1
|
Hazim S, Seki S, Yabushita R, Nagae M, Tsuchida H, Hirabayashi M, Uenoyama Y, Tsukamura H, Inoue N. AVPV Kiss1 neuron-specific knockdown of purinergic P2X2 receptor suppresses LH surge and ovulation in Kiss1-Cre rats. J Reprod Dev 2024; 70:379-388. [PMID: 39428487 DOI: 10.1262/jrd.2024-046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
Ovulation disorders are a major cause of low pregnancy rates and infertility in humans and livestock. Kisspeptin neurons located in the anteroventral periventricular nucleus (AVPV) are responsible for the generation of the gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) surge and the consequent ovulation in female rodents. The present study aimed to examine whether purinergic neurons are direct upstream stimulators of AVPV kisspeptin neurons that trigger the GnRH/LH surge and consequent ovulation in Kiss1-Cre rats. We specifically knocked down the mRNA expression of the P2rx2 purinergic receptor in AVPV kisspeptin neurons by administering an adeno-associated virus (AAV) vector containing Cre-dependent P2rx2 short hairpin RNA (shRNA) into the AVPV region of ovariectomized (OVX) Kiss1-Cre rats treated with a proestrus level of estradiol-17β (OVX + high E2) or ovary-intact Kiss1-Cre rats. The E2-induced afternoon LH surge was significantly suppressed by AVPV kisspeptin neuron-specific knockdown of P2rx2 in OVX + high E2 Kiss1-Cre rats compared with scrambled shRNA-treated control OVX + high E2 Kiss1-Cre rats. Furthermore, the specific knockdown of P2rx2 in AVPV kisspeptin neurons largely disrupted the estrous cycle, spontaneous LH surge, and ovulation in ovary-intact Kiss1-Cre rats. These findings suggest that purinergic neurons directly stimulate AVPV kisspeptin neurons via P2X2 receptors (P2RX2) to induce the GnRH/LH surge and consequent ovulation in female rats.
Collapse
Affiliation(s)
- Safiullah Hazim
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Shunsuke Seki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Ryoya Yabushita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Mayuko Nagae
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hitomi Tsuchida
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Masumi Hirabayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi 444-8787, Japan
| | - Yoshihisa Uenoyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Naoko Inoue
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
2
|
Ahern DF, Martins K, Flórez JM, Ross CE, Huisman A, Cushman RA, Shuping SL, Nestor CC, Desaulniers AT, White BR, Sonstegard TS, Lents CA. Development of KISS1 knockout pigs is characterized by hypogonadotropic hypogonadism, normal growth, and reduced skatole†. Biol Reprod 2024; 111:1082-1096. [PMID: 39375014 DOI: 10.1093/biolre/ioae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/23/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024] Open
Abstract
Kisspeptin is a major regulator of gonadotropin secretion in pigs. Previously, CRISPR/Cas9 knockout of KISS1 was used to develop a mosaic parental line of pigs to generate offspring that would not need castration due to loss of kisspeptin. The current goal was to characterize growth and reproductive development of F1 pigs from this parental line. Body weights, gonadotropin concentrations and gonadal development were measured from birth through development (boars to 220 days of age, n = 42; gilts to 160 days of age, n = 36). Testosterone, skatole, and androstenone were also measured in boars. Blood samples were collected by jugular venipuncture for quantification of serum hormones, gonadal tissues were collected for gross morphology and histology, and a fat biopsy was collected (boars) for skatole and androstenone analysis. Body weight did not differ with genotype. There were no differences between KISS1+/+ and heterozygote KISS1+/- animals for most parameters measured. Gonadotropin concentrations were reduced in KISS1-/- boars and gilts compared with KISS1+/+ and KISS1+/- animals (P < 0.05). Concentrations of testosterone in serum and both androstenone and skatole in adipose were less in KISS1-/- boars than in KISS1+/+ and KISS1+/- boars (P < 0.05). Hypogonadism was present in all KISS1-/- gilts and boars. These data indicate that knocking out KISS1 causes hypogonadotropic hypogonadism but does not negatively affect growth in pigs. Only one KISS1 allele is needed for normal gonadotropin secretion and gonadal development, and accumulation of compounds in adipose leading to boar taint.
Collapse
Affiliation(s)
- Daniel F Ahern
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583-0908, USA
| | - Kyra Martins
- Acceligen Inc., 3388 Mike Collins Drive, Eagan, MN 55121, USA
| | - Julio M Flórez
- Acceligen Inc., 3388 Mike Collins Drive, Eagan, MN 55121, USA
- Department of Preventive Veterinary Medicine and Animal Reproduction, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), 14884-900 Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, Brazil
| | - Caitlin E Ross
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583-0908, USA
| | - Abe Huisman
- Hypor, Hendrix Genetics, Villa `de Körver', Spoorstraat 69, 5831 CK Boxmeer, Netherlands
| | - Robert A Cushman
- United States Department of Agriculture (USDA), Agriculture Research Service (ARS), U.S. Meat Animal Research Center, Livestock Bio-systems Research Unit, Clay Center, NE 68933-0165, USA
| | - Sydney L Shuping
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695-7621, USA
| | - Casey C Nestor
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695-7621, USA
| | - Amy T Desaulniers
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583-0905, USA
| | - Brett R White
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583-0908, USA
| | | | - Clay A Lents
- United States Department of Agriculture (USDA), Agriculture Research Service (ARS), U.S. Meat Animal Research Center, Livestock Bio-systems Research Unit, Clay Center, NE 68933-0165, USA
| |
Collapse
|
3
|
Joy KP, Chaube R. Kisspeptin control of hypothalamus-pituitary-ovarian functions. VITAMINS AND HORMONES 2024; 127:153-206. [PMID: 39864941 DOI: 10.1016/bs.vh.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The discovery of Kisspeptin (Kiss) has opened a new direction in research on neuroendocrine control of reproduction in vertebrates. Belonging to the RF amide family of peptides, Kiss and its cognate receptor Gpr54 (Kissr) have a long and complex evolutionary history. Multiple forms of Kiss and Kissr are identified in non-mammalian vertebrates, with the exception of birds, and monotreme mammals. However, only a single form of the ligand (KISS1/Kiss1) and receptor (KISS1R/Kiss1r) is retained in higher mammals. Kiss1 is distributed in the hypothalamus-pituitary-gonadal (HPG) axis and its primary function is to stimulate gonadotropin-releasing hormone (GnRH) secretion. Kiss1 neurons are distributed in the rostral periventricular area of the third ventricle (RP3V) and arcuate/infundibular nucleus (ARN/IFN). The ARN/IFN is considered the GnRH pulse generator controlled by steroid negative feedback, and the RP3V neurons is concerned with GnRH surge induced by steroid positive feedback in females. The Kiss1-Kiss1r signaling is important in all aspects of reproduction: puberty onset, maintenance of adult gonadal functions and reproductive aging, and hence assumes therapeutic potentials in the treatment of reproductive dysfunctions and induction of artificial reproduction. This chapter reviews involvement of Kiss1 in the control of the HPG axis functions in female mammals.
Collapse
Affiliation(s)
- K P Joy
- Retired Professor, Department of Zoology, Banaras Hindu University, Varanasi, Uttar pradesh, India.
| | - R Chaube
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar pradesh, India
| |
Collapse
|
4
|
Mashiko D, Tokoro M, Yao T, Yamagata K. Intraperitoneal administration of mouse kisspeptin-10 to mice during estrus stage induces pseudopregnancy. Genes Cells 2023; 28:906-914. [PMID: 37886801 DOI: 10.1111/gtc.13077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
A simple method for producing pseudopregnant mice supports pup production. In this study, pregnant ICR were obtained mice without mating with vasectomized mice via administration of mouse Kisspeptin-10 (mKp-10) and transferring blastocysts to the uterus. Blastocyst transfer after mKp-10 administration to mice with gapping and reddish pink vagina resulted in 65.2% (15/23) pregnancies, and 39.1% (34/87) of the transferred blastocysts showed full-term growth. Vaginal smears were observed for accurate estrus cycle determination, and subsequent administration of mKp10 to mice during the estrus stage and blastocyst transfer resulted in 95.2% (20/21) pregnancies and 50.7% (104/205) birth rates. Regarding 2-cell transfer after administration of mKp-10, 100% (8/8) of the mice became pregnant, and 45.0% (36/80) of the embryos were born. Administration of mKp-10 to mice during the estrus stage is a convenient way to generate pseudopregnant mice.
Collapse
Affiliation(s)
- Daisuke Mashiko
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Mikiko Tokoro
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
- Asada Institute for Reproductive Medicine, Asada Ladies Clinic, Nagoya, Japan
| | - Tatsuma Yao
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
- Research and Development Center, Fuso Pharmaceutical Industries, Ltd., Osaka, Japan
| | - Kazuo Yamagata
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| |
Collapse
|
5
|
Shi H, Yan Z, Du H, Tang Y, Song K, Yang Q, Huang X, Wang P, Gao X, Yang J, Gun S. Regulatory Effects of the Kiss1 Gene in the Testis on Puberty and Reproduction in Hezuo and Landrance Boars. Int J Mol Sci 2023; 24:16700. [PMID: 38069021 PMCID: PMC10705963 DOI: 10.3390/ijms242316700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Kisspeptin, a neuropeptide encoded by the Kiss1 gene, combines with its receptor Kiss1R to regulate the onset of puberty and male fertility by the hypothalamic-pituitary-gonadal axis. However, little is known regarding the expression signatures and molecular functions of Kiss1 in the testis. H&E staining revealed that well-arranged spermatogonia, spermatocytes, round and elongated spermatids, and spermatozoa, were observed in 4-, 6-, and 8-month-old testes compared to 1- and 3-month-old testes of Hezuo pigs; however, these were not observed in Landrance until 6 months. The diameter, perimeter, and cross-sectional area of seminiferous tubules and the perimeter and area of the tubular lumen increased gradually with age in both pigs. Still, Hezuo pigs grew faster than Landrance. The cloning results suggested that the Hezuo pigs' Kiss1 CDS region is 417 bp in length, encodes 138 amino acids, and is highly conserved in the kisspeptin-10 region. qRT-PCR and Western blot indicated that the expression trends of Kiss1 mRNA and protein were essentially identical, with higher expression levels at post-pubertal stages. Immunohistochemistry demonstrated that the Kiss1 protein was mainly located in Leydig cells and post-pubertal spermatogenic cells, ranging from round spermatids to spermatozoa. These studies suggest that Kiss1 is an essential regulator in the onset of puberty and spermatogenesis of boars.
Collapse
Affiliation(s)
- Haixia Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Hong Du
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuran Tang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Kelin Song
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaoli Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiaojiao Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Research Center for Swine Production Engineering and Technology, Lanzhou 730070, China
| |
Collapse
|
6
|
Yamada K, Nagae M, Mano T, Tsuchida H, Hazim S, Goto T, Sanbo M, Hirabayashi M, Inoue N, Uenoyama Y, Tsukamura H. Sex difference in developmental changes in visualized Kiss1 neurons in newly generated Kiss1-Cre rats. J Reprod Dev 2023; 69:227-238. [PMID: 37518187 PMCID: PMC10602768 DOI: 10.1262/jrd.2023-019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
Hypothalamic kisspeptin neurons are master regulators of mammalian reproduction via direct stimulation of gonadotropin-releasing hormone and consequent gonadotropin release. Here, we generated novel Kiss1 (kisspeptin gene)-Cre rats and investigated the developmental changes and sex differences in visualized Kiss1 neurons of Kiss1-Cre-activated tdTomato reporter rats. First, we validated Kiss1-Cre rats by generating Kiss1-expressing cell-specific Kiss1 knockout (Kiss1-KpKO) rats, which were obtained by crossing the current Kiss1-Cre rats with Kiss1-floxed rats. The resulting male Kiss1-KpKO rats lacked Kiss1 expression in the brain and exhibited hypogonadotropic hypogonadism, similar to the hypogonadal phenotype of global Kiss1 KO rats. Histological analysis of Kiss1 neurons in Kiss1-Cre-activated tdTomato reporter rats revealed that tdTomato signals in the anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC) were not affected by estrogen, and that tdTomato signals in the ARC, AVPV, and medial amygdala (MeA) were sexually dimorphic. Notably, neonatal AVPV tdTomato signals were detected only in males, but a larger number of tdTomato-expressing cells were detected in the AVPV and ARC, and a smaller number of cells in the MeA was detected in females than in males at postpuberty. These findings suggest that Kiss1-visualized rats can be used to examine the effect of estrogen feedback mechanisms on Kiss1 expression in the AVPV and ARC. Moreover, the Kiss1-Cre and Kiss1-visualized rats could be valuable tools for further detailed analyses of sexual differentiation in the brain and the physiological role of kisspeptin neurons across the brain in rats.
