1
|
Wahabi H, Elmorshedy H, Bakhsh H, Ahmed S, AlSubki RE, Aburasyin AS, Fayed A, Mahmoud Ibrahim Goda A. Predictors and outcomes of premature rupture of membranes among pregnant women admitted to a teaching Hospital in Saudi Arabia: a cohort study. BMC Pregnancy Childbirth 2024; 24:850. [PMID: 39716141 DOI: 10.1186/s12884-024-07020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 11/27/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Premature rupture of the membrane (PROM), refers to rupture of the fetal membranes prior to the onset of regular uterine contractions. When this occurs at term (≥ 37 weeks of gestation), it is classified as PROM, whereas if it occurs before 37 weeks, it is termed preterm premature rupture of membranes (PPROM). PROM and PPROM are linked to adverse outcomes for both mother and newborn. OBJECTIVES To investigate the factors associated with PROM and the outcomes of pregnancies complicated with PROM. METHODS This was a retrospective cohort study. The participants were divided into three groups; those with PROM, those with PPROM and a control group who had normal onset of membranes rupture. The groups were compared with respect to predictors of PROM (maternal demographic profile, obstetrical history, and comorbidities), in addition to outcomes (postpartum hemorrhage, hospital stay, low APGAR scores, sepsis, low birthweight, preterm rate, and admission to neonatal Intensive care Unit (NICU)). Multivariable logistic regression model was used for predicting risk factors associated with PROM and PPROM. RESULTS A total of 1,894 pregnant women were enrolled in the study, 77.6% had normal onset of ruptured membranes, while 382 (20.1%) were diagnosed with a PROM and 43 (2.3%) diagnosed with PPROM. Primiparous mothers were more likely to develop PROM (AOR = 1.56, 95% CI (1.10-2.22)) as compared to multiparous, while obese and overweight mothers were less likely to develop PPROM (AOR = 0.86, 95% CI (0.94 - 0.49)). Significantly more mothers with PPROM were delivered by emergency cesarean Sect. (30.2% vs. 22.9%, P < 0.01), develop chorioamnionitis (4.7% vs. 0.1%, P < 0.01), and stayed in the hospital more than three days (16.3% vs. 2.5%, P < 0.01) compared to the control group. Neonates of mothers who had PPROM were more likely to have low birth weight (35.7% vs. 10.4%, P < 0.01), and NICU admission (67.4% vs. 20.4%, P < 0.01) as compared to the control group. Perinatal death rate was not significantly different between the groups. CONCLUSION In this study, nulliparity is a predictor of PROM, while overweight/ obese mothers are less likely to develop PPROM. Despite the relatively low occurrence of PPROM among Saudi women, the condition is associate with increase risk of cesarean section delivery, chorioamnionitis, prolonged hospitalization, and an increase need for neonatal intensive care compare to those with a normal onset of membrane rupture.
Collapse
Affiliation(s)
- Hayfaa Wahabi
- Research Chair for Evidence-Based Health Care and Knowledge Translation, King Saud University, Riyadh, Saudi Arabia
- Department of Family and Community Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Hala Elmorshedy
- Department of Tropical Health, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Hanadi Bakhsh
- Department of Obstetrics and Gynecology, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.
| | - Samia Ahmed
- Research Chair for Evidence-Based Health Care and Knowledge Translation, King Saud University, Riyadh, Saudi Arabia
- Department of Family and Community Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Raghad E AlSubki
- College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amsha S Aburasyin
- Department of Obstetrics and Gynecology, College of Medicine, King Saud University, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Amel Fayed
- Department of Family and Community Medicine, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | | |
Collapse
|
2
|
Aihaiti R, Shen Z, Wu X, Niu Z. Pregnancy complications and birth outcomes in women with polycystic ovary syndrome undergoing frozen embryo transfer. Fertil Steril 2024; 122:1055-1062. [PMID: 39043319 DOI: 10.1016/j.fertnstert.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
OBJECTIVE To determine whether polycystic ovary syndrome (PCOS) increases adverse pregnancy and birth outcomes in women undergoing frozen embryo transfer (FET). DESIGN Retrospective cohort study. The PCOS group was matched 1:2 with the control group population using propensity score matching. SETTING Not applicable. PATIENT(S) During an 8-year period, 2,955 patients aged 20-40 years who underwent FET and delivered between January 2015 and December 2022 at the Reproductive Medical Center of Ruijin Hospital were evaluated for adverse pregnancy outcomes. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) All patients were assessed for specific pregnancy complications and birth outcomes, with a sub-group analysis conducted to compare patients with PCOS with and without hyperandrogenism. RESULTS Women with PCOS demonstrated higher rates of gestational diabetes mellitus (24.9% vs. 16.4%; relative risk [RR], 1.51; 95% confidence interval [CI], 1.26-1.82; P<.001), gestational hypertension (12.2% vs. 8.9%; RR, 1.37; 95% CI, 1.05-1.80; P=.022), preterm prelabor rupture of membranes (7.0% vs. 3.6%; RR, 1.92; 95% CI, 1.29-2.86; P=.001), cervical length shortening (1.8% vs. 0.4%; RR, 8.39; 95% CI, 1.56-12.49; P=.002), large-for-gestational age (17.4% vs. 13.7%; RR, 1.27; 95% CI, 1.02-1.57; P=.032), and low birth weight (19.9% vs. 16.0%; RR, 1.25; 95% CI, 1.02-1.52; P=.030) in overall propensity score matching analysis. Newborns of patients with PCOS had a higher risk of preterm birth <37 weeks (10.5% vs. 6.6%; RR, 1.59; 95% CI, 1.12-2.26; P=.009) in singleton pregnancies. Patients with PCOS with hyperandrogenism showed a higher incidence of cervical length shortening (5.5% vs. 0.5%; adjusted odds ratio, 15.62; 95% CI, 2.25-108.48; P=.005) compared with those without, after adjusting for relevant confounders. CONCLUSION(S) Polycystic ovary syndrome increases the incidence of adverse pregnancy outcomes after FET cycles. Our study suggests women with PCOS may warrant further monitoring and additional counseling before and during pregnancy.
Collapse
Affiliation(s)
- Reweiguli Aihaiti
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ziyun Shen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xian Wu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zhihong Niu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
3
|
Lei WJ, Zhang F, Li MD, Pan F, Ling LJ, Lu JW, Myatt L, Sun K, Wang WS. C/EBPδ deficiency delays infection-induced preterm birth. BMC Med 2024; 22:432. [PMID: 39379940 PMCID: PMC11462803 DOI: 10.1186/s12916-024-03650-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Parturition is an inflammation process. Exaggerated inflammatory reactions in infection lead to preterm birth. Although nuclear factor kappa B (NF-κB) has been recognized as a classical transcription factor mediating inflammatory reactions, those mediated by NF-κB per se are relatively short-lived. Therefore, there may be other transcription factors involved to sustain NF-κB-initiated inflammatory reactions in gestational tissues in infection-induced preterm birth. METHODS Cebpd-deficient mice were generated to investigate the role of CCAAT enhancer-binding protein δ (C/EBPδ) in lipopolysaccharide (LPS)-induced preterm birth, and the contribution of fetal and maternal C/EBPδ was further dissected by transferring Cebpd-/- or WT embryos to Cebpd-/- or WT dams. The effects of C/EBPδ pertinent to parturition were investigated in mouse and human myometrial and amnion cells. The interplay between C/EBPδ and NF-κB was examined in cultured human amnion fibroblasts. RESULTS The mouse study showed that LPS-induced preterm birth was delayed by Cebpd deficiency in either the fetus or the dam, with further delay being observed in conceptions where both the dam and the fetus were deficient in Cebpd. Mouse and human studies showed that the abundance of C/EBPδ was significantly increased in the myometrium and fetal membranes in infection-induced preterm birth. Furthermore, C/EBPδ participated in LPS-induced upregulation of pro-inflammatory cytokines as well as genes pertinent to myometrial contractility and fetal membrane activation in the myometrium and amnion respectively. A mechanistic study in human amnion fibroblasts showed that C/EBPδ, upon induction by NF-κB, could serve as a supplementary transcription factor to NF-κB to sustain the expression of genes pertinent to parturition. CONCLUSIONS C/EBPδ is a transcription factor to sustain the expression of gene initiated by NF-κB in the myometrium and fetal membranes in infection-induced preterm birth. Targeting C/EBPδ may be of therapeutic value in the treatment of infection-induced preterm birth.
Collapse
Affiliation(s)
- Wen-Jia Lei
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Fan Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Meng-Die Li
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Fan Pan
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Li-Jun Ling
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Jiang-Wen Lu
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China.
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China.
| |
Collapse
|
4
|
Ohori Y, Imai K, Tano S, Owaki T, Miki R, Nozaki Y, Ushida T, Kajiyama H, Kotani T. Predicting preterm birth within 2 weeks in asymptomatic women with a short cervix: Combined effects of cervicovaginal fluid cytokine levels and fetal fibronectin test. J Obstet Gynaecol Res 2024; 50:587-595. [PMID: 38217336 DOI: 10.1111/jog.15889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
AIMS To predict preterm birth (PTB) accurately, we conducted a comprehensive cytokine assay using cervicovaginal fluid (CVF) and evaluated the additive effects of cytokine levels on the fetal fibronectin (fFN) test. METHODS A total of 645 CVF samples were collected from 256 asymptomatic pregnant women between 24 and 35 weeks gestation, exhibiting short cervix. After selection based on specific criteria, 17 cytokines in 105 CVF samples were simultaneously measured using multiplex assay. Multivariate logistic regression analysis was performed to evaluate the association between cytokine levels and impending PTB, which is defined as PTB within 2 weeks after CVF collection. Moreover, receiver operating characteristic (ROC) analysis was performed in women with positive fFN results, which was validated using another set of 65 CVF samples. RESULTS In positive fFN women, the CCL2 level was significantly higher in the impending PTB group than the other group (p < 0.01) and a predictor of impending PTB (adjusted odds ratio 1.020, 95% confidence interval [95% CI] 1.003-1.038, p = 0.020). The cutoff value of CCL2 was 64.8 pg/mL (are under the curve 0.726, p = 0.004, 95% CI 0.593-0.859, sensitivity 45.2%, specificity 91.7%). Additionally, the reliable classification performance of proposed ROC model could be validated. However, measuring cytokine levels could not help in predicting impending PTB in women with negative fFN or normal labor onset in healthy-term women. CONCLUSION Comprehensive analysis of CVF cytokines revealed that the CCL2 level significantly improves the prediction of impending PTB in asymptomatic fFN-positive women with a short cervix, which may contribute to better clinical management.
Collapse
Affiliation(s)
- Yukiko Ohori
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji Imai
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sho Tano
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Taro Owaki
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Obstetrics and Gynecology, Komaki City Hospital, Komaki, Japan
| | - Rika Miki
- Laboratory of Bell Research Centre-Department of Obstetrics and Gynecology Collaborative Research, Bell Research Centre for Reproductive Health and Cancer, Department of Reproduction, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Nozaki
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takafumi Ushida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomomi Kotani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
5
|
Flores-Espinosa P, Mancilla-Herrera I, Olmos-Ortiz A, Díaz L, Zaga-Clavellina V. Evaluation of Leukocyte Chemotaxis Induced by Human Fetal Membranes in an In Vitro Model. Methods Mol Biol 2024; 2781:27-37. [PMID: 38502440 DOI: 10.1007/978-1-0716-3746-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Leukocyte infiltration into the maternal-fetal interface is a consequence of the robust inflammation in the gestational tissues during term labor and preterm labor with or without infection. During pregnancy, the fetal membranes act as a physical barrier that isolates the fetus into the amniotic cavity, keeping it in an optimal environment for its development. In addition, the fetal membranes possess immunological competencies such as the secretion of cytokines and chemokines in response to different stimuli. Clinical and experimental evidence indicates that these tissues are involved in the extensive chemotaxis of immune cells in normal or pathological conditions.Few studies have evaluated the chemotactic capacities of the fetal membranes considering that this tissue is composed of two adjacent tissues, the amnion and the chorion, which have different characteristics. Although these tissues function as a unit, their response is complex since there is an interaction between them, where each tissue contributes differently. The protocol described here allows us to evaluate the in vitro chemotactic capacities of fetal membranes in response to various applied stimuli, considering the contribution of each of their components (amnion and choriodecidua) using a Boyden chamber assay and phenotyping the chemo-attracted leukocytes by flow cytometry.
Collapse
Affiliation(s)
- Pilar Flores-Espinosa
- Department of Immunobiochemistry, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico.
| | - Ismael Mancilla-Herrera
- Department of Infectology and Immunology, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Andrea Olmos-Ortiz
- Department of Immunobiochemistry, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, , Mexico City, Mexico
| | - Verónica Zaga-Clavellina
- Department of Immunobiochemistry, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| |
Collapse
|
6
|
Baxter C, Crary I, Coler B, Marcell L, Huebner EM, Rutz S, Adams Waldorf KM. Addressing a broken drug pipeline for preterm birth: why early preterm birth is an orphan disease. Am J Obstet Gynecol 2023; 229:647-655. [PMID: 37516401 PMCID: PMC10818026 DOI: 10.1016/j.ajog.2023.07.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
Preterm birth remains one of the most urgent unresolved medical problems in obstetrics, yet only 2 therapeutics for preventing preterm birth have ever been approved by the United States Food and Drug Administration, and neither remains on the market. The recent withdrawal of 17-hydroxyprogesterone caproate (17-OHPC, Makena) marks a new but familiar era for obstetrics with no Food and Drug Administration-approved pharmaceuticals to address preterm birth. The lack of pharmaceuticals reflects a broad and ineffective pipeline hindered by extensive regulatory hurdles, soaring costs of performing drug research, and concerns regarding adverse effects among a particularly vulnerable population. The pharmaceutical industry has historically limited investments in research for diseases with similarly small markets, such as cystic fibrosis, given their rarity and diminished projected financial return. The Orphan Drug Act, however, incentivizes drug development for "orphan diseases", defined as affecting <200,000 people in the United States annually. Although the total number of preterm births in the United States exceeds this threshold annually, the early subset of preterm birth (<34 weeks' gestation) would qualify, which is predominantly caused by inflammation and infection. The scientific rationale for classifying preterm birth into early and late subsets is strong given that their etiologies differ, and therapeutics that may be efficacious for one subset may not work for the other. For example, antiinflammatory therapeutics would be expected to be highly effective for early but not late preterm birth. A robust therapeutic pipeline of antiinflammatory drugs already exists, which could be used to target spontaneous early preterm birth, in combination with antibiotics shown to sterilize the amniotic cavity. New applications for therapeutics targeting spontaneous early preterm birth could categorize as orphan disease drugs, which could revitalize the preterm birth therapeutic pipeline. Herein, we describe why drugs targeting early preterm birth should qualify for orphan status, which may increase pharmaceutical interest for this vitally important obstetrical condition.
