1
|
Kiyozumi D. Distinct actions of testicular endocrine and lumicrine signaling on the proximal epididymal transcriptome. Reprod Biol Endocrinol 2024; 22:40. [PMID: 38600586 PMCID: PMC11005294 DOI: 10.1186/s12958-024-01213-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
The epididymal function and gene expression in mammals are under the control of the testis. Sex steroids are secreted from the testis and act on the epididymis in an endocrine manner. There is another, non-sex steroidal secreted signaling, named lumicrine signaling, in which testis-derived secreted proteins go through the male reproductive tract and act on the epididymis. The effects of such multiple regulations on the epididymis by the testis have been investigated for many genes. The recent development of high-throughput next-generation sequencing now enables us a further comparative survey of endocrine and lumicrine action-dependent gene expression. In the present study, testis-derived endocrine and lumicrine actions on epididymal gene expression were comparatively investigated by RNA-seq transcriptomic analyses. This investigation utilized experimental animal models in which testis-derived endocrine and/or lumicrine actions were interfered with, such as unilateral or bilateral orchidectomy. By bilateral orchidectomy, which interferes with both endocrine and lumicrine actions, 431 genes were downregulated. By unilateral orchidectomy, which also interferes with endocrine and lumicrine actions by the unilateral testis, but the endocrine action was compensated by the contralateral testis, 283 genes were downregulated. The content of such genes downregulated by unilateral orchidectomy was like those of lumicrine action-interfered efferent duct-ligation, W/Wv, and Nell2-/- mice. When genes affected by unilateral and bilateral orchidectomy were compared, 154 genes were commonly downregulated, whereas 217 genes were specifically downregulated only by bilateral orchidectomy, indicating the distinction between endocrine and lumicrine actions on the proximal epididymal transcriptome. Comparative transcriptome analyses also showed that the expressions of genes emerging since Amniota were notably impacted by bilateral orchidectomy, unilateral orchidectomy, and lumicrine action-interfering treatments; the degree of influence from these treatments varied based on the evolutionary stage beyond Amniota. These findings unveil an evolutional transition of regulated gene expression in the proximal epididymis by two different testis-derived signaling mechanisms.
Collapse
Affiliation(s)
- Daiji Kiyozumi
- Japan Science and Technology Agency, 7, Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan.
- Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
- Research Institute for Microbial Diseases, Osaka University, 3-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
2
|
Kiyozumi D. Busulfan administration replicated the characteristics of the epididymal initial segment observed in mice lacking testis-epididymis lumicrine signaling. J Reprod Dev 2024; 70:104-114. [PMID: 38346723 PMCID: PMC11017096 DOI: 10.1262/jrd.2023-102] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/16/2024] [Indexed: 04/05/2024] Open
Abstract
The physiological functions of the mammalian epididymis are typically regulated by the testes. In addition to sex steroids secreted by testicular Leydig cells, which act on the epididymis in an endocrine manner, there is a non-sex-steroidal signaling pathway known as the lumicrine pathway. This lumicrine signaling pathway involves ligand proteins secreted from germ cells within the testicular seminiferous tubules traversing the male reproductive tract, which induce epithelial differentiation in the epididymis. These findings prompted an inquiry into whether treatments influencing testis physiology can disrupt epididymal function by interfering with testis-epididymis communication. Busulfan, an alkylating agent commonly used to deplete testicular germ cells in reproductive biology, has not been sufficiently explored because of its effects on the epididymis. This study investigated the effects of busulfan administration on the proximal epididymis using histological and transcriptomic analyses. Notably, busulfan, as opposed to the vehicle dimethyl sulfoxide (DMSO), altered the morphology of the initial segment of the epididymis, leading to a reduction in the cell height of the luminal epithelium. RNA sequencing identified 185 significantly downregulated genes in the proximal epididymis of busulfan-administered mice compared to DMSO-administered mice. Comparative transcriptome analyses revealed similarities between the epididymal transcriptome of busulfan-administered mice and lumicrine-deficient mice, such as efferent-duct-ligated W/Wv and Nell2-/- mice. However, this differed from that of bilaterally orchidectomized mice, in which both the endocrine and lumicrine signaling pathways were simultaneously ablated. Collectively, these results suggested that the harmful effects of busulfan on the proximal epididymis are secondary consequences of the ablation of testis-epididymis lumicrine signaling.
Collapse
Affiliation(s)
- Daiji Kiyozumi
- Japan Science and Technology Agency, Tokyo 102-0076, Japan
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
- Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
3
|
Cypriano ML, Dos Santos Ramos GHA, de Oliveira ACF, Dos Santos DR, Fiais GA, de Oliveira AP, Antoniali C, Dornelles RCM, de Melo Stevanato Nakamune AC, Chaves-Neto AH. Effect of testosterone replacement therapy and mate tea (Ilex paraguariensis) on biochemical, functional and redox parameters of saliva in orchiectomized rats. Arch Oral Biol 2021; 132:105289. [PMID: 34695671 DOI: 10.1016/j.archoralbio.2021.105289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Evaluate the effects of testosterone replacement therapy (TRT) and mate tea (MT) [Ilex paraguariensis] on biochemical, functional, and redox parameters of saliva in orchiectomized rats (ORX) DESIGN: Sixty young adult male Wistar rats (3 months old) were either castrated bilaterally or underwent fictitious surgery (SHAM) and were distributed into 5 groups: SHAM, ORX, TU (castrated rats that received a single intramuscular injection of testosterone undecanoate 100 mg/kg), MT (castrated rats that received MT 20 mg/kg, via intragastric gavage, daily), and TU + MT. All treatments started 4 weeks after castration (4 months old) and lasted 4 weeks (5 months old). At the end of treatment, pilocarpine-induced salivary secretion was collected to analyze salivary flow rate (SFR) and biochemistry composition through determination of total protein (TP), amylase (AMY), electrolyte, and biomarkers of oxidative stress. RESULTS ORX increased SFR, salivary buffering capacity, calcium, phosphate, chloride, total antioxidant capacity, thiobarbituric acid reactive substances (TBARs), and carbonyl protein, reduced TP and AMY activity, and did not change pH, sodium, and potassium compared to SHAM. TU and TU+MT restored all salivary parameters to values of SHAM, while only TBARs and AMY returned to SHAM levels in the MT group. CONCLUSIONS TRT with long-acting TU restored the biochemical, functional, and redox parameters of saliva in orchiectomized rats. Although MT did not have a TRT-like effect on salivary gland function, the more effective reduction in lipid oxidative damage in the MT and TU + MT groups could be considered as adjuvant to alleviate the salivary oxidative stress induced by orchiectomy.
