
| | - Xin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
- Frontiers Science Center for Molecular Design Breeding (MOE)BeijingChina
| |
Collapse
|
5
|
Song X, Song Y, Zhang J, Hu Y, Zhang L, Huang Z, Abbas Raza SH, Jiang C, Ma Y, Ma Y, Wu H, Wei D. Regulatory role of exosome-derived miRNAs and other contents in adipogenesis. Exp Cell Res 2024; 441:114168. [PMID: 39004201 DOI: 10.1016/j.yexcr.2024.114168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Intramuscular fat (IMF) content significantly impacts meat quality. influenced by complex interactions between skeletal muscle cells and adipocytes. Adipogenesis plays a pivotal role in IMF formation. Exosomes, extracellular membranous nanovesicles, facilitate intercellular communication by transporting proteins, nucleic acids (DNA and RNA), and other biomolecules into target cells, thereby modulating cellular behaviors. Recent studies have linked exosome-derived microRNAs (miRNAs) and other cargo to adipogenic processes. Various cell types, including skeletal muscle cells, interact with adipocytes via exosome secretion and uptake. Exosomes entering adipocytes regulate adipogenesis by modulating key signaling pathways, thereby influencing the extent and distribution of IMF deposition. This review comprehensively explores the origin, formation, and mechanisms of exosome action, along with current research and their applications in adipogenesis. Emphasis is placed on exosome-mediated regulation of miRNAs, non-coding RNAs (ncRNAs), proteins, lipids, and other biomolecules during adipogenesis. Leveraging exosomal contents for genetic breeding and treating obesity-related disorders is discussed. Insights gathered contribute to advancing understanding and potential therapeutic applications of exosome-regulated adipogenesis mechanisms.
Collapse
Affiliation(s)
- Xiaoyu Song
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, 750021, China
| | - Yaping Song
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, 750021, China
| | - Jiupan Zhang
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750021, China
| | - Yamei Hu
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, 750021, China
| | - Lingkai Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, 750021, China
| | | | - Sayed Haidar Abbas Raza
- Xichang University, Xichang, 615000, China; Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China
| | - Chao Jiang
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, 750021, China
| | - Yanfen Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, 750021, China
| | - Yun Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, 750021, China
| | - Hao Wu
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, 750021, China
| | - Dawei Wei
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, 750021, China.
| |
Collapse
|
6
|
Calvo MJ, Parra H, Santeliz R, Bautista J, Luzardo E, Villasmil N, Martínez MS, Chacín M, Cano C, Checa-Ros A, D'Marco L, Bermúdez V, De Sanctis JB. The Placental Role in Gestational Diabetes Mellitus: A Molecular Perspective. TOUCHREVIEWS IN ENDOCRINOLOGY 2024; 20:10-18. [PMID: 38812661 PMCID: PMC11132656 DOI: 10.17925/ee.2024.20.1.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/01/2023] [Indexed: 05/31/2024]
Abstract
During pregnancy, women undergo several metabolic changes to guarantee an adequate supply of glucose to the foetus. These metabolic modifications develop what is known as physiological insulin resistance. When this process is altered, however, gestational diabetes mellitus (GDM) occurs. GDM is a multifactorial disease, and genetic and environmental factors play a crucial role in its aetiopathogenesis. GDM has been linked to both macroscopic and molecular alterations in placental tissues that affect placental physiology. This review summarizes the role of the placenta in the development of GDM from a molecular perspective, including hormonal and pro-inflammatory changes. Inflammation and hormonal imbalance, the characteristics dominating the GDM microenvironment, are responsible for placental changes in size and vascularity, leading to dysregulation in maternal and foetal circulations and to complications in the newborn. In conclusion, since the hormonal mechanisms operating in GDM have not been fully elucidated, more research should be done to improve the quality of life of patients with GDM and their future children.
Collapse
Affiliation(s)
- María José Calvo
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Heliana Parra
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Raquel Santeliz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Jordan Bautista
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Eliana Luzardo
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Nelson Villasmil
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - María Sofía Martínez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Maricamen Chacín
- Facultad de Ciencias de la Salud, Barranquilla, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Ana Checa-Ros
- Research Group on Cardiorenal and Metabolic Diseases, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Luis D'Marco
- Research Group on Cardiorenal and Metabolic Diseases, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Barranquilla, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
7
|
Tan Z, Jiang H. Molecular and Cellular Mechanisms of Intramuscular Fat Development and Growth in Cattle. Int J Mol Sci 2024; 25:2520. [PMID: 38473768 DOI: 10.3390/ijms25052520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Intramuscular fat, also referred to as marbling fat, is the white fat deposited within skeletal muscle tissue. The content of intramuscular fat in the skeletal muscle, particularly the longissimus dorsi muscle, of cattle is a critical determinant of beef quality and value. In this review, we summarize the process of intramuscular fat development and growth, the factors that affect this process, and the molecular and epigenetic mechanisms that mediate this process in cattle. Compared to other species, cattle have a remarkable ability to accumulate intramuscular fat, partly attributed to the abundance of sources of fatty acids for synthesizing triglycerides. Compared to other adipose depots such as subcutaneous fat, intramuscular fat develops later and grows more slowly. The commitment and differentiation of adipose precursor cells into adipocytes as well as the maturation of adipocytes are crucial steps in intramuscular fat development and growth in cattle. Each of these steps is controlled by various factors, underscoring the complexity of the regulatory network governing adipogenesis in the skeletal muscle. These factors include genetics, epigenetics, nutrition (including maternal nutrition), rumen microbiome, vitamins, hormones, weaning age, slaughter age, slaughter weight, and stress. Many of these factors seem to affect intramuscular fat deposition through the transcriptional or epigenetic regulation of genes directly involved in the development and growth of intramuscular fat. A better understanding of the molecular and cellular mechanisms by which intramuscular fat develops and grows in cattle will help us develop more effective strategies to optimize intramuscular fat deposition in cattle, thereby maximizing the quality and value of beef meat.
Collapse
Affiliation(s)
- Zhendong Tan
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Honglin Jiang
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
8
|
Bryan EE, Bode NM, Chen X, Burris ES, Johnson DC, Dilger RN, Dilger AC. The effect of chronic, non-pathogenic maternal immune activation on offspring postnatal muscle and immune outcomes. J Anim Sci 2024; 102:skad424. [PMID: 38189595 PMCID: PMC10794819 DOI: 10.1093/jas/skad424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024] Open
Abstract
The objective was to determine the effects of maternal inflammation on offspring muscle development and postnatal innate immune response. Sixteen first-parity gilts were randomly allotted to repeated intravenous injections with lipopolysaccharide (LPS; n = 8, treatment code INFLAM) or comparable volume of phosphate buffered saline (CON, n = 8). Injections took place every other day from gestational day (GD) 70 to GD 84 with an initial dose of 10 μg LPS/kg body weight (BW) increasing by 12% each time to prevent endotoxin tolerance. On GD 70, 76, and 84, blood was collected at 0 and 4 h postinjection via jugular or ear venipuncture to determine tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β concentrations. After farrowing, litter mortality was recorded, and the pig closest to litter BW average was used for dissection and muscle fiber characterization. On weaning (postnatal day [PND] 21), pigs were weighed individually and 2 barrows closest to litter BW average were selected for another study. The third barrow closest to litter BW average was selected for the postnatal LPS challenge. On PND 52, pigs were given 5 μg LPS/kg BW via intraperitoneal injection, and blood was collected at 0, 4, and 8 h postinjection to determine TNF-α concentration. INFLAM gilt TNF-α concentration increased (P < 0.01) 4 h postinjection compared to 0 h postinjection, while CON gilt TNF-α concentration did not differ between time points. INFLAM gilt IL-6 and IL-1β concentrations increased (P = 0.03) 4 h postinjection compared to 0 h postinjection on GD 70, but did not differ between time points on GD 76 and 84. There were no differences between INFLAM and CON gilts litter mortality outcomes (P ≥ 0.13), but INFLAM pigs were smaller (P = 0.04) at birth and tended (P = 0.09) to be smaller at weaning. Muscle and organ weights did not differ (P ≥ 0.17) between treatments, with the exception of semitendinosus, which was smaller (P < 0.01) in INFLAM pigs. INFLAM pigs tended (P = 0.06) to have larger type I fibers. INFLAM pig TNF-α concentration did not differ across time, while CON pig TNF-α concentration peaked (P = 0.01) 4 h postinjection. TNF-α concentration did not differ between treatments at 0 and 8 h postinjection, but CON pigs had increased (P = 0.01) TNF-α compared to INFLAM pigs 4 h postinjection. Overall, maternal immune activation did not alter pig muscle development, but resulted in suppressed innate immune activation.
Collapse
Affiliation(s)
- Erin E Bryan
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Nick M Bode
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Xuenan Chen
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Elli S Burris
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Danielle C Johnson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Ryan N Dilger
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Anna C Dilger
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
9
|
Dávila-Santacruz S, Corona-Quintanilla DL, Velázquez-Orozco V, Martínez-Gómez M, Castelán F, Cuevas-Romero E, Barrales-Fuentes B, Nicolás-Toledo L, Rodríguez-Antolín J. Sucrose consumption modifies the urethrogenital reflex and histological organization of the bulbospongiosus muscle in the male rat. Physiol Behav 2024; 273:114391. [PMID: 37907190 DOI: 10.1016/j.physbeh.2023.114391] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/06/2023] [Accepted: 10/28/2023] [Indexed: 11/02/2023]
Abstract
Disorders of the bulbospongiosus muscle (Bsm) are associated with male sexual dysfunction, such as premature ejaculation. We determined the effect of sucrose-water consumption during pregnancy-lactation and postnatal on reflex responses and morphology of Bsm fibers in adult male Wistar rat offspring. Female rats were mated and grouped into consumed tap water mothers and sucrose-water (5 %) mothers during pregnancy-lactation to obtain experimental groups. Male pups were weaned and assigned into four groups (n = 12; each group). Those from control mothers who continued drinking tap water (CM-CO group) or sucrose water (CM-SO group), and those from sucrose mothers who drank tap water (SM-CO group) or continued drinking sucrose water (SM-SO group) until adult life. In male rat offspring (n = 6 per group) was recorded the electrical activity of Bsm was recorded during penile stimulation and urethrogenital reflex (UGR). Other male rat offspring were designated for histological analysis (n = 6 per group). Sucrose consumption during prenatal stages increased the frequency of the Bsm during UGR, while pre and postnatal consumption modified muscle fiber cross-sectional area and increased the collagen content, suggesting that a combination of a diet with pre- and postnatal sucrose changes the Bsm morphophysiology possibly causing male sexual dysfunctions.
Collapse
Affiliation(s)
| | | | - Verónica Velázquez-Orozco
- Doctorado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Mexico; Licenciatura en Química Clínica, Facultad de Ciencias de la Salud, Universidad Autónoma de Tlaxcala
| | - Margarita Martínez-Gómez
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, 90070 Mexico; Instituto de Investigaciones Biomédicas, Departamento de Biología Celular y Fisiología, Universidad Nacional Autónoma de México, Tlaxcala, Mexico
| | - Francisco Castelán
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, 90070 Mexico; Instituto de Investigaciones Biomédicas, Departamento de Biología Celular y Fisiología, Universidad Nacional Autónoma de México, Tlaxcala, Mexico
| | - Estela Cuevas-Romero
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, 90070 Mexico
| | | | - Leticia Nicolás-Toledo
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, 90070 Mexico
| | - Jorge Rodríguez-Antolín
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, 90070 Mexico.
| |
Collapse
|
10
|
Erickson ML, Dobias D, Keleher MR, Dabelea D, Bergman BC, Broussard JL, Boyle KE. In Vitro Circadian Clock Gene Expression Assessments in Mesenchymal Stem Cells from Human Infants: A Pilot Study. Nutrients 2023; 16:52. [PMID: 38201882 PMCID: PMC10780581 DOI: 10.3390/nu16010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Exposure to intrauterine obesity can disrupt clock gene rhythmicity in animal models. The aim of this pilot study was to determine if maternal obesity alters rhythmic expression of core clock in mesenchymal stem cells (MSCs) from umbilical cords of human infants born to mothers with obesity (Ob-MSC) vs. normal weight (NW-MSC). METHODS We compared in vitro rhythmic expression patterns of core clock (BMAL1, CLOCK, PER2) and clock-output (NR1D1), components in undifferentiated Ob-MSCs (n = 3) vs. NW-MSCs (n = 3). MSCs were harvested every 2 h, following a dexamethasone shock, for 30 h. Adipogenesis or myogenesis was induced in vitro and markers of adipogenesis and fat storage were assessed, respectively. RESULTS We detected significant rhythmicity in expression patterns of BMAL1, PER2, and NR1D1 at the group level in Ob- and NW-MSCs (p < 0.05). PER2 oscillatory amplitude was 3-fold higher in Ob-MSCs vs. NW-MSCs (p < 0.006). During adipogenesis, Ob-MSCs had higher PPARγ protein content (p = 0.04) vs. NW-MSC. During myogenesis, Ob-MSCs had higher saturated triacylglycerols (p = 0.04) vs. NW-MSC. CONCLUSION Rhythmic expressions of BMAL1, PER2, and NR1D1 are detectable in undifferentiated MSCs. Higher PER2 oscillatory amplitude was paralleled by higher markers of fat storage during differentiation in Ob-MSCs vs. NW-MSCs, and supports that the core clock and cellular metabolism may be linked in infant MSCs.
Collapse
Affiliation(s)
| | - Devin Dobias
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (D.D.)
| | - Madeline Rose Keleher
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (D.D.)
| | - Dana Dabelea
- The Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO 80045, USA;
| | - Bryan C. Bergman
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (B.C.B.); (J.L.B.)
| | - Josiane L. Broussard
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (B.C.B.); (J.L.B.)
