1
|
Gouignard N, Theveneau E, Saint-Jeannet JP. Dynamic expression of MMP28 during cranial morphogenesis. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190559. [PMID: 32829678 DOI: 10.1098/rstb.2019.0559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a large family of proteases comprising 24 members in vertebrates. They are well known for their extracellular matrix remodelling activity. MMP28 is the latest member of the family to be discovered. It is a secreted MMP involved in wound healing, immune system maturation, cell survival and migration. MMP28 is also expressed during embryogenesis in human and mouse. Here, we describe the detailed expression profile of MMP28 in Xenopus laevis embryos. We show that MMP28 is expressed maternally and accumulates at neurula and tail bud stages specifically in the cranial placode territories adjacent to migrating neural crest cells. As a secreted MMP, MMP28 may be required in neural crest-placode interactions. This article is part of a discussion meeting issue 'Contemporary morphogenesis'.
Collapse
Affiliation(s)
- Nadege Gouignard
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.,Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Eric Theveneau
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean-Pierre Saint-Jeannet
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| |
Collapse
|
2
|
Palacios-Martinez J, Caballero-Perez J, Espinal-Centeno A, Marquez-Chavoya G, Lomeli H, Salas-Vidal E, Schnabel D, Chimal-Monroy J, Cruz-Ramirez A. Multi-organ transcriptomic landscape of Ambystoma velasci metamorphosis. Dev Biol 2020; 466:22-35. [PMID: 32828730 DOI: 10.1016/j.ydbio.2020.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/11/2020] [Accepted: 08/04/2020] [Indexed: 12/21/2022]
Abstract
Metamorphosis is a postembryonic developmental process that involves morphophysiological and behavioral changes, allowing organisms to adapt into a novel environment. In some amphibians, aquatic organisms undergo metamorphosis to adapt in a terrestrial environment. In this process, these organisms experience major changes in their circulatory, respiratory, digestive, excretory and reproductive systems. We performed a transcriptional global analysis of heart, lung and gills during diverse stages of Ambystoma velasci to investigate its metamorphosis. In our analyses, we identified eight gene clusters for each organ, according to the expression patterns of differentially expressed genes. We found 4064 differentially expressed genes in the heart, 4107 in the lung and 8265 in the gills. Among the differentially expressed genes in the heart, we observed genes involved in the differentiation of cardiomyocytes in the interatrial zone, vasculogenesis and in the maturation of coronary vessels. In the lung, we found genes differentially expressed related to angiogenesis, alveolarization and synthesis of the surfactant protein. In the case of the gills, the most prominent biological processes identified are degradation of extracellular matrix, apoptosis and keratin production. Our study sheds light on the transcriptional responses and the pathways modulation involved in the transformation of the facultative metamorphic salamander A. velasci in an organ-specific manner.
Collapse
Affiliation(s)
- Janet Palacios-Martinez
- Molecular & Developmental Complexity Group, Unit of Advanced Genomics, UGA-CINVESTAV, Irapuato, Mexico
| | - Juan Caballero-Perez
- Molecular & Developmental Complexity Group, Unit of Advanced Genomics, UGA-CINVESTAV, Irapuato, Mexico; Department of Biochemistry, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | - Annie Espinal-Centeno
- Molecular & Developmental Complexity Group, Unit of Advanced Genomics, UGA-CINVESTAV, Irapuato, Mexico
| | - Gilberto Marquez-Chavoya
- Molecular & Developmental Complexity Group, Unit of Advanced Genomics, UGA-CINVESTAV, Irapuato, Mexico
| | - Hilda Lomeli
- Departamento de Genética del Desarrollo y FisioloMéxico Citygía Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, AP 510-3, Cuernavaca, Mor, 62250, Mexico
| | - Enrique Salas-Vidal
- Departamento de Genética del Desarrollo y FisioloMéxico Citygía Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, AP 510-3, Cuernavaca, Mor, 62250, Mexico
| | - Denhi Schnabel
- Departamento de Genética del Desarrollo y FisioloMéxico Citygía Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, AP 510-3, Cuernavaca, Mor, 62250, Mexico
| | - Jesus Chimal-Monroy
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, DF, 04510, Mexico
| | - Alfredo Cruz-Ramirez
- Molecular & Developmental Complexity Group, Unit of Advanced Genomics, UGA-CINVESTAV, Irapuato, Mexico.
| |
Collapse
|
3
|
Gouignard N, Andrieu C, Theveneau E. Neural crest delamination and migration: Looking forward to the next 150 years. Genesis 2018; 56:e23107. [PMID: 29675839 DOI: 10.1002/dvg.23107] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 12/24/2022]
Abstract
Neural crest (NC) cells were described for the first time in 1868 by Wilhelm His. Since then, this amazing population of migratory stem cells has been intensively studied. It took a century to fully unravel their incredible abilities to contribute to nearly every organ of the body. Yet, our understanding of the cell and molecular mechanisms controlling their migration is far from complete. In this review, we summarize the current knowledge on epithelial-mesenchymal transition and collective behavior of NC cells and propose further stops at which the NC train might be calling in the near future.
Collapse
Affiliation(s)
- Nadège Gouignard
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Cyril Andrieu
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Eric Theveneau
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| |
Collapse
|
4
|
Zhang YF, Xu W, Lou QQ, Li YY, Zhao YX, Wei WJ, Qin ZF, Wang HL, Li JZ. Tetrabromobisphenol A disrupts vertebrate development via thyroid hormone signaling pathway in a developmental stage-dependent manner. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:8227-34. [PMID: 24963557 DOI: 10.1021/es502366g] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Data concerning effects of tetrabromobisphenol A (TBBPA) on thyroid hormone (TH)-dependent vertebrate development have been limited, although TBBPA has been demonstrated in vitro to disrupt the TH signaling pathway at the transcriptional level. In this study, we investigated the effects of TBBPA on T3-induced and spontaneous Xenopus laevis metamorphosis, which share many similarities with TH-dependent development in higher vertebrates. In a 6-day T3-induced metamorphosis assay using premetamorphic tadpoles, 10-1000 nM TBBPA exhibited inhibitory effects on T3-induced expression of TH-response genes and morphological changes in a concentration-dependent manner, with a weak stimulatory action on tadpole development and TH-response gene expression in the absence of T3 induction. In a spontaneous metamorphosis assay, we further found that TBBPA promoted tadpole development from stage 51 to 56 (pre- and prometamorphic stages) but inhibited metamorphic development from stage 57 to 66 (metamorphic climax). These results strongly show that TBBPA, even at low concentrations, disrupts TH-dependent development in a developmental stage-dependent manner, i.e., TBBPA exhibits an antagonistic activity at the developmental stages when animals have high endogenous TH levels, whereas it acts as an agonist at the developmental stages when animals have low endogenous TH levels. Our study highlights the adverse influences of TBBPA on TH-dependent development in vertebrates.