Collapse
Affiliation(s)
- Matheus Lima Cypriano
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas - SBFis, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | | | | | - Damáris Raissa Dos Santos
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas - SBFis, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Gabriela Alice Fiais
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas - SBFis, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Arthur Passos de Oliveira
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Cristina Antoniali
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas - SBFis, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Rita Cássia Menegati Dornelles
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas - SBFis, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Ana Cláudia de Melo Stevanato Nakamune
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas - SBFis, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Antonio Hernandes Chaves-Neto
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas - SBFis, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil.
| |
Collapse
|
4
|
Immunolocalization of androgen and vitamin D receptors in the epididymis of mature ram ( Ovis aries). Saudi J Biol Sci 2020; 28:217-223. [PMID: 33424300 PMCID: PMC7783664 DOI: 10.1016/j.sjbs.2020.09.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 11/23/2022] Open
Abstract
This study illustrated the immunohistochemical distribution of androgen and vitamin D receptors of epididymis in 20 sexually mature ram (Rahmani breed) with average age ranged from (2_4) years and average weight ranged from (50_65kg). Androgen receptor was localized in the cytoplasm of both ciliated and non ciliated cells of efferent ductules, besides the principal cells via the entire epididymal duct. The principal cells of both corpus and proximal cauda epididymis showed the highest immunoreactivity to androgen receptors. Furthermore, vitamin D receptor was localized in the cytoplasm of all epithelium of the efferent ductules besides principal cells of all epididymal regions, however the immunoreaction was significantly higher in the efferent ductules, distal caput and distal cauda epididymis. In conclusion, these results suggest that the function of ram epididymis is regulated by both androgen and Vitamin D.
Collapse
|
5
|
Tsikas D, Kinzel M. Associations between asymmetric dimethylarginine (ADMA), nitrite-dependent renal carbonic anhydrase activity, and plasma testosterone levels in hypogonadal men. Hellenic J Cardiol 2018; 59:201-206. [DOI: 10.1016/j.hjc.2017.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 11/25/2022] Open
|
6
|
Wandernoth PM, Mannowetz N, Szczyrba J, Grannemann L, Wolf A, Becker HM, Sly WS, Wennemuth G. Normal Fertility Requires the Expression of Carbonic Anhydrases II and IV in Sperm. J Biol Chem 2015; 290:29202-16. [PMID: 26487715 PMCID: PMC4705926 DOI: 10.1074/jbc.m115.698597] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Indexed: 12/20/2022] Open
Abstract
HCO3 (-) is a key factor in the regulation of sperm motility. High concentrations of HCO3 (-) in the female genital tract induce an increase in sperm beat frequency, which speeds progress of the sperm through the female reproductive tract. Carbonic anhydrases (CA), which catalyze the reversible hydration of CO2 to HCO3 (-), represent potential candidates in the regulation of the HCO3 (-) homeostasis in sperm and the composition of the male and female genital tract fluids. We show that two CA isoforms, CAII and CAIV, are distributed along the epididymal epithelium and appear with the onset of puberty. Expression analyses reveal an up-regulation of CAII and CAIV in the different epididymal sections of the knockout lines. In sperm, we find that CAII is located in the principal piece, whereas CAIV is present in the plasma membrane of the entire sperm tail. CAII and CAIV single knockout animals display an imbalanced HCO3 (-) homeostasis, resulting in substantially reduced sperm motility, swimming speed, and HCO3 (-)-enhanced beat frequency. The CA activity remaining in the sperm of CAII- and CAIV-null mutants is 35% and 68% of that found in WT mice. Sperm of the double knockout mutant mice show responses to stimulus by HCO3 (-) or CO2 that were delayed in onset and reduced in magnitude. In comparison with sperm from CAII and CAIV double knockout animals, pharmacological loss of CAIV in sperm from CAII knockout animals, show an even lower response to HCO3 (-). These results suggest that CAII and CAIV are required for optimal fertilization.
Collapse
Affiliation(s)
- Petra M Wandernoth
- From the Institute of Anatomy, University Hospital, University Duisburg-Essen, Hufelandstraße 55, 45122 Essen, Germany
| | - Nadja Mannowetz
- From the Institute of Anatomy, University Hospital, University Duisburg-Essen, Hufelandstraße 55, 45122 Essen, Germany
| | - Jaroslaw Szczyrba
- From the Institute of Anatomy, University Hospital, University Duisburg-Essen, Hufelandstraße 55, 45122 Essen, Germany
| | - Laura Grannemann
- From the Institute of Anatomy, University Hospital, University Duisburg-Essen, Hufelandstraße 55, 45122 Essen, Germany
| | - Anne Wolf
- the Department of Internal Medicine I, Saarland University Medical Center, Kirrberger Straße, 66421 Homburg/Saar, Germany
| | - Holger M Becker
- the Division of Zoology/Membrane Transport, Department of Biology, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, 67663 Kaiserslautern, Germany, and
| | - William S Sly
- the Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri 63104
| | - Gunther Wennemuth
- From the Institute of Anatomy, University Hospital, University Duisburg-Essen, Hufelandstraße 55, 45122 Essen, Germany,
| |
Collapse
|
7
|
Albumin is synthesized in epididymis and aggregates in a high molecular mass glycoprotein complex involved in sperm-egg fertilization. PLoS One 2014; 9:e103566. [PMID: 25084016 PMCID: PMC4118885 DOI: 10.1371/journal.pone.0103566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 07/02/2014] [Indexed: 11/19/2022] Open
Abstract
The epididymis has an important role in the maturation of sperm for fertilization, but little is known about the epididymal molecules involved in sperm modifications during this process. We have previously described the expression pattern for an antigen in epididymal epithelial cells that reacts with the monoclonal antibody (mAb) TRA 54. Immunohistochemical and immunoblotting analyses suggest that the epitope of the epididymal antigen probably involves a sugar moiety that is released into the epididymal lumen in an androgen-dependent manner and subsequently binds to luminal sperm. Using column chromatography, SDS-PAGE with insitu digestion and mass spectrometry, we have identified the protein recognized by mAb TRA 54 in mouse epididymal epithelial cells. The ∼65 kDa protein is part of a high molecular mass complex (∼260 kDa) that is also present in the sperm acrosomal vesicle and is completely released after the acrosomal reaction. The amino acid sequence of the protein corresponded to that of albumin. Immunoprecipitates with anti-albumin antibody contained the antigen recognized by mAb TRA 54, indicating that the epididymal molecule recognized by mAb TRA 54 is albumin. RT-PCR detected albumin mRNA in the epididymis and fertilization assays invitro showed that the glycoprotein complex containing albumin was involved in the ability of sperm to recognize and penetrate the egg zona pellucida. Together, these results indicate that epididymal-derived albumin participates in the formation of a high molecular mass glycoprotein complex that has an important role in egg fertilization.
