1
|
Wang H, Li J, Yu K, Lu Y, Ma M, Li Y. The cellular localization and oncogenic or tumor suppressive effects of angiomiotin-like protein 2 in tumor and normal cells. IUBMB Life 2024; 76:764-779. [PMID: 38717123 DOI: 10.1002/iub.2830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/10/2024] [Indexed: 10/19/2024]
Abstract
Angiomiotin (AMOT) family comprises three members: AMOT, AMOT-like protein 1 (AMOTL1), and AMOT-like protein 2 (AMOTL2). AMOTL2 is widely expressed in endothelial cells, epithelial cells, and various cancer cells. Specifically, AMOTL2 predominantly localizes in the cytoplasm and nucleus in human normal cells, whereas associates with cell-cell junctions and actin cytoskeleton in non-human cells, and locates at cell junctions or within the recycling endosomes in cancer cells. AMOTL2 is implicated in regulation of tube formation, cell polarity, and shape, although the specific impact on tumorigenesis remains to be conclusively determined. It has been shown that AMOTL2 enhances tumor growth and metastasis in pancreatic, breast, and colon cancer, however inhibits cell proliferation and migration in lung, hepatocellular cancer, and glioblastoma. In addition to its role in cell shape and cytoskeletal dynamics through co-localization with F-actin, AMOTL2 modulates the transcription of Yes-associated protein (YAP) by binding to it, thereby affecting its phosphorylation and cellular sequestration. Furthermore, the stability and cellular localization of AMOTL2, influenced by its phosphorylation and ubiquitination mediated by specific proteins, affects its cellular function. Additionally, we observe that AMOTL2 is predominantly downregulated in some tumors, but significantly elevated in colorectal adenocarcinoma (COAD). Moreover, overall analysis, GSEA and ROC curve analysis indicate that AMOTL2 exerts as an oncogenic protein in COAD by modulating Wnt pathway, participating in synthesis of collagen formation, and interacting with extracellular matrix receptor. In addition, AMOTL2 potentially regulates the distribution of immune cells infiltration in COAD. In summary, AMOTL2 probably functions as an oncogene in COAD. Consequently, further in-depth mechanistic research is required to elucidate the precise roles of AMOTL2 in various cancers.
Collapse
Affiliation(s)
- Huizhen Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jing Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kexun Yu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yida Lu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mengdi Ma
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yongxiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Zhou F, Wang S, Lu W, Chen X, Guo S, Lu C, Zhang X, Wu J, Wang S, Long Z, He B, Zhuang T, Xu X. The Essential Role of PGF2α/PTGFR in Molding Endometrial Breakdown and Vascular Dynamics, Regulated by HIF-1α in a Mouse Menstrual-like Model. Reprod Sci 2024; 31:2718-2730. [PMID: 38637474 DOI: 10.1007/s43032-024-01526-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024]
Abstract
In women of childbearing age, extensive decidualization, shedding and remodeling of the endometrium during the menstrual cycle are fundamental for successful pregnancy. The role of prostaglandins (PGs) in menstruation has long been proposed in humans, and the rate-limiting enzyme cyclooxygenase was shown to play a key role in endometrial breakdown and shedding in a mouse menstrual-like model in our previous study. However, the specific types of PGs involved and their respective roles remain unclear. Therefore, our objective was to investigate the mechanism through which PGs regulate endometrial disintegration. In this study, the microscopy was observed by HE; the protein levels of prostaglandins E1 (PGE1), prostaglandins E2 (PGE2), prostaglandin F2α (PGF2α) and Prostaglandin I2 (PGI2) were detected by ELISA; the mRNA level of Pfgfr2, Vascular Endothelial Growth Factor(Vegf), Angiostatin and Hypoxia inducible factor-1α (Hif1α) were examined by real-time PCR; PTGFR Receptor (PTGFR), VEGF, Angiostatin and HIF-1α protein levels were investigated by western blotting; the locations of protein were observed by Immunohistochemistry; HIF-1α binding PTGFR promoter was detected by Chromatin Immunoprecipitation (ChIP) and real-time PCR. We found that the concentrations of PGE1, PGE2, and PGF2α all increased significantly during this process. Furthermore, Ptgfr mRNA increased soon after Progesterone (P4) withdrawal, and PTGFR protein levels increased significantly during abundant endometrial breakdown and shedding processes. PTGFR inhibitors AL8810 significantly suppressed endometrial breakdown and shedding, promoted Angiostatin expression, and reduced VEGF-A expressions and vascular permeability. And HIF-1α and PTGFR were mainly located in the luminal/gland epithelium, vascular endothelium, and pre-decidual zone. Interestingly, HIF-1α directly bound to Ptgfr promoter. Moreover, a HIF-1α inhibitor 2-methoxyestradiol (2ME) significantly reduced PTGFR expression and suppressed endometrial breakdown which was in accord with PTGFR inhibitor's effect. Similar changes occurred in human stromal cells relevant to menstruation in vitro. Our study provides evidence that PGF2α/PTGFR plays a vital role in endometrial breakdown via vascular changes that are regulated by HIF-1α during menstruation.
Collapse
Affiliation(s)
- Fang Zhou
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Human Sperm Bank, National Research Institute for Family Planning, Beijing, China
| | - Shufang Wang
- Department of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Wenhong Lu
- Human Sperm Bank, National Research Institute for Family Planning, Beijing, China
| | - Xihua Chen
- Reproductive Physiology Laboratory, NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning, Beijing, China
| | - Shige Guo
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Reproductive Physiology Laboratory, NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning, Beijing, China
| | - Cong Lu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Reproductive Physiology Laboratory, NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning, Beijing, China
| | - Xin Zhang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Reproductive Physiology Laboratory, NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning, Beijing, China
| | - Jiangxu Wu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Reproductive Physiology Laboratory, NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning, Beijing, China
| | - Siyu Wang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Reproductive Physiology Laboratory, NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning, Beijing, China
| | - Zeyi Long
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Reproductive Physiology Laboratory, NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning, Beijing, China
| | - Bin He
- Reproductive Physiology Laboratory, NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning, Beijing, China
| | - Taifeng Zhuang
- Beijing Obstetrics & Gynecology Hospital, Capital Medical University, Beijing Maternal &. Child Health Care Hospital, Beijing, China
| | - Xiangbo Xu
- Reproductive Physiology Laboratory, NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning, Beijing, China.
| |
Collapse
|
3
|
Kadir RRA, Rakkar K, Othman OA, Sprigg N, Bath PM, Bayraktutan U. Analysis of endothelial progenitor cell subtypes as clinical biomarkers for elderly patients with ischaemic stroke. Sci Rep 2023; 13:21843. [PMID: 38071215 PMCID: PMC10710409 DOI: 10.1038/s41598-023-48907-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Endothelial progenitor cells (EPCs), expressing markers for stemness (CD34), immaturity (CD133) and endothelial maturity (KDR), may determine the extent of post-stroke vascular repair. Given the prevalence of stroke in elderly, this study explored whether variations in plasmatic availability of certain EPC subtypes could predict the severity and outcome of disease in older patients. Blood samples were collected from eighty-one consented patients (≥ 65 years) at admission and days 7, 30 and 90 post-stroke. EPCs were counted with flow cytometry. Stroke severity and outcome were assessed using the National Institutes of Health Stroke Scale, Barthel Index and modified Rankin Scale. The levels of key elements known to affect EPC characteristics were measured by ELISA. Diminished total antioxidant capacity and CD34 + KDR + and CD133 + KDR + counts in early phases of stroke were associated with disease severity and worse functional outcome at day 90 post-stroke. Baseline levels of angiogenic agent PDGF-BB, but not VEGF, positively correlated with CD34 + KDR + numbers at day 90. Baseline LDL-cholesterol levels were inversely correlated with CD34 + KDR+, CD133 + KDR + and CD34 + CD133 + KDR + numbers at day 90. Close correlation between baseline CD34 + KDR + and CD133 + KDR + counts and the outcome of stroke proposes these particular EPC subtypes as potential prognostic markers for ischaemic stroke.
Collapse
Affiliation(s)
- Rais Reskiawan A Kadir
- Academic Unit of Mental Health and Clinical Neuroscience, The University of Nottingham, Nottingham, UK
| | - Kamini Rakkar
- Academic Unit of Mental Health and Clinical Neuroscience, The University of Nottingham, Nottingham, UK
| | - Othman A Othman
- Academic Unit of Mental Health and Clinical Neuroscience, The University of Nottingham, Nottingham, UK
| | - Nikola Sprigg
- Academic Unit of Mental Health and Clinical Neuroscience, The University of Nottingham, Nottingham, UK
| | - Philip M Bath
- Academic Unit of Mental Health and Clinical Neuroscience, The University of Nottingham, Nottingham, UK
| | - Ulvi Bayraktutan
- Academic Unit of Mental Health and Clinical Neuroscience, The University of Nottingham, Nottingham, UK.
- Academic Unit of Mental Health and Clinical Neuroscience, Queens Medical Centre, School of Medicine, University of Nottingham, Derby Road, Nottingham, NG7 2UH, UK.
| |
Collapse
|
4
|
The essential anti-angiogenic strategies in cartilage engineering and osteoarthritic cartilage repair. Cell Mol Life Sci 2022; 79:71. [PMID: 35029764 PMCID: PMC9805356 DOI: 10.1007/s00018-021-04105-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/01/2021] [Accepted: 12/18/2021] [Indexed: 01/16/2023]
Abstract
In the cartilage matrix, complex interactions occur between angiogenic and anti-angiogenic components, growth factors, and environmental stressors to maintain a proper cartilage phenotype that allows for effective load bearing and force distribution. However, as seen in both degenerative disease and tissue engineering, cartilage can lose its vascular resistance. This vascularization then leads to matrix breakdown, chondrocyte apoptosis, and ossification. Research has shown that articular cartilage inflammation leads to compromised joint function and decreased clinical potential for regeneration. Unfortunately, few articles comprehensively summarize what we have learned from previous investigations. In this review, we summarize our current understanding of the factors that stabilize chondrocytes to prevent terminal differentiation and applications of these factors to rescue the cartilage phenotype during cartilage engineering and osteoarthritis treatment. Inhibiting vascularization will allow for enhanced phenotypic stability so that we are able to develop more stable implants for cartilage repair and regeneration.