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80011, USA
| | - Kristen E. Boyle
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (D.D.)
- The Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO 80045, USA;
| |
Collapse
|
11
|
Zhao S, Cao J, Sun Y, Zhou H, Zhu Q, Dai D, Zhan S, Guo J, Zhong T, Wang L, Li L, Zhang H. METTL3 Promotes the Differentiation of Goat Skeletal Muscle Satellite Cells by Regulating MEF2C mRNA Stability in a m 6A-Dependent Manner. Int J Mol Sci 2023; 24:14115. [PMID: 37762418 PMCID: PMC10531580 DOI: 10.3390/ijms241814115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The development of mammalian skeletal muscle is a highly complex process involving multiple molecular interactions. As a prevalent RNA modification, N6-methyladenosine (m6A) regulates the expression of target genes to affect mammalian development. Nevertheless, it remains unclear how m6A participates in the development of goat muscle. In this study, methyltransferase 3 (METTL3) was significantly enriched in goat longissimus dorsi (LD) tissue. In addition, the global m6A modification level and differentiation of skeletal muscle satellite cells (MuSCs) were regulated by METTL3. By performing mRNA-seq analysis, 8050 candidate genes exhibited significant changes in expression level after the knockdown of METTL3 in MuSCs. Additionally, methylated RNA immunoprecipitation sequencing (MeRIP-seq) illustrated that myocyte enhancer factor 2c (MEF2C) mRNA contained m6A modification. Further experiments demonstrated that METTL3 enhanced the differentiation of MuSCs by upregulating m6A levels and expression of MEF2C. Moreover, the m6A reader YTH N6-methyladenosine RNA binding protein C1 (YTHDC1) was bound and stabilized to MEF2C mRNA. The present study reveals that METTL3 enhances myogenic differentiation in MuSCs by regulating MEF2C and provides evidence of a post-transcriptional mechanism in the development of goat skeletal muscle.
Collapse
Affiliation(s)
- Sen Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaxue Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
| | - Yanjin Sun
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Helin Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qi Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Dinghui Dai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
| | - Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
12
|
Ahmadzadeh‐Gavahan L, Hosseinkhani A, Hamidian G, Jarolmasjed S, Yousefi‐Tabrizi R. Restricted maternal nutrition and supplementation of propylene glycol, monensin sodium and rumen-protected choline chloride during late pregnancy does not affect muscle fibre characteristics of offspring. Vet Med Sci 2023; 9:2260-2268. [PMID: 37556348 PMCID: PMC10508547 DOI: 10.1002/vms3.1239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/03/2023] [Accepted: 07/06/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Grazing in arid and semi-arid regions faces pregnant ewes with feed restrictions and hence affects the offspring muscle fibre characteristics. Using feed additives that enhance nutrient availability during foetal muscle development is expected to alter offspring skeletal muscle characteristics. OBJECTIVES This study evaluated the effect of maternal restricted nutrition and supplementation of propylene glycol, monensin sodium and rumen-protected choline chloride on lamb's muscle fibre characteristics. METHODS Forty-eight Ghezel ewes were randomly allocated to one of six diets (N = 8) during the last 6 weeks of gestation: ad libitum feed intake (AL); restricted feeding (RF); restricted feeding containing propylene glycol (PG); restricted feeding containing propylene glycol and monensin sodium (MS); restricted feeding containing propylene glycol and rumen-protected choline chloride (RPC); restricted feeding containing propylene glycol, monensin sodium and rumen-protected choline chloride (PMC). The muscle samples were obtained from the semitendinosus muscle of 2-week-old male lambs (n = 5/treatment) via biopsy and were stained and classified as fibre types I, IIA and IIB. RESULTS Pre-parturient maternal feed restriction and administration of propylene glycol, monensin sodium and rumen-protected choline chloride had no significant effect on fibre-type composition, fibre density of muscle, muscle cross-sectional area and volume density of fibres (p > 0.05). CONCLUSIONS Either maternal dietary restriction or supplementation of nutrient flux-involved additives during late pregnancy did not alter muscle fibre development and had no short-term effects on muscle properties of the resulting offspring as myogenesis occurs in early and mid-gestation, not late gestation. Therefore, maternal nutrition may not be a problematic issue in sheep production in arid and semi-arid areas.
Collapse
Affiliation(s)
| | - Ali Hosseinkhani
- Department of Animal Science, Faculty of AgricultureUniversity of TabrizTabrizIran
| | - Gholamreza Hamidian
- Department of Basic Sciences, Faculty of Veterinary MedicineUniversity of TabrizTabrizIran
| | | | - Reza Yousefi‐Tabrizi
- Department of Animal Science, Faculty of AgricultureUniversity of TabrizTabrizIran
| |
Collapse
|
13
|
An Early and Sustained Inflammatory State Induces Muscle Changes and Establishes Obesogenic Characteristics in Wistar Rats Exposed to the MSG-Induced Obesity Model. Int J Mol Sci 2023; 24:ijms24054730. [PMID: 36902158 PMCID: PMC10003260 DOI: 10.3390/ijms24054730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 03/05/2023] Open
Abstract
The model of obesity induced by monosodium glutamate cytotoxicity on the hypothalamic nuclei is widely used in the literature. However, MSG promotes persistent muscle changes and there is a significant lack of studies that seek to elucidate the mechanisms by which damage refractory to reversal is established. This study aimed to investigate the early and chronic effects of MSG induction of obesity upon systemic and muscular parameters of Wistar rats. The animals were exposed to MSG subcutaneously (4 mg·g-1 b.w.) or saline (1.25 mg·g-1 b.w.) daily from PND01 to PND05 (n = 24). Afterwards, in PND15, 12 animals were euthanized to determine the plasma and inflammatory profile and to assess muscle damage. In PND142, the remaining animals were euthanized, and samples for histological and biochemical analyses were obtained. Our results suggest that early exposure to MSG reduced growth, increased adiposity, and inducted hyperinsulinemia and a pro-inflammatory scenario. In adulthood, the following were observed: peripheral insulin resistance, increased fibrosis, oxidative distress, and a reduction in muscle mass, oxidative capacity, and neuromuscular junctions, increased fibrosis, and oxidative distress. Thus, we can conclude that the condition found in adult life and the difficulty restoring in the muscle profile is related to the metabolic damage established early on.
Collapse
|
14
|
Zhao L, Liu X, Gomez NA, Gao Y, Son JS, Chae SA, Zhu MJ, Du M. Stage-specific nutritional management and developmental programming to optimize meat production. J Anim Sci Biotechnol 2023; 14:2. [PMID: 36597116 PMCID: PMC9809060 DOI: 10.1186/s40104-022-00805-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/23/2022] [Indexed: 01/04/2023] Open
Abstract
Over the past few decades, genetic selection and refined nutritional management have extensively been used to increase the growth rate and lean meat production of livestock. However, the rapid growth rates of modern breeds are often accompanied by a reduction in intramuscular fat deposition and increased occurrences of muscle abnormalities, impairing meat quality and processing functionality. Early stages of animal development set the long-term growth trajectory of offspring. However, due to the seasonal reproductive cycles of ruminant livestock, gestational nutrient deficiencies caused by seasonal variations, frequent droughts, and unfavorable geological locations negatively affect fetal development and their subsequent production efficiency and meat quality. Therefore, enrolling livestock in nutritional intervention strategies during gestation is effective for improving the body composition and meat quality of the offspring at harvest. These crucial early developmental stages include embryonic, fetal, and postnatal stages, which have stage-specific effects on subsequent offspring development, body composition, and meat quality. This review summarizes contemporary research in the embryonic, fetal, and neonatal development, and the impacts of maternal nutrition on the early development and programming effects on the long-term growth performance of livestock. Understanding the developmental and metabolic characteristics of skeletal muscle, adipose, and fibrotic tissues will facilitate the development of stage-specific nutritional management strategies to optimize production efficiency and meat quality.
Collapse
Affiliation(s)
- Liang Zhao
- grid.27871.3b0000 0000 9750 7019College of Animal Science and Technology, Nanjing Agricultural University, 210095 Nanjing, PR China ,grid.30064.310000 0001 2157 6568Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, WA 99164 Pullman, USA
| | - Xiangdong Liu
- grid.30064.310000 0001 2157 6568Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, WA 99164 Pullman, USA
| | - Noe A Gomez
- grid.30064.310000 0001 2157 6568Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, WA 99164 Pullman, USA
| | - Yao Gao
- grid.30064.310000 0001 2157 6568Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, WA 99164 Pullman, USA
| | - Jun Seok Son
- grid.30064.310000 0001 2157 6568Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, WA 99164 Pullman, USA ,grid.411024.20000 0001 2175 4264Laboratory of Perinatal Kinesioepigenetics, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, MD 21201 Baltimore, USA
| | - Song Ah Chae
- grid.30064.310000 0001 2157 6568Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, WA 99164 Pullman, USA
| | - Mei-Jun Zhu
- grid.30064.310000 0001 2157 6568School of Food Science, Washington State University, WA Pullman, USA
| | - Min Du
- grid.30064.310000 0001 2157 6568Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, WA 99164 Pullman, USA
| |
Collapse
|
15
|
Jiang X, Ji S, Cui S, Wang R, Wang W, Chen Y, Zhu S. Apol9a regulates myogenic differentiation via the ERK1/2 pathway in C2C12 cells. Front Pharmacol 2022; 13:942061. [PMID: 36506560 PMCID: PMC9727217 DOI: 10.3389/fphar.2022.942061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022] Open
Abstract
Background: The rising prevalence of obesity and its complications is a big challenge for the global public health. Obesity is accompanied by biological dysfunction of skeletal muscle and the development of muscle atrophy. The deep knowledge of key molecular mechanisms underlying myogenic differentiation is crucial for discovering novel targets for the treatment of obesity and obesity-related muscle atrophy. However, no effective target is currently known for obesity-induced skeletal muscle atrophy. Methods: Transcriptomic analyses were performed to identify genes associated with the regulation of myogenic differentiation and their potential mechanisms of action. C2C12 cells were used to assess the myogenic effect of Apol9a through immunocytochemistry, western blotting, quantitative polymerase chain reaction, RNA interference or overexpression, and lipidomics. Results: RNA-seq of differentiated and undifferentiated C2C12 cells revealed that Apol9a expression significantly increased following myogenic differentiation and decreased during obesity-induced muscle atrophy. Apol9a silencing in these C2C12 cells suppressed the expression of myogenesis-related genes and reduced the accumulation of intracellular triglycerides. Furthermore, RNA-seq and western blot results suggest that Apol9a regulates myogenic differentiation through the activation of extracellular signal-regulated kinase 1/2 (ERK1/2). This assumption was subsequently confirmed by intervention with PD98059. Conclusion: In this study, we found that Apol9a regulates myogenic differentiation via the ERK1/2 pathway. These results broaden the putative function of Apol9a during myogenic differentiation and provide a promising therapeutic target for intervention in obesity and obesity-induced muscle atrophy.
Collapse
Affiliation(s)
- Xuan Jiang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Siyu Ji
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Siyuan Cui
- The Wuxi No. 2 People’s Hospital, Wuxi, China
| | - Rong Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yongquan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China,School of Food Science and Technology, Jiangnan University, Wuxi, China,Wuxi Translational Medicine Research Center and School of Translational Medicine, Jiangnan University, Wuxi, China
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China,Wuxi Translational Medicine Research Center and School of Translational Medicine, Jiangnan University, Wuxi, China,*Correspondence: Shenglong Zhu,
| |
Collapse
|
16
|
Barbosa A, Zazula MF, Oliveira MCD, Teleken JL, Costa RM, Bonfleur ML, Torrejais MM. Maternal exposure to glyphosate-based herbicide promotes changes in the muscle structure of C57BL/6 mice offspring. Anat Rec (Hoboken) 2022; 305:3307-3316. [PMID: 35338770 DOI: 10.1002/ar.24922] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 11/06/2022]
Abstract
Glyphosate (GBH) is a worldwide consumption pesticide and is used in the formulation of Roundup®, one of the most commercialized herbicides in the world. Maternal exposure to this herbicide can promote changes and adaptations in the offspring; however, the effects on skeletal muscle are poorly understood. In this sense, the present study sought to evaluate the effect of exposure to GBH on the characteristics of the soleus (SOL) and extensor digitorum longus (EDL) muscles. C57BL/6 pregnant female mice were divided into two groups: control (CTL) receiving water and glyphosate (GBH; n = 6) receiving 0.5% glyphosate. Male puppies were designated according to the group to which the mothers belonged, such as CTL-F1 and GBH-F1 and then euthanized at 150 days of age. There was a reduction in body weight and nasoanal length of animals exposed to GBH, while there was an increase in EDL weight, reduction in the proportion of fibers and number of nuclei, and an increase in the connective tissue of the SOL. The animals exposed to GBH presented higher values of body characteristics, mainly adiposity gain, while they presented a reduction in neuromuscular junctions (NMJ), and an increase in fibrosis in the SOL muscle, while there was a reduction in the number of nuclei, and an increase in the weight of the EDL muscle. These findings indicate that glyphosate can promote changes in the offspring's body growth, the deposition of adipose panicles and its effects on muscle can lead to changes in the structure and functioning of this tissue.