Collapse
Affiliation(s)
- Yin-Feng Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences and ‡Department of Environmental Bio-Technology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Tonge D, Zhu N, Lynham S, Leclere P, Snape A, Brewer A, Schlomann U, Ferdous T, Tennyson C, Bartsch JW, Ward M, Pizzey J. Axonal growth towards Xenopus skin in vitro is mediated by matrix metalloproteinase activity. Eur J Neurosci 2012; 37:519-31. [PMID: 23216618 DOI: 10.1111/ejn.12075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 10/14/2012] [Accepted: 11/01/2012] [Indexed: 12/29/2022]
Abstract
We have previously demonstrated that the growth of peripheral nervous system axons is strongly attracted towards limb buds and skin explants in vitro. Here, we show that directed axonal growth towards skin explants of Xenopus laevis in matrigel is associated with expression of matrix metalloproteinase (MMP)-18 and also other MMPs, and that this long-range neurotropic activity is inhibited by the broad-spectrum MMP inhibitors BB-94 and GM6001. We also show that forced expression of MMP-18 in COS-7 cell aggregates enhances axonal growth from Xenopus dorsal root ganglia explants. Nidogen is the target of MMPs released by cultured skin in matrigel, whereas other components remain intact. Our results suggest a novel link between MMP activity and extracellular matrix breakdown in the control of axonal growth.
Collapse
Affiliation(s)
- David Tonge
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London Bridge, London, SE1 1UL, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Fu L, Sun G, Fiorentino M, Shi YB. Characterization of Xenopus tissue inhibitor of metalloproteinases-2: a role in regulating matrix metalloproteinase activity during development. PLoS One 2012; 7:e36707. [PMID: 22693555 PMCID: PMC3365048 DOI: 10.1371/journal.pone.0036707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 04/05/2012] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Frog metamorphosis is totally dependent on thyroid hormone (T3) and mimics the postembryonic period around birth in mammals. It is an excellent model to study the molecular basis of postembryonic development in vertebrate. We and others have shown that many, if not all, matrix metalloproteinases (MMPs), which cleave proteins of the extracellular matrix as well as other substrates, are induced by T3 and important for metamorphosis. MMP activity can be inhibited by tissue inhibitors of metalloproteinase (TIMPs). There are 4 TIMPs in vertebrates and their roles in postembryonic development are poorly studied. METHODOLOGY/PRINCIPAL FINDINGS We analyzed the TIMP2 genes in Xenopus laevis and the highly related species Xenopus tropicalis and discovered that TIMP2 is a single copy gene in Xenopus tropicalis as in mammals but is duplicated in Xenopus laevis. Furthermore, the TIMP2 locus in Xenopus tropicalis genome is different from that in human, suggesting an evolutionary reorganization of the locus. More importantly, we found that the duplicated TIMP2 genes were similarly regulated in the developing limb, remodeling intestine, resorbing tail during metamorphosis. Unexpectedly, like its MMP target genes, the TIMP2 genes were upregulated by T3 during both natural and T3-induced metamorphosis. CONCLUSIONS/SIGNIFICANCE Our results indicate that TIMP2 is highly conserved among vertebrates and that the TIMP2 locus underwent a chromosomal reorganization during evolution. Furthermore, the unexpected upregulation of TIMP2 genes during metamorphosis suggests that proper balance of MMP activity is important for metamorphosis.
Collapse
Affiliation(s)
- Liezhen Fu
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Guihong Sun
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- Key Laboratory of Allergy and Immune-related Diseases and Centre for Medical Research, School of Medicine, Wuhan University, Wuhan, People‘s Republic of China
| | - Maria Fiorentino
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
7
|
Lenkowski JR, McLaughlin KA. Acute atrazine exposure disrupts matrix metalloproteinases and retinoid signaling during organ morphogenesis in Xenopus laevis. J Appl Toxicol 2011; 30:582-9. [PMID: 20809547 DOI: 10.1002/jat.1529] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Exposure to the herbicide atrazine disrupts many developmental processes in non-target animals. Atrazine exposure during organ morphogenesis in amphibians results in dramatic malformations; the mechanism by which this happens has not been described. We have taken a candidate gene approach to explore two possible mechanisms by which acute atrazine exposure causes extensive malformations in several tissues in Xenopus laevis tadpoles. Using a static renewal system, we exposed tadpoles to atrazine for 6-48 h during organ morphogenesis (Nieuwkoop and Faber stage 42). We observed degradation of cranial cartilage and differentiated muscle in the head, gut and somites of exposed tadpoles. Additionally, transcript levels of matrix metalloproteinases (MMPs), specifically both MMP9TH and MMP18, increased in atrazine-exposed tadpoles in a dose-response test, and MMP18 increased as early as 6 h after exposure began. Gelatinase MMP activity was also altered by atrazine exposure, indicating that atrazine disrupts gene function at the level of transcription and protein activity. Furthermore, transcript levels of the enzyme Xcyp26, an enzyme in the retinoic acid signaling pathway, significantly decreased in the intestines of tadpoles exposed to 10 or 35 mg l(-1) atrazine for 48 h. Our results suggest two mechanisms by which atrazine can disrupt tissue morphogenesis: through misregulation of MMPs that are critical in extracellular matrix remodeling throughout development and the disruption of retinoic acid signaling. This study begins to describe conserved vertebrate developmental processes that are disrupted by atrazine exposure.