Collapse
Affiliation(s)
- Carly Baxter
- School of Medicine, University of Washington, Seattle, WA
| | - Isabelle Crary
- School of Medicine, University of Washington, Seattle, WA
| | - Brahm Coler
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA
| | - Lauren Marcell
- School of Medicine, University of Washington, Seattle, WA
| | | | - Sara Rutz
- School of Medicine, University of Washington, Seattle, WA
| | - Kristina M Adams Waldorf
- Departments of Obstetrics and Gynecology and Global Health, University of Washington, Seattle, WA.
| |
Collapse
|
7
|
Black T, Baccetto SL, Barnard IL, Finch E, McElroy DL, Austin-Scott FVL, Greba Q, Michel D, Zagzoog A, Howland JG, Laprairie RB. Characterization of cannabinoid plasma concentration, maternal health, and cytokine levels in a rat model of prenatal Cannabis smoke exposure. Sci Rep 2023; 13:21070. [PMID: 38030657 PMCID: PMC10687022 DOI: 10.1038/s41598-023-47861-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023] Open
Abstract
Cannabis sativa has gained popularity as a "natural substance", leading many to falsely assume that it is not harmful. This assumption has been documented amongst pregnant mothers, many of whom consider Cannabis use during pregnancy as benign. The purpose of this study was to validate a Cannabis smoke exposure model in pregnant rats by determining the plasma levels of cannabinoids and associated metabolites in the dams after exposure to either Cannabis smoke or injected cannabinoids. Maternal and fetal cytokine and chemokine profiles were also assessed after exposure. Pregnant Sprague-Dawley rats were treated daily from gestational day 6-20 with either room air, i.p. vehicle, inhaled high-Δ9-tetrahydrocannabinol (THC) (18% THC, 0.1% cannabidiol [CBD]) smoke, inhaled high-CBD (0.7% THC, 13% CBD) smoke, 3 mg/kg i.p. THC, or 10 mg/kg i.p. CBD. Our data reveal that THC and CBD, but not their metabolites, accumulate in maternal plasma after repeated exposures. Injection of THC or CBD was associated with fewer offspring and increased uterine reabsorption events. For cytokines and chemokines, injection of THC or CBD up-regulated several pro-inflammatory cytokines compared to control or high-THC smoke or high-CBD smoke in placental and fetal brain tissue, whereas smoke exposure was generally associated with reduced cytokine and chemokine concentrations in placental and fetal brain tissue compared to controls. These results support existing, but limited, knowledge on how different routes of administration contribute to inconsistent manifestations of cannabinoid-mediated effects on pregnancy. Smoked Cannabis is still the most common means of human consumption, and more preclinical investigation is needed to determine the effects of smoke inhalation on developmental and behavioural trajectories.
Collapse
Affiliation(s)
- Tallan Black
- College of Pharmacy and Nutrition, University of Saskatchewan, 3B36, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada
| | - Sarah L Baccetto
- College of Pharmacy and Nutrition, University of Saskatchewan, 3B36, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada
| | - Ilne L Barnard
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada
| | - Emma Finch
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada
| | - Dan L McElroy
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada
| | - Faith V L Austin-Scott
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada
| | - Quentin Greba
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada
| | - Deborah Michel
- College of Pharmacy and Nutrition, University of Saskatchewan, 3B36, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Ayat Zagzoog
- College of Pharmacy and Nutrition, University of Saskatchewan, 3B36, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - John G Howland
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada.
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, 3B36, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada.
- Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
8
|
Galaz J, Motomura K, Romero R, Liu Z, Garcia-Flores V, Tao L, Xu Y, Done B, Arenas-Hernandez M, Kanninen T, Farias-Jofre M, Miller D, Tarca AL, Gomez-Lopez N. A key role for NLRP3 signaling in preterm labor and birth driven by the alarmin S100B. Transl Res 2023; 259:46-61. [PMID: 37121539 PMCID: PMC10524625 DOI: 10.1016/j.trsl.2023.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
Preterm birth remains the leading cause of neonatal morbidity and mortality worldwide. A substantial number of spontaneous preterm births occur in the context of sterile intra-amniotic inflammation, a condition that has been mechanistically proven to be triggered by alarmins. However, sterile intra-amniotic inflammation still lacks treatment. The NLRP3 inflammasome has been implicated in sterile intra-amniotic inflammation; yet, its underlying mechanisms, as well as the maternal and fetal contributions to this signaling pathway, are unclear. Herein, by utilizing a translational and clinically relevant model of alarmin-induced preterm labor and birth in Nlrp3-/- mice, we investigated the role of NLRP3 signaling by using imaging and molecular biology approaches. Nlrp3 deficiency abrogated preterm birth and the resulting neonatal mortality induced by the alarmin S100B by impeding the premature activation of the common pathway of labor as well as by dampening intra-amniotic and fetal inflammation. Moreover, Nlrp3 deficiency altered leukocyte infiltration and functionality in the uterus and decidua. Last, embryo transfer revealed that maternal and fetal Nlrp3 signaling contribute to alarmin-induced preterm birth and neonatal mortality, further strengthening the concept that both individuals participate in the complex process of preterm parturition. These findings provide novel insights into sterile intra-amniotic inflammation, a common etiology of preterm labor and birth, suggesting that the adverse perinatal outcomes resulting from prematurity can be prevented by targeting NLRP3 signaling.
Collapse
Affiliation(s)
- Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan; Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Kenichiro Motomura
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan
| | - Zhenjie Liu
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Valeria Garcia-Flores
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Li Tao
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Yi Xu
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Bogdan Done
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Marcia Arenas-Hernandez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Tomi Kanninen
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Marcelo Farias-Jofre
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan; Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Derek Miller
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Adi L Tarca
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan; Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan; Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan.
| |
Collapse
|
9
|
Sharma N, Watkins OC, Chu AHY, Cutfield W, Godfrey KM, Yong HEJ, Chan SY. Myo-inositol: a potential prophylaxis against premature onset of labour and preterm birth. Nutr Res Rev 2023; 36:60-68. [PMID: 34526164 PMCID: PMC7614523 DOI: 10.1017/s0954422421000299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The incidence of preterm birth (PTB), delivery before 37 completed weeks of gestation, is rising in most countries. Several recent small clinical trials of myo-inositol supplementation in pregnancy, which were primarily aimed at preventing gestational diabetes, have suggested an effect on reducing the incidence of PTB as a secondary outcome, highlighting the potential role of myo-inositol as a preventive agent. However, the underlying molecular mechanisms by which myo-inositol might be able to do so remain unknown; these may occur through directly influencing the onset and progress of labour, or by suppressing stimuli that trigger or promote labour. This paper presents hypotheses outlining the potential role of uteroplacental myo-inositol in human parturition and explains possible underlying molecular mechanisms by which myo-inositol might modulate the uteroplacental environment and inhibit preterm labour onset. We suggest that a physiological decline in uteroplacental inositol levels to a critical threshold with advancing gestation, in concert with an increasingly pro-inflammatory uteroplacental environment, permits spontaneous membrane rupture and labour onset. A higher uteroplacental inositol level, potentially promoted by maternal myo-inositol supplementation, might affect lipid metabolism, eicosanoid production and secretion of pro-inflammatory chemocytokines that overall dampen the pro-labour uteroplacental environment responsible for labour onset and progress, thus reducing the risk of PTB. Understanding how and when inositol may act to reduce PTB risk would facilitate the design of future clinical trials of maternal myo-inositol supplementation and definitively address the efficacy of myo-inositol prophylaxis against PTB.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Oliver C Watkins
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anne H Y Chu
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - W Cutfield
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Centre and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Hannah E J Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Shiao-Yng Chan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
10
|
Paquette AG, MacDonald J, Bammler T, Day DB, Loftus CT, Buth E, Mason WA, Bush NR, Lewinn KZ, Marsit C, Litch JA, Gravett M, Enquobahrie DA, Sathyanarayana S. Placental transcriptomic signatures of spontaneous preterm birth. Am J Obstet Gynecol 2023; 228:73.e1-73.e18. [PMID: 35868418 PMCID: PMC9790028 DOI: 10.1016/j.ajog.2022.07.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/01/2022] [Accepted: 07/09/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Spontaneous preterm birth accounts for most preterm births and leads to significant morbidity in the newborn and childhood period. This subtype of preterm birth represents an increasing proportion of all preterm births when compared with medically indicated preterm birth, yet it is understudied in omics analyses. The placenta is a key regulator of fetal and newborn health, and the placental transcriptome can provide insight into pathologic changes that lead to spontaneous preterm birth. OBJECTIVE This analysis aimed to identify genes for which placental expression was associated with spontaneous preterm birth (including early preterm and late preterm birth). STUDY DESIGN The ECHO PATHWAYS consortium extracted RNA from placental samples collected from the Conditions Affecting Neurocognitive Development and Learning in Early Childhood and the Global Alliance to Prevent Prematurity and Stillbirth studies. Placental transcriptomic data were obtained by RNA sequencing. Linear models were fit to estimate differences in placental gene expression between term birth and spontaneous preterm birth (including gestational age subgroups defined by the American College of Obstetricians and Gynecologists). Models were adjusted for numerous confounding variables, including labor status, cohort, and RNA sequencing batch. This analysis excluded patients with induced labor, chorioamnionitis, multifetal gestations, or medical indications for preterm birth. Our combined cohort contained gene expression data for 14,023 genes in 48 preterm and 540 term samples. Genes and pathways were considered statistically significantly different at false discovery rate-adjusted P value of <.05. RESULTS In total, we identified 1728 genes for which placental expression was associated with spontaneous preterm birth with more differences in expression in early preterm samples than late preterm samples when compared with full-term samples. Of those, 9 genes were significantly decreased in both early and late spontaneous preterm birth, and the strongest associations involved placental expression of IL1B, ALPL, and CRLF1. In early and late preterm samples, we observed decreased expression of genes involved in immune signaling, signal transduction, and endocrine function. CONCLUSION This study provides a comprehensive assessment of the differences in the placental transcriptome associated with spontaneous preterm birth with robust adjustment for confounding. Results of this study are in alignment with the known etiology of spontaneous preterm birth, because we identified multiple genes and pathways for which the placental and chorioamniotic membrane expression was previously associated with prematurity, including IL1B. We identified decreased expression in key signaling pathways that are essential for placental growth and function, which may be related to the etiology of spontaneous preterm birth. We identified increased expression of genes within metabolic pathways associated exclusively with early preterm birth. These signaling and metabolic pathways may provide clinically targetable pathways and biomarkers. The findings presented here can be used to understand underlying pathologic changes in premature placentas, which can inform and improve clinical obstetrics practice.
Collapse
Affiliation(s)
- Alison G Paquette
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA; Department of Pediatrics, University of Washington, Seattle, WA.
| | - James MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA
| | - Theo Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA
| | - Drew B Day
- Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA
| | - Christine T Loftus
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA
| | - Erin Buth
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA
| | - W Alex Mason
- Department of Preventative Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Nicole R Bush
- Department of Psychiatry and Behavioral Sciences, University of San Francisco, San Francisco, CA; Department of Pediatrics, University of San Francisco, San Francisco, CA
| | - Kaja Z Lewinn
- Department of Psychiatry and Behavioral Sciences, University of San Francisco, San Francisco, CA
| | - Carmen Marsit
- Gangarosa Department of Environmental Health, Emory University, Atlanta, GA
| | - James A Litch
- Global Alliance to Prevent Preterm Birth and Stillbirth (GAPPS), Lynnwood, WA
| | - Michael Gravett
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA
| | | | - Sheela Sathyanarayana
- Department of Pediatrics, University of Washington, Seattle, WA; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA; Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA; Department of Epidemiology, University of Washington, Seattle, WA
| |
Collapse
|
11
|
Menzies FM. Immunology of Pregnancy and Systemic Consequences. Curr Top Microbiol Immunol 2023; 441:253-280. [PMID: 37695432 DOI: 10.1007/978-3-031-35139-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Pregnancy is an immunological paradox, with renowned Nobel Prize winning transplantation biologist Sir Peter Brian Medawar being the first to introduce this concept back in 1953. This concept considers how the maternal immune system can tolerate the developing fetus, which is 50% antigenically foreign to the uterus. There have been significant advances in our understanding of the immune system in regulating fertility, pregnancy and in complications of these, and what was once considered a paradox can be seen as a highly evolved system. Indeed, the complexity of the maternal-fetal interface along with our ever-advancing knowledge of immune cells and mediators means that we have a better understanding of these interactions, with gaps still present. This chapter will summarise the key aspects of the role of the immune system at each stage of pregnancy and highlight the recent advances in our knowledge.
Collapse
Affiliation(s)
- Fiona M Menzies
- School of Health and Life Sciences, University of the West of Scotland, Lanarkshire, UK.
| |
Collapse
|
12
|
Mi YB, Liu XH, Wang WS, Wang LY, Ling LJ, Sun K, Ying H. ER-phagy Is Involved in the Degradation of Collagen I by IL-1β in Human Amnion in Parturition. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2322-2329. [PMID: 36288908 DOI: 10.4049/jimmunol.2200518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/27/2022] [Indexed: 11/14/2023]
Abstract
The process of parturition is associated with inflammation within the uterine tissues, and IL-1β is a key proinflammatory cytokine involved. Autophagy is emerging as an important pathway to remove redundant cellular components. However, it is not known whether IL-1β employs the autophagy pathway to degrade collagen, thereby participating in membrane rupture at parturition. In this study, we investigated this issue in human amnion. Results showed that IL-1β levels were significantly increased in human amnion obtained from deliveries with spontaneous labor and membrane rupture, which was accompanied by decreased abundance of COL1A1 and COL1A2 protein but not their mRNA, the two components of collagen I. Consistently, IL-1β treatment of cultured primary human amnion fibroblasts reduced COL1A1 and COL1A2 protein but not their mRNA abundance along with increased abundance of autophagy activation markers, including the microtubule-associated protein L chain 3β II/I ratio and autophagy-related 7 (ATG7) in the cells. The reduction in COL1A1 and COL1A2 protein abundance induced by IL-1β could be blocked by the lysosome inhibitor chloroquine or small interfering RNA-mediated knockdown of ATG7 or ER-phagy receptor FAM134C, suggesting that FAM134C-mediated ER-phagy was involved in IL-1β-induced reduction in COL1A1 and COL1A2 protein in amnion fibroblasts. Consistently, levels of L chain 3β II/I ratio, ATG7, and FAM134C were significantly increased in human amnion obtained from deliveries with spontaneous labor and membrane rupture. Conclusively, increased IL-1β abundance in human amnion may stimulate ER-phagy-mediated COL1A1 and COL1A2 protein degradation in amnion fibroblasts, thereby participating in membrane rupture at parturition.