Collapse
Affiliation(s)
- Koki Yamada
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Mayuko Nagae
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Tetsuya Mano
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Hitomi Tsuchida
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Safiullah Hazim
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Teppei Goto
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi 444-8787, Japan
| | - Makoto Sanbo
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi 444-8787, Japan
| | - Masumi Hirabayashi
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi 444-8787, Japan
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| |
Collapse
|
7
|
Uenoyama Y, Tsukamura H. KNDy neurones and GnRH/LH pulse generation: Current understanding and future aspects. J Neuroendocrinol 2023; 35:e13285. [PMID: 37232103 DOI: 10.1111/jne.13285] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/31/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
Uncovering the central mechanism underlying mammalian reproduction is warranted to develop new therapeutic approaches for reproductive disorders in humans and domestic animals. The present study focused on the role of arcuate kisspeptin neurones (also known as KNDy neurones) as an intrinsic gonadotropin-releasing hormone (GnRH) pulse generator, which plays a fundamental role in mammalian reproduction via the stimulation of pituitary gonadotropin synthesis and release and thereby in gametogenesis and steroidogenesis in the gonads of mammals. We also discuss the mechanism that inhibits pulsatile GnRH/gonadotropin release under a negative energy balance, considering that reproductive disorders often occur during malnutrition in humans and livestock.
Collapse
Affiliation(s)
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Nagoya University, Nagoya, Japan
| |
Collapse
|
8
|
Magata F, Tsukamura H, Matsuda F. The impact of inflammatory stress on hypothalamic kisspeptin neurons: Mechanisms underlying inflammation-associated infertility in humans and domestic animals. Peptides 2023; 162:170958. [PMID: 36682622 DOI: 10.1016/j.peptides.2023.170958] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/27/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Inflammatory diseases attenuate reproductive functions in humans and domestic animals. Lipopolysaccharide (LPS), an endotoxin released by bacteria, is known to disrupt female reproductive functions in various inflammatory diseases. LPS administration has been used to elucidate the impact of pathophysiological activation of the immune system on reproduction. Hypothalamic kisspeptin neurons are the master regulators of mammalian reproduction, mediating direct stimulation of hypothalamic gonadotropin-releasing hormone (GnRH) release and consequent release of gonadotropins, such as luteinizing hormone (LH) and follicle-stimulating hormone from the pituitary. The discovery of kisspeptin neurons in the mammalian hypothalamus has drastically advanced our understanding of how inflammatory stress causes reproductive dysfunction in both humans and domestic animals. Inflammation-induced ovarian dysfunction could be caused, at least partly, by aberrant GnRH and LH secretion, which is regulated by kisspeptin signaling. In this review, we focus on the effects of LPS on hypothalamic kisspeptin neurons to outline the impact of inflammatory stress on neuroendocrine regulation of mammalian reproductive systems. First, we summarize the attenuation of female reproduction by LPS during inflammation and the effects of LPS on ovarian and pituitary function. Second, we outline the inhibitory effects of LPS on pulsatile- and surge-mode GnRH/LH release. Third, we discuss the LPS-responsive hypothalamic-pituitary-adrenal axis and hypothalamic neural systems in terms of the cytokine-mediated pathway and the possible direct action of LPS via its hypothalamic receptors. This article describes the impact of LPS on hypothalamic kisspeptin neurons and the possible mechanisms underlying LPS-mediated disruption of LH pulses/surge via kisspeptin neurons.
Collapse
Affiliation(s)
- Fumie Magata
- Department of Veterinary Medical Sciences, the University of Tokyo, Tokyo 113-8657, Japan.
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan.
| | - Fuko Matsuda
- Department of Veterinary Medical Sciences, the University of Tokyo, Tokyo 113-8657, Japan.
| |
Collapse
|
9
|
Kim HD, Kim YJ, Jang M, Bae SG, Yun SH, Lee MR, Seo YR, Cho JK, Kim SJ, Lee WJ. Heat Stress during Summer Attenuates Expression of the Hypothalamic Kisspeptin, an Upstream Regulator of the Hypothalamic-Pituitary-Gonadal Axis, in Domestic Sows. Animals (Basel) 2022; 12:2967. [PMID: 36359090 PMCID: PMC9657376 DOI: 10.3390/ani12212967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2023] Open
Abstract
The release of reproductive hormones in the hypothalamic-pituitary-gonadal (HPG) axis is regulated by its upstream regulator, kisspeptin, and influenced by external stresses, including heat stress. Since the effect of heat stress (summer infertility) on hypothalamic kisspeptin expression in domestic sows is not yet understood, the present study attempted to identify changes in kisspeptin expression in different seasons (summer and spring). The high atmospheric temperature in summer decreased the pregnancy rate and litter size and increased stress-related hormones as a chronic stressor to domestic sows. The hypothalamic kisspeptin expression in summer was decreased regardless of the estrus phase and negatively correlated with atmospheric temperature, indicating that high temperature decreased kisspeptin. When the activity of hypothalamic kisspeptin neurons in the follicular phase was assessed using c-Fos staining, a decreased number of kisspeptin neurons coexpressing c-Fos was observed in domestic sows in summer. Accordingly, lower expression of kisspeptin induced decreased levels of HPG axis-related reproductive hormones, such as gonadotropins and estrogen, and fewer large ovarian follicles. In conclusion, the present study demonstrated that reduced kisspeptin expression and its neuronal activity in the hypothalamus under heat stress in summer induced downregulation of the HPG axis and caused summer infertility in domestic sows.
Collapse
Affiliation(s)
- Hwan-Deuk Kim
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
- Department of Veterinary Research, Daegu Metropolitan City Institute of Health & Environment, Daegu 42183, Korea
| | - Young-Jong Kim
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Min Jang
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Seul-Gi Bae
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Sung-Ho Yun
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Mi-Ree Lee
- Department of Veterinary Research, Daegu Metropolitan City Institute of Health & Environment, Daegu 42183, Korea
| | - Yong-Ryul Seo
- Department of Veterinary Research, Daegu Metropolitan City Institute of Health & Environment, Daegu 42183, Korea
| | - Jae-Keun Cho
- Department of Veterinary Research, Daegu Metropolitan City Institute of Health & Environment, Daegu 42183, Korea
| | - Seung-Joon Kim
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
- Institute of Equine Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Won-Jae Lee
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
- Institute of Equine Medicine, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
10
|
Uenoyama Y, Tsuchida H, Nagae M, Inoue N, Tsukamura H. Opioidergic pathways and kisspeptin in the regulation of female reproduction in mammals. Front Neurosci 2022; 16:958377. [PMID: 36033602 PMCID: PMC9404872 DOI: 10.3389/fnins.2022.958377] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Endogenous opioid peptides have attracted attention as critical neuropeptides in the central mechanism regulating female reproduction ever since the discovery that arcuate dynorphin neurons that coexpress kisspeptin and neurokinin B (NKB), which are also known as kisspeptin/neurokinin B/dynorphin (KNDy) neurons, play a role as a master regulator of pulsatile gonadotropin-releasing hormone (GnRH) release in mammals. In this study, we first focus on the role of dynorphin released by KNDy neurons in the GnRH pulse generation. Second, we provide a historical overview of studies on endogenous opioid peptides. Third, we discuss how endogenous opioid peptides modulate tonic GnRH/gonadotropin release in female mammals as a mediator of inhibitory internal and external cues, such as ovarian steroids, nutritional status, or stress, on reproduction. Then, we discuss the role of endogenous opioid peptides in GnRH surge generation in female mammals.
Collapse
|
11
|
Goodman RL, Herbison AE, Lehman MN, Navarro VM. Neuroendocrine control of gonadotropin-releasing hormone: Pulsatile and surge modes of secretion. J Neuroendocrinol 2022; 34:e13094. [PMID: 35107859 PMCID: PMC9948945 DOI: 10.1111/jne.13094] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/28/2022]
Abstract
The concept that different systems control episodic and surge secretion of gonadotropin-releasing hormone (GnRH) was well established by the time that GnRH was identified and formed the framework for studies of the physiological roles of GnRH, and later kisspeptin. Here, we focus on recent studies identifying the neural mechanisms underlying these two modes of secretion, with an emphasis on their core components. There is now compelling data that kisspeptin neurons in the arcuate nucleus that also contain neurokinin B (NKB) and dynorphin (i.e., KNDy cells) and their projections to GnRH dendrons constitute the GnRH pulse generator in mice and rats. There is also strong evidence for a similar role for KNDy neurons in sheep and goats, and weaker data in monkeys and humans. However, whether KNDy neurons act on GnRH dendrons and/or GnRH soma and dendrites that are found in the mediobasal hypothalamus (MBH) of these species remains unclear. The core components of the GnRH/luteinising hormone surge consist of an endocrine signal that initiates the process and a neural trigger that drives GnRH secretion during the surge. In all spontaneous ovulators, the core endocrine signal is a rise in estradiol secretion from the maturing follicle(s), with the site of estrogen positive feedback being the rostral periventricular kisspeptin neurons in rodents and neurons in the MBH of sheep and primates. There is considerable species variations in the neural trigger, with three major classes. First, in reflex ovulators, this trigger is initiated by coitus and carried to the hypothalamus by neural or vascular pathways. Second, in rodents, there is a time of day signal that originates in the suprachiasmatic nucleus and activates rostral periventricular kisspeptin neurons and GnRH soma and dendrites. Finally, in sheep nitric oxide-producing neurons in the ventromedial nucleus, KNDy neurons and rostral kisspeptin neurons all appear to participate in driving GnRH release during the surge.
Collapse
Affiliation(s)
- Robert L. Goodman
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - Allan E. Herbison
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Michael N. Lehman
- Brain Health Research Institute, Kent State University, Kent, OH, USA
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Victor M. Navarro
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School and Department of Medicine, Boston, MA, USA
| |
Collapse
|
12
|
Tsukamura H. Kobayashi Award 2019: The neuroendocrine regulation of the mammalian reproduction. Gen Comp Endocrinol 2022; 315:113755. [PMID: 33711315 DOI: 10.1016/j.ygcen.2021.113755] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 02/05/2023]
Abstract
Mammalian reproductive function is a complex system of many players orchestrated by the hypothalamus-pituitary-gonadal (HPG) axis. The hypothalamic gonadotropin-releasing hormone (GnRH) and the consequent pituitary gonadotropin release show two modes of secretory patterns, namely the surge and pulse modes. The surge mode is triggered by the positive feedback action of estrogen secreted from the mature ovarian follicle to induce ovulation in females of most mammalian species. The pulse mode of GnRH release is required for stimulating tonic gonadotropin secretion to drive folliculogenesis, spermatogenesis and steroidogenesis and is negatively fine-tuned by the sex steroids. Accumulating evidence suggests that hypothalamic kisspeptin neurons are the master regulator for animal reproduction to govern the HPG axis. Specifically, kisspeptin neurons located in the anterior hypothalamus, such as the anteroventral periventricular nucleus (AVPV) in rodents and preoptic nucleus (POA) in ruminants, primates and others, and the neurons located in the arcuate nucleus (ARC) in posterior hypothalamus in most mammals are considered to play a key role in generating the surge and pulse modes of GnRH release, respectively. The present article focuses on the role of AVPV (or POA) kisspeptin neurons as a center for GnRH surge generation and of the ARC kisspeptin neurons as a center for GnRH pulse generation to mediate estrogen positive and negative feedback mechanisms, respectively, and discusses how the estrogen epigenetically regulates kisspeptin gene expression in these two populations of neurons. This article also provides the mechanism how malnutrition and lactation suppress GnRH/gonadotropin pulses through an inhibition of the ARC kisspeptin neurons. Further, the article discusses the programming effect of estrogen on kisspeptin neurons in the developmental brain to uncover the mechanism underlying the sex difference in GnRH/gonadotropin release as well as an irreversible infertility induced by supra-physiological estrogen exposure in rodent models.