Collapse
Affiliation(s)
- Ariadne Barbosa
- Laboratório Experimental de Morfologia - Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Matheus Felipe Zazula
- Laboratório de Plasticidade Morfofuncional - Departamento de Biologia Celular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Mylena Campos de Oliveira
- Laboratório Experimental de Morfologia - Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Jakeline Liara Teleken
- Laboratório de Fisiologia Endócrina e Metabolismo - Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Rose Meire Costa
- Laboratório de Biologia Estrutural e Funcional - Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Maria Lucia Bonfleur
- Laboratório de Fisiologia Endócrina e Metabolismo - Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Marcia Miranda Torrejais
- Laboratório Experimental de Morfologia - Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| |
Collapse
|
17
|
Son Y, Paton CM. A Review of free fatty acid-induced cell signaling, angiopoietin-like protein 4, and skeletal muscle differentiation. Front Physiol 2022; 13:987977. [PMID: 36148297 PMCID: PMC9485487 DOI: 10.3389/fphys.2022.987977] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Postnatal skeletal muscle differentiation from quiescent satellite cells is a highly regulated process, although our understanding of the contribution of nutritional factors in myogenesis is limited. Free fatty acids (FFAs) are known to cause detrimental effects to differentiated skeletal muscle cells by increasing oxidative stress which leads to muscle wasting and insulin resistance in skeletal muscle. In addition, FFAs are thought to act as inhibitors of skeletal muscle differentiation. However, the precise molecular mechanisms underlying the effects of FFAs on skeletal muscle differentiation remains to be elucidated. There is a clear relationship between dietary FFAs and their ability to suppress myogenesis and we propose the hypothesis that the FFA-mediated increase in angiopoietin-like protein 4 (ANGPTL4) may play a role in the inhibition of differentiation. This review discusses the role of FFAs in skeletal muscle differentiation to-date and proposes potential mechanisms of FFA-induced ANGPTL4 mediated inhibition of skeletal muscle differentiation.
Collapse
Affiliation(s)
- Yura Son
- Department Nutritional Sciences, Athens, GA, United States
| | - Chad M. Paton
- Department Nutritional Sciences, Athens, GA, United States
- Department of Food Science and Technology, University of Georgia, Athens, GA, United States
- *Correspondence: Chad M. Paton,
| |
Collapse
|
18
|
Barcelos SDS, Nascimento KB, da Silva TE, Mezzomo R, Alves KS, de Souza Duarte M, Gionbelli MP. The Effects of Prenatal Diet on Calf Performance and Perspectives for Fetal Programming Studies: A Meta-Analytical Investigation. Animals (Basel) 2022; 12:2145. [PMID: 36009734 PMCID: PMC9404886 DOI: 10.3390/ani12162145] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 01/03/2023] Open
Abstract
This meta-analysis aimed to identify knowledge gaps in the scientific literature on future fetal-programming studies and to investigate the factors that determine the performance of beef cows and their offspring. A dataset composed of 35 publications was used. The prenatal diet, body weight (BW), average daily gain (ADG) during pregnancy, and calf sex were elicited as possible modulators of the beef cows and their offspring performance. Then, the correlations between these variables and the outcomes of interest were investigated. A mixed multiple linear regression procedure was used to evaluate the relationships between the responses and all the possible explanatory variables. A knowledge gap was observed in studies focused on zebu animals, with respect to the offspring sex and the consequences of prenatal nutrition in early pregnancy. The absence of studies considering the possible effects promoted by the interactions between the different stressors' sources during pregnancy was also detected. A regression analysis showed that prenatal diets with higher levels of protein improved the ADG of pregnant beef cows and that heavier cows give birth to heavier calves. Variations in the BW at weaning were related to the BW at birth and calf sex. Therefore, this research reinforces the importance of monitoring the prenatal nutrition of beef cows.
Collapse
Affiliation(s)
- Sandra de Sousa Barcelos
- Department of Animal Science, Universidade Federal Rural da Amazônia, Parauapebas, PA 68515-000, Brazil
| | | | - Tadeu Eder da Silva
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rafael Mezzomo
- Department of Animal Science, Universidade Federal Rural da Amazônia, Parauapebas, PA 68515-000, Brazil
| | - Kaliandra Souza Alves
- Department of Animal Science, Universidade Federal Rural da Amazônia, Parauapebas, PA 68515-000, Brazil
| | | | - Mateus Pies Gionbelli
- Department of Animal Science, Universidade Federal de Lavras, Lavras, MG 37200-900, Brazil
| |
Collapse
|
19
|
Ge L, Su P, Wang S, Gu Y, Cao X, Lv X, Wang S, Getachew T, Mwacharo JM, Haile A, Yuan Z, Sun W. New Insight into the Role of the Leucine Aminopeptidase 3 ( LAP3) in Cell Proliferation and Myogenic Differentiation in Sheep Embryonic Myoblasts. Genes (Basel) 2022; 13:genes13081438. [PMID: 36011349 PMCID: PMC9408374 DOI: 10.3390/genes13081438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022] Open
Abstract
Previous genome-wide association studies (GWAS) have found that LAP3 may have the potential function to impact sheep muscle development. In order to further explore whether LAP3 expression has an important role in the development of sheep embryonic myoblasts, we conducted the spatiotemporal expression profile analysis of LAP3 at the tissue and cellular level. Then we used small interfering RNA and eukaryotic recombinant vectors to perform gain/loss-of-function analysis of LAP3. CCK-8 detection, EdU staining, and flow cytometry were used to investigate the impact of LAP3 knockdown or overexpression on the proliferation of embryonic myoblasts. In addition, cell phenotype observation, MyHC indirect immunofluorescence, and quantitative detection of the expression changes of myogenic regulatory factors (MRFs) were used to explore the effect of LAP3 on myogenic differentiation. The results showed that the LAP3 expression level in muscle tissue of fetuses was significantly higher than that in newborn lambs and adult sheep, and its expression level on day 3 of differentiation was also significantly higher than that in the proliferation phase and other differentiation time points. LAP3 silencing could significantly increase cell viability and EdU-positive cells, as well as prolonging the length of S phase of myoblasts to promote proliferation, while the results were reversed when LAP3 was overexpressed. Moreover, LAP3 silencing significantly hindered myotube formation and down-regulated the expression levels of MRFs from day 5 to day 7 of terminal differentiation, while the results were reversed when LAP3 was highly expressed. Overall, our results suggested that the expression of LAP3 impacts on the development of sheep embryonic myoblasts which provides an important theoretical basis for molecular breeding of meat production in sheep.
Collapse
Affiliation(s)
- Ling Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Pengwei Su
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Shan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Yifei Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Xiukai Cao
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou 225000, China
| | - Xiaoyang Lv
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou 225000, China
| | - Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Tesfaye Getachew
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Joram M. Mwacharo
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Aynalem Haile
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Zehu Yuan
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou 225000, China
- Correspondence: (Z.Y.); (W.S.)
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou 225000, China
- Correspondence: (Z.Y.); (W.S.)
| |
Collapse
|
20
|
Zhao L, Li F, Zhang X, Zhang D, Li X, Zhang Y, Zhao Y, Song Q, Huang K, Xu D, Cheng J, Wang J, Li W, Lin C, Wang W. Integrative analysis of transcriptomics and proteomics of longissimus thoracis of the Hu sheep compared with the Dorper sheep. Meat Sci 2022; 193:108930. [PMID: 35933909 DOI: 10.1016/j.meatsci.2022.108930] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/09/2022] [Accepted: 07/29/2022] [Indexed: 10/31/2022]
Abstract
Meat quality is becoming more important for sheep breeding programs. Meat quality is a complex trait affected by genetic and environmental factors. In the present study, an integrative analysis of the longissimus thoracis tissue transcriptome and proteome was conducted to identify genes, proteins, and pathways related to meat quality in sheep. The sheep breeds Hu and Dorper were considered. These breeds were compared for the differences in muscle fiber structure, chemical composition, and amino acid composition. In the Hu sheep vs. Dorper sheep comparison, 22 DEGs/DEPs showed the same mRNA and protein expression trends. These genes are associated with lipid transport, lipid metabolism, and muscular system development. Moreover, some pathways such as "lipid transport", "lipoprotein metabolic process", "Alanine, aspartate and glutamate metabolism", and "Arginine biosynthesis" were significantly enriched in this study. The reliability of the RNA-Seq results was verified by qRT-PCR. These findings provide new insights into the molecular mechanisms of meat quality in sheep.
Collapse
Affiliation(s)
- Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Fadi Li
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Deyin Zhang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Yukun Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Yuan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Qizhi Song
- Linze County Animal Disease Prevention and Control Center of Gansu Province, Linze 734200, China
| | - Kai Huang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Jiangbo Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Wenxin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
21
|
Catlin NR, Bowman CJ, Campion SN, Lewis EM, Nowland WS, Stethem C, Cappon GD. The postnatal resolution of developmental toxicity induced by pharmacological diacylglycerol acyltransferase 2 (DGAT2) inhibition during gestation in rats. Toxicol Sci 2022; 189:225-236. [PMID: 35866640 DOI: 10.1093/toxsci/kfac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ervogastat (PF-06865571) is a small molecule diacylglycerol acyltransferase 2 (DGAT2) inhibitor being developed for the oral treatment of non-alcoholic steatohepatitis (NASH) with liver fibrosis. DGAT2 is a key enzyme in triglyceride synthesis in tissues and in regulating energy metabolism. Fertility and developmental toxicity studies with ervogastat were conducted in female rats and rabbits. There were no effects on female rat fertility or rabbit embryo-fetal development. Administration of ervogastat to pregnant rats during organogenesis reduced fetal weight and caused higher incidences of bent bones in fetuses that were shown to resolve by postnatal day 28 and were therefore considered to be transient variations secondary to developmental delay. Extended dosing in rats through the end of gestation and lactation (pre- and post-natal development study) caused impaired skin development, reduced offspring viability and growth retardation. The spectrum of developmental effects in rats is consistent with the intended pharmacology (altered triglyceride metabolism) and the transient nature of the skeletal findings, along with the late gestational window of sensitivity for the effects on skin barrier development, reduce the concern for potential adverse developmental effects following unintended early gestational exposure to ervogastat in humans where treatment can be discontinued once pregnancy is determined.
Collapse
Affiliation(s)
- Natasha R Catlin
- Drug Safety Research, Development, & Medical, Pfizer Worldwide Research & Development, Groton, CT, USA
| | - Christopher J Bowman
- Drug Safety Research, Development, & Medical, Pfizer Worldwide Research & Development, Groton, CT, USA
| | - Sarah N Campion
- Drug Safety Research, Development, & Medical, Pfizer Worldwide Research & Development, Groton, CT, USA
| | - Elise M Lewis
- Charles River Laboratories, Inc, Safety Assessment, Horsham, PA, USA
| | - William S Nowland
- Drug Safety Research, Development, & Medical, Pfizer Worldwide Research & Development, Groton, CT, USA
| | - Christine Stethem
- Drug Safety Research, Development, & Medical, Pfizer Worldwide Research & Development, Groton, CT, USA
| | - Gregg D Cappon
- Drug Safety Research, Development, & Medical, Pfizer Worldwide Research & Development, Groton, CT, USA
| |
Collapse
|
22
|
Zhao W, Green MP, Marth CD, Liu F, Le HH, Lynch GS, Bell AW, Leury BJ, Dunshea FR, Cottrell JJ. Gestational heat stress alters skeletal muscle gene expression profiles and vascularity in fetal pigs in a sexually dimorphic manner. J Anim Sci Biotechnol 2022; 13:76. [PMID: 35836286 PMCID: PMC9284688 DOI: 10.1186/s40104-022-00730-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is evidence that sow heat stress (HS) during gestation affects fetal development with implications for impaired muscle growth. We have previously demonstrated that maternal HS during early to mid-gestation compromised muscle fibre hyperplasia in developing fetal pigs. Thus, we hypothesised these phenotypic changes are associated with a change in expression of genes regulating fetal skeletal muscle development and metabolism. To test this, at d 60 of gestation, RNA sequencing and immunohistochemistry were performed on fetal longissimus dorsi (LD) muscle biopsies collected from pregnant gilts that had experienced either thermoneutral control (CON, 20 °C, n = 7 gilts, 18 LD samples) or controlled HS (cyclic 28 to 33 °C, n = 8 gilts, 23 LD samples) conditions for 3 weeks. RESULTS A total of 282 genes were differentially expressed between the HS and CON groups in female LD muscles (false discovery rate (FDR) ≤ 0.05), whereas no differentially expressed genes were detected in male LD muscles between the two groups (FDR > 0.05). Gestational HS increased the expression of genes associated with transcription corepressor activity, adipogenesis cascades, negative regulation of angiogenesis and pro-inflammatory signalling in female LD muscles. Immunohistochemical analyses revealed a decreased muscle vascularity density in fetuses from HS group for both sexes compared to those from the CON group (P = 0.004). CONCLUSIONS These results reveal gilt HS during early to mid-gestation altered gene expression profiles in fetal LD muscles in a sexually dimorphic manner. The molecular responses, including transcription and angiogenesis repressions and enhanced adipogenesis cascades, were exclusively observed in females. However, the associated reductions in muscle vascularity were observed independently of sexes. Collectively this may indicate female fetal pigs are more adaptive to gestational HS in terms of gene expression changes, and/or there may be sexually dimorphic differences with respect to the timing of muscle molecular responses to gestational HS.