Collapse
|
5
|
Llinás M. The Kringle of Life. Protein J 2021; 40:454-456. [PMID: 34131851 DOI: 10.1007/s10930-021-10009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 11/24/2022]
Affiliation(s)
- Manuel Llinás
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA. .,Department of Chemistry, Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
6
|
Apolipoprotein(a), an enigmatic anti-angiogenic glycoprotein in human plasma: A curse or cure? Pharmacol Res 2020; 158:104858. [PMID: 32430285 DOI: 10.1016/j.phrs.2020.104858] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/09/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023]
Abstract
Angiogenesis is a finely co-ordinated, multi-step developmental process of the new vascular structure. Even though angiogenesis is regularly occurring in physiological events such as embryogenesis, in adults, it is restricted to specific tissue sites where rapid cell-turnover and membrane synthesis occurs. Both excessive and insufficient angiogenesis lead to vascular disorders such as cancer, ocular diseases, diabetic retinopathy, atherosclerosis, intra-uterine growth restriction, ischemic heart disease, stroke etc. Occurrence of altered lipid profile and vascular lipid deposition along with vascular disorders is a hallmark of impaired angiogenesis. Among lipoproteins, lipoprotein(a) needs special attention due to the presence of a multi-kringle protein subunit, apolipoprotein(a) [apo(a)], which is structurally homologous to many naturally occurring anti-angiogenic proteins such as plasminogen and angiostatin. Researchers have constructed different recombinant forms of apo(a) (rhLK68, rhLK8, RHACK2, KV-11, and AU-6) and successfully exploited its potential to inhibit unwanted angiogenesis during tumor metastasis and retinal neovascularization. Similar to naturally occurring anti-angiogenic proteins, apo(a) can directly interfere with angiogenic signaling pathways. Besides this, apo(a) can also exert its anti-angiogenic effect indirectly by inducing endothelial cell apoptosis, by inhibiting endothelial progenitor cell functions or by upregulating nuclear factors in endothelial cells via apo(a)-bound oxPLs. However, the impact of the anti-angiogenic potential of native apo(a) during physiological angiogenesis in embryos and wounded tissues is not yet explored. In this context, we review the studies so far done to demonstrate the anti-angiogenic activity of apo(a) and the recent developments in using apo(a) as a therapeutic agent to treat impaired angiogenesis during vascular disorders, with emphasis on the gaps in the literature.
Collapse
|
7
|
Uche UU, Piccirillo AR, Kataoka S, Grebinoski SJ, D'Cruz LM, Kane LP. PIK3IP1/TrIP restricts activation of T cells through inhibition of PI3K/Akt. J Exp Med 2018; 215:3165-3179. [PMID: 30429249 PMCID: PMC6279406 DOI: 10.1084/jem.20172018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 06/27/2018] [Accepted: 10/19/2018] [Indexed: 12/16/2022] Open
Abstract
This study demonstrates a role for the transmembrane regulator of PI3K (TrIP) in restricting early T cell activation, at least in part through effects on PI3K. It is also shown that levels of TrIP decrease preceding full T cell activation. Phosphatidylinositol-3 kinases (PI3Ks) modulate cellular growth, proliferation, and survival; dysregulation of the PI3K pathway can lead to autoimmune disease and cancer. PIK3IP1 (or transmembrane inhibitor of PI3K [TrIP]) is a putative transmembrane regulator of PI3K. TrIP contains an extracellular kringle domain and an intracellular domain with homology to the inter-SH2 domain of the PI3K regulatory subunit p85, but the mechanism of TrIP function is poorly understood. We show that both the kringle and p85-like domains are necessary for TrIP inhibition of PI3K and that TrIP is down-modulated from the surface of T cells during T cell activation. In addition, we present evidence that the kringle domain may modulate TrIP function by mediating oligomerization. Using an inducible knockout mouse model, we show that TrIP-deficient T cells exhibit more robust activation and can mediate clearance of Listeria monocytogenes infection faster than WT mice. Thus, TrIP is a negative regulator of T cell activation and may represent a novel target for immune modulation.
Collapse
Affiliation(s)
- Uzodinma U Uche
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA.,Interdisciplinary Biomedical Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Ann R Piccirillo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | - Stephanie J Grebinoski
- Graduate Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Louise M D'Cruz
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Lawrence P Kane
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
8
|
Shameer K, Glicksberg BS, Hodos R, Johnson KW, Badgeley MA, Readhead B, Tomlinson MS, O’Connor T, Miotto R, Kidd BA, Chen R, Ma’ayan A, Dudley JT. Systematic analyses of drugs and disease indications in RepurposeDB reveal pharmacological, biological and epidemiological factors influencing drug repositioning. Brief Bioinform 2018; 19:656-678. [PMID: 28200013 PMCID: PMC6192146 DOI: 10.1093/bib/bbw136] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/29/2016] [Indexed: 12/22/2022] Open
Abstract
Increase in global population and growing disease burden due to the emergence of infectious diseases (Zika virus), multidrug-resistant pathogens, drug-resistant cancers (cisplatin-resistant ovarian cancer) and chronic diseases (arterial hypertension) necessitate effective therapies to improve health outcomes. However, the rapid increase in drug development cost demands innovative and sustainable drug discovery approaches. Drug repositioning, the discovery of new or improved therapies by reevaluation of approved or investigational compounds, solves a significant gap in the public health setting and improves the productivity of drug development. As the number of drug repurposing investigations increases, a new opportunity has emerged to understand factors driving drug repositioning through systematic analyses of drugs, drug targets and associated disease indications. However, such analyses have so far been hampered by the lack of a centralized knowledgebase, benchmarking data sets and reporting standards. To address these knowledge and clinical needs, here, we present RepurposeDB, a collection of repurposed drugs, drug targets and diseases, which was assembled, indexed and annotated from public data. RepurposeDB combines information on 253 drugs [small molecules (74.30%) and protein drugs (25.29%)] and 1125 diseases. Using RepurposeDB data, we identified pharmacological (chemical descriptors, physicochemical features and absorption, distribution, metabolism, excretion and toxicity properties), biological (protein domains, functional process, molecular mechanisms and pathway cross talks) and epidemiological (shared genetic architectures, disease comorbidities and clinical phenotype similarities) factors mediating drug repositioning. Collectively, RepurposeDB is developed as the reference database for drug repositioning investigations. The pharmacological, biological and epidemiological principles of drug repositioning identified from the meta-analyses could augment therapeutic development.
Collapse
Affiliation(s)
- Khader Shameer
- Institute of Next Generation Healthcare, Mount Sinai Health System, New York,
NY, USA
| | - Benjamin S Glicksberg
- Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York,
NY, USA
| | - Rachel Hodos
- Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York,
NY, USA
- New York University, New York, NY, USA
| | - Kipp W Johnson
- Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York,
NY, USA
| | - Marcus A Badgeley
- Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York,
NY, USA
| | - Ben Readhead
- Institute of Next Generation Healthcare, Mount Sinai Health System, New York,
NY, USA
| | - Max S Tomlinson
- Institute of Next Generation Healthcare, Mount Sinai Health System, New York,
NY, USA
| | | | - Riccardo Miotto
- Institute of Next Generation Healthcare, Mount Sinai Health System, New York,
NY, USA
| | - Brian A Kidd
- Institute of Next Generation Healthcare, Mount Sinai Health System, New York,
NY, USA
| | - Rong Chen
- Clinical Genome Informatics, Icahn Institute of Genetics and Multiscale
Biology, Mount Sinai Health System, New York, NY
| | - Avi Ma’ayan
- Mount Sinai Center for Bioinformatics, Mount Sinai Health System, New York,
NY
| | - Joel T Dudley
- Institute of Next Generation Healthcare, Mount Sinai Health System, New York,
NY, USA
- Department of Genetics and Genomic Sciences, Mount Sinai Health System, New
York, NY, USA
- Department of Population Health Science and Policy, Mount Sinai Health System,
New York, NY, USA
- Director of Biomedical Informatics, Icahn School of Medicine at Mount Sinai,
Mount Sinai Health System, New York, NY
| |
Collapse
|
9
|
Lv M, Shen Y, Yang J, Li S, Wang B, Chen Z, Li P, Liu P, Yang J. Angiomotin Family Members: Oncogenes or Tumor Suppressors? Int J Biol Sci 2017; 13:772-781. [PMID: 28656002 PMCID: PMC5485632 DOI: 10.7150/ijbs.19603] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/09/2017] [Indexed: 12/17/2022] Open
Abstract
Angiomotin (Amot) family contains three members: Amot (p80 and p130 isoforms), Amot-like protein 1 (Amotl1), and Amot-like protein 2 (Amotl2). Amot proteins play an important role in tube formation and migration of endothelial cells and the regulation of tight junctions, polarity, and epithelial-mesenchymal transition in epithelial cells. Moreover, these proteins regulate the proliferation and migration of cancer cells. In most cancers, Amot family members promote the proliferation and invasion of cancer cells, including breast cancer, osteosarcoma, colon cancer, prostate cancer, head and neck squamous cell carcinoma, cervical cancer, liver cancer, and renal cell cancer. However, in glioblastoma, ovarian cancer, and lung cancer, Amot inhibits the growth of cancer cells. In addition, there are controversies on the regulation of Yes-associated protein (YAP) by Amot. Amot promotes either the internalization of YAP into the nucleus or the retention of YAP in the cytoplasm of different cell types. Moreover, Amot regulates the AMPK, mTOR, Wnt, and MAPK signaling pathways. However, it is unclear whether Amot is an oncogene or a tumor suppressor gene in different cellular processes. This review focuses on the multifunctional roles of Amot in cancers.
Collapse
Affiliation(s)
- Meng Lv
- Department of Oncology, the First Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi Province ,710061, P.R. China
| | - Yanwei Shen
- Department of Oncology, the First Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi Province ,710061, P.R. China
| | - Jiao Yang
- Department of Oncology, the First Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi Province ,710061, P.R. China
| | - Shuting Li
- Department of Oncology, the First Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi Province ,710061, P.R. China
| | - Biyuan Wang
- Department of Oncology, the First Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi Province ,710061, P.R. China
| | - Zheling Chen
- Department of Oncology, the First Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi Province ,710061, P.R. China
| | - Pan Li
- Department of Oncology, the First Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi Province ,710061, P.R. China
| | - Peijun Liu
- Center for Translational Medicine, the First Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jin Yang
- Department of Oncology, the First Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi Province ,710061, P.R. China
| |
Collapse
|
10
|
Takakusagi K, Takakusagi Y, Suzuki T, Toizaki A, Suzuki A, Kawakatsu Y, Watanabe M, Saito Y, Fukuda R, Nakazaki A, Kobayashi S, Sakaguchi K, Sugawara F. Multimodal biopanning of T7 phage-displayed peptides reveals angiomotin as a potential receptor of the anti-angiogenic macrolide Roxithromycin. Eur J Med Chem 2015; 90:809-21. [PMID: 25528335 DOI: 10.1016/j.ejmech.2014.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/06/2014] [Accepted: 12/09/2014] [Indexed: 02/07/2023]
Abstract
Roxithromycin (RXM) is a semi-synthetic fourteen-membered macrolide antibiotic that shows anti-angiogenic activity in solid tumors. In the present study, we conducted biopanning of T7 phage-displayed peptides either on a 96-well formatted microplate, a flow injection-type quartz-crystal microbalance (QCM) biosensor, or a cuvette-type QCM. RXM-selected peptides of different sequence, length and number were obtained from each mode of screening. Subsequent bioinformatics analysis of the RXM-selected peptides consistently gave positive scores for the extracellular domain (E458-T596) of angiomotin (Amot), indicating that this may comprise a binding region for RXM. Bead pull down assay and QCM analysis confirmed that RXM directly interacts with Amot via the screen-guided region, which also corresponds to the binding site for the endogenous anti-angiogenic inhibitor angiostatin (Anst). Thus, multimodal biopanning of T7PD revealed that RXM binds to the extracellular domain on Amot as a common binding site with Anst, leading to inhibition of angiogenesis-dependent tumor growth and metastasis. These data might explain the molecular basis underlying the mechanism of action for the anti-angiogenic activity of RXM.