Collapse
|
8
|
Ammerpohl O, Bens S, Appari M, Werner R, Korn B, Drop SLS, Verheijen F, van der Zwan Y, Bunch T, Hughes I, Cools M, Riepe FG, Hiort O, Siebert R, Holterhus PM. Androgen receptor function links human sexual dimorphism to DNA methylation. PLoS One 2013; 8:e73288. [PMID: 24023855 PMCID: PMC3762730 DOI: 10.1371/journal.pone.0073288] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/18/2013] [Indexed: 02/06/2023] Open
Abstract
Sex differences are well known to be determinants of development, health and disease. Epigenetic mechanisms are also known to differ between men and women through X-inactivation in females. We hypothesized that epigenetic sex differences may also result from sex hormone functions, in particular from long-lasting androgen programming. We aimed at investigating whether inactivation of the androgen receptor, the key regulator of normal male sex development, is associated with differences of the patterns of DNA methylation marks in genital tissues. To this end, we performed large scale array-based analysis of gene methylation profiles on genomic DNA from labioscrotal skin fibroblasts of 8 males and 26 individuals with androgen insensitivity syndrome (AIS) due to inactivating androgen receptor gene mutations. By this approach we identified differential methylation of 167 CpG loci representing 162 unique human genes. These were significantly enriched for androgen target genes and low CpG content promoter genes. Additional 75 genes showed a significant increase of heterogeneity of methylation in AIS compared to a high homogeneity in normal male controls. Our data show that normal and aberrant androgen receptor function is associated with distinct patterns of DNA-methylation marks in genital tissues. These findings support the concept that transcription factor binding to the DNA has an impact on the shape of the DNA methylome. These data which derived from a rare human model suggest that androgen programming of methylation marks contributes to sexual dimorphism in the human which might have considerable impact on the manifestation of sex-associated phenotypes and diseases.
Collapse
Affiliation(s)
- Ole Ammerpohl
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Susanne Bens
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Mahesh Appari
- Department of Pediatrics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ralf Werner
- Department of Pediatrics, University of Lübeck & University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Bernhard Korn
- Core Facility, Institute of Molecular Biology gGmbH, Mainz, Germany
| | - Stenvert L. S. Drop
- Department of Pediatrics, Division of Pediatric Endocrinology, ErasmusMC-Sophia, Rotterdam, The Netherlands
| | - Frans Verheijen
- Department of Clinical Genetics, ErasmusMC, Rotterdam, The Netherlands
| | - Yvonne van der Zwan
- Department of Pediatrics, Division of Pediatric Endocrinology, ErasmusMC-Sophia, Rotterdam, The Netherlands
| | - Trevor Bunch
- Department of Paediatrics, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Ieuan Hughes
- Department of Paediatrics, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Martine Cools
- Department of Pediatrics, University Hospital Gent, Gent, Belgium
| | - Felix G. Riepe
- Department of Pediatrics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Olaf Hiort
- Department of Pediatrics, University of Lübeck & University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Paul-Martin Holterhus
- Department of Pediatrics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- * E-mail:
| |
Collapse
|
9
|
Arrotéia KF, Joazeiro PP, Yamada AT, Tanaka H, Nishimune Y, Pereira LAV. Identification and Characterization of an Antigen Recognized by Monoclonal Antibody TRA 54 in Mouse Epididymis and Vas Deferens. ACTA ACUST UNITED AC 2013; 25:914-21. [PMID: 15477363 DOI: 10.1002/j.1939-4640.2004.tb03161.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Spermatozoa in testicular fluid are known to have weak forward motility and cannot fertilize eggs. The epididymis is known to participate in sperm maturation leading fertilization, but little is known about the specific epididymal molecules involved in the modification of sperm. In this study, we characterized the new pattern of expression of an antigen previously identified in testicular germ cells by monoclonal antibody (mAb) TRA 54. This antigen is expressed in epididymal and vas deferens epithelial cells in mice older than 24 days but not during younger developmental stages. Evaluation by immunohistochemistry shows that antigen expression is limited to the cytoplasm of a specific cell population of epithelia along the epididymal regions and vas deferens of adult mice. The molecules synthesized and released by epididymal and vas deferens epithelia into their lumen seem to bind on spermatozoa moving down through the ducts. Immunoblot analysis showed that the molecules recognized by mAb TRA 54 in testis and epididymis were similar and share a common epitope involving carbohydrate domains. Interestingly, the antigens identified in epididymal and vas deferens epithelial cells were expressed independently of testicular germ cells and are produced in an androgen-dependent manner. Finally, the molecules recognized by mAb TRA 54 seem to play an important role in spermatogenesis, as well as in epididymal function related to spermatozoa maturation and ability to fertilize.