Collapse
Affiliation(s)
- Weicheng Zhao
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Mark P Green
- School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Christina D Marth
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, 3030, Australia
| | - Fan Liu
- Rivalea Australia Pty Ltd, Corowa, NSW, 2646, Australia
| | - Hieu H Le
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Parkville, 3010, Australia
| | - Alan W Bell
- Department of Animal Science, Cornell University, Ithaca, NY, 14853-4801, USA
| | - Brian J Leury
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Frank R Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.,Faculty of Biological Sciences, The University of Leeds, Leeds, LS2 9JT, UK
| | - Jeremy J Cottrell
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
23
|
Maternal Aerobic Exercise, but Not Blood Docosahexaenoic Acid and Eicosapentaenoic Acid Concentrations, during Pregnancy Influence Infant Body Composition. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148293. [PMID: 35886147 PMCID: PMC9316153 DOI: 10.3390/ijerph19148293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/21/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
Although discrete maternal exercise and polyunsaturated fatty acid (PUFA) supplementation individually are beneficial for infant body composition, the effects of exercise and PUFA during pregnancy on infant body composition have not been studied. This study evaluated the body composition of infants born to women participating in a randomized control exercise intervention study. Participants were randomized to aerobic exercise (n = 25) or control (stretching and breathing) groups (n = 10). From 16 weeks of gestation until delivery, the groups met 3×/week. At 16 and 36 weeks of gestation, maternal blood was collected and analyzed for Docosahexaenoic Acid (DHA) and Eicosapentaenoic Acid (EPA). At 1 month postnatal, infant body composition was assessed via skinfolds (SFs) and circumferences. Data from 35 pregnant women and infants were analyzed via t-tests, correlations, and regression. In a per protocol analysis, infants born to aerobic exercisers exhibited lower SF thicknesses of triceps (p = 0.008), subscapular (p = 0.04), SF sum (p = 0.01), and body fat (BF) percentage (%) (p = 0.006) compared with controls. After controlling for 36-week DHA and EPA levels, exercise dose was determined to be a negative predictor for infant skinfolds of triceps (p = 0.001, r2 = 0.27), subscapular (p = 0.008, r2 = 0.19), SF sum (p = 0.001, r2 = 0.28), mid-upper arm circumference (p = 0.049, r2 = 0.11), and BF% (p = 0.001, r2 = 0.32). There were no significant findings for PUFAs and infant measures: during pregnancy, exercise dose, but not blood DHA or EPA levels, reduces infant adiposity.
Collapse
|
24
|
Hwang J, Thurmond DC. Exocytosis Proteins: Typical and Atypical Mechanisms of Action in Skeletal Muscle. Front Endocrinol (Lausanne) 2022; 13:915509. [PMID: 35774142 PMCID: PMC9238359 DOI: 10.3389/fendo.2022.915509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022] Open
Abstract
Insulin-stimulated glucose uptake in skeletal muscle is of fundamental importance to prevent postprandial hyperglycemia, and long-term deficits in insulin-stimulated glucose uptake underlie insulin resistance and type 2 diabetes. Skeletal muscle is responsible for ~80% of the peripheral glucose uptake from circulation via the insulin-responsive glucose transporter GLUT4. GLUT4 is mainly sequestered in intracellular GLUT4 storage vesicles in the basal state. In response to insulin, the GLUT4 storage vesicles rapidly translocate to the plasma membrane, where they undergo vesicle docking, priming, and fusion via the high-affinity interactions among the soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) exocytosis proteins and their regulators. Numerous studies have elucidated that GLUT4 translocation is defective in insulin resistance and type 2 diabetes. Emerging evidence also links defects in several SNAREs and SNARE regulatory proteins to insulin resistance and type 2 diabetes in rodents and humans. Therefore, we highlight the latest research on the role of SNAREs and their regulatory proteins in insulin-stimulated GLUT4 translocation in skeletal muscle. Subsequently, we discuss the novel emerging role of SNARE proteins as interaction partners in pathways not typically thought to involve SNAREs and how these atypical functions reveal novel therapeutic targets for combating peripheral insulin resistance and diabetes.
Collapse
Affiliation(s)
| | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute at City of Hope, Duarte, CA, United States
| |
Collapse
|
25
|
Triarico S, Rinninella E, Mele MC, Cintoni M, Attinà G, Ruggiero A. Prognostic impact of sarcopenia in children with cancer: a focus on the psoas muscle area (PMA) imaging in the clinical practice. Eur J Clin Nutr 2022; 76:783-788. [PMID: 34621000 DOI: 10.1038/s41430-021-01016-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/03/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022]
Abstract
Skeletal muscle plays a crucial part in the metabolic and inflammatory response. "Sarcopenia", defined as a pathological condition of reduced strength, quantity and quality of skeletal muscle mass, may often develop in the young age as the secondary consequence of a systemic inflammatory illness, like cancer. In children with cancer, sarcopenia is a common finding, playing a negative role in their prognosis. However, its prevalence in clinical practice is underestimated. Moreover, several pre- and post-natal factors may influence skeletal muscle development in childhood, making the issue more complex. Given the frequent use of radiological imaging in clinical practice, prompt analysis of body composition is feasible and able to detect the presence of reduced fat-free mass (FFM) among pediatric patients with cancer. We discuss the recent advances in the study of body composition in children with cancer, dissecting the role of the psoas muscle area (PMA) measure, obtained from computerized tomography (CT) or magnetic resonance images (MRI) as a marker of sarcopenia in this setting. Since age and sex-specific percentile curves for PMA and a PMA z-scores calculator are available online, such a tool may be useful to simply detect and treat sarcopenia and its consequences in childhood cancer.
Collapse
Affiliation(s)
- Silvia Triarico
- UOSD di Oncologia Pediatrica, Dipartimento di scienze della salute della donna, del bambino e di sanità pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy.
| | - Emanuele Rinninella
- UOC di Nutrizione Clinica, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
| | - Maria Cristina Mele
- UOC di Nutrizione Clinica, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
- Dipartimento di Medicina e Chirurgia traslazionale, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Rome, Italy
| | - Marco Cintoni
- Scuola di Specializzazione in Scienza dell'Alimentazione, Università di Roma Tor Vergata, Via Montpellier 1, Rome, Italy
| | - Giorgio Attinà
- UOSD di Oncologia Pediatrica, Dipartimento di scienze della salute della donna, del bambino e di sanità pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
| | - Antonio Ruggiero
- UOSD di Oncologia Pediatrica, Dipartimento di scienze della salute della donna, del bambino e di sanità pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
- Dipartimento di Scienze della Vita e Sanità pubblica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Rome, Italy
| |
Collapse
|
26
|
Kim TJ, Pyun DH, Kim MJ, Jeong JH, Abd El-Aty A, Jung TW. Ginsenoside compound K ameliorates palmitate-induced atrophy in C2C12 myotubes via promyogenic effects and AMPK/autophagy-mediated suppression of endoplasmic reticulum stress. J Ginseng Res 2022; 46:444-453. [PMID: 35600773 PMCID: PMC9120645 DOI: 10.1016/j.jgr.2021.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 03/08/2021] [Accepted: 09/03/2021] [Indexed: 01/17/2023] Open
Abstract
Background Compound K (CK) is among the protopanaxadiol (PPD)-type ginsenoside group, which produces multiple pharmacological effects. Herein, we examined the effects of CK on muscle atrophy under hyperlipidemic conditions along with its pro-myogenic effects. Further, the molecular pathways underlying the effects of CK on skeletal muscle have been justified. Methods C2C12 myotubes were treated with palmitate and CK. C2C12 myoblasts were differentiated using CK for 4-5 days. For the in vivo experiments, CK was administered to mice fed on a high-fat diet for 8 weeks. The protein expression levels were analyzed using western blotting analysis. Target protein suppression was performed using small interfering (si) RNA transfection. Histological examination was performed using Jenner-Giemsa and H&E staining techniques. Results CK treatment attenuated ER stress markers, such as eIF2α phosphorylation and CHOP expression and impaired myotube formation in palmitate-treated C2C12 myotubes and skeletal muscle of mice fed on HFD. CK treatment augmented AMPK along with autophagy markers in skeletal muscle cells in vitro and in vivo experiments. AMPK siRNA or 3-MA, an autophagy inhibitor, abrogated the impacts of CK in C2C12 myotubes. CK treatment augmented p38 and Akt phosphorylation, leading to an enhancement of C2C12 myogenesis. However, AMPK siRNA abolished the effects of CK in C2C12 myoblasts. Conclusion These findings denote that CK prevents lipid-induced skeletal muscle apoptosis via AMPK/autophagy-mediated attenuation of ER stress and induction of myoblast differentiation. Therefore, we may suggest the use of CK as a potential therapeutic approach for treating muscle-wasting conditions associated with obesity.
Collapse
Affiliation(s)
- Tae Jin Kim
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Do Hyeon Pyun
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Myeong Jun Kim
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea,Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - A.M. Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China,Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt,Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea,Corresponding author. Department of Pharmacology, College of Medicine, Chung-Ang University, 221, Heuksuk-dong, Dongjak-gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
27
|
Bryan EE, Chen X, Smith BS, Dilger RN, Dilger AC. Maternal Immune Activation and Dietary Soy Isoflavone Supplementation Influence Pig Immune Function but not Muscle Fiber Formation. J Anim Sci 2022; 100:6568979. [PMID: 35426431 PMCID: PMC9155173 DOI: 10.1093/jas/skac134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
The goals of this study were to determine the impact of maternal PRRSV infection on offspring muscle and immune development and the potential of dietary soy isoflavones to mitigate those effects. Thirteen first-parity gilts (“gilts”) were randomly allotted into one of three treatments: not infected and fed a diet devoid of isoflavones (CON), infected with porcine reproductive and respiratory syndrome virus (PRRSV) and fed the control diet (POS) or that supplemented with 1,500 mg/kg soy-derived isoflavones (ISF). Gilts were inoculated with PRRSV intranasally on gestational day (GD) 70. After farrowing (GD 114 ± 2), 1-2 offspring (“pigs”) closest to the average litter weight were selected either at birth (3 ± 2 d of age) or weaning (21 ±2 d of age) to determine body, muscle, and organ weights as well as muscle cell number and size. Four weaned pigs of average body weight within each litter were selected for postnatal immune challenge. At PND 52, pigs were injected with 5 µg/kg BW lipopolysaccharide (LPS) intraperitoneally. Serum was collected at 0, 4, and 8 h following LPS administration to analyze tumor necrosis factor alpha (TNF-α). At PND 59, pigs were administered a novel vaccine to elicit an adaptive immune response. At PND 59, 66, and 73, peripheral blood mononuclear cells were isolated and T-cell populations determined by flow cytometry. Both POS and ISF pigs exhibited persistent PRRSV infections throughout the study (PND 1-73). At PND 3, whole body, muscle, and organ weights were not different (P > 0.22) between groups, with the exception of relative liver weight, which was increased (P < 0.05) in POS compared with CON pigs. At PND 21, ISF pigs had reduced (P ≤ 0.05) whole body and muscle weights, but greater (P < 0.05) kidney weight compared with CON, and greater (P < 0.05) relative liver weight compared with CON and POS. Muscle fiber number and size were not different (P > 0.39) between groups at birth or weaning. After LPS administration, TNF-α was greatest in ISF pigs (P < 0.05) at both 0 and 8 h post-challenge. At the peak time-point of 4 h post-challenge, ISF pigs had the greatest concentration of TNF-α and CON pigs had the lowest, with POS pigs being intermediate (P = 0.01). After vaccination, ISF offspring had shifts in T-cell populations indicating an impaired immune response. These data indicate that maternal PRRSV infection may impact offspring organ growth and immune function, particularly when the dam is supplemented with isoflavones.
Collapse
Affiliation(s)
- E E Bryan
- Department of Animal Sciences, University of Illinois, Urbana-Champaign, USA
| | - X Chen
- Department of Animal Sciences, University of Illinois, Urbana-Champaign, USA
| | - B S Smith
- Department of Animal Sciences, University of Illinois, Urbana-Champaign, USA
| | - R N Dilger
- Department of Animal Sciences, University of Illinois, Urbana-Champaign, USA
| | - A C Dilger
- Department of Animal Sciences, University of Illinois, Urbana-Champaign, USA
| |
Collapse
|
28
|
Ye J, Zhao X, Xue H, Zou X, Liu G, Deng M, Sun B, Guo Y, Liu D, Li Y. RNA-Seq Reveals miRNA and mRNA Co-regulate Muscle Differentiation in Fetal Leizhou Goats. Front Vet Sci 2022; 9:829769. [PMID: 35400087 PMCID: PMC8990838 DOI: 10.3389/fvets.2022.829769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Muscle differentiation is an essential link in animal growth and development, and microRNA and mRNA are indispensable in skeletal muscle differentiation. To improve the meat quality and production of the Leizhou goat, it is vital to understand the molecular mechanism by which its skeletal muscle differentiates. By RNA sequencing (RNA-SEQ), we established miRNA-mRNA profiles of Leizhou goats at three stages: fetal day 70, 90, and 120. There were 991 differently expressed mRNAs and 39 differentially expressed miRNAs found, with the differentially expressed mRNAs mainly enriched in calcium ion binding, ECM-receptor interaction, and Focal adhesion. CKM and MYH3, two muscle differentiation markers, were significantly differentially expressed during this period. In addition, we found that chi-miR-129-5p, chi-miR-433, and chi-miR-24-3p co-regulate muscle differentiation with their target genes. Finally, we can confirm that muscle differentiation occurred in Leizhou goat between 90 and 120 days of the fetus. This study is helpful to better explore the molecular mechanism of goat muscle differentiation.