Collapse
Affiliation(s)
- Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
| |
Collapse
|
13
|
Jamieson BB, Moore AM, Lohr DB, Thomas SX, Coolen LM, Lehman MN, Campbell RE, Piet R. Prenatal androgen treatment impairs the suprachiasmatic nucleus arginine-vasopressin to kisspeptin neuron circuit in female mice. Front Endocrinol (Lausanne) 2022; 13:951344. [PMID: 35992143 PMCID: PMC9388912 DOI: 10.3389/fendo.2022.951344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/06/2022] [Indexed: 01/13/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is associated with elevated androgen and luteinizing hormone (LH) secretion and with oligo/anovulation. Evidence indicates that elevated androgens impair sex steroid hormone feedback regulation of pulsatile LH secretion. Hyperandrogenemia in PCOS may also disrupt the preovulatory LH surge. The mechanisms through which this might occur, however, are not fully understood. Kisspeptin (KISS1) neurons of the rostral periventricular area of the third ventricle (RP3V) convey hormonal cues to gonadotropin-releasing hormone (GnRH) neurons. In rodents, the preovulatory surge is triggered by these hormonal cues and coincident timing signals from the central circadian clock in the suprachiasmatic nucleus (SCN). Timing signals are relayed to GnRH neurons, in part, via projections from SCN arginine-vasopressin (AVP) neurons to RP3VKISS1 neurons. Because rodent SCN cells express androgen receptors (AR), we hypothesized that these circuits are impaired by elevated androgens in a mouse model of PCOS. In prenatally androgen-treated (PNA) female mice, SCN Ar expression was significantly increased compared to that found in prenatally vehicle-treated mice. A similar trend was seen in the number of Avp-positive SCN cells expressing Ar. In the RP3V, the number of kisspeptin neurons was preserved. Anterograde tract-tracing, however, revealed reduced SCNAVP neuron projections to the RP3V and a significantly lower proportion of RP3VKISS1 neurons with close appositions from SCNAVP fibers. Functional assessments showed, on the other hand, that RP3VKISS1 neuron responses to AVP were maintained in PNA mice. These findings indicate that PNA changes some of the neural circuits that regulate the preovulatory surge. These impairments might contribute to ovulatory dysfunction in PNA mice modeling PCOS.
Collapse
Affiliation(s)
- Bradley B. Jamieson
- Centre for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Aleisha M. Moore
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Dayanara B. Lohr
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Simone X. Thomas
- Centre for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Lique M. Coolen
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Michael N. Lehman
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Rebecca E. Campbell
- Centre for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Richard Piet
- Centre for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin, New Zealand
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH, United States
- *Correspondence: Richard Piet,
| |
Collapse
|
14
|
Hypothalamic kisspeptin and kisspeptin receptors: Species variation in reproduction and reproductive behaviours. Front Neuroendocrinol 2022; 64:100951. [PMID: 34757093 DOI: 10.1016/j.yfrne.2021.100951] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/22/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023]
Abstract
Kisspeptin, encoded by the KISS1 gene, was first discovered as a potential metastasis suppressor gene. The prepro-kisspeptin precursor is cleaved into shorter mature bioactive peptides of varying sizes that bind to the G protein-coupled receptor GPR54 (=KISS1R). Over the last two decades, multiple types of Kiss and KissR genes have been discovered in mammalian and non-mammalian vertebrate species, but they are remarkably absent in birds. Kiss neuronal populations are distributed mainly in the hypothalamus. The KissRs are widely distributed in the brain, including the hypothalamic and non-hypothalamic regions, such as the hippocampus, amygdala, and habenula. The role of KISS1-KISS1R in humans and Kiss1-Kiss1R in rodents is associated with puberty, gonadal maturation, and the reproductive axis. However, recent gene deletion studies in zebrafish and medaka have provided controversial results, suggesting that the reproductive role of kiss is dispensable. This review highlights the evolutionary history, localisation, and significance of Kiss-KissR in reproduction and reproductive behaviours in mammalian and non-mammalian vertebrates.
Collapse
|
15
|
Zhao S, Guo Z, Xiang W, Wang P. The neuroendocrine pathways and mechanisms for the control of the reproduction in female pigs. Anim Reprod 2021; 18:e20210063. [PMID: 34925558 PMCID: PMC8677349 DOI: 10.1590/1984-3143-ar2021-0063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/10/2021] [Indexed: 01/05/2024] Open
Abstract
Within the hypothalamic-pituitary-gonad (HPG) axis, the major hierarchical component is gonadotropin-releasing hormone (GnRH) neurons, which directly or indirectly receive regulatory inputs from a wide array of regulatory signals and pathways, involving numerous circulating hormones, neuropeptides, and neurotransmitters, and which operate as a final output for the brain control of reproduction. In recent years, there has been an increasing interest in neuropeptides that have the potential to stimulate or inhibit GnRH in the hypothalamus of pigs. Among them, Kisspeptin is a key component in the precise regulation of GnRH neuron secretion activity. Besides, other neuropeptides, including neurokinin B (NKB), neuromedin B (NMB), neuromedin S (NMS), α-melanocyte-stimulating hormone (α-MSH), Phoenixin (PNX), show potential for having a stimulating effect on GnRH neurons. On the contrary, RFamide-related peptide-3 (RFRP-3), endogenous opioid peptides (EOP), neuropeptide Y (NPY), and Galanin (GAL) may play an inhibitory role in the regulation of porcine reproductive nerves and may directly or indirectly regulate GnRH neurons. By combining data from suitable model species and pigs, we aim to provide a comprehensive summary of our current understanding of the neuropeptides acting on GnRH neurons, with a particular focus on their central regulatory pathways and underlying molecular basis.
Collapse
Affiliation(s)
- Shuang Zhao
- College of Bioengineering, Chongqing University, Chongqing, P. R. China
| | - Zongyi Guo
- Chongqing Academy of Animal Sciences, Chongqing, P. R. China
| | - Wei Xiang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Fuling of Chongqing, P. R. China
| | - Pingqing Wang
- College of Bioengineering, Chongqing University, Chongqing, P. R. China
| |
Collapse
|
16
|
Rajin TR, Patra MK, Sheikh PA, Singh AK, Mishra GK, Karikalan M, Singh SK, Kumar H, Gaur GK, Krishnaswamy N. Expression of kisspeptin and its receptor in different functional classes of ovarian follicle in the buffalo (Bubalus bubalis). Theriogenology 2021; 179:87-96. [PMID: 34861556 DOI: 10.1016/j.theriogenology.2021.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/25/2021] [Accepted: 11/19/2021] [Indexed: 12/28/2022]
Abstract
Recently, we reported the differential expression of kisspeptinergic system in the bubaline hypothalamus and corpus luteum. Here, we document the expression of kisspeptin (Kp) and its receptor (Kiss1r) in the ovarian follicles of the buffalo with respect to the functional status. Follicles of ≥10 to ≤13 mm diameter (n = 45) were retrospectively categorized into active (n = 18), intermediate (n = 16) and atretic (n = 11) follicles based on the concentrations of intrafollicular progesterone (P4) and estradiol (E2). The P4:E2 ratio was significantly lower in the active follicle (0.43 ± 0.08) than that of the intermediate (3.46 ± 0.53) and atretic (28.4 ± 10.6) follicles (P < 0.05). Relative fold change in the transcripts of kisspeptin (Kiss1), Kiss1r, gonadotrophin receptors, steroid acute regulatory protein (StAR), cytochrome P450 family 11 subfamily A member 1 (CYP11A1), cytochrome P450 Family 19 subfamily A member 1 (CYP19A1), insulin like growth factor -1 (IGF-1), apoptotic factors (caspase 3 and B-cell lymphoma 2, BCL2) was calculated using qPCR in the follicular wall of the three categories of follicle (n = 8/group). In another experiment, histological sections of the ovary (n = 41) were used to group the follicles as described above and immunostaining of Kp, Kiss1r and aromatase was done. A significant upregulation of StAR, CYP11A1 and CYP19A1 in the active follicles supported the endocrine basis of follicular classification. The transcripts of Kiss1 and Kiss1r were upregulated by 19.45 fold and 4.25 fold, respectively in the active follicle as compared to other groups. Immunolocalization studies revealed that Kp and Kiss1r were localized to the basal and antral granulosa cells (GC) of the active and intermediate follicles; however, the staining intensity was stronger in the former group. Strong expression of CYP19A1 in the GC layer of active follicle supported the histological basis of defining the functional status of the follicle. It is concluded that the follicular compartment of the bubaline ovary expressed the constituents of kisspeptinergic system. The expression of Kp and Kiss1r was influenced by the functional status of the follicle with intense localization in the GC layer of the active follicles.
Collapse
Affiliation(s)
- T R Rajin
- Animal Reproduction Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - M K Patra
- Animal Reproduction Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India; Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India.
| | - Parveez A Sheikh
- Animal Reproduction Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - Amit K Singh
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - Girish K Mishra
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science and Animal Husbandry, Anjora, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya, Durg, 491 001, India
| | - M Karikalan
- Centre for Wildlife Conservation, Management and Disease Surveillance, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - S K Singh
- Animal Reproduction Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - H Kumar
- Animal Reproduction Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - G K Gaur
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - N Krishnaswamy
- Indian Veterinary Research Institute, Hebbal, Bengaluru, 560 024, India
| |
Collapse
|
17
|
Uenoyama Y, Inoue N, Nakamura S, Tsukamura H. Kisspeptin Neurons and Estrogen-Estrogen Receptor α Signaling: Unraveling the Mystery of Steroid Feedback System Regulating Mammalian Reproduction. Int J Mol Sci 2021; 22:ijms22179229. [PMID: 34502135 PMCID: PMC8430864 DOI: 10.3390/ijms22179229] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Estrogen produced by ovarian follicles plays a key role in the central mechanisms controlling reproduction via regulation of gonadotropin-releasing hormone (GnRH) release by its negative and positive feedback actions in female mammals. It has been well accepted that estrogen receptor α (ERα) mediates both estrogen feedback actions, but precise targets had remained as a mystery for decades. Ever since the discovery of kisspeptin neurons as afferent ERα-expressing neurons to govern GnRH neurons, the mechanisms mediating estrogen feedback are gradually being unraveled. The present article overviews the role of kisspeptin neurons in the arcuate nucleus (ARC), which are considered to drive pulsatile GnRH/gonadotropin release and folliculogenesis, in mediating the estrogen negative feedback action, and the role of kisspeptin neurons located in the anteroventral periventricular nucleus-periventricular nucleus (AVPV-PeN), which are thought to drive GnRH/luteinizing hormone (LH) surge and consequent ovulation, in mediating the estrogen positive feedback action. This implication has been confirmed by the studies showing that estrogen-bound ERα down- and up-regulates kisspeptin gene (Kiss1) expression in the ARC and AVPV-PeN kisspeptin neurons, respectively. The article also provides the molecular and epigenetic mechanisms regulating Kiss1 expression in kisspeptin neurons by estrogen. Further, afferent ERα-expressing neurons that may regulate kisspeptin release are discussed.