Collapse
Affiliation(s)
- Kélen F Arrotéia
- Laboratory of Cytochemistry and Immunocytochemistry, Department of Histology and Embryology, Institute of Biology, State University of Campinas (UNICAMP), PO Box 6109, 13083-970, Campinas, SP, Brazil
| | | | | | | | | | | |
Collapse
|
10
|
Belleannée C, Thimon V, Sullivan R. Region-specific gene expression in the epididymis. Cell Tissue Res 2012; 349:717-31. [DOI: 10.1007/s00441-012-1381-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/10/2012] [Indexed: 02/04/2023]
|
11
|
Pholpramool C, Borwornpinyo S, Dinudom A. Role of Na+ /H+ exchanger 3 in the acidification of the male reproductive tract and male fertility. Clin Exp Pharmacol Physiol 2011; 38:403-9. [PMID: 21480944 DOI: 10.1111/j.1440-1681.2011.05525.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
1. Male fertility is a complex process that is dependent on sex hormones and the normal function of the reproductive organs. Defects of these organs result in abnormal sperm production and function, which, in turn, lead to infertility. 2. Spermatozoa released from the testis are unable to move and fertilize with eggs. These features, known as sperm maturation, are acquired during their transit through the epididymis. 3. Among several processes that take place in the epididymis, absorption and acidification of the luminal fluid are essential for sperm maturation, sperm storage and fertility. Currently, the mechanism by which acidification occurs in the epididymis is still not fully understood. 4. The epididymis is fully equipped with the proteins required for acid/base transport, such as Na(+) /H(+) exchanger 3 (NHE3, SLC9A3), vacuolar-type adenosine triphosphatase (V-ATPase) and various isoforms of enzyme carbonic anhydrase (CA). 5. Most studies, so far, have focused on the role of V-ATPase on H(+) secretion and acidification of the epididymis. The involvement of NHE3 in creating the acidic environment of the epididymal spermatozoa receives little attention. 6. This review presents evidence for and discusses the role of NHE3 in the acidification of the male reproductive tract and its requirement for male fertility.
Collapse
Affiliation(s)
- Chumpol Pholpramool
- Departments of Physiology Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| | | | | |
Collapse
|
12
|
Batruch I, Lecker I, Kagedan D, Smith CR, Mullen BJ, Grober E, Lo KC, Diamandis EP, Jarvi KA. Proteomic Analysis of Seminal Plasma from Normal Volunteers and Post-Vasectomy Patients Identifies over 2000 Proteins and Candidate Biomarkers of the Urogenital System. J Proteome Res 2011; 10:941-53. [DOI: 10.1021/pr100745u] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ihor Batruch
- Samuel Lunenfeld Research Institute, Department of Pathology and Laboratory Medicine and ‡Department of Surgery (Division of Urology), Mount Sinai Hospital, Toronto, ON, Canada M5T 3L9
- Department of Clinical Biochemistry, University Health Network, ∥Department of Laboratory Medicine and Pathobiology, and ⊥Department of Surgery, University of Toronto, Toronto, ON, Canada M5G 1L5
| | - Irene Lecker
- Samuel Lunenfeld Research Institute, Department of Pathology and Laboratory Medicine and ‡Department of Surgery (Division of Urology), Mount Sinai Hospital, Toronto, ON, Canada M5T 3L9
- Department of Clinical Biochemistry, University Health Network, ∥Department of Laboratory Medicine and Pathobiology, and ⊥Department of Surgery, University of Toronto, Toronto, ON, Canada M5G 1L5
| | - Daniel Kagedan
- Samuel Lunenfeld Research Institute, Department of Pathology and Laboratory Medicine and ‡Department of Surgery (Division of Urology), Mount Sinai Hospital, Toronto, ON, Canada M5T 3L9
- Department of Clinical Biochemistry, University Health Network, ∥Department of Laboratory Medicine and Pathobiology, and ⊥Department of Surgery, University of Toronto, Toronto, ON, Canada M5G 1L5
| | - Christopher R. Smith
- Samuel Lunenfeld Research Institute, Department of Pathology and Laboratory Medicine and ‡Department of Surgery (Division of Urology), Mount Sinai Hospital, Toronto, ON, Canada M5T 3L9
- Department of Clinical Biochemistry, University Health Network, ∥Department of Laboratory Medicine and Pathobiology, and ⊥Department of Surgery, University of Toronto, Toronto, ON, Canada M5G 1L5
| | - Brendan J. Mullen
- Samuel Lunenfeld Research Institute, Department of Pathology and Laboratory Medicine and ‡Department of Surgery (Division of Urology), Mount Sinai Hospital, Toronto, ON, Canada M5T 3L9
- Department of Clinical Biochemistry, University Health Network, ∥Department of Laboratory Medicine and Pathobiology, and ⊥Department of Surgery, University of Toronto, Toronto, ON, Canada M5G 1L5
| | - Ethan Grober
- Samuel Lunenfeld Research Institute, Department of Pathology and Laboratory Medicine and ‡Department of Surgery (Division of Urology), Mount Sinai Hospital, Toronto, ON, Canada M5T 3L9
- Department of Clinical Biochemistry, University Health Network, ∥Department of Laboratory Medicine and Pathobiology, and ⊥Department of Surgery, University of Toronto, Toronto, ON, Canada M5G 1L5
| | - Kirk C. Lo
- Samuel Lunenfeld Research Institute, Department of Pathology and Laboratory Medicine and ‡Department of Surgery (Division of Urology), Mount Sinai Hospital, Toronto, ON, Canada M5T 3L9
- Department of Clinical Biochemistry, University Health Network, ∥Department of Laboratory Medicine and Pathobiology, and ⊥Department of Surgery, University of Toronto, Toronto, ON, Canada M5G 1L5
| | - Eleftherios P. Diamandis
- Samuel Lunenfeld Research Institute, Department of Pathology and Laboratory Medicine and ‡Department of Surgery (Division of Urology), Mount Sinai Hospital, Toronto, ON, Canada M5T 3L9
- Department of Clinical Biochemistry, University Health Network, ∥Department of Laboratory Medicine and Pathobiology, and ⊥Department of Surgery, University of Toronto, Toronto, ON, Canada M5G 1L5
| | - Keith A. Jarvi
- Samuel Lunenfeld Research Institute, Department of Pathology and Laboratory Medicine and ‡Department of Surgery (Division of Urology), Mount Sinai Hospital, Toronto, ON, Canada M5T 3L9