Collapse
Affiliation(s)
- Junning Ye
- College of Animal Science, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, China
| | - Xiuhui Zhao
- College of Animal Science, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, China
| | - Huiwen Xue
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xian Zou
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou, China
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, China
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou, China
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, China
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou, China
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, China
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou, China
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou, China
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou, China
- *Correspondence: Yaokun Li
| |
Collapse
|
29
|
Zhou H, Liao Y, Chen D, Yu B. Effects of breeds and dietary nutrient levels on expression patterns of paired box genes and myogenic regulatory factors in pigs. Arch Anim Nutr 2022; 75:474-488. [PMID: 35227137 DOI: 10.1080/1745039x.2021.2006542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Two experiments were conducted to investigate the effects of different breeds and dietary nutrient levels on expressions of paired box (Pax) genes and myogenic regulatory factors (MRFs) in pigs. Thirty Large White (LW) barrows and thirty Chenghua (CH, a native breed of China) barrows were performed in experiment 1. Results exhibited that in the CH pigs the abundances of Pax3 at 105 and 220 d of age, Mrf4 at 63 d of age, Myf5 and Mrf4 at 220 d of age were higher than those in the LW pigs (p < 0.05). Meanwhile, the expressions of MyHC-І and ІІa in the CH pigs were upregulated, and the abundance of MyHC-ІІb were downregulated compared with those in the LW pigs at 105 and 220 d of age (p < 0.05). Moreover, the meat quality of the CH pigs was better than in the LW pigs (p < 0.05). In experiment 2, sixty LW pigs were randomly assigned to two dietary treatments meeting their nutrient requirements (NRC) or a diet with moderately reduced digestible energy, crude protein and Lys level by 560 kJ/kg, 1.48% and 0.34%, respectively (LOW diet). The results showed that the reduced dietary nutrient level increased (p < 0.05) the expressions of MyoG and Mrf4 at 105 d of age, Pax3, Myf5, and Mrf4 at 220 d of age, and upregulated (p < 0.05) the abundance of MyHC-ІІa at 105 and 220 d of age in LW pigs. In addition, a decrease in dietary nutrient level improved the meat quality in LW pigs (p < 0.05). Collectively, the expressions of Pax genes and MRFs were markedly different between the CH and LW pigs. The CH pigs exhibited higher expression levels of Pax3, Myf5, Mrf4, MyHC-І and ІІa, which may improved the meat quality. A decrease in dietary nutrient level upregulated the abundances Pax3, Mrf4, Myf5, MyoG, and MyHC-ІІa, and might enhance the meat quality in the LW pigs.
Collapse
Affiliation(s)
- Hua Zhou
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yuxue Liao
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
30
|
Block JJ, Webb MJ, Underwood KR, Gonda MG, Harty AA, Salverson RR, Funston RN, Olson KC, Blair AD. Influence of Maternal Protein Restriction in Primiparous Beef Heifers during Mid- and/or Late-Gestation on Progeny Feedlot Performance and Carcass Characteristics. Animals (Basel) 2022; 12:ani12050588. [PMID: 35268157 PMCID: PMC8909653 DOI: 10.3390/ani12050588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/11/2022] [Accepted: 02/23/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigated the impacts of metabolizable protein (MP) restriction in primiparous heifers during mid- and/or late-gestation on progeny performance and carcass characteristics. Heifers were allocated to 12 pens in a randomized complete block design. The factorial treatment structure included two stages of gestation (mid- and late-) and two levels of dietary protein (control (CON); ~101% of MP requirements and restricted (RES); ~80% of MP requirements). Half of the pens on each treatment were randomly reassigned to the other treatment at the end of mid-gestation. Progeny were finished in a GrowSafe feeding system and carcass measurements were collected. Gestation treatment x time interactions indicated that MP restriction negatively influenced heifer body weight (BW), body condition score, and longissimus muscle (LM) area (p < 0.05), but not fat thickness (p > 0.05). Treatment did not affect the feeding period, initial or final BW, dry matter intake, or average daily gain of progeny (p > 0.05). The progeny of dams on the RES treatment in late gestation had a greater LM area (p = 0.04), but not when adjusted on a hot carcass weight basis (p > 0.10). Minimal differences in the animal performance and carcass characteristics suggest that the level of MP restriction imposed during mid- and late-gestation in this study did not have a significant developmental programming effect.
Collapse
Affiliation(s)
- Janna J. Block
- Hettinger Research Extension Center, North Dakota State University, Hettinger, ND 58639, USA
- Correspondence: ; Tel.: +1-701-567-4323
| | - Megan J. Webb
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA; (M.J.W.); (K.R.U.); (M.G.G.); (A.A.H.); (R.R.S.); (K.C.O.); (A.D.B.)
| | - Keith R. Underwood
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA; (M.J.W.); (K.R.U.); (M.G.G.); (A.A.H.); (R.R.S.); (K.C.O.); (A.D.B.)
| | - Michael G. Gonda
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA; (M.J.W.); (K.R.U.); (M.G.G.); (A.A.H.); (R.R.S.); (K.C.O.); (A.D.B.)
| | - Adele A. Harty
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA; (M.J.W.); (K.R.U.); (M.G.G.); (A.A.H.); (R.R.S.); (K.C.O.); (A.D.B.)
| | - Robin R. Salverson
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA; (M.J.W.); (K.R.U.); (M.G.G.); (A.A.H.); (R.R.S.); (K.C.O.); (A.D.B.)
| | - Rick N. Funston
- West Central Research & Extension Center, University of Nebraska-Lincoln, North Platte, NE 69101, USA;
| | - Kenneth C. Olson
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA; (M.J.W.); (K.R.U.); (M.G.G.); (A.A.H.); (R.R.S.); (K.C.O.); (A.D.B.)
| | - Amanda D. Blair
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA; (M.J.W.); (K.R.U.); (M.G.G.); (A.A.H.); (R.R.S.); (K.C.O.); (A.D.B.)
| |
Collapse
|
31
|
Kaneko K, Ito Y, Ebara T, Kato S, Matsuki T, Tamada H, Sato H, Saitoh S, Sugiura-Ogasawara M, Yatsuya H, Kamijima M. High Maternal Total Cholesterol Is Associated With No-Catch-up Growth in Full-Term SGA Infants: The Japan Environment and Children's Study. Front Endocrinol (Lausanne) 2022; 13:939366. [PMID: 35909515 PMCID: PMC9330162 DOI: 10.3389/fendo.2022.939366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Infants born small for gestational age (SGA) with no catch-up growth (No-CU) are at high risk of intellectual and developmental disabilities. However, factors leading to No-CU among SGA infants are unclear. This study aimed to examine the association between maternal total cholesterol (TC) in mid-pregnancy and No-CU at 3 years among full-term SGA infants. STUDY DESIGN The Japan Environment and Children's Study (JECS) is a nationwide prospective birth cohort study. We extracted a total of 2,222 mothers and full-term SGA infants (length and/or weight <-2 standard deviation [SD]) without congenital abnormalities from the original JECS cohort comprising a total of 104,062 fetal records. According to the distribution of maternal TC in the entire cohort, participants were classified into nine groups per each fifth percentile with the 20th-79th percentiles (204-260 mg/dl) as the reference group. No-CU was defined by a Z-score of height at 3 years <-2 SD according to the growth standard charts for Japanese children. Multivariable-adjusted logistic regression models were carried out using multiple imputations. Additionally, a multiple-adjusted restricted cubic spline model was performed in the complete dataset. RESULTS A total of 362 (16.3%) children were No-CU at 3 years. After adjusting for the Z-score of birth weight, age of mother, smoking status, weight gain during pregnancy, breastfeeding and meal frequency at 2 years, and parents' heights, the odds ratio (95% confidence intervals) of No-CU was 2.95 (1.28-6.80) for children whose maternal TC levels were in the highest category (≥294 mg/dl), compared to the reference group. A multiple-adjusted restricted cubic spline model showed a non-linear trend of the significant association between high maternal TC and No-CU (p for linear trend = 0.05, p for quadratic trend <0.05). CONCLUSION High maternal TC at mid-pregnancy was associated with No-CU among SGA infants. Such infants should be carefully followed up to introduce appropriate growth hormonal treatment. The findings may support previous animal experimental studies which indicated that maternal high-fat diet exposure induces impairment of growth and skeletal muscle development in the offspring. Future studies are required to elucidate the detailed mechanism.
Collapse
Affiliation(s)
- Kayo Kaneko
- Department of Occupational and Environmental Health, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
- *Correspondence: Kayo Kaneko,
| | - Yuki Ito
- Department of Occupational and Environmental Health, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Takeshi Ebara
- Department of Occupational and Environmental Health, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Sayaka Kato
- Department of Occupational and Environmental Health, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Taro Matsuki
- Department of Occupational and Environmental Health, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Hazuki Tamada
- Department of Occupational and Environmental Health, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Hirotaka Sato
- Department of Occupational and Environmental Health, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Mayumi Sugiura-Ogasawara
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Hiroshi Yatsuya
- Department of Public Health and Health Systems, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Michihiro Kamijima
- Department of Occupational and Environmental Health, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
32
|
Garay JL, Barreira TV, Wang Q, Brutsaert TD. Intra-uterine effects on adult muscle strength. Early Hum Dev 2021; 163:105490. [PMID: 34717155 PMCID: PMC8717807 DOI: 10.1016/j.earlhumdev.2021.105490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 10/01/2021] [Accepted: 10/15/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Maternal behaviors and exposures affect fetal growth and development. Smoking, malnutrition, sedentary behavior, and stress can each lead to fetal programming and intra-uterine growth restriction. As a result, tissue development may be impaired. Problems with muscle formation can lead to reductions in muscle performance throughout life. The purpose of this study was to determine if in utero effects on muscle mass, muscle function, or both are responsible for the relationship between size at birth and adult muscle strength. STUDY DESIGN One hundred adults (ages 18-40), who were singletons born at term (37-42 weeks), participated. Birth weight was adjusted for gestational age using neonatal growth reference data. Maximal voluntary contractions (MVC) of dominant and non-dominant handgrip, and right and left leg extension were measured. Linear regression analysis was used to determine the association between adjusted birth weight and muscle strength. Sex and lean body mass were covariates. RESULTS Dominant handgrip MVC increased by 1.533 kg per 1 SD increase in adjusted birth weight (p = 0.004). Lean body mass had a significant indirect effect on this relationship. The relationship between handgrip strength and adjusted birth weight was strongest among female subjects. No other muscle strength measures were significantly associated with adjusted birth weight. CONCLUSIONS Birth size was a significant predictor of handgrip strength in adulthood. Including lean body mass attenuated, but did not remove, the association. Thus, among individuals born to term, having a smaller-than-predicted birth size likely causes both reductions in muscle mass formation and decreased muscle function, ultimately impacting muscle strength in adulthood.
Collapse
Affiliation(s)
- Jessica L Garay
- Department of Nutrition and Food Studies, Syracuse University, United States of America.
| | - Tiago V Barreira
- Department of Exercise Science, Syracuse University, United States of America
| | - Qiu Wang
- Department of Higher Education, Syracuse University, United States of America
| | - Tom D Brutsaert
- Department of Exercise Science, Syracuse University, United States of America
| |
Collapse
|
33
|
Imprinted lncRNA Dio3os preprograms intergenerational brown fat development and obesity resistance. Nat Commun 2021; 12:6845. [PMID: 34824246 PMCID: PMC8617289 DOI: 10.1038/s41467-021-27171-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022] Open
Abstract
Maternal obesity (MO) predisposes offspring to obesity and metabolic disorders but little is known about the contribution of offspring brown adipose tissue (BAT). We find that MO impairs fetal BAT development, which persistently suppresses BAT thermogenesis and primes female offspring to metabolic dysfunction. In fetal BAT, MO enhances expression of Dio3, which encodes deiodinase 3 (D3) to catabolize triiodothyronine (T3), while a maternally imprinted long noncoding RNA, Dio3 antisense RNA (Dio3os), is inhibited, leading to intracellular T3 deficiency and suppression of BAT development. Gain and loss of function shows Dio3os reduces D3 content and enhances BAT thermogenesis, rendering female offspring resistant to high fat diet-induced obesity. Attributing to Dio3os inactivation, its promoter has higher DNA methylation in obese dam oocytes which persists in fetal and adult BAT, uncovering an oocyte origin of intergenerational obesity. Overall, our data uncover key features of Dio3os activation in BAT to prevent intergenerational obesity and metabolic dysfunctions. Maternal obesity predisposes offspring to obesity and metabolic disorders through incompletely understood mechanisms. Here the authors report that Dio3os is an imprinted long-coding RNA that modulates brown adipose tissue development and obesity resistance in the offspring.
Collapse
|
34
|
Song C, Fang X, Yang Z, Wang Q, Meng F, Chen Y, Chen J, Zhao B, Wang Y, Fang X, Gu L, Zhang C. miR-152 Regulates Bovine Myoblast Proliferation by Targeting KLF6. Animals (Basel) 2021; 11:ani11103001. [PMID: 34680020 PMCID: PMC8532817 DOI: 10.3390/ani11103001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 01/03/2023] Open
Abstract
Though miRNAs have been reported to regulate bovine myoblast proliferation, but many miRNAs still need to be further explored. Specifically, miR-152 is a highly expressed miRNA in cattle skeletal muscle tissues, but its function in skeletal muscle development is unknown. Herein, we aimed to investigate the role of miR-152 in regulating bovine myoblast proliferation. Functionally, RT-qPCR, Western blotting, EdU assay, and flow cytometry detection results showed that miR-152 inhibited bovine myoblast proliferation. Mechanistically, we demonstrated transcription factor KLF6 was a target gene of miR-152 by means of bioinformatics software prediction and dual-luciferase report analysis, which had been demonstrated to be favorable for myoblast proliferation. Collectively, our research suggested that miR-152 inhibits bovine myoblast proliferation via targeting KLF6.
