1
|
Medina-Laver Y, Gonzalez-Martin R, de Castro P, Diaz-Hernandez I, Alama P, Quiñonero A, Palomar A, Dominguez F. Deciphering the role of PGRMC2 in the human endometrium during the menstrual cycle and in vitro decidualization using an in vitro approach. Hum Reprod 2024; 39:1042-1056. [PMID: 38452349 DOI: 10.1093/humrep/deae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 01/11/2024] [Indexed: 03/09/2024] Open
Abstract
STUDY QUESTION What is the human endometrial non-classical progesterone receptor (PGR) membrane component 2 (PGRMC2) expression pattern throughout the menstrual cycle and what role does it play during decidualization? SUMMARY ANSWER Endometrial PGRMC2 expression fluctuates during the human menstrual cycle and is abundantly expressed in human endometrial stromal cells (hEnSCs) during in vitro decidualization, process where PGRMC2 is involved in embryo implantation-related pathways. WHAT IS KNOWN ALREADY The endometrial response to progesterone is mediated by the classical and non-classical PGRs. We previously demonstrated that PGR membrane component 1 (PGRMC1) is critical for endometrial function, embryo implantation, and future placentation, however, the role(s) of PGRMC2, which is structurally similar to PGRMC1, have not been studied in the human endometrium. STUDY DESIGN, SIZE, DURATION This prospective study comprehensively evaluated the endometrial expression of PGRMC2 throughout the human menstrual cycle and during in vitro decidualization of hEnSCs (isolated from 77 endometrial biopsies that were collected from 66 oocyte donors), using immunohistochemistry, RT-qPCR, western blot, transcriptomic, and proteomic analyses. In addition, functional analysis was carried out to validate the implication of PGRMC2 in hEnSCs during embryo invasion using an in vitro outgrowth model. PARTICIPANTS/MATERIALS, SETTING, METHODS In vitro decidualization of hEnSCs was induced using co-treatment with cAMP and medroxyprogesterone 17-acetate progestin, and evaluated by measuring prolactin by ELISA and F-actin immunostaining. RT-qPCR was employed to compare expression with other PGRs. To reveal the function of PGRMC2 during the decidualization process, we specifically knocked down PGRMC2 with siRNAs and performed RNA-seq and quantitative proteomics techniques (SWATH-MS). The common differentially expressed genes (DEGs) and proteins (DEPs) were considered for downstream functional enrichment analysis. Finally, to verify its implication in the trophoblast invasion, an outgrowth model was carried out where hEnSCs with silenced PGRMC2 were co-cultured with human trophoblastic spheroids (JEG-3) following in vitro decidualization. MAIN RESULTS AND THE ROLE OF CHANCE In contrast to PGRMC1 and classical PGRs, endometrial PGRMC2 gene expression was significantly lower during the late- versus mid-secretory phase (P < 0.05). Accordingly, the elevated PGRMC2 protein abundance observed in the endometrial epithelial glands throughout the menstrual cycle dropped in the late secretory phase, when abundance decreased in all endometrial compartments. Nevertheless, PGRMC2 protein increased during the mid-secretory phase in stromal and glandular cells, and PGRMC2 mRNA (P < 0.0001) and protein (P < 0.001) levels were significantly enhanced in the membranes/organelles of decidualized hEnSCs, compared to non-decidualized hEnSCs. Notably, PGRMC1 and PGRMC2 mRNA were significantly more abundant than classical PGRs throughout menstrual cycle phases and in decidualized and non-decidualized hEnSCs (P < 0.05). RNA-seq and proteomics data revealed 4687 DEGs and 28 DEPs, respectively, in decidualized hEnSCs after PGRMC2 silencing. While functional enrichment analysis showed that the 2420 upregulated genes were mainly associated with endoplasmic reticulum function, vesicular transport, morphogenesis, angiogenesis, cell migration, and cell adhesion, the 2267 downregulated genes were associated with aerobic respiration and protein biosynthesis. The protein enrichment analysis showed that 4 upregulated and 24 downregulated proteins were related to aerobic respiration, cellular response, metabolism, localization of endoplasmic reticulum proteins, and ribonucleoside biosynthesis routes. Finally, PGRMC2 knockdown significantly compromised the ability of the decidualized hEnSCs to support trophoblast expansion in an outgrowth model (P < 0.05). LARGE-SCALE DATA Transcriptomic data are available via NCBI's Gene Expression Omnibus (GEO) under GEO Series accession number GSE251843 and proteomic data via ProteomeXchange with identifier PXD048494. LIMITATIONS, REASONS FOR CAUTION The functional analyses were limited by the discrete number of human endometrial biopsies. A larger sample size is required to further investigate the potential role(s) of PGRMC2 during embryo implantation and maintenance of pregnancy. Further, the results obtained in the present work should be taken with caution, as the use of a pure primary endometrial stromal population differentiated in vitro does not fully represent the heterogeneity of the endometrium in vivo, nor the paracrine communications occurring between the distinct endometrial cell types. WIDER IMPLICATIONS OF THE FINDINGS The repression of endometrial PGRMC2 during the late- versus mid-secretory phase, together with its overexpression during decidualization and multiple implications with embryo implantation not only highlighted the unknown roles of PGRMC2 in female reproduction but also the potential to exploit PGRMC2 signaling pathways to improve assisted reproduction treatments in the future. STUDY FUNDING/COMPETING INTEREST(S) This research was funded by Instituto de Salud Carlos III (ISCIII) granted to F.D. (PI20/00405 and PI23/00860), co-funded by the European Union. Y.M.-L. was supported by a predoctoral research grant from Generalitat Valenciana (ACIF/2019/262). R.G.-M. was supported by Generalitat Valenciana (CIAPOT/2022/15). P.d.C. was supported by a predoctoral grant for training in research into health (PFIS FI20/00086) from the Instituto de Salud Carlos III. I.D.-H. was supported by the Spanish Ministry of Science, Innovation and Universities (FPU18/01550). A.P. was supported by the Instituto de Salud Carlos III (PFIS FI18/00009). This research was also supported by IVI Foundation-RMA Global (1911-FIVI-103-FD). The authors declare no conflict of interest.
Collapse
Affiliation(s)
- Yassmin Medina-Laver
- Research Group in Reproductive Medicine, IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Comunitat Valenciana, Spain
| | - Roberto Gonzalez-Martin
- Research Group in Reproductive Medicine, IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Comunitat Valenciana, Spain
| | - Pedro de Castro
- Research Group in Reproductive Medicine, IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Comunitat Valenciana, Spain
| | - Indra Diaz-Hernandez
- Research Group in Reproductive Medicine, IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Comunitat Valenciana, Spain
| | - Pilar Alama
- Research Group in Reproductive Medicine, IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Comunitat Valenciana, Spain
- Gynecology, IVIRMA Global Research Alliance, IVI-RMA Valencia, Valencia, Comunitat Valenciana, Spain
| | - Alicia Quiñonero
- Research Group in Reproductive Medicine, IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Comunitat Valenciana, Spain
| | - Andrea Palomar
- Research Group in Reproductive Medicine, IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Comunitat Valenciana, Spain
| | - Francisco Dominguez
- Research Group in Reproductive Medicine, IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Comunitat Valenciana, Spain
| |
Collapse
|
2
|
Szucio W, Bernaczyk P, Ponikwicka-Tyszko D, Milewska G, Pawelczyk A, Wołczyński S, Rahman NA. Progesterone signaling in uterine leiomyoma biology: Implications for potential targeted therapy. Adv Med Sci 2024; 69:21-28. [PMID: 38278085 DOI: 10.1016/j.advms.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/19/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024]
Abstract
Uterine leiomyomas (ULs) are the most common benign smooth muscle cell steroid-dependent tumors that occur in women of reproductive age. Progesterone (P4) is a major hormone that promotes the ULs development and growth. P4 action in ULs is mediated mainly by its nuclear progesterone receptors (PGRs), although rapid non-genomic responses have also been observed. Data on the membrane progesterone receptors (mPRs) regulated signaling pathways in ULs in the available literature is still very limited. One of the essential characteristics of ULs is the excessive production of extracellular matrix (ECM). P4 has been shown to stimulate ECM production and collagen synthesis in ULs. Recent research demonstrated that, despite their benign nature, ULs may present with abnormal vasculature. P4 has been shown to regulate angiogenesis in ULs through the upregulation of vascular endothelial growth factor (VEGF) and by controlling the secretion of permeability factors. This review summarizes the key findings regarding the role of PGRs and mPRs in ULs, especially highlighting the potential ECM and angiogenesis modulation by P4. An increased understanding of this mechanistic role of nuclear and specifically mPRs in the biology of P4-modulated ECM and angiogenesis in the growth of ULs could turn out to be fundamental for developing effective targeted therapies for ULs.
Collapse
Affiliation(s)
- Weronika Szucio
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Bernaczyk
- Department of Medical Pathomorphology, Medical University of Bialystok, Bialystok, Poland
| | - Donata Ponikwicka-Tyszko
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland; Institute of Biomedicine, University of Turku, Turku, Finland
| | - Gabriela Milewska
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland
| | - Adam Pawelczyk
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University, Szczecin, Poland
| | - Sławomir Wołczyński
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland; Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Nafis A Rahman
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland; Institute of Biomedicine, University of Turku, Turku, Finland.
| |
Collapse
|
3
|
Yakin K, Hela F, Oktem O. Progesterone signaling in the regulation of luteal steroidogenesis. Mol Hum Reprod 2023; 29:gaad022. [PMID: 37289566 PMCID: PMC10631818 DOI: 10.1093/molehr/gaad022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/23/2023] [Indexed: 06/10/2023] Open
Abstract
The corpus luteum is the major source of progesterone, the essential hormone for female reproductive function. While progesterone activity has been the subject of extensive research for decades, characterization of non-canonical progesterone receptor/signaling pathways provided a new perspective for understanding the complex signal transduction mechanisms exploited by the progesterone hormone. Deciphering these mechanisms has significant implications in the management of luteal phase disorders and early pregnancy complications. The purpose of this review is to highlight the complex mechanisms through which progesterone-induced signaling mediates luteal granulosa cell activity in the corpus luteum. Here, we review the literature and discuss the up-to-date evidence on how paracrine and autocrine effects of progesterone regulate luteal steroidogenic activity. We also review the limitations of the published data and highlight future research priorities.
Collapse
Affiliation(s)
- Kayhan Yakin
- Graduate School of Health Sciences, Koç University, Istanbul, Turkey
- School of Medicine, Department of Obstetrics and Gynecology, Koç University, Istanbul, Turkey
| | - Francesko Hela
- Graduate School of Health Sciences, Koç University, Istanbul, Turkey
- Harvard Medical School, Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Boston, MA, USA
| | - Ozgur Oktem
- Graduate School of Health Sciences, Koç University, Istanbul, Turkey
- School of Medicine, Department of Obstetrics and Gynecology, Koç University, Istanbul, Turkey
| |
Collapse
|
4
|
Lodde V, Luciano AM, Garcia Barros R, Giovanardi G, Sivelli G, Franciosi F. Review: The putative role of Progesterone Receptor membrane Component 1 in bovine oocyte development and competence. Animal 2023; 17 Suppl 1:100783. [PMID: 37567656 DOI: 10.1016/j.animal.2023.100783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 08/13/2023] Open
Abstract
Acquisition of developmental competence is a complex process in which many cell types cooperate to support oocyte maturation, fertilisation, and preimplantation embryonic development. In recent years, compelling evidence has shown that Progesterone Receptor Membra Component 1 (PGRMC1) is expressed in many cell types of the mammalian reproductive system where it exerts diverse functions. In the ovary, PGRMC1 affects follicular growth by controlling cell viability and proliferation of granulosa cells. PGRMC1 has also a direct role in promoting a proper completion of bovine oocyte maturation, as altering its function leads to defective chromosome segregation and polar body extrusion. Strikingly, the mechanism by which PGRMC1 controls mitotic and meiotic cell division seems to be conserved, involving an association with the spindle apparatus and the chromosomal passenger complex through Aurora kinase B. Conclusive data on a possible role of PGRMC1 in the preimplantation embryo are lacking and further research is needed to test whether the mechanisms that are set in place in mitotic cells also govern blastomere cleavage and subsequent differentiation. Finally, PGRMC1 is also expressed in oviductal cells and, as such, it might also impact fertilisation and early embryonic development, although this issue is completely unexplored. However, the study of PGRMC1 function in the mammalian reproductive system remains a complex matter, due to its pleiotropic function.
Collapse
Affiliation(s)
- V Lodde
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy.
| | - A M Luciano
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| | - R Garcia Barros
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| | - G Giovanardi
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| | - G Sivelli
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| | - F Franciosi
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| |
Collapse
|
5
|
Alawadhi M, Kilarkaje N, Mouihate A, Al-Bader MD. Role of progesterone on dexamethasone-induced alterations in placental vascularization and progesterone receptors in rats†. Biol Reprod 2023; 108:133-149. [PMID: 36322157 DOI: 10.1093/biolre/ioac192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/04/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Intrauterine growth restriction (IUGR) is manifested by lower maternal progesterone levels, smaller placental size, and decreased placental vascularity indicated by lower expression of vascular endothelial growth factor (VEGF). Studies showed that progesterone increases angiogenesis and induces VEGF expression in different tissues. Therefore, the aim of the present study is to evaluate the effect of progesterone on placental vascular bed and VEGF expression and the modulation of nuclear and membranous progesterone receptors (PR) in dexamethasone-induced rat IUGR model. METHODS Pregnant Sprague-Dawley rats were allocated into four groups and given intraperitoneal injections of either saline, dexamethasone, dexamethasone, and progesterone or progesterone. Injections started on gestation day (DG) 15 and lasted until the days of euthanization (19 and 21 DG). Enzyme-linked immunosorbent assay was used to evaluate plasma progesterone levels. Real-time PCR and western blotting were used to evaluate gene and protein expressions of VEGF, and PR in labyrinth and basal placental zones. Immunohistochemistry was used to locate VEGF and different PRs in placental cells. Immunofluorescence was used to monitor the expression of blood vessel marker (αSMA). RESULTS Dexamethasone decreased the vascular bed fraction and the expression of VEGF in both placental zones. Progesterone co-treatment with dexamethasone prevented this reduction. Nuclear and membrane PRs showed tissue-specific expression in different placental zones and responded differently to both dexamethasone and progesterone. CONCLUSIONS Progesterone treatment improves the outcomes in IUGR pregnancy. Progesterone alleviated DEX-induced IUGR probably by promoting placental VEGF and angiogenesis.