Collapse
Affiliation(s)
- Jenny R Lenkowski
- Department of Biology, 163 Packard Avenue, Dana Hall, Tufts University, Medford, MA 02155, USA
| | | |
Collapse
|
8
|
Mathew S, Fu L, Hasebe T, Ishizuya-Oka A, Shi YB. Tissue-dependent induction of apoptosis by matrix metalloproteinase stromelysin-3 during amphibian metamorphosis. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2010; 90:55-66. [PMID: 20301218 PMCID: PMC3412310 DOI: 10.1002/bdrc.20170] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Matrix metalloproteinases (MMPs) are a superfamily of Zn(2+)-dependent proteases that are capable of cleaving the proteinaceous component of the extracellular matrix (ECM). The ECM is a critical medium for cell-cell interactions and can also directly signal cells through cell surface ECM receptors, such as integrins. In addition, many growth factors and signaling molecules are stored in the ECM. Thus, ECM remodeling and/or degradation by MMPs are expected to affect cell fate and behavior during many developmental and pathological processes. Numerous studies have shown that the expression of MMP mRNAs and proteins associates tightly with diverse developmental and pathological processes, such as tumor metastasis and mammary gland involution. In vivo evidence to support the roles of MMPs in these processes has been much harder to get. Here, we will review some of our studies on MMP11, or stromelysin-3, during the thyroid hormone-dependent amphibian metamorphosis, a process that resembles the so-called postembryonic development in mammals (from a few months before to several months after birth in humans when organ growth and maturation take place). Our investigations demonstrate that stromelysin-3 controls apoptosis in different tissues via at least two distinct mechanisms.
Collapse
Affiliation(s)
- Smita Mathew
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, 20892
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, 20892
| | - Takashi Hasebe
- Department of Biology, Nippon Medical School, Kawasaki, Kanagawa 211-0063, Japan
| | - Atsuko Ishizuya-Oka
- Department of Biology, Nippon Medical School, Kawasaki, Kanagawa 211-0063, Japan
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, 20892
| |
Collapse
|
9
|
Nguyen N, Stellwag EJ, Zhu Y. Prolactin-dependent modulation of organogenesis in the vertebrate: Recent discoveries in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2008; 148:370-80. [PMID: 18593647 DOI: 10.1016/j.cbpc.2008.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 05/19/2008] [Accepted: 05/19/2008] [Indexed: 11/28/2022]
Abstract
The scientific literature is replete with evidence of the multifarious functions of the prolactin (PRL)/growth hormone (GH) superfamily in adult vertebrates. However, little information is available on the roles of PRL and related hormones prior to the adult stage of development. A limited number of studies suggest that GH functions to stimulate glucose transport and protein synthesis in mouse blastocytes and may be involved during mammalian embryogenesis. In contrast, the evidence for a role of PRL during vertebrate embryogenesis is limited and controversial. Genes encoding GH/PRL hormones and their respective receptors are actively transcribed and translated in various animal models at different time points, particularly during tissue remodeling. We have addressed the potential function of GH/PRL hormones during embryonic development in zebrafish by the temporary inhibition of in vivo PRL translation. This treatment caused multiple morphological defects consistent with a role of PRL in embryonic-stage organogenesis. The affected organs and tissues are known targets of PRL activity in fish and homologous structures in mammalian species. Traditionally, the GH/PRL hormones are viewed as classical endocrine hormones, mediating functions through the circulatory system. More recent evidence points to cytokine-like actions of these hormones through either an autocrine or a paracrine mechanism. In some situations they could mimic actions of developmentally regulated genes as suggested by experiments in multiple organisms. In this review, we present similarities and disparities between zebrafish and mammalian models in relation to PRL and PRLR activity. We conclude that the zebrafish could serve as a suitable alternative to the rodent model to study PRL functions in development, especially in relation to organogenesis.
Collapse
Affiliation(s)
- Nhu Nguyen
- Department of Biology, Howell Science Complex, East Carolina University, 1000 E. 5th Street, Greenville, NC 27858, USA
| | | | | |
Collapse
|
10
|
Muixí L, Carrascal M, Alvarez I, Daura X, Martí M, Armengol MP, Pinilla C, Abian J, Pujol-Borrell R, Jaraquemada D. Thyroglobulin peptides associate in vivo to HLA-DR in autoimmune thyroid glands. THE JOURNAL OF IMMUNOLOGY 2008; 181:795-807. [PMID: 18566446 DOI: 10.4049/jimmunol.181.1.795] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Endocrine epithelial cells, targets of the autoimmune response in thyroid and other organ-specific autoimmune diseases, express HLA class II (HLA-II) molecules that are presumably involved in the maintenance and regulation of the in situ autoimmune response. HLA-II molecules thus expressed by thyroid cells have the "compact" conformation and are therefore expected to stably bind autologous peptides. Using a new approach to study in situ T cell responses without the characterization of self-reactive T cells and their specificity, we have identified natural HLA-DR-associated peptides in autoimmune organs that will allow finding peptide-specific T cells in situ. This study reports a first analysis of HLA-DR natural ligands from ex vivo Graves' disease-affected thyroid tissue. Using mass spectrometry, we identified 162 autologous peptides from HLA-DR-expressing cells, including thyroid follicular cells, with some corresponding to predominant molecules of the thyroid colloid. Most interestingly, eight of the peptides were derived from a major autoantigen, thyroglobulin. In vitro binding identified HLA-DR3 as the allele to which one of these peptides likely associates in vivo. Computer modeling and bioinformatics analysis suggested other HLA-DR alleles for binding of other thyroglobulin peptides. Our data demonstrate that although the HLA-DR-associated peptide pool in autoimmune tissue mostly belongs to abundant ubiquitous proteins, peptides from autoantigens are also associated to HLA-DR in vivo and therefore may well be involved in the maintenance and the regulation of the autoimmune response.
Collapse
Affiliation(s)
- Laia Muixí
- Immunology Unit, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hu ZG, Chen Y, Zhou Q, Lv XY, Zhang Z, Wang YD, Xiao Y, Guo H, Liu YH, Tan RZ, Li QW, Bian GH, Wei YQ. Characterization of a novel Xenopus SH3 domain binding protein 5 like (xSH3BP5L) gene. Biochem Biophys Res Commun 2008; 365:214-220. [PMID: 17981148 DOI: 10.1016/j.bbrc.2007.10.146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 10/20/2007] [Indexed: 05/25/2023]
Abstract
SH3 domain binding protein 5 like (xSH3BP5L) gene encodes a protein that is a new found member of SH3 domain binding protein family which has been implicated at multiple levels of biological functions. Here, we have characterized Xenopus SH3 domain binding protein 5 like (xSH3BP5L) gene in the development of Xenopus laevis. Transcripts of xSH3BP5L were detected at all stages of development and in numerous adult tissues. Whole-mount in situ hybridization demonstrated that xSH3BP5L is expressed at the animal pole from stage-2 onward. Interestingly, translational inhibition of xSH3BP5L using antisense morpholino oligonucleotides (MOs) and overexpression of xSH3BP5L in Xenopus embryos resulted in failed or delayed blastopore closure. Taken together, these data suggested that xSH3BP5L is required for normal embryogenesis of blastopore closure in X. laevis.