Collapse
Affiliation(s)
- Kaori Takakusagi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yoichi Takakusagi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Takahiro Suzuki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Aya Toizaki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Aiko Suzuki
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yaichi Kawakatsu
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Madoka Watanabe
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yukihiro Saito
- Meiwafosis Co. Ltd., 1-14-2 Shinjuku, Tokyo 160-0022, Japan
| | - Ryushi Fukuda
- Meiwafosis Co. Ltd., 1-14-2 Shinjuku, Tokyo 160-0022, Japan
| | - Atsuo Nakazaki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Susumu Kobayashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kengo Sakaguchi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Fumio Sugawara
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
11
|
From plasminogen to plasmin: role of plasminogen receptors in human cancer. Int J Mol Sci 2014; 15:21229-52. [PMID: 25407528 PMCID: PMC4264222 DOI: 10.3390/ijms151121229] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/04/2014] [Accepted: 11/12/2014] [Indexed: 12/02/2022] Open
Abstract
Cell surface-associated proteolysis mediated by plasmin (PLA) is an essential feature of wound healing, angiogenesis and cell invasion, processes that are dysregulated in cancer development, progression and systemic spread. The generation of PLA, initiated by the binding of its precursor plasminogen (PLG) to the cell surface, is regulated by an array of activators, inhibitors and receptors. In this review, we will highlight the importance of the best-characterized components of the PLG/PLA cascade in the pathogenesis of cancer focusing on the role of the cell surface-PLG receptors (PLG-R). PLG-R overexpression has been associated with poor prognosis of cancer patients and resistance to chemotherapy. We will also discuss recent findings on the molecular mechanisms regulating cell surface expression and distribution of PLG-R.
Collapse
|
12
|
Plasmid transfer of plasminogen K1-5 reduces subcutaneous hepatoma growth by affecting inflammatory factors. BIOMED RESEARCH INTERNATIONAL 2014; 2014:656527. [PMID: 24895598 PMCID: PMC4034484 DOI: 10.1155/2014/656527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 11/18/2022]
Abstract
There is evidence that plasminogen K1-5 (PlgK1-5) directly affects tumour cells and inflammation. Therefore, we analysed if PlgK1-5 has immediate effects on hepatoma cells and inflammatory factors in vitro and in vivo. In vitro, effects of plasmid encoding PlgK1-5 (pK1-5) on Hepa129, Hepa1-6, and HuH7 cell viability, apoptosis, and proliferation as well as VEGF and TNF-alpha expression and STAT3-phosphorylation were investigated. In vivo, tumour growth, proliferation, vessel density, and effects on vascular endothelial growth factor (VEGF) and tumour necrosis factor alpha (TNF-alpha) expression were examined following treatment with pK1-5. In vivo, pK1-5 halved cell viability; cell death was increased by up to 15% compared to the corresponding controls. Proliferation was not affected. VEGF, TNF-alpha, and STAT3-phosphorylation were affected following treatment with pK1-5. In vivo, ten days after treatment initiation, pK1-5 reduced subcutaneous tumour growth by 32% and mitosis by up to 77% compared to the controls. Vessel density was reduced by 50%. TNF-alpha levels in tumour and liver tissue were increased, whereas VEGF levels in tumours and livers were reduced after pK1-5 treatment. Taken together, plasmid gene transfer of PlgK1-5 inhibits hepatoma (cell) growth not only by reducing vessel density but also by inducing apoptosis, inhibiting proliferation, and triggering inflammation.
Collapse
|
13
|
Tykhomyrov AA, Shram SI, Grinenko TV. The role of angiostatins in diabetic complications. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2014. [DOI: 10.1134/s1990750814020140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Ahn JH, Yu HK, Lee HJ, Hong SW, Kim SJ, Kim JS. Suppression of colorectal cancer liver metastasis by apolipoprotein(a) kringle V in a nude mouse model through the induction of apoptosis in tumor-associated endothelial cells. PLoS One 2014; 9:e93794. [PMID: 24699568 PMCID: PMC3974802 DOI: 10.1371/journal.pone.0093794] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/07/2014] [Indexed: 12/13/2022] Open
Abstract
The formation of liver metastases in colorectal cancer patients is the primary cause of patient death. Current therapies directed at liver metastasis from colorectal cancer have had minimal impact on patient outcomes. Therefore, the development of alternative treatment strategies for liver metastasis is needed. In the present study, we demonstrated that recombinant human apolipoprotein(a) kringle V, also known as rhLK8, induced the apoptotic turnover of endothelial cells in vitro through the mitochondrial apoptosis pathway. The interaction of rhLK8 with glucose-regulated protein 78 (GRP78) may be involved in the induction of apoptosis because the inhibition of GRP78 by GRP78-specific antibodies or siRNA knockdown inhibited the rhLK8-mediated apoptosis of human umbilical vein endothelial cells in vitro. Next, to evaluate the effects of rhLK8 on angiogenesis and metastasis, an experimental model of liver metastasis was established by injecting a human colorectal cancer cell line, LS174T, into the spleens of BALB/c nude mice. The systemic administration of rhLK8 significantly suppressed liver metastasis from human colorectal cancer cells and improved host survival compared with controls. The combination of rhLK8 and 5-fluorouracil substantially increased these survival benefits compared with either therapy alone. Histological observation showed significant induction of apoptosis among tumor-associated endothelial cells in liver metastases from rhLK8-treated mice compared with control mice. Collectively, these results suggest that the combination of rhLK8 with conventional chemotherapy may be a promising approach for the treatment of patients with life-threatening colorectal cancer liver metastases.
Collapse
Affiliation(s)
- Jin-Hyung Ahn
- Cancer Biology Team, Mogam Biotechnology Research Institute, Yongin, Republic of Korea
| | - Hyun-Kyung Yu
- Cancer Biology Team, Mogam Biotechnology Research Institute, Yongin, Republic of Korea
| | - Ho-Jeong Lee
- Cancer Biology Team, Mogam Biotechnology Research Institute, Yongin, Republic of Korea
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Soon Won Hong
- Department of Pathology, Gangnam Sevrance Hospital, Yonsei University, Seoul, Republic of Korea
| | - Sun Jin Kim
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (JSK); (SJK)
| | - Jang-Seong Kim
- Cancer Biology Team, Mogam Biotechnology Research Institute, Yongin, Republic of Korea
- Research Center of Integrative Cellulomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- * E-mail: (JSK); (SJK)
| |
Collapse
|
15
|
Leung CY, Zernicka-Goetz M. Angiomotin prevents pluripotent lineage differentiation in mouse embryos via Hippo pathway-dependent and -independent mechanisms. Nat Commun 2014; 4:2251. [PMID: 23903990 PMCID: PMC3741640 DOI: 10.1038/ncomms3251] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 07/03/2013] [Indexed: 01/04/2023] Open
Abstract
Cell identity is specified in the early mammalian embryo by the generation of precursors for two cell lineages: the pluripotent inner cell mass and differentiating trophectoderm. Here we identify Angiomotin as a key regulator of this process. We show that the loss of Angiomotin, together with Angiomotin-like 2, leads to differentiation of inner cell mass cells and compromised peri-implantation development. We show that Angiomotin regulates localization of Yap, and Yap-binding motifs are required for full activity of Angiomotin. Importantly, we also show that Angiomotin function can compensate for the absence of Lats1/2 kinases, indicating the ability of Angiomotin to bypass the classical Hippo pathway for Yap regulation. In polarized outside cells, Angiomotin localizes apically, pointing to the importance of cell polarity in regulating Yap to promote differentiation. We propose that both Hippo pathway-dependent and Hippo pathway-independent mechanisms regulate Yap localization to set apart pluripotent and differentiated lineages in the pre-implantation mouse embryo. Angiomotins retain the transcription co-activator YAP in the cytoplasm and thereby regulate the Hippo pathway in mammalian cultured cells. Here Leung and Zernicka-Goetz show that Angiomotin family members prevent the differentiation of inner cell mass cells in the mouse blastocyst, via both Hippo pathway-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Chuen Yan Leung
- The Wellcome Trust/Cancer Research UK Gurdon Institute, the Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | | |
Collapse
|
16
|
Byun JY, Lee SH, Shin JM, Baek BJ, Lee JY. Overexpression of angiomotin in sinonasal inverted papilloma. Int Forum Allergy Rhinol 2014; 4:512-6. [PMID: 24532565 DOI: 10.1002/alr.21293] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 12/11/2013] [Accepted: 12/12/2013] [Indexed: 01/29/2023]
Abstract
BACKGROUND Although inverted papilloma (IP) is one of the most common sinonasal tumors, its etiology and factors associated with tumor progression have not been fully determined. Generally, tumorigenesis or tumor growth requires angiogenesis to feed tumor cells. Angiomotin is a recently discovered protein that regulates migration and tubule formation in endothelial cells. It has been reported that angiomotin affects angiostatin (circulating inhibitor of angiogenesis), resulting in promotion of angiogenesis. Thus, we evaluated the expression and distribution of angiomotin in sinonasal IP, compared to normal control tissue. METHODS The study included 10 subjects with sinonasal IP and 5 normal controls. Ethmoid sinus mucosa obtained during reduction of blowout fractures was used as a normal control. Reverse transcriptase-polymerase chain reaction (RT-PCR), real-time PCR, immunohistochemistry, and Western blot analysis were used to assess the expression, intensity, and distribution of angiomotin in tissues. RESULTS Positive bands for angiomotin were seen in all specimens by RT-PCR. The expression level of angiomotin was significantly upregulated in IP tissues versus normal sinus mucosa by real-time PCR. Immunohistochemistry revealed positive reactions on endothelial cells of capillaries and small vessels within the tumor and normal tissues, but the positivity was significantly stronger in IP. Western blot analysis showed that expression levels of angiomotin were increased in IP compared to normal sinus mucosa. CONCLUSION Angiomotin, a novel protein in angiogenesis, was overexpressed in IP. Although it is not an etiological or initiating factor in tumor development, it seems to be associated with progression and growth of IP via promoting angiogenesis.