Collapse
Affiliation(s)
- Mariam Alawadhi
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Narayana Kilarkaje
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Abdeslam Mouihate
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Maie D Al-Bader
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
6
|
McGuire MR, Espenshade PJ. PGRMC1: An enigmatic heme-binding protein. Pharmacol Ther 2023; 241:108326. [PMID: 36463977 PMCID: PMC9839567 DOI: 10.1016/j.pharmthera.2022.108326] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Progesterone Receptor Membrane Component 1 (PGRMC1) is a heme-binding protein that has been implicated in a wide range of cell and tissue functions, including cytochromes P450 activity, heme homeostasis, cancer, female reproduction, and protein quality control. Despite an extensive body of literature, a relative lack of mechanistic insight means that how PGRMC1 functions in these different aspects of biology is largely unknown. This review provides an overview of the PGRMC1 literature, highlighting what information is rigorously supported by experimental evidence and where additional investigation is warranted. The central role of PGRMC1 in supporting cytochrome P450 activity is discussed at length. Building on existing models of PGRMC1 function, a speculative model is proposed using the reviewed literature in which PGRMC1 functions as a heme chaperone to shuttle heme from its site of synthesis in the mitochondrion to other subcellular compartments. By spotlighting knowledge gaps, this review will motivate investigators to better understand this enigmatic protein.
Collapse
Affiliation(s)
- Meredith R McGuire
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter J Espenshade
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Physiology 107B, Baltimore, MD 21205, USA.
| |
Collapse
|
7
|
Wendler A, Wehling M. Many or too many progesterone membrane receptors? Clinical implications. Trends Endocrinol Metab 2022; 33:850-868. [PMID: 36384863 DOI: 10.1016/j.tem.2022.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/15/2022]
Abstract
Several receptors for nongenomically initiated actions of progesterone (P4) exist, namely membrane-associated P4 receptors (MAPRs), membrane progestin receptors (mPRs), receptors for neurosteroids [GABAA receptor (GABAAR), NMDA receptor, sigma-1 and -2 receptors (S1R/S2R)], the classical genomic P4 receptor (PGR), and α/β hydrolase domain-containing protein 2 (ABHD2). Two drugs related to this field have been approved: brexanolone (Zulresso™) for the treatment of postpartum depression, and ganaxolone (Ztalmy™) for the treatment of CDKL5 deficiency disorder. Both are derivatives of P4 and target the GABAAR. Several other indications are in clinical testing. CT1812 (Elayta™) is also being tested for the treatment of Alzheimer's disease (AD) in Phase 2 clinical trials, targeting the P4 receptor membrane component 1 (PGRMC1)/S2R complex. In this Review, we highlight emerging knowledge on the mechanisms of nongenomically initiated actions of P4 and its derivatives.
Collapse
Affiliation(s)
- Alexandra Wendler
- Clinical Pharmacology Mannheim, Faculty of Medicine Mannheim, Ruprecht-Karls-University of Heidelberg, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Martin Wehling
- Clinical Pharmacology Mannheim, Faculty of Medicine Mannheim, Ruprecht-Karls-University of Heidelberg, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany.
| |
Collapse
|
8
|
Lodde V, Garcia Barros R, Terzaghi L, Franciosi F, Luciano AM. Insights on the Role of PGRMC1 in Mitotic and Meiotic Cell Division. Cancers (Basel) 2022; 14:cancers14235755. [PMID: 36497237 PMCID: PMC9736406 DOI: 10.3390/cancers14235755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
During mitosis, chromosome missegregation and cytokinesis defects have been recognized as hallmarks of cancer cells. Cytoskeletal elements composing the spindle and the contractile ring and their associated proteins play crucial roles in the faithful progression of mitotic cell division. The hypothesis that PGRMC1, most likely as a part of a yet-to-be-defined complex, is involved in the regulation of spindle function and, more broadly, the cytoskeletal machinery driving cell division is particularly appealing. Nevertheless, more than ten years after the preliminary observation that PGRMC1 changes its localization dynamically during meiotic and mitotic cell division, this field of research has remained a niche and needs to be fully explored. To encourage research in this fascinating field, in this review, we will recap the current knowledge on PGRMC1 function during mitotic and meiotic cell division, critically highlighting the strengths and limitations of the experimental approaches used so far. We will focus on known interacting partners as well as new putative associated proteins that have recently arisen in the literature and that might support current as well as new hypotheses of a role for PGRMC1 in specific spindle subcompartments, such as the centrosome, kinetochores, and the midzone/midbody.
Collapse
|
9
|
Jin G, Zhang Z, Wan J, Wu X, Liu X, Zhang W. G3BP2: Structure and Function. Pharmacol Res 2022; 186:106548. [DOI: 10.1016/j.phrs.2022.106548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/20/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
|
10
|
Velázquez Hernández DM, Vázquez-Martínez ER, Camacho-Arroyo I. The role of progesterone receptor membrane component (PGRMC) in the endometrium. Steroids 2022; 184:109040. [PMID: 35526781 DOI: 10.1016/j.steroids.2022.109040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
PGRMC is a non-classical receptor that mediates the non-genomic responses to progesterone and is distributed in different subcellular compartments. PGRMC belongs to the membrane-associated progesterone receptor (MAPR) family. Two PGRMC subtypes (PGRMC1 and PGRMC2) have been characterized, and both are expressed in the human endometrium. PGRMC expression is differentially regulated during the menstrual cycle in the human endometrium. Although PGRMC1 is predominantly expressed in the proliferative phase and PGRMC2 in the secretory phase, this expression changes in pathologies such as endometriosis, in which PGRMC2 expression considerably decreases, promoting progesterone resistance. In endometrial cancer, PGRMC1 is overexpressed, its activation induces tumors growth, and confers chemoresistance in the presence of progesterone. Thus, PGRMCs play a key role in progesterone actions in the endometrium.
Collapse
Affiliation(s)
- Dora Maria Velázquez Hernández
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Edgar Ricardo Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
11
|
Abstract
Progesterone receptor membrane component (PGRMC) proteins play important roles in tumor growth, progression, and chemoresistance, of which PGRMC1 is the best characterized. The ancestral member predates the evolution of metazoans, so it is perhaps not surprising that many of the purported actions of PGRMC proteins are rooted in fundamental metabolic processes such as proliferation, apoptosis, and DNA damage responses. Despite mediating some of the actions of progesterone (P4) and being fundamentally required for female fertility, PGRMC1 and PGRMC2 are broadly expressed in most tissues. As such, these proteins likely have both progesterone-dependent and progesterone-independent functions. It has been proposed that PGRMC1 acquired the ability to mediate P4 actions over evolutionary time through acquisition of its cytochrome b5-like heme/sterol-binding domain. Diverse reproductive and nonreproductive diseases associate with altered PGRMC1 expression, epigenetic regulation, or gene silencing mechanisms, some of which include polycystic ovarian disease, premature ovarian insufficiency, endometriosis, Alzheimer disease, and cancer. Although many studies have been completed using transformed cell lines in culture or in xenograft tumor approaches, recently developed transgenic model organisms are offering new insights in the physiological actions of PGRMC proteins, as well as pathophysiological and oncogenic consequences when PGRMC expression is altered. The purpose of this mini-review is to provide an overview of PGRMC proteins in cancer and to offer discussion of where this field must go to solidify PGRMC proteins as central contributors to the oncogenic process.
Collapse
Affiliation(s)
- James K Pru
- Correspondence: James K. Pru, PhD, Program in Reproductive Biology, Department of Animal Science, University of Wyoming, Laramie, WY, USA.
| |
Collapse
|
12
|
Peluso JJ. Progesterone Signaling and Mammalian Ovarian Follicle Growth Mediated by Progesterone Receptor Membrane Component Family Members. Cells 2022; 11:1632. [PMID: 35626669 PMCID: PMC9139379 DOI: 10.3390/cells11101632] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/02/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023] Open
Abstract
How progesterone influences ovarian follicle growth is a difficult question to answer because ovarian cells synthesize progesterone and express not only the classic nuclear progesterone receptor but also members of the progestin and adipoQ receptor family and the progesterone receptor membrane component (PGRMC) family. Which type of progestin receptor is expressed depends on the ovarian cell type as well as the stage of the estrous/menstrual cycle. Given the complex nature of the mammalian ovary, this review will focus on progesterone signaling that is transduced by PGRMC1 and PGRMC2 specifically as it relates to ovarian follicle growth. PGRMC1 was identified as a progesterone binding protein cloned from porcine liver in 1996 and detected in the mammalian ovary in 2005. Subsequent studies focused on PGRMC family members as regulators of granulosa cell proliferation and survival, two physiological processes required for follicle development. This review will present evidence that demonstrates a causal relationship between PGRMC family members and the promotion of ovarian follicle growth. The mechanisms through which PGRMC-dependent signaling regulates granulosa cell proliferation and viability will also be discussed in order to provide a more complete understanding of our current concept of how progesterone regulates ovarian follicle growth.
Collapse
Affiliation(s)
- John J. Peluso
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA;
- Department of Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
13
|
Peluso JJ, Pru JK. Progesterone Receptor Membrane Component (PGRMC)1 and PGRMC2 and Their Roles in Ovarian and Endometrial Cancer. Cancers (Basel) 2021; 13:cancers13235953. [PMID: 34885064 PMCID: PMC8656518 DOI: 10.3390/cancers13235953] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 01/02/2023] Open
Abstract
Cancers of the female reproductive tract are both lethal and highly prevalent. For example, the five-year survival rate of women diagnosed with ovarian cancer is still less than 50%, and endometrial cancer is the fourth most common cancer in women with > 65,000 new cases in the United States in 2020. Among the many genes already established as key participants in ovarian and endometrial oncogenesis, progesterone receptor membrane component (PGRMC)1 and PGRMC2 have gained recent attention given that there is now solid correlative information supporting a role for at least PGRMC1 in enhancing tumor growth and chemoresistance. The expression of PGRMC1 is significantly increased in both ovarian and endometrial cancers, similar to that reported in other cancer types. Xenograft studies using human ovarian and endometrial cancer cell lines in immunocompromised mice demonstrate that reduced expression of PGRMC1 results in tumors that grow substantially slower. While the molecular underpinnings of PGRMCs' mechanisms of action are not clearly established, it is known that PGRMCs regulate survival pathways that attenuate stress-induced cell death. The objective of this review is to provide an overview of what is known about the roles that PGRMC1 and PGRMC2 play in ovarian and endometrial cancers, particularly as related to the mechanisms through which they regulate mitosis, apoptosis, chemoresistance, and cell migration.
Collapse
Affiliation(s)
- John J. Peluso
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, CT 06030, USA
- Correspondence: ; +1-860-679-2860
| | - James K. Pru
- Department of Animal Science, Program in Reproductive Biology, University of Wyoming, Laramie, WY 82071, USA;
| |
Collapse
|
14
|
McGuire MR, Mukhopadhyay D, Myers SL, Mosher EP, Brookheart RT, Kammers K, Sehgal A, Selen ES, Wolfgang MJ, Bumpus NN, Espenshade PJ. Progesterone receptor membrane component 1 (PGRMC1) binds and stabilizes cytochromes P450 through a heme-independent mechanism. J Biol Chem 2021; 297:101316. [PMID: 34678314 PMCID: PMC8591507 DOI: 10.1016/j.jbc.2021.101316] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 12/03/2022] Open
Abstract
Progesterone receptor membrane component 1 (PGRMC1) is a heme-binding protein implicated in a wide range of cellular functions. We previously showed that PGRMC1 binds to cytochromes P450 in yeast and mammalian cells and supports their activity. Recently, the paralog PGRMC2 was shown to function as a heme chaperone. The extent of PGRMC1 function in cytochrome P450 biology and whether PGRMC1 is also a heme chaperone are unknown. Here, we examined the function of Pgrmc1 in mouse liver using a knockout model and found that Pgrmc1 binds and stabilizes a broad range of cytochromes P450 in a heme-independent manner. Proteomic and transcriptomic studies demonstrated that Pgrmc1 binds more than 13 cytochromes P450 and supports maintenance of cytochrome P450 protein levels posttranscriptionally. In vitro assays confirmed that Pgrmc1 KO livers exhibit reduced cytochrome P450 activity consistent with reduced enzyme levels. Mechanistic studies in cultured cells demonstrated that PGRMC1 stabilizes cytochromes P450 and that binding and stabilization do not require PGRMC1 binding to heme. Importantly, Pgrmc1-dependent stabilization of cytochromes P450 is physiologically relevant, as Pgrmc1 deletion protected mice from acetaminophen-induced liver injury. Finally, evaluation of Y113F mutant Pgrmc1, which lacks the axial heme iron-coordinating hydroxyl group, revealed that proper iron coordination is not required for heme binding, but is required for binding to ferrochelatase, the final enzyme in heme biosynthesis. PGRMC1 was recently identified as the causative mutation in X-linked isolated pediatric cataract formation. Together, these results demonstrate a heme-independent function for PGRMC1 in cytochrome P450 stability that may underlie clinical phenotypes.
Collapse
Affiliation(s)
- Meredith R McGuire
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Debaditya Mukhopadhyay
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stephanie L Myers
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eric P Mosher
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rita T Brookheart
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kai Kammers
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alfica Sehgal
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ebru S Selen
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael J Wolfgang
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Namandjé N Bumpus
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peter J Espenshade
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
15
|
Drzewiecka EM, Kozlowska W, Zmijewska A, Franczak A. Nutritional restriction during the peri-conceptional period alters the myometrial transcriptome during the peri-implantation period. Sci Rep 2021; 11:21187. [PMID: 34707153 PMCID: PMC8551329 DOI: 10.1038/s41598-021-00533-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 10/12/2021] [Indexed: 11/24/2022] Open
Abstract
This study hypothesized that female peri-conceptional undernutrition evokes transcriptomic alterations in the pig myometrium during the peri-implantation period. Myometrium was collected on days 15-16 of pregnancy from pigs fed a normal- (n = 4) or restricted-diet (n = 4) from conception until day 9th of pregnancy, and the transcriptomic profiles of the tissue were compared using Porcine (V2) Expression Microarrays 4 × 44 K. In restricted diet-fed pigs, 1021 differentially expressed genes (DEGs) with fold change ≥ 1.5, P ≤ 0.05 were revealed, and 708 of them were up-regulated. Based on the count score, the top within GOs was GO cellular components "extracellular exosome", and the top KEGG pathway was the metabolic pathway. Ten selected DEGs, i.e. hydroxysteroid (17β) dehydrogenase 8, cyclooxygenase 2, prostaglandin F receptor, progesterone receptor membrane component 1, progesterone receptor membrane component 2, annexin A2, homeobox A10, S-phase cyclin A-associated protein in the ER, SRC proto-oncogene, non-receptor tyrosine kinase, and proliferating cell nuclear antigen were conducted through qPCR to validate microarray data. In conclusion, dietary restriction during the peri-conceptional period causes alterations in the expression of genes encoding proteins involved i.a. in the endocrine activity of the myometrium, embryo-maternal interactions, and mechanisms regulating cell cycle and proliferation.