Collapse
Affiliation(s)
- Zhong-Guo Hu
- School of Life Science, and Core Facility of Gene Engineered Mouse, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Sichuan 610041, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Walsh LA, Carere DA, Cooper CA, Damjanovski S. Membrane type-1 matrix metalloproteinases and tissue inhibitor of metalloproteinases-2 RNA levels mimic each other during Xenopus laevis metamorphosis. PLoS One 2007; 2:e1000. [PMID: 17912339 PMCID: PMC1991586 DOI: 10.1371/journal.pone.0001000] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 09/16/2007] [Indexed: 11/30/2022] Open
Abstract
Matrix metalloproteinases (MMPs) and their endogenous inhibitors TIMPs (tissue inhibitors of MMPs), are two protein families that work together to remodel the extracellular matrix (ECM). TIMPs serve not only to inhibit MMP activity, but also aid in the activation of MMPs that are secreted as inactive zymogens. Xenopus laevis metamorphosis is an ideal model for studying MMP and TIMP expression levels because all tissues are remodeled under the control of one molecule, thyroid hormone. Here, using RT-PCR analysis, we examine the metamorphic RNA levels of two membrane-type MMPs (MT1-MMP, MT3-MMP), two TIMPs (TIMP-2, TIMP-3) and a potent gelatinase (Gel-A) that can be activated by the combinatory activity of a MT-MMP and a TIMP. In the metamorphic tail and intestine the RNA levels of TIMP-2 and MT1-MMP mirror each other, and closely resemble that of Gel-A as all three are elevated during periods of cell death and proliferation. Conversely, MT3-MMP and TIMP-3 do not have similar RNA level patterns nor do they mimic the RNA levels of the other genes examined. Intriguingly, TIMP-3, which has been shown to have anti-apoptotic activity, is found at low levels in tissues during periods of apoptosis.
Collapse
Affiliation(s)
- Logan A. Walsh
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Deanna A. Carere
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Colin A. Cooper
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Sashko Damjanovski
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
13
|
Yoshizato K. Molecular Mechanism and Evolutional Significance of Epithelial–Mesenchymal Interactions in the Body‐ and Tail‐Dependent Metamorphic Transformation of Anuran Larval Skin. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 260:213-60. [PMID: 17482907 DOI: 10.1016/s0074-7696(06)60005-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The epidermis of an anuran larva is composed of apical and skein cells that are both mitotically active and self-renewed through larval life. In contrast, the epidermis of an adult frog, with typical stratified squamous epithelium composed of germinative basal, spinous, granular, and cornified cells, is histologically identical to the mammalian epidermis. Two important issues have not yet been addressed in the study of the development of anuran skin. One is the origin of adult basal cells in the larval epidermis and the other is the mechanism by which larval basal cells are transformed into adult basal cells in a region- (body- and tail-) dependent manner. The cell lineage relationship between the larval and adult epidermal cells was determined by examining the expression profiles of several genes that are expressed specifically in larval and/or adult epidermal cells and differentiation profiles of larval basal cells cultured in the presence of thyroid hormone (TH). Histological analyses using several markers led to the identification of the skin transformation center (STC) where the conversion of larval skin to the adult counterpart is taking place. The STC emerges at a specific place in the body skin and at a specific stage of larval development. The STC progressively "moves" into and "invades" the adjacent larval region of the trunk skin as a larva develops, converting the larval skin into the preadult skin, but never into the tail region. The larva to preadult skin conversion requires an epidermal-mesenchymal interaction. The genesis of preadult basal cells is suppressed in the tail epidermis due to the influence of underlying mesenchyme in the tail region. PDGF signaling is one of the molecular cues of epidermal-mesenchymal interactions. In addition, a unique feature of anuran skin metamorphosis is presented referring to the skin of other vertebrates. Histological comparisons of the skin among vertebrate species strongly suggested a similarity between the anuran larval skin and the teleost fish adult skin and between the anuran adult skin and the adult skin of other tetrapod species. Based on these similarities, the evolutional significance of anuran skin metamorphosis is proposed. Finally, studies are reviewed that reveal the molecular mechanism of anuran metamorphosis in relation to TH-TR-TRE signaling. The results of these studies suggest new aspects of the biological significance of TH, and also enable us to envision concerted regulations of the expression of a gene in the frame of the gene network responsible for metamorphic remodeling of larval tissues. The present review will contribute to an understanding of the molecular mechanism of region-dependent skin development of anurans from not only a metamorphic but also from an evolutional point of view, and will provide a new way to understand the biological significance of TH in anurans.