Collapse
Affiliation(s)
- Jang Yul Byun
- Department of Otorhinolaryngology-Head and Neck Surgery, Soonchunhyang University College of Medicine, Bucheon Hospital, Bucheon, Korea
| | | | | | | | | |
Collapse
|
17
|
Oh ET, Park MT, Song MJ, Lee H, Cho YU, Kim SJ, Chu YC, Choi EK, Park HJ. Radiation-induced angiogenic signaling pathway in endothelial cells obtained from normal and cancer tissue of human breast. Oncogene 2013; 33:1229-38. [DOI: 10.1038/onc.2013.70] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 01/02/2013] [Accepted: 01/11/2013] [Indexed: 12/27/2022]
|
18
|
Radziwon-Balicka A, Moncada de la Rosa C, Zielnik B, Doroszko A, Jurasz P. Temporal and pharmacological characterization of angiostatin release and generation by human platelets: implications for endothelial cell migration. PLoS One 2013; 8:e59281. [PMID: 23555012 PMCID: PMC3598756 DOI: 10.1371/journal.pone.0059281] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 02/13/2013] [Indexed: 12/22/2022] Open
Abstract
Platelets play an important role in thrombosis and in neo-vascularisation as they release and produce factors that both promote and suppress angiogenesis. Amongst these factors is the angiogenesis inhibitor angiostatin, which is released during thrombus formation. The impact of anti-thrombotic agents and the kinetics of platelet angiostatin release are unknown. Hence, our objectives were to characterize platelet angiostatin release temporally and pharmacologically and to determine how angiostatin release influences endothelial cell migration, an early stage of angiogenesis. We hypothesized anti-platelet agents would suppress angiostatin release but not generation by platelets. Human platelets were aggregated and temporal angiostatin release was compared to vascular endothelial growth factor (VEGF). Immuno-gold electron microscopy and immunofluorescence microscopy identified α-granules as storage organelles of platelet angiostatin. Acetylsalicylic acid, MRS2395, GPIIb/IIIa blocking peptide, and aprotinin were used to characterize platelet angiostatin release and generation. An endothelial cell migration assay was performed under hypoxic conditions to determine the effects of pharmacological platelet and angiostatin inhibition. Compared to VEGF, angiostatin generation and release from α-granules occurred later temporally during platelet aggregation. Consequently, collagen-activated platelet releasates stimulated endothelial cell migration more potently than maximally-aggregated platelets. Platelet inhibitors prostacyclin, S-nitroso-glutathione, acetylsalicylic acid, and GPIIb/IIIa blocking peptide, but not a P2Y12 inhibitor, suppressed angiostatin release but not generation. Suppression of angiostatin generation in the presence of acetylsalicylic acid enhanced platelet-stimulated endothelial migration. Hence, the temporal and pharmacological modulation of platelet angiostatin release may have significant consequences for neo-vascularization following thrombus formation.
Collapse
Affiliation(s)
- Aneta Radziwon-Balicka
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
19
|
Stalin J, Harhouri K, Hubert L, Subrini C, Lafitte D, Lissitzky JC, Elganfoud N, Robert S, Foucault-Bertaud A, Kaspi E, Sabatier F, Aurrand-Lions M, Bardin N, Holmgren L, Dignat-George F, Blot-Chabaud M. Soluble melanoma cell adhesion molecule (sMCAM/sCD146) promotes angiogenic effects on endothelial progenitor cells through angiomotin. J Biol Chem 2013; 288:8991-9000. [PMID: 23389031 DOI: 10.1074/jbc.m112.446518] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The melanoma cell adhesion molecule (CD146) contains a circulating proteolytic variant (sCD146), which is involved in inflammation and angiogenesis. Its circulating level is modulated in different pathologies, but its intracellular transduction pathways are still largely unknown. Using peptide pulldown and mass spectrometry, we identified angiomotin as a sCD146-associated protein in endothelial progenitor cells (EPC). Interaction between angiomotin and sCD146 was confirmed by enzyme-linked immunosorbent assay (ELISA), homogeneous time-resolved fluorescence, and binding of sCD146 on both immobilized recombinant angiomotin and angiomotin-transfected cells. Silencing angiomotin in EPC inhibited sCD146 angiogenic effects, i.e. EPC migration, proliferation, and capacity to form capillary-like structures in Matrigel. In addition, sCD146 effects were inhibited by the angiomotin inhibitor angiostatin and competition with recombinant angiomotin. Finally, binding of sCD146 on angiomotin triggered the activation of several transduction pathways that were identified by antibody array. These results delineate a novel signaling pathway where sCD146 binds to angiomotin to stimulate a proangiogenic response. This result is important to find novel target cells of sCD146 and for the development of therapeutic strategies based on EPC in the treatment of ischemic diseases.
Collapse
Affiliation(s)
- Jimmy Stalin
- Inserm UMR-S 1076, Physiopathology of Endothelium, Aix-Marseille University, Formation and Research Unit of Pharmacy, 13005 Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Radziwon-Balicka A, Ramer C, Moncada de la Rosa C, Zielnik-Drabik B, Jurasz P. Angiostatin inhibits endothelial MMP-2 and MMP-14 expression: a hypoxia specific mechanism of action. Vascul Pharmacol 2012; 58:280-91. [PMID: 23220260 DOI: 10.1016/j.vph.2012.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 11/15/2012] [Accepted: 11/22/2012] [Indexed: 01/08/2023]
Abstract
Angiostatin is an angiogenesis inhibitor in part generated by and released from platelets. Since platelets upon thrombus formation can give rise to areas of hypoxia, we investigated the effects of angiostatin on endothelial cell migration and apoptosis during hypoxia. Human microvascular endothelial cells (HMVEC-L) were exposed to angiostatin under normoxic or hypoxic conditions. Apoptosis was measured by flow-cytometry. HMVEC-L migration was studied using a modified Boyden Chamber assay, in which migration is MMP-dependent. MMP-2, MMP-14, and VEGF levels were measured using immunoblot, Q-PCR and ELISA. During hypoxia HMVEC-L were protected from angiostatin-induced apoptosis due to increased hypoxia-induced VEGF expression. However, MMP-dependent migration of HMVEC-L was inhibited by angiostatin under hypoxic but not normoxic conditions. Angiostatin decreased MMP-2 at the gene and protein levels only in HMVEC-L exposed to hypoxia. A similar result was obtained for MMP-14. Higher angiostatin concentrations, as would be seen during thrombosis, induced HMVEC-L apoptosis, which was not rescued by VEGF. Under hypoxic conditions angiostatin's primary anti-angiogenic mechanism is likely inhibition of endothelial cell MMP-dependent endothelial cell migration. Only at higher concentrations does angiostatin induce endothelial cell death. This study identifies a novel angiostatin anti-angiogenesis mechanism that is only triggered under pathological-like conditions.
Collapse
Affiliation(s)
- Aneta Radziwon-Balicka
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E1
| | | | | | | | | |
Collapse
|
21
|
Bacterial plasminogen receptors utilize host plasminogen system for effective invasion and dissemination. J Biomed Biotechnol 2012; 2012:482096. [PMID: 23118509 PMCID: PMC3477821 DOI: 10.1155/2012/482096] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 07/24/2012] [Accepted: 08/13/2012] [Indexed: 01/06/2023] Open
Abstract
In order for invasive pathogens to migrate beyond the site of infection, host physiological barriers such as the extracellular matrix, the basement membrane, and encapsulating fibrin network must be degraded. To circumvent these impediments, proteolytic enzymes facilitate the dissemination of the microorganism. Recruitment of host proteases to the bacterial surface represents a particularly effective mechanism for enhancing invasiveness. Plasmin is a broad spectrum serine protease that degrades fibrin, extracellular matrices, and connective tissue. A large number of pathogens express plasminogen receptors which immobilize plasmin(ogen) on the bacterial surface. Surface-bound plasminogen is then activated by plasminogen activators to plasmin through limited proteolysis thus triggering the development of a proteolytic surface on the bacteria and eventually assisting the spread of bacteria. The host hemostatic system plays an important role in systemic infection. The interplay between hemostatic processes such as coagulation and fibrinolysis and the inflammatory response constitutes essential components of host defense and bacterial invasion. The goal of this paper is to highlight mechanisms whereby pathogenic bacteria, by engaging surface receptors, utilize and exploit the host plasminogen and fibrinolytic system for the successful dissemination within the host.
Collapse
|
22
|
Zabini D, Nagaraj C, Stacher E, Lang IM, Nierlich P, Klepetko W, Heinemann A, Olschewski H, Bálint Z, Olschewski A. Angiostatic factors in the pulmonary endarterectomy material from chronic thromboembolic pulmonary hypertension patients cause endothelial dysfunction. PLoS One 2012; 7:e43793. [PMID: 22916307 PMCID: PMC3423379 DOI: 10.1371/journal.pone.0043793] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/25/2012] [Indexed: 12/20/2022] Open
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare disease with persistent thrombotic occlusion or stenosis of the large pulmonary arteries resulting in pulmonary hypertension. Surgical removal of the neointimal layer of these vessels together with the non-resolved thrombus consisting of organized collagen-rich fibrotic areas with partly recanalized regions is the treatment of choice (pulmonary endarterectomy, PEA). The present study investigates endothelial cells isolated from such material as well as factors present in the surgical PEA material, which may contribute to impairment of recanalization and thrombus non-resolution. We observed muscularized vessels and non-muscularized vessels in the PEA material. The isolated endothelial cells from the PEA material showed significantly different calcium homeostasis as compared to pulmonary artery endothelial cells (hPAECs) from normal controls. In the supernatant (ELISA) as well as on the tissue level (histochemical staining) of the PEA material, platelet factor 4 (PF4), collagen type I and interferon-gamma-inducible 10 kD protein (IP-10) were detected. CXCR3, the receptor for PF4 and IP-10, was particularly elevated in the distal parts of the PEA material as compared to human control lung (RT-PCR). PF4, collagen type I and IP-10 caused significant changes in calcium homeostasis and affected the cell proliferation, migration and vessel formation in hPAECs. The presence of angiostatic factors like PF4, collagen type I and IP-10, as recovered from the surgical PEA material from CTEPH patients, may lead to changes in calcium homeostasis and endothelial dysfunction.
Collapse
Affiliation(s)
- Diana Zabini
- Experimental Anesthesiology, Department of Anesthesia and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Chandran Nagaraj
- Experimental Anesthesiology, Department of Anesthesia and Intensive Care Medicine, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Elvira Stacher
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Irene M. Lang
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Patrick Nierlich
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Horst Olschewski
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Zoltán Bálint
- Experimental Anesthesiology, Department of Anesthesia and Intensive Care Medicine, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- * E-mail:
| | - Andrea Olschewski
- Experimental Anesthesiology, Department of Anesthesia and Intensive Care Medicine, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| |
Collapse
|
23
|
Schmitz V, Sauerbruch T, Raskopf E. Anti-tumoural effects of PlgK1-5 are directly linked to reduced ICAM expression, resulting in hepatoma cell apoptosis. Int J Colorectal Dis 2012; 27:1029-38. [PMID: 22451253 DOI: 10.1007/s00384-012-1418-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2012] [Indexed: 02/04/2023]
Abstract
PURPOSE Angiostatin and angiostatin-like molecules are known as anti-angiogenic factors, which inhibit endothelial cell functions resulting in reduced tumour growth. Recent data indicate that these molecules, especially PlgK1-5, directly affect tumour cells, which could explain the strong anti-tumoural effects of PlgK1-5. Therefore, we have analysed whether PlgK1-5 alters tumour cell functions and expression levels of cell adhesion molecules in murine and human hepatoma cells in vitro and in vivo. METHODS First, effects on tumour growth, proliferation and apoptosis were investigated in vivo in a subcutaneous tumour model. In vitro, effects of PlgK1-5 on tumour cell apoptosis, clonal expansion, migration, corresponding ICAM expression and intracellular signal transduction in murine Hepa129 and human HuH7 hepatoma cells have been analysed. RESULTS In vivo, subcutaneous tumour growth was reduced by 75% in PlgK1-5-treated animals compared to the controls. This was accompanied by increased tumour cell apoptosis (up to 33%) and decreased tumour cell proliferation (by up to 21%). In vitro, PlgK1-5 induced apoptosis in hepatoma cells, corresponding to increased caspase-8 cleavage and reduced AKT phosphorylation. Migration and clonal expansion was also diminished in PlgK1-5-treated Hepa129, corresponding to decreased ICAM expression levels. CONCLUSIONS Here, we show that PlgK1-5 directly affects tumour cells by decreasing cell adhesion resulting-at least partly-in apoptosis. This is mediated by altered intracellular signal transduction and by activation of the caspase cascade. These findings further underscore the potential therapeutic role of PlgK1-5 in the treatment of HCC.