Collapse
Affiliation(s)
- Ya-Bing Mi
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiao-Hua Liu
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China; and
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Lu-Yao Wang
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li-Jun Ling
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China; and
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Hao Ying
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China;
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
13
|
Ortega MA, Gómez-Lahoz AM, Sánchez-Trujillo L, Fraile-Martinez O, García-Montero C, Guijarro LG, Bravo C, De Leon-Luis JA, Saz JV, Bujan J, García-Honduvilla N, Monserrat J, Alvarez-Mon M. Chronic Venous Disease during Pregnancy Causes a Systematic Increase in Maternal and Fetal Proinflammatory Markers. Int J Mol Sci 2022; 23:ijms23168976. [PMID: 36012236 PMCID: PMC9409364 DOI: 10.3390/ijms23168976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic venous disease (CVD) is a common vascular disorder characterized by increased venous hypertension and insufficient venous return from the lower limbs. Pregnancy is a high-risk situation for developing CVD. Approximately a third of the women will develop this condition during pregnancy, and similarly to arterial hypertensive disorders, previous evidence has described a plethora of alterations in placental structure and function in women with pregnancy-induced CVD. It is widely known that arterial-induced placenta dysfunction is accompanied by an important immune system alteration along with increased inflammatory markers, which may provide detrimental consequences for the women and their offspring. However, to our knowledge, there are still no data collected regarding cytokine profiling in women with pregnancy-induced CVD. Thus, the aim of the present work was to examine cytokine signatures in the serum of pregnant women (PW) with CVD and their newborns (NB). This study was conducted through a multiplex technique in 62 PW with pregnancy-induced CVD in comparison to 52 PW without CVD (HC) as well as their NB. Our results show significant alterations in a broad spectrum of inflammatory cytokines (IL-6, IL-12, TNF-α, IL-10, IL-13, IL-2, IL-7, IFN-γ, IL-4, IL-5, IL-21, IL-23, GM-CSF, chemokines (fractalkine), MIP-3α, and MIP-1β). Overall, we demonstrate that pregnancy-induced CVD is associated with a proinflammatory environment, therefore highlighting the potentially alarming consequences of this condition for maternal and fetal wellbeing.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Correspondence:
| | - Ana M. Gómez-Lahoz
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Lara Sánchez-Trujillo
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Service of Pediatric, Hospital Universitario Principe de Asturias, 28801 Alcalá de Henares, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Systems Biology, Faculty of Medicine and Health Sciences (Networking Research Center on for Liver and Digestive Diseases (CIBEREHD)), University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Coral Bravo
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Juan A. De Leon-Luis
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Jose V. Saz
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Biomedicine and Biotechnology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Príncipe de Asturias, CIBEREHD, 28806 Alcalá de Henares, Spain
| |
Collapse
|
14
|
Diao M, Zhou J, Tao Y, Hu Z, Lin X. Rac1 is involved in uterine myometrium contraction in the inflammation associated preterm birth. Reproduction 2022; 164:169-181. [PMID: 36018772 PMCID: PMC9513643 DOI: 10.1530/rep-21-0186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 08/26/2022] [Indexed: 11/08/2022]
Abstract
Preterm birth (PTB) is a public health issue. The WHO has recommended the use of tocolytic treatment to inhibit preterm labour and improve pregnancy outcomes. Intrauterine inflammation is associated with preterm birth. Rac1 can modulate inflammation in different experimental settings. In the current study, we explored whether Rac1 can modulate spontaneous uterine myometrium contraction in a mouse model of lipopolysaccharide (LPS)-induced intrauterine inflammation. Subsequently, we recorded uterine myometrium contraction and examined uterine Rac1 expression in a mouse model of preterm birth and case in pregnant women by western blotting analysis. We also measured progesterone levels in the blood serum from mice. Murine myometrium was obtained 12 h post LPS treatment. Human myometrium was obtained at the time of caesarean section. We found that in the LPS-treated group of mice, uterine myometrium contraction was enhanced, protein levels and activation of Rac1 were increased and serum progesterone levels were decreased. The protein levels of Rac1 were also increased in preterm birth or case in pregnant women. NSC23766, a Rac1 inhibitor, attenuated uterine myometrium contraction and diminished Rac1 activation and COX-2 expression. Furthermore, silencing of Rac1 suppressed cell contraction and COX-2 expression in vitro. In conclusion, our results suggested that Rac1 may play an important role in modulating uterine myometrium contraction. Consequently, intervening with Rac1 represents a novel strategy for the treatment of preterm birth.
Collapse
Affiliation(s)
- Min Diao
- M Diao, Department of Anesthesiology,, Sichuan University West China Second University Hospital, Chengdu, China
| | - Jin Zhou
- J Zhou, Department of Anesthesiology, Sichuan University West China Second University Hospital, Chengdu, China
| | - Yunkai Tao
- Y Tao, Department of Anesthesiology, Sichuan University West China Second University Hospital, Chengdu, China
| | - Zhaoyang Hu
- Z Hu, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan University West China Hospital, Chengdu, China
| | - Xuemei Lin
- X Lin, Department of Anesthesiology,, Sichuan University West China Second University Hospital, Chengdu, China
| |
Collapse
|
15
|
Gudicha DW, Romero R, Gomez-Lopez N, Galaz J, Bhatti G, Done B, Jung E, Gallo DM, Bosco M, Suksai M, Diaz-Primera R, Chaemsaithong P, Gotsch F, Berry SM, Chaiworapongsa T, Tarca AL. The amniotic fluid proteome predicts imminent preterm delivery in asymptomatic women with a short cervix. Sci Rep 2022; 12:11781. [PMID: 35821507 PMCID: PMC9276779 DOI: 10.1038/s41598-022-15392-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 06/23/2022] [Indexed: 11/09/2022] Open
Abstract
Preterm birth, the leading cause of perinatal morbidity and mortality, is associated with increased risk of short- and long-term adverse outcomes. For women identified as at risk for preterm birth attributable to a sonographic short cervix, the determination of imminent delivery is crucial for patient management. The current study aimed to identify amniotic fluid (AF) proteins that could predict imminent delivery in asymptomatic patients with a short cervix. This retrospective cohort study included women enrolled between May 2002 and September 2015 who were diagnosed with a sonographic short cervix (< 25 mm) at 16-32 weeks of gestation. Amniocenteses were performed to exclude intra-amniotic infection; none of the women included had clinical signs of infection or labor at the time of amniocentesis. An aptamer-based multiplex platform was used to profile 1310 AF proteins, and the differential protein abundance between women who delivered within two weeks from amniocentesis, and those who did not, was determined. The analysis included adjustment for quantitative cervical length and control of the false-positive rate at 10%. The area under the receiver operating characteristic curve was calculated to determine whether protein abundance in combination with cervical length improved the prediction of imminent preterm delivery as compared to cervical length alone. Of the 1,310 proteins profiled in AF, 17 were differentially abundant in women destined to deliver within two weeks of amniocentesis independently of the cervical length (adjusted p-value < 0.10). The decreased abundance of SNAP25 and the increased abundance of GPI, PTPN11, OLR1, ENO1, GAPDH, CHI3L1, RETN, CSF3, LCN2, CXCL1, CXCL8, PGLYRP1, LDHB, IL6, MMP8, and PRTN3 were associated with an increased risk of imminent delivery (odds ratio > 1.5 for each). The sensitivity at a 10% false-positive rate for the prediction of imminent delivery by a quantitative cervical length alone was 38%, yet it increased to 79% when combined with the abundance of four AF proteins (CXCL8, SNAP25, PTPN11, and MMP8). Neutrophil-mediated immunity, neutrophil activation, granulocyte activation, myeloid leukocyte activation, and myeloid leukocyte-mediated immunity were biological processes impacted by protein dysregulation in women destined to deliver within two weeks of diagnosis. The combination of AF protein abundance and quantitative cervical length improves prediction of the timing of delivery compared to cervical length alone, among women with a sonographic short cervix.
Collapse
Affiliation(s)
- Dereje W Gudicha
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services Bethesda, MD, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services Bethesda, MD, Detroit, MI, USA.
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.
- Detroit Medical Center, Detroit, MI, USA.
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services Bethesda, MD, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services Bethesda, MD, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Gaurav Bhatti
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services Bethesda, MD, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bogdan Done
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services Bethesda, MD, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services Bethesda, MD, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dahiana M Gallo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services Bethesda, MD, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mariachiara Bosco
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services Bethesda, MD, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Manaphat Suksai
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services Bethesda, MD, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ramiro Diaz-Primera
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services Bethesda, MD, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Piya Chaemsaithong
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services Bethesda, MD, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Francesca Gotsch
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services Bethesda, MD, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Stanley M Berry
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services Bethesda, MD, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services Bethesda, MD, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services Bethesda, MD, Detroit, MI, USA.
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA.
| |
Collapse
|
16
|
Eastman AJ, Noble KN, Pensabene V, Aronoff DM. Leveraging bioengineering to assess cellular functions and communication within human fetal membranes. J Matern Fetal Neonatal Med 2022; 35:2795-2807. [PMID: 32787482 PMCID: PMC7878582 DOI: 10.1080/14767058.2020.1802716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/21/2020] [Accepted: 07/26/2020] [Indexed: 02/09/2023]
Abstract
The fetal membranes enclose the growing fetus and amniotic fluid. Preterm prelabor rupture of fetal membranes is a leading cause of preterm birth. Fetal membranes are composed of many different cell types, both structural and immune. These cells must coordinate functions for tensile strength and membrane integrity to contain the growing fetus and amniotic fluid. They must also balance immune responses to pathogens with maintaining maternal-fetal tolerance. Perturbation of this equilibrium can lead to preterm premature rupture of membranes without labor. In this review, we describe the formation of the fetal membranes to orient the reader, discuss some of the common forms of communication between the cell types of the fetal membranes, and delve into the methods used to tease apart this paracrine signaling within the membranes, including emerging technologies such as organ-on-chip models of membrane immunobiology.
Collapse
Affiliation(s)
- Alison J. Eastman
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kristen N. Noble
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, TN 37202 USA
| | - Virginia Pensabene
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
- School of Medicine, Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, UK
| | - David M. Aronoff
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
17
|
Arenas-Hernandez M, Romero R, Gershater M, Tao L, Xu Y, Garcia-Flores V, Pusod E, Miller D, Galaz J, Motomura K, Schwenkel G, Para R, Gomez-Lopez N. Specific innate immune cells uptake fetal antigen and display homeostatic phenotypes in the maternal circulation. J Leukoc Biol 2022; 111:519-538. [PMID: 34889468 PMCID: PMC8881318 DOI: 10.1002/jlb.5hi0321-179rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
Pregnancy represents a period when the mother undergoes significant immunological changes to promote tolerance of the fetal semi-allograft. Such tolerance results from the exposure of the maternal immune system to fetal antigens (Ags), a process that has been widely investigated at the maternal-fetal interface and in the adjacent draining lymph nodes. However, the peripheral mechanisms of maternal-fetal crosstalk are poorly understood. Herein, we hypothesized that specific innate immune cells interact with fetal Ags in the maternal circulation. To test this hypothesis, a mouse model was utilized in which transgenic male mice expressing the chicken ovalbumin (OVA) Ag under the beta-actin promoter were allogeneically mated with wild-type females to allow for tracking of the fetal Ag. Fetal Ag-carrying Ly6G+ and F4/80+ cells were identified in the maternal circulation, where they were more abundant in the second half of pregnancy. Such innate immune cells displayed unique phenotypes: while Ly6G+ cells expressed high levels of MHC-II and CD80 together with low levels of pro-inflammatory cytokines, F4/80+ cells up-regulated the expression of CD86 as well as the anti-inflammatory cytokines IL-10 and TGF-β. In vitro studies using allogeneic GFP+ placental particles revealed that maternal peripheral Ly6G+ and F4/80+ cells phagocytose fetal Ags in mid and late murine pregnancy. Importantly, cytotrophoblast-derived particles were also engulfed in vitro by CD15+ and CD14+ cells from women in the second and third trimester, providing translational evidence that this process also occurs in humans. Collectively, this study demonstrates novel interactions between specific maternal circulating innate immune cells and fetal Ags, thereby shedding light on the systemic mechanisms of maternal-fetal crosstalk.
Collapse
Affiliation(s)
- Marcia Arenas-Hernandez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
- Detroit Medical Center, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Florida International University, Miami, FL, USA
| | - Meyer Gershater
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Li Tao
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Errile Pusod
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kenichiro Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - George Schwenkel
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Robert Para
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
18
|
Yeganeh Kazemi N, Fedyshyn B, Sutor S, Fedyshyn Y, Markovic S, Enninga EAL. Maternal Monocytes Respond to Cell-Free Fetal DNA and Initiate Key Processes of Human Parturition. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2433-2444. [PMID: 34663619 PMCID: PMC8578468 DOI: 10.4049/jimmunol.2100649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/12/2021] [Indexed: 12/14/2022]
Abstract
Throughout gestation, the maternal immune system is tightly modulated to allow growth of a semiallogeneic fetus. During the third trimester, the maternal immune system shifts to a proinflammatory phenotype in preparation for labor. What induces this shift remains unclear. Cell-free fetal DNA (cffDNA) is shed by the placenta and enters maternal circulation throughout pregnancy. Levels of cffDNA are increased as gestation progresses and peak before labor, coinciding with a shift to proinflammatory maternal immunity. Furthermore, cffDNA is abnormally elevated in plasma from women with complications of pregnancy, including preterm labor. Given the changes in maternal immunity at the end of pregnancy and the role of sterile inflammation in the pathophysiology of spontaneous preterm birth, we hypothesized that cffDNA can act as a damage-associated molecular pattern inducing an inflammatory cytokine response that promotes hallmarks of parturition. To test this hypothesis, we stimulated human maternal leukocytes with cffDNA from primary term cytotrophoblasts or maternal plasma and observed significant IL-1β and CXCL10 secretion, which coincides with phosphorylation of IFN regulatory factor 3 and caspase-1 cleavage. We then show that human maternal monocytes are crucial for the immune response to cffDNA and can activate bystander T cells to secrete proinflammatory IFN-γ and granzyme B. Lastly, we find that the monocyte response to cffDNA leads to vascular endothelium activation, induction of myometrial contractility, and PGE2 release in vitro. Our results suggest that the immune response to cffDNA can promote key features of the parturition cascade, which has physiologic consequences relevant to the timing of labor.
Collapse
Affiliation(s)
| | - Bohdana Fedyshyn
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN
| | - Shari Sutor
- Department of Immunology, Mayo Clinic, Rochester, MN
| | - Yaroslav Fedyshyn
- Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, MN; and
| | - Svetomir Markovic
- Department of Immunology, Mayo Clinic, Rochester, MN;,Department of Oncology, Mayo Clinic, Rochester, MN
| | - Elizabeth Ann L. Enninga
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN;,Department of Immunology, Mayo Clinic, Rochester, MN
| |
Collapse
|
19
|
Ghafoor S. Current and Emerging Strategies for Prediction and Diagnosis of Prelabour Rupture of the Membranes: A Narrative Review. Malays J Med Sci 2021; 28:5-17. [PMID: 34285641 PMCID: PMC8260062 DOI: 10.21315/mjms2021.28.3.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/25/2020] [Indexed: 01/27/2023] Open
Abstract
Prelabour rupture of membranes (PROM) refers to the disruption of foetal membranes before the onset of labour, resulting in the leakage of amniotic fluid. PROM complicates 3% and 8% of preterm and term pregnancies, respectively. Accurate and timely diagnosis is crucial for effective management to prevent adverse maternal- and foetal-outcomes. The diagnosis of equivocal PROM cases with traditional methods often becomes challenging in current obstetrics practice; therefore, various novel biochemical markers have emerged as promising diagnostic tools. This narrative review is sought to review the published data to understand the current and emerging trends in diagnostic modalities in term and preterm pregnancies complicated with PROM and the potential role of various markers for predicting preterm PROM (pPROM) and chorioamnionitis in women with pPROM.
Collapse
Affiliation(s)
- Saadia Ghafoor
- Kakshal Hospital, Kakshal, Peshawar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
20
|
Coler BS, Shynlova O, Boros-Rausch A, Lye S, McCartney S, Leimert KB, Xu W, Chemtob S, Olson D, Li M, Huebner E, Curtin A, Kachikis A, Savitsky L, Paul JW, Smith R, Adams Waldorf KM. Landscape of Preterm Birth Therapeutics and a Path Forward. J Clin Med 2021; 10:2912. [PMID: 34209869 PMCID: PMC8268657 DOI: 10.3390/jcm10132912] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
Preterm birth (PTB) remains the leading cause of infant morbidity and mortality. Despite 50 years of research, therapeutic options are limited and many lack clear efficacy. Tocolytic agents are drugs that briefly delay PTB, typically to allow antenatal corticosteroid administration for accelerating fetal lung maturity or to transfer patients to high-level care facilities. Globally, there is an unmet need for better tocolytic agents, particularly in low- and middle-income countries. Although most tocolytics, such as betamimetics and indomethacin, suppress downstream mediators of the parturition pathway, newer therapeutics are being designed to selectively target inflammatory checkpoints with the goal of providing broader and more effective tocolysis. However, the relatively small market for new PTB therapeutics and formidable regulatory hurdles have led to minimal pharmaceutical interest and a stagnant drug pipeline. In this review, we present the current landscape of PTB therapeutics, assessing the history of drug development, mechanisms of action, adverse effects, and the updated literature on drug efficacy. We also review the regulatory hurdles and other obstacles impairing novel tocolytic development. Ultimately, we present possible steps to expedite drug development and meet the growing need for effective preterm birth therapeutics.
Collapse
Affiliation(s)
- Brahm Seymour Coler
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA; (B.S.C.); (S.M.); (M.L.); (E.H.); (A.C.); (A.K.); (L.S.)
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Oksana Shynlova
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (O.S.); (A.B.-R.); (S.L.)
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON M5G 1E2, Canada
| | - Adam Boros-Rausch
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (O.S.); (A.B.-R.); (S.L.)
| | - Stephen Lye
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (O.S.); (A.B.-R.); (S.L.)
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON M5G 1E2, Canada
| | - Stephen McCartney
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA; (B.S.C.); (S.M.); (M.L.); (E.H.); (A.C.); (A.K.); (L.S.)
| | - Kelycia B. Leimert
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R7, Canada; (K.B.L.); (W.X.); (D.O.)
| | - Wendy Xu
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R7, Canada; (K.B.L.); (W.X.); (D.O.)
| | - Sylvain Chemtob
- Departments of Pediatrics, Université de Montréal, Montréal, QC H3T 1J4, Canada;
| | - David Olson
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R7, Canada; (K.B.L.); (W.X.); (D.O.)
- Departments of Pediatrics and Physiology, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Miranda Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA; (B.S.C.); (S.M.); (M.L.); (E.H.); (A.C.); (A.K.); (L.S.)
- Department of Biological Sciencies, Columbia University, New York, NY 10027, USA
| | - Emily Huebner
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA; (B.S.C.); (S.M.); (M.L.); (E.H.); (A.C.); (A.K.); (L.S.)
| | - Anna Curtin
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA; (B.S.C.); (S.M.); (M.L.); (E.H.); (A.C.); (A.K.); (L.S.)
| | - Alisa Kachikis
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA; (B.S.C.); (S.M.); (M.L.); (E.H.); (A.C.); (A.K.); (L.S.)
| | - Leah Savitsky
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA; (B.S.C.); (S.M.); (M.L.); (E.H.); (A.C.); (A.K.); (L.S.)
| | - Jonathan W. Paul
- Mothers and Babies Research Centre, School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (J.W.P.); (R.S.)
- Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia
| | - Roger Smith
- Mothers and Babies Research Centre, School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (J.W.P.); (R.S.)
- Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia
- John Hunter Hospital, New Lambton Heights, NSW 2305, Australia
| | - Kristina M. Adams Waldorf
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA; (B.S.C.); (S.M.); (M.L.); (E.H.); (A.C.); (A.K.); (L.S.)
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
21
|
Núñez-Sánchez E, Flores-Espinosa MDP, Mancilla-Herrera I, González L, Cisneros J, Olmos-Ortiz A, Quesada-Reyna B, Granados-Cepeda M, Zaga-Clavellina V. Prolactin modifies the in vitro LPS-induced chemotactic capabilities in human fetal membranes at the term of gestation. Am J Reprod Immunol 2021; 86:e13413. [PMID: 33660388 PMCID: PMC8365646 DOI: 10.1111/aji.13413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/03/2021] [Accepted: 03/01/2021] [Indexed: 12/05/2022] Open
Abstract
Problem Immune responses of fetal membranes involve the production of chemoattractant mediators causing infiltration of maternal and fetal leukocytes, intrauterine inflammation and potentially the disruption of maternal‐fetal tolerance. Prolactin (PRL) has deep immunoregulatory effects in the fetal‐maternal interface. We aimed to test the in vitro PRL effect upon chemotactic capacities of human fetal membranes. Method of Study Fetal membranes and umbilical cord blood were collected from healthy non‐laboring caesarean deliveries at term. Fetal membranes were cultured in Transwell® frames to mimic the barrier function between choriodecidual and amniotic sides. Tissues were treated with PRL, Lipopolysaccharide (LPS), or both simultaneously. Then, RANTES, MCP‐1, MIP‐1α, IP‐10, and PECAM‐1 were quantified in a conditioned medium by choriodecidual or amniotic sides. The chemotaxis of subsets of migrating mononuclear cells from umbilical cord blood was evaluated in a Boyden Chamber in response to the conditioned medium by both sides. Results Lipopolysaccharide stimulates the production of RANTES, MCP‐1, MIP‐1α, and PECAM‐1 in choriodecidua, while MIP‐1α and PECAM‐1 only increase in amnion. PRL decrease RANTES, MCP‐1, and MIP‐1 only in choriodecidua, but PECAM‐1 was decreased mainly in amnion. The leukocyte migration was regulated significantly in response to the conditioned medium by the amnion, increase in the conditioned medium after LPS treatment, contrary with, the leukocyte migration decreased in a significant manner in response to conditioned medium after PRL and LPS‐PRL co‐treatment. Finally, T cells were the most responsive subset of cells. Conclusions Prolactin modified in a tissue‐specific manner the chemotactic factor and the leukocyte migration differentially in fetal membranes.
Collapse
Affiliation(s)
- Estefanía Núñez-Sánchez
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Ciudad de México, México
| | - María Del Pilar Flores-Espinosa
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Ciudad de México, México
| | - Ismael Mancilla-Herrera
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Ciudad de México, México
| | - Leticia González
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Ciudad de México, México
| | - José Cisneros
- Laboratorio de Biopatología Pulmonar, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Ciudad de México, México
| | - Andrea Olmos-Ortiz
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Ciudad de México, México
| | - Braulio Quesada-Reyna
- División de Gineco-Obstetricia, UMAE Hospital de Gineco-Obstetricia No. 4 "Luis Castelazo Ayala" IMSS, Ciudad de México, México
| | - Martha Granados-Cepeda
- Departamento de Neonatología, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Ciudad de México, México
| | - Veronica Zaga-Clavellina
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", Ciudad de México, México
| |
Collapse
|
22
|
Kumar D, Moore RM, Mercer BM, Mansour JM, Moore JJ. Mechanism of Human Fetal Membrane Biomechanical Weakening, Rupture and Potential Targets for Therapeutic Intervention. Obstet Gynecol Clin North Am 2021; 47:523-544. [PMID: 33121643 DOI: 10.1016/j.ogc.2020.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Using a novel in vitro model system combining biochemical/histologic with bioengineering approaches has provided significant insights into the physiology of fetal membrane weakening and rupture along with potential mechanistic reasons for lack of efficacy of currently clinically used agents to prevent preterm premature rupture of the membranes (pPROM) and preterm births. Likewise, the model has also facilitated screening of agents with potential for preventing pPROM and preterm birth.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Pediatrics, MetroHealth Medical Center, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA.
| | - Robert M Moore
- Department of Pediatrics, MetroHealth Medical Center, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Brian M Mercer
- Department of Reproductive Biology, MetroHealth Medical Center, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Joseph M Mansour
- Mechanical and Aerospace Engineering, Case Western Reserve University, Glennan 617, Cleveland, OH 44106, USA
| | - John J Moore
- Department of Pediatrics, MetroHealth Medical Center, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA; Department of Reproductive Biology, MetroHealth Medical Center, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| |
Collapse
|
23
|
Zhang T, Zhang Y, Yang J, Wen P, Li H, Wei N, Gao Y, Li B, Huo Y. Dynamic measurement of amnion thickness during loading by speckle pattern interferometry. Placenta 2021; 104:284-294. [PMID: 33486132 DOI: 10.1016/j.placenta.2021.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 11/27/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022]
Abstract
INTRODUCTION In previous studies on the mechanical parameters of amnions (AM), there is a limitation due to the lack of an accurate thickness measurement, which is an important parameter for determining AM-specific mechanical properties. As a bottleneck, the characterization of the basic mechanical properties of AM are greatly restricted, even with the proposal of fracture criteria. METHOD First, the initial thickness of the AM is estimated by the interpolated-volume-area method. Second, through combinations of our self-developed mini-biaxial tensile device with speckle pattern interferometry, this is the first time that researchers can accurately obtain the AM thickness at each transient moment in the process of loading. RESULTS Based on the experimental results, an accurate stress-strain curve could be obtained. Two important mechanical parameters-the fracture energy density and amnion rupture modulus-could be extracted as 0.184±0.036MPa and 108.57±17.32MPa, respectively. The fracture energy density and amnion rupture modulus provide objective criteria and a scientific basis for the evaluation of AM rupture. DISCUSSION The tensile stress-strain curve of a normal human amnion shows a distinct J-shape. This proves that the experimental results are basically reliable. Both important parameters --the fracture energy density and amnion rupture modulus, can be calculated from the stress-strain curve. Extracting these two parameters is critical for the evaluation and prediction of ROM, PROM and PPROM.
Collapse
Affiliation(s)
- Tong Zhang
- Institute of Solid Mechanics, School of Aeronautics Sciences and Engineering, Beihang University, Beijing, 100083, China.
| | - Yan Zhang
- Obstetrics and Gynecology Department, Peking University Third Hospital, Beijing, 100191, China.
| | - Jianhong Yang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China; Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing 100083, China.
| | - Pinjing Wen
- Institute of Semiconductor Manufacturing Research, Shenzhen University, Shenzhen, 518060, Guangdong, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, China.
| | - Han Li
- Institute of Solid Mechanics, School of Aeronautics Sciences and Engineering, Beihang University, Beijing, 100083, China
| | - Ning Wei
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yufei Gao
- Obstetrics and Gynecology Department, Peking University Third Hospital, Beijing, 100191, China
| | - Boqian Li
- Institute of Solid Mechanics, School of Aeronautics Sciences and Engineering, Beihang University, Beijing, 100083, China
| | - Yucheng Huo
- Institute of Solid Mechanics, School of Aeronautics Sciences and Engineering, Beihang University, Beijing, 100083, China
| |
Collapse
|
24
|
Singh N, Herbert B, Sooranna G, Das A, Sooranna SR, Yellon SM, Johnson MR. Distinct preterm labor phenotypes have unique inflammatory signatures and contraction associated protein profiles†. Biol Reprod 2020; 101:1031-1045. [PMID: 31411323 DOI: 10.1093/biolre/ioz144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/05/2019] [Accepted: 06/29/2019] [Indexed: 01/02/2023] Open
Abstract
Preterm labor (PTL) is the predominant cause of childhood morbidity and mortality. It has several phenotypes, each with a distinct etiology often involving inflammation. Here, in samples of reproductive tissues obtained in early PTL from women with phenotypically defined PTL, we examined the presence and distribution of inflammation and its relationship with prolabor gene expression. In chorioamnionitis (CA-PTL), cytokine protein concentrations were increased across all tissues; in idiopathic (I-PTL), the inflammatory changes were limited to the choriodecidua; inflammation was not a feature of placental abruption (PA-PTL). CA-PTL was associated with activation of p65 in the myometrium and AP-1 in the choriodecidua, and PA-PTL with CREB in the choriodecidua. In the myometrium, PGHS-2 mRNA level was increased in CA- and I-PTL; in the amnion, PGHS-2 mRNA level was higher in PA- and I-PTL, while in CA-PTL, OT, OTR mRNA, and CX-43 expression were increased. In the choriodecidua, PGHS-2 mRNA level was unchanged, but in CA and I-PTL, OT mRNA level were increased and OTR was reduced. These data show that CA-PTL is associated with widespread inflammation and prolabor gene expression. In contrast, in I-PTL, inflammation is limited to the choriodecidua, with discrete increases in PGHS-2 in the amnion and OT in the choriodecidua. Inflammation is not a feature of PA-PTL, which is associated with increased OT and OTR in the amnion.
Collapse
Affiliation(s)
- Natasha Singh
- Chelsea and Westminster Hospital, London, United Kingdom.,Institute of Reproductive and Developmental Biology, London, United Kingdom
| | - Bronwen Herbert
- Institute of Reproductive and Developmental Biology, London, United Kingdom
| | - Gavin Sooranna
- Chelsea and Westminster Hospital, London, United Kingdom.,Institute of Reproductive and Developmental Biology, London, United Kingdom
| | - Anya Das
- Institute of Reproductive and Developmental Biology, London, United Kingdom
| | - Suren R Sooranna
- Chelsea and Westminster Hospital, London, United Kingdom.,Institute of Reproductive and Developmental Biology, London, United Kingdom
| | - Steven M Yellon
- Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Mark R Johnson
- Chelsea and Westminster Hospital, London, United Kingdom.,Institute of Reproductive and Developmental Biology, London, United Kingdom
| |
Collapse
|
25
|
Expression profile of proinflammatory mediators in the placenta of mares during physiological detachment and retention of fetal membranes. Cytokine 2020; 137:155307. [PMID: 33011402 DOI: 10.1016/j.cyto.2020.155307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/01/2020] [Accepted: 09/18/2020] [Indexed: 01/03/2023]
Abstract
Physiological parturition is characterized by sterile, inflammatory-like processes. During parturition, the placenta expresses various proinflammatory mediators, such as chemokines and IL-17. Nevertheless, inflammatory processes present in the parturient mare are poorly characterized. The aim of this study was to investigate the expression of selected chemokines and IL-17 in the allantochorion and the endometrium of mares that retained fetal membranes (RFM) and expelled them physiologically. We hypothesized that the expression of these mediators may be altered in the placenta of mares with RFM and result in RFM occurrence. Differences in mRNA expression in the placenta of investigated groups of mares were detected for CCL2, CCL3, CCL4, CCL8, CXCL1, CXCL8, CXCL10, CX3CL1 and IL-17. There were no differences in mRNA expression of CCL5 and CXCL6. Gene ontology network analysis showed enrichment in genes related to leukocyte migration, cell chemotaxis and response to chemokine in tissues of RFM mares. Analysis of association network suggested denotations between CXCL6, CXCL8, CXCL1, CCL5, CCL4, CX3CL1 and CXCL10. Moreover, possible inhibition of CXCL10 by IL-17A and prostaglandin peroxide synthase 2 (PTGS2) by CXCL1 was detected. Our results suggest that, based on differences in chemokines and IL-17 expression, recruited subsets of leukocytes might differ between the analyzed groups of mares, which in turn may impair the separation of fetal membranes in the group of RFM mares. In addition, the results of the expression analysis suggest that macrophages might be one of the most abundant cells infiltrating the equine placenta during the expulsion of fetal membranes. Furthermore, we suspect that the synthesis of PTGS2 might be inhibited in mares with RFM.
Collapse
|
26
|
Oh KJ, Lee J, Romero R, Park HS, Hong JS, Yoon BH. A new rapid bedside test to diagnose and monitor intraamniotic inflammation in preterm PROM using transcervically collected fluid. Am J Obstet Gynecol 2020; 223:423.e1-423.e15. [PMID: 32114081 DOI: 10.1016/j.ajog.2020.02.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Microbial invasion of the amniotic cavity, a clinical condition present in approximately 50% of patients with preterm prelabor rupture of membranes, is often associated with intraamniotic inflammation, a risk factor for a short admission-to-delivery interval, early preterm delivery, and neonatal complications. We previously developed a transcervical amniotic fluid collector, the device that allows the collection of fluid noninvasively from the cervical canal when membrane rupture occurs. OBJECTIVE This study was designed to determine whether rapid analysis of an interleukin-8 concentration in fluid obtained noninvasively by the transcervical amniotic fluid collector can be used to assess the risk of intraamniotic inflammation. We also compared the diagnostic performance of this point-of-care test for interleukin-8 in transcervically obtained fluid to that of a white blood cell count determined in amniotic fluid retrieved by transabdominal amniocentesis. STUDY DESIGN This prospective cohort study was conducted between October 2011 and April 2017. Fluid was retrieved through both transabdominal amniocentesis and the use of a transcervical amniotic fluid collector within 24 hours of amniocentesis in patients with a singleton pregnancy and preterm prelabor rupture of the membranes (16-35 weeks of gestation). Amniotic fluid obtained via amniocentesis was cultured for aerobic and anaerobic bacteria and genital mycoplasmas; a white blood cell count was also measured in amniotic fluid. Intraamniotic infection was diagnosed when microorganisms were identified by the cultivation of amniotic fluid. Intraamniotic inflammation was defined as an elevated amniotic fluid matrix metalloproteinase-8 concentration (>23 ng/mL) assayed by enzyme-linked immunosorbent assay. Interleukin-8 in cervical fluid obtained by the collector was measured by the point-of-care test that used a test strip and scanner based on the fluorescence immunochromatographic analysis in 2019. The diagnostic indices, predictive values, and likelihood ratios of the 2 different tests were calculated. RESULTS First, interleukin-8 concentration ≥9.5 ng/mL in cervical fluid, determined by the point-of-care test, was at the knee of the receiver operating characteristic curve analysis and had a sensitivity of 98% (56/57; 95% confidence interval, 91-99.96%), specificity of 74% (40/54; 95% confidence interval, 60-85%), positive predictive value of 80% (56/70; 95% confidence interval, 72-86%), negative predictive value of 98% (40/41; 95% confidence interval, 85-99.6%), positive likelihood ratio of 3.79 (95% confidence interval, 2.41-5.96), and negative likelihood ratio of 0.02 (95% confidence interval, 0.003-0.17) in the identification of intraamniotic inflammation; a concentration of matrix metalloproteinase-8 >23 ng/mL by enzyme-linked immunosorbent assay had a prevalence of 51% (57/111). Second, a cervical fluid interleukin-8 concentration ≥9.5 ng/mL had significantly higher sensitivity than a transabdominally obtained amniotic fluid white blood cell count (≥19 cells/mm3) in the identification of intraamniotic inflammation (sensitivity: 98% [95% confidence interval, 91-99.96%] vs 84% [95% confidence interval, 72-93%]; P<.05; specificity: 74% [95% confidence interval, 60-85%] vs 76% [95% confidence interval, 62-87%); positive and negative predictive values: 80% [95% confidence interval, 72-86%] and 98% [95% confidence interval, 85-99.6%] vs 79% [95% confidence interval, 69-86%] and 82% [95% confidence interval, 71-89%]) and in the identification of intraamniotic inflammation/infection (gold standard: positive culture for bacteria or a matrix metalloproteinase-8 >23 ng/mL; sensitivity: 91% [95% confidence interval, 82-97%] vs 75% [95% confidence interval, 63-85%]; P<.05). CONCLUSION The point-of-care test was predictive of intraamniotic inflammation, based on the determination of interleukin-8 in fluid retrieved by a transcervical amniotic fluid collector. Therefore, the analysis of cervically obtained fluid by such point-of-care test may be used to noninvasively monitor intraamniotic inflammation in patients with preterm prelabor rupture of membranes.
Collapse
Affiliation(s)
- Kyung Joon Oh
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, South Korea
| | - JoonHo Lee
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Yonsei University Health System, South Korea
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI; Center for Molecular Medicine and Genetics, Wayne State University, the Detroit Medical Center, Detroit, MI; Department of Obstetrics and Gynecology, Florida International University, Miami, FL
| | - Hyun Soo Park
- Department of Obstetrics and Gynecology, Dongguk University Ilsan Hospital, Goyang, South Korea
| | - Joon-Seok Hong
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, South Korea; Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Bo Hyun Yoon
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, South Korea.
| |
Collapse
|
27
|
Hosseini MS, Ali-Hassanzadeh M, Nadimi E, Karbalay-Doust S, Noorafshan A, Gharesi-Fard B. Stereological study of the placental structure in abortion-prone mice model (CBA/J×DBA/2J). Ann Anat 2020; 230:151508. [PMID: 32173562 DOI: 10.1016/j.aanat.2020.151508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 10/24/2022]
Abstract
Recurrent spontaneous abortion (RSA) is an important reproductive health issue defined as the loss of two or more consecutive pregnancies before the 20th week of gestation, affecting 2-5% of couples. This study aimed to evaluate the volume, number of cells, and length of the vessels in the placenta in normal and abortion-prone (AP) pregnant mice on gestational day (gd) 13.5. Fetal and placental tissues of female CBA/J mated DBA/2J (AP group) and BALB/c (normal pregnant group) were collected and prepared for stereological assessments on gd13.5. The volumes of the placenta and its main layers decidua basalis (Db), junctional zone (Jz), and labyrinth zone (Lz) were investigated. The number of spongiotrophoblast cells, glycogen cells, giant cells, trophoblast cells, lymphocytes, and neutrophils were estimated as well. The AP group showed a reduction in the volume of the placenta (48.7%) and its components. Moreover, the number of spongiotrophoblast cells (66.7%), glycogen cells (76.2%), giant cells (73.3%), and trophoblast cells (81.4%) was decreased in AP compared to normal pregnant (NP) mice. Also, in AP group recognized a 10-fold increase in the number of lymphocytes and a four-fold increase in the number of neutrophils in comparison to the NP group (p < 0.05). Activation of different immune cell types might induce systemic inflammation at the feto-maternal interface, resulting in impaired placenta formation and abortion.
Collapse
Affiliation(s)
| | - Mohammad Ali-Hassanzadeh
- Department of Immunology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran; Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Nadimi
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran; Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saied Karbalay-Doust
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Noorafshan
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behrouz Gharesi-Fard
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran; Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
28
|
Lavu N, Sheller-Miller S, Kechichian T, Cayenne S, Bonney EA, Menon R. Changes in mediators of pro-cell growth, senescence, and inflammation during murine gestation. Am J Reprod Immunol 2020; 83:e13214. [PMID: 31814178 DOI: 10.1111/aji.13214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/08/2019] [Accepted: 12/05/2019] [Indexed: 12/27/2022] Open
Abstract
PROBLEM Senescence of the fetal membranes and senescence-associated inflammation have been associated with parturition at term and pre-term in both mice and humans. Using a pregnant mouse model, we determined changes in multiple molecular signalers contributing to senescence and inflammation associated with parturition. METHOD OF STUDY Fetal membranes were collected from timed-pregnant CD-1 mice on gestation days (E) 13, 15, 17, 18, and 19. Immunohistochemistry (IHC) localized pro-cell growth factors glycogen synthase kinase 3β (GSK3β) and β-catenin. Gestational age-associated changes in pro-cell growth vs senescence mediators (p38 mitogen-activated protein kinase [p38MAPK]), prooxidants (heme oxygenase-1 [HO-1], peroxisome proliferator-activated receptor γ [PPARγ]), and pro- and anti-inflammatory cytokines (IL-6, IL-8, IL-10, and IL-1β) were determined by Western blots and Luminex assays. RESULTS Fetal membrane expressions of phosphorylated forms of GSK3β (inactivation) and p38MAPK (activation) increased, while β-catenin expression decreased, as gestation progressed. Antioxidant HO-1 expression decreased while PPARγ increased toward term gestation. IL-6 and IL-8 concentrations were highest on E19 (day of delivery), while IL-10 and IL-1β concentrations were highest on E15. CONCLUSION Mouse fetal membranes showed a progressive senescence marker increase coincided with downregulation of cell growth factors. Development of senescence is associated with inflammation. Senescence-associated changes are natural and physiologic and indicative of fetal membranes' readiness for parturition.
Collapse
Affiliation(s)
- Narmada Lavu
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.,Department of Neuroscience, Cell Biology & Anatomy, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Samantha Sheller-Miller
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Talar Kechichian
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | | | - Elizabeth A Bonney
- Department of Obstetrics and Gynecology, University of Vermont, Burlington, VT, USA
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
29
|
King JR, Wilson ML, Hetey S, Kiraly P, Matsuo K, Castaneda AV, Toth E, Krenacs T, Hupuczi P, Mhawech-Fauceglia P, Balogh A, Szilagyi A, Matko J, Papp Z, Roman LD, Cortessis VK, Than NG. Dysregulation of Placental Functions and Immune Pathways in Complete Hydatidiform Moles. Int J Mol Sci 2019; 20:E4999. [PMID: 31658584 PMCID: PMC6829352 DOI: 10.3390/ijms20204999] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022] Open
Abstract
Gene expression studies of molar pregnancy have been limited to a small number of candidate loci. We analyzed high-dimensional RNA and protein data to characterize molecular features of complete hydatidiform moles (CHMs) and corresponding pathologic pathways. CHMs and first trimester placentas were collected, histopathologically examined, then flash-frozen or paraffin-embedded. Frozen CHMs and control placentas were subjected to RNA-Seq, with resulting data and published placental RNA-Seq data subjected to bioinformatics analyses. Paraffin-embedded tissues from CHMs and control placentas were used for tissue microarray (TMA) construction, immunohistochemistry, and immunoscoring for galectin-14. Of the 14,022 protein-coding genes expressed in all samples, 3,729 were differentially expressed (DE) in CHMs, of which 72% were up-regulated. DE genes were enriched in placenta-specific genes (OR = 1.88, p = 0.0001), of which 79% were down-regulated, imprinted genes (OR = 2.38, p = 1.54 × 10-6), and immune genes (OR = 1.82, p = 7.34 × 10-18), of which 73% were up-regulated. DNA methylation-related enzymes and histone demethylases were dysregulated. "Cytokine-cytokine receptor interaction" was the most impacted of 38 dysregulated pathways, among which 17 were immune-related pathways. TMA-based immunoscoring validated the lower expression of galectin-14 in CHM. In conclusion, placental functions were down-regulated, imprinted gene expression was altered, and immune pathways were activated, indicating complex dysregulation of placental developmental and immune processes in CHMs.
Collapse
Affiliation(s)
- Jennifer R King
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Melissa L Wilson
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Szabolcs Hetey
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary.
| | - Peter Kiraly
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary.
| | - Koji Matsuo
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Antonio V Castaneda
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Eszter Toth
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary.
| | - Tibor Krenacs
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary.
| | - Petronella Hupuczi
- Maternity Private Clinic of Obstetrics and Gynecology, H-1126 Budapest, Hungary.
| | - Paulette Mhawech-Fauceglia
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Andrea Balogh
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary.
| | - Andras Szilagyi
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary.
| | - Janos Matko
- Department of Immunology, Institute of Biology, Eotvos Lorand University, H-1117 Budapest, Hungary.
| | - Zoltan Papp
- Maternity Private Clinic of Obstetrics and Gynecology, H-1126 Budapest, Hungary.
- Department of Obstetrics and Gynecology, Semmelweis University, H-1088 Budapest, Hungary.
| | - Lynda D Roman
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Victoria K Cortessis
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Nandor Gabor Than
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary.
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary.
- Maternity Private Clinic of Obstetrics and Gynecology, H-1126 Budapest, Hungary.
| |
Collapse
|
30
|
Weinberg A, Huo Y, Kacanek D, Patel K, Watts DH, Wara D, Hoffman RM, Klawitter J, Christians U. Brief Report: Markers of Spontaneous Preterm Delivery in Women Living With HIV: Relationship With Protease Inhibitors and Vitamin D. J Acquir Immune Defic Syndr 2019; 82:181-187. [PMID: 31513074 PMCID: PMC6760328 DOI: 10.1097/qai.0000000000002111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Women living with HIV (WLHIV) have increased risk of spontaneous preterm delivery (SPTD). We sought to identify plasma predictors of SPTD and their correlations with factors that increase the risk of SPTD, such as vitamin D deficiency and use of protease inhibitors. DESIGN Plasma was obtained from 103 WLHIV with SPTD (≤35 weeks gestation) and 205 controls with term deliveries (TDs; ≥37 weeds) matched to cases 2:1 by race and gestational age at blood draw. TNFα, IFNγ, IL6, IL8, IL1β, IL18, IL17, granulocyte colony stimulating factor (GCSF), MCP1, IP10, sIL2Rα, sCD14, vascular endothelial factor a, monocyte colony stimulation factor, GROα, MMP9, IL10, TGFβ, sCTLA4, and eicosanoids were compared between cases adjusting for known SPTD risk factors. RESULTS Participants had similar demographic characteristics, but cases had higher plasma HIV RNA, lower CD4 cells, and more advanced HIV disease compared with controls. High sIL2Rα was associated with increased risk of SPTD. High sCD14, GCSF, PGF2α, and 5-HEPE were marginally associated with increased risk of SPTD. Women who initiated protease inhibitors-containing antiretroviral treatment before or during the first trimester had higher levels of GCSF and 5-HEPE compared with women without such exposure before plasma collection. Vitamin D insufficiency was associated with higher inflammatory sCD14 and PGF2α, and lower anti-inflammatory 5-HEPE. CONCLUSIONS The best plasma predictor of SPTD in WLHIV was sIL2Rα, a marker of T-cell activation. Markers of monocyte activation and eicosanoids were marginally increased in WLHIV and SPTD, suggesting that they may also play a role in the pathogenesis of this disorder.
Collapse
Affiliation(s)
- Adriana Weinberg
- Department of Pediatrics, Medicine and Pathology, Anschutz Medical Center, University of Colorado Denver, Aurora, CO 80045
| | - Yanling Huo
- Center for Biostatistics in AIDS Research (CBAR), Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - Deborah Kacanek
- Center for Biostatistics in AIDS Research (CBAR), Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - Kunjal Patel
- Center for Biostatistics in AIDS Research (CBAR), Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - D. Heather Watts
- National Institute of Child Health and Human Development, Bethesda, MD
| | | | - Risa M. Hoffman
- University of California San Francisco, San Francisco, CA
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine at the University of California, Los Angeles. Los Angeles, CA
| | - Jelena Klawitter
- iC42 Clinical Research and Development, Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Uwe Christians
- iC42 Clinical Research and Development, Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | | |
Collapse
|
31
|
Balogh A, Toth E, Romero R, Parej K, Csala D, Szenasi NL, Hajdu I, Juhasz K, Kovacs AF, Meiri H, Hupuczi P, Tarca AL, Hassan SS, Erez O, Zavodszky P, Matko J, Papp Z, Rossi SW, Hahn S, Pallinger E, Than NG. Placental Galectins Are Key Players in Regulating the Maternal Adaptive Immune Response. Front Immunol 2019; 10:1240. [PMID: 31275299 PMCID: PMC6593412 DOI: 10.3389/fimmu.2019.01240] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022] Open
Abstract
Galectins are potent immunomodulators that regulate maternal immune responses in pregnancy and prevent the rejection of the semi-allogeneic fetus that also occurs in miscarriages. We previously identified a gene cluster on Chromosome 19 that expresses a subfamily of galectins, including galectin-13 (Gal-13) and galectin-14 (Gal-14), which emerged in anthropoid primates. These galectins are expressed only by the placenta and induce the apoptosis of activated T lymphocytes, possibly contributing to a shifted maternal immune balance in pregnancy. The placental expression of Gal-13 and Gal-14 is decreased in preeclampsia, a life-threatening obstetrical syndrome partly attributed to maternal anti-fetal rejection. This study is aimed at revealing the effects of Gal-13 and Gal-14 on T cell functions and comparing the expression of these galectins in placentas from healthy pregnancies and miscarriages. First-trimester placentas were collected from miscarriages and elective termination of pregnancies, tissue microarrays were constructed, and then the expression of Gal-13 and Gal-14 was analyzed by immunohistochemistry and immunoscoring. Recombinant Gal-13 and Gal-14 were expressed and purified, and their effects were investigated on primary peripheral blood T cells. The binding of Gal-13 and Gal-14 to T cells and the effects of these galectins on apoptosis, activation marker (CD25, CD71, CD95, HLA-DR) expression and cytokine (IL-1β, IL-6, IL-8, IL-10, IFNγ) production of T cells were examined by flow cytometry. Gal-13 and Gal-14 are primarily expressed by the syncytiotrophoblast at the maternal-fetal interface in the first trimester, and their placental expression is decreased in miscarriages compared to first-trimester controls. Recombinant Gal-13 and Gal-14 bind to T cells in a population- and activation-dependent manner. Gal-13 and Gal-14 induce apoptosis of Th and Tc cell populations, regardless of their activation status. Out of the investigated activation markers, Gal-14 decreases the cell surface expression of CD71, Gal-13 increases the expression of CD25, and both galectins increase the expression of CD95 on T cells. Non-activated T cells produce larger amounts of IL-8 in the presence of Gal-13 or Gal-14. In conclusion, these results show that Gal-13 and Gal-14 already provide an immunoprivileged environment at the maternal-fetal interface during early pregnancy, and their reduced expression is related to miscarriages.
Collapse
Affiliation(s)
- Andrea Balogh
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - Eszter Toth
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Katalin Parej
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Structural Biophysics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Diana Csala
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Nikolett L Szenasi
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Istvan Hajdu
- Structural Biophysics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kata Juhasz
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Arpad F Kovacs
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | | | - Petronella Hupuczi
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| | - Adi L Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, United States
| | - Sonia S Hassan
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Offer Erez
- Division of Obstetrics and Gynecology, Maternity Department "D", Faculty of Health Sciences, Soroka University Medical Center, School of Medicine, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Peter Zavodszky
- Structural Biophysics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Janos Matko
- Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - Zoltan Papp
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary.,Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
| | - Simona W Rossi
- Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Sinuhe Hahn
- Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Eva Pallinger
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Nandor Gabor Than
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary.,First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
32
|
Jones AK, Hoffman ML, Pillai SM, McFadden KK, Govoni KE, Zinn SA, Reed SA. Gestational restricted- and over-feeding promote maternal and offspring inflammatory responses that are distinct and dependent on diet in sheep. Biol Reprod 2019; 98:184-196. [PMID: 29272350 DOI: 10.1093/biolre/iox174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 12/18/2017] [Indexed: 12/17/2022] Open
Abstract
Inflammation may be a mechanism of maternal programming because it has the capacity to alter the maternal environment and can persist postnatally in offspring tissues. This study evaluated the effects of restricted- and over-feeding on maternal and offspring inflammatory gene expression using reverse transcription (RT)-PCR arrays. Pregnant ewes were fed 60% (Restricted), 100% (Control), or 140% (Over) of National Research Council requirements beginning on day 30.2 ± 0.2 of gestation. Maternal (n = 8-9 ewes per diet) circulating nonesterified fatty acid (NEFA) and expression of 84 inflammatory genes were evaluated at five stages during gestation. Offspring (n = 6 per diet per age) inflammatory gene expression was evaluated in the circulation and liver at day 135 of gestation and birth. Throughout gestation, circulating NEFA increased in Restricted mothers but not Over. Expression of different proinflammatory mediators increased in Over and Restricted mothers, but was diet-dependent. Maternal diet altered offspring systemic and hepatic expression of genes involved in chemotaxis at late gestation and cytokine production at birth, but the offspring response was distinct from the maternal. In the perinatal offspring, maternal nutrient restriction increased hepatic chemokine (CC motif) ligand 16 and tumor necrosis factor expression. Alternately, maternal overnutrition increased offspring systemic expression of factors induced by hypoxia, whereas expression of factors regulating hepatocyte proliferation and differentiation were altered in the liver. Maternal nutrient restriction and overnutrition may differentially predispose offspring to liver dysfunction through an altered hepatic inflammatory microenvironment that contributes to immune and metabolic disturbances postnatally.
Collapse
Affiliation(s)
- Amanda K Jones
- Department of Animal Science, University of Connecticut, Storrs, Connecticut, USA
| | - Maria L Hoffman
- Department of Animal Science, University of Connecticut, Storrs, Connecticut, USA
| | - Sambhu M Pillai
- Department of Animal Science, University of Connecticut, Storrs, Connecticut, USA
| | - Katelyn K McFadden
- Department of Animal Science, University of Connecticut, Storrs, Connecticut, USA
| | - Kristen E Govoni
- Department of Animal Science, University of Connecticut, Storrs, Connecticut, USA
| | - Steven A Zinn
- Department of Animal Science, University of Connecticut, Storrs, Connecticut, USA
| | - Sarah A Reed
- Department of Animal Science, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
33
|
Arenas-Hernandez M, Romero R, Xu Y, Panaitescu B, Garcia-Flores V, Miller D, Ahn H, Done B, Hassan SS, Hsu CD, Tarca AL, Sanchez-Torres C, Gomez-Lopez N. Effector and Activated T Cells Induce Preterm Labor and Birth That Is Prevented by Treatment with Progesterone. THE JOURNAL OF IMMUNOLOGY 2019; 202:2585-2608. [PMID: 30918041 DOI: 10.4049/jimmunol.1801350] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/26/2019] [Indexed: 12/21/2022]
Abstract
Preterm labor commonly precedes preterm birth, the leading cause of perinatal morbidity and mortality worldwide. Most research has focused on establishing a causal link between innate immune activation and pathological inflammation leading to preterm labor and birth. However, the role of maternal effector/activated T cells in the pathogenesis of preterm labor/birth is poorly understood. In this study, we first demonstrated that effector memory and activated maternal T cells expressing granzyme B and perforin are enriched at the maternal-fetal interface (decidua) of women with spontaneous preterm labor. Next, using a murine model, we reported that prior to inducing preterm birth, in vivo T cell activation caused maternal hypothermia, bradycardia, systemic inflammation, cervical dilation, intra-amniotic inflammation, and fetal growth restriction, all of which are clinical signs associated with preterm labor. In vivo T cell activation also induced B cell cytokine responses, a proinflammatory macrophage polarization, and other inflammatory responses at the maternal-fetal interface and myometrium in the absence of an increased influx of neutrophils. Finally, we showed that treatment with progesterone can serve as a strategy to prevent preterm labor/birth and adverse neonatal outcomes by attenuating the proinflammatory responses at the maternal-fetal interface and cervix induced by T cell activation. Collectively, these findings provide mechanistic evidence showing that effector and activated T cells cause pathological inflammation at the maternal-fetal interface, in the mother, and in the fetus, inducing preterm labor and birth and adverse neonatal outcomes. Such adverse effects can be prevented by treatment with progesterone, a clinically approved strategy.
Collapse
Affiliation(s)
- Marcia Arenas-Hernandez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201.,Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824.,Center for Molecular Obstetrics and Genetics, Wayne State University, Detroit, MI 48201
| | - Yi Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Bogdan Panaitescu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Derek Miller
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Hyunyoung Ahn
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Bogdan Done
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Sonia S Hassan
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Chaur-Dong Hsu
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Adi L Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201.,Department of Computer Science, Wayne State University College of Engineering, Detroit, MI 48202; and
| | - Carmen Sanchez-Torres
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI 48201; .,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201.,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201
| |
Collapse
|
34
|
Sutton JA, Rogers LM, Dixon B, Kirk L, Doster R, Algood HM, Gaddy JA, Flaherty R, Manning SD, Aronoff DM. Protein kinase D mediates inflammatory responses of human placental macrophages to Group B Streptococcus. Am J Reprod Immunol 2019; 81:e13075. [PMID: 30582878 PMCID: PMC6459189 DOI: 10.1111/aji.13075] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/11/2018] [Accepted: 12/18/2018] [Indexed: 01/22/2023] Open
Abstract
PROBLEM During pregnancy, Group B Streptococcus (GBS) can infect fetal membranes to cause chorioamnionitis, resulting in adverse pregnancy outcomes. Macrophages are the primary resident phagocyte in extraplacental membranes. Protein kinase D (PKD) was recently implicated in mediating pro-inflammatory macrophage responses to GBS outside of the reproductive system. This work aimed to characterize the human placental macrophage inflammatory response to GBS and address the extent to which PKD mediates such effects. METHOD Primary human placental macrophages were infected with GBS in the presence or absence of a specific, small molecule PKD inhibitor, CRT 0066101. Macrophage phenotypes were characterized by evaluating gene expression, cytokine release, assembly of the NLRP3 inflammasome, and NFκB activation. RESULTS GBS evoked a strong inflammatory phenotype characterized by the release of inflammatory cytokines (TNFα, IL-1β, IL-6 (P ≤ 0.05), NLRP3 inflammasome assembly (P ≤ 0.0005), and NFκB activation (P ≤ 0.05). Pharmacological inhibition of PKD suppressed these responses, newly implicating a role for PKD in mediating immune responses of primary human placental macrophages to GBS. CONCLUSION PKD plays a critical role in mediating placental macrophage inflammatory activation in response to GBS infection.
Collapse
Affiliation(s)
- Jessica A. Sutton
- Department of Microbiology and Immunology, Meharry Medical College School of Medicine, Nashville, TN, 37208, USA
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lisa M. Rogers
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Beverly Dixon
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Leslie Kirk
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ryan Doster
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Holly M. Algood
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare Systems, Nashville, Tennessee, U.S.A
| | - Jennifer A. Gaddy
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare Systems, Nashville, Tennessee, U.S.A
| | - Rebecca Flaherty
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Shannon D. Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - David M. Aronoff
- Department of Microbiology and Immunology, Meharry Medical College School of Medicine, Nashville, TN, 37208, USA
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
35
|
Wang LY, Wang WS, Wang YW, Lu JW, Lu Y, Zhang CY, Li WJ, Sun K, Ying H. Drastic induction of MMP-7 by cortisol in the human amnion: implications for membrane rupture at parturition. FASEB J 2019; 33:2770-2781. [PMID: 30303742 DOI: 10.1096/fj.201801216r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Preterm premature rupture of fetal membranes precedes 30-40% of preterm births. Activation of matrix metalloproteases (MMPs) is the one of the major causes of extracellular matrix (ECM) degradation in membrane rupture. Increased cortisol, regenerated by 11β-hydroxysteroid dehydrogenase 1 in the amnion at parturition, is known to participate in a number of parturition-pertinent events. However, whether cortisol has a role in the regulation of MMPs in the membranes is not known. Here, we addressed this issue using human amnion tissue, the most tensile layer of the membranes. RNA-sequencing revealed that cortisol induced MMP7 expression dramatically in amnion fibroblasts, which was confirmed by real-time quantitative RT-PCR and Western blotting analysis in cortisol-treated amnion explants and fibroblasts. Measurement of collagen IV α5 chain (COL4A5), a substrate for MMP-7, showed that cortisol reduced its extracellular abundance, which was blocked by an antibody against MMP-7. Moreover, increased MMP-7 but decreased COL4A5 abundance was observed in the amnion tissue following labor-initiated spontaneous rupture of membranes. Mechanistic studies showed that cortisol increased the phosphorylation of c-Jun and the expression of c-Fos, the 2 major components of activated protein 1 (AP-1), respectively. The knocking down of c-Fos or c-Jun significantly attenuated the induction of MMP7 expression by cortisol. Chromatin immunoprecipitation assays showed that cortisol stimulated the enrichment of c-Fos and c-Jun at the AP-1 binding site in the MMP7 promoter. The data suggest that induction of MMP7 by cortisol via AP-1 may be a contributing factor to ECM degradation in membrane rupture at parturition.-Wang, L.-Y., Wang, W.-S., Wang, Y.-W., Lu, J.-W., Lu, Y., Zhang, C.-Y., Li, W.-J., Sun, K., Ying, H. Drastic induction of MMP-7 by cortisol in the human amnion: implications for membrane rupture at parturition.