Collapse
Affiliation(s)
- Katsutoshi Yoshizato
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashihiroshima, 739-8526, Japan
| |
Collapse
|
14
|
Hammoud L, Walsh LA, Damjanovski S. Cloning and developmental characterization ofXenopus laevismembrane type-3 matrix metalloproteinase (MT3-MMP). Biochem Cell Biol 2006; 84:167-77. [PMID: 16609697 DOI: 10.1139/o05-175] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proper extracellular matrix (ECM) remodeling, mediated by matrix metalloproteinases (MMPs), is crucial for the development and survival of multicellular organisms. Full-length Xenopus laevis membrane type-3 matrix metallo proteinase (MT3-MMP) was amplified by PCR and cloned from a stage 28 Xenopus head cDNA library. A comparison of the derived Xenopus MT3-MMP protein sequence to that of other vertebrates revealed 86% identity with human and mouse and 85% identity with chicken. The expression profile of MT3-MMP was examined during Xenopus embryogenesis: MT3-MMP transcripts were first detected at the later stages of development and were localized to dorsal and anterior structures. During metamorphosis and in the adult frog, MT3-MMP expression was restricted to specific tissues and organs. Treatment of Xenopus embryos with lithium chloride (LiCl), ultraviolet irradiation (UV), or retinoic acid (RA) revealed that MT3-MMP levels increased with LiCl-dorsalizing treatments and decreased with UV-ventralizing and RA-anterior neural truncating treatments. Overexpression of MT3-MMP through RNA injections led to dose-dependent developmental abnormalities and death. Moreover, MT3-MMP overexpression resulted in neural and head structure abnormalities, as well as truncated axes. Taken together, these results indicate that MT3-MMP expression in Xenopus is spatially and temporally restricted. Furthermore, deregulation of MT3-MMP during early embryogenesis has detrimental effects on development.Key words: Xenopus laevis, MT3-MMP, development, ECM, dorsalization, ventralization.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cloning, Molecular
- Conserved Sequence
- DNA, Complementary/genetics
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/radiation effects
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/radiation effects
- Humans
- Lithium Chloride/pharmacology
- Matrix Metalloproteinase 16
- Matrix Metalloproteinases/genetics
- Matrix Metalloproteinases, Membrane-Associated
- Metallothionein 3
- Mice
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- Tissue Distribution
- Tretinoin/pharmacology
- Ultraviolet Rays
- Xenopus laevis/embryology
- Xenopus laevis/genetics
- Xenopus laevis/growth & development
- Xenopus laevis/metabolism
Collapse
Affiliation(s)
- Lamis Hammoud
- Department of Physiology and Pharmacology, University of Western Ontario, London, Canada
| | | | | |
Collapse
|
15
|
Affiliation(s)
- Yufei Shi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, PO Box 3354, Riyadh 11211, Saudi Arabia
| | | |
Collapse
|
16
|
Saha SK, Ghosh P, Konar A, Bhattacharya S, Roy SS. Differential expression of procollagen lysine 2-oxoglutarate 5-deoxygenase and matrix metalloproteinase isoforms in hypothyroid rat ovary and disintegration of extracellular matrix. Endocrinology 2005; 146:2963-75. [PMID: 15817667 DOI: 10.1210/en.2004-1440] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hypothyroid-induced reproductive malfunction in both the sexes is a common phenomenon of global concern. In an attempt to characterize the differentially expressed genes that might be responsible for these disorders, we have identified a number of clones in hypothyroid rat ovary by subtractive hybridization. One such clone is procollagen lysyl hydroxylase2 (Plod-2), the key enzyme for the first step of collagen biosynthetic pathway, which was down-regulated in hypothyroid condition. We have also demonstrated the reduced expression of other isoforms of Plods, namely Plod-1 and -3 in hypothyroid rat ovary. The current studies are the first of their kind to report that thyroid hormone regulates the Plod gene in rat ovary. Moreover, we have shown the up-regulation of matrix-degrading enzyme(s), matrix metalloproteinase(s) in the hypothyroid rat ovary, whereas the tissue-inhibitory metalloproteinase is down-regulated. Finally, the results of the present studies indicate that in hypothyroid condition, collagen biosynthesis in ovary seems to be disturbed with concomitant enhancement in collagen degradation, resulting in disintegration of overall ovarian structure.
Collapse
Affiliation(s)
- Samir Kumar Saha
- Molecular Endocrinology Laboratory, Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | | | | | | | | |
Collapse
|
17
|
Hehr CL, Hocking JC, McFarlane S. Matrix metalloproteinases are required for retinal ganglion cell axon guidance at select decision points. Development 2005; 132:3371-9. [PMID: 15975939 DOI: 10.1242/dev.01908] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Axons receive guidance information from extrinsic cues in their environment in order to reach their targets. In the frog Xenopus laevis, retinal ganglion cell (RGC) axons make three key guidance decisions en route through the brain. First, they cross to the contralateral side of the brain at the optic chiasm. Second, they turn caudally in the mid-diencephalon. Finally, they must recognize the optic tectum as their target. The matrix metalloproteinase (MMP) and a disintegrin and metalloproteinase (ADAM) families are zinc (Zn)-dependent proteolytic enzymes. The latter functions in axon guidance, but a similar role has not yet been identified for the MMP family. Our previous work implicated metalloproteinases in the guidance decisions made by Xenopus RGC axons. To test specifically the importance of MMPs, we used two different in vivo exposed brain preparations in which RGC axons were exposed to an MMP-specific pharmacological inhibitor (SB-3CT), either as they reached the optic chiasm or as they extended through the diencephalon en route to the optic tectum. Interestingly, SB-3CT affected only two of the guidance decisions, with misrouting defects at the optic chiasm and tectum. Only at higher concentrations was RGC axon extension also impaired. These data implicate MMPs in the guidance of vertebrate axons, and suggest that different metalloproteinases function to regulate axon behaviour at distinct choice points: an MMP is important in guidance at the optic chiasm and the target, while either a different MMP or an ADAM is required for axons to make the turn in the mid-diencephalon.
Collapse
Affiliation(s)
- Carrie L Hehr
- University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | | | | |
Collapse
|
18
|
Pickard B, Damjanovski S. Overexpression of the tissue inhibitor of metalloproteinase-3 during Xenopus embryogenesis affects head and axial tissue formation. Cell Res 2005; 14:389-99. [PMID: 15538971 DOI: 10.1038/sj.cr.7290239] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) modulate extracellular matrix remodeling during embryonic development and disease. TIMP-3 expression was examined during Xenopus laevis embryogenesis: TIMP-3 transcripts detected in the maternal pool of RNA increased at the mid-blastula transition, decreased dramatically during gastrulation and increased again during neurulation and axis elongation. Interestingly, the decrease during gastrulation was not seen in LiCl treated (dorsalized) embryos. Whole mount in situ hybridization of TIMP-3 using DIG-labeled RNA probes demonstrated that the transcripts were present in all dorsal tissues during embryogenesis, but were prominent only in head structures starting at stage 35. Overexpression of TIMP-3 through transgenesis and RNA injections led to developmental abnormalities and death. Both overexpression strategies resulted in post-gastrulation perturbation including those to neural and head structures, as well as truncated axes. However, RNA injections resulted in more severe early defects such as failure of neural tube closure, and transgenesis caused truncated axes and head abnormalities. No transgenic embryo expressing TIMP-3 survived past stage 40.
Collapse
Affiliation(s)
- Bryce Pickard
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
19
|
Harrison M, Abu-Elmagd M, Grocott T, Yates C, Gavrilovic J, Wheeler GN. Matrix metalloproteinase genes in Xenopus development. Dev Dyn 2005; 231:214-20. [PMID: 15305302 DOI: 10.1002/dvdy.20113] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a large family of proteins in vertebrates, consisting of over 24 genes in humans, only a few of which have been identified in Xenopus. Three genes coding for MMPs in Xenopus have been identified and their expression studied during development. The membrane-bound XMMP-14 and -15 (XMT1-MMP and XMT2-MMP) both showed restricted expression patterns, the former principally localising to cranial neural crest tissues and the latter to the epidermis of the embryo. XMMP-7 codes for an MMP that lacks the hemopexin-like domain. It is expressed exclusively in macrophages or other myeloid cell types from early in development.