Collapse
Affiliation(s)
- Ewa Monika Drzewiecka
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Wiktoria Kozlowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Agata Zmijewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Anita Franczak
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| |
Collapse
|
16
|
Kehoe S, Jewgenow K, Johnston PR, Braun BC. Early preantral follicles of the domestic cat express gonadotropin and sex steroid signalling potential. Biol Reprod 2021; 106:95-107. [PMID: 34672344 DOI: 10.1093/biolre/ioab192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/29/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Key biomolecular processes which regulate primordial ovarian follicle dormancy and early folliculogenesis in mammalian ovaries are not fully understood. The domestic cat is a useful model to study ovarian folliculogenesis and is the most relevant for developing in vitro growth methods to be implemented in wild felid conservation breeding programs. Previously, RNA-sequencing of primordial, primary, and secondary follicle samples from domestic cat implicated ovarian steroidogenesis and steroid reception during follicle development. Here we aimed to identify which sex steroid biosynthesis and metabolism enzymes, gonadotropin receptors, and sex steroid receptors are present and may be potential regulators. Differential gene expression, functional annotation, and enrichment analyses were employed and protein localisation was studied too. Gene transcripts for PGR, PGRMC1, AR (steroid receptors), CYP11A1, CYP17A1, HSD17B1 and HSD17B17 (steroidogenic enzymes), and STS (steroid metabolising enzyme) were significantly differentially expressed (Q values of ≤0.05). Differential gene expression increased in all transcripts during follicle transitions apart from AR which decreased by the secondary stage. Immunohistochemistry localised FSHR and LHCGR to oocytes at each stage. PGRMC1 immunostaining was strongest in granulosa cells whereas AR was strongest in oocytes throughout each stage. Protein signals for steroidogenic enzymes were only detectable in secondary follicles. Products of these significantly differentially expressed genes may regulate domestic cat preantral folliculogenesis. In vitro growth could be optimised as all early follicles express gonadotropin and steroid receptors meaning hormone interaction and response may be possible. Protein expression analyses of early secondary follicles supported its potential for producing sex steroids.
Collapse
Affiliation(s)
- S Kehoe
- Department of Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany
| | - K Jewgenow
- Department of Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany
| | - P R Johnston
- Berlin Center for Genomics in Biodiversity Research BeGenDiv; Leibniz-Institute of Freshwater Ecology and Inland Fisheries; and Freie Universität Berlin, Institut für Biologie, Berlin, Germany
| | - B C Braun
- Department of Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany
| |
Collapse
|
17
|
Medina-Laver Y, Rodríguez-Varela C, Salsano S, Labarta E, Domínguez F. What Do We Know about Classical and Non-Classical Progesterone Receptors in the Human Female Reproductive Tract? A Review. Int J Mol Sci 2021; 22:11278. [PMID: 34681937 PMCID: PMC8538361 DOI: 10.3390/ijms222011278] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/22/2023] Open
Abstract
The progesterone hormone regulates the human menstrual cycle, pregnancy, and parturition by its action via the different progesterone receptors and signaling pathways in the female reproductive tract. Progesterone actions can be exerted through classical and non-classical receptors, or even a combination of both. The former are nuclear receptors whose activation leads to transcriptional activity regulation and thus in turn leads to slower but long-lasting responses. The latter are composed of progesterone receptors membrane components (PGRMC) and membrane progestin receptors (mPRs). These receptors rapidly activate the appropriate intracellular signal transduction pathways, and they can subsequently initiate specific cell responses or even modulate genomic cell responses. This review covers our current knowledge on the mechanisms of action and the relevance of classical and non-classical progesterone receptors in female reproductive tissues ranging from the ovary and uterus to the cervix, and it exposes their crucial role in female infertility.
Collapse
Affiliation(s)
- Yassmin Medina-Laver
- IVI Foundation—IIS La Fe, 46026 Valencia, Spain; (Y.M.-L.); (C.R.-V.); (S.S.); (E.L.)
| | | | - Stefania Salsano
- IVI Foundation—IIS La Fe, 46026 Valencia, Spain; (Y.M.-L.); (C.R.-V.); (S.S.); (E.L.)
| | - Elena Labarta
- IVI Foundation—IIS La Fe, 46026 Valencia, Spain; (Y.M.-L.); (C.R.-V.); (S.S.); (E.L.)
- IVI RMA Valencia, 46015 Valencia, Spain
| | - Francisco Domínguez
- IVI Foundation—IIS La Fe, 46026 Valencia, Spain; (Y.M.-L.); (C.R.-V.); (S.S.); (E.L.)
| |
Collapse
|
18
|
Vaitsopoulou CI, Kolibianakis EM, Bosdou JK, Neofytou E, Lymperi S, Makedos A, Savvaidou D, Chatzimeletiou K, Grimbizis GF, Lambropoulos A, Tarlatzis BC. Expression of genes that regulate follicle development and maturation during ovarian stimulation in poor responders. Reprod Biomed Online 2020; 42:248-259. [PMID: 33214084 DOI: 10.1016/j.rbmo.2020.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/12/2020] [Accepted: 05/18/2020] [Indexed: 12/17/2022]
Abstract
RESEARCH QUESTION Sex hormone-binding globulin (SHBG), androgen receptor (AR), LH beta polypeptide (LHB), progesterone receptor membrane component 1 (PGRMC1) and progesterone receptor membrane component 2 (PGRMC2) regulate follicle development and maturation. Their mRNA expression was assessed in peripheral blood mononuclear cells (PBMC) of normal and poor responders, during ovarian stimulation. DESIGN Fifty-two normal responders and 15 poor responders according to the Bologna criteria were enrolled for IVF and intracytoplasmic sperm injection and stimulated with 200 IU of follitrophin alpha and gonadotrophin-releasing hormone antagonist. HCG was administered for final oocyte maturation. On days 1, 6 and 10 of stimulation, blood samples were obtained, serum hormone levels were measured, RNA was extracted from PBMC and real-time polymerase chain reaction was carried out to identify the mRNA levels. Relative mRNA expression of each gene was calculated by the comparative 2-DDCt method. RESULTS Differences between mRNA levels of each gene on the same time point between the two groups were not significant. PGRMC1 and PGRMC2 mRNA levels were downregulated, adjusted for ovarian response and age. Positive correlations between PGRMC1 and AR (standardized beta = 0.890, P < 0.001) from day 1 to 6 and PGRMC1 and LHB (standardized beta = 0.806, P < 0.001) from day 1 to 10 were found in poor responders. PGRMC1 and PGRMC2 were positively correlated on days 6 and 10 in normal responders. CONCLUSIONS PGRMC1 and PGRMC2 mRNA are significantly decreased during ovarian stimulation, with some potential differences between normal and poor responders.
Collapse
Affiliation(s)
- Christine I Vaitsopoulou
- Unit for Human Reproduction, Laboratory of Genetics, 1st Department of Obstetrics and Gynaecology, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia Thessaloniki 56403, Greece.
| | - Efstratios M Kolibianakis
- Unit for Human Reproduction, Laboratory of Genetics, 1st Department of Obstetrics and Gynaecology, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia Thessaloniki 56403, Greece
| | - Julia K Bosdou
- Unit for Human Reproduction, Laboratory of Genetics, 1st Department of Obstetrics and Gynaecology, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia Thessaloniki 56403, Greece
| | - Eirini Neofytou
- Unit for Human Reproduction, Laboratory of Genetics, 1st Department of Obstetrics and Gynaecology, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia Thessaloniki 56403, Greece
| | - Stefania Lymperi
- Unit for Human Reproduction, Laboratory of Genetics, 1st Department of Obstetrics and Gynaecology, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia Thessaloniki 56403, Greece
| | - Anastasios Makedos
- Unit for Human Reproduction, Laboratory of Genetics, 1st Department of Obstetrics and Gynaecology, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia Thessaloniki 56403, Greece
| | - Despina Savvaidou
- Unit for Human Reproduction, Laboratory of Genetics, 1st Department of Obstetrics and Gynaecology, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia Thessaloniki 56403, Greece
| | - Katerina Chatzimeletiou
- Unit for Human Reproduction, Laboratory of Genetics, 1st Department of Obstetrics and Gynaecology, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia Thessaloniki 56403, Greece
| | - Grigoris F Grimbizis
- Unit for Human Reproduction, Laboratory of Genetics, 1st Department of Obstetrics and Gynaecology, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia Thessaloniki 56403, Greece
| | - Alexandros Lambropoulos
- Unit for Human Reproduction, Laboratory of Genetics, 1st Department of Obstetrics and Gynaecology, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia Thessaloniki 56403, Greece
| | - Basil C Tarlatzis
- Unit for Human Reproduction, Laboratory of Genetics, 1st Department of Obstetrics and Gynaecology, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia Thessaloniki 56403, Greece
| |
Collapse
|
19
|
Thejer BM, Adhikary PP, Teakel SL, Fang J, Weston PA, Gurusinghe S, Anwer AG, Gosnell M, Jazayeri JA, Ludescher M, Gray LA, Pawlak M, Wallace RH, Pant SD, Wong M, Fischer T, New EJ, Fehm TN, Neubauer H, Goldys EM, Quinn JC, Weston LA, Cahill MA. PGRMC1 effects on metabolism, genomic mutation and CpG methylation imply crucial roles in animal biology and disease. BMC Mol Cell Biol 2020; 21:26. [PMID: 32293262 PMCID: PMC7160964 DOI: 10.1186/s12860-020-00268-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/20/2020] [Indexed: 01/08/2023] Open
Abstract
Background Progesterone receptor membrane component 1 (PGRMC1) is often elevated in cancers, and exists in alternative states of phosphorylation. A motif centered on PGRMC1 Y180 was evolutionarily acquired concurrently with the embryological gastrulation organizer that orchestrates vertebrate tissue differentiation. Results Here, we show that mutagenic manipulation of PGRMC1 phosphorylation alters cell metabolism, genomic stability, and CpG methylation. Each of several mutants elicited distinct patterns of genomic CpG methylation. Mutation of S57A/Y180/S181A led to increased net hypermethylation, reminiscent of embryonic stem cells. Pathways enrichment analysis suggested modulation of processes related to animal cell differentiation status and tissue identity, as well as cell cycle control and ATM/ATR DNA damage repair regulation. We detected different genomic mutation rates in culture. Conclusions A companion manuscript shows that these cell states dramatically affect protein abundances, cell and mitochondrial morphology, and glycolytic metabolism. We propose that PGRMC1 phosphorylation status modulates cellular plasticity mechanisms relevant to early embryological tissue differentiation.
Collapse
Affiliation(s)
- Bashar M Thejer
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.,Department of Biology, College of Science, University of Wasit, Kut, Wasit, Iraq
| | - Partho P Adhikary
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.,Present Address: Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
| | - Sarah L Teakel
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Johnny Fang
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Paul A Weston
- Graham Centre for Agricultural Innovation, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia.,School of Agricultural and Wine Sciences, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia
| | - Saliya Gurusinghe
- Graham Centre for Agricultural Innovation, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia
| | - Ayad G Anwer
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW, 2109, Australia.,Present Address: The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Kensington, NSW, 2052, Australia
| | - Martin Gosnell
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW, 2109, Australia.,Quantitative (Biotechnology) Pty. Ltd., ABN 17 165 684 186, Australia
| | - Jalal A Jazayeri
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Marina Ludescher
- Department of Gynecology and Obstetrics, University Women's Hospital of Dusseldorf, Dusseldorf, Germany
| | - Lesley-Ann Gray
- Australian Genome Research Facility Ltd., Victorian Comprehensive Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Michael Pawlak
- NMI TT Pharmaservices, Protein Profiling, 72770 Reutlingen, Germany
| | - Robyn H Wallace
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Sameer D Pant
- School of Animal and Veterinary Sciences, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia
| | - Marie Wong
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - Tamas Fischer
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Elizabeth J New
- University of Sydney, School of Chemistry, Sydney, NSW, 2006, Australia
| | - Tanja N Fehm
- Department of Gynecology and Obstetrics, University Women's Hospital of Dusseldorf, Dusseldorf, Germany
| | - Hans Neubauer
- Department of Gynecology and Obstetrics, University Women's Hospital of Dusseldorf, Dusseldorf, Germany
| | - Ewa M Goldys
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW, 2109, Australia.,Present Address: The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Kensington, NSW, 2052, Australia
| | - Jane C Quinn
- Graham Centre for Agricultural Innovation, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia.,Faculty of Science, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia
| | - Leslie A Weston
- Graham Centre for Agricultural Innovation, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia.,School of Agricultural and Wine Sciences, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia
| | - Michael A Cahill
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia. .,ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
20
|
Hehenberger E, Eitel M, Fortunato SAV, Miller DJ, Keeling PJ, Cahill MA. Early eukaryotic origins and metazoan elaboration of MAPR family proteins. Mol Phylogenet Evol 2020; 148:106814. [PMID: 32278076 DOI: 10.1016/j.ympev.2020.106814] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 01/01/2023]
Abstract
The membrane-associated progesterone receptor (MAPR) family consists of heme-binding proteins containing a cytochrome b5 (cytb5) domain characterized by the presence of a MAPR-specific interhelical insert region (MIHIR) between helices 3 and 4 of the canonical cytb5-domain fold. Animals possess three MAPR genes (PGRMC-like, Neuferricin and Neudesin). Here we show that all three animal MAPR genes were already present in the common ancestor of the opisthokonts (comprising animals and fungi as well as related single-celled taxa). All three MAPR genes acquired extensions C-terminal to the cytb5 domain, either before or with the evolution of animals. The archetypical MAPR protein, progesterone receptor membrane component 1 (PGRMC1), contains phosphorylated tyrosines Y139 and Y180. The combination of Y139/Y180 appeared in the common ancestor of cnidarians and bilaterians, along with an early embryological organizer and synapsed neurons, and is strongly conserved in all bilaterian animals. A predicted protein interaction motif in the PGRMC1 MIHIR is potentially regulated by Y139 phosphorylation. A multilayered model of animal MAPR function acquisition includes some pre-metazoan functions (e.g., heme binding and cytochrome P450 interactions) and some acquired animal-specific functions that involve regulation of strongly conserved protein interaction motifs acquired by animals (Metazoa). This study provides a conceptual framework for future studies, against which especially PGRMC1's multiple functions can perhaps be stratified and functionally dissected.
Collapse
Affiliation(s)
- Elisabeth Hehenberger
- Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Michael Eitel
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sofia A V Fortunato
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - David J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Michael A Cahill
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Canberra, ACT 2601, Australia.
| |
Collapse
|
21
|
Thejer BM, Adhikary PP, Kaur A, Teakel SL, Van Oosterum A, Seth I, Pajic M, Hannan KM, Pavy M, Poh P, Jazayeri JA, Zaw T, Pascovici D, Ludescher M, Pawlak M, Cassano JC, Turnbull L, Jazayeri M, James AC, Coorey CP, Roberts TL, Kinder SJ, Hannan RD, Patrick E, Molloy MP, New EJ, Fehm TN, Neubauer H, Goldys EM, Weston LA, Cahill MA. PGRMC1 phosphorylation affects cell shape, motility, glycolysis, mitochondrial form and function, and tumor growth. BMC Mol Cell Biol 2020; 21:24. [PMID: 32245408 PMCID: PMC7119165 DOI: 10.1186/s12860-020-00256-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/04/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Progesterone Receptor Membrane Component 1 (PGRMC1) is expressed in many cancer cells, where it is associated with detrimental patient outcomes. It contains phosphorylated tyrosines which evolutionarily preceded deuterostome gastrulation and tissue differentiation mechanisms. RESULTS We demonstrate that manipulating PGRMC1 phosphorylation status in MIA PaCa-2 (MP) cells imposes broad pleiotropic effects. Relative to parental cells over-expressing hemagglutinin-tagged wild-type (WT) PGRMC1-HA, cells expressing a PGRMC1-HA-S57A/S181A double mutant (DM) exhibited reduced levels of proteins involved in energy metabolism and mitochondrial function, and altered glucose metabolism suggesting modulation of the Warburg effect. This was associated with increased PI3K/AKT activity, altered cell shape, actin cytoskeleton, motility, and mitochondrial properties. An S57A/Y180F/S181A triple mutant (TM) indicated the involvement of Y180 in PI3K/AKT activation. Mutation of Y180F strongly attenuated subcutaneous xenograft tumor growth in NOD-SCID gamma mice. Elsewhere we demonstrate altered metabolism, mutation incidence, and epigenetic status in these cells. CONCLUSIONS Altogether, these results indicate that mutational manipulation of PGRMC1 phosphorylation status exerts broad pleiotropic effects relevant to cancer and other cell biology.
Collapse
Affiliation(s)
- Bashar M Thejer
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
- Department of Biology, College of Science, University of Wasit, Wasit, 00964, Iraq
| | - Partho P Adhikary
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
- Present address: Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Amandeep Kaur
- School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
- Present address: School of Medical Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Sarah L Teakel
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Ashleigh Van Oosterum
- Life Sciences and Health, Faculty of Science, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Ishith Seth
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Marina Pajic
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of NSW, Darlinghurst, 2010, NSW, Australia
| | - Katherine M Hannan
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, ACT, Canberra, 2601, Australia
| | - Megan Pavy
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, ACT, Canberra, 2601, Australia
| | - Perlita Poh
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, ACT, Canberra, 2601, Australia
| | - Jalal A Jazayeri
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Thiri Zaw
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, 2109, Australia
| | - Dana Pascovici
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, 2109, Australia
| | - Marina Ludescher
- Department of Gynecology and Obstetrics, University Women's Hospital of Dusseldorf, 40225, Dusseldorf, Germany
| | - Michael Pawlak
- NMI TT Pharmaservices, Protein Profiling, 72770, Reutlingen, Germany
| | - Juan C Cassano
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science & Technology (Empa), Lerchenfeldstrasse 5, CH-9014, St Gallen, Switzerland
| | - Lynne Turnbull
- The ithree institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Present address: GE Healthcare Life Sciences, Issaquah, WA, 98027, USA
| | - Mitra Jazayeri
- Department of Mathematics and Statistics, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Alexander C James
- Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- South Western Sydney Clinical School, Faculty of Medicine, The University of New South Wales, Liverpool, NSW, 2170, Australia
| | - Craig P Coorey
- Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia
- School of Medicine and University of Queensland Centre for Clinical Research, Herston, QLD, 4006, Australia
| | - Tara L Roberts
- Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- South Western Sydney Clinical School, Faculty of Medicine, The University of New South Wales, Liverpool, NSW, 2170, Australia
- School of Medicine and University of Queensland Centre for Clinical Research, Herston, QLD, 4006, Australia
| | | | - Ross D Hannan
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, ACT, Canberra, 2601, Australia
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, 3010, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3168, Australia
| | - Ellis Patrick
- School of Mathematics and Statistics, University of Sydney, Sydney, NSW, 2006, Australia
| | - Mark P Molloy
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, 2109, Australia
- Present address: The Kolling Institute, The University of Sydney, St Leonards (Sydney), NSW, 2064, Australia
| | - Elizabeth J New
- School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tanja N Fehm
- Department of Gynecology and Obstetrics, University Women's Hospital of Dusseldorf, 40225, Dusseldorf, Germany
| | - Hans Neubauer
- Department of Gynecology and Obstetrics, University Women's Hospital of Dusseldorf, 40225, Dusseldorf, Germany
| | - Ewa M Goldys
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW, 2109, Australia
- Present address: The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Kensington, NSW, 2052, Australia
| | - Leslie A Weston
- Graham Centre for Agricultural Innovation, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia
- School of Agricultural and Wine Sciences, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2678, Australia
| | - Michael A Cahill
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, ACT, Canberra, 2601, Australia.
| |
Collapse
|
22
|
Cho MH, Kim SH, Lee DK, Lee M, Lee CK. Progesterone receptor membrane component 1 (PGRMC1)-mediated progesterone effect on preimplantation development of in vitro produced porcine embryos. Theriogenology 2020; 147:39-49. [PMID: 32086050 DOI: 10.1016/j.theriogenology.2020.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/06/2020] [Accepted: 02/08/2020] [Indexed: 01/10/2023]
Abstract
Progesterone is a steroid hormone well known for its significant role in the reproduction process of mammals. Numerous studies have reported on the regulation of progesterone during implantation, pregnancy and parturition, but there are fewer studies on progesterone in relation to the early stages of embryo development. In the present study, we investigated the effects of progesterone during the development of in vitro produced porcine embryos. First, gene expression of various progesterone receptors in the in vitro produced porcine embryos were analyzed. PGRMC1 and PGRMC2 (progesterone receptor membrane component 1 and 2) showed distinct expression. Next, the embryos were treated with two concentrations of progesterone (10 nM and 100 nM) for two different durations (from day 0 and from day 4) to compare the developmental rates, cell numbers, and apoptosis rates of day 7 blastocysts. The experimental groups in both durations showed similarly increased blastocyst cell numbers and decreased apoptosis rates when treated with 100 nM progesterone. Furthermore, the expression levels of PGRMC1, PGRMC2, PAIRBP1 (plasminogen activator inhibitor RNA-binding protein 1), and apoptosis-related genes were examined in blastocysts and showed significant increases in the 100 nM treatment group compared to the control group. Subsequently, the embryos were treated with the PGRMC1 inhibitor, AG-205, and developmental rates, cell numbers, and apoptosis rates of day 7 blastocysts were compared. In addition, 100 nM progesterone was treated simultaneously with AG-205 to test if the inhibition effect is relieved by progesterone. Groups treated with 1 μM and 2 μM AG-205 showed decreased cell numbers and increased apoptosis rates in day 7 blastocysts compared to the control group. We also confirmed the recovery of inhibition by 100 nM progesterone. In conclusion, the present study indicated that progesterone positively affects the development of in vitro produced preimplantation porcine embryos by increasing cell proliferation and decreasing apoptosis via PGRMC1-involved actions. However, the detailed mechanisms of PGRMC1 need further elucidation.
Collapse
Affiliation(s)
- Man Ho Cho
- Department of Agricultural Biotechnology, Animal Biotechnology Major, Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung-Hun Kim
- Department of Agricultural Biotechnology, Animal Biotechnology Major, Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong-Kyung Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mingyun Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea; Designed Animal & Transplantation Research Institute, Institute of Green Bio Science and Technology, Seoul National University, Gangwon-do, 25354, Republic of Korea.
| |
Collapse
|
23
|
Wu XJ, Zhu Y. Downregulation of nuclear progestin receptor (Pgr) and subfertility in double knockouts of progestin receptor membrane component 1 (pgrmc1) and pgrmc2 in zebrafish. Gen Comp Endocrinol 2020; 285:113275. [PMID: 31536721 PMCID: PMC6888933 DOI: 10.1016/j.ygcen.2019.113275] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/01/2019] [Accepted: 09/14/2019] [Indexed: 11/29/2022]
Abstract
The progestin receptor membrane components (Pgrmcs) contain two paralogs, Pgrmc1 and Pgrmc2. Our previous research into single knockout of Pgrmc1 or Pgrmc2 suggests that Pgrmc1 and Pgrmc2 regulate membrane progestin receptor or steroid synthesis and therefore female fertility in zebrafish. Additional roles of Pgrmcs may not be determined in using single Pgrmc knockouts due to compensatory roles between Pgrmc1 and Pgrmc2. To address this question, we crossed single knockout pgrmc1 (pgrmc1-/-) with pgrmc2 (pgrmc2-/-), and generated double knockouts for both pgrmc1 and pgrmc2 (pgrmc1/2-/-) in a vertebrate model, zebrafish. In addition to the delayed oocyte maturation and reduced female fertility, significant reduced ovulation was found in double knockout (pgrmc1/2-/-) in vivo, though not detected in either single knockout of Pgrmc (pgrmc1-/- or pgrmc2-/-). We also found significant down regulation of nuclear progestin receptor (Pgr) protein expression only in pgrmc1/2-/-, which was most likely the cause of reduced ovulation. Lower protein expression of Pgr also resulted in reduced expression of metalloproteinase in pgrmc1/2-/-. With this study, we have provided new evidence for the physiological functions of Pgrmcs in the regulation of female fertility by regulation of ovulation, likely via regulation of Pgr, which affects regulation of metalloproteinase expression and oocyte ovulation.
Collapse
Affiliation(s)
- Xin-Jun Wu
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Yong Zhu
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
24
|
Lu X, Guan A, Chen X, Xiao J, Xie M, Yang B, He S, You S, Li W, Chen Q. mPRα mediates P4/Org OD02-0 to improve the sensitivity of lung adenocarcinoma to EGFR-TKIs via the EGFR-SRC-ERK1/2 pathway. Mol Carcinog 2019; 59:179-192. [PMID: 31777985 DOI: 10.1002/mc.23139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 01/02/2023]
Abstract
The discovery of epidermal growth factor receptor (EGFR) mutations has made EGFR tyrosine kinase inhibitors (EGFR-TKIs) a milestone in the treatment for advanced non-small cell lung cancer (NSCLC). However, patients lacking EGFR mutations are not sensitive to EGFR-TKI treatment and the emergence of secondary resistance poses new challenges for the targeted therapy of lung cancer. In this study, we identified that the expression of membrane progesterone receptor α (mPRα) was associated with EGFR mutations in lung adenocarcinoma patients and subsequently affected the efficacy of EGFR-TKIs. Progesterone (P4) or its derivative Org OD02-0 (Org), which is mediated by mPRα, increases the function of EGFR-TKIs to suppress the proliferation, migration, and invasion of lung adenocarcinoma cells in vitro and in vivo. In addition, the mPRα pathway triggers delayed resistance to EGFR-TKIs. Mechanistic investigations demonstrated that the mPRα pathway can crosstalk with the EGFR pathway by activating nongenomic effects to inhibit the EGFR-SRC-ERK1/2 pathway, thereby promoting antitumorigenic effects. In conclusion, our data describe an essential role for mPRα in improving sensitivity to EGFR-TKIs, thus rationalizing its potential as a therapeutic target for lung adenocarcinomas.
Collapse
Affiliation(s)
- Xiaoxiao Lu
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Anqi Guan
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xi Chen
- Department of Respiratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Xiao
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingxuan Xie
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Baishuang Yang
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuya He
- Department of Biochemistry & Biology, University of South China, Hengyang, China
| | - Shaojin You
- Laboratory of Cancer Experimental Therapy, Histopathology Core, Atlanta Research & Educational Foundation (151F), Atlanta VA Medical Center, Emory University, Decatur, Georgia
| | - Wei Li
- Department of Geriatrics, Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiong Chen
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
25
|
Colleti C, Melo-Hanchuk TD, da Silva FRM, Saito Â, Kobarg J. Complex interactomes and post-translational modifications of the regulatory proteins HABP4 and SERBP1 suggest pleiotropic cellular functions. World J Biol Chem 2019; 10:44-64. [PMID: 31768228 PMCID: PMC6872977 DOI: 10.4331/wjbc.v10.i3.44] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/30/2019] [Accepted: 10/15/2019] [Indexed: 02/05/2023] Open
Abstract
The 57 kDa antigen recognized by the Ki-1 antibody, is also known as intracellular hyaluronic acid binding protein 4 and shares 40.7% identity and 67.4% similarity with serpin mRNA binding protein 1, which is also named CGI-55, or plasminogen activator inhibitor type-1-RNA binding protein-1, indicating that they might be paralog proteins, possibly with similar or redundant functions in human cells. Through the identification of their protein interactomes, both regulatory proteins have been functionally implicated in transcriptional regulation, mRNA metabolism, specifically RNA splicing, the regulation of mRNA stability, especially, in the context of the progesterone hormone response, and the DNA damage response. Both proteins also show a complex pattern of post-translational modifications, involving Ser/Thr phosphorylation, mainly through protein kinase C, arginine methylation and SUMOylation, suggesting that their functions and locations are highly regulated. Furthermore, they show a highly dynamic cellular localization pattern with localizations in both the cytoplasm and nucleus as well as punctuated localizations in both granular cytoplasmic protein bodies, upon stress, and nuclear splicing speckles. Several reports in the literature show altered expressions of both regulatory proteins in a series of cancers as well as mutations in their genes that may contribute to tumorigenesis. This review highlights important aspects of the structure, interactome, post-translational modifications, sub-cellular localization and function of both regulatory proteins and further discusses their possible functions and their potential as tumor markers in different cancer settings.
Collapse
Affiliation(s)
- Carolina Colleti
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil
- Institute of Biology, Departament of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Talita Diniz Melo-Hanchuk
- Institute of Biology, Departament of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Flávia Regina Moraes da Silva
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil
- Institute of Biology, Departament of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Ângela Saito
- Laboratório Nacional de Biociências, CNPEM, Campinas 13083-970, Brazil
| | - Jörg Kobarg
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil
- Institute of Biology, Departament of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| |
Collapse
|
26
|
Galmozzi A, Kok BP, Kim AS, Montenegro-Burke JR, Lee JY, Spreafico R, Mosure S, Albert V, Cintron-Colon R, Godio C, Webb WR, Conti B, Solt LA, Kojetin D, Parker CG, Peluso JJ, Pru JK, Siuzdak G, Cravatt BF, Saez E. PGRMC2 is an intracellular haem chaperone critical for adipocyte function. Nature 2019; 576:138-142. [PMID: 31748741 PMCID: PMC6895438 DOI: 10.1038/s41586-019-1774-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 10/01/2019] [Indexed: 12/16/2022]
Abstract
Heme is an essential prosthetic group of numerous proteins and a central signaling molecule in many physiologic processes1,2. The chemical reactivity of heme requires that a network of intracellular chaperone proteins exist to avert the cytotoxic effects of free heme, but the constituents of such trafficking pathways are unknown3,4. Heme synthesis is completed in mitochondria, with ferrochelatase (FECH) adding iron to protoporphyrin IX. How this vital but highly reactive metabolite is delivered from mitochondria to hemoproteins throughout the cell remains poorly defined3,4. Here, we show that PGRMC2 is required for delivery of labile, or signaling heme, to the nucleus. Deletion of PGMRC2 in brown fat, which has a high demand for heme, reduced labile heme in the nucleus and increased stability of the heme-responsive transcriptional repressors Rev-Erbα and BACH1. Ensuing alterations in gene expression spawn severe mitochondrial defects that rendered adipose-specific PGRMC2-null mice unable to activate adaptive thermogenesis and prone to greater metabolic deterioration when fed a high-fat diet. In contrast, obese-diabetic mice treated with a small-molecule PGRMC2 activator showed substantial improvement of diabetic features. These studies uncover a role for PGRMC2 in intracellular heme transport, reveal the impact of adipose tissue heme dynamics on physiology, and suggest that modulation of PGRMC2 may revert obesity-linked defects in adipocytes.
Collapse
Affiliation(s)
- Andrea Galmozzi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Bernard P Kok
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Arthur S Kim
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Jae Y Lee
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Roberto Spreafico
- Institute for Quantitative and Computational Biology, University of California, Los Angeles, CA, USA
| | - Sarah Mosure
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL, USA
| | - Verena Albert
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Rigo Cintron-Colon
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Cristina Godio
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - William R Webb
- Scripps Center for Metabolomics, The Scripps Research Institute, La Jolla, CA, USA
| | - Bruno Conti
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Laura A Solt
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Douglas Kojetin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL, USA
| | - Christopher G Parker
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA.,Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - John J Peluso
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - James K Pru
- Center for Reproductive Biology, Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Gary Siuzdak
- Scripps Center for Metabolomics, The Scripps Research Institute, La Jolla, CA, USA.,Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Enrique Saez
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
27
|
Wu XJ, Williams MJ, Patel PR, Kew KA, Zhu Y. Subfertility and reduced progestin synthesis in Pgrmc2 knockout zebrafish. Gen Comp Endocrinol 2019; 282:113218. [PMID: 31301284 PMCID: PMC6718323 DOI: 10.1016/j.ygcen.2019.113218] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/14/2019] [Accepted: 07/06/2019] [Indexed: 01/22/2023]
Abstract
Progestin receptor membrane component (Pgrmc1 & 2) is a heme-binding protein. Studies on Pgrmc1 have suggested possible roles in heme binding, activation of steroid-synthesizing P450s, along with binding and transferring of membrane proteins. However, the studies of Pgrmc1's paralog, Pgrmc2 are still lacking. In order to determine the physiologic function(s) of Pgrmc2, we generated a zebrafish mutant line (pgrmc2-/-). We found a reduction in both spawning frequency and the number of embryos produced in female pgrmc2-/-. This subfertility is caused by reduced oocyte maturation (germinal vesicle breakdown, GVBD) in pgrmc2-/- in vivo. Nonetheless, oocytes from pgrmc2-/- had similar sensitivity to 17α,20β-dihydroxy-4-pregnen-3-one (DHP, a maturation induced progestin in zebrafish) compared with wildtype (wt) in vitro. Therefore, we hypothesized that oocyte maturation tardiness found in vivo, could be due to lack of progestin in pgrmc2-/-. Interestingly, we found significant reduced expression of hormones, receptors, and steroid synthesizing enzymes including lhcgr, egfra, ar, and esr2, cyp11a1 and hsd3b1. In addition, DHP levels in pgrmc2-/- ovaries showed a significant decrease compared to those in wt. In summary, we have provided a plausible molecular mechanism for the physiological functions of Pgrmc2 in the regulation of female fertility, likely via regulation of receptors and steroids in the ovary, which in turn regulates oocyte maturation in zebrafish.
Collapse
Affiliation(s)
- Xin-Jun Wu
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | | | | | - Kimberly Ann Kew
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
| | - Yong Zhu
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
28
|
Peluso JJ, Pru CA, Liu X, Kelp NC, Pru JK. Progesterone receptor membrane component 1 and 2 regulate granulosa cell mitosis and survival through a NFΚB-dependent mechanism†. Biol Reprod 2019; 100:1571-1580. [PMID: 30877763 PMCID: PMC6561858 DOI: 10.1093/biolre/ioz043] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/13/2019] [Accepted: 03/15/2019] [Indexed: 12/27/2022] Open
Abstract
Progesterone receptor membrane component 1 (PGRMC1) interacts with PGRMC2, and disrupting this interaction in spontaneously immortalized granulosa cells (SIGCS) leads to an inappropriate entry into the cell cycle, mitotic arrest, and ultimately cell death. The present study revealed that PGRMC1 and PGRMC2 localize to the cytoplasm of murine granulosa cells of nonatretric follicles with their staining intensity being somewhat diminished in granulosa cells of atretic follicles. Compared to controls (Pgrmc1fl/fl), the rate at which granulosa cells entered the cell cycle increased in nonatretic and atretic follicles of mice in which Pgrmc1 was conditionally deleted (Pgrmc1d/d) from granulosa cells. This increased rate of entry into the cell cycle was associated with a ≥ 2-fold increase in follicular atresia and the nuclear localization of nuclear factor-kappa-B transcription factor P65; (NFΚB/p65, or RELA). GTPase activating protein binding protein 2 (G3BP2) binds NFΚB/p65 through an interaction with NFΚB inhibitor alpha (IκBα), thereby maintaining NFΚB/p65's cytoplasmic localization and restricting its transcriptional activity. Since PGRMC1 and PGRMC2 bind G3BP2, studies were designed to assess the functional relationship between PGRMC1, PGRMC2, and NFΚB/p65 in SIGCs. In these studies, disrupting the interaction between PGRMC1 and PGRMC2 increased the nuclear localization of NFΚB/p65, and depleting PGRMC1, PGRMC2, or G3BP2 increased NFΚB transcriptional activity and the progression into the cell cycle. Taken together, these studies suggest that PGRMC1 and 2 regulate granulosa cell cycle entry in follicles by precisely controlling the localization and thereby the transcriptional activity of NFΚB/p65.
Collapse
Affiliation(s)
- John J Peluso
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut, USA
- Department of and Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Cindy A Pru
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Xiufang Liu
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Nicole C Kelp
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - James K Pru
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
29
|
Allen TK, Nazzal MN, Feng L, Buhimschi IA, Murtha AP. Progestins Inhibit Tumor Necrosis Factor α-Induced Matrix Metalloproteinase 9 Activity via the Glucocorticoid Receptor in Primary Amnion Epithelial Cells. Reprod Sci 2018; 26:1193-1202. [PMID: 30453830 DOI: 10.1177/1933719118811646] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Progestins have been recommended for preterm birth prevention in high-risk women; however, their mechanism of action still remains an area of debate. Medroxyprogesterone acetate (MPA) has previously been shown to significantly inhibit tumor necrosis factor α (TNFα)-induced matrix metalloproteinase 9 (MMP9) messenger RNA (mRNA) expression and activity in primary amnion epithelial cells, a process that may lead to preterm premature rupture of membranes. A mechanism that explains MPA's inhibition of TNFα-induced MMP9 mRNA expression and activity in primary amnion epithelial cells is unclear since these cells lack the classic nuclear progesterone receptor but express a membrane-associated progesterone receptor-progesterone receptor membrane component 1 (PGRMC1) along with the glucocorticoid receptor (GR). Primary amnion epithelial cells harvested from healthy term pregnant women at cesarean section were treated with PGRMC1 (to knockdown PGRMC1 expression), GR (to knockdown GR expression), or control small interfering RNA (siRNA; 10 nm) for 72 hours, pretreated with ethanol or MPA (10-6 M) for 6 hours, and then stimulated with or without TNFα 10 ng/mL for 24 hours. Real-time quantitative polymerase chain reaction and gelatin zymography were used to quantify MMP9 mRNA expression and activity, respectively. Experimental groups were compared using 1-way analysis of variance. Both TNFα-induced MMP9 mRNA expression and activity were significantly inhibited by pretreatment with MPA; however, only the inhibition of TNFα-induced MMP9 activity was partially reversed with PGRMC1 siRNA. However, GR siRNA reversed both the inhibition of TNFα-induced MMP9 mRNA expression and activity by MPA. This study demonstrates that MPA mediates its anti-inflammatory effects primarily through GR and partially through PGRMC1 in primary amnion epithelial cells.
Collapse
Affiliation(s)
- Terrence K Allen
- 1 Department of Anesthesiology, Duke University Hospital, Durham, NC, USA
| | - Matthew N Nazzal
- 2 Department of Obstetrics and Gynecology, Duke University Hospital, Durham, NC, USA
| | - Liping Feng
- 2 Department of Obstetrics and Gynecology, Duke University Hospital, Durham, NC, USA
| | - Irina A Buhimschi
- 3 Perinatal Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Amy P Murtha
- 2 Department of Obstetrics and Gynecology, Duke University Hospital, Durham, NC, USA
| |
Collapse
|
30
|
Jühlen R, Landgraf D, Huebner A, Koehler K. Triple A patient cells suffering from mitotic defects fail to localize PGRMC1 to mitotic kinetochore fibers. Cell Div 2018; 13:8. [PMID: 30455725 PMCID: PMC6230297 DOI: 10.1186/s13008-018-0041-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/25/2018] [Indexed: 01/10/2023] Open
Abstract
Background Membrane-associated progesterone receptors are restricted to the endoplasmic reticulum and are shown to regulate the activity of cytochrome P450 enzymes which are involved in steroidogenesis or drug detoxification. PGRMC1 and PGRMC2 belong to the membrane-associated progesterone receptor family and are of interest due to their suspected role during cell cycle. PGRMC1 and PGRMC2 are thought to bind to each other; thereby suppressing entry into mitosis. We could previously report that PGRMC2 interacts with the nucleoporin ALADIN which when mutated results in the autosomal recessive disorder triple A syndrome. ALADIN is a novel regulator of mitotic controller Aurora kinase A and depletion of this nucleoporin leads to microtubule instability. Results In the current study, we present that proliferation is decreased when ALADIN, PGRMC1 or PGRMC2 are over-expressed. Furthermore, we find that depletion of ALADIN results in mislocalization of Aurora kinase A and PGRMC1 in metaphase cells. Additionally, PGRMC2 is over-expressed in triple A patient fibroblasts. Conclusion Our results emphasize the possibility that loss of the regulatory association between ALADIN and PGRMC2 gives rise to a depletion of PGRMC1 at kinetochore fibers. This observation may explain part of the symptoms seen in triple A syndrome patients.
Collapse
Affiliation(s)
- Ramona Jühlen
- 1Klinik und Poliklinik für Kinder- und Jugendmedizin, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.,2Present Address: Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium
| | - Dana Landgraf
- 1Klinik und Poliklinik für Kinder- und Jugendmedizin, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Angela Huebner
- 1Klinik und Poliklinik für Kinder- und Jugendmedizin, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Katrin Koehler
- 1Klinik und Poliklinik für Kinder- und Jugendmedizin, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
31
|
Yuan X, Yang C, Wang X, Zhang L, Gao X, Shi Z. Progesterone maintains the status of granulosa cells and slows follicle development partly through PGRMC1. J Cell Physiol 2018; 234:709-720. [PMID: 30069867 DOI: 10.1002/jcp.26869] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 05/22/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Xiao‐Hua Yuan
- Maternity Department Shaanxi Provincial People’s Hospital Xi’an China
| | - Chun‐Rong Yang
- Maternity Department Shaanxi Provincial People’s Hospital Xi’an China
| | - Xi‐Ning Wang
- Obstetrics and Gynecology Department Yangling Demonstration Area Hospital Xi’an China
| | - Li‐Li Zhang
- Maternity Department Shaanxi Provincial People’s Hospital Xi’an China
| | - Xiao‐Rui Gao
- Maternity Department Shaanxi Provincial People’s Hospital Xi’an China
| | - Zi‐Yun Shi
- Maternity Department Shaanxi Provincial People’s Hospital Xi’an China
| |
Collapse
|
32
|
Kabe Y, Handa H, Suematsu M. Function and structural regulation of the carbon monoxide (CO)-responsive membrane protein PGRMC1. J Clin Biochem Nutr 2018; 63:12-17. [PMID: 30087538 PMCID: PMC6064819 DOI: 10.3164/jcbn.17-132] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/04/2018] [Indexed: 01/29/2023] Open
Abstract
Progesterone receptor membrane associated component 1 is a multifunctional heme-binding protein that plays a role in several biological processes such as tumor progression, metabolic regulation, and viability control of nerve cells. Notably, progesterone receptor membrane associated component 1 is highly expressed in various types of cancer cells, and facilitates cancer proliferation and chemoresistance. Recently, progesterone receptor membrane associated component 1 structure has been explored by X-ray crystallographic analysis. Interestingly, whereas apo- progesterone receptor membrane associated component 1 exists as a monomer, the heme-bound progesterone receptor membrane associated component 1 converts into a stable dimer by forming a unique heme-heme stacking structure, leading to activation of epidermal growth factor receptor signaling and chemoresistance in cancer cells. Furthermore, the gas mediator carbon monoxide inhibits progesterone receptor membrane associated component 1-mediated activation in cancer cells by dissociating the heme-stacking dimer of progesterone receptor membrane associated component 1. The dynamic structural regulation of progesterone receptor membrane associated component 1 will provide new insights for understanding the mechanisms underlying its various functions.
Collapse
Affiliation(s)
- Yasuaki Kabe
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), 20F Yomiuri Shimbun Bldg, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Hiroshi Handa
- Department of Nanoparticle Translational Research, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
33
|
Braun BC, Okuyama MW, Müller K, Dehnhard M, Jewgenow K. Steroidogenic enzymes, their products and sex steroid receptors during testis development and spermatogenesis in the domestic cat (Felis catus). J Steroid Biochem Mol Biol 2018; 178:135-149. [PMID: 29196065 DOI: 10.1016/j.jsbmb.2017.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/08/2017] [Accepted: 11/23/2017] [Indexed: 11/30/2022]
Abstract
In the present study we comprehensively characterize intratesticular sex steroid production, metabolism and receptors in the domestic cat to elucidate the role of testosterone, estradiol and progesterone in testis development, steroid synthesis and spermatogenesis. There is a great demand for new concepts of fertility control in domestic (feral) cats and wild felids. The acquired knowledge will help to understand the regulation of spermatogenesis in felids, and may reveal new target points for male contraception. Progesterone and androgens are produced throughout all stages of testicular development; their synthesizing enzymes are mainly expressed in Leydig cells, and to a much lesser extent also in tubular cells. Aromatase (CYP19A1), the estrogen synthesizing enzyme, is only present in the tubuli and is first detectable in spermatocytes and round spermatids at puberty. As shown by elevated expression of the enzymes steroid 5-α-reductase type 1 (SRD5A) and aldo-keto-reductase family 1 member C3 (AKR1C3), the capacity to metabolize particular steroids increases during testis development. Apparently, this refers to a decreasing intra-testicular testosterone concentration per mg tissue with increasing testis weight during postpuberty. The increasing potential of sulfation of E2 by estrogen sulfotransferase (SULT1E1) with ongoing development might be responsible for the low level of unconjugated intratesticular estradiol in all stages of development probably due to facilitated excretion of conjugated estrogens. For the first time, expression of the progesterone membrane receptor components 1 and 2 (PGRMC1, PGRMC2) was studied in mammalian testis tissue. Both of these and also the progesterone receptor (PGR) are expressed depending on the developmental stage and cell type, suggesting an important regulatory role of progesterone in the testis. Androgen receptor (AR) is present in almost all cell types except for some spermatogenic cells. The co-localization of aromatase with estrogen receptor alpha (ESR1) in spermatocytes and round spermatids of domestic cat testis indicates an auto-/paracrine function of estrogen in spermatogenesis. In summary, the testis of the domestic cat is an important source of sex steroids. All of them could act within the testis but additionally, at least androgens and estrogens are likely secreted by the testis, partly as conjugated steroids.
Collapse
Affiliation(s)
- Beate C Braun
- Leibniz Institute for Zoo and Wildlife Research, Department of Reproduction Biology, PF700430, 10324 Berlin, Germany.
| | - Minami W Okuyama
- Leibniz Institute for Zoo and Wildlife Research, Department of Reproduction Biology, PF700430, 10324 Berlin, Germany
| | - Karin Müller
- Leibniz Institute for Zoo and Wildlife Research, Department of Reproduction Biology, PF700430, 10324 Berlin, Germany
| | - Martin Dehnhard
- Leibniz Institute for Zoo and Wildlife Research, Department of Reproduction Biology, PF700430, 10324 Berlin, Germany
| | - Katarina Jewgenow
- Leibniz Institute for Zoo and Wildlife Research, Department of Reproduction Biology, PF700430, 10324 Berlin, Germany
| |
Collapse
|
34
|
Tsai HW, Ho CL, Cheng SW, Lin YJ, Chen CC, Cheng PN, Yen CJ, Chang TT, Chiang PM, Chan SH, Ho CH, Chen SH, Wang YW, Chow NH, Lin JC. Progesterone receptor membrane component 1 as a potential prognostic biomarker for hepatocellular carcinoma. World J Gastroenterol 2018; 24:1152-1166. [PMID: 29563759 PMCID: PMC5850134 DOI: 10.3748/wjg.v24.i10.1152] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/16/2018] [Accepted: 01/23/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the clinicopathological significance of progesterone receptor membrane component 1 (PGRMC1) and PGRMC2 in hepatocellular carcinoma (HCC).
METHODS We performed immunohistochemical staining to evaluate the estrogen receptor (ER), progesterone receptor (PR), PGRMC1, and PGRMC2 in a clinical cohort consisting of 89 paired HCC and non-tumor liver samples. We also analyzed HCC data (n = 373) from The Cancer Genome Atlas (TCGA). We correlated the expression status of PGRMC1 and PGRMC2 with clinicopathological indicators and the clinical outcomes of the HCC patients. We knocked down or overexpressed PGRMC1 in HCC cell lines to evaluate its biological significance in HCC cell proliferation, differentiation, migration, and invasion.
RESULTS We found that few HCC cases expressed ER (5.6%) and PR (4.5%). In contrast, most HCC cases expressed PGRMC1 (89.9%) and PGRMC2 (100%). PGRMC1 and PGRMC2 exhibited significantly lower expression in tumor tissue than in non-tumor tissue (P < 0.001). Lower PGRMC1 expression in HCC was significantly associated with higher serum alpha-fetoprotein expression (P = 0.004), poorer tumor differentiation (P = 0.045) and liver capsule penetration (P = 0.038). Low PGRMC1 expression was an independent predictor for worse disease-free survival (P = 0.002, HR = 2.384, CI: 1.377-4.128) in our cases, as well as in the TCGA cohort (P < 0.001, HR = 2.857, CI: 1.781-4.584). The expression of PGRMC2 did not relate to patient outcome. PGRMC1 knockdown promoted a poorly differentiated phenotype and proliferation of HCC cells in vitro, while PGRMC1 overexpression caused the opposite effects.
CONCLUSION PGRMC1 is a non-classical hormonal receptor that negatively regulates hepatocarcinogenesis. PGRMC1 down-regulation is associated with progression of HCC and is a poor prognostic indicator.
Collapse
Affiliation(s)
- Hung-Wen Tsai
- Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Chung-Liang Ho
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Shu-Wen Cheng
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Yih-Jyh Lin
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Chou-Cheng Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Pin-Nan Cheng
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Chia-Jui Yen
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Ting-Tsung Chang
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Po-Min Chiang
- Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Shih-Huang Chan
- Department of Statistics, College of Management, National Cheng Kung University, Tainan 70403, Taiwan
| | - Cheng-Hsun Ho
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
- Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Shu-Hui Chen
- Department of Chemistry, College of Sciences, National Cheng Kung University, Tainan 70403, Taiwan
| | - Yi-Wen Wang
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Nan-Haw Chow
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Jou-Chun Lin
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| |
Collapse
|
35
|
Identification of progesterone receptor membrane component-1 as an interaction partner and possible regulator of fatty acid 2-hydroxylase. Biochem J 2018; 475:853-871. [PMID: 29438993 DOI: 10.1042/bcj20170963] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/02/2018] [Accepted: 02/08/2018] [Indexed: 12/20/2022]
Abstract
The fatty acid 2-hydroxylase (FA2H) is essential for synthesis of 2-hydroxylated fatty acids in myelinating and other cells, and deficiency of this enzyme causes a complicated form of hereditary spastic paraplegia also known as fatty acid hydroxylase-associated neurodegeneration. Despite its important role in sphingolipid metabolism, regulation of FA2H and its interaction with other proteins involved in the same or other metabolic pathways is poorly understood. To identify potential interaction partners of the enzyme, quantitative mass spectrometry using stable isotope labeling of cells was combined with formaldehyde cross-linking and proximity biotinylation, respectively. Besides other enzymes involved in sphingolipid synthesis and intermembrane transfer of ceramide, and putative redox partners of FA2H, progesterone receptor membrane component-1 (PGRMC1) and PGRMC2 were identified as putative interaction partners. These two related heme-binding proteins are known to regulate several cytochrome P450 enzymes. Bimolecular fluorescence complementation experiments confirmed the interaction of FA2H with PGRMC1. Moreover, the PGRMC1 inhibitor AG-205 significantly reduced synthesis of hydroxylated ceramide and glucosylceramide in FA2H-expressing cells. This suggests that PGRMC1 may regulate FA2H activity, possibly through its heme chaperone activity.
Collapse
|
36
|
Zhang C, Ding W, Liu Y, Hu Z, Zhu D, Wang X, Yu L, Wang L, Shen H, Zhang W, Ren C, Li K, Weng D, Deng W, Ma D, Wang H. Proteomics-based identification of VDAC1 as a tumor promoter in cervical carcinoma. Oncotarget 2018; 7:52317-52328. [PMID: 27419626 PMCID: PMC5239554 DOI: 10.18632/oncotarget.10562] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 06/12/2016] [Indexed: 02/05/2023] Open
Abstract
We used oxidative isotope-coded affinity tags (OxICAT) to investigate the global redox status of proteins in human papillomavirus (HPV)-related cervical cancer cells, in order to identify a potential target for gene therapy. Voltage-dependent anion channel 1 (VDAC1) was found to be highly oxidized in HPV-positive cervical cancer cells. VDAC1 expression correlated significantly with the invasion of cervical cancer, the grade of cervical intraepithelial neoplasia (CIN) and the expression of HPV16 E7 in CIN. Knockdown of VDAC1 in cell lines increased the rate of apoptosis, while overexpression of the VDAC1 (respectively) partly reversed the effect. Thus, VDAC1 may promote the malignant progression of HPV-related disease, and treatments designed to suppress VDAC1 could prevent the progression of HPV-induced cervical disease.
Collapse
Affiliation(s)
- Changlin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.,Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong 510060, China
| | - Wencheng Ding
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yuan Liu
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, China
| | - Zheng Hu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Da Zhu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaoli Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lan Yu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Liming Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hui Shen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weican Zhang
- Department of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Ci Ren
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Kezhen Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Danhui Weng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wuguo Deng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong 510060, China
| | - Ding Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hui Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
37
|
Zheng Q, Li Y, Zhang D, Cui X, Dai K, Yang Y, Liu S, Tan J, Yan Q. ANP promotes proliferation and inhibits apoptosis of ovarian granulosa cells by NPRA/PGRMC1/EGFR complex and improves ovary functions of PCOS rats. Cell Death Dis 2017; 8:e3145. [PMID: 29072679 PMCID: PMC5682660 DOI: 10.1038/cddis.2017.494] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/24/2017] [Accepted: 08/29/2017] [Indexed: 12/14/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a complicated reproductive endocrine disease characterized by polycystic ovaries, hyperandrogenism and anovulation. It is one of the main causes of infertility. RU486 is an antagonist of progesterone receptor, and most commonly used as a contraceptive. However, whether RU486 is correlated with PCOS remains unclear. Atrial natriuretic peptide (ANP) is a small peptide with natriuretic and diuretic functions, and its availability to be used in PCOS treatment is unknown. Here, we showed that the serum ANP level was lower in PCOS patients than that in healthy women, and it was also decreased in the serum and ovarian tissues of RU486-induced PCOS rats compared with the control rats. We also found that RU486 inhibited the proliferation and promoted the apoptosis of human KGN ovarian granulosa cells by downregulating progesterone receptor membrane component 1 (PGRMC1). Meantime, ANP promoted the proliferation and inhibited the apoptosis of KGN cells through upregulating ANP receptor A (NPRA). The promotive effects of ANP on ovarian functions were mediated through the formation of an NPRA/PGRMC1/EGFR complex, which further activated MAPK/ERK signaling and transcription factor AP1. Moreover, ANP treatment reversed the PCOS symptoms, and improved the fertility of RU486-induced PCOS rats. Collectively, these findings highlight that RU486 is associated with the pathogenesis of PCOS, and ANP treatment may be a promising therapeutic option for PCOS.
Collapse
Affiliation(s)
- Qin Zheng
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| | - Yulin Li
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| | - Dandan Zhang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| | - Xinyuan Cui
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| | - Kuixing Dai
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| | - Yu Yang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| | - Shuai Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| | - Jichun Tan
- Centre for Auxiliary Human Reproduction, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| |
Collapse
|
38
|
Willibald M, Bayer G, Stahlhut V, Poschmann G, Stühler K, Gierke B, Pawlak M, Seeger H, Mueck AO, Niederacher D, Fehm T, Neubauer H. Progesterone receptor membrane component 1 is phosphorylated upon progestin treatment in breast cancer cells. Oncotarget 2017; 8:72480-72493. [PMID: 29069804 PMCID: PMC5641147 DOI: 10.18632/oncotarget.19819] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/27/2017] [Indexed: 11/25/2022] Open
Abstract
Menopausal hormone therapy, using estrogen and synthetic progestins, is associated with an increased risk of developing breast cancer. The effect of progestins on breast cells is complex and not yet fully understood. In previous in vitro and in vivo studies, we found different progestins to increase the proliferation of Progesterone Receptor Membrane Component-1 (PGRMC1)-overexpressing MCF7 cells (MCF7/PGRMC1), suggesting a possible role of PGRMC1 in transducing membrane-initiated progestin signals. Understanding the activation mechanism of PGRMC1 by progestins will provide deeper insights into the mode of action of progestins on breast cells and the often-reported phenomenon of elevated breast cancer rates upon progestin-based hormone therapy. In the present study, we aimed to further investigate the effect of progestins on receptor activation in MCF7 and T47D breast cancer cell lines. We report that treatment of both breast cancer cell lines with the progestin norethisterone (NET) induces phosphorylation of PGRMC1 at the Casein Kinase 2 (CK2) phosphorylation site Ser181, which can be decreased by treatment with CK2 inhibitor quinalizarin. Point mutation of the Ser181 phosphorylation site in MCF7/PGRMC1 cells impaired proliferation upon NET treatment. This study gives further insights into the mechanism of differential phosphorylation of the receptor and confirms our earlier hypothesis that phosphorylation of the CK2-binding site is essential for activation of PGRMC1. It further suggests an important role of PGRMC1 in the tumorigenesis and progression of breast cancer in progestin-based hormone replacement therapy.