Collapse
Affiliation(s)
- Lu-Yao Wang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China; and
| | - Ya-Wei Wang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiang-Wen Lu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China; and
| | - Yi Lu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China; and
| | - Chu-Yue Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China; and
| | - Wen-Jiao Li
- Maternity and Infant Hospital of Changning District, Shanghai, China
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China; and
| | - Hao Ying
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Saliba J, Coutaud B, Solovieva V, Lu F, Blank V. Regulation of CXCL1 chemokine and CSF3 cytokine levels in myometrial cells by the MAFF transcription factor. J Cell Mol Med 2019; 23:2517-2525. [PMID: 30669188 PMCID: PMC6433675 DOI: 10.1111/jcmm.14136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/01/2018] [Indexed: 12/16/2022] Open
Abstract
Cytokines play key roles in a variety of reproductive processes including normal parturition as well as preterm birth. Our previous data have shown that MAFF, a member of the MAF family of bZIP transcription factors, is rapidly induced by pro‐inflammatory cytokines in PHM1‐31 myometrial cells. We performed loss‐of‐function studies in PHM1‐31 cells to identify MAFF dependent genes. We showed that knockdown of MAFF significantly decreased CXCL1 chemokine and CSF3 cytokine transcript and protein levels. Using chromatin immunoprecipitation analyzes, we confirmed CXCL1 and CSF3 genes as direct MAFF targets. We also demonstrated that MAFF function in PHM1‐31 myometrial cells is able to control cytokine and matrix metalloproteinase gene expression in THP‐1 monocytic cells in a paracrine fashion. Our studies provide valuable insights into the MAFF dependent transcriptional network governing myometrial cell function. The data suggest a role of MAFF in parturition and/or infection‐induced preterm labour through modulation of inflammatory processes in the microenvironment.
Collapse
Affiliation(s)
- James Saliba
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Baptiste Coutaud
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Vera Solovieva
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Fangshi Lu
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Volker Blank
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada.,Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada.,Department of Physiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
37
|
Ronzoni S, Steckle V, D'Souza R, Murphy KE, Lye S, Shynlova O. Cytokine Changes in Maternal Peripheral Blood Correlate With Time-to-Delivery in Pregnancies Complicated by Premature Prelabor Rupture of the Membranes. Reprod Sci 2018; 26:1266-1276. [PMID: 30541390 DOI: 10.1177/1933719118815590] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Premature prelabor rupture of the membranes (PPROM) causes one-third of preterm births worldwide and is most likely caused by subclinical intrauterine infection and/or inflammation. We proposed that women with systemic inflammation at the time of PPROM would have shorter latency. Peripheral blood samples were collected from 20 singleton pregnant women with PPROM between 23 ± 1 and 33 ± 6 weeks. The first sample was drawn within 48 hours of admission, followed by weekly blood draws until delivery. Pregnancies complicated with acute chorioamnionitis, preeclampsia, intrauterine growth restriction, obesity, substance abuse, and chronic maternal disease were excluded. Twenty uncomplicated, gestational age-matched pregnancies served as controls. Plasma concentration of 39 cytokines was measured longitudinally using Luminex assays to investigate their value as predictive biomarkers of latency. Women with PPROM exhibited significantly lower plasma concentration of interferon-γ-inducible protein 10-Chemokine (c-x-c motif; IP10/CXCL10), Chemokine (c-x-c motif) Ligand 9 (MIG/CXCL9), Platelet-derived growth factor BB (PDGFbb), and cutaneous T cell-attracting chemokine, also known as CCL27/CCL27 than controls at admission but significantly elevated interleukin (IL)1RA, tumor necrosis factor α, monocyte chemotactic protein-1/CCL2 at delivery compared to admission. Women with PPROM who delivered within 7 days had significantly lower plasma concentration of anti-inflammatory cytokine IL1RA than those with latency periods >7 days. The IL1RA and endotoxin activity in conjunction with clinical parameters results in excellent prediction of latency to delivery (area under the receiver-operating characteristic curve = 0.91). We concluded that higher levels of anti-inflammatory cytokines in women with PPROM were associated with increased latency until delivery, likely due to counterbalancing of proinflammatory load. When used in conjunction with other predictive characteristics of time until delivery, cytokines may further assist clinical decision-making and optimize pregnancy outcomes in women with PPROM.
Collapse
Affiliation(s)
- Stefania Ronzoni
- 1 Department of Obstetrics and Gynecology, Sunnybrook Health Science Centre, University of Toronto, Ontario, Canada
| | - Valerie Steckle
- 2 Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, Ontario, Canada.,3 Department of Physiology, University of Toronto, Ontario, Canada
| | - Rohan D'Souza
- 2 Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, Ontario, Canada.,4 Department of Obstetrics and Gynecology, University of Toronto, Ontario, Canada
| | - Kellie E Murphy
- 2 Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, Ontario, Canada.,4 Department of Obstetrics and Gynecology, University of Toronto, Ontario, Canada
| | - Stephen Lye
- 2 Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, Ontario, Canada.,3 Department of Physiology, University of Toronto, Ontario, Canada.,4 Department of Obstetrics and Gynecology, University of Toronto, Ontario, Canada
| | - Oksana Shynlova
- 2 Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, Ontario, Canada.,3 Department of Physiology, University of Toronto, Ontario, Canada.,4 Department of Obstetrics and Gynecology, University of Toronto, Ontario, Canada
| |
Collapse
|
38
|
Han S, Yang H, Han Y, Zhang H. Genes and transcription factors related to the adverse effects of maternal type I diabetes mellitus on fetal development. Mol Cell Probes 2018; 43:64-71. [PMID: 30447278 DOI: 10.1016/j.mcp.2018.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/15/2018] [Accepted: 11/13/2018] [Indexed: 11/24/2022]
Abstract
PURPOSE Maternal type I diabetes mellitus (T1DM) increases the risk of adverse pregnancy outcomes, but the corresponding mechanism is unclear. This study aims to investigate the mechanism underlying the adverse pregnancy outcomes of maternal T1DM. METHODS Gene expression microarray (GSE51546) was down-loaded from the Gene Expression Omnibus. This dataset included 12 umbilical cord samples from the newborns of T1DM mothers (T1DM group, N = six) and non-diabetic mothers (control group, N = six). RESULTS Consequently, 1051 differentially expressed genes (DEGs) were found between the two groups. The up-regulated DEGs enriched in 30 KEGG pathways. HLA-DPA1, HLA-DMA, HLA-DMB, HLA-DQA1, HLA-DQA2 and HLA-DRA enriched in "Type I diabetes mellitus". This pathway was strongly related to 14 pathways, most of which were associated with diseases. Then, a protein-protein interaction network was constructed, and 45 potential key DEGs were identified. The 45 DEGs enriched in pathways such as "Rheumatoid arthritis", "Chemokine signaling pathway" and "Cytokine-cytokine receptor interaction" (e.g. CXCL12 and CCL5). Transcription factors (TFs) of key DEGs were predicted, and a TF-DEG regulatory network was constructed. CONCLUSIONS Some genes (e.g. CXCL12 and CCL5) and their TFs were significantly and abnormally regulated in the umbilical cord tissue from the pregnancies of T1DM mothers compared to that from non-T1DM mothers.
Collapse
Affiliation(s)
- Shuyi Han
- Department of Clinical Laboratory, Ji'nan Central Hospital Affiliated to Shandong University, Ji'nan, 250013, China
| | - Huili Yang
- Department of Obstetrics, Ji'nan Central Hospital Affiliated to Shandong University, Ji'nan, 250013, China.
| | - Yunhui Han
- Department of Obstetrics, Ji'nan Central Hospital Affiliated to Shandong University, Ji'nan, 250013, China
| | - Hongzhi Zhang
- Department of Gynecology, Ji'nan Central Hospital Affiliated to Shandong University, Ji'nan, 250013, China
| |
Collapse
|
39
|
Liong S, Lappas M. Markers of protein synthesis are increased in fetal membranes and myometrium after human labour and delivery. Reprod Fertil Dev 2018; 30:313-329. [PMID: 28701259 DOI: 10.1071/rd17081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/12/2017] [Indexed: 12/21/2022] Open
Abstract
Preterm birth remains one of the leading causes of neonatal death. Inflammation and maternal infection are two of the leading aetiological factors for preterm birth. Labour is associated with increased production of proinflammatory cytokines, chemokines and prolabour mediators in human gestational tissues. In non-gestational tissues, synthesis of proinflammatory and prolabour mediators is regulated by components of the protein synthesis machinery. Therefore, in the present study we investigated the effect of human labour on the expression of three protein synthesis markers, namely eukaryotic elongation factor 2 kinase (EEF2K), mitogen-activated protein kinase interacting protein kinase 1 (MKNK1) and eukaryotic translation initiation factor 4E (EIF4E), and their role in regulating inflammation in human gestational tissues. In fetal membranes and myometrium, EEF2K expression was significantly lower, whereas MKNK1 expression was significantly higher withterm and preterm labourcompared to term nolabour. In contrast, EIF4E expression did not change in fetal membranes or myometrium with labour. In primary myometrial cells, loss-of-function studies using specific chemical inhibitors of EEF2K (A484954) and MKNK1 (CGP57380) demonstrated that MKNK1, but not EEF2K, was required for polyinosinic-polycytidylic acid (poly(I:C); a viral double-stranded RNA mimetic) and interleukin (IL)-1β-induced production of IL6, C-X-C motif chemokine ligand 8 (CXCL8), prostaglandin-endoperoxide synthase 2 (PTGS2) and prostaglandin F2α. In conclusion, spontaneous term and preterm labour is associated with decreased EEF2K and increased MKNK1 expression in fetal membranes and myometrium. Moreover, MKNK1 is involved in the genesis of proinflammatory and prolabour mediators that is mediated by inflammation or infection. However, further studies are required to elucidate the role of EEF2K in human labour.
Collapse
Affiliation(s)
- Stella Liong
- Mercy Perinatal Research Centre, Mercy Hospital for Women, 4th Floor, 163 Studley Road, Heidelberg, Vic. 3084, Australia
| | - Martha Lappas
- Mercy Perinatal Research Centre, Mercy Hospital for Women, 4th Floor, 163 Studley Road, Heidelberg, Vic. 3084, Australia
| |
Collapse
|
40
|
Mi Y, Wang W, Lu J, Zhang C, Wang Y, Ying H, Sun K. Proteasome-mediated degradation of collagen III by cortisol in amnion fibroblasts. J Mol Endocrinol 2018; 60:45-54. [PMID: 29191827 DOI: 10.1530/jme-17-0215] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 12/19/2022]
Abstract
Rupture of fetal membranes (ROM) can initiate parturition at both term and preterm. Collagen III in the compact layer of the amnion contributes to the tensile strength of fetal membranes. However, the upstream signals triggering collagen III degradation remain mostly elusive. In this study, we investigated the role of cortisol regenerated by 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) in collagen III degradation in human amnion fibroblasts with an aim to seek novel targets for the prevention of preterm premature ROM (pPROM)-elicited preterm birth. Human amnion tissue and cultured amnion tissue explants and amnion fibroblasts were used to study the regulation of collagen III, which is composed of three identical 3α 1 chains (COL3A1), by cortisol. Cortisol decreased COL3A1 protein but not mRNA abundance in a concentration-dependent manner. Cortisone also decreased COL3A1 protein, which was blocked by 11β-HSD1 inhibition. The reduction in COL3A1 protein by cortisol was not affected by a transcription inhibitor but was further enhanced by a translation inhibitor. Autophagic pathway inhibitor chloroquine or siRNA-mediated knock-down of ATG7, an essential protein for autophagy, failed to block cortisol-induced reduction in COL3A1 protein abundance, whereas proteasome pathway inhibitors MG132 and bortezomib significantly attenuated cortisol-induced reduction in COL3A1 protein abundance. Moreover, cortisol increased COL3A1 ubiquitination and the reduction of COL3A1 protein by cortisol was blocked by PYR-41, a ubiquitin-activating enzyme inhibitor. Conclusively, cortisol regenerated in amnion fibroblasts may be associated with ROM at parturition by reducing collagen III protein abundance through a ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Yabing Mi
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Wangsheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Jiangwen Lu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Chuyue Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Yawei Wang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Hao Ying
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| |
Collapse
|
41
|
Nakayama M. Significance of pathological examination of the placenta, with a focus on intrauterine infection and fetal growth restriction. J Obstet Gynaecol Res 2017; 43:1522-1535. [DOI: 10.1111/jog.13430] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 05/14/2017] [Accepted: 05/21/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Masahiro Nakayama
- Department of Pathology; Osaka Medical Center and Research Institute for Maternal and Child Health; Osaka Japan
| |
Collapse
|
42
|
Yang X, Peng W, Zhu LN, Zhang XA, Wang Y. [Association between IL-6 C-572G and susceptibility to spontaneous preterm birth]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:806-811. [PMID: 28697836 PMCID: PMC7389923 DOI: 10.7499/j.issn.1008-8830.2017.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/05/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To investigate the association between the genetic polymorphism of IL-6 C-572G and susceptibility to spontaneous preterm birth (SPTB). METHODS The subjects were from Beijing and the surrounding areas of Beijing. This case-control study enrolled 569 SPTB infants, including 56 extremely preterm (<28 weeks of gestation), 166 very preterm (28-31+6 weeks of gestation) and 347 moderate to late preterm infants (32 to 36+6 weeks of gestation). A total of 673 term infants were enrolled as the control group. The latest Sequenom MassARRAY®SNP detection technique was used for the typing of single nucleotide polymorphism of IL-6 C-572G. RESULTS Compared with the CC genotypes, the IL-6 C-572G G-positive genotype (CG+GG genotype) was significantly associated with an increased susceptibility to moderate to late SPTB (OR=1.35, 95%CI: 1.01-1.80, P=0.04). CONCLUSIONS Among the Chinese population, IL-6 C-572G polymorphism is associated with susceptibility to moderate to late SPTB.