Collapse
Affiliation(s)
- Michael Harrison
- School of Biological Sciences, University of East Anglia, Norwich, United Kingsom
| | | | | | | | | | | |
Collapse
|
20
|
Jung JC, West-Mays JA, Stramer BM, Byrne MH, Scott S, Mody MK, Sadow PM, Krane SM, Fini ME. Activity and expression ofXenopus laevis matrix metalloproteinases: Identification of a novel role for the hormone prolactin in regulating collagenolysis in both amphibians and mammals. J Cell Physiol 2004; 201:155-64. [PMID: 15281098 DOI: 10.1002/jcp.20037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Prolactin (PRL) has long been implicated in Xenopus metamorphosis as an anti-metamorphic and/or juvenilizing hormone. Numerous studies showed that PRL could prevent effects of either endogenous or exogenous thyroid hormone (TH; T(3)). It has been shown that expression of matrix metalloproteinases (MMPs) is induced by TH during Xenopus metamorphosis. Direct in vivo evidence, however, for such anti-TH effects by PRL with respect to MMPs has not been available for the early phase of Xenopus development or metamorphosis. To understand the functional role of PRL, we investigated effects of PRL on Xenopus collagenase-3 (XCL3) and collagenase-4 (XCL4) expression in a cultured Xenopus laevis cell line, XL-177. Northern blot analysis demonstrated that XCL3 and XCL4 expression were not detected in control or T(3)-treated cells, but were differentially induced by PRL in a dose- and time-dependent fashion. Moreover, treatment with IL-1alpha as well as phorbol myristate acetate (PMA), a protein kinase C (PKC) activator, or H8, a protein kinase A (PKA) inhibitor, augmented PRL-induced collagenase expression, suggesting that multiple protein kinase pathways and cytokines may participate in PRL-induced collagenase expression. Interestingly, XCL3 expression could be induced in XL-177 cells by T(3), but only when co-cultured with prometamorphic Xenopus tadpole tails (stage 54/55), suggesting that the tails secrete a required intermediate signaling molecule(s) for T(3)-induced XCL3 expression. Taken together, these data demonstrate that XCL3 and XCL4 can be differentially induced by PRL and T(3) and further suggest that PRL is a candidate regulator of TH-independent collagenase expression during the organ/tissue remodeling which occurs in Xenopus development.
Collapse
Affiliation(s)
- Jae-Chang Jung
- Department of Biology, Kyungpook National University, Daegu 702-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Angiogenesis is the process of new blood vessel development from preexisting vasculature. Although vascular endothelium is usually quiescent in the adult, active angiogenesis has been shown to be an important process for new vessel formation, tumor growth, progression, and spread. The angiogenic phenotype depends on the balance of proangiogenic growth factors such as vascular endothelial growth factor (VEGF) and inhibitors, as well as interactions with the extracellular matrix, allowing for endothelial migration. Endocrine glands are typically vascular organs, and their blood supply is essential for normal function and tight control of hormone feedback loops. In addition to metabolic factors such as hypoxia, the process of angiogenesis is also regulated by hormonal changes such as increased estrogen, IGF-I, and TSH levels. By measuring microvascular density, differences in angiogenesis have been related to differences in tumor behavior, and similar techniques have been applied to both benign and malignant endocrine tumors with the aim of identification of tumors that subsequently behave in an aggressive fashion. In contrast to other tumor types, pituitary tumors are less vascular than normal pituitary tissue, although the mechanism for this observation is not known. A relationship between angiogenesis and tumor size, tumor invasiveness, and aggressiveness has been shown in some pituitary tumor types, but not in others. There are few reports on the role of microvascular density or angiogenic factors in adrenal tumors. The mechanism of the vascular tumors, which include adrenomedullary tumors, found in patients with Von Hippel Lindau disease has been well characterized, and clinical trials of antiangiogenic therapy are currently being performed in patients with Von Hippel Lindau disease. Thyroid tumors are more vascular than normal thyroid tissue, and there is a clear correlation between increased VEGF expression and more aggressive thyroid tumor behavior and metastasis. Although parathyroid tissue induces angiogenesis when autotransplanted and PTH regulates both VEGF and MMP expression, there are few studies of angiogenesis and angiogenic factors in parathyroid tumors. An understanding of the balance of angiogenesis in these vascular tumors and mechanisms of vascular control may assist in therapeutic decisions and allow appropriately targeted treatment.
Collapse
Affiliation(s)
- Helen E Turner
- Department of Endocrinology, Churchill Hospital, Oxford OX3 7LJ, United Kingdom
| | | | | | | |
Collapse
|
22
|
Gourevitch D, Clark L, Chen P, Seitz A, Samulewicz SJ, Heber-Katz E. Matrix metalloproteinase activity correlates with blastema formation in the regenerating MRL mouse ear hole model. Dev Dyn 2003; 226:377-87. [PMID: 12557216 DOI: 10.1002/dvdy.10243] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The MRL mouse was proposed as a model of mammalian regeneration because it can close ear holes completely with the restoration of normal tissue. This regeneration process involves the formation of a blastema during healing, the re-appearance of cartilage and hair follicles, and healing without scarring. Such a process requires extensive tissue remodeling. To characterize differences in ear wounding responses between regenerating and nonregenerating mice, we examined and compared the extracellular matrix remodeling and the matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) response in the MRL and C57BL/6 mouse strains after injury. We found a correlation between the MRL's ability to break down the basement membrane, form a blastema, and close ear hole wounds and an inflammatory response with neutrophils and macrophages seen in the ear after injury. These cells were positive for MMP-2 and MMP-9 as well as TIMP-2 and TIMP-3. Clear differences between the MRL and B6 response to injury were seen that could explain the differences in healing and blastema formation in the MRL and lack of it in the B6 mice. This finding was further supported by enzyme activity as determined by gelatin zymography.