Collapse
Affiliation(s)
- Volker Schmitz
- Department of Internal Medicine I, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | | | | |
Collapse
|
24
|
Park MT, Oh ET, Song MJ, Lee H, Park HJ. Radio-sensitivities and angiogenic signaling pathways of irradiated normal endothelial cells derived from diverse human organs. JOURNAL OF RADIATION RESEARCH 2012; 53:570-580. [PMID: 22843622 PMCID: PMC3393354 DOI: 10.1093/jrr/rrs011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 03/12/2012] [Accepted: 03/19/2012] [Indexed: 05/30/2023]
Abstract
The purpose of the present investigation was to study the effects of ionizing radiation on endothelial cells derived from diverse normal tissues. We first compared the effects of radiation on clonogenic survival and tube formation of endothelial cells, and then investigated the molecular signaling pathways involved in endothelial cell survival and angiogenesis. Among the different endothelial cells studied, human hepatic sinusoidal endothelial cells (HHSECs) were the most radio-resistant and human dermal microvascular endothelial cells were the most radio-sensitive. The radio-resistance of HHSECs was related to adenosine monophosphate-activated protein kinase and p38 mitogen-activated protein kinase-mediated expression of MMP-2 and VEGFR-2, whereas the increased radio-sensitivity of HDMECs was related to extracellular signal-regulated kinase-mediated generation of angiostatin. These observations demonstrate that there are distinct differences in the radiation responses of normal endothelial cells obtained from diverse organs, which may provide important clues for protection of normal tissue from radiation exposure.
Collapse
Affiliation(s)
- Moon-Taek Park
- Corresponding author. Department of Microbiology, Center for Advanced Medical Education by BK21 Project, College of Medicine, Inha University, Jungsuck B/D B-Dong 3F, 7-241, 3rd Street, Shinheung-Dong, Jung-Gu, Incheon, 400-712, Republic of Korea; Tel: +82-32-890-0953; Fax: +82-32-881-8559;
| | | | | | | | | |
Collapse
|
25
|
Integrin-mediated cell-matrix interaction in physiological and pathological blood vessel formation. JOURNAL OF ONCOLOGY 2011; 2012:125278. [PMID: 21941547 PMCID: PMC3175391 DOI: 10.1155/2012/125278] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 07/15/2011] [Indexed: 02/07/2023]
Abstract
Physiological as well as pathological blood vessel formation are fundamentally dependent on cell-matrix interaction. Integrins, a family of major cell adhesion receptors, play a pivotal role in development, maintenance, and remodeling of the vasculature. Cell migration, invasion, and remodeling of the extracellular matrix (ECM) are integrin-regulated processes, and the expression of certain integrins also correlates with tumor progression. Recent advances in the understanding of how integrins are involved in the regulation of blood vessel formation and remodeling during tumor progression are highlighted. The increasing knowledge of integrin function at the molecular level, together with the growing repertoire of integrin inhibitors which allow their selective pharmacological manipulation, makes integrins suited as potential diagnostic markers and therapeutic targets.
Collapse
|
26
|
Takahashi S, Shinya T, Sugiyama A. Angiostatin inhibition of vascular endothelial growth factor-stimulated nitric oxide production in endothelial cells. J Pharmacol Sci 2010; 112:432-7. [PMID: 20308796 DOI: 10.1254/jphs.10028fp] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Angiostatin (AS), a proteolytic fragment of plasminogen, is a potent antiangiogenic factor. It was reported that AS attenuates the vasodilatory response to vascular endothelial growth factor (VEGF) in isolated interventricular arterioles. Here, we investigated the effect of AS on nitric oxide (NO) production in human umbilical vein endothelial cells (HUVECs). AS inhibited VEGF-stimulated NO production in a dose-dependent manner, whereas AS alone did not affect basal NO production. Disruption of kringle structures by reduction of disulfide bonds resulted in the loss of the inhibitory effect of AS on VEGF-stimulated NO production. To elucidate how AS might impair VEGF activation of endothelial NO synthase (eNOS), we further examined whether AS would affect Ca(2+)-dependent and -independent pathways of eNOS activation. AS had no effect on the transient increase in cytosolic Ca(2+) levels elicited by VEGF. In contrast, AS prevented VEGF-potentiated eNOS phosphorylation at Ser1177. These results clearly indicate that AS inhibits VEGF-stimulated NO production in HUVECs without affecting basal NO production. The kringle structures of AS are required for this effect, and impairment of Ser1177 phosphorylation of eNOS might be involved in the inhibition of VEGF-stimulated NO production by AS.
Collapse
Affiliation(s)
- Satoru Takahashi
- First Department of Biochemistry, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, Japan.
| | | | | |
Collapse
|
27
|
Miura S, Mitsui K, Heishi T, Shukunami C, Sekiguchi K, Kondo J, Sato Y, Hiraki Y. Impairment of VEGF-A-stimulated lamellipodial extensions and motility of vascular endothelial cells by chondromodulin-I, a cartilage-derived angiogenesis inhibitor. Exp Cell Res 2010; 316:775-88. [DOI: 10.1016/j.yexcr.2009.12.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 11/15/2009] [Accepted: 12/14/2009] [Indexed: 01/31/2023]
|
28
|
Santos IC, Silbiger VN, Higuchi DA, Gomes MA, Barcelos LS, Teixeira MM, Lopes MTP, Cardoso VN, Lima MP, Araujo RC, Pesquero JB, Pesquero JL. Angiostatic activity of human plasminogen fragments is highly dependent on glycosylation. Cancer Sci 2010; 101:453-9. [PMID: 19961492 PMCID: PMC11159665 DOI: 10.1111/j.1349-7006.2009.01403.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
To assess the importance of carbohydrate moieties to the anti-angiogenic activity of plasminogen fragments, we cloned the fragment corresponding to amino acids Val(79) to Thr(346) (Kint3-4) that presents the three glycosylation sites. The activity of glycosylated and unglycosylated Kint3-4 was tested in murine sponge implant model. We observed a significant decrease in the neovascularization on the sponge after treatment with Kint3-4 by histological examination and determination of the hemoglobin levels. The effects were more intense with the glycosylated than the unglycosylated protein. (99m)Technecium-labeled red blood cells confirmed the inhibition of cell infiltration in the implanted sponge. Studies using melanoma B16F1 implanted in a mouse demonstrated that treatment with glycosylated Kint3-4 (0.15 nmol/48 h) during 14 days suppresses tumor growth by 80%. The vascular endothelial growth factor mRNA levels on the tumor were reduced after treatment. Kint3-4 is a potent plasminogen fragment that has been found to inhibit tumor growth.
Collapse
Affiliation(s)
- Ivan Carlos Santos
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ansell PJ, Zhang H, Davidson DJ, Harlan JE, Xue J, Brodjian S, Lesniewski R, McKeegan E. Recombinant kringle 5 from plasminogen antagonises hepatocyte growth factor-mediated signalling. Eur J Cancer 2010; 46:966-73. [PMID: 20061137 DOI: 10.1016/j.ejca.2009.12.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 12/15/2009] [Accepted: 12/17/2009] [Indexed: 11/27/2022]
Abstract
The blood protein plasminogen is proteolytically cleaved to produce angiostatin and kringle 5 (K5), both of which are known angiogenesis inhibitors. A common structural element between K5, angiostatin and other endogenous angiogenesis inhibitors is the presence of the kringle protein-interacting domain. Another kringle domain-containing protein, hepatocyte growth factor (HGF), promotes angiogenesis by binding to and stimulating the tyrosine kinase receptor Met. HGF binding to Met is dependent on the kringle domains of HGF. Because both K5 and HGF contain kringle motifs and because these proteins have opposite effects on angiogenesis, we hypothesised that K5 can antagonise HGF-mediated signalling in a Met-dependent manner. We determined that K5 binding to H1299 cells is competed by HGF suggesting that these two proteins bind to the same protein. Purified K5 immunoprecipitates with Met and this interaction is abolished by increasing doses of HGF. Using proliferation, phosphorylation of Met and Akt as markers of HGF activity, we determined that K5 inhibits HGF-mediated signalling. Taken together, these data support a model by which K5 binds to Met and functions as a competitive antagonist of HGF signalling and presents a novel mechanism of action of K5.
Collapse
Affiliation(s)
- Peter J Ansell
- Department of Cancer Research, Abbott Laboratories, Abbott Park, IL 60064, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Kita T, Nishida H, Niimi S, Shibata H, Yamazaki T, Arakaki N. Role of cell surface H +-ATP synthase on adipocyte differentiation. Inflamm Regen 2010. [DOI: 10.2492/inflammregen.30.425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Toshiyuki Kita
- Department of Molecular Cell Biology and Medicine, Institute of Health Bioscience, The University of Tokushima Graduate School, Tokushima, Japan
| | - Hana Nishida
- Department of Molecular Cell Biology and Medicine, Institute of Health Bioscience, The University of Tokushima Graduate School, Tokushima, Japan
| | - Shingo Niimi
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Tokyo, Japan
| | - Hirofumi Shibata
- Department of Molecular Cell Biology and Medicine, Institute of Health Bioscience, The University of Tokushima Graduate School, Tokushima, Japan
| | - Tetsuo Yamazaki
- Department of Molecular Cell Biology and Medicine, Institute of Health Bioscience, The University of Tokushima Graduate School, Tokushima, Japan
| | - Naokatu Arakaki
- Department of Molecular Cell Biology and Medicine, Institute of Health Bioscience, The University of Tokushima Graduate School, Tokushima, Japan
| |
Collapse
|
31
|
Bressan M, Davis P, Timmer J, Herzlinger D, Mikawa T. Notochord-derived BMP antagonists inhibit endothelial cell generation and network formation. Dev Biol 2009; 326:101-11. [PMID: 19041859 PMCID: PMC2729169 DOI: 10.1016/j.ydbio.2008.10.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 10/02/2008] [Accepted: 10/27/2008] [Indexed: 01/16/2023]
Abstract
Embryonic blood vessel formation is initially mediated through the sequential differentiation, migration, and assembly of endothelial cells (ECs). While many molecular signals that promote vascular development have been identified, little is known about suppressors of this process. In higher vertebrates, including birds and mammals, the vascular network forms throughout the embryonic disk with the exception of a region along the midline. We have previously shown that the notochord is responsible for the generation and maintenance of the avascular midline and that BMP antagonists expressed by this embryonic tissue, including Noggin and Chordin, can mimic this inhibitory role. Here we report that the notochord suppresses the generation of ECs from the mesoderm both in vivo and in vitro. We also report that the notochord diminishes the ability of mature ECs to organize into a primitive plexus. Furthermore, Noggin mimics notochord-based inhibition by preventing mesodermal EC generation and mature EC network formation. These findings suggest that the mesoderm surrounding the midline is competent to give rise to ECs and to form blood vessels, but that notochord derived-BMP antagonists suppress EC differentiation and maturation processes leading to inhibition of midline vessel formation.