Collapse
Affiliation(s)
- Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (Y.U.); (N.I.)
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (Y.U.); (N.I.)
| | - Sho Nakamura
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Japan;
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (Y.U.); (N.I.)
- Correspondence:
| |
Collapse
|
18
|
Lindo AN, Thorson JF, Bedenbaugh MN, McCosh RB, Lopez JA, Young SA, Meadows LJ, Bowdridge EC, Fergani C, Freking BA, Lehman MN, Hileman SM, Lents CA. Localization of kisspeptin, NKB, and NK3R in the hypothalamus of gilts treated with the progestin altrenogest. Biol Reprod 2021; 105:1056-1067. [PMID: 34037695 DOI: 10.1093/biolre/ioab103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 11/12/2022] Open
Abstract
Mechanisms in the brain controlling secretion of gonadotropin hormones in pigs, particularly luteinizing hormone (LH), are poorly understood. Kisspeptin is a potent LH stimulant that is essential for fertility in many species, including pigs. Neurokinin B (NKB) acting through neurokinin 3 receptor (NK3R) is involved in kisspeptin-stimulated LH release, but organization of NKB and NK3R within the porcine hypothalamus is unknown. Hypothalamic tissue from ovariectomized (OVX) gilts was used to determine the distribution of immunoreactive kisspeptin, NKB, and NK3R cells in the arcuate nucleus (ARC). Almost all kisspeptin neurons coexpressed NKB in the porcine ARC. Immunostaining for NK3R was distributed throughout the preoptic area (POA) and in several hypothalamic areas including the periventricular and retrochiasmatic areas but was not detected within the ARC. There was no colocalization of NK3R with gonadotropin-releasing hormone (GnRH), but NK3R-positive fibers in the POA were in close apposition to GnRH neurons. Treating OVX gilts with the progestin altrenogest decreased LH pulse frequency and reduced mean circulating concentrations of LH compared with OVX control gilts (P < 0.01), but the number of kisspeptin and NKB cells in the ARC did not differ between treatments. The neuroanatomical arrangement of kisspeptin, NKB, and NK3R within the porcine hypothalamus confirm they are positioned to stimulate GnRH and LH secretion in gilts, though differences with other species exist. Altrenogest suppression of LH secretion in the OVX gilt does not appear to involve decreased peptide expression of kisspeptin or NKB.
Collapse
Affiliation(s)
- Ashley N Lindo
- Department of Physiology and Pharmacology and Department of Neuroscience, West Virginia University, Morgantown, WV, USA
| | | | - Michelle N Bedenbaugh
- Department of Physiology and Pharmacology and Department of Neuroscience, West Virginia University, Morgantown, WV, USA
| | - Richard B McCosh
- Department of Physiology and Pharmacology and Department of Neuroscience, West Virginia University, Morgantown, WV, USA
| | - Justin A Lopez
- Department of Physiology and Pharmacology and Department of Neuroscience, West Virginia University, Morgantown, WV, USA
| | - Samantha A Young
- Department of Physiology and Pharmacology and Department of Neuroscience, West Virginia University, Morgantown, WV, USA
| | - Lanny J Meadows
- Department of Physiology and Pharmacology and Department of Neuroscience, West Virginia University, Morgantown, WV, USA
| | - Elizabeth C Bowdridge
- Department of Physiology and Pharmacology and Department of Neuroscience, West Virginia University, Morgantown, WV, USA
| | - Chrysanthi Fergani
- Department of Neurobiology and Anatomical Sciences, The University of Mississippi Medical Center, Jackson, Miss., USA
| | | | - Michael N Lehman
- Department of Biological Sciences and the Brain Health Research Institute, Kent State University, Kent, OH, USA
| | - Stanley M Hileman
- Department of Physiology and Pharmacology and Department of Neuroscience, West Virginia University, Morgantown, WV, USA
| | - Clay A Lents
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, USA
| |
Collapse
|
19
|
Zmijewska A, Czelejewska W, Drzewiecka EM, Franczak A. Effect of kisspeptin (KISS) and RFamide-related peptide-3 (RFRP-3) on the synthesis and secretion of FSH in vitro by pituitary cells in pigs. Theriogenology 2021; 171:72-84. [PMID: 34044335 DOI: 10.1016/j.theriogenology.2021.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 04/17/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Kisspeptins (KISSs) and RFamide-related peptide-3 (RFRP-3) affect the synthesis and secretion of luteinizing hormone (LH) and modulate female reproductive processes. The presence of KISS and RFRP-3 in the porcine pituitary gland and their contribution to the regulation of follicle-stimulating hormone (FSH) synthesis and secretion is unknown. This study analyzed the presence of KISS and RFRP-3 in the pituitary of estrous-cyclic pigs on days 2 to 3, 10 to 11, 12 to 13, 15 to 16 and 19 to 20 and early pregnant pigs on days 10 to 11, 12 to 13 and 15 to 16, and evaluated the effect of KISS and RFRP-3 on β-Fsh mRNA expression and FSH secretion in vitro by pituitary cells collected on selected days of the estrous cycle. The cells were cultured in vitro and treated with KISS (10-6 M, 10-7 M) and RFRP-3 (10-6 M, 10-7 M) or gonadotropin-releasing hormone (GnRH; 100 ng/mL) alone and in combinations (4 h or 24 h). The relative abundance of Kiss and Rfrp-3 and their receptor mRNA transcripts, as well as the KISS and RFRP-3 proteins, were found in the pituitaries of estrous-cyclic and early pregnant pigs. KISS after 4 h increased the secretion of FSH in estrous cyclic pigs mostly during the early-luteal phase and luteolysis. RFRP-3 inhibited the synthesis and secretion of FSH in estrous-cyclic pigs on days 19 to 20 and the secretion of FSH on days 2 to 3 and 10 to 12 of the estrous cycle compared with GnRH-treated cells. KISS in co-treatment with GnRH after 24 h enhanced FSH release on days 2 to 3 and 15 to 16 of the estrous cycle. In conclusion, KISS and RFRP-3 systems are present in the pituitary of estrous-cyclic and pregnant pigs. In estrous-cyclic pigs, KISS and RFRP-3 may affect the synthesis and secretion of FSH by pituitary cells.
Collapse
Affiliation(s)
- Agata Zmijewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowski 1A, 10-719, Olsztyn, Poland.
| | - Wioleta Czelejewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowski 1A, 10-719, Olsztyn, Poland
| | - Ewa M Drzewiecka
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowski 1A, 10-719, Olsztyn, Poland
| | - Anita Franczak
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowski 1A, 10-719, Olsztyn, Poland
| |
Collapse
|
20
|
Uenoyama Y, Nagae M, Tsuchida H, Inoue N, Tsukamura H. Role of KNDy Neurons Expressing Kisspeptin, Neurokinin B, and Dynorphin A as a GnRH Pulse Generator Controlling Mammalian Reproduction. Front Endocrinol (Lausanne) 2021; 12:724632. [PMID: 34566891 PMCID: PMC8458932 DOI: 10.3389/fendo.2021.724632] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/23/2021] [Indexed: 01/16/2023] Open
Abstract
Increasing evidence accumulated during the past two decades has demonstrated that the then-novel kisspeptin, which was discovered in 2001, the known neuropeptides neurokinin B and dynorphin A, which were discovered in 1983 and 1979, respectively, and their G-protein-coupled receptors, serve as key molecules that control reproduction in mammals. The present review provides a brief historical background and a summary of our recent understanding of the roles of hypothalamic neurons expressing kisspeptin, neurokinin B, and dynorphin A, referred to as KNDy neurons, in the central mechanism underlying gonadotropin-releasing hormone (GnRH) pulse generation and subsequent tonic gonadotropin release that controls mammalian reproduction.
Collapse
|
21
|
Rumpler É, Skrapits K, Takács S, Göcz B, Trinh SH, Rácz G, Matolcsy A, Kozma Z, Ciofi P, Dhillo WS, Hrabovszky E. Characterization of Kisspeptin Neurons in the Human Rostral Hypothalamus. Neuroendocrinology 2021; 111:249-262. [PMID: 32299085 DOI: 10.1159/000507891] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/14/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Kisspeptin (KP) neurons in the rostral periventricular region of the 3rd ventricle (RP3V) of female rodents mediate positive estrogen feedback to gonadotropin-releasing hormone neurons and, thus, play a fundamental role in the mid-cycle luteinizing hormone (LH) surge. The RP3V is sexually dimorphic, and male rodents with lower KP cell numbers are unable to mount estrogen-induced LH surges. OBJECTIVE To find and characterize the homologous KP neurons in the human brain, we studied formalin-fixed post-mortem hypothalami. METHODS Immunohistochemical techniques were used. RESULTS The distribution of KP neurons in the rostral hypothalamus overlapped with distinct subdivisions of the paraventricular nucleus. The cell numbers decreased after menopause, indicating that estrogens positively regulate KP gene expression in the rostral hypothalamus in humans, similarly to several other species. Young adult women and men had similar cell numbers, as opposed to rodents reported to have more KP neurons in the RP3V of females. Human KP neurons differed from the homologous rodent cells as well, in that they were devoid of enkephalins, galanin and tyrosine hydroxylase. Further, they did not contain known KP neuron markers of the human infundibular nucleus, neurokinin B, substance P and cocaine- and amphetamine-regulated transcript, while they received afferent input from these KP neurons. CONCLUSIONS The identification and positive estrogenic regulation of KP neurons in the human rostral hypothalamus challenge the long-held view that positive estrogen feedback may be restricted to the mediobasal part of the hypothalamus in primates and point to the need of further anatomical, molecular and functional studies of rostral hypothalamic KP neurons.
Collapse
Affiliation(s)
- Éva Rumpler
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Katalin Skrapits
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Szabolcs Takács
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Göcz
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Sarolta H Trinh
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Gergely Rácz
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - András Matolcsy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zsolt Kozma
- Department of Forensic Medicine, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | | | - Waljit S Dhillo
- Department of Investigative Medicine, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary,
| |
Collapse
|
22
|
Hrabovszky E, Takács S, Rumpler É, Skrapits K. The human hypothalamic kisspeptin system: Functional neuroanatomy and clinical perspectives. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:275-296. [PMID: 34225935 DOI: 10.1016/b978-0-12-820107-7.00017-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In mammals, kisspeptin neurons are the key components of the hypothalamic neuronal networks that regulate the onset of puberty, account for the pulsatile secretion of gonadotropin-releasing hormone (GnRH) and mediate negative and positive estrogen feedback signals to GnRH neurons. Being directly connected anatomically and functionally to the hypophysiotropic GnRH system, the major kisspeptin cell groups of the preoptic area/rostral hypothalamus and the arcuate (or infundibular) nucleus, respectively, are ideally positioned to serve as key nodes which integrate various types of environmental, endocrine, and metabolic signals that can influence fertility. This chapter provides an overview of the current state of knowledge on the anatomy, functions, and plasticity of brain kisspeptin systems based on the wide literature available from different laboratory and domestic species. Then, the species-specific features of human hypothalamic kisspeptin neurons are described, covering their topography, morphology, unique neuropeptide content, plasticity, and connectivity to hypophysiotropic GnRH neurons. Some newly emerging roles of central kisspeptin signaling in behavior and finally, clinical perspectives, are discussed.
Collapse
Affiliation(s)
- Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary.
| | - Szabolcs Takács
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Éva Rumpler
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Katalin Skrapits
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
23
|
Watanabe Y, Ikegami K, Nakamura S, Uenoyama Y, Ozawa H, Maeda KI, Tsukamura H, Inoue N. Mating-induced increase in Kiss1 mRNA expression in the anteroventral periventricular nucleus prior to an increase in LH and testosterone release in male rats. J Reprod Dev 2020; 66:579-586. [PMID: 32968033 PMCID: PMC7768167 DOI: 10.1262/jrd.2020-067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/11/2020] [Indexed: 12/23/2022] Open
Abstract
Kisspeptin has an indispensable role in gonadotropin-releasing hormone/gonadotropin secretion in mammals. In rodents, kisspeptin neurons are located in distinct brain regions, namely the anteroventral periventricular nucleus-periventricular nucleus continuum (AVPV/PeN), arcuate nucleus (ARC), and medial amygdala (MeA). Among them, the physiological role of AVPV/PeN kisspeptin neurons in males has not been clarified yet. The present study aims to investigate the acute effects of the olfactory and/or mating stimulus with a female rat on hypothalamic and MeA Kiss1 mRNA expression, plasma luteinizing hormone (LH) and testosterone levels in male rats. Intact male rats were exposed to the following stimuli: exposure to clean bedding; exposure to female-soiled bedding as a female-olfactory stimulus; exposure to female-soiled bedding and mating stimulus with a female rat. The mating stimulus significantly increased the number of the AVPV/PeN Kiss1 mRNA-expressing cells in males within 5 minutes after the exposure, and significantly increased LH and testosterone levels, followed by an increase in male sexual behavior. Whereas, the males exposed to female-soiled bedding showed a moderate increase in LH levels and no significant change in testosterone levels and the number of the AVPV/PeN Kiss1 mRNA-expressing cells. Importantly, none of the stimuli affected the number of Kiss1 mRNA-expressing cells in the ARC and MeA. These results suggest that the mating-induced increase in AVPV/PeN Kiss1 mRNA expression may be, at least partly, involved in stimulating LH and testosterone release, and might consequently ensure male mating behavior. This study would be the first report suggesting that the AVPV/PeN kisspeptin neurons in males may play a physiological role in ensuring male reproductive performance.
Collapse
Affiliation(s)
- Youki Watanabe
- Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo113-0031, Japan
| | - Kana Ikegami
- Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Sho Nakamura
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yoshihisa Uenoyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Hitoshi Ozawa
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo113-0031, Japan
| | - Kei-Ichiro Maeda
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Naoko Inoue
- Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| |
Collapse
|
24
|
Xia Q, Di R, He XY, Wei CH, Chu MX. Expression analysis of DIO2, EYA3, KISS1 and GPR54 genes in year-round estrous and seasonally estrous rams. Arch Anim Breed 2020; 63:451-460. [PMID: 33473370 PMCID: PMC7810231 DOI: 10.5194/aab-63-451-2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/14/2020] [Indexed: 12/30/2022] Open
Abstract
The expression characteristics of the hypothalamic-pituitary-gonadal (HPG) axis-related candidate genes, DIO2, EYA3, KISS1 and GPR54, were analyzed in year-round estrous rams (small-tail Han sheep, STH) and seasonally estrous rams (Sunite sheep, SNT) using qPCR. The results were as follows: DIO2 was mainly expressed in pituitary, and KISS1 was specifically expressed in hypothalamus in the two groups. However, EYA3 and GPR54 were widely expressed in the cerebrum, cerebellum, hypothalamus, pituitary, testis, epididymis, vas deferens and adrenal gland tissues in both breeds, with significant differences in the cerebellum, hypothalamus, pituitary, testis and vas deferens tissues. We speculated that DIO2 and KISS1 may have positive roles in different regions in ram year-round estrus. Moreover, the expression patterns of EYA3 and GPR54 suggested that they may regulate the estrous mode of ram via testis and vas deferens. This is the first study to systematically analyze the expression patterns of HPG axis-related genes in rams.
Collapse
Affiliation(s)
- Qing Xia
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Ran Di
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xiao-Yun He
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Cai-Hong Wei
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Ming-Xing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| |
Collapse
|
25
|
D’Occhio MJ, Campanile G, Baruselli PS. Peripheral action of kisspeptin at reproductive tissues-role in ovarian function and embryo implantation and relevance to assisted reproductive technology in livestock: a review. Biol Reprod 2020; 103:1157-1170. [PMID: 32776148 PMCID: PMC7711897 DOI: 10.1093/biolre/ioaa135] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/23/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
Kisspeptin (KISS1) is encoded by the KISS1 gene and was initially found to be a repressor of metastasis. Natural mutations in the KISS1 receptor gene (KISS1R) were subsequently shown to be associated with idiopathic hypothalamic hypogonadism and impaired puberty. This led to interest in the role of KISS1 in reproduction. It was established that KISS1 had a fundamental role in the control of gonadotropin releasing hormone (GnRH) secretion. KISS1 neurons have receptors for leptin and estrogen receptor α (ERα), which places KISS1 at the gateway of metabolic (leptin) and gonadal (ERα) regulation of GnRH secretion. More recently, KISS1 has been shown to act at peripheral reproductive tissues. KISS1 and KISS1R genes are expressed in follicles (granulosa, theca, oocyte), trophoblast, and uterus. KISS1 and KISS1R proteins are found in the same tissues. KISS1 appears to have autocrine and paracrine actions in follicle and oocyte maturation, trophoblast development, and implantation and placentation. In some studies, KISS1 was beneficial to in vitro oocyte maturation and blastocyst development. The next phase of KISS1 research will explore potential benefits on embryo survival and pregnancy. This will likely involve longer-term KISS1 treatments during proestrus, early embryo development, trophoblast attachment, and implantation and pregnancy. A deeper understanding of the direct action of KISS1 at reproductive tissues could help to achieve the next step change in embryo survival and improvement in the efficiency of assisted reproductive technology.
Collapse
Affiliation(s)
- Michael J D’Occhio
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Pietro S Baruselli
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
26
|
Lents CA, Lindo AN, Hileman SM, Nonneman DJ. Physiological and genomic insight into neuroendocrine regulation of puberty in gilts. Domest Anim Endocrinol 2020; 73:106446. [PMID: 32199704 DOI: 10.1016/j.domaniend.2020.106446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/20/2022]
Abstract
The timing of pubertal attainment in gilts is a critical factor for pork production and is an early indicator of future reproductive potential. Puberty, defined as age at first standing estrus in the presence of a boar, is brought about by an escape from estrogen inhibition of the GnRH pulse generator, which allows for increasing LH pulses leading to the onset of cyclicity. The biological mechanisms that control the timing of these events is related to decreasing inhibitory signals with a concomitant increase in stimulatory signals within the hypothalamus. The roles of gamma-aminobutyric acid, endogenous opioid peptides, and gonadotropin-inhibitory hormone in negatively regulating gonadotropin secretion in gilts is explored. Developmental changes in stimulatory mechanisms of glutamatergic and kisspeptin neurons are important for increased LH pulsatility required for the occurrence of puberty in pigs. Age at first estrus of gilts is metabolically gated, and numerous metabolites, metabolic hormones, and appetite-regulating neurotransmitters have been implicated in the nutritional regulation of gonadotropin secretion. Leptin is an important metabolic signal linking body energy reserves with age at puberty in gilts. Leptin acting through neuropeptide Y and proopiomelanocortin neurons in the hypothalamus has important impacts on the function of the reproductive neurosecretory axis of gilts. Age at puberty in swine is heritable, and genomic analyses reveal it to be a polygenic trait. Genome-wide association studies for pubertal age in gilts have revealed several genomic regions in common with those identified for age at menarche in humans. Candidate genes have been identified that have important functions in growth and adiposity. Numerous genes regulating hypothalamic neuronal function, gonadotropes in the adenohypophysis, and ovarian follicular development have been identified and illustrate the complex maturational changes occurring in the hypothalamic-pituitary-ovarian axis during puberty in gilts.
Collapse
Affiliation(s)
- C A Lents
- USDA, ARS, U.S. Meat Animal Research Center, Reproduction Research Unit, Clay Center, NE 68966-0166, USA.
| | - A N Lindo
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506-9600, USA
| | - S M Hileman
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506-9600, USA
| | - D J Nonneman
- USDA, ARS, U.S. Meat Animal Research Center, Reproduction Research Unit, Clay Center, NE 68966-0166, USA
| |
Collapse
|
27
|
Beltramo M, Robert V, Decourt C. The kisspeptin system in domestic animals: what we know and what we still need to understand of its role in reproduction. Domest Anim Endocrinol 2020; 73:106466. [PMID: 32247617 DOI: 10.1016/j.domaniend.2020.106466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/10/2020] [Accepted: 02/26/2020] [Indexed: 02/05/2023]
Abstract
The discovery of the kisspeptin (Kp) system stirred a burst of research in the field of reproductive neuroendocrinology. In the last 15 yr, the organization and activity of the system, including its neuroanatomical structure, its major physiological functions, and its main pharmacological properties, were outlined. To this endeavor, the use of genetic tools to delete and to restore Kp system functionality in a specific tissue was essential. At present, there is no question as to the key role of the Kp system in mammalian reproduction. However, easily applicable genetic manipulations are unavailable for domestic animals. Hence, many essential details on the physiological mechanisms underlying its action on domestic animals require further investigation. The potentially different effects of the various Kp isoforms, the precise anatomical localization of the Kp receptor, and the respective role played by the 2 main populations of Kp cells in different species are only few of the questions that remain unanswered and that will be illustrated in this review. Furthermore, the application of synthetic pharmacologic tools to manipulate the Kp system is still in its infancy but has produced some interesting results, suggesting the possibility of developing new methods to manage reproduction in domestic animals. In spite of a decade and a half of intense research effort, much work is still required to achieve a comprehensive understanding of the influence of the Kp system on reproduction. Furthermore, Kp system ramifications in other physiological functions are emerging and open new research perspectives.
Collapse
Affiliation(s)
- M Beltramo
- INRAE (CNRS, UMR7247, Université de Tours, IFCE), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
| | - V Robert
- INRAE (CNRS, UMR7247, Université de Tours, IFCE), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| | - C Decourt
- INRAE (CNRS, UMR7247, Université de Tours, IFCE), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| |
Collapse
|
28
|
Genome-wide association analysis reveals the genetic locus for high reproduction trait in Chinese Arbas Cashmere goat. Genes Genomics 2020; 42:893-899. [PMID: 32506265 DOI: 10.1007/s13258-020-00937-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Litter size is the most important reproductive trait which plays a crucial role in goat production. Therefore, improvement of litter size trait has been of increasing interest in goat industry as small improvement in litter size may lead to large profit. The recent Cashmere goat breeding program produced a high-reproductive genetic line of Arbas Cashmere goat. But the genetic mechanism of high reproduction rate remains largely unknown in this Chinese native goat breed. To address this question, we performed a genome-wide association studies (GWAS) using two groups of goats varying in fecundity. OBJECTIVES Our study was aimed to investigate the significant SNPs and genes associated with high reproduction trait in Inner Mongolia Arbas Cashmere Goat. METHODS We used logistic model association to perform GWAS using 47 goats from high fecundity group (~ 190%) and 314 goats from low fecundity group (~ 130%) of the Arbas Cashmere goat breed. RESULTS We identified 66 genomic regions associated with genome wide significant level wherein six loci were found to be associated with reproduction traits. Further analysis showed that five key candidate genes including KISS1, KHDRBS2, WNT10B, SETDB2 and PPP3CA genes are involved in goat fecundity trait. Gene ontology enrichment analysis revealed that several biological pathways could be involved in the variation of fecundity in female goats. CONCLUSIONS The identified significant SNPs or genes provide useful information about the underlying genetic control of fecundity trait which will be helpful to use them in goat breeding programs for improving the reproductive efficiency of goats.
Collapse
|
29
|
Zmijewska A, Czelejewska W, Dziekonski M, Gajewska A, Franczak A, Okrasa S. Effect of kisspeptin and RFamide-related peptide-3 on the synthesis and secretion of LH by pituitary cells of pigs during the estrous cycle. Anim Reprod Sci 2020; 214:106275. [DOI: 10.1016/j.anireprosci.2020.106275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/13/2019] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
|
30
|
Horihata K, Inoue N, Uenoyama Y, Maeda KI, Tsukamura H. Retinoblastoma binding protein 7 is involved in Kiss1 mRNA upregulation in rodents. J Reprod Dev 2020; 66:125-133. [PMID: 31956172 PMCID: PMC7175387 DOI: 10.1262/jrd.2019-149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Kisspeptin, encoded by Kiss1, is essential for reproduction in mammals. Kiss1 expression is regulated by estrogen via histone acetylation in the
Kiss1 promotor region. Thus, elucidation of histone modification factor(s) involved in the regulation of Kiss1 expression is required to gain further
understanding of the mechanisms of its control. The RNA-seq analysis of isolated kisspeptin neurons, obtained from the arcuate nucleus (ARC) of female rats, revealed that
Rbbp7, encoding retinoblastoma binding protein 7 (RBBP7), a member of histone modification and chromatin remodeling complexes, is highly expressed in the ARC kisspeptin
neurons. Thus, the present study aimed to investigate whether RBBP7 is involved in Kiss1 expression. Histological analysis using in situ hybridization (ISH)
revealed that Rbbp7 expression was located in several hypothalamic nuclei, including the ARC and the anteroventral periventricular nucleus (AVPV), where kisspeptin neurons
are located. Double ISH for Rbbp7 and Kiss1 showed that a majority of kisspeptin neurons (more than 85%) expressed Rbbp7 mRNA in both the
ARC and the AVPV of female rats. Further, Rbbp7 mRNA knockdown significantly decreased in vitro expression of Kiss1 in a mouse immortalized
kisspeptin neuronal cell line (mHypoA-55). Estrogen treatment significantly decreased and increased Kiss1 mRNA levels in the ARC and AVPV of ovariectomized female rats,
respectively, but failed to affect Rbbp7 mRNA levels in both the nuclei. Taken together, these findings suggest that RBBP7 is involved in the upregulation of
Kiss1 expression in kisspeptin neurons of rodents in an estrogen-independent manner.
Collapse
Affiliation(s)
- Kei Horihata
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Kei-Ichiro Maeda
- Laboratory of Theriogenology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
31
|
Zhang R, Nie H, Duan S, Yan P, Izaz A, Wang R, Zhou Y, Wu X. Cloning, characterisation and expression profile of kisspeptin1 and the kisspeptin1 receptor in the hypothalamic–pituitary–ovarian axis of Chinese alligator Alligator sinensis during the reproductive cycle. Reprod Fertil Dev 2020; 32:792-804. [DOI: 10.1071/rd19332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/22/2020] [Indexed: 12/24/2022] Open
Abstract
Kisspeptin1 (Kiss1), a product of the Kiss1 gene, plays an important role in the regulation of reproduction in vertebrates by activating the Kiss1 receptor (Kiss1R) and its coexpression with gonadotrophin-releasing hormone (GnRH) in GnRH neurons. The purpose of this study was to clone the Kiss1 and Kiss1R genes found in the brain of Alligator sinensis and to explore their relationship with reproduction. The full-length cDNA of Kiss1 is 816bp, the open reading frame (ORF) is 417bp and the gene encodes a 138-amino acid precursor protein. The full-length cDNA of Kiss1R is 2348bp, the ORF is 1086bp and the gene encodes a 361-amino acid protein. Quantitative polymerase chain reaction showed that, except for Kiss1R expression in the hypothalamus, the expression of Kiss1 and Kiss1Rduring the reproductive period of A. sinensis was higher than that in the hypothalamus, pituitary gland and ovary during the hibernation period. The changes in GnRH2 mRNA in the hypothalamus were similar to those of GnRH1 and peaked during the reproductive period. This study confirms the existence of Kiss1 and Kiss1R in A. sinensis and the findings strongly suggest that Kiss1 and Kiss1R may participate in the regulation of GnRH secretion in the hypothalamus of alligators during the reproductive period. Furthermore, this is the first report of the full-length cDNA sequences of Kiss1 and Kiss1R in reptiles.
Collapse
|
32
|
Matsuda F, Ohkura S, Magata F, Munetomo A, Chen J, Sato M, Inoue N, Uenoyama Y, Tsukamura H. Role of kisspeptin neurons as a GnRH surge generator: Comparative aspects in rodents and non-rodent mammals. J Obstet Gynaecol Res 2019; 45:2318-2329. [PMID: 31608564 DOI: 10.1111/jog.14124] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 08/30/2019] [Indexed: 02/01/2023]
Abstract
Ovulation is an essential phenomenon for reproduction in mammalian females along with follicular growth. It is well established that gonadal function is controlled by the neuroendocrine system called the hypothalamus-pituitary-gonadal (HPG) axis. Gonadotropin-releasing hormone (GnRH) neurons, localized in the hypothalamus, had been considered to be the head in governing the HPG axis for a long time until the discovery of kisspeptin. In females, induction of ovulation and folliculogenesis has been linked to a surge mode and pulse mode of GnRH releases, respectively. The mechanisms of how the two modes of GnRH are differently regulated had long remained elusive. The discovery of kisspeptin neurons, distributed in two hypothalamic nuclei, such as the arcuate nucleus in the caudal hypothalamus and preoptic area or the anteroventral periventricular nucleus in the rostral hypothalamic regions, and analyses of the detailed functions of kisspeptin neurons have led marked progress on the understanding of different mechanisms regulating GnRH surges (ovulation) and GnRH pulses (folliculogenesis). The present review will focus on the role of kisspeptin neurons as the GnRH surge generator, including the sexual differentiation of the surge generation system and factors that regulate the surge generator. Comparative aspects between mammalian species are especially focused on.
Collapse
Affiliation(s)
- Fuko Matsuda
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Ohkura
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Fumie Magata
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Arisa Munetomo
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Jing Chen
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Marimo Sato
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
33
|
Mishra GK, Patra MK, Singh LK, Sheikh PA, Upmanyu V, Chakravarti S, Karikalan M, Sonwane A, Singh SK, Das GK, Kumar H, Krishnaswamy N. Expression of Kisspeptin and its receptor in the hypothalamus of cyclic and acyclic buffalo (Bubalus bubalis). Theriogenology 2019; 139:167-177. [PMID: 31419703 DOI: 10.1016/j.theriogenology.2019.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/20/2019] [Accepted: 08/05/2019] [Indexed: 11/26/2022]
Abstract
Kisspeptin (Kiss1), neurokinin-B (NKB) and dynorphin (Dyn) neurons regulate the surge and pulsatile centres of gonadotropin releasing hormone (GnRH) in the hypothalamus and are modulated by the ovarian steroids. Accordingly, we studied the temporospatial expression of Kiss1, its receptor and other genes that regulate GnRH in the preoptic area (POA) and arcuate (ARC) regions of hypothalamus at different phases of bubaline estrous cycle. Brain of buffalo (n = 32) was collected immediately after exsanguination and categorized into early luteal (EL), mid luteal (ML), follicular (FL) stages and acyclic (n = 8/group). Total RNA was extracted from the POA and ARC of each stage and real time PCR amplification of Kiss1, Kiss1r, NKB, NKB receptor (NKBR), Dyn, Dyn receptor (OPRK1), GnRH1, ERα, PR, LEPR and GHSR was done using GAPDH as endogenous control and acyclic stage as calibrator group. Further, immunolocalization of Kiss1 and Kiss1r was done on the hypothalamus. In the POA, significant up-regulation of Kiss1 and NKB with a concomitant down-regulation of Dyn transcripts was recorded at FL stage. There was, however, down-regulation of Kiss1 and Kiss1r during the EL perhaps due to the loss of estradiol as a consequence of ovulation. On the other hand, in the ARC, there was a significant up-regulation of Kiss1 and Dyn at FL and ML, while NKB transcript was consistently down-regulated at any stage of estrous cycle. In the POA, expression of ERα was not modulated; however, PR was down-regulated in the EL. In the ARC, the ERα expression was significantly up-regulated in the EL, whereas, PR was moderately expressed irrespective of the stage of estrous cycle. The immunolocalization study revealed the presence of Kiss1 and Kiss1r in the POA and ARC in the cyclic buffalo with relative abundance at FL. The transcriptional profile of the genes suggests that there is estrous cycle stage specific expression of Kiss1, Kiss1r and other GnRH regulating genes in the POA and ARC regions of hypothalamus in the buffalo. Up-regulation of Kiss1r in the POA during ML and ARC during EL indicates the involvement of kisspeptinergic system in the regulation of low LH pulse frequencies during the early and mid luteal phases in the cyclic buffalo.
Collapse
Affiliation(s)
- G K Mishra
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - M K Patra
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India.
| | - L K Singh
- Division of Animal Reproduction, Gynaecology and Obstetrics, ICAR-National Dairy Research Institute, Karnal, 132 001, Haryana, India
| | - P A Sheikh
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - V Upmanyu
- Biological Standardization Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - S Chakravarti
- Biological Products Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - M Karikalan
- Centre for Wildlife Conservation, Management and Disease Surveillance, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - A Sonwane
- Animal Genetics Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - S K Singh
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - G K Das
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - H Kumar
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| | - N Krishnaswamy
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 234 122, India
| |
Collapse
|
34
|
Majarune S, Nima P, Sugimoto A, Nagae M, Inoue N, Tsukamura H, Uenoyama Y. Ad libitum feeding triggers puberty onset associated with increases in arcuate Kiss1 and Pdyn expression in growth-retarded rats. J Reprod Dev 2019; 65:397-406. [PMID: 31155522 PMCID: PMC6815743 DOI: 10.1262/jrd.2019-048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence shows that puberty onset is largely dependent on body weight rather than chronological age. To investigate the mechanism involved in the energetic control of puberty
onset, the present study examined effects of chronic food restriction during the prepubertal period and the resumption of ad libitum feeding for 24 and 48 h on estrous
cyclicity, Kiss1 (kisspeptin gene), Tac3 (neurokinin B gene) and Pdyn (dynorphin A gene) expression in the hypothalamus, luteinizing
hormone (LH) secretion and follicular development in female rats. When animals weighed 75 g, they were subjected to a restricted feeding to retard growth to 70–80 g by 49 days of age. Then,
animals were subjected to ad libitum feeding or remained food-restricted. The growth-retarded rats did not show puberty onset associated with suppression of both
Kiss1 and Pdyn expression in the arcuate nucleus (ARC). 24-h ad libitum feeding increased tonic LH secretion and the number of Graafian
and non-Graafian tertiary follicles with an increase in the numbers of ARC Kiss1- and Pdyn-expressing cells. 48-h ad libitum feeding
induced the vaginal proestrus and a surge-like LH increase with an increase in Kiss1-expressing cells in the anteroventral periventricular nucleus (AVPV). These results
suggest that the negative energy balance causes pubertal failure with suppression of ARC Kiss1 and Pdyn expression and then subsequent gonadotropin
secretion and ovarian function, while the positive energetic cues trigger puberty onset via an increase in ARC Kiss1 and Pdyn expression and thus
gonadotropin secretion and follicular development in female rats.
Collapse
Affiliation(s)
- Sutisa Majarune
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Pelden Nima
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Arisa Sugimoto
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Mayuko Nagae
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
35
|
Amelkina O, Tanyapanyachon P, Thongphakdee A, Chatdarong K. Identification of feline Kiss1 and distribution of immunoreactive kisspeptin in the hypothalamus of the domestic cat. J Reprod Dev 2019; 65:335-343. [PMID: 31142694 PMCID: PMC6708855 DOI: 10.1262/jrd.2018-101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In recent years, the Kiss1 gene has been reported in a number of vertebrate species, and a substantial dataset has been acquired to demonstrate the critical role of
kisspeptins in the reproductive system; yet limited information is available for carnivores. In the present study, we identified and characterized feline Kiss1 by isolating
and cloning its full-length cDNA in the domestic cat hypothalamus and caracal testis, using the method of rapid amplification of cDNA ends. Additionally, we isolated and cloned the 3′ end of
Kiss1 cDNA, containing kisspeptin-10 (Kp10), from the ovaries of a clouded leopard and Siberian tiger. Nucleotide sequencing revealed that domestic cat
Kiss1 cDNA is of 711 base pairs and caracal Kiss1 cDNA is of 792 base pairs, both having an open reading frame of 450 base pairs, encoding a precursor
protein Kiss1 of 149 amino acids. The core sequence of the feline kisspeptin Kp10 was found to be identical in all species analyzed here and is highly conserved in other
vertebrate species. Using an anti-Kp10 antibody, we found the immunoreactive kisspeptin to be localized in the periventricular and infundibular nuclei of the cat hypothalamus. The results
show that kisspeptin is highly conserved among different feline families, and its immunoreactive distribution in the hypothalamus may indicate its physiological function in the domestic
cat.
Collapse
Affiliation(s)
- Olga Amelkina
- Research Unit of Obstetrics and Reproduction in Animals, Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok 10330, Thailand.,Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20013, USA
| | - Prattana Tanyapanyachon
- Research Unit of Obstetrics and Reproduction in Animals, Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ampika Thongphakdee
- Wildlife Reproductive Innovation Center, Bureau of Conservation and Research, Zoological Park Organization under the Royal Patronage of H.M. the King, Bangkok, Thailand
| | - Kaywalee Chatdarong
- Research Unit of Obstetrics and Reproduction in Animals, Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
36
|
Sahoo SS, Mishra C, Kaushik R, Rout PK, Singh MK, Bhusan S, Dige MS. Association of a SNP in KISS 1 gene with reproductive traits in goats. BIOL RHYTHM RES 2019. [DOI: 10.1080/09291016.2019.1608730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Siddhant Sekhar Sahoo
- Department of Animal Breeding and Genetics, College of Veterinary Science and Animal Husbandry, OUAT, Bhubaneswar, India
| | - Chinmoy Mishra
- Department of Animal Breeding and Genetics, College of Veterinary Science and Animal Husbandry, OUAT, Bhubaneswar, India
| | - Rakesh Kaushik
- Animal Genetics and Breeding Division, ICAR- Central Institute for Research on Goats, Mathura, India
| | - Pramod Kumar Rout
- Animal Genetics and Breeding Division, ICAR- Central Institute for Research on Goats, Mathura, India
| | - Manoj Kumar Singh
- Animal Genetics and Breeding Division, ICAR- Central Institute for Research on Goats, Mathura, India
| | - Saket Bhusan
- Animal Genetics and Breeding Division, ICAR- Central Institute for Research on Goats, Mathura, India
| | - Mahesh Shivanand Dige
- Animal Genetics and Breeding Division, ICAR- Central Institute for Research on Goats, Mathura, India
| |
Collapse
|
37
|
Sugimoto A, Tsuchida H, Ieda N, Ikegami K, Inoue N, Uenoyama Y, Tsukamura H. Somatostatin-Somatostatin Receptor 2 Signaling Mediates LH Pulse Suppression in Lactating Rats. Endocrinology 2019; 160:473-483. [PMID: 30544226 DOI: 10.1210/en.2018-00882] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/07/2018] [Indexed: 01/09/2023]
Abstract
Follicular development and ovulation are profoundly suppressed during lactation in mammals. This suppression is suggested to be mainly due to the suckling-induced inhibition of kisspeptin gene (Kiss1) expression in the arcuate nucleus (ARC) and consequent inhibition of pulsatile GnRH/LH release. We examined whether central somatostatin (SST) signaling mediates the suckling-induced suppression of pulsatile LH secretion. SST has been reported to be expressed in the posterior intralaminar thalamic nucleus (PIL), where the suckling stimulus is postulated to be relayed to the hypothalamus during lactation. SST inhibitory receptors (SSTRs) are abundantly expressed in the ARC, where kisspeptin/neurokinin B/dynorphin A (KNDy) neurons are located. Histological and quantitative studies revealed that the suckling stimulus increased the number of SST-expressing cells in the PIL, and Sstr2 expression in the ARC. Furthermore, a central injection of an SSTR2 antagonist caused a significant increase in pulsatile LH release in lactating rats. Double labeling of Sstr2 and the neurokinin B gene, as a marker for ARC KNDy neurons, showed Sstr2 expression was abundantly detected in the ARC, but few KNDy neurons coexpressed Sstr2 in lactating rats. Taken together, these findings suggest the suckling-induced activation of SST-SSTR2 signaling mediates, at least in part, the suppression of pulsatile LH secretion during lactation in rats, probably via the indirect effects of SST on KNDy neurons. These results provide a new aspect on the role of central SST-SSTR signaling in understanding the mechanism underlying lactational anestrus.
Collapse
Affiliation(s)
- Arisa Sugimoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Hitomi Tsuchida
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Nahoko Ieda
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Kana Ikegami
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Naoko Inoue
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Yoshihisa Uenoyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
38
|
Uenoyama Y, Inoue N, Nakamura S, Tsukamura H. Central Mechanism Controlling Pubertal Onset in Mammals: A Triggering Role of Kisspeptin. Front Endocrinol (Lausanne) 2019; 10:312. [PMID: 31164866 PMCID: PMC6536648 DOI: 10.3389/fendo.2019.00312] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/30/2019] [Indexed: 01/29/2023] Open
Abstract
Pubertal onset is thought to be timed by an increase in pulsatile gonadotropin-releasing hormone (GnRH)/gonadotropin secretion in mammals. The underlying mechanism of pubertal onset in mammals is still an open question. Evidence accumulated in the last 15 years suggests that kisspeptin/neurokinin B/dynorphin A (KNDy) neurons in the hypothalamic arcuate nucleus play a key role in pubertal onset by triggering pulsatile GnRH/gonadotropin secretin in mammals. Specifically, KNDy neurons are now considered a part of GnRH pulse generator, in which neurokinin B facilitates and dynorphin A inhibits, the synchronized discharge of KNDy neurons in autocrine and/or paracrine manners. Kisspeptin serves as a potent secretagogue of GnRH secretion and thus its release is fundamental to pubertal increase in GnRH/gonadotropin secretion in mammals. Proposed mechanisms inhibiting Kiss1 (kisspeptin gene) expression during childhood to juvenile varies from species to species: we envisage that negative feedback action of estrogen plays a key role in the inhibition of Kiss1 expression in KNDy neurons in rodents and sheep, whereas estrogen-independent inhibition of kisspeptin secretion by γ-amino butyric acid or neuropeptide Y are suggested to be responsible for the pre-pubertal suppression of GnRH/gonadotropin secretion in primates. Taken together, the timing of pubertal onset is postulated to be controlled by upstream regulators for kisspeptin biosynthesis and secretion in mammals.
Collapse
Affiliation(s)
- Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- *Correspondence: Yoshihisa Uenoyama
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Sho Nakamura
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
39
|
|
40
|
Mishra GK, Patra MK, Singh LK, Upmanyu V, Chakravarti S, M. K, Singh SK, Das GK, Kumar H, Krisnaswami N. Kiss1 and its receptor: molecular characterization and immunolocalization in the hypothalamus and corpus luteum of the buffalo. Anim Biotechnol 2018; 30:342-351. [DOI: 10.1080/10495398.2018.1520715] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Girish Kumar Mishra
- Animal Reproduction Division, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Manas Kumar Patra
- Animal Reproduction Division, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Laishram Kipjen Singh
- Animal Reproduction Division, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Vikramaditya Upmanyu
- Biological Standardization Division, Indian Veterinary research Institute, Bareilly, Uttar Pradesh, India
| | - Soumendu Chakravarti
- Division of Biological Products, Indian Veterinary Research Institute, Izatnagar, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Karikalan M.
- Centre for Wildlife Conservation Management and Disease Surveillance, Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Sanjay Kumar Singh
- Animal Reproduction Division, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Goutam Kumar Das
- Animal Reproduction Division, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Harendra Kumar
- Animal Reproduction Division, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Narayanan Krisnaswami
- Animal Reproduction Division, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
41
|
Effect of kisspeptin antagonist on goat in vitro Leydig cell steroidogenesis. Theriogenology 2018; 121:134-140. [DOI: 10.1016/j.theriogenology.2018.07.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/29/2018] [Accepted: 07/30/2018] [Indexed: 02/05/2023]
|
42
|
Uenoyama Y, Inoue N, Maeda KI, Tsukamura H. The roles of kisspeptin in the mechanism underlying reproductive functions in mammals. J Reprod Dev 2018; 64:469-476. [PMID: 30298825 PMCID: PMC6305848 DOI: 10.1262/jrd.2018-110] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kisspeptin, identified as a natural ligand of GPR54 in 2001, is now considered as a master regulator of puberty and subsequent reproductive functions in mammals. Our previous studies using
Kiss1 knockout (KO) rats clearly demonstrated the indispensable role of kisspeptin in gonadotropin-releasing hormone (GnRH)/gonadotropin secretion. In addition, behavioral
analyses of Kiss1 KO rats revealed an organizational effect of kisspeptin on neural circuits controlling sexual behaviors. Our studies using transgenic mice carrying a
region-specific Kiss1 enhancer-driven reporter gene provided a clue as to the mechanism by which estrogen regulates Kiss1 expression in hypothalamic
kisspeptin neurons. Analyses of Kiss1 expression and gonadotropin secretion during the pubertal transition shed light on the mechanism triggering GnRH/gonadotropin secretion
at the onset of puberty in rats. Here, we summarize data obtained from the aforementioned studies and revisit the physiological roles of kisspeptin in the mechanism underlying reproductive
functions in mammals.
Collapse
Affiliation(s)
- Yoshihisa Uenoyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Naoko Inoue
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Kei-Ichiro Maeda
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
43
|
Scott CJ, Rose JL, Gunn AJ, McGrath BM. Kisspeptin and the regulation of the reproductive axis in domestic animals. J Endocrinol 2018; 240:JOE-18-0485.R1. [PMID: 30400056 DOI: 10.1530/joe-18-0485] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/09/2018] [Indexed: 11/08/2022]
Abstract
The control of reproductive processes involves the integration of a number of factors from the internal and external environment, with the final output signal of these processes being the pulsatile secretion of gonadotrophin releasing hormone (GnRH) from the hypothalamus. These factors include the feedback actions of sex steroids, feed intake and nutritional status, season/photoperiod, pheromones, age and stress. Understanding these factors and how they influence GnRH secretion and hence reproduction is important for the management of farm animals. There is evidence that the RF-amide neuropeptide, kisspeptin, may be involved in relaying the effects of these factors to the GnRH neurons. This paper will review the evidence from the common domestic animals (sheep, goats, cattle, horses and pigs), that kisspeptin neurons are i) regulated by the factors listed above, ii) contact GnRH neurons, and iii) involved in the regulation of GnRH/gonadotrophin secretion.
Collapse
Affiliation(s)
- Christopher J Scott
- C Scott, School of Biomedical Sciences, Charles Sturt University - Wagga Wagga Campus, Wagga Wagga, Australia
| | - Jessica L Rose
- J Rose, School of Biomedical Sciences, Charles Sturt University - Wagga Wagga Campus, Wagga Wagga, Australia
| | - Allan J Gunn
- A Gunn, School of Animal and Veterinary Sciences, Charles Sturt University - Wagga Wagga Campus, Wagga Wagga, Australia
| | - Briony M McGrath
- B McGrath, School of Biomedical Sciences, Charles Sturt University - Wagga Wagga Campus, Wagga Wagga, Australia
| |
Collapse
|
44
|
Thorson JF, Prezotto LD, Adams H, Petersen SL, Clapper JA, Wright EC, Oliver WT, Freking BA, Foote AP, Berry ED, Nonneman DJ, Lents CA. Energy balance affects pulsatile secretion of luteinizing hormone from the adenohypophesis and expression of neurokinin B in the hypothalamus of ovariectomized gilts†. Biol Reprod 2018; 99:433-445. [DOI: 10.1093/biolre/ioy069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/20/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Ligia D Prezotto
- Nutritional & Reproductive Physiology Laboratory, Montana State University, Havre, Montana, USA
| | - Hillary Adams
- Veterinary and Animal Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Sandra L Petersen
- Veterinary and Animal Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jeffrey A Clapper
- Animal Science, South Dakota State University, Brookings, South Dakota, USA
| | - Elane C Wright
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - William T Oliver
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Bradley A Freking
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Andrew P Foote
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Elaine D Berry
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Danny J Nonneman
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Clay A Lents
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| |
Collapse
|
45
|
Assadullah, Ieda N, Kawai N, Ishii H, Ihara K, Inoue N, Uenoyama Y, Tsukamura H. Co-expression of the calcitonin receptor gene in the hypothalamic kisspeptin neurons in female rats. Reprod Med Biol 2018; 17:164-172. [PMID: 29692674 PMCID: PMC5902471 DOI: 10.1002/rmb2.12085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 12/20/2017] [Indexed: 11/25/2022] Open
Abstract
Purpose Hypothalamic kisspeptin neurons are considered to play a critical role in regulating mammalian reproduction and integrating humoral and neuronal inputs that control gonadotropin‐releasing hormone (GnRH)/gonadotropin release. The present study aimed to investigate the upstream regulator candidates for kisspeptin neurons. Methods Visualized kisspeptin neurons that were taken from the arcuate nucleus (ARC) of Kiss1‐tdTomato rats were subjected to next‐generation sequencing (NGS) analysis. In situ hybridization (ISH) for the calcitonin receptor gene (Calcr) was performed throughout the whole forebrain of ovariectomized wild‐type female rats that had been implanted with a negative feedback level of estrogen, because the Calcr expression was evident in the ARC kisspeptin neurons from the NGS analysis. Then, a double ISH was performed for the Calcr and kisspeptin gene (Kiss1) in the brain regions, containing either the anteroventral periventricular nucleus (AVPV) or ARC of the female rats. Results The NGS analysis revealed that the Calcr was highly expressed in the ARC kisspeptin neurons. It was found that the Calcr was co‐expressed in 12% and 22% of the Kiss1‐expressing cells in the ARC and AVPV, respectively. Conclusion The present study suggests that calcitonin receptor signaling could be involved in the regulation of reproductive function through the direct control of the ARC and/or AVPV kisspeptin neurons, and then GnRH/gonadotropin release.
Collapse
Affiliation(s)
- Assadullah
- Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
| | - Nahoko Ieda
- Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
| | - Narumi Kawai
- Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
| | - Hirotaka Ishii
- Department of Anatomy and Neurobiology Nippon Medical School Tokyo Japan
| | - Kunio Ihara
- Center for Gene Research Nagoya University Nagoya Japan
| | - Naoko Inoue
- Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
| | - Yoshihisa Uenoyama
- Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
| |
Collapse
|
46
|
Iwasa T, Matsuzaki T, Yano K, Mayila Y, Irahara M. The roles of kisspeptin and gonadotropin inhibitory hormone in stress-induced reproductive disorders. Endocr J 2018; 65:133-140. [PMID: 29375085 DOI: 10.1507/endocrj.ej18-0026] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Several kinds of stress suppress the hypothalamic-pituitary-gonadal (HPG) axis and reproductive behavior in humans and animals. These changes can eventually cause diseases and disorders, such as amenorrhea and infertility. In previous studies, it has been shown that stress-related factors, e.g., corticotropin-releasing hormone, cortisol, and pro-inflammatory cytokines, promote the stress-induced suppression of the HPG axis. However, these mechanisms are not sufficient to explain how stress suppresses HPG axis activity, and it has been suggested that some other factors might also be involved. In the early 21st century, novel neuroendocrine peptides, kisspeptin and gonadotropin inhibitory hormone (GnIH)/RFamide-related peptide 3 (RFRP-3), which directly regulate GnRH/gonadotropin synthesis and secretion, were newly discovered. Growing evidence indicates that kisspeptin and GnIH/RFRP-3 play pivotal roles in the stress-induced disruption of the HPG axis and reproductive behavior in addition to their physiological functions. This review summarizes what is currently known about the roles of kisspeptin and GnIH/RFRP-3 in stress-induced reproductive disorders.
Collapse
Affiliation(s)
- Takeshi Iwasa
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Toshiya Matsuzaki
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Kiyohito Yano
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Yiliyasi Mayila
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Minoru Irahara
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| |
Collapse
|
47
|
Abstract
Female ovulation depends on a surge in circulating luteinizing hormone (LH) which occurs at the end of the resting period and requests high circulating estradiol. This fine tuning involves both an estradiol feedback as an indicator of oocyte maturation, and the master circadian clock of the suprachiasmatic nuclei as an indicator of the time of the day. This review describes the mechanisms through which daily time cues are conveyed to reproductive hypothalamic neurons to time the pre-ovulatory surge. In female rodents, neurotransmitters released by the suprachiasmatic nuclei activate the stimulatory kisspeptin neurons and reduce the inhibitory RFRP neurons precisely at the end of the afternoon of proestrus to allow a full surge in LH secretion. From these findings, the impact of circadian disruptions (during shift or night work) on female reproductive performance and fertility should now being investigated in both animal models and humans.
Collapse
Affiliation(s)
- Valérie Simonneaux
- Institut des Neurosciences Cellulaires et Intégratives, UPR CNRS 3212, 5 rue Blaise Pascal, 67084 Strasbourg, France.
| | - Thibault Bahougne
- Institut des Neurosciences Cellulaires et Intégratives, UPR CNRS 3212, 5 rue Blaise Pascal, 67084 Strasbourg, France; Service d'Endocrinologie et Diabète, Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| | - Eleni Angelopoulou
- Institut des Neurosciences Cellulaires et Intégratives, UPR CNRS 3212, 5 rue Blaise Pascal, 67084 Strasbourg, France; Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
48
|
Chen Y, Liu L, Li Z, Wang D, Li N, Song Y, Guo C, Liu X. Molecular cloning and characterization of kiss1 in Brandt's voles ( Lasiopodomys brandtii ). Comp Biochem Physiol B Biochem Mol Biol 2017; 208-209:68-74. [DOI: 10.1016/j.cbpb.2017.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 10/19/2022]
|
49
|
Han X, Zhou Y, Zeng Y, Sui F, Liu Y, Tan Y, Cao X, Du X, Meng F, Zeng X. Effects of active immunization against GnRH versus surgical castration on hypothalamic-pituitary function in boars. Theriogenology 2017; 97:89-97. [PMID: 28583614 DOI: 10.1016/j.theriogenology.2017.04.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 11/17/2022]
Abstract
The objective was to compare effects of anti-GnRH immunization (immunocastration) versus surgical castration on hypothalamic-pituitary function in boars. Thirty-six boars were randomly divided into three groups (n = 12/group): control, surgically castrated, or immunized against GnRH at 10 wk of age (boostered 8 wk later). Compared to intact boars, immunocastration reduced (P < 0.05) serum concentrations of LH, FSH, testosterone and inhibin B and caused severe testicular atrophy, whereas surgical castration increased (P < 0.05) serum concentrations of LH and FSH. Both immunocastration and surgical castration consistently reduced hypothalamic GnRH synthesis, with decreased (P < 0.05) mRNA expressions of GnRH, GnRH up-stream gatekeeper genes kiss1 and its receptor (GPR54), and androgen receptor in the hypothalamic arcuate nucleus (ARC) and anteroventral periventricular nucleus (AVPV), as well as GnRH content in the median eminence. Inconsistently, mRNA expressions of gonadotropin-inhibitory hormone (GnIH) in ARC and AVPV as well as its receptor (GPR147) in pituitary were selectively reduced (P < 0.05), but mRNA expressions of estrogen receptor alpha and aromatase (CPY17A1) in pituitary were selectively increased (P < 0.05) in surgical castrates. In response to selectively attenuated suppressive signaling from GnIH and testosterone, mRNA expressions of GnRH receptor (GnRHR), LH-β and FSH-β in pituitary were increased (P < 0.05) in surgical castrates, whereas these pituitary gene expressions were decreased (P < 0.05) in immunocastrates, due to loss of hypothalamic GnRH signaling. We concluded that immunocastration and surgical castration consistently reduced hypothalamic GnRH synthesis due to a testosterone deficiency disrupting testosterone-Kisspeptin-GPR54-GnRH signaling pathways. Furthermore, selectively attenuated GnIH and testosterone signaling in the pituitary increased gonadotropin production in surgical castrates.
Collapse
Affiliation(s)
- Xingfa Han
- Isotope Research Lab, Biological Engineering and Application Biology Department, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Yuqin Zhou
- Isotope Research Lab, Biological Engineering and Application Biology Department, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Yu Zeng
- College of Animal Science, Sichuan Agricultural University, Chengdu Campus, Chengdu, Sichuan, 611130, PR China
| | - Fenfen Sui
- Isotope Research Lab, Biological Engineering and Application Biology Department, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Yacheng Liu
- Isotope Research Lab, Biological Engineering and Application Biology Department, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Yao Tan
- Isotope Research Lab, Biological Engineering and Application Biology Department, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Xiaohan Cao
- Isotope Research Lab, Biological Engineering and Application Biology Department, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Xiaogang Du
- Isotope Research Lab, Biological Engineering and Application Biology Department, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Fengyan Meng
- Isotope Research Lab, Biological Engineering and Application Biology Department, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Xianyin Zeng
- Isotope Research Lab, Biological Engineering and Application Biology Department, Sichuan Agricultural University, Ya'an, 625014, PR China.
| |
Collapse
|
50
|
El-Tarabany MS, Zaglool AW, El-Tarabany AA, Awad A. Association analysis of polymorphism in KiSS1 gene with reproductive traits in goats. Anim Reprod Sci 2017; 180:92-99. [PMID: 28336267 DOI: 10.1016/j.anireprosci.2017.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 03/09/2017] [Accepted: 03/12/2017] [Indexed: 01/23/2023]
Abstract
Understanding the genetic information of related genes is helpful for the selection and breeding course through marker assisted selection. The aim of the current study was to detect polymorphisms of the KiSS1 gene in 137 animals, including Baladi, Zaraibi and Damascus goat breeds by PCR-RFLP, and DNA sequencing and to investigate the association between these variants and reproductive traits. Comparison of the nucleotide sequence indicated the substitution of T with A at position 121 (T121A) in the intron 1 of the KiSS1 gene in all goat breeds. This substitution distorts the restriction site of the XmnI restriction enzyme and consequently two genotypes were detected (TA and TT). The T121A SNP is associated significantly with litter size in Damascus and Zaribi breeds (p=0.025 and 0.001, respectively). The animals with the TT genotype in Damascus and Zaribi breeds had a significantly higher estradiol17β level than that recorded in TA genotype at estrus phase (p=0.013 and 0.028, respectively) and late-luteal phase (p=0.067 and 0.041, respectively) of the estrus cycle. Furthermore, animals with the TT genotype in Damascus and Zaribi breeds had significant higher progesterone level at mid-luteal (p=0.037 and 0.045, respectively) phase. Meanwhile, there were no significant differences in progesterone level in late-luteal phase between both genotypes in Zaribi breed (p=0.267). The current trial indicated that the prolific TT genotype in both Damascus and Zaribi breeds had superior estradiol17β level at estrus phase and an eminent progesterone level at both early and mid-luteal phases of the estrous cycle.
Collapse
Affiliation(s)
- Mahmoud S El-Tarabany
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Zagazig University, Sharkia, Egypt.
| | - Asmaa W Zaglool
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Zagazig University, Sharkia, Egypt
| | - Akram A El-Tarabany
- Biological Applications Department, Radioisotopes Applications Division, NRC, Atomic Energy Authority, Inshas, Cairo, Egypt
| | - Ashraf Awad
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Zagazig University, Sharkia, Egypt
| |
Collapse
|