Collapse
|
23
|
Nygård M, Wahlström GM, Gustafsson MV, Tokumoto YM, Bondesson M. Hormone-dependent repression of the E2F-1 gene by thyroid hormone receptors. Mol Endocrinol 2003; 17:79-92. [PMID: 12511608 DOI: 10.1210/me.2002-0107] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Thyroid hormone induces differentiation of many different tissues in mammals, birds, and amphibians. The different tissues all differentiate from proliferating precursor cells, and the normal cell cycle is suspended while cells undergo differentiation. We have investigated how thyroid hormone affects the expression of the E2F-1 protein, a key transcription factor that controls G1- to S-phase transition. We show that during thyroid hormone-induced differentiation of embryonic carcinoma cells and of oligodendrocyte precursor cells, the levels of E2F-1 mRNA and E2F-1 protein decrease. This is caused by the thyroid hormone receptor (TR) regulating the transcription of the E2F-1 gene. The TR binds directly to a negative thyroid hormone response element, called the Z-element, in the E2F-1 promoter. When bound, the TR activates transcription in the absence of ligand but represses transcription in the presence of ligand. In addition, liganded TR represses transcription of the S-phase-specific DNA polymerase alpha, thymidine kinase, and dihydropholate reductase genes. These results suggest that thyroid hormone-induced withdrawal from the cell cycle takes place through the repression of S-phase genes. We suggest that this is an initial and crucial step in thyroid hormone-induced differentiation of precursor cells.
Collapse
Affiliation(s)
- Maria Nygård
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
24
|
Quiñones JL, Rosa R, Ruiz DL, García-Arrarás JE. Extracellular matrix remodeling and metalloproteinase involvement during intestine regeneration in the sea cucumber Holothuria glaberrima. Dev Biol 2002; 250:181-97. [PMID: 12297105 DOI: 10.1006/dbio.2002.0778] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sea cucumber, Holothuria glaberrima, has the capacity to regenerate its internal organs. Intestinal regeneration is accomplished by the thickening of the mesenteric border and the invasion of this thickening by mucosal epithelium from the esophagus and the cloaca. Extracellular matrix (ECM) remodeling has been associated with morphogenetic events during embryonic development and regeneration. We have used immunohistochemical techniques against ECM components to show that differential changes occur in the ECM during early regeneration. Labeling of fibrous collagenous components and muscle-related laminin disappear from the regenerating intestine and mesentery, while fibronectin labeling and 4G7 (an echinoderm ECM component) are continuously present. Western blots confirm a decrease in fibrous collagen content during the first 2 weeks of regeneration. We have also identified five 1,10-phenanthroline-sensitive bands in collagen gelatin zymographs. The gelatinolytic activities of these bands are enhanced during early stages of regeneration, suggesting that the metalloprotease activity is associated with ECM remodeling. Inhibition of MMPs in vivo with 1,10-phenanthroline, p-aminobenzoyl-Gly-Pro-D-Leu-D-Ala hydroxamate or N-CBZ-Pro-Leu-Gly hydroxamate produces a reversible inhibition of intestinal regeneration and ECM remodeling. Our results show that significant changes in ECM content occur during intestine regeneration in the sea cucumber and that the onset of these changes is correlated to the proteolytic activities of MMPs.
Collapse
Affiliation(s)
- José L Quiñones
- Department of Biology, University of Puerto Rico, Río Piedras, Puerto Rico 00931, USA
| | | | | | | |
Collapse
|
25
|
Abstract
Axonal growth cones read cues in their environment that guide them to their target. Metalloproteases have been implicated in vitro in modulating the interaction of these cues with receptors in the growth cone. To determine whether metalloprotease function is important in the guidance of vertebrate axons in vivo, we applied hydroxamate-based metalloprotease inhibitors to Xenopus retinal ganglion cell (RGC) axons as they extended through the optic tract. In the presence of two different inhibitors, 0.5-20 microm N-[(2R)-2(hydroxamideocarbonylmethyl)-4-methylpantanoyl]-l-tryptophan methylamide and batimastat, RGC axons made similar dose-dependent guidance errors. Most axons failed to make the expected caudal turn in the diencephalon and continued straight, growing aberrantly toward and across the dorsal midline. As a result, few RGC axons innervated their midbrain target, the optic tectum. Similarly, if the inhibitors were applied after the axons made the turn, many failed to grow into the optic tectum and instead turned to grow along its anterior border. Interestingly, in many instances pathfinding defects were observed in the absence of problems with axon extension, although outgrowth was impaired at the higher doses of the inhibitors. These data provide compelling in vivo evidence that metalloproteases are important for both axon guidance and extension in the developing visual system.
Collapse
|
26
|
Zaragoza C, Soria E, López E, Browning D, Balbín M, López-Otín C, Lamas S. Activation of the mitogen activated protein kinase extracellular signal-regulated kinase 1 and 2 by the nitric oxide-cGMP-cGMP-dependent protein kinase axis regulates the expression of matrix metalloproteinase 13 in vascular endothelial cells. Mol Pharmacol 2002; 62:927-35. [PMID: 12237340 DOI: 10.1124/mol.62.4.927] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are synthesized in response to diverse stimuli, including cytokines, growth factors, hormones, and oxidative stress. Here we show that the nitric oxide (NO) donor 2-(N,N-diethylamino)-diazenolate-2-oxide (DEA-NO) and NO from murine macrophages transcriptionally regulate MMP-13 expression in vascular endothelial cells (BAEC). The cGMP analog, 8-bromo-cGMP (8-Br-cGMP) mimicked the effect of NO, whereas incubation with the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, or the cGMP-dependent protein kinase (PKG) inhibitor phenyl-1,N (2)- etheno-8-bromoguanosine-3',5'-cyclic monophosphorothioate, Rp-isomer (PET) reduced the stimulatory effect of DEA-NO on the activation of the MMP-13 promoter. Overexpression of the catalytic subunit of PKG1-alpha resulted in a 5- to 6-fold increase of the MMP-13 regulatory region over control cells. On the other hand, incubation with the mitogen-activated protein/extracellular signal-regulated kinase inhibitor 2'-amino-3'-methoxyflavone (PD98059) significantly reduced DEA-NO and 8-Br-cGMP promoter activation and mRNA expression of MMP-13 in transfected BAEC. Moreover, a complex between PKG1-alpha and the G-protein Raf-1, an upstream activator of the extracellular signal-regulated kinase signaling pathway, was detected in cells overexpressing PKG1-alpha or treated either with DEA-NO or 8-Br-cGMP. Thus, we propose that the NO-cGMP-PKG pathway enhances MMP-13 expression by the activation of ERK 1,2. This effect of NO may be important in the context of pathophysiological conditions such as inflammation or atherogenesis [corrected].