Collapse
Affiliation(s)
- Michael Bressan
- Department of Physiology, Biophysics and System Biology, Cornell University Medical College, New York, NY 10021
| | | | | | - Doris Herzlinger
- Department of Physiology, Biophysics and System Biology, Cornell University Medical College, New York, NY 10021
| | | |
Collapse
|
32
|
Ahn MH, Park BJ, Kwon JH, An SH, Park JW, Jang AS, Rhim T, Park CS. Asp-Tyr-Leu-Lys tetrapeptide inhibits airway inflammation in toluene-2,4-diisocyanate-induced asthma mice. Clin Exp Allergy 2008; 38:1025-32. [PMID: 18498544 DOI: 10.1111/j.1365-2222.2008.02977.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Airway inflammation and remodelling contribute to chronic airway obstruction of asthma. Currently, no medication effectively controls airway remodelling and related vascular changes. Therefore, new strategies need to be developed. The kringle 5 domain has anti-angiogenic activity resulting from the tetrapeptide Lys-Leu-Tyr-Asp (KLYD). OBJECTIVE To investigate the therapeutic effect of KLYD and its inverse form Asp-Tyr-Leu-Lys (DYLK) on the inflammation and remodelling of toluene-2,4-diisocyanate (TDI)-sensitization/challenged mice. METHODS Cell numbers were measured in the presence of various concentrations of KLYD and DYLK using in vitro endothelial cell proliferation assay. The changes of cell number and the level of vascular endothelial growth factor (VEGF) in bronchoalveolar lavage (BAL) fluid and response to methacholine (MCh) were measured using the in vivo TDI-sensitized/challenged mice model. Muc5ac, smooth muscle actin (SMA) and proliferating cell nuclear antigen (PCNA) protein expression was analysed on trachea and intrapulmonary bronchi using immunohistochemical stain. RESULTS Compared with KLYD, DYLK had a greater inhibitory effect on endothelial cell proliferation (P<0.05). Pre-treatment of DYLK showed dose-dependent reduction in the response to MCh (P<0.05) and numbers of inflammatory cells in BAL fluids of TDI-sensitized/challenged mice. TDI induced increases in Muc5ac, SMA and PCNA protein expression and VEGF levels, which were also abolished by DYLK treatment. CONCLUSIONS Local administration of DYLK effectively inhibits the airway inflammation and airway remodelling of TDI-sensitized/challenged mice via down-regulation of VEGF. These findings suggest that anti-angiogenic peptide therapies, such as local administration of DYLK, are an effective strategy for the treatment of remodelling in asthma.
Collapse
Affiliation(s)
- M-H Ahn
- Genome Research Center for Allergy and Respiratory Diseases, Soonchunhyang University Hospital, Wonmi-gu, Bucheon, Gyeonggi-do, Korea
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Mellon MJ, Bae KH, Steding CE, Jiménez JA, Kao C, Gardner TA. Suppression of renal cell carcinoma growth and metastasis with sustained antiangiogenic gene therapy. Hum Gene Ther 2008; 19:487-95. [PMID: 18507514 PMCID: PMC2733371 DOI: 10.1089/hum.2007.135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Renal cell carcinoma (RCC) is the third most common urologic neoplasm. This aggressive malignancy has proven refractory to conventional treatment options. Antiangiogenic agents have shown early success in treating metastatic disease. The highly vascular nature of RCC appears particularly susceptible to this approach. This study investigates the potential of sustained expression of an endostatin-angiostatin fusion protein in an early-stage model of RCC to inhibit tumor growth and metastasis. Subcutaneous RCC-29 tumors were induced in athymic nude mice. Once tumors reached volumes of 10 and 25 mm(3), subjects received intratumoral injections of a nonreplicating adenoviral vector every 20 days until the conclusion of the trial. The mice were randomly assigned to three treatment groups: saline control, viral Ad-GFP control, and Ad-EndoAngio. Tumor volumes were measured twice weekly for 80 days. During days 40-50 of the trial, subjects underwent dual-photon optical imaging of the tumor vasculature to ascertain angiogenic changes. All animals underwent postmortem histopathological analysis to assess for metastatic disease in the kidney, lung, liver, brain, and spleen. Results indicate that tumors treated with Ad-EndoAngio displayed 97% growth reduction compared with controls (p < 0.001). Further, in vivo tumor vascular imaging illustrated a reduction in blood vessel number and lumen diameter size. Kaplan-Meier analysis suggested dramatic survival advantage with Ad-EndoAngio treatment. Importantly, histopathological examination demonstrated marked lung and liver metastasis suppression in the treatment arms. These results suggest that sustained EndoAngio gene therapy has effective antiangiogenic action against human RCC tumors and possesses potential as a novel treatment for metastatic renal cell carcinoma.
Collapse
Affiliation(s)
- Matthew J Mellon
- Department of Urology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
34
|
Nguyen TMB, Subramanian IV, Kelekar A, Ramakrishnan S. Kringle 5 of human plasminogen, an angiogenesis inhibitor, induces both autophagy and apoptotic death in endothelial cells. Blood 2007; 109:4793-802. [PMID: 17272502 DOI: 10.1182/blood-2006-11-059352] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AbstractInhibition of endothelial cell proliferation and angiogenesis is emerging as an important strategy in cancer therapeutics. Kringle 5 (K5) of human plasminogen is a potent angiogenesis inhibitor. Previous studies have shown K5 exposure promotes caspase activity and apoptosis in endothelial cells. Here we report that K5 treatment evokes an autophagic response in endothelial cells that is specific and initiated even in the absence of nutritional stress. Endothelial cells exposed to K5 up-regulated Beclin 1 levels within a few hours. Furthermore, progressively increasing amounts of antiapoptotic Bcl-2 were found to be complexed with Beclin 1, although total levels of Bcl-2 remained unchanged. Prolonged exposure to K5 ultimately led to apoptosis via mitochondrial membrane depolarization and caspase activation in endothelial cells. Knocking down Beclin 1 levels by RNA interference decreased K5 induced autophagy but accelerated K5-induced apoptosis. These studies suggest that interfering with the autophagic survival response can potentiate the antiangiogenic effects of Kringle 5 in endothelial cells.
Collapse
Affiliation(s)
- Tri Minh Bui Nguyen
- Department of Pharmacology, University of Minnesota Medical School, 321 Church Street SE, Minnesota, MN 55455, USA
| | | | | | | |
Collapse
|
35
|
Grandi F, Sandal M, Guarguaglini G, Capriotti E, Casadio R, Samorì B. Hierarchical mechanochemical switches in angiostatin. Chembiochem 2007; 7:1774-82. [PMID: 16991168 DOI: 10.1002/cbic.200600227] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We wish to propose a novel mechanism by which the triggering of a biochemical signal can be controlled by the hierarchical coupling between a protein redox equilibrium and an external mechanical force. We have characterized this mechanochemical mechanism in angiostatin, and we have evidence that it can switch the access to partially unfolded structures of this protein. We have identified a metastable intermediate that is specifically accessible under thioredoxin-rich reducing conditions, like those met by angiostatin on the surface of a tumor cell. The structure of the same intermediate accounts for the unexplained antiangiogenic activity of angiostatin. These findings demonstrate a new link between redox biology and mechanically regulated processes.
Collapse
Affiliation(s)
- Fabio Grandi
- Department of Biochemistry, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Kim TH, Ahn S, Kim J, Kim I, Yang MZ, Lee JE, Kim SS. Recombinant human prothrombin kringle-2 inhibits B16F10 melanoma metastasis through inhibition of neovascularization and reduction of matrix metalloproteinase expression. Clin Exp Metastasis 2006; 23:391-9. [PMID: 17187228 DOI: 10.1007/s10585-006-9048-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Accepted: 11/13/2006] [Indexed: 10/23/2022]
Abstract
Angiogenesis, a multi-step process which involves endothelial cell proliferation, adhesion, migration, and basement membrane (BM) degradation, is essential for tumor metastasis. Here we show that recombinant human prothrombin kringle-2 (rk-2) inhibited bovine capillary endothelial cell migration with an IC(50) (concentration for half maximal inhibition) of 38 nM and inhibited adhesion to extracellular matrix (ECM) proteins. Because tumor metastasis requires angiogenesis, we examined whether rk-2 could inhibit metastases induced by injection of B16F10 melanoma cells into mice. The results revealed that the metastatic tumors in mouse lung were markedly decreased in a dose-dependent manner and acute lung injury induced by B16F10 melanoma metastasis was diminished by systemic rk-2 treatment. In immunohistochemical analysis, rk-2 reduced expression of vascular endothelial growth factor, which is a potent angiogenic activator and neovascularization in the mouse lung. Also, rk-2 diminished the expression of matrix metalloproteinase-2 and -9 in the mouse lung which induces tumor metastasis and angiogenesis. These data suggest that inhibition of B16F10 melanoma metastasis by rk-2 was caused by inhibition of neovascularization and reduction of matrix metalloproteinase expression.
Collapse
Affiliation(s)
- Tae Hyong Kim
- Department of Biochemistry, College of Science, Yonsei University, Seoul 120-749, Korea
| | | | | | | | | | | | | |
Collapse
|
37
|
Sandor Z, Deng XM, Khomenko T, Tarnawski AS, Szabo S. Altered angiogenic balance in ulcerative colitis: a key to impaired healing? Biochem Biophys Res Commun 2006; 350:147-150. [PMID: 17011522 DOI: 10.1016/j.bbrc.2006.09.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 09/02/2006] [Indexed: 02/06/2023]
Abstract
Angiogenesis is an essential component of ulcer healing since it assures delivery of oxygen and nutrients to the healing site. Previous studies demonstrated increased serum and tissue levels of vascular endothelial growth factor (VEGF, the most potent angiogenic growth factor) in patients with active ulcerative colitis (UC) and animal models of UC. However, there is no explanation why the healing of UC-related mucosal injury is impaired despite increased expression of VEGF. Expression of angiogenesis inhibitors, angiostatin and/or endostatin, in UC has not been determined before. We examined expression of VEGF, angiostatin, and endostatin in two models of experimental UC. The results revealed that in addition to increased VEGF, both endostatin and angiostatin levels were markedly (2-3-folds) increased in colonic mucosa at early stage of experimental UC. This is the first demonstration that colitis triggers increase in angiostatin and endostatin levels. The results may explain why mucosal lesions heal slowly despite increased VEGF levels, and may provide a novel and mechanistic insight into UC.