- Department of Clinical Biochemistry, University Health Network, ∥Department of Laboratory Medicine and Pathobiology, and ⊥Department of Surgery, University of Toronto, Toronto, ON, Canada M5G 1L5
| |
Collapse
|
13
|
Wandernoth PM, Raubuch M, Mannowetz N, Becker HM, Deitmer JW, Sly WS, Wennemuth G. Role of carbonic anhydrase IV in the bicarbonate-mediated activation of murine and human sperm. PLoS One 2010; 5:e15061. [PMID: 21124840 PMCID: PMC2991337 DOI: 10.1371/journal.pone.0015061] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 10/14/2010] [Indexed: 11/19/2022] Open
Abstract
HCO3− is the signal for early activation of sperm motility. In vivo, this occurs when sperm come into contact with the HCO3− containing fluids in the reproductive tract. The activated motility enables sperm to travel the long distance to the ovum. In spermatozoa HCO3− stimulates the atypical sperm adenylyl cyclase (sAC) to promote the cAMP-mediated pathway that increases flagellar beat frequency. Stimulation of sAC may occur when HCO3− enters spermatozoa either directly by anion transport or indirectly via diffusion of CO2 with subsequent hydration by intracellular carbonic anhydrase (CA). We here show that murine sperm possess extracellular CA IV that is transferred to the sperm surface as the sperm pass through the epididymis. Comparison of CA IV expression by qRT PCR analysis confirms that the transfer takes place in the corpus epididymidis. We demonstrate murine and human sperm respond to CO2 with an increase in beat frequency, an effect that can be inhibited by ethoxyzolamide. Comparing CA activity in sperm from wild-type and CA IV−/− mice we found a 32.13% reduction in total CA activity in the latter. The CA IV−/− sperm also have a reduced response to CO2. While the beat frequency of wild-type sperm increases from 2.86±0.12 Hz to 6.87±0.34 Hz after CO2 application, beat frequency of CA IV−/− sperm only increases from 3.06±0.20 Hz to 5.29±0.47 Hz. We show, for the first time, a physiological role of CA IV that supplies sperm with HCO3−, which is necessary for stimulation of sAC and hence early activation of spermatozoa.
Collapse
Affiliation(s)
- Petra M. Wandernoth
- Department of Anatomy and Cell Biology, Saarland University, Homburg, Saar, Germany
| | - Michael Raubuch
- Department of Anatomy and Cell Biology, Saarland University, Homburg, Saar, Germany
| | - Nadja Mannowetz
- Department of Anatomy and Cell Biology, Saarland University, Homburg, Saar, Germany
| | - Holger M. Becker
- Division of Zoology/Membrane Transport, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Joachim W. Deitmer
- Division of General Zoology, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - William S. Sly
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Gunther Wennemuth
- Department of Anatomy and Cell Biology, Saarland University, Homburg, Saar, Germany
- * E-mail:
| |
Collapse
|
14
|
Hamzeh M, Robaire B. Identification of early response genes and pathway activated by androgens in the initial segment and caput regions of the regressed rat epididymis. Endocrinology 2010; 151:4504-14. [PMID: 20660069 DOI: 10.1210/en.2010-0023] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To identify the initial response to androgens and estrogens in the orchidectomized, regressed epididymis, we determined the gene expression changes triggered by the administration of either of two metabolites of testosterone, 5alpha-dihydrotestosterone (DHT) or 17beta-estradiol (E2), in the regressed rat epididymis. Adult rats were orchidectomized and 8 d later implanted with either empty implants (control), DHT-filled-, or E2-filled-polydioxanone implants. Rats were euthanized 12 h, 1 d, and 7 d later, and RNA was extracted and probed on Rat230-2.0 Affymetrix arrays. Probe sets that respond to DHT or E2 were identified at early time points; although the expression of some was repressed, the expression of many others was either transiently or chronically elevated. Nerve growth factor receptor (Ngfr) and S100 calcium binding protein G (S100g) were two E2 up-regulated genes detected at 12 h. Among the genes that showed a dramatic early response to DHT were endothelin 1 (Edn1), bone morphogenetic protein 4 (Bmp4), and IGF binding protein 3 (Igfbp3), which were suppressed, and IGF-I (Igf1), which was induced. Genes that were up- or down-regulated by DHT were classified based on biological function. Using PathwayStudio 4.0, we identified genes that were linked and directly influenced either the expression or regulation of one another. Epidermal growth factor and IGF-I play an important role in the pathway due to their function in regulation and expression of many other genes. These results provide novel insights into the impact of androgen action on the expression of genes that are important for epididymal function.
Collapse
Affiliation(s)
- Mahsa Hamzeh
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G1Y6
| | | |
Collapse
|
15
|
Zhang J, Liu Q, Zhang W, Li J, Li Z, Tang Z, Li Y, Han C, Hall SH, Zhang Y. Comparative profiling of genes and miRNAs expressed in the newborn, young adult, and aged human epididymides. Acta Biochim Biophys Sin (Shanghai) 2010; 42:145-53. [PMID: 20119626 DOI: 10.1093/abbs/gmp116] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To understand roles of transcriptional factors and miRNAs in regulating gene expression in the epididymis from postnatal development through aging, systematic profiling of genes and miRNAs expressed in the newborn, young adult, and aged human epididymides was performed by cDNA array and miRNA array analysis, respectively. The newborn human epididymis expressed the fewest mRNAs but the largest number of miRNAs, whereas the adult and aged epididymides expressed the most mRNAs but the fewest miRNAs, a negative correlation between mRNAs and miRNA during aging. By integrative analysis, a set of miRNA targets were predicted based on the miRNA and cDNA arrays. In the newborn epididymis, 127 miRNAs were exclusively or preferentially expressed but only 3 and 2 miRNAs showed an age-enriched expression pattern in the adult and aged epididymides, respectively. This study provides a basic database as well as new insights and foundations for further studies on the complex regulation of gene expression in the epididymis.