Collapse
Affiliation(s)
- Chengchuang Song
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.S.); (X.F.); (Q.W.); (F.M.); (Y.C.); (J.C.); (B.Z.); (Y.W.); (X.F.)
| | - Xue Fang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.S.); (X.F.); (Q.W.); (F.M.); (Y.C.); (J.C.); (B.Z.); (Y.W.); (X.F.)
| | - Zhaoxin Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China;
| | - Qi Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.S.); (X.F.); (Q.W.); (F.M.); (Y.C.); (J.C.); (B.Z.); (Y.W.); (X.F.)
| | - Fantong Meng
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.S.); (X.F.); (Q.W.); (F.M.); (Y.C.); (J.C.); (B.Z.); (Y.W.); (X.F.)
| | - Yaqi Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.S.); (X.F.); (Q.W.); (F.M.); (Y.C.); (J.C.); (B.Z.); (Y.W.); (X.F.)
| | - Junhao Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.S.); (X.F.); (Q.W.); (F.M.); (Y.C.); (J.C.); (B.Z.); (Y.W.); (X.F.)
| | - Bei Zhao
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.S.); (X.F.); (Q.W.); (F.M.); (Y.C.); (J.C.); (B.Z.); (Y.W.); (X.F.)
| | - Yanhong Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.S.); (X.F.); (Q.W.); (F.M.); (Y.C.); (J.C.); (B.Z.); (Y.W.); (X.F.)
| | - Xingtang Fang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.S.); (X.F.); (Q.W.); (F.M.); (Y.C.); (J.C.); (B.Z.); (Y.W.); (X.F.)
| | - Lihong Gu
- Institute of Animal Science & Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China;
| | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.S.); (X.F.); (Q.W.); (F.M.); (Y.C.); (J.C.); (B.Z.); (Y.W.); (X.F.)
- Correspondence:
| |
Collapse
|
35
|
Bradbery AN, Coverdale JA, Hammer CJ, Dunlap KA, Leatherwood JL, Satterfield MC. Effect of maternal overnutrition on predisposition to insulin resistance in the foal: Foal skeletal muscle development and insulin signaling. Domest Anim Endocrinol 2021; 77:106648. [PMID: 34314944 DOI: 10.1016/j.domaniend.2021.106648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 01/09/2023]
Abstract
Skeletal muscle plays an integral role in the ability of a horse to perform at high levels. Shifts in skeletal muscle development in response to maternal plane of nutrition may have substantial and lasting impacts on athletic performance and whole-body metabolism. Therefore, sixteen Quarter Horse mares were used in a completely randomized design and maintained at a body condition score (BCS) 6 until start of third trimester. On d 235 of gestation, mares were randomly assigned to receive one of two dietary treatments with a diet formulated to meet requirements during late gestation (CON; n = 8), and an overfed diet (HIGH; n = 8) where mares received an additional 40% above CON. Five h after parturition, foals were euthanized, and gluteus medius, triceps brachii, and semitendinosus were harvested for analyses. Gene expression was determined by qPCR and western immunoblotting was used to quantify total and phosphorylated forms of proteins involved in skeletal muscle metabolism with tubulin as the loading control. All data were analyzed using PROC MIXED of SAS. Foals from HIGH mares exhibited larger skeletal muscle fibers by area (P <0.05), and a shift in muscle fiber development towards type I slow twitch muscle fibers (P <0.05). Relative expression of glucose transporter 4 (GLUT4) was lower in HIGH foals compared to CON in gluteus medius (P = 0.05). Insulin receptor isoform B (INSR-B) and insulin-like growth factor 1 receptor (IGF1R) were greater in triceps brachii of HIGH foals compared to CON (P ≤ 0.03). Insulin receptor isoform A (INSR-A), however, tended to be lower in triceps brachii of HIGH compared to CON (P = 0.10). Ratios of phosphorylated to total extracellular signal-regulated protein kinase 1/2 (ERK1/2) and c-June N-terminal kinase (JNK) were higher in HIGH foals compared to CON (P ≤0.04) in gluteus medius. There were no differences observed for phosphorylated to total protein ratios in semitendinosus and triceps brachii muscles; however, total ERK1/2 tended to be elevated (P <0.10) in semitendinosus from CON foals compared to HIGH. There was no difference in phosphorylated or total protein kinase B (AKT) (P >0.14). These data indicate hypertrophy of skeletal muscle fibers and a shift towards type I slow twitch fibers in HIGH foals. Furthermore, this study identifies muscle specific changes in gene expression and downstream insulin receptor signaling, which may contribute to future metabolic abnormalities in response to maternal overnutrition.
Collapse
Affiliation(s)
- A N Bradbery
- Department of Animal Science, Texas A&M University, College Station, Texas 77843.
| | - J A Coverdale
- Department of Animal Science, Texas A&M University, College Station, Texas 77843
| | - C J Hammer
- Department of Animal Science, North Dakota State University, Fargo, North Dakota 58108
| | - K A Dunlap
- Department of Animal Science, Texas A&M University, College Station, Texas 77843
| | - J L Leatherwood
- Department of Animal Science, Texas A&M University, College Station, Texas 77843
| | - M C Satterfield
- Department of Animal Science, Texas A&M University, College Station, Texas 77843.
| |
Collapse
|
36
|
Feraco A, Gorini S, Armani A, Camajani E, Rizzo M, Caprio M. Exploring the Role of Skeletal Muscle in Insulin Resistance: Lessons from Cultured Cells to Animal Models. Int J Mol Sci 2021; 22:ijms22179327. [PMID: 34502235 PMCID: PMC8430804 DOI: 10.3390/ijms22179327] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle is essential to maintain vital functions such as movement, breathing, and thermogenesis, and it is now recognized as an endocrine organ. Muscles release factors named myokines, which can regulate several physiological processes. Moreover, skeletal muscle is particularly important in maintaining body homeostasis, since it is responsible for more than 75% of all insulin-mediated glucose disposal. Alterations of skeletal muscle differentiation and function, with subsequent dysfunctional expression and secretion of myokines, play a key role in the pathogenesis of obesity, type 2 diabetes, and other metabolic diseases, finally leading to cardiometabolic complications. Hence, a deeper understanding of the molecular mechanisms regulating skeletal muscle function related to energy metabolism is critical for novel strategies to treat and prevent insulin resistance and its cardiometabolic complications. This review will be focused on both cellular and animal models currently available for exploring skeletal muscle metabolism and endocrine function.
Collapse
Affiliation(s)
- Alessandra Feraco
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, 00166 Rome, Italy; (A.F.); (S.G.); (A.A.)
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Stefania Gorini
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, 00166 Rome, Italy; (A.F.); (S.G.); (A.A.)
| | - Andrea Armani
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, 00166 Rome, Italy; (A.F.); (S.G.); (A.A.)
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Elisabetta Camajani
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
- PhD Programme in Endocrinological Sciences, Department of Experimental Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy
| | - Manfredi Rizzo
- Promise Department, School of Medicine, University of Palermo, 90127 Palermo, Italy;
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, 00166 Rome, Italy; (A.F.); (S.G.); (A.A.)
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
- Correspondence: ; Tel.: +39-065-225-3419
| |
Collapse
|
37
|
Chae SA, Son JS, Du M. Prenatal exercise in fetal development: a placental perspective. FEBS J 2021; 289:3058-3071. [PMID: 34449982 DOI: 10.1111/febs.16173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/09/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023]
Abstract
Maternal obesity (MO) and gestational diabetes mellitus (GDM) are common in Western societies, which impair fetal development and predispose offspring to metabolic dysfunction. Placenta is the organ linking the mother to her fetus, and MO suppresses the development of vascular system and expression of nutrient transporters in placenta, thereby affecting fetal development. For maintaining its proper physiological function, placenta is energy demanding, which is met through extensive oxidative phosphorylation. However, the oxidative capacity of placenta is suppressed due to MO and GDM. Recently, several studies showed that physical activity during pregnancy enhances oxidative metabolism and improves placental function, which might be partially mediated by exerkines, referring to cytokines elicited by exercise. In addition, as an endocrine organ, placenta secretes cytokines, termed placentokines, including apelin, superoxide dismutase 3, irisin, and adiponectin, which mediate fetal development and maternal metabolism. Possible molecular mechanisms linking maternal exercise and placentokines to placental and fetal development are further discussed. As an emerging field, up to now, available studies are limited, mostly conducted in rodents. Given the epidemics of obesity and metabolic disorders, as well as the prevalence of maternal sedentary lifestyle, the effects of exercise of pregnant women on placental function and placentokine secretion, as well as their impacts on fetal development, need to be further examined.
Collapse
Affiliation(s)
- Song Ah Chae
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Jun Seok Son
- Laboratory of Perinatal Kinesioepigenetics, Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Min Du
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
38
|
Zhang Y, Otomaru K, Oshima K, Goto Y, Oshima I, Muroya S, Sano M, Saneshima R, Nagao Y, Kinoshita A, Okamura Y, Roh S, Ohtsuka A, Gotoh T. Effects of low and high levels of maternal nutrition consumed for the entirety of gestation on the development of muscle, adipose tissue, bone, and the organs of Wagyu cattle fetuses. Anim Sci J 2021; 92:e13600. [PMID: 34327770 PMCID: PMC9285072 DOI: 10.1111/asj.13600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022]
Abstract
This study aimed to investigate the effects of high and low levels of energy intake during the entire gestation period on the skeletal muscle development, organ development, and adipose tissue accumulation in fetuses of Wagyu (Japanese Black) cows, a breed with highly marbled beef. Cows were allocated to a high‐nutrition (n = 6) group (fed 120% of the nutritional requirement) or low‐nutrition (n = 6) group (fed 60% of the nutritional requirement). The cows were artificially inseminated with semen from the same sire, and the fetuses were removed by cesarean section at 260 ± 8.3 days of fetal age and slaughtered. The whole‐body, total muscle, adipose, and bone masses of the fetal half‐carcasses were significantly higher in the high‐nutrition group than the low‐nutrition group (p = 0.0018, 0.009, 0.0004, and 0.0362, respectively). Fifteen of 20 individual muscles, five of six fat depots, nine of 17 organs, and seven of 12 bones that were investigated had significantly higher masses in the high‐nutrition group than the low‐nutrition group. The crude components and amino acid composition of the longissimus muscle significantly differed between the low‐ and high‐nutrition groups. These data indicate that maternal nutrition during gestation has a marked effect on the muscle, bone, and adipose tissue development of Wagyu cattle fetuses.
Collapse
Affiliation(s)
- Yi Zhang
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan.,Kuju Agricultural Research Center, Kyushu University, Taketa, Oita, Japan
| | - Kounosuke Otomaru
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Kazunaga Oshima
- Western Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Oda, Shimane, Japan
| | - Yuji Goto
- Western Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Oda, Shimane, Japan
| | - Ichiro Oshima
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Susumu Muroya
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, Japan
| | - Mitsue Sano
- School of Human Cultures, The University of Shiga prefecture, Hikone, Shiga, Japan
| | - Rena Saneshima
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Yukiko Nagao
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Aoi Kinoshita
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Yasuko Okamura
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Sanggun Roh
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Akira Ohtsuka
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Takafumi Gotoh
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan.,Kuju Agricultural Research Center, Kyushu University, Taketa, Oita, Japan
| |
Collapse
|
39
|
Effects of Supplements Differing in Fatty Acid Profile to Late Gestational Beef Cows on Steer Progeny Finishing Phase Growth Performance, Carcass Characteristics, and mRNA Expression of Myogenic and Adipogenic Genes. Animals (Basel) 2021; 11:ani11071904. [PMID: 34206801 PMCID: PMC8300423 DOI: 10.3390/ani11071904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
The objective was to investigate the effects of feeding late gestational beef cows supplements differing in fatty acid profile on steer progeny finishing phase growth performance, carcass characteristics, and relative mRNA expression of myogenic and adipogenic genes. Seventy Angus-cross steers (initial body weight [BW] 273 ± 34 kg) born from dams supplemented with either 155 g DM/d EnerGII (CON, rich in palmitic and oleic acids) or 80 g DM/d Strata + 80 g DM/d Prequel (PUFA, rich in linoleic acid, eicosapentaenoic acid, and docosahexaenoic acid) for the last 77 ± 6 d prepartum were used. Longissimus muscle and subcutaneous adipose biopsies were collected to evaluate relative mRNA expression of genes related to myogenesis and adipogenesis. Steers were slaughtered at 423 ± 6 d of age. No treatment × time interaction or treatment effect (p ≥ 0.21) was detected for steer finishing phase BW, while steers from PUFA supplemented dams tended (p = 0.06) to have a greater gain to feed ratio (G:F). Neither carcass characteristics nor relative mRNA expression was different (p ≥ 0.11). In conclusion, late gestation PUFA supplementation tended to increase steer progeny finishing phase G:F, but had no effects on finishing phase BW, carcass characteristics, or relative mRNA expression during the finishing phase.
Collapse
|
40
|
Khounsaknalath S, Etoh K, Sakuma K, Saito K, Saito A, Abe T, Ebara F, Sugiyama T, Kobayashi E, Gotoh T. Effects of early high nutrition related to metabolic imprinting events on growth, carcass characteristics, and meat quality of grass-fed Wagyu (Japanese Black cattle). J Anim Sci 2021; 99:6273774. [PMID: 33974688 DOI: 10.1093/jas/skab123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/21/2021] [Indexed: 11/12/2022] Open
Abstract
The study was conducted to clarify how early high plane of nutrition related to metabolic imprinting affected growth, carcass characteristics, and meat quality of grass-fed Wagyu (Japanese Black cattle). Wagyu steers were allocated randomly into 2 dietary groups: (1) steers fed milk replacer (crude protein 26.0%, crude fat 25.5%; maximum intake 0.6 kg/d) until 3 mo of age and then fed roughage (orchard grass hay) ad libitum from 4 to 10 mo of age (roughage group, RG; n = 11); (2) steers fed milk replacer (maximum intake of 1.8 kg/d) until 3 mo of age and then fed a high-concentrate diet from 4 to 10 mo of age (early high nutrition, EHN; n = 12). After 11 mo of age, all steers were fed roughage ad libitum until 31 mo of age and then slaughtered. Growth performance, carcass traits, longissimus muscle (LM) meat quality and intramuscular fat (IMF) content, plasma insulin-like growth factor I (IGF-I) concentration, and bone mineral density were measured. Body weight was greater in EHN steers (571 kg) than RG steers (520 kg; P < 0.01). Plasma IGF-I levels were higher in EHN steers than in RG steers at 3, 10, and 14 mo of age (P < 0.01, P < 0.005, P < 0.001, respectively); however, plasma IGF-I levels were lower in EHN steers compared with RG steers at 30 mo of age (P < 0.01). The total weight of the muscles and bones of the left half of the carcass was not different between the 2 groups (P = 0.065). Five of the 19 muscles investigated (semimembranosus, P = 0.036; infraspinatus, P = 0.024; supraspinatus, P = 0.0019; serratus ventralis cervicis, P = 0.032; serratus ventralis thoracis, P = 0.027) were heavier in EHN steers. Total fat weight in the left half of the carcass was 30% greater (P = 0.025) in HNE carcasses. Subcutaneous and perirenal fat weights were 53% and 84% greater (P = 0.008, P = 0.002, respectively) in EHN carcasses. The LM IMF content was greater in EHN loins (13.2%) compared with RG loins (9.4%) at 31 mo of age (P = 0.038); however, no differences were found for shear force, tenderness, and cook loss. These results suggested early high-nutrition affected the growth and meat quality of livestock.
Collapse
Affiliation(s)
| | - Kotaro Etoh
- Kuju Agriculture Research Center, Kyushu University, Taketa, Oita 878-0201, Japan
| | - Kaori Sakuma
- National Livestock Breeding Center, Nishigo-mura, Fukushima 961-8511, Japan
| | - Kunihiko Saito
- National Livestock Breeding Center, Nishigo-mura, Fukushima 961-8511, Japan
| | | | - Tsuyoshi Abe
- National Livestock Breeding Center, Nishigo-mura, Fukushima 961-8511, Japan
| | - Fumio Ebara
- Kuju Agriculture Research Center, Kyushu University, Taketa, Oita 878-0201, Japan
| | - Toshie Sugiyama
- Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Eiji Kobayashi
- National Livestock Breeding Center, Nishigo-mura, Fukushima 961-8511, Japan
| | - Takafumi Gotoh
- Kuju Agriculture Research Center, Kyushu University, Taketa, Oita 878-0201, Japan.,Faculty of Agriculture, Kagoshima University, Kagoshima 899-0065, Japan
| |
Collapse
|
41
|
Sucrose exposure during gestation lactation and postweaning periods increases the pubococcygeus muscle reflex activity in adult male rats. Int J Impot Res 2021; 34:564-572. [PMID: 34035466 DOI: 10.1038/s41443-021-00450-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 11/09/2022]
Abstract
Erectile dysfunction is related to metabolic alterations produced by a high carbohydrate diet, which may affect muscle activity during penile reflex in adulthood. We determined whether sucrose water consumption during gestation lactation and postweaning affects pubococcygeus muscle (Pcm) activity during urethrogenital reflex in adult male rat offspring. Twelve female rats were mated and grouped in control mothers consumed tap water and sucrose mothers consumed sucrose water during gestation lactation. Male pups were weaned and assigned into four groups (n = 6 each): those from control mothers who continued drinking tap water (CM-CO group) or sucrose water (CM-SO group) until adult life, and those from sucrose mothers who drank tap water (SM-CO group) or continued drinking sucrose water (SM-SO group) until adult life. Body weight, Pcm activity during penile stimulation by bipolar electrodes and urethrogenital reflex were analyzed. A catheter was placed into the urethra to record variations in urethral pressure after mechanical stimulation. Two-way ANOVA followed by post hoc tests were used considering P ≤ 0.05 as a significant difference. Males from the SM-SO group showed weight gain compared to the control group (P < 0.001). Also, sucrose intake promoted high Pcm activity (P < 0.0001) but reduced urethrogenital reflex duration CM-CO vs CM-SO (P = 0.02); CM-CO vs SM-CO (P = 0.01); CM-SO vs SM-SO (P < 0.003); and SM-CO vs SM-SO (P < 0.002). Our results suggest that a combination of a sucrose-rich diet during gestation lactation and postweaning modifies Pcm activation during penile reflex. The urethrogenital reflex is a spinal ejaculatory-like reflex, these rats could have penile dysfunction equivalent to premature ejaculation in men.
Collapse
|
42
|
Sethi S, Giza SA, Goldberg E, Empey MEET, de Ribaupierre S, Eastabrook GDM, de Vrijer B, McKenzie CA. Quantification of 1.5 T T 1 and T 2 * Relaxation Times of Fetal Tissues in Uncomplicated Pregnancies. J Magn Reson Imaging 2021; 54:113-121. [PMID: 33586269 DOI: 10.1002/jmri.27547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Despite its many advantages, experience with fetal magnetic resonance imaging (MRI) is limited, as is knowledge of how fetal tissue relaxation times change with gestational age (GA). Quantification of fetal tissue relaxation times as a function of GA provides insight into tissue changes during fetal development and facilitates comparison of images across time and subjects. This, therefore, can allow the determination of biophysical tissue parameters that may have clinical utility. PURPOSE To demonstrate the feasibility of quantifying previously unknown T1 and T2 * relaxation times of fetal tissues in uncomplicated pregnancies as a function of GA at 1.5 T. STUDY TYPE Pilot. POPULATION Nine women with singleton, uncomplicated pregnancies (28-38 weeks GA). FIELD STRENGTH/SEQUENCE All participants underwent two iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL-IQ) acquisitions at different flip angles (6° and 20°) at 1.5 T. ASSESSMENT Segmentations of the lungs, liver, spleen, kidneys, muscle, and adipose tissue (AT) were conducted using water-only images and proton density fat fraction maps. Driven equilibrium single pulse observation of T1 (DESPOT1 ) was used to quantify the mean water T1 of the lungs, intraabdominal organs, and muscle, and the mean water and lipid T1 of AT. IDEAL T2 * maps were used to quantify the T2 * values of the lungs, intraabdominal organs, and muscle. STATISTICAL TESTS F-tests were performed to assess the T1 and T2 * changes of each analyzed tissue as a function of GA. RESULTS No tissue demonstrated a significant change in T1 as a function of GA (lungs [P = 0.89]; liver [P = 0.14]; spleen [P = 0.59]; kidneys [P = 0.97]; muscle [P = 0.22]; AT: water [P = 0.36] and lipid [P = 0.14]). Only the spleen and muscle T2 * showed a significant decrease as a function of GA (lungs [P = 0.67); liver [P = 0.05]; spleen [P < 0.05]; kidneys [P = 0.70]; muscle [P < 0.05]). DATA CONCLUSION These preliminary data suggest that the T1 of the investigated tissues is relatively stable over 28-38 weeks GA, while the T2 * change in spleen and muscle decreases significantly in that period. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Simran Sethi
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Stephanie A Giza
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Estee Goldberg
- Department of Biomedical Engineering, Western University, London, Ontario, Canada
| | | | - Sandrine de Ribaupierre
- Department of Biomedical Engineering, Western University, London, Ontario, Canada.,Department of Clinical Neurological Sciences, London Health Sciences Centre, London, Ontario, Canada.,Brain and Mind Institute, Western University, London, Ontario, Canada.,Division of Maternal, Fetal and Newborn Health, Children's Health Research Institute, London, Ontario, Canada
| | - Genevieve D M Eastabrook
- Division of Maternal, Fetal and Newborn Health, Children's Health Research Institute, London, Ontario, Canada.,Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.,Department of Obstetrics & Gynaecology, Western University, London, Ontario, Canada
| | - Barbra de Vrijer
- Division of Maternal, Fetal and Newborn Health, Children's Health Research Institute, London, Ontario, Canada.,Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.,Department of Obstetrics & Gynaecology, Western University, London, Ontario, Canada
| | - Charles A McKenzie
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Division of Maternal, Fetal and Newborn Health, Children's Health Research Institute, London, Ontario, Canada
| |
Collapse
|
43
|
Parisi F, Milazzo R, Savasi VM, Cetin I. Maternal Low-Grade Chronic Inflammation and Intrauterine Programming of Health and Disease. Int J Mol Sci 2021; 22:ijms22041732. [PMID: 33572203 PMCID: PMC7914818 DOI: 10.3390/ijms22041732] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 12/17/2022] Open
Abstract
Overweight and obesity during pregnancy have been associated with increased birth weight, childhood obesity, and noncommunicable diseases in the offspring, leading to a vicious transgenerational perpetuating of metabolic derangements. Key components in intrauterine developmental programming still remain to be identified. Obesity involves chronic low-grade systemic inflammation that, in addition to physiological adaptations to pregnancy, may potentially expand to the placental interface and lead to intrauterine derangements with a threshold effect. Animal models, where maternal inflammation is mimicked by single injections with lipopolysaccharide (LPS) resembling the obesity-induced immune profile, showed increased adiposity and impaired metabolic homeostasis in the offspring, similar to the phenotype observed after exposure to maternal obesity. Cytokine levels might be specifically important for the metabolic imprinting, as cytokines are transferable from maternal to fetal circulation and have the capability to modulate placental nutrient transfer. Maternal inflammation may induce metabolic reprogramming at several levels, starting from the periconceptional period with effects on the oocyte going through early stages of embryonic and placental development. Given the potential to reduce inflammation through inexpensive, widely available therapies, examinations of the impact of chronic inflammation on reproductive and pregnancy outcomes, as well as preventive interventions, are now needed.
Collapse
Affiliation(s)
- Francesca Parisi
- Department of Woman, Mother and Neonate, ‘V. Buzzi’ Children Hospital, ASST Fatebenefratelli Sacco, 20141 Milan, Italy; (R.M.); (I.C.)
- Department of Biomedical and Clinical Sciences, “Luigi Sacco”, University of Milan, 20157 Milan, Italy;
- Correspondence:
| | - Roberta Milazzo
- Department of Woman, Mother and Neonate, ‘V. Buzzi’ Children Hospital, ASST Fatebenefratelli Sacco, 20141 Milan, Italy; (R.M.); (I.C.)
- Department of Biomedical and Clinical Sciences, “Luigi Sacco”, University of Milan, 20157 Milan, Italy;
| | - Valeria M. Savasi
- Department of Biomedical and Clinical Sciences, “Luigi Sacco”, University of Milan, 20157 Milan, Italy;
- Department of Woman, Mother and Neonate, ‘L. Sacco’ Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy
| | - Irene Cetin
- Department of Woman, Mother and Neonate, ‘V. Buzzi’ Children Hospital, ASST Fatebenefratelli Sacco, 20141 Milan, Italy; (R.M.); (I.C.)
- Department of Biomedical and Clinical Sciences, “Luigi Sacco”, University of Milan, 20157 Milan, Italy;
| |
Collapse
|
44
|
Monthé-Drèze C, Sen S, Hauguel-de Mouzon S, Catalano PM. Effect of Omega-3 Supplementation in Pregnant Women with Obesity on Newborn Body Composition, Growth and Length of Gestation: A Randomized Controlled Pilot Study. Nutrients 2021; 13:nu13020578. [PMID: 33572368 PMCID: PMC7916127 DOI: 10.3390/nu13020578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Maternal obesity, a state of chronic low-grade metabolic inflammation, is a growing health burden associated with offspring adiposity, abnormal fetal growth and prematurity, which are all linked to adverse offspring cardiometabolic health. Higher intake of anti-inflammatory omega-3 (n-3) polyunsaturated fatty acids (PUFA) in pregnancy has been associated with lower adiposity, higher birthweight and longer gestation. However, the effects of n-3 supplementation specifically in pregnant women with overweight and obesity (OWOB) have not been explored. We conducted a pilot double-blind randomized controlled trial of 72 pregnant women with first trimester body mass index (BMI) ≥ 25 kg/m2 to explore preliminary efficacy of n-3 supplementation. Participants were randomized to daily DHA plus EPA (2 g/d) or placebo (wheat germ oil) from 10-16 weeks gestation to delivery. Neonatal body composition, fetal growth and length of gestation were assessed. For the 48 dyads with outcome data, median (IQR) maternal BMI was 30.2 (28.2, 35.4) kg/m2. In sex-adjusted analyses, n-3 supplementation was associated with higher neonatal fat-free mass (β: 218 g; 95% CI 49, 387) but not with % body fat or fat mass. Birthweight for gestational age z-score (-0.17 ± 0.67 vs. -0.61 ± 0.61 SD unit, p = 0.02) was higher, and gestation longer (40 (38.5, 40.1) vs. 39 (38, 39.4) weeks, p = 0.02), in the treatment vs. placebo group. Supplementation with n-3 PUFA in women with OWOB led to higher lean mass accrual at birth as well as improved fetal growth and longer gestation. Larger well-powered trials of n-3 PUFA supplementation specifically in pregnant women with OWOB should be conducted to confirm these findings and explore the long-term impact on offspring obesity and cardiometabolic health.