Collapse
Affiliation(s)
- Xiao Yang
- Developmental Biology Laboratory, Bayi Children's Hospital Affiliated to People's Liberation Army Beijing General Hospital, Beijing 100700, China.
| | | | | | | | | |
Collapse
|
43
|
Mi Y, Wang W, Zhang C, Liu C, Lu J, Li W, Zuo R, Myatt L, Sun K. Autophagic Degradation of Collagen 1A1 by Cortisol in Human Amnion Fibroblasts. Endocrinology 2017; 158:1005-1014. [PMID: 28323983 DOI: 10.1210/en.2016-1829] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/11/2017] [Indexed: 11/19/2022]
Abstract
Rupture of fetal membranes can initiate parturition at both term and preterm. Collagen is the crucial factor determining the tensile strength of the membranes. Toward the end of gestation, a feed-forward regeneration of cortisol via 11β-hydroxysteroid dehydrogenase 1 exists in fetal membranes. It remains undetermined whether cortisol contributes to collagen reduction in fetal membranes. In this study, we have examined whether cortisol accumulation is a causative factor for collagen reduction in human amnion fibroblasts, the major source of collagens in the membranes. Cortisol had no effect on collagen 1A1 (COL1A1) and 1A2 (COL1A2) messenger RNA (mRNA) abundance but decreased their protein abundance. The latter effect was affected by neither mRNA transcription inhibitor nor protein translation inhibitor. Mechanistic studies revealed that the reduction in COL1A1 but not COL1A2 protein by cortisol was blocked by lysosome inhibitor chloroquine or small interfering RNA (siRNA)-mediated knockdown of autophagy-related protein 7, an essential protein for autophagy, whereas the proteasome inhibitors MG132 and bortezomib were ineffective. Further analysis showed that cortisol dose dependently increased the ratio of LC3II/LC3I, a marker of lysosome activation, an effect blocked by the glucocorticoid receptor (GR) antagonist RU486 and siRNA-mediated knockdown of GR. Consistently, cortisol decreased COL1A1 and COL1A2 protein abundance in amnion tissue explants, and decreased COL1A1 and COL1A2 protein abundance was observed at parturition in the amnion tissue. Conclusively, cortisol regeneration in fetal membranes may contribute to rupture of fetal membranes at parturition by reducing collagen protein abundance. Lysosome-mediated autophagy accounts for the reduction in COL1A1 by cortisol, but the mechanism underlying the reduction in COL1A2 awaits further investigation.
Collapse
Affiliation(s)
- Yabing Mi
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R. China
| | - Wangsheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R. China
| | - Chuyue Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R. China
| | - Chao Liu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R. China
| | - Jiangwen Lu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R. China
| | - Wenjiao Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R. China
| | - Rujuan Zuo
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R. China
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R. China
| |
Collapse
|
44
|
El-Azzamy H, Balogh A, Romero R, Xu Y, LaJeunesse C, Plazyo O, Xu Z, Price TG, Dong Z, Tarca AL, Papp Z, Hassan SS, Chaiworapongsa T, Kim CJ, Gomez-Lopez N, Than NG. Characteristic Changes in Decidual Gene Expression Signature in Spontaneous Term Parturition. J Pathol Transl Med 2017; 51:264-283. [PMID: 28226203 PMCID: PMC5445200 DOI: 10.4132/jptm.2016.12.20] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/03/2016] [Accepted: 12/20/2016] [Indexed: 11/29/2022] Open
Abstract
Background The decidua has been implicated in the “terminal pathway” of human term parturition, which is characterized by the activation of pro-inflammatory pathways in gestational tissues. However, the transcriptomic changes in the decidua leading to terminal pathway activation have not been systematically explored. This study aimed to compare the decidual expression of developmental signaling and inflammation-related genes before and after spontaneous term labor in order to reveal their involvement in this process. Methods Chorioamniotic membranes were obtained from normal pregnant women who delivered at term with spontaneous labor (TIL, n = 14) or without labor (TNL, n = 15). Decidual cells were isolated from snap-frozen chorioamniotic membranes with laser microdissection. The expression of 46 genes involved in decidual development, sex steroid and prostaglandin signaling, as well as pro- and anti-inflammatory pathways, was analyzed using high-throughput quantitative real-time polymerase chain reaction (qRT-PCR). Chorioamniotic membrane sections were immunostained and then semi-quantified for five proteins, and immunoassays for three chemokines were performed on maternal plasma samples. Results The genes with the highest expression in the decidua at term gestation included insulin-like growth factor-binding protein 1 (IGFBP1), galectin-1 (LGALS1), and progestogen-associated endometrial protein (PAEP); the expression of estrogen receptor 1 (ESR1), homeobox A11 (HOXA11), interleukin 1β (IL1B), IL8, progesterone receptor membrane component 2 (PGRMC2), and prostaglandin E synthase (PTGES) was higher in TIL than in TNL cases; the expression of chemokine C-C motif ligand 2 (CCL2), CCL5, LGALS1, LGALS3, and PAEP was lower in TIL than in TNL cases; immunostaining confirmed qRT-PCR data for IL-8, CCL2, galectin-1, galectin-3, and PAEP; and no correlations between the decidual gene expression and the maternal plasma protein concentrations of CCL2, CCL5, and IL-8 were found. Conclusions Our data suggests that with the initiation of parturition, the decidual expression of anti-inflammatory mediators decreases, while the expression of pro-inflammatory mediators and steroid receptors increases. This shift may affect downstream signaling pathways that can lead to parturition.
Collapse
Affiliation(s)
- Haidy El-Azzamy
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
| | - Andrea Balogh
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Yi Xu
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
| | | | - Olesya Plazyo
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
| | - Zhonghui Xu
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
| | - Theodore G Price
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
| | - Zhong Dong
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
| | - Adi L Tarca
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Zoltan Papp
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
| | - Sonia S Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Chong Jai Kim
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Pathology, Wayne State University, School of Medicine, Detroit, MI, USA.,Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Nandor Gabor Than
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA.,Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary.,Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
45
|
Sivarajasingam SP, Imami N, Johnson MR. Myometrial cytokines and their role in the onset of labour. J Endocrinol 2016; 231:R101-R119. [PMID: 27647860 DOI: 10.1530/joe-16-0157] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/19/2016] [Indexed: 12/12/2022]
Abstract
Human labour is an inflammatory event, physiologically driven by an interaction between hormonal and mechanical factors and pathologically associated with infection, bleeding and excessive uterine stretch. The initiation and communicators of inflammation is still not completely understood; however, a key role for cytokines has been implicated. We summarise the current understanding of the nature and role of cytokines, chemokines and hormones and their involvement in signalling within the myometrium particularly during labour.
Collapse
Affiliation(s)
- S P Sivarajasingam
- Department of Surgery and CancerImperial College London, Chelsea and Westminster Hospital, London, UK
| | - N Imami
- Department of MedicineImperial College London, London, UK
| | - M R Johnson
- Department of Surgery and CancerImperial College London, Chelsea and Westminster Hospital, London, UK
| |
Collapse
|
46
|
Toda A, Sawada K, Fujikawa T, Wakabayashi A, Nakamura K, Sawada I, Yoshimura A, Nakatsuka E, Kinose Y, Hashimoto K, Mabuchi S, Tokuhira A, Nakayama M, Itai A, Kurachi H, Kimura T. Targeting Inhibitor of κB Kinase β Prevents Inflammation-Induced Preterm Delivery by Inhibiting IL-6 Production from Amniotic Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:616-29. [DOI: 10.1016/j.ajpath.2015.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/09/2015] [Accepted: 11/10/2015] [Indexed: 10/22/2022]
|
47
|
Chiesa C, Pacifico L, Natale F, Hofer N, Osborn JF, Resch B. Fetal and early neonatal interleukin-6 response. Cytokine 2015; 76:1-12. [PMID: 25890877 DOI: 10.1016/j.cyto.2015.03.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 12/11/2022]
Abstract
In 1998, a systemic fetal cytokine response, defined as a plasma interleukin-6 (IL-6) value above 11 pg/mL, was reported to be a major independent risk factor for the subsequent development of neonatal morbid events even after adjustments for gestational age and other confounders. Since then, the body of literature investigating the use of blood concentrations of IL-6 as a hallmark of the fetal inflammatory response syndrome (FIRS), a diagnostic marker of early-onset neonatal sepsis (EONS) and a risk predictor of white matter injury (WMI), has grown rapidly. In this article, we critically review: IL-6 biological functions; current evidence on the association between IL-6, preterm birth, FIRS and EONS; IL-6 reference intervals and dynamics in the early neonatal period; IL-6 response during the immediate postnatal period and perinatal confounders; accuracy and completeness of IL-6 diagnostic studies for EONS (according to the Standards for Reporting of Diagnostic Accuracy statement); and recent breakthroughs in the association between fetal blood IL-6, EONS, and WMI.
Collapse
Affiliation(s)
- Claudio Chiesa
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy.
| | - Lucia Pacifico
- Department of Pediatrics and Child Neuropsychiatry, Sapienza University of Rome, 00161 Rome, Italy
| | - Fabio Natale
- Department of Pediatrics and Child Neuropsychiatry, Sapienza University of Rome, 00161 Rome, Italy
| | - Nora Hofer
- Research Unit for Neonatal Infectious Diseases and Epidemiology, Division of Neonatology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, AT-8036 Graz, Austria
| | - John F Osborn
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00161 Rome, Italy
| | - Bernhard Resch
- Research Unit for Neonatal Infectious Diseases and Epidemiology, Division of Neonatology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, AT-8036 Graz, Austria
| |
Collapse
|
48
|
Wegorzewska M, Le T, Tang Q, MacKenzie TC. Increased maternal T cell microchimerism in the allogeneic fetus during LPS-induced preterm labor in mice. CHIMERISM 2015; 5:68-74. [PMID: 25779065 DOI: 10.1080/19381956.2014.1002703] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fetal surgery is a promising strategy to treat fetuses with severe congenital abnormalities but its clinical applications are often limited by preterm labor. In normal pregnancy, multiple mechanisms protect the semi-allogeneic fetus from attack by maternal T cells. Maternal microchimerism (the presence of maternal cells in the fetus) has been suggested to be one mechanism of maternal-fetal tolerance in that it exposes the fetus to non-inherited maternal antigens and leads to the generation of fetal regulatory T cells that can suppress a maternal T cell response. Preterm labor may represent a breakdown of this robust tolerance network. We hypothesized that during inflammation-associated preterm labor, maternal leukocytes cross the maternal-fetal interface and enter the fetal circulation. Consistent with this hypothesis, we found that during preterm labor in mice, the percentage of maternal microchimerism in fetal blood increased and the frequency of fetuses with high levels of trafficking (greater than 0.5%) also increased. Finally, we showed that the maternal leukocytes trafficking into the fetus are primarily Gr-1(+) cells in both syngeneic and allogeneic pregnancy, while T cell trafficking into the fetus specifically increases during allogeneic pregnancies. Our results demonstrate that trafficking of maternal leukocytes during pregnancy is altered during preterm labor. Such alterations may be clinically significant in affecting maternal-fetal tolerance.
Collapse
Affiliation(s)
- Marta Wegorzewska
- a Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research ; San Francisco , CA USA.,b The Department of Surgery ; University of California ; San Francisco , CA , USA
| | - Tom Le
- a Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research ; San Francisco , CA USA.,b The Department of Surgery ; University of California ; San Francisco , CA , USA
| | - Qizhi Tang
- b The Department of Surgery ; University of California ; San Francisco , CA , USA
| | - Tippi C MacKenzie
- a Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research ; San Francisco , CA USA.,b The Department of Surgery ; University of California ; San Francisco , CA , USA
| |
Collapse
|
49
|
Gomez-Lopez N, Tong WC, Arenas-Hernandez M, Tanaka S, Hajar O, Olson DM, Taggart MJ, Mitchell BF. Chemotactic activity of gestational tissues through late pregnancy, term labor, and RU486-induced preterm labor in Guinea pigs. Am J Reprod Immunol 2014; 73:341-52. [PMID: 25329235 DOI: 10.1111/aji.12333] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/23/2014] [Indexed: 01/22/2023] Open
Abstract
PROBLEM Is increased leukocyte chemotactic activity (CA) from gestational tissues necessary for term or preterm labor in guinea pigs? METHOD OF STUDY Tissue extracts were prepared from pregnant guinea pig decidua-myometrium, cervix, fetal membranes (amniochorion), and placenta during early third trimester (n = 8), term not in labor (TNL, n = 5), and term spontaneous labor (TL, n = 6), RU486-induced preterm labor (PTL, n = 6), or controls (cPTL, n = 5). Leukocyte CA was assessed using a modified Boyden chamber assay. Extract chemokine and maternal progesterone concentrations were quantified by enzyme immunoassay. RESULTS Only the extracts from amniochorion demonstrated increased CA through late gestation and labor. In contrast, CA was decreased in extracts from amniochorion and cervix from animals after RU486-induced PTL. Maternal progesterone concentrations remained high in all groups. CONCLUSION Leukocyte CA of intrauterine tissues is increased in term spontaneous labor. However, RU486-induced preterm labor occurs in the absence of increased CA.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Department of Obstetrics and Gynecology, Perinatology Research Branch, Wayne State University, Detroit, MI, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kamity R, Patel H, Younis S, Nasim M, Miller E, Ahmed M. Inhibition of Cxcr 1 and 2 Delays Preterm Delivery and Reduces Neonatal Mortality in a Mouse Model of Chorioamnionitis. EUR J INFLAMM 2014. [DOI: 10.1177/1721727x1401200306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Intrauterine infection is one of the main etiologies associated with preterm delivery. Cytokines involved in chorioamnionitis, including IL-1, TNF-α, IL-6, IL-8, and MCP1, activate different pathways that lead to preterm delivery. Antileukinate (AL) is a potent selective IL-8 inhibitor that binds to CXC receptors 1&2 on neutrophils, thereby inhibiting IL-8-induced neutrophil chemotaxis and degranulation. Since CXC receptors 1&2 are critically involved in the pathology of chorioamnionitis, their inhibition with AL may have therapeutic potential. Four timed-pregnant C57BL6 mice groups were studied. LPS group received LPS intraperitoneally on gestational day (GD) 15. The AL group received LPS on GD15 followed immediately by intraperitoneal AL injection and repeated on GD16, and 17. Control groups received either saline, or no injections. In the LPS group, 90% delivered within 24 hours after LPS administration compared to 20% in the AL group. The LPS group had 85% stillborn compared to 15% in the AL group. Uterine histopathology AL group showed evidence of less inflammatory reaction compared to the LPS group. Uterine tissue and serum from the AL group had a significant reduction of inflammatory cytokines compared with the LPS group. Cytokine levels in brain and lung tissues from surviving pups were not significantly different between the AL and control groups. Our data show that antileukinate significantly delays preterm delivery in a mouse model of chorioamnionitis, and reduces neonatal mortality and morbidity.
Collapse
Affiliation(s)
- R. Kamity
- Neonatal-Perinatal Medicine, Cohen Children's Medical Center of NY, New Hyde Park, NY, USA
- Lilling Family Neonatal Research Lab, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - H. Patel
- Lilling Family Neonatal Research Lab, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - S. Younis
- Lilling Family Neonatal Research Lab, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - M. Nasim
- Hofstra-North Shore LIJ School of Medicine, Hempstead, NY, USA
- Pathology Department, NS-LIJ, New Hyde Park, NY, USA
| | - E. Miller
- Hofstra-North Shore LIJ School of Medicine, Hempstead, NY, USA
- Center for Heart and Lung Research, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - M. Ahmed
- Neonatal-Perinatal Medicine, Cohen Children's Medical Center of NY, New Hyde Park, NY, USA
- Lilling Family Neonatal Research Lab, Feinstein Institute for Medical Research, Manhasset, NY, USA
- Hofstra-North Shore LIJ School of Medicine, Hempstead, NY, USA
- Center for Heart and Lung Research, Feinstein Institute for Medical Research, Manhasset, NY, USA
| |
Collapse
|