Collapse
Affiliation(s)
- Marina Willibald
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Giuliano Bayer
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Vanessa Stahlhut
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Gereon Poschmann
- Molecular Proteomics Laboratory, BMFZ, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, BMFZ, Heinrich Heine University Duesseldorf, Duesseldorf, Germany.,Institute for Molecular Medicine, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Berthold Gierke
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany
| | - Michael Pawlak
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany
| | - Harald Seeger
- Department of Women's Health, University Hospital and Faculty of Medicine of the Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Alfred O Mueck
- Department of Women's Health, University Hospital and Faculty of Medicine of the Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Dieter Niederacher
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Tanja Fehm
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Hans Neubauer
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
39
|
Cahill MA, Medlock AE. Thoughts on interactions between PGRMC1 and diverse attested and potential hydrophobic ligands. J Steroid Biochem Mol Biol 2017; 171:11-33. [PMID: 28104494 DOI: 10.1016/j.jsbmb.2016.12.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/21/2016] [Accepted: 12/26/2016] [Indexed: 01/05/2023]
Abstract
Progesterone Receptor Membrane Component 1 (PGRMC1) is located in many different subcellular locations with many different attested and probably location-specific functions. PGRMC1 was recently identified in the mitochondrial outer membrane where it interacts with ferrochelatase, the last enzyme in the heme synthetic pathway. It has been proposed that PGRMC1 may act as a chaperone to shuttle newly synthesized heme from the mitochondrion to cytochrome P450 (cyP450) enzymes. Here we consider potential roles that PGRMC1 may play in transferring heme, and other small hydrophobic ligands such as cholesterol and steroids, between the hydrophobic compartment of the membrane lipid bilayer interior to aqueous proteins, and perhaps to the membranes of other organelles. We review the synthesis and roles of especially PGRMC1- and cyP450-bound heme, the sources and transport of cholesterol, the involvement of PGRMC1 in cholesterol regulation, and the production of the first progestogen pregnenolone from cholesterol. We also show by clustering by inferred models of evolution (CLIME) analysis that PGRMC1 and related proteins exhibit co-evolution with a series of cyP450 enzymes, as well as a group of mitochondrial proteins lacking in several parasitic protist groups. Altogether, PGRMC1 is implicated with important roles in sterol synthesis and energy regulation that are dispensable in certain parasites. Some novel hypothetical models for PGRMC1 function are proposed to direct future investigative research.
Collapse
Affiliation(s)
- Michael A Cahill
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia.
| | - Amy E Medlock
- Department of Biochemistry and Molecular Biology, Augusta University/University of Georgia Medical Partnership, University of Georgia, Athens, GA, 30602-1111, USA
| |
Collapse
|
40
|
Ryu CS, Klein K, Zanger UM. Membrane Associated Progesterone Receptors: Promiscuous Proteins with Pleiotropic Functions - Focus on Interactions with Cytochromes P450. Front Pharmacol 2017; 8:159. [PMID: 28396637 PMCID: PMC5366339 DOI: 10.3389/fphar.2017.00159] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/13/2017] [Indexed: 12/22/2022] Open
Abstract
Membrane-associated progesterone receptors (MAPR) are a group of four rather small, partially homologous proteins, which share a similar non-covalent heme-binding domain that is related to cytochrome b5, a well-known functional interaction partner of microsomal cytochrome P450 (CYP) monooxygenase systems. Apart from their structural similarities the four proteins progesterone membrane component 1 (PGRMC1, also referred to as IZA, sigma-2 receptor, Dap1), PGRMC2, neudesin (NENF) and neuferricin (CYB5D2) display surprisingly divergent and multifunctional physiological properties related to cholesterol/steroid biosynthesis, drug metabolism and response, iron homeostasis, heme trafficking, energy metabolism, autophagy, apoptosis, cell cycle regulation, cell migration, neural functions, and tumorigenesis and cancer progression. The purpose of this mini-review is to briefly summarize the structural and functional properties of MAPRs with particular focus on their interactions with the CYP system. For PGRMC1, originally identified as a non-canonical progesterone-binding protein that mediates some immediate non-genomic actions of progesterone, available evidence indicates mainly activating interactions with steroidogenic CYPs including CYP11A1, CYP21A2, CYP17, CYP19, CYP51A1, and CYP61A1, while interactions with drug metabolizing CYPs including CYP2C2, CYP2C8, CYP2C9, CYP2E1, and CYP3A4 were either ineffective or slightly inhibitory. For the other MAPRs the evidence is so far less conclusive. We also point out that experimental limitations question some of the previous conclusions. Use of appropriate model systems should help to further clarify the true impact of these proteins on CYP-mediated metabolic pathways.
Collapse
Affiliation(s)
- Chang S Ryu
- Department of Molecular and Cell Biology, Dr. Margarete Fischer-Bosch-Institute of Clinical PharmacologyStuttgart, Germany; Eberhard-Karls-UniversityTübingen, Germany
| | - Kathrin Klein
- Department of Molecular and Cell Biology, Dr. Margarete Fischer-Bosch-Institute of Clinical PharmacologyStuttgart, Germany; Eberhard-Karls-UniversityTübingen, Germany
| | - Ulrich M Zanger
- Department of Molecular and Cell Biology, Dr. Margarete Fischer-Bosch-Institute of Clinical PharmacologyStuttgart, Germany; Eberhard-Karls-UniversityTübingen, Germany
| |
Collapse
|
41
|
Jühlen R, Landgraf D, Huebner A, Koehler K. Identification of a novel putative interaction partner of the nucleoporin ALADIN. Biol Open 2016; 5:1697-1705. [PMID: 27754849 PMCID: PMC5155539 DOI: 10.1242/bio.021162] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
It has been shown that the nucleoporin ALADIN plays a significant role in the redox homeostasis of the cell, but its function in steroidogenesis contributing to adrenal atrophy in triple A syndrome remains largely unknown. In an attempt to identify new interaction partners of ALADIN, co-immunoprecipitation followed by proteome analysis was conducted in different expression models using the human adrenocortical tumour cell line NCI-H295R. Our results suggest an interaction of ALADIN with the microsomal protein PGRMC2. PGRMC2 is shown to be activity regulator of CYP P450 enzymes and, therefore, to be a possible target for adrenal dysregulation in triple A syndrome. We show that there is a sexual dimorphism regarding the expression of Pgrmc2 in adrenals and gonads of wild-type (WT) and Aaas knock-out (KO) mice. Female Aaas KO mice are sterile due to delayed oocyte maturation and meiotic spindle assembly. A participation in meiotic spindle assembly confirms the recently investigated involvement of ALADIN in mitosis and emphasises an interaction with PGRMC2 which is a regulator of the cell cycle. By identification of a novel interaction partner of ALADIN, we provide novel aspects for future research of the function of ALADIN during cell cycle and for new insights into the pathogenesis of triple A syndrome.
Collapse
Affiliation(s)
- Ramona Jühlen
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Dana Landgraf
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Angela Huebner
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Katrin Koehler
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| |
Collapse
|
42
|
Valadez-Cosmes P, Vázquez-Martínez ER, Cerbón M, Camacho-Arroyo I. Membrane progesterone receptors in reproduction and cancer. Mol Cell Endocrinol 2016; 434:166-75. [PMID: 27368976 DOI: 10.1016/j.mce.2016.06.027] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/15/2016] [Accepted: 06/27/2016] [Indexed: 12/11/2022]
Abstract
Progesterone is a sexual steroid hormone that has a critical role in reproductive processes in males and females of several species, including humans. Furthermore, progesterone has been associated with pathological diseases such as breast, gynecological and brain cancer, regulating cell proliferation, apoptosis, and metastasis. In the past, progesterone actions were thought to be only mediated by its intracellular receptor (PR). However, recent evidence has demonstrated that membrane progesterone receptors (mPRs) mediate most of the non-classical progesterone actions. The role of the different mPRs subtypes in progesterone effects in reproduction and cancer is an emerging and exciting research area. Here we review studies to date regarding mPRs role in reproduction and cancer and discuss their functions and clinical relevance, suggesting mPRs as putative pharmacological targets and disease markers in cancer and diseases associated with reproduction.
Collapse
Affiliation(s)
- Paulina Valadez-Cosmes
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Edgar Ricardo Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
43
|
Piel RB, Shiferaw MT, Vashisht AA, Marcero JR, Praissman JL, Phillips JD, Wohlschlegel JA, Medlock AE. A Novel Role for Progesterone Receptor Membrane Component 1 (PGRMC1): A Partner and Regulator of Ferrochelatase. Biochemistry 2016; 55:5204-17. [PMID: 27599036 DOI: 10.1021/acs.biochem.6b00756] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Heme is an iron-containing cofactor essential for multiple cellular processes and fundamental activities such as oxygen transport. To better understand the means by which heme synthesis is regulated during erythropoiesis, affinity purification coupled with mass spectrometry (MS) was performed to identify putative protein partners interacting with ferrochelatase (FECH), the terminal enzyme in the heme biosynthetic pathway. Both progesterone receptor membrane component 1 (PGRMC1) and progesterone receptor membrane component 2 (PGRMC2) were identified in these experiments. These interactions were validated by reciprocal affinity purification followed by MS analysis and immunoblotting. The interaction between PGRMC1 and FECH was confirmed in vitro and in HEK 293T cells, a non-erythroid cell line. When cells that are recognized models for erythroid differentiation were treated with a small molecule inhibitor of PGRMC1, AG-205, there was an observed decrease in the level of hemoglobinization relative to that of untreated cells. In vitro heme transfer experiments showed that purified PGRMC1 was able to donate heme to apo-cytochrome b5. In the presence of PGRMC1, in vitro measured FECH activity decreased in a dose-dependent manner. Interactions between FECH and PGRMC1 were strongest for the conformation of FECH associated with product release, suggesting that PGRMC1 may regulate FECH activity by controlling heme release. Overall, the data illustrate a role for PGRMC1 in regulating heme synthesis via interactions with FECH and suggest that PGRMC1 may be a heme chaperone or sensor.
Collapse
Affiliation(s)
- Robert B Piel
- Department of Biochemistry and Molecular Biology, Biomedical and Health Sciences Institute, AU/UGA Medical Partnership, University of Georgia , Athens, Georgia 30602, United States
| | - Mesafint T Shiferaw
- Department of Biochemistry and Molecular Biology, Biomedical and Health Sciences Institute, AU/UGA Medical Partnership, University of Georgia , Athens, Georgia 30602, United States
| | - Ajay A Vashisht
- Department of Biological Chemistry, University of California , Los Angeles, California 90095-1737, United States
| | - Jason R Marcero
- Department of Biochemistry and Molecular Biology, Biomedical and Health Sciences Institute, AU/UGA Medical Partnership, University of Georgia , Athens, Georgia 30602, United States
| | - Jeremy L Praissman
- Department of Biochemistry and Molecular Biology, Biomedical and Health Sciences Institute, AU/UGA Medical Partnership, University of Georgia , Athens, Georgia 30602, United States
| | - John D Phillips
- Hematology Division, University of Utah School of Medicine , Salt Lake City, Utah 84132, United States
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California , Los Angeles, California 90095-1737, United States
| | - Amy E Medlock
- Department of Biochemistry and Molecular Biology, Biomedical and Health Sciences Institute, AU/UGA Medical Partnership, University of Georgia , Athens, Georgia 30602, United States
| |
Collapse
|
44
|
McCallum ML, Pru CA, Niikura Y, Yee SP, Lydon JP, Peluso JJ, Pru JK. Conditional Ablation of Progesterone Receptor Membrane Component 1 Results in Subfertility in the Female and Development of Endometrial Cysts. Endocrinology 2016; 157:3309-19. [PMID: 27309940 PMCID: PMC5007897 DOI: 10.1210/en.2016-1081] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Progesterone (P4) is essential for female fertility. The objective of this study was to evaluate the functional requirement of the nonclassical P4 receptor (PGR), PGR membrane component 1, in regulating female fertility. To achieve this goal, the Pgrmc1 gene was floxed by insertion of loxP sites on each side of exon 2. Pgrmc1 floxed (Pgrmc1(fl/fl)) mice were crossed with Pgr(cre) or Amhr2(cre) mice to delete Pgrmc1 (Pgrmc1(d/d)) from the female reproductive tract. A 6-month breeding trial revealed that conditional ablation of Pgrmc1 with Pgr(cre/+) mice resulted in a 40% reduction (P = .0002) in the number of pups/litter. Neither the capacity to ovulate in response to gonadotropin treatment nor the expression of PGR and the estrogen receptor was altered in the uteri of Pgrmc1(d/d) mice compared with Pgrmc1(fl/fl) control mice. Although conditional ablation of Pgrmc1 from mesenchymal tissue using Amhr2(cre/+) mice did not reduce the number of pups/litter, the total number of litters born in the 6-month breeding trial was significantly decreased (P = .041). In addition to subfertility, conditional ablation of Pgrmc1 using either Amhr2(cre/+) or Pgr(cre/+) mice resulted in the development of endometrial cysts starting around 4 months of age. Interestingly, pregnancy attenuated the formation of these uterine cysts. These new findings demonstrate that PGR membrane component 1 plays an important role in female fertility and uterine tissue homeostasis.