Collapse
Affiliation(s)
- Zs Sandor
- Medical Health Care Groups, VA Long Beach Healthcare System, Long Beach, CA 90822, USA
| | | | | | | | | |
Collapse
|
38
|
Wang H, Doll JA, Jiang K, Cundiff DL, Czarnecki JS, Wilson M, Ridge KM, Soff GA. Differential binding of plasminogen, plasmin, and angiostatin4.5 to cell surface beta-actin: implications for cancer-mediated angiogenesis. Cancer Res 2006; 66:7211-5. [PMID: 16849568 DOI: 10.1158/0008-5472.can-05-4331] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiostatin4.5 (AS4.5) is the product of plasmin autoproteolysis and consists of kringles 1 to 4 and approximately 85% of kringle 5. In culture, cancer cell surface globular beta-actin mediates plasmin autoproteolysis to AS4.5. We now show that plasminogen binds to prostate cancer cells and that the binding colocalizes with surface beta-actin, but AS4.5 does not bind to the cell surface. Plasminogen and plasmin bind to immobilized beta-actin similarly, with a Kd of approximately 140 nmol/L. The binding is inhibited by epsilon-aminocaproic acid (epsilonACA), indicating the requirement for a lysine-kringle domain interaction. Using a series of peptides derived from beta-actin in competitive binding studies, we show that the domain necessary for plasminogen binding is within amino acids 55 to 69 (GDEAQSKRGILTLKY). Substitution of Lys61 or Lys68 with arginine results in the loss of the ability of the peptide to block plasminogen binding, indicating that Lys61 and Lys68 are essential for plasminogen binding. Other actin peptides, including peptides with lysine, did not inhibit the plasminogen-actin interaction. AS4.5 did not bind actin at concentrations up to 40 micromol/L. Plasminogen, plasmin, and AS4.5 all contain kringles 1 to 4; however, kringle 5 is truncated in AS4.5. Isolated kringle 5 binds to actin, suggesting intact kringle 5 is necessary for plasminogen and plasmin to bind to cell surface beta-actin, and the truncated kringle 5 in AS4.5 results in its release from beta-actin. These data may explain the mechanism by which AS4.5 is formed locally on cancer cell surfaces and yet acts on distant sites.
Collapse
Affiliation(s)
- Hao Wang
- Division of Hematology/Oncology and Division of Pulmonary and Critical Care Medicine, Department of Medicine and Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Lee K, Yun ST, Kim YG, Yoon Y, Jo EC. Adeno-associated virus-mediated expression of apolipoprotein (a) kringles suppresses hepatocellular carcinoma growth in mice. Hepatology 2006; 43:1063-73. [PMID: 16628632 DOI: 10.1002/hep.21149] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hepatocellular carcinoma (HCC) constitutes more than 90% of all primary liver cancers. HCC is a hypervascular tumor that develops from dedifferentiation of small avascular HCC and is therefore a good target for anti-angiogenic gene therapy. Recent studies have identified apolipoprotein(a) [apo(a)] kringles LK68 and LK8 (LKs) as having a potential antiangiogenic and anti-tumor activity, and the current study evaluates the therapeutic potential of gene therapy with recombinant adeno-associated virus carrying genes encoding LKs (rAAV-LK) in the treatment of hypervascular HCC. We generated rAAV-LK to obtain persistent transgene expression in vivo, which is essential for anti-angiogenic therapy. The rAAV-produced LKs substantially inhibited proliferation and migration of human umbilical vein endothelial cells (HUVECs) in vitro, validating their anti-angiogenic potential. Intramuscular administration of rAAV-LK gave 60% to 84% suppression (P < .05) of tumor growth in mice bearing subcutaneously transplanted HCC derived from Huh-7 and Hep3B cells, respectively. Histological and immunohistochemical analyses of HCC tumor sections showed that a single administration of rAAV-LK gave rise to persistent expression of LKs that inhibited tumor angiogenesis and triggered tumor apoptosis, and, thus, significantly suppressed tumor growth. The administration of rAAV-LK provided a significant survival benefit (P < .05), and 3 of 10 rAAV-LK-treated mice were still alive without visible tumors and without clinical symptoms 188 days after treatment. In conclusion, rAAV-LK is a potential candidate for anti-angiogenic gene therapy in the treatment of HCC.
Collapse
Affiliation(s)
- Kyuhyun Lee
- Gene Therapy Laboratory, Biomolecular Engineering Division, MOGAM Biotechnology Research Institute, Yongin, Kyonggi-Do, Republic of Korea
| | | | | | | | | |
Collapse
|
40
|
Bratt A, Birot O, Sinha I, Veitonmäki N, Aase K, Ernkvist M, Holmgren L. Angiomotin Regulates Endothelial Cell-Cell Junctions and Cell Motility. J Biol Chem 2005; 280:34859-69. [PMID: 16043488 DOI: 10.1074/jbc.m503915200] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We have previously identified angiomotin by its ability to bind to and mediate the anti-angiogenic properties of angiostatin. In vivo and in vitro data indicate an essential role of angiomotin in endothelial cell motility. Here we show that angiostatin binds angiomotin on the cell surface and provide evidence for a transmembrane model for the topology of both p80 and p130 angiomotin isoforms. Immunofluorescence analysis shows that angiomotin co-localized with ZO-1 in cell-cell contacts in endothelial cells in vitro and in angiogenic blood vessels of the postnatal mouse retina in vivo. Transfection of p80 as well as p130 angiomotin in Chinese hamster ovary cells resulted in junctional localization of both isoforms. Furthermore, p130 angiomotin could recruit ZO-1 to actin stress fibers. The p130 but not p80 isoform could be coprecipitated with MAGI-1b, a component of endothelial tight junctions. Paracellular permeability, as measured by diffusion of fluorescein isothiocyanate-dextran, was reduced by p80 and p130 angiomotin expression with 70 and 88%, respectively, compared with control. Angiostatin did not have any effect on cell permeability but inhibited the migration of angiomotin-expressing cells in the Boyden chamber assay. We conclude that angiomotin, in addition to controlling cell motility, may play a role in the assembly of endothelial cell-cell junctions.
Collapse
Affiliation(s)
- Anders Bratt
- Department of Oncology and Pathology, Cancer Centrum Karolinska, Karolinska Institutet, R8:03 Karolinska University Hospital, 171 76 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Angiogenesis, the formation of new blood vessels, is required for many pathologic processes, including invasive tumor growth as well as physiologic organ/tissue maintenance. Angiogenesis during development and adulthood is likely regulated by a balance between endogenous proangiogenic and antiangiogenic factors. It is speculated that tumor growth requires disruption of such balance; thus, the angiogenic switch must be turned "on" for cancer progression. If the angiogenic switch needs to be turned on to facilitate the tumor growth, the question remains as to what the physiologic status of this switch is in the adult human body; is it "off," with inhibitors outweighing the stimulators, or maintained at a fine "balance," keeping the proangiogenic properties of many factors at a delicate "activity" balance with endogenous inhibitors of angiogenesis. The physiologic status of this balance is important to understand as it might determine an individual's predisposition to turn the switch on during pathologic events dependent on angiogenesis. Conceivably, if the physiologic angiogenesis balance in human population exists somewhere between off and even balance, an individual's capacity and rate to turn the switch on might reflect their normal physiologic angiogenic status. In this regard, although extensive knowledge has been gained in our understanding of endogenous growth factors that stimulate angiogenesis, the activities associated with endogenous inhibitors are poorly understood. In this review, we will present an overview of the knowledge gained in studies related to the identification and characterization of 27 different endogenous inhibitors of angiogenesis.
Collapse
Affiliation(s)
- Pia Nyberg
- Center for Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
42
|
Galaup A, Magnon C, Rouffiac V, Opolon P, Opolon D, Lassau N, Tursz T, Perricaudet M, Griscelli F. Full kringles of plasminogen (aa 1–566) mediate complete regression of human MDA-MB-231 breast tumor xenografted in nude mice. Gene Ther 2005; 12:831-42. [PMID: 15789064 DOI: 10.1038/sj.gt.3302474] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since kringle (K)5, not present in the angiostatin molecule, was shown to be a key functional domain possessing potent antiangiogenic activity, we have evaluated a new plasminogen-derived fragment, consisting of the N-terminal part of human plasminogen, that included the complete secondary structure of K1-5 (aa 1-566). In contrast to other fragments described to date, K1-5 includes cysteine residues at positions 543, 555 and 560 allowing the formation of the three disulfide bonds lying within K5. Vascular endothelial cell proliferation and migration assays revealed that a replication-defective adenovirus (AdK1-5(1-566)), expressing K1-5 (aa 1-566), was dose dependently more potent that AdK1-3(1-354), an adenovirus that expresses only the first three kringles. In contrast to AdK1-3(1-354), a single intratumoral injection of AdK1-5(1-566) into MDA-MB-231 breast human carcinoma tumors was followed by a total regression of 40% of the tumor and by significant arrest of tumor growth (90%), which was correlated with a drastic decrease of functional neovascularization into the tumors. Furthermore, systemic delivery of AdK1-5(1-566) in mice inhibited the lung invasion of melanoma B16-F10 cells by 87%. Our findings provide evidence that the full kringles of plasminogen (aa 1-566) may be much more potent than K1-3 (aa 1-354), for the suppression of angiogenesis, tumor growth and metastatic dissemination.
Collapse
Affiliation(s)
- A Galaup
- Le Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 8121, Institut Gustave Roussy, Villejuif Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Smith E, Hoffman R. Multiple fragments related to angiostatin and endostatin in fluid from venous leg ulcers. Wound Repair Regen 2005; 13:148-57. [PMID: 15828939 DOI: 10.1111/j.1067-1927.2005.130205.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To investigate whether compromised angiogenesis could contribute to the impaired healing of venous leg ulcers, we have analyzed fluids from venous leg ulcers for the presence of the angiogenesis inhibitors angiostatin and endostatin. Multiple fragments related to angiostatin were detected by Western blot analysis. One angiostatin fragment was identified by mass spectrometry as plasminogen kringle domains 1-3 containing amino acids 82-343 of plasminogen, and a fraction containing this fragment inhibited tubule formation of human umbilical vein endothelial cells in a Matrigel assay. The leg ulcer fluids also contained endogenous endostatin (20 kDa) as well as higher molecular weight endostatin-related proteins. The concentrations of endostatin in the wound fluids, which ranged from 12.8 to 65.5 ng/ml, were higher than the concentration in human serum (7.7 ng/ml). Most of the endostatin in leg ulcer fluid appeared to be bound to the proteoglycan glypican-1. These data suggest that anti-angiogenic activity is present at the site of venous leg ulcers, and at least in the case of angiostatin, is biologically active.
Collapse
Affiliation(s)
- Ewen Smith
- Department of Biosciences, University of Hertfordshire, Hatfield, Hertfordshire, United Kingdom
| | | |
Collapse
|
44
|
You WK, So SH, Sohn YD, Lee H, Park DH, Chung SI, Chung KH. Characterization and biological activities of recombinant human plasminogen kringle 1-3 produced in Escherichia coli. Protein Expr Purif 2005; 36:1-10. [PMID: 15177278 DOI: 10.1016/j.pep.2004.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Revised: 01/26/2004] [Indexed: 12/31/2022]
Abstract
Angiogenesis, the formation of new capillaries from preexisting blood vessels, is involved in many pathological conditions, for example, tumorigenesis, diabetic retinopathy, and rheumatoid arthritis. Angiostatin, which contains the kringle 1-4 domains of plasminogen, is known to be a potent inhibitor of angiogenesis and a strong suppressor of various solid tumors. In this study, we expressed recombinant protein containing the kringle 1-3 domains of human plasminogen in Escherichia coli and investigated its biological activities. The protein was successfully refolded from inclusion bodies and purified at a 30% overall yield, as a single peak by HPLC. The purified recombinant protein had biochemical properties that were similar to those of the native form, which included molecular size, lysine-binding capacity, and immunoreactivity with a specific antibody. The recombinant protein was also found to strongly inhibit the proliferation of bovine capillary endothelial cells in vitro, and the formation of new capillaries on chick embryos. In addition, it suppressed the growth of primary Lewis lung carcinoma and B16 melanoma in an in vivo mouse model. Our findings suggest that the recombinant kringle 1-3 domains in a prokaryote expression system have anti-angiogenic activities, which may be useful in clinical and basic research in the field of angiogenesis.