Collapse
Affiliation(s)
- Jinsong Zhang
- Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bebas P, Goodall CP, Majewska M, Neumann A, Giebultowicz JM, Chappell PE. Circadian clock and output genes are rhythmically expressed in extratesticular ducts and accessory organs of mice. FASEB J 2008; 23:523-33. [PMID: 18945877 DOI: 10.1096/fj.08-113191] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Circadian clocks regulate multiple rhythms in mammalian tissues. In most organs core clock gene expression is oscillatory, with negative components Per and Cry peaking in antiphase to Bmal1. A notable exception is the testis, where clock genes seem nonrhythmic. Earlier mammalian studies, however, did not examine clock expression patterns in accessory ductal tissue required for sperm maturation and transport. Previous studies in insects demonstrated control of sperm maturation in vas deferens by a local circadian system. Sperm ducts express clock genes and display circadian pH changes controlled by vacuolar-type H(+)-ATPase and carbonic anhydrase (CA-II). It is unknown whether sperm-processing rhythms are conserved beyond insects. To address this question in mice housed in a light-dark environment, we examined temporal patterns of mPer1 and Bmal1 gene expression and protein abundance in epididymis, vas deferens, seminal vesicles, and prostate. Results demonstrate variable tissue-specific patterns of expression of the two genes, with variations in levels of clock proteins and their nucleo-cytoplasmic cycling observed among examined tissues. Strikingly, mPer1 and Bmal1 mRNA and proteins oscillate in antiphase in the prostate, with similar peak-trough patterns as observed in the suprachiasmatic nuclei, the brain's central clock. Genes encoding CA and a V-ATPase subunit, which are rhythmically expressed in sperm ducts of moths, are also rhythmic in some segments of murine sperm ducts. Our data suggest that some sperm duct segments may contain peripheral circadian systems whereas others may express clock genes in a pleiotropic manner.
Collapse
Affiliation(s)
- Piotr Bebas
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
17
|
Hong J, Kim ST, Tranguch S, Smith DF, Dey SK. Deficiency of co-chaperone immunophilin FKBP52 compromises sperm fertilizing capacity. Reproduction 2007; 133:395-403. [PMID: 17307907 DOI: 10.1530/rep-06-0180] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
FKBP52 is a member of the FK506-binding family of immunophilins and serves as a co-chaperone for steroid hormone nuclear receptors to govern appropriate hormone action in target tissues. Male mice missing Fkbp52 are infertile, and this infertility has been ascribed to compromised sensitivity of the anterior prostate, external genitalia, and other accessory sex organs to androgen. Here, we show additional defects contributing to infertility. We found that epididymal Fkbp52(-/-) sperm are sparse often with aberrant morphology, and they have reduced fertilizing capacity. This phenotype, initially observed in null males on a C57BL/6/129 background, is also maintained on a CD1 background. Expression studies show that while FKBP52 and androgen receptor are co-expressed in similar cell types in the epididymis, FKBP52 is also present in epididymal sperm flagella. Collectively, our results suggest that reduced number and abnormal morphology contribute to compromised fertilizing capacity of Fkbp52(-/-) sperm. This study is clinically relevant because unraveling the role of immunophilin signaling in male fertility will help identify new targets for male contraceptives and/or alleviate male infertility.
Collapse
Affiliation(s)
- Jiyoung Hong
- Pediatrics, Cell and Developmental Biology, Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
18
|
Liu CG, Xu KQ, Xu X, Huang JJ, Xiao JC, Zhang JP, Song HP. 17Beta-oestradiol regulates the expression of Na+/K+-ATPase beta1-subunit, sarcoplasmic reticulum Ca2+-ATPase and carbonic anhydrase iv in H9C2 cells. Clin Exp Pharmacol Physiol 2007; 34:998-1004. [PMID: 17714085 DOI: 10.1111/j.1440-1681.2007.04675.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. It is necessary to improve our understanding of the effect of 17beta-oestradiol (E2) on the heart at a molecular and cellular level. In the present study, the effects of E2 on Na(+)/K(+)-ATPase, sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA) and carbonic anhydrase IV (CAIV) in H9C2 cells were investigated. To identify the mechanism of action of E2 on these proteins, the oestrogen receptor (ER) antagonist tamoxifen was used. 2. The results indicated that 1 and 100 nmol/L E2 can enhance the activity of Na(+)/K(+)-ATPase and SERCA and upregulate the expression of the Na(+)/K(+)-ATPase beta1-subunit, SERCA2a and CAIV at both the mRNA and protein level compared with 0 and 0.01 nmol/L E2. 17beta-Oestradiol had the greatest effect at 100 nmol/L; 1 micromol/L E2 did not further protein expression compared with 100 nmol/L E2. 3. Tamoxifen (10 nmol/L) significantly decreased the activity of SERCA, as well as the expression of the Na(+)/K(+)-ATPase beta1-subunit and SERCA at the mRNA and protein level, in H9C2 cells cultured with 1 nmol/L E2. Tamoxifen alone had no significant effect on these proteins in H9C2 cells. 4. It may be hypothesized that a suitable E2 concentration has a protective effect on the heart and that the actual dose of E2 used in hormone-replacement therapy is important in menopausal women.
Collapse
Affiliation(s)
- Chen-Geng Liu
- Department of Biochemistry, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Perl A, Qian Y, Chohan KR, Shirley CR, Amidon W, Banerjee S, Middleton FA, Conkrite KL, Barcza M, Gonchoroff N, Suarez SS, Banki K. Transaldolase is essential for maintenance of the mitochondrial transmembrane potential and fertility of spermatozoa. Proc Natl Acad Sci U S A 2006; 103:14813-8. [PMID: 17003133 PMCID: PMC1595434 DOI: 10.1073/pnas.0602678103] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2006] [Indexed: 11/18/2022] Open
Abstract
Fertility of spermatozoa depends on maintenance of the mitochondrial transmembrane potential (Deltapsi(m)), which is generated by the electron-transport chain and regulated by an oxidation-reduction equilibrium of reactive oxygen intermediates, pyridine nucleotides, and glutathione (GSH). Here, we report that male mice lacking transaldolase (TAL)(-/-) are sterile because of defective forward motility. TAL(-/-) spermatozoa show loss of Deltapsi(m) and mitochondrial membrane integrity because of diminished NADPH, NADH, and GSH. Mitochondria constitute major Ca(2+) stores; thus, diminished mitochondrial mass accounts for reduced Ca(2+) fluxing, defective forward motility, and infertility. Reduced forward progression of TAL-deficient spermatozoa is associated with diminished mitochondrial reactive oxygen intermediate production and Ca(2+) levels, intracellular acidosis, and compensatory down-regulation of carbonic anhydrase IV and overexpression of CD38 and gamma-glutamyl transferase. Microarray analyses of gene expression in the testis, caput, and cauda epididymidis of TAL(+/+), TAL(+/-), and TAL(-/-) littermates confirmed a dominant impact of TAL deficiency on late stages of sperm-cell development, affecting the electron-transport chain and GSH metabolism. Stimulation of de novo GSH synthesis by oral N-acetyl-cysteine normalized the low fertility rate of TAL(+/-) males without affecting the sterility of TAL(-/-) males. Whereas TAL(-/-) sperm failed to fertilize TAL(+/+) oocytes in vitro, sterility of TAL(-/-) sperm was circumvented by intracytoplasmic sperm injection, indicating that TAL deficiency influenced the structure and function of mitochondria without compromising the nucleus and DNA integrity. Collectively, these data reveal an essential role of TAL in sperm-cell mitochondrial function and, thus, male fertility.