Collapse
Affiliation(s)
- Carlos Zaragoza
- Centro de Investigaciones Biológicas, Instituto Reina Sofía de Investigaciones Nefrológicas, Consejo Superior de Investigaciones Científicas, and Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
27
|
Novatchkova M, Eisenhaber F. Can molecular mechanisms of biological processes be extracted from expression profiles? Case study: endothelial contribution to tumor-induced angiogenesis. Bioessays 2001; 23:1159-75. [PMID: 11746235 DOI: 10.1002/bies.10013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Whereas the genome contains all potential developmental programs, expression profiles permit the determination of genes that are actively transcribed under defined physiological conditions. In this article, the idea of extracting biological mechanisms from expression data is tested. Molecular processes of the endothelial contribution to angiogenesis are derived from recently published expression profiles. The analysis reveals the sensitivity limits of experimental detection of transcriptional changes and how sequence-analytic techniques can help to identify the function of genes in question. We conclude that the transcripts (http://mendel.imp.univie.ac.at/SEQUENCES/TEMS/) found to be up-regulated in angiogenesis are involved in extracellular matrix remodeling, cellular migration, adhesion, cell-cell communication rather than in angiogenesis initiation or integrative control. Comparison with tissue-specific patterns of EST occurrence shows that, indeed, the presumptive tumor-specific endothelial markers are more generally expressed by cell types involved in migration and matrix remodeling processes. This exemplary study demonstrates how bioinformatics approaches can be helpful in deriving mechanistic information from diverse sources of experimental data.
Collapse
Affiliation(s)
- M Novatchkova
- Research Institute of Molecular Pathology, Vienna, Rep. Austria
| | | |
Collapse
|
28
|
Suzuki AS, Tadano Y, Yamamoto T, Abe SI, Tajima T. Expression of a novel matrix metalloproteinase gene during Cynops early embryogenesis. Biochem Biophys Res Commun 2001; 288:380-4. [PMID: 11606053 DOI: 10.1006/bbrc.2001.5784] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Matrix metalloproteinases (MMPs) are thought to play important roles in the gastrulation of Cynops pyrrhogaster embryos. MMP cDNAs were cloned from Cynops pyrrhogaster and we report here a novel MMP called CyMMP, which has strong similarity to MMP-21 (XMMP) in Xenopus. Reverse transcription-polymerase chain reaction (RT-PCR) analysis demonstrated that CyMMP mRNA was already present in cleavage stage embryos. The amount of the mRNA then gradually decreased, but increased again starting in late gastrula. There were regional differences in the level of CyMMP mRNA expression at late gastrula: the involved archenteron roof was the predominant site of expression of the gene, while there was weak expression in the neuroectoderm and epidermal ectoderm. We also found that the gene was activated in artificially mesodermalized ectoderm. The present findings indicate that CyMMP mRNA expression is activated in differentiating mesoderm during gastrulation, suggesting that CyMMP plays a role in gastrulation-related cell movement.
Collapse
Affiliation(s)
- A S Suzuki
- Department of Biological Science, Faculty of Science, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan.
| | | | | | | | | |
Collapse
|
29
|
Damjanovski S, Amano T, Li Q, Ueda S, Shi YB, Ishizuya-Oka A. Role of ECM remodeling in thyroid hormone-dependent apoptosis during anuran metamorphosis. Ann N Y Acad Sci 2001; 926:180-91. [PMID: 11193034 DOI: 10.1111/j.1749-6632.2000.tb05611.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Programmed cell death or apoptosis is an important aspect in organogenesis and tissue remodeling. It is precisely controlled both temporally and spatially during development. Amphibian metamorphosis is an excellent model to study developmental control of apoptosis in vertebrates. This process involves the transformation of essentially every organ/tissue as tadpoles change to frogs, yet is controlled by a single hormone, thyroid hormone (TH). Although different organs and tissues undergo vastly different developmental changes, including de novo development and total resorption, most require apoptotic elimination of at least some cell types. Such properties and the dependence on TH make frog metamorphosis a unique model to isolate and functionally characterize genes participating in the regulation of tissue specific cell death during organ development in vertebrates. Indeed, molecular studies of the TH-dependent gene regulation cascade have led to the discovery of a group of genes encoding matrix metalloproteinases (MMPs) participating in metamorphosis. In vivo and in vitro studies have provided strong evidence to support a role of MMP-mediated remodeling of the extracellular matrix in regulating apoptotic tissue remodeling during metamorphosis.
Collapse
Affiliation(s)
- S Damjanovski
- Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-5431, USA
| | | | | | | | | | | |
Collapse
|
30
|
Damjanovski S, Amano T, Li Q, Pei D, Shi YB. Overexpression of matrix metalloproteinases leads to lethality in transgenicXenopus laevis: Implications for tissue-dependent functions of matrix metalloproteinases during late embryonic development. Dev Dyn 2001; 221:37-47. [PMID: 11357192 DOI: 10.1002/dvdy.1123] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The extracellular matrix (ECM) functions as the structural support of cells and as a medium for cell-cell interactions. It is understood to play critical roles in development. ECM remodeling is mediated largely through the action of matrix metalloproteinases (MMPs), a family of Zn2+-dependent proteases capable of degrading various proteinaceous components of the ECM. MMPs are expressed in many developmental and pathologic processes. However, few studies have been carried out to investigate the function of MMPs during embryogenesis and postembryonic organogenesis. By using Xenopus development as a model system, we have previously shown that several MMP genes are expressed from neurulation to the completion of embryogenesis in distinct tissues/organs, suggesting that ECM remodeling during mid- to late embryogenesis occurs in an organ-specific manner. By using the recently developed transgenic technology for Xenopus laevis, we overexpressed Xenopus MMPs stromelysin-3 (ST3) and collagenase-4 (Col4) under the control of a ubiquitous promoter and observed that embryos with overexpressed ST3 or Col4, but not the control green fluorescent protein (GFP), died in a dose-dependent manner during late embryogenesis. The specificity of this embryonic lethal phenotype was confirmed by the failure of a catalytically inactive mutant of ST3 to affect development. Finally, overexpression of a mammalian membrane type-MMP also led to late embryonic lethality in Xenopus embryos, suggesting that membrane type-MMPs have functions in vivo for ECM remodeling, in addition to being activators of other pro-MMPs. These data together with the developmental expression of several MMPs during Xenopus development, suggest that MMPs play important roles during mid- to late embryogenesis and that proper regulation of MMP genes is critical for tissue morphogenesis and organogenesis.
Collapse
Affiliation(s)
- S Damjanovski
- Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|