Collapse
Affiliation(s)
- Weon-Kyoo You
- Mogam Biotechnology Research Institute, Bioproducts Research Center, 341 Pojung-ri, Koosung-myun, Yongin City, Kyonggi-do 449-910, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
45
|
Carroll VA, Nikitenko LL, Bicknell R, Harris AL. Antiangiogenic activity of a domain deletion mutant of tissue plasminogen activator containing kringle 2. Arterioscler Thromb Vasc Biol 2005; 25:736-41. [PMID: 15692103 DOI: 10.1161/01.atv.0000157980.15710.2b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The thrombolytic therapy drug, Reteplase, is a domain deletion mutant of tissue plasminogen activator (tPA), comprising the kringle 2 and protease (K2P) domains. Some kringle domains of hemostatic proteins are antiangiogenic and promote apoptosis. The objective of this study was to investigate whether K2P is an angiogenesis inhibitor because of the presence of kringle 2. METHODS AND RESULTS K2P inhibited basic fibroblast growth factor-induced human endothelial cell proliferation and migration. Inhibition was not dependent on the protease activity of K2P because similar results were obtained with catalytically inactivated K2P. Purification of the kringle 2 domain derived from elastase cleavage of K2P at the Arg275-Ile276 bond revealed that inhibition was mediated by this domain. In addition, K2P inhibited angiogenesis in vivo and increased endothelial cell apoptosis. CONCLUSIONS Wound healing and angiogenesis are severely compromised by K2P. These data provide new mechanistic insights into the bleeding complications observed in some patients while undergoing thrombolytic therapy with this drug. In addition, we identify the kringle 2 domain of tPA as a novel target for antiangiogenic therapy.
Collapse
Affiliation(s)
- Veronica A Carroll
- Molecular Oncology Laboratory, Cancer Research UK, the Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | | | | |
Collapse
|
46
|
Burwick NR, Wahl ML, Fang J, Zhong Z, Capaldi RA, Kenan DJ, Pizzo SV. An Inhibitor of the F1 subunit of ATP synthase (IF1) modulates the activity of angiostatin on the endothelial cell surface. J Biol Chem 2005; 280:1740-5. [PMID: 15528193 PMCID: PMC1201548 DOI: 10.1074/jbc.m405947200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Angiostatin binds to endothelial cell (EC) surface F(1)-F(0) ATP synthase, leading to inhibition of EC migration and proliferation during tumor angiogenesis. This has led to a search for angiostatin mimetics specific for this enzyme. A naturally occurring protein that binds to the F1 subunit of ATP synthase and blocks ATP hydrolysis in mitochondria is inhibitor of F1 (IF1). The present study explores the effect of IF1 on cell surface ATP synthase. IF1 protein bound to purified F(1) ATP synthase and inhibited F(1)-dependent ATP hydrolysis consistent with its reported activity in studies of mitochondria. Although exogenous IF1 did not inhibit ATP production on the surface of EC, it did conserve ATP on the cell surface, particularly at low extracellular pH. IF1 inhibited ATP hydrolysis but not ATP synthesis, in contrast to angiostatin, which inhibited both. In cell-based assays used to model angiogenesis in vitro, IF1 did not inhibit EC differentiation to form tubes and only slightly inhibited cell proliferation compared with angiostatin. From these data, we conclude that inhibition of ATP synthesis is necessary for an anti-angiogenic outcome in cell-based assays. We propose that IF1 is not an angiostatin mimetic, but it can serve a protective role for EC in the tumor microenvironment. This protection may be overridden in a concentration-dependent manner by angiostatin. In support of this hypothesis, we demonstrate that angiostatin blocks IF1 binding to ATP synthase and abolishes its ability to conserve ATP. These data suggest that there is a relationship between the binding sites of IF1 and angiostatin on ATP synthase and that IF1 could be employed to modulate angiogenesis.
Collapse
Affiliation(s)
- Nick R. Burwick
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
| | - Miriam L. Wahl
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
| | - Jun Fang
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
| | - Zhaoxi Zhong
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
| | - Roderick A. Capaldi
- Department of Biology and Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Daniel J. Kenan
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
| | - Salvatore V. Pizzo
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
47
|
Affiliation(s)
- Jennifer A Doll
- Division of Hematology/Oncology, Robert H Lurie Comprehensive Cancer Center, Chicago, IL, USA
| | | |
Collapse
|
48
|
Sharma MR, Tuszynski GP, Sharma MC. Angiostatin-induced inhibition of endothelial cell proliferation/apoptosis is associated with the down-regulation of cell cycle regulatory protein cdk5. J Cell Biochem 2004; 91:398-409. [PMID: 14743398 DOI: 10.1002/jcb.10762] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Endothelial cells (ECs) are quiescent in normal blood vessels, but undergo rapid bursts of proliferation after vascular injury, hypoxia or induced by powerful angiogenic cytokines like fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF). Deregulated proliferation of ECs facilitates angiogenic processes and promotes tumor growth. In dividing cells, cell cycle-associated protein kinases, which are referred as cyclin-dependent kinases (cdks), regulate proliferation, differentiation, senescence, and apoptosis. Cyclin-dependent kinase-5 (cdk5) is expressed in neuronal cells and plays an important role in neurite outgrowth, of neuronal migration and neurogenesis, its functions in non-neuronal cells are unclear. Here, we show for the first time that the cdk5 is expressed at high levels in proliferating bovine aortic endothelial (BAE) cells, by contrast insignificant low levels of cdk5 expression in quiescent BAE cells. In addition, bFGF up-regulates cdk5 expression in a dose-dependent fashion. Interestingly, temporal expression data suggests that cdk5 expression is very low between 24-48 h, but high level of cdk5 expression was detected during 60-72 h. This later time corresponds to the time of completion of one cell cycle (doubling of cell population) of BAE cell culture. Angiostatin (AS), a powerful inhibitor of angiogenesis inhibits ECs proliferation in dose-dependent manner with concomitant down-regulation of cdk5 expression. The role of cdk5 in ECs, proliferation and apoptosis was confirmed by selective inhibition of cdk5 expression by the purine derivative roscovitine, which inhibits bFGF-stimulated BAE cells proliferation and induces apoptosis in dose-specific manner. By contrast, the roscovitine analog olomoucine, which is a specific inhibitor of cdk4, but not of cdk5 failed to affect ECs proliferation and apoptosis. These data suggest for the first time that neuron specific protein cdk5 may have significant role in the regulation of ECs proliferation, apoptosis, and angiogenesis and extends beyond its role in neurogenesis.
Collapse
Affiliation(s)
- Meena R Sharma
- Laboratory of Biochemistry, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
49
|
Chavakis T, Athanasopoulos A, Rhee JS, Orlova V, Schmidt-Wöll T, Bierhaus A, May AE, Celik I, Nawroth PP, Preissner KT. Angiostatin is a novel anti-inflammatory factor by inhibiting leukocyte recruitment. Blood 2004; 105:1036-43. [PMID: 15383457 DOI: 10.1182/blood-2004-01-0166] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis and inflammation are closely related biologic processes in wound healing and the responses to vascular injury as well as in cardiovascular diseases; however, the molecular connections are poorly defined. In particular, it is yet unclear whether endogenous factors can regulate both angiogenesis and inflammation. Here, we show that the endogenous angiogenesis inhibitor, angiostatin (containing kringle domains 1-4 of plasminogen), serves an anti-inflammatory role, since the kringles 1-3 and its kringle 4 directly interact with leukocyte beta1- and beta2-integrins, respectively. In particular, a specific interaction between kringle 4 and alphaMbeta2-integrin (Mac-1) but not leukocyte function antigen 1 (LFA-1) was identified. Angiostatin thereby inhibited beta1- and beta2-integrin-mediated adhesion of leukocytes to extracellular matrix proteins and the endothelium as well as their transmigration through the endothelium in vitro. Moreover, angiostatin blocked the peritonitis-induced neutrophil emigration in vivo. In addition, through its interaction with Mac-1, angiostatin reduced activation of the proinflammatory transcription factor nuclear factor kappaB (NFkappaB), as well as the NFkappaB-related expression of tissue factor, a potent initiator of hemostasis following vascular injury. Finally, angiostatin forms were generated in vivo following skin injury/inflammation and were detectable during the following entire period of wound healing peaking at the terminal phase of the healing process. Taken together, over and above inhibition of neovascularization, angiostatin was identified as an antiadhesive/anti-inflammatory substance. These observations could provide the basis for new therapeutic applications of angiostatin to target chronic inflammatory processes in different pathologic situations.
Collapse
|
50
|
Majumdar M, Tarui T, Shi B, Akakura N, Ruf W, Takada Y. Plasmin-induced Migration Requires Signaling through Protease-activated Receptor 1 and Integrin α9β1. J Biol Chem 2004; 279:37528-34. [PMID: 15247268 DOI: 10.1074/jbc.m401372200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Plasmin is a major extracellular protease that elicits intracellular signals to mediate platelet aggregation, chemotaxis of peripheral blood monocytes, and release of arachidonate and leukotriene from several cell types in a G protein-dependent manner. Angiostatin, a fragment of plasmin(ogen), is a ligand and an antagonist for integrin alpha(9)beta(1). Here we report that plasmin specifically interacts with alpha(9)beta(1) and that plasmin induces of cells expressing migration recombinant alpha(9)beta(1) (alpha(9)-Chinese hamster ovary (CHO) cells). Migration was dependent on an interaction of the kringle domains of plasmin with alpha(9)beta(1) as well as the catalytic activity of plasmin. Angiostatin, representing the kringle domains of plasmin, alone did not induce the migration of alpha(9)-CHO cells, but simultaneous activation of the G protein-coupled protease-activated receptor (PAR)-1 with an agonist peptide induced the migration on angiostatin, whereas PAR-2 or PAR-4 agonist peptides were without effect. Furthermore, a small chemical inhibitor of PAR-1 (RWJ 58259) and a palmitoylated PAR-1-blocking peptide inhibited plasmin-induced migration of alpha(9)-CHO cells. These results suggest that plasmin induces migration by kringle-mediated binding to alpha(9)beta(1) and simultaneous proteolytic activation of PAR-1.
Collapse
Affiliation(s)
- Mousumi Majumdar
- Department of Dermatology, University of California Davis Medical Center, Sacramento, California 95817, USA
| | | | | | | | | | | |
Collapse
|