Collapse
Affiliation(s)
- Andras Perl
- Department of Medicine, College of Medicine, State University of New York, 750 East Adams Street, Syracuse, NY 13210, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hermo L, Chong DL, Moffatt P, Sly WS, Waheed A, Smith CE. Region- and cell-specific differences in the distribution of carbonic anhydrases II, III, XII, and XIV in the adult rat epididymis. J Histochem Cytochem 2005; 53:699-713. [PMID: 15928319 DOI: 10.1369/jhc.4a6575.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We employed RT-PCR followed by light microscope immunocytochemistry on St. Marie's- and Bouin's-fixed tissues to define the distribution of carbonic anhydrase (CA) isoforms in the male reproductive tract. The data revealed that CA II, III, IV, XII, and XIV were expressed in rat epididymis. Whereas CA III was found in principal cells of all epididymal regions, CA II was localized in narrow cells of the initial segment and principal cells of all regions. CA XII expression was most intense in the corpus and proximal cauda regions, where it appeared over the basolateral plasma membranes of principal cells. Narrow cells of the initial segment also revealed intense reactions, as did basal cells of the corpus and proximal cauda regions. Principal cells of the initial segment and proximal caput regions showed diffuse apical cytosolic reactions and occasional basolateral staining for CA XIV, whereas principal cells of distal regions showed more diffuse cytosolic reactions highlighting both apical and basal regions of the cell, with basal cells also being reactive. These data suggest subtle differences in cell type and subcellular- and region-specific distributions for CAs in their role of fine-tuning pH in the lumen, cell cytosol, and intervening intercellular spaces of the epididymis.
Collapse
Affiliation(s)
- Louis Hermo
- McGill University, Department of Anatomy and Cell Biology, Montreal, Quebec, Canada H3A 2B2.
| | | | | | | | | | | |
Collapse
|
21
|
Takeyama R, Takekoshi S, Nagata H, Osamura RY, Kawana S. Quercetin-induced melanogenesis in a reconstituted three-dimensional human epidermal model. J Mol Histol 2004; 35:157-65. [PMID: 15328920 DOI: 10.1023/b:hijo.0000023388.51625.6c] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Quercetin (3,5,7,3',4'-pentahydroxyflavone) is one of the most abundant natural flavonoids. It is present in various common vegetables and fruits. In this report, we examined the effect of quercetin on melanogenesis using a three-dimensional reconstituted human epidermal culture model, MelanoDerm, which is a new commercially-available cultured human epidermis containing functional melanocytes. Treatment with 10 microM quercetin induced an increase of tyrosinase activity in cultured epidermis after 3-5 days in time-dependent manner. In the quercetin-treated epidermis, furthermore, melanin content and tyrosinase expression were markedly increased, as shown by immunohistochemistry after a 7-day culture period. Ultrastructural studies clearly indicated an accumulation of mature melanosomes (stages III and IV) inside the basal layer of the cultured epidermis after the quercetin treatment. In addition, the dendrites of melanocytes extended further towards the adjacent keratinocytes after quercetin treatment. These results suggest that quercetin has an effect on maturation of melanosomes and that quercetin has the potential to induced melanogenesis in human epidermis.
Collapse
Affiliation(s)
- Reiko Takeyama
- Department of Dermatology, Nippon Medical School, Sendagi 1-1-5, Bunkyou-ku, Tokyo 113-8603, Japan
| | | | | | | | | |
Collapse
|
22
|
Abstract
The epididymis is an androgen-responsive tissue where spermatozoa mature and gain motility. The three major regions of the epididymis, caput, corpus, and cauda, are known to have different functions and exhibit varied gene expression. Specific genes within the different regions of the epididymis have been identified to be under the influence of androgens. The goal of this study was to begin to elucidate the profile of androgen-responsive genes that may be important for sperm maturation using the Affymetrix MGU74Av2 GeneChip oligonucleotide microarray platform. Adult mice (B6/129 strain) were castrated and treated 6 days after castration with two injections of 5 mg of dihydrotestosterone (DHT) or oil over a 48-h period. The mice were killed 48 h later and total RNA was purified from the caput, corpus, and cauda regions of the epididymis. Using GeneSpring 5.0 (Silicon Genetics) software, transcripts were identified that were upregulated 2-fold or more by DHT in the caput (33 transcripts), the corpus (8 transcripts), and the cauda (9 transcripts).
Collapse
Affiliation(s)
- Theodore R Chauvin
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | | |
Collapse
|
23
|
Kivelä J, Laine M, Parkkila S, Rajaniemi H. Salivary carbonic anhydrase VI and its relation to salivary flow rate and buffer capacity in pregnant and non-pregnant women. Arch Oral Biol 2003; 48:547-51. [PMID: 12828982 DOI: 10.1016/s0003-9969(03)00096-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Previous studies have shown that pregnancy may have unfavourable effects on oral health. The pH and buffer capacity (BC) of paraffin-stimulated saliva, for example, have been found to decrease towards late pregnancy. Salivary carbonic anhydrase VI (CA VI) probably protects the teeth by accelerating the neutralization of hydrogen ions in the enamel pellicle on dental surfaces. Since estrogens and androgens are known to regulate CA expression in some tissues, we studied here whether salivary CA VI concentration shows pregnancy-related changes. DESIGN Paraffin-stimulated salivary samples were collected from nine pregnant women 1 month before delivery and about 2 months afterwards and assayed for salivary CA VI concentration, BC and flow rate. The enzyme concentration was determined using a specific time-resolved immunofluorometric assay. The control group consisted of 17 healthy non-pregnant women. RESULTS The results indicated that salivary CA VI levels varied markedly among individuals, but no significant differences in mean concentrations were seen between the samples collected during late pregnancy and postpartum. BC values were lower during pregnancy, however. CONCLUSIONS Our findings suggest that CA VI secretion is not significantly affected by the hormonal alterations associated with pregnancy, and confirm the earlier reports that CA VI is not involved in the regulation of actual salivary BC.