Collapse
Affiliation(s)
- Carmen Monthé-Drèze
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA;
- School of Medicine, Harvard University, Boston, MA 02115, USA
- Correspondence: ; Tel.: +1-617-525-4139
| | - Sarbattama Sen
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA;
- School of Medicine, Harvard University, Boston, MA 02115, USA
| | | | - Patrick M. Catalano
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA 02111, USA;
| |
Collapse
|
45
|
Shen X, Tang J, Ru W, Zhang X, Huang Y, Lei C, Cao H, Lan X, Chen H. CircINSR Regulates Fetal Bovine Muscle and Fat Development. Front Cell Dev Biol 2021; 8:615638. [PMID: 33490079 PMCID: PMC7815687 DOI: 10.3389/fcell.2020.615638] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/07/2020] [Indexed: 01/22/2023] Open
Abstract
The level of muscle development in livestock directly affects the production efficiency of livestock, and the contents of intramuscular fat (IMF) is an important factor that affects meat quality. However, the molecular mechanisms through which circular RNA (circRNA) affects muscle and IMF development remains largely unknown. In this study, we isolated myoblasts and intramuscular preadipocytes from fetal bovine skeletal muscle. Oil Red O and BODIPY staining were used to identify lipid droplets in preadipocytes, and anti-myosin heavy chain (MyHC) immunofluorescence was used to identify myotubes differentiated from myoblasts. Bioinformatics, a dual-fluorescence reporter system, RNA pull-down, and RNA-binding protein immunoprecipitation were used to determine the interactions between circINSR and the micro RNA (miR)-15/16 family. Molecular and biochemical assays were used to confirm the roles played by circINSR in myoblasts and intramuscular preadipocytes. We found that isolated myoblasts and preadipocytes were able to differentiate normally. CircINSR was found to serve as a sponge for the miR-15/16 family, which targets CCND1 and Bcl-2. CircINSR overexpression significantly promoted myoblast and preadipocyte proliferation and inhibited cell apoptosis. In addition, circINSR inhibited preadipocyte adipogenesis by alleviating the inhibition of miR-15/16 against the target genes FOXO1 and EPT1. Taken together, our study demonstrated that circINSR serves as a regulator of embryonic muscle and IMF development.
Collapse
Affiliation(s)
- Xuemei Shen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jia Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Wenxiu Ru
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaoyan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hui Cao
- Shaanxi Kingbull Livestock Co., Ltd., Yangling, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
46
|
Reichhardt CC, Ahmadpour A, Christensen RG, Ineck NE, Murdoch GK, Thornton KJ. Understanding the influence of trenbolone acetate and polyamines on proliferation of bovine satellite cells. Domest Anim Endocrinol 2021; 74:106479. [PMID: 32615508 DOI: 10.1016/j.domaniend.2020.106479] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/24/2020] [Accepted: 03/23/2020] [Indexed: 10/24/2022]
Abstract
Approximately 90% of beef cattle on feed in the United States receive at least one anabolic implant, which results in increased growth, efficiency, and economic return to producers. However, the complete molecular mechanism through which anabolic implants function to improve skeletal muscle growth remains unknown. This study had 2 objectives: (1) determine the effect of polyamines and their precursors on proliferation rate in bovine satellite cells (BSC); and (2) understand whether trenbolone acetate (TBA), a testosterone analog, has an impact on the polyamine biosynthetic pathway. To address these, BSC were isolated from 3 finished steers and cultured. Once cultures reached 75% confluency, they were treated in 1% fetal bovine serum (FBS) and/or 10 nM TBA, 10 mM methionine (Met), 8 mM ornithine (Orn), 2 mM putrescine (Put), 1.5 mM spermidine (Spd), or 0.5 mM spermine (Spe). Initially, a range of physiologically relevant concentrations of Met, Orn, Put, Spd, and Spe were tested to determine experimental doses to implement the aforementioned experiments. One, 12, or 24 h after treatment, mRNA was isolated from cultures and abundance of paired box transcription factor 7 (Pax7), Sprouty 1 (Spry), mitogen-activated protein kinase-1 (Mapk), ornithine decarboxylase (Odc), and S adenosylmethionine (Amd1) were determined, and normalized to 18S. No treatment × time interactions were observed (P ≥ 0.05). Treatment with TBA, Met, Orn, Put, Spd, or Spe increased (P ≤ 0.05) BSC proliferation when compared with control cultures. Treatment of cultures with Orn or Met increased (P ≤ 0.01) expression of Odc 1 h after treatment when compared with control cultures. Abundance of Amd1 was increased (P < 0.01) 1 h after treatment in cultures treated with Spd or Spe when compared with 1% FBS controls. Cultures treated with TBA had increased (P < 0.01) abundance of Spry mRNA 12 h after treatment, as well as increased mRNA abundance of Mapk (P < 0.01) 12 h and 24 h after treatment when compared with 1% FBS control cultures. Treatment with Met increased (P < 0.01) mRNA abundance of Pax7 1 h after treatment as compared with 1% FBS controls. These results indicate that treatments of BSC cultures with polyamines and their precursors increase BSC proliferation rate, as well as abundance of mRNA involved in cell proliferation. In addition, treatment of BSC cultures with TBA, polyamines, or polyamine precursors impacts expression of genes related to the polyamine biosynthetic pathway and proliferation.
Collapse
Affiliation(s)
- C C Reichhardt
- Department of Animal, Dairy and Veterinary Science, Utah State University, 4815 Old Main Hill, Logan, UT 84322, USA
| | - A Ahmadpour
- Department of Animal, Dairy and Veterinary Science, Utah State University, 4815 Old Main Hill, Logan, UT 84322, USA
| | - R G Christensen
- Department of Animal, Dairy and Veterinary Science, Utah State University, 4815 Old Main Hill, Logan, UT 84322, USA
| | - N E Ineck
- Department of Animal, Dairy and Veterinary Science, Utah State University, 4815 Old Main Hill, Logan, UT 84322, USA
| | - G K Murdoch
- Department of Animal and Veterinary Sciences, University of Idaho, 875 Perimeter Drive MS 2330, Moscow, ID 83844, USA
| | - K J Thornton
- Department of Animal, Dairy and Veterinary Science, Utah State University, 4815 Old Main Hill, Logan, UT 84322, USA.
| |
Collapse
|
47
|
Ramaiyan B, Zarei M, Acharya P, Talahalli RR. Dietary n-3 but not n-6 fatty acids modulate anthropometry and fertility indices in high-fat diet fed rats: a two-generation study. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:349-355. [PMID: 33505079 PMCID: PMC7813903 DOI: 10.1007/s13197-020-04548-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/08/2020] [Accepted: 05/21/2020] [Indexed: 11/30/2022]
Abstract
The present study assessed the modulatory potentials of dietary n-3 [α-linolenic acid (ALA, 18:3n-3, eicosapentaenoic acid (EPA, 20:5n-3 + docosahexaenoic acid (DHA) 22:6n-3), and n-6 fatty acid (LA, 18:2n-6)] on anthropometric parameters and fertility indices in high-fat-fed rats. Weanling female Wistar rats were fed with control diet (7% lard), high-fat diet (35% lard, HFL), high-fat with fish oil (21% fish oil + 14% lard, HFF), high-fat with canola oil (21% canola oil + 14% lard, HFC) and high-fat with sunflower oil (21% sunflower oil + 14% lard, HFS) for 2 months, mated and continued on their diets during pregnancy. At gestation day 18-20, the intra-uterine environment was examined in representative rats, and the rest were allowed for delivering pups. The pups after lactation were subjected to mating and feeding trials as above. Growth parameters (body weight, body length (BL), abdominal circumference (AC), thoracic circumference (TC), and Lee index and fertility parameters (litter size and sex ratio) were studied. Feeding HFL diet increased BL (16%), AC (33%) and TC (21%) compared to control (p < 0.05). Adipose tissue accumulation was 11% higher in the HFL group compared to control and was lowered with n-3 fatty acid incorporation in the diet. HFL group exhibited a lower percentage of fertility, pregnancy, and delivery indices. Litter size was decreased by 20%, and litter weight was increased by 23% in HFL group compared to control with more male pups. Our study indicated that n-3 to a larger extent than n-6 fatty acids modulated high-fat induced changes in the anthropometric parameters and fertility indices.
Collapse
Affiliation(s)
- Breetha Ramaiyan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020 India
| | - Mehrdad Zarei
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020 India
| | - Pooja Acharya
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020 India
| | | |
Collapse
|
48
|
Satokar VV, Cutfield WS, Derraik JGB, Harwood M, Okasene-Gafa K, Beck K, Cameron-Smith D, O'Sullivan JM, Sundborn G, Pundir S, Mason RP, Albert BB. Double-blind RCT of fish oil supplementation in pregnancy and lactation to improve the metabolic health in children of mothers with overweight or obesity during pregnancy: study protocol. BMJ Open 2020; 10:e041015. [PMID: 33323442 PMCID: PMC7745511 DOI: 10.1136/bmjopen-2020-041015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION Maternal obesity during pregnancy is associated with adverse changes in body composition and metabolism in the offspring. We hypothesise that supplementation during pregnancy of overweight and obese women may help prevent the development of greater adiposity and metabolic dysfunction in children. Previous clinical trials investigating fish oil supplementation in pregnancy on metabolic outcomes and body composition of the children have not focused on the pregnancies of overweight or obese women. METHODS AND ANALYSIS A double-blind randomised controlled trial of fish oil (providing 3 g/day of n-3 polyunsaturated fatty acids) versus an equal volume of olive oil (control) taken daily from recruitment until birth, and in breastfeeding mothers, further continued for 3 months post partum. Eligible women will have a singleton pregnancy at 12-20 weeks' gestation and be aged 18-40 years with body mass index ≥25 kg/m2 at baseline. We aim to recruit a minimum of 128 participants to be randomised 1:1. Clinical assessments will be performed at baseline and 30 weeks of pregnancy, including anthropometric measurements, fasting metabolic markers, measures of anxiety, physical activity, quality of life and dietary intake. Subsequent assessments will be performed when the infant is 2 weeks, 3 months and 12 months of age for anthropometry, body composition (dual-energy X-ray absorptiometry (DXA)) and blood sampling. The primary outcome of the study is a between-group difference in infant percentage body fatness, assessed by DXA, at 2 weeks of age. Secondary outcomes will include differences in anthropometric measures at each time point, percentage body fat at 3 and 12 months and homeostatic model assessment of insulin resistance at 3 months. Statistical analysis will be carried out on the principle of intention to treat. ETHICS AND DISSEMINATION This trial was approved by the Northern A Health and Disabilities Ethics Committee, New Zealand Ministry of Health (17/NTA/154). Results will be published in a peer-reviewed journal. TRIAL REGISTRATION NUMBER ACTRN12617001078347p; Pre-results.
Collapse
Affiliation(s)
- Vidit V Satokar
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Wayne S Cutfield
- Liggins Institute, University of Auckland, Auckland, New Zealand
- A Better Start - National Science Challenge, University of Auckland, Auckland, New Zealand
| | - José G B Derraik
- Liggins Institute, University of Auckland, Auckland, New Zealand
- A Better Start - National Science Challenge, University of Auckland, Auckland, New Zealand
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Matire Harwood
- National Hauora Coalition, Auckland, New Zealand
- Te Kupenga Hauora Māori Teaching, University of Auckland, Auckland, New Zealand
| | - Karaponi Okasene-Gafa
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Kathryn Beck
- School of Sport Exercise and Nutrition, Massey University, Auckland, New Zealand
| | - David Cameron-Smith
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | | | - Gerhard Sundborn
- Department of Pacific Health, University of Auckland, Auckland, New Zealand
| | - Shikha Pundir
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - R Preston Mason
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin B Albert
- Liggins Institute, University of Auckland, Auckland, New Zealand
- A Better Start - National Science Challenge, University of Auckland, Auckland, New Zealand
| |
Collapse
|
49
|
Abstract
Importance The pandemic of obesity during pregnancy now afflicts 1 out of every 2 pregnant women in the United States. Even though unintended pregnancy has decreased to 45% of all pregnancies, 50% of those unintended pregnancies occur in obese women. Objective This study aims to identify why current lifestyle interventions for obese pregnancy are not effective and what the newer complications are for obesity during pregnancy. Evidence Acquisition Available literatures on current treatments for maternal obesity were reviewed for effectiveness. Emerging maternal and infant complications from obesity during pregnancy were examined for significance. Results Limitations in successful interventions fell into 3 basic categories to include the following: (1) preconception weight loss; (2) bariatric surgery before pregnancy; and (3) prevention of excessive gestational weight gain during pregnancy. Emerging significant physiological changes from maternal obesity is composed of inflammation (placenta and human milk), metabolism (hormones, microbiome, fatty acids), and offspring outcomes (body composition, congenital malformations, chronic kidney disease, asthma, neurodevelopment, and behavior). Conclusions and Relevance Are current prepregnancy lifestyle and behavioral interventions feasible to prevent maternal obesity complications? Epigenetic and metabolomic research will be critical to determine what is needed to blunt the effects of maternal obesity and to discover successful treatment.
Collapse
|
50
|
bta-miR-23a Regulates the Myogenic Differentiation of Fetal Bovine Skeletal Muscle-Derived Progenitor Cells by Targeting MDFIC Gene. Genes (Basel) 2020; 11:genes11101232. [PMID: 33092227 PMCID: PMC7588927 DOI: 10.3390/genes11101232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/30/2020] [Accepted: 10/17/2020] [Indexed: 12/03/2022] Open
Abstract
miR-23a, a member of the miR-23a/24-2/27a cluster, has been demonstrated to play pivotal roles in many cellular activities. However, the mechanisms of how bta-miR-23a controls the myogenic differentiation (MD) of PDGFRα− bovine progenitor cells (bPCs) remain poorly understood. In the present work, bta-miR-23a expression was increased during the MD of PDGFRα− bPCs. Moreover, bta-miR-23a overexpression significantly promoted the MD of PDGFRα− bPCs. Luciferase reporter assays showed that the 3’-UTR region of MDFIC (MyoD family inhibitor domain containing) could be a promising target of bta-miR-23a, which resulted in its post-transcriptional down-regulation. Additionally, the knockdown of MDFIC by siRNA facilitated the MD of PDGFRα− bPCs, while the overexpression of MDFIC inhibited the activating effect of bta-miR-23a during MD. Of note, MDFIC might function through the interaction between MyoG transcription factor and MEF2C promoter. This study reveals that bta-miR-23a can promote the MD of PDGFRα− bPCs through post-transcriptional downregulation of MDFIC.
Collapse
|