Collapse
Affiliation(s)
- Melissa L McCallum
- Department of Animal Sciences (M.L.M., C.A.P., Y.N., J.K.P.), Center for Reproductive Biology, Washington State University, Pullman, Washington 99164; Departments of Cell Biology and Obstetrics and Gynecology (S.P.Y., J.J.P.), University of Connecticut Health Center, Farmington, Connecticut 06030; and Department of Molecular and Cellular Biology (J.P.L.), Baylor College of Medicine, Houston, Texas 77030
| | - Cindy A Pru
- Department of Animal Sciences (M.L.M., C.A.P., Y.N., J.K.P.), Center for Reproductive Biology, Washington State University, Pullman, Washington 99164; Departments of Cell Biology and Obstetrics and Gynecology (S.P.Y., J.J.P.), University of Connecticut Health Center, Farmington, Connecticut 06030; and Department of Molecular and Cellular Biology (J.P.L.), Baylor College of Medicine, Houston, Texas 77030
| | - Yuichi Niikura
- Department of Animal Sciences (M.L.M., C.A.P., Y.N., J.K.P.), Center for Reproductive Biology, Washington State University, Pullman, Washington 99164; Departments of Cell Biology and Obstetrics and Gynecology (S.P.Y., J.J.P.), University of Connecticut Health Center, Farmington, Connecticut 06030; and Department of Molecular and Cellular Biology (J.P.L.), Baylor College of Medicine, Houston, Texas 77030
| | - Siu-Pok Yee
- Department of Animal Sciences (M.L.M., C.A.P., Y.N., J.K.P.), Center for Reproductive Biology, Washington State University, Pullman, Washington 99164; Departments of Cell Biology and Obstetrics and Gynecology (S.P.Y., J.J.P.), University of Connecticut Health Center, Farmington, Connecticut 06030; and Department of Molecular and Cellular Biology (J.P.L.), Baylor College of Medicine, Houston, Texas 77030
| | - John P Lydon
- Department of Animal Sciences (M.L.M., C.A.P., Y.N., J.K.P.), Center for Reproductive Biology, Washington State University, Pullman, Washington 99164; Departments of Cell Biology and Obstetrics and Gynecology (S.P.Y., J.J.P.), University of Connecticut Health Center, Farmington, Connecticut 06030; and Department of Molecular and Cellular Biology (J.P.L.), Baylor College of Medicine, Houston, Texas 77030
| | - John J Peluso
- Department of Animal Sciences (M.L.M., C.A.P., Y.N., J.K.P.), Center for Reproductive Biology, Washington State University, Pullman, Washington 99164; Departments of Cell Biology and Obstetrics and Gynecology (S.P.Y., J.J.P.), University of Connecticut Health Center, Farmington, Connecticut 06030; and Department of Molecular and Cellular Biology (J.P.L.), Baylor College of Medicine, Houston, Texas 77030
| | - James K Pru
- Department of Animal Sciences (M.L.M., C.A.P., Y.N., J.K.P.), Center for Reproductive Biology, Washington State University, Pullman, Washington 99164; Departments of Cell Biology and Obstetrics and Gynecology (S.P.Y., J.J.P.), University of Connecticut Health Center, Farmington, Connecticut 06030; and Department of Molecular and Cellular Biology (J.P.L.), Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
45
|
Cahill MA, Jazayeri JA, Catalano SM, Toyokuni S, Kovacevic Z, Richardson DR. The emerging role of progesterone receptor membrane component 1 (PGRMC1) in cancer biology. Biochim Biophys Acta Rev Cancer 2016; 1866:339-349. [PMID: 27452206 DOI: 10.1016/j.bbcan.2016.07.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 07/17/2016] [Accepted: 07/19/2016] [Indexed: 01/09/2023]
Abstract
Progesterone receptor membrane component 1 (PGRMC1) is a multi-functional protein with a heme-binding moiety related to that of cytochrome b5, which is a putative progesterone receptor. The recently solved PGRMC1 structure revealed that heme-binding involves coordination by a tyrosinate ion at Y113, and induces dimerization which is stabilized by hydrophobic stacking of heme on adjacent monomers. Dimerization is required for association with cytochrome P450 (cyP450) enzymes, which mediates chemoresistance to doxorubicin and may be responsible for PGRMC1's anti-apoptotic activity. Here we review the multiple attested involvement of PGRMC1 in diverse functions, including regulation of cytochrome P450, steroidogenesis, vesicle trafficking, progesterone signaling and mitotic spindle and cell cycle regulation. Its wide range of biological functions is attested to particularly by its emerging association with cancer and progesterone-responsive female reproductive tissues. PGRMC1 exhibits all the hallmarks of a higher order nexus signal integration hub protein. It appears capable of acting as a detector that integrates information from kinase/phosphatase pathways with heme and CO levels and probably redox status.
Collapse
Affiliation(s)
- Michael A Cahill
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| | - Jalal A Jazayeri
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Susan M Catalano
- Cognition Therapeutics Inc., Pittsburgh, PA 15203, United States
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
46
|
Terzaghi L, Tessaro I, Raucci F, Merico V, Mazzini G, Garagna S, Zuccotti M, Franciosi F, Lodde V. PGRMC1 participates in late events of bovine granulosa cells mitosis and oocyte meiosis. Cell Cycle 2016; 15:2019-32. [PMID: 27260975 DOI: 10.1080/15384101.2016.1192731] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Progesterone Receptor Membrane Component 1 (PGRMC1) is expressed in both oocyte and ovarian somatic cells, where it is found in multiple cellular sub-compartments including the mitotic spindle apparatus. PGRMC1 localization in the maturing bovine oocytes mirrors its localization in mitotic cells, suggesting a possible common action in mitosis and meiosis. To test the hypothesis that altering PGRMC1 activity leads to similar defects in mitosis and meiosis, PGRMC1 function was perturbed in cultured bovine granulosa cells (bGC) and maturing oocytes and the effect on mitotic and meiotic progression assessed. RNA interference-mediated PGRMC1 silencing in bGC significantly reduced cell proliferation, with a concomitant increase in the percentage of cells arrested at G2/M phase, which is consistent with an arrested or prolonged M-phase. This observation was confirmed by time-lapse imaging that revealed defects in late karyokinesis. In agreement with a role during late mitotic events, a direct interaction between PGRMC1 and Aurora Kinase B (AURKB) was observed in the central spindle at of dividing cells. Similarly, treatment with the PGRMC1 inhibitor AG205 or PGRMC1 silencing in the oocyte impaired completion of meiosis I. Specifically the ability of the oocyte to extrude the first polar body was significantly impaired while meiotic figures aberration and chromatin scattering within the ooplasm increased. Finally, analysis of PGRMC1 and AURKB localization in AG205-treated oocytes confirmed an altered localization of both proteins when meiotic errors occur. The present findings demonstrate that PGRMC1 participates in late events of both mammalian mitosis and oocyte meiosis, consistent with PGRMC1's localization at the mid-zone and mid-body of the mitotic and meiotic spindle.
Collapse
Affiliation(s)
- L Terzaghi
- a Reproductive and Developmental Biology Laboratory, Department of Health , Animal Science and Food Safety, University of Milan , Milan , Italy
| | - I Tessaro
- a Reproductive and Developmental Biology Laboratory, Department of Health , Animal Science and Food Safety, University of Milan , Milan , Italy
| | - F Raucci
- a Reproductive and Developmental Biology Laboratory, Department of Health , Animal Science and Food Safety, University of Milan , Milan , Italy
| | - V Merico
- b Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani," University of Pavia , Pavia , Italy
| | - G Mazzini
- c Istituto di Genetica Molecolare - Consiglio Nazionale delle Ricerche , Pavia , Italy
| | - S Garagna
- b Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani," University of Pavia , Pavia , Italy
| | - M Zuccotti
- d Sezione di Anatomia, Istologia ed Embriologia, Dipartimento di Scienze Biomediche , Biotecnologiche e Traslazionali (S.Bi.Bi.T.), University of Parma , Italy
| | - F Franciosi
- a Reproductive and Developmental Biology Laboratory, Department of Health , Animal Science and Food Safety, University of Milan , Milan , Italy
| | - V Lodde
- a Reproductive and Developmental Biology Laboratory, Department of Health , Animal Science and Food Safety, University of Milan , Milan , Italy
| |
Collapse
|
47
|
Kabe Y, Nakane T, Koike I, Yamamoto T, Sugiura Y, Harada E, Sugase K, Shimamura T, Ohmura M, Muraoka K, Yamamoto A, Uchida T, Iwata S, Yamaguchi Y, Krayukhina E, Noda M, Handa H, Ishimori K, Uchiyama S, Kobayashi T, Suematsu M. Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance. Nat Commun 2016; 7:11030. [PMID: 26988023 PMCID: PMC4802085 DOI: 10.1038/ncomms11030] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 02/15/2016] [Indexed: 12/16/2022] Open
Abstract
Progesterone-receptor membrane component 1 (PGRMC1/Sigma-2 receptor) is a haem-containing protein that interacts with epidermal growth factor receptor (EGFR) and cytochromes P450 to regulate cancer proliferation and chemoresistance; its structural basis remains unknown. Here crystallographic analyses of the PGRMC1 cytosolic domain at 1.95 Å resolution reveal that it forms a stable dimer through stacking interactions of two protruding haem molecules. The haem iron is five-coordinated by Tyr113, and the open surface of the haem mediates dimerization. Carbon monoxide (CO) interferes with PGRMC1 dimerization by binding to the sixth coordination site of the haem. Haem-mediated PGRMC1 dimerization is required for interactions with EGFR and cytochromes P450, cancer proliferation and chemoresistance against anti-cancer drugs; these events are attenuated by either CO or haem deprivation in cancer cells. This study demonstrates protein dimerization via haem–haem stacking, which has not been seen in eukaryotes, and provides insights into its functional significance in cancer. PGRMC1 binds to EGFR and cytochromes P450, and is known to be involved in cancer proliferation and in drug resistance. Here, the authors determine the structure of the cytosolic domain of PGRMC1, which forms a dimer via haem–haem stacking, and propose how this interaction could be involved in its function.
Collapse
Affiliation(s)
- Yasuaki Kabe
- Department of Biochemistry, Keio University School of Medicine, and Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Tokyo 160-8582, Japan
| | - Takanori Nakane
- Department of Medical Chemistry and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.,Department of Statistical Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Ikko Koike
- Department of Biochemistry, Keio University School of Medicine, and Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Tokyo 160-8582, Japan
| | - Tatsuya Yamamoto
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto 619-0284, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, and Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Tokyo 160-8582, Japan
| | - Erisa Harada
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto 619-0284, Japan
| | - Kenji Sugase
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto 619-0284, Japan
| | - Tatsuro Shimamura
- Department of Medical Chemistry and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Mitsuyo Ohmura
- Department of Biochemistry, Keio University School of Medicine, and Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Tokyo 160-8582, Japan
| | - Kazumi Muraoka
- Department of Biochemistry, Keio University School of Medicine, and Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Tokyo 160-8582, Japan
| | - Ayumi Yamamoto
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takeshi Uchida
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - So Iwata
- Department of Medical Chemistry and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.,JST, Research Acceleration Program, Membrane Protein Crystallography Project, Kyoto 606-8501, Japan
| | - Yuki Yamaguchi
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Elena Krayukhina
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Masanori Noda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Hiroshi Handa
- Department of Nanoparticle Translational Research, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Koichiro Ishimori
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Susumu Uchiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan.,Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Takuya Kobayashi
- Department of Medical Chemistry and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.,JST, CREST, Kyoto 606-8501, Japan.,Platform for Drug Discovery, Informatics, and Structural Life Science, JST, Kyoto 606-8501, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, JST, Exploratory Research for Advanced Technology (ERATO), Suematsu Gas Biology Project, Tokyo 160-8582, Japan
| |
Collapse
|
48
|
Clark NC, Friel AM, Pru CA, Zhang L, Shioda T, Rueda BR, Peluso JJ, Pru JK. Progesterone receptor membrane component 1 promotes survival of human breast cancer cells and the growth of xenograft tumors. Cancer Biol Ther 2016; 17:262-71. [PMID: 26785864 DOI: 10.1080/15384047.2016.1139240] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Triple negative breast cancers (TNBCs) are highly aggressive and grow in response to sex steroid hormones despite lacking expression of the classical estrogen (E2) and progesterone (P4) receptors. Since P4 receptor membrane component 1 (PGRMC1) is expressed in breast cancer tumors and is known to mediate P4-induced cell survival, this study was designed to determine the expression of PGRMC1 in TNBC tumors and the involvement of PGRMC1 in regulating proliferation and survival of TNBC cells in vitro and the growth of TNBC tumors in vivo. For the latter studies, the MDA-MB-231 (MDA) cell line derived from TNBC was used. These cells express PGRMC1 but lack expression of the classical P4 receptor. A lentiviral-based shRNA approach was used to generate a stably transfected PGRMC1-deplete MDA line for comparison to the PGRMC1-intact MDA line. The present studies demonstrate that PGRMC1: 1) is expressed in TNBC cells; 2) mediates the ability of P4 to suppress TNBC cell mitosis in vitro; 3) is required for P4 to reduce the apoptotic effects of doxorubicin in vitro; and 4) facilitates TNBC tumor formation and growth in vivo. Taken together, these findings indicate that PGRMC1 plays an important role in regulating the growth and survival of TNBC cells in vitro and ultimately in the formation and development of these tumors in vivo. Thus, PGRMC1 may be a therapeutic target for TNBCs.
Collapse
Affiliation(s)
- Nicole C Clark
- a Department of Animal Sciences , School of Molecular Biosciences, Center for Reproductive Biology, Washington State University , Pullman , WA , USA
| | - Anne M Friel
- b Vincent Center for Reproductive Biology and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School , Boston , MA , USA
| | - Cindy A Pru
- a Department of Animal Sciences , School of Molecular Biosciences, Center for Reproductive Biology, Washington State University , Pullman , WA , USA
| | - Ling Zhang
- b Vincent Center for Reproductive Biology and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School , Boston , MA , USA
| | - Toshi Shioda
- c Massachusetts General Hospital Cancer Center and Harvard Medical School , Charlestown , MA , USA
| | - Bo R Rueda
- b Vincent Center for Reproductive Biology and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School , Boston , MA , USA
| | - John J Peluso
- d Departments of Obstetrics and Gynecology and Cell Biology , University of Connecticut Health Center , Farmington , CT , USA
| | - James K Pru
- a Department of Animal Sciences , School of Molecular Biosciences, Center for Reproductive Biology, Washington State University , Pullman , WA , USA
| |
Collapse
|
49
|
Jackson ACW, Roche SL, Byrne AM, Ruiz-Lopez AM, Cotter TG. Progesterone receptor signalling in retinal photoreceptor neuroprotection. J Neurochem 2015; 136:63-77. [PMID: 26447367 DOI: 10.1111/jnc.13388] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 09/29/2015] [Accepted: 10/02/2015] [Indexed: 11/29/2022]
Abstract
'Norgestrel', a synthetic form of the female hormone progesterone has been identified as potential drug candidate for the treatment of the degenerative eye disease retinitis pigmentosa. However, to date, no work has looked at the compound's specific cellular target. Therefore, this study aimed to identify the receptor target of Norgestrel and begin to examine its potential mechanism of action in the retina. In this work, we identify and characterize the expression of progesterone receptors present in the C57 wild type and rd10 mouse model of retinitis pigmentosa. Classical progesterone receptors A and B (PR A/B), progesterone receptor membrane components 1 and 2 (PGRMC1, PGRMC2) and membrane progesterone receptors α, β and γ were found to be expressed. All receptors excluding PR A/B were also found in the 661W photoreceptor cell line. PGRMC1 is a key regulator of apoptosis and its expression is up-regulated in the degenerating rd10 mouse retina. Activated by Norgestrel through nuclear trafficking, siRNA knock down of PGRMC1 abrogated the protective properties of Norgestrel on damaged photoreceptors. Furthermore, specific inhibition of PGRMC1 by AG205 blocked Norgestrel-induced protection in stressed retinal explants. Therefore, we conclude that PGRMC1 is crucial to the neuroprotective effects of Norgestrel on stressed photoreceptors. The synthetic progestin 'Norgestrel' has been identified as a potential therapeutic for the treatment of Retinitis Pigmentosa, a degenerative eye disease. However, the mechanism behind this neuroprotection is currently unknown. In this work, we identify 'Progesterone Receptor Membrane Component 1' as the major progesterone receptor eliciting the protective effects of Norgestrel, both in vitro and ex vivo. This furthers our understanding of Norgestrel's molecular mechanism, which we hope will help bring Norgestrel one step closer to the clinic.
Collapse
Affiliation(s)
- Alice C Wyse Jackson
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Cork, Ireland
| | - Sarah L Roche
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Cork, Ireland
| | - Ashleigh M Byrne
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Cork, Ireland
| | - Ana M Ruiz-Lopez
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Cork, Ireland
| | - Thomas G Cotter
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|