Collapse
Affiliation(s)
- Jyrki Kivelä
- Department of Anatomy and Cell Biology, University of Oulu, FIN-90014 Oulu, Finland.
| | | | | | | |
Collapse
|
24
|
Abstract
The epididymis is the site for the transport, maturation, and storage of spermatozoa. Regulation of epididymal structure and function is highly dependent on the ipsilateral testis. At the molecular level, however, few studies have been undertaken to determine which genes are expressed in the epididymis under testicular regulation. The goal of this study was to identify genes for which expression is regulated after orchidectomy, both throughout the epididymis and in a segment-specific manner. Microarrays spotted with 474 rat cDNAs were used to examine gene expression changes over the first 7 d post orchidectomy in the initial segment, caput, corpus, and cauda epididymidis of the adult Brown Norway rat. Using k-means cluster analysis, we show that four patterns of gene expression are activated in each epididymal segment over the first week following orchidectomy. Transient up-regulation of gene expression in the epididymis after orchidectomy is described for the first time. Potential androgen-repressed genes, including Gpx-1, show increased expression in the epididymis after orchidectomy. Several glutathione-S-transferases and calcium-binding proteins decline throughout the epididymis after orchidectomy, indicating that these may be novel androgen-regulated epididymal genes. Other genes coding for metabolism-associated proteins, transporters, and alpha-1 acid glycoprotein show segment-specific regulation in the epididymis after orchidectomy. Finally, we describe the expression of the previously uncharacterized heat shock proteins, and apoptosis-associated genes in the epididymis after orchidectomy. Thus, gene expression in the epididymis is differentially affected over time after orchidectomy. These results provide novel insight into androgen-dependent and segment-specific epididymal function.
Collapse
Affiliation(s)
- Nadine Ezer
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | | |
Collapse
|
25
|
Jaiswal BS, Conti M. Identification and functional analysis of splice variants of the germ cell soluble adenylyl cyclase. J Biol Chem 2001; 276:31698-708. [PMID: 11423534 DOI: 10.1074/jbc.m011698200] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mammalian germ cells, cAMP signaling is dependent on two forms of adenylyl cyclase, the conventional membrane-bound ACIII and a soluble form of adenylyl cyclase (sAC). Recent elucidation of the sAC sequence indicates that this enzyme is phylogenetically distinct from the membrane-bound AC, does not interact with G proteins, and its activity is regulated by bicarbonate ions. Here we have investigated the properties and regulation of this enzyme during spermatogenesis. Two different transcripts encoding a full-length and truncated sAC were identified by reverse transcriptase-polymerase chain reaction and RNase protection analysis. The truncated sAC transcript lacks exon 11 with a premature termination of the open reading frame after the catalytic domain. Reverse transcriptase-polymerase chain reaction with testis RNA from adult mouse and rat of different ages, as well as RNase protection, showed that both transcripts are absent at 11 days of age, appear between 20 and 30 days of age, and are retained in the adult testis. The presence of corresponding proteins in testis, germ cells, and spermatozoa was demonstrated by fast protein liquid chromatography and differential immunoprecipitation with full-length sAC-specific antibodies. Bicarbonate ions activated both sAC forms and increased cAMP levels in germ cells isolated from 25- and 50-day-old rats and adult rats in a concentration-dependent manner. These findings provide evidence that full-length and truncated sAC are generated by alternate splicing. Both forms are active in spermatids, and the bicarbonate present in the seminiferous tubule may be a signal that regulates cAMP levels in these cells.
Collapse
Affiliation(s)
- B S Jaiswal
- Division of Reproductive Biology, Department of Gynecology and Obstetrics, Stanford University School of Medicine, Stanford, California 94305-5317, USA
| | | |
Collapse
|
26
|
Cheuk BL, Leung PS, Lo AC, Wong PY. Androgen control of cyclooxygenase expression in the rat epididymis. Biol Reprod 2000; 63:775-80. [PMID: 10952920 DOI: 10.1093/biolreprod/63.3.775] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bradykinin and a number of peptide hormones such as angiotensin, endothelin, and vasopressin stimulate anion secretion in rat epididymis via local formation of PGE(2). These effects are mediated by cyclooxygenase (COX)-1 isozyme. The present study was undertaken to assess the androgen control of COX expression in the epididymis. Adult male Sprague-Dawley rats were bilaterally castrated through a scrotal route. Reverse transcription-polymerase chain reaction was used to measure COX-1 and COX-2 mRNAs in the epididymis in normal and castrated rats. Anion secretion in epithelia grown from the epididymides of these rats was studied by the short-circuit current technique. In normal rats, COX-1 and COX-2 mRNAs were detected in the intact epididymis. Elimination of spermatozoa by the technique of efferent duct ligation or flushing out spermatozoa did not affect the expression of either enzyme in the epididymis, indicating that the epithelium, but not spermatozoa, expressed the enzymes. Castration caused a time-dependent decrease in expression of COX-1 and COX-2 mRNAs, which were partially restored upon testosterone replacement. In epithelia cultured from castrated rats, there was a complete loss of bradykinin-induced anion secretion. This effect was reversible upon testosterone replacement. Although epithelia from castrated rats did not respond to bradykinin, they could respond to cAMP, forskolin, and PGE(2) with only 20% loss of response magnitude when compared with epithelia from normal rats. These results suggest that the expression of COX-1 and COX-2 are dependent on androgen. The loss of COX-1 expression after castration correlates with the specific loss of anion secretion induced by bradykinin and possibly other hormones.
Collapse
Affiliation(s)
- B L Cheuk
- Department of Physiology, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong
| | | | | | | |
Collapse
|