1
|
Wang YJ, Yeh CJ, Gao ZH, Hwang E, Chen HH, Wu SN. Inhibitory Perturbations of Fluvastatin on Afterhyperpolarization Current, Erg-mediated K + Current, and Hyperpolarization-activated Cation Current in Both Pituitary GH 3 Cells and Primary Embryonic Mouse Cortical Neurons. Neuroscience 2023; 531:12-23. [PMID: 37661016 DOI: 10.1016/j.neuroscience.2023.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Fluvastatin (FLV), the first synthetically derived 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, is a potent inhibitor of cholesterol biosynthesis. While its primary mechanism of action is to reduce cholesterol levels, there is some evidence suggesting that it may also have effects on K+ channels. However, the overall effects of fluvastatin on ionic currents are not yet well understood. The whole-cell clamp recordings were applied to evaluate the ionic currents and action potentials of cells. Here, we have demonstrated that FLV can effectively inhibit the amplitude of erg-mediated K+ current (IK(erg)) in pituitary tumor (GH3) cells, with an IC50 of approximately 3.2 µM. In the presence of FLV, the midpoint in the activation curve of IK(erg) was distinctly shifted to a less negative potential by 10 mV, with minimal modification of the gating charge. However, the magnitude of hyperpolarization-activated cation current (Ih) elicited by long-lasting membrane hyperpolarization was progressively decreased, with an IC50 value of 8.7 µM, upon exposure to FLV. More interestingly, we also found that FLV (5 µM) could regulate the action potential and afterhyperpolarization properties in primary embryonic mouse cortical neurons. Our study presents compelling evidence indicating that FLV has the potential to impact both the amplitude and gating of the ion channels IK(erg) and Ih. We also provide credible evidence suggesting that this drug has the potential to modify the properties of action potentials and the afterhyperpolarization current in electrically excitable cells. However, the assumption that these findings translate to similar in-vivo results remains unclear.
Collapse
Affiliation(s)
- Ya-Jean Wang
- Department of Senior Services Industry Management, Minghsin University of Science and Technology, Hsinchu, Taiwan.
| | - Che-Jui Yeh
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Zi-Han Gao
- Department of Physiology, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Eric Hwang
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Hwei-Hisen Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan; Institute of Neuroscience, National Chengchi University, Taipei, Taiwan.
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan, Taiwan; Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan, Taiwan; Department of Medical Research and Education, An Nan Hostpial, China Medical University Hospital, China Medical University, Tainan, Taiwan.
| |
Collapse
|
2
|
Andrean D, Pedersen MG. Machine learning provides insight into models of heterogeneous electrical activity in human beta-cells. Math Biosci 2022; 354:108927. [PMID: 36332730 DOI: 10.1016/j.mbs.2022.108927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Understanding how heterogeneous cellular responses emerge from cell-to-cell variations in expression and function of subcellular components is of general interest. Here, we focus on human insulin-secreting beta-cells, which are believed to constitute a population in which heterogeneity is of physiological importance. We exploit recent single-cell electrophysiological data that allow biologically realistic population modeling of human beta-cells that accounts for cellular heterogeneity and correlation between ion channel parameters. To investigate how ion channels influence the dynamics of our updated mathematical model of human pancreatic beta-cells, we explore several machine learning techniques to determine which model parameters are important for determining the qualitative patterns of electrical activity of the model cells. As expected, K+ channels promote absence of activity, but once a cell is active, they increase the likelihood of having action potential firing. HERG channels were of great importance for determining cell behavior in most of the investigated scenarios. Fast bursting is influenced by the time scales of ion channel activation and, interestingly, by the type of Ca2+ channels coupled to BK channels in BK-CaV complexes. Slow, metabolically driven oscillations are promoted mostly by K(ATP) channels. In summary, combining population modeling with machine learning analysis provides insight into the model and generates new hypotheses to be investigated both experimentally, via simulations and through mathematical analysis.
Collapse
Affiliation(s)
- Daniele Andrean
- Department of Information Engineering, University of Padova, Via Gradenigo 6/b, I-35131 Padova, Italy
| | - Morten Gram Pedersen
- Department of Information Engineering, University of Padova, Via Gradenigo 6/b, I-35131 Padova, Italy.
| |
Collapse
|
3
|
KCNH6 Enhanced Hepatic Glucose Metabolism through Mitochondrial Ca2+ Regulation and Oxidative Stress Inhibition. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3739556. [PMID: 36217412 PMCID: PMC9547380 DOI: 10.1155/2022/3739556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022]
Abstract
KCNH6 has been proven to affect glucose metabolism and insulin secretion both in humans and mice. Further study revealed that Kcnh6 knockout (KO) mice showed impaired glucose tolerance. However, the precise function of KCNH6 in the liver remains unknown. Mitochondria have been suggested to maintain intracellular Ca2+ homeostasis; ROS generation and defective mitochondria can cause glucose metabolism disorders, including type 2 diabetes (T2D). Here, we found that Kcnh6 attenuated glucose metabolism disorders by decreasing PEPCK and G6pase abundance and induced Glut2 and IRS2 expression. Overexpression of Kcnh6 increased hepatic glucose uptake and glycogen synthesis. Kcnh6 attenuated intracellular and mitochondrial calcium levels in primary hepatocytes and reduced intracellular ROS and mitochondrial superoxide production. Kcnh6 suppressed oxidative stress by inhibiting mitochondrial pathway activation and NADPH oxidase expression. Experiments demonstrated that Kcnh6 expression improved hepatic glucose metabolism disorder through the c-Jun N-terminal kinase and p38MAPK signaling pathways. These results were confirmed by experiments evaluating the extent to which forced Kcnh6 expression rescued metabolic disorder in KO mice. In conclusion, KCNH6 enhanced hepatic glucose metabolism by regulating mitochondrial Ca2+ levels and inhibiting oxidative stress. As liver glucose metabolism is key to T2D, understanding KCNH6 functions may provide new insights into the causes of diabetes.
Collapse
|
4
|
Iorio J, Antonuzzo L, Scarpi E, D’Amico M, Duranti C, Messerini L, Sparano C, Caputo D, Lavacchi D, Borzomati D, Antonelli A, Nibid L, Perrone G, Coppola A, Coppola R, di Costanzo F, Lastraioli E, Arcangeli A. Prognostic role of hERG1 Potassium Channels in Neuroendocrine Tumours of the Ileum and Pancreas. Int J Mol Sci 2022; 23:10623. [PMID: 36142530 PMCID: PMC9504580 DOI: 10.3390/ijms231810623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
hERG1 potassium channels are widely expressed in human cancers of different origins, where they affect several key aspects of cellular behaviour. The present study was designed to evaluate the expression and clinical relevance of hERG1 protein in cancer tissues from patients suffering from neuroendocrine tumours (NETs) of ileal (iNETs) and pancreatic (pNETs) origin, with available clinicopathological history and follow-up. The study was carried out by immunohistochemistry with an anti-hERG1 monoclonal antibody. In a subset of samples, a different antibody directed against the hERG1/β1 integrin complex was also used. The analysis showed for the first time that hERG1 is expressed in human NETs originating from either the ileum or the pancreas. hERG1 turned out to have a prognostic value in NETs, showing (i) a statistically significant positive impact on OS of patients affected by ileal NETs, regardless the TNM stage; (ii) a statistically significant positive impact on OS of patients affected by aggressive (TNM stage IV) disease, either ileal or pancreatic; (iii) a trend to a negative impact on OS of patients affected by less aggressive (TNM stage I-III) disease, either ileal or pancreatic. Moreover, in order to evaluate whether ERG1 was functionally expressed in a cellular model of pNET, the INS1E rat insulinoma cell line was used, and it emerged that blocking ERG1 with a specific inhibitor of the channel (E4031) turned out in a significant reduction in cell proliferation.
Collapse
Affiliation(s)
- Jessica Iorio
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Lorenzo Antonuzzo
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Medical Oncology, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
| | - Emanuela Scarpi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | | | - Claudia Duranti
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Luca Messerini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Clotilde Sparano
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Damiano Caputo
- General Surgery, Campus Bio-Medico University, 00128 Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Daniele Lavacchi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Medical Oncology, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
| | - Domenico Borzomati
- General Surgery, Campus Bio-Medico University, 00128 Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Alice Antonelli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Medical Oncology, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
| | - Lorenzo Nibid
- Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
- Pathology Unit, Campus Bio-Medico University, 00128 Rome, Italy
| | - Giuseppe Perrone
- Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
- Pathology Unit, Campus Bio-Medico University, 00128 Rome, Italy
| | - Alessandro Coppola
- General Surgery, Campus Bio-Medico University, 00128 Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Roberto Coppola
- General Surgery, Campus Bio-Medico University, 00128 Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | | | - Elena Lastraioli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Complex Dynamics Study Centre (CSDC), University of Florence, 50100 Florence, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Complex Dynamics Study Centre (CSDC), University of Florence, 50100 Florence, Italy
| |
Collapse
|
5
|
Lubberding AF, Juhl CR, Skovhøj EZ, Kanters JK, Mandrup‐Poulsen T, Torekov SS. Celebrities in the heart, strangers in the pancreatic beta cell: Voltage-gated potassium channels K v 7.1 and K v 11.1 bridge long QT syndrome with hyperinsulinaemia as well as type 2 diabetes. Acta Physiol (Oxf) 2022; 234:e13781. [PMID: 34990074 PMCID: PMC9286829 DOI: 10.1111/apha.13781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/20/2021] [Accepted: 01/02/2022] [Indexed: 12/13/2022]
Abstract
Voltage‐gated potassium (Kv) channels play an important role in the repolarization of a variety of excitable tissues, including in the cardiomyocyte and the pancreatic beta cell. Recently, individuals carrying loss‐of‐function (LoF) mutations in KCNQ1, encoding Kv7.1, and KCNH2 (hERG), encoding Kv11.1, were found to exhibit post‐prandial hyperinsulinaemia and episodes of hypoglycaemia. These LoF mutations also cause the cardiac disorder long QT syndrome (LQTS), which can be aggravated by hypoglycaemia. Interestingly, patients with LQTS also have a higher burden of diabetes compared to the background population, an apparent paradox in relation to the hyperinsulinaemic phenotype, and KCNQ1 has been identified as a type 2 diabetes risk gene. This review article summarizes the involvement of delayed rectifier K+ channels in pancreatic beta cell function, with emphasis on Kv7.1 and Kv11.1, using the cardiomyocyte for context. The functional and clinical consequences of LoF mutations and polymorphisms in these channels on blood glucose homeostasis are explored using evidence from pre‐clinical, clinical and genome‐wide association studies, thereby evaluating the link between LQTS, hyperinsulinaemia and type 2 diabetes.
Collapse
Affiliation(s)
- Anniek F. Lubberding
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Christian R. Juhl
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Emil Z. Skovhøj
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Jørgen K. Kanters
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Thomas Mandrup‐Poulsen
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Signe S. Torekov
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
6
|
Lu J, Shi TT, Yuan SS, Xie RR, Zhao RX, Zhu JJ, Yang JK. Cisapride induced hypoglycemia via the KCNH6 potassium channel. Front Endocrinol (Lausanne) 2022; 13:1011238. [PMID: 36325440 PMCID: PMC9618959 DOI: 10.3389/fendo.2022.1011238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Mutations in KCNH6 has been proved to cause hypoinsulinemia and diabetes in human and mice. Cisapride is a stomach-intestinal motility drug used to treat gastrointestinal dysfunction. Cisapride has been reported to be a potential inhibitor of the KCNH family, but it remained unclear whether cisapride inhibited KCNH6. Here, we discovered the role of cisapride on glucose metabolism, focusing on the KCNH6 potassium channel protein. Cisapride reduced blood glucose level and increased serum insulin secretion in wild-type (WT) mice fed standard normal chow/a high-fat diet or in db/db mice, especially when combined with tolbutamide. This effect was much stronger after 4 weeks of intraperitoneal injection. Whole-cell patch-clamp showed that cisapride inhibited KCNH6 currents in transfected HEK293 cells in a concentration-dependent manner. Cisapride induced an increased insulin secretion through the disruption of intracellular calcium homeostasis in a rat pancreatic β-cell line, INS-1E. Further experiments revealed that cisapride did not decrease blood glucose or increase serum insulin in KCNH6 β-cell knockout (Kcnh6-β-KO) mice when compared with WT mice. Cisapride also ameliorated glucose-stimulated insulin secretion (GSIS) in response to high glucose in WT but not Kcnh6-β-KO mice. Thus, our data reveal a novel way for the effect of KCNH6 in cisapride-induced hypoglycemia.
Collapse
Affiliation(s)
- Jing Lu
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ting-Ting Shi
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Sha-Sha Yuan
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Rong-Rong Xie
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ru-Xuan Zhao
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Juan-Juan Zhu
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jin-Kui Yang
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- *Correspondence: Jin-Kui Yang,
| |
Collapse
|
7
|
Duranti C, Iorio J, Lottini T, Lastraioli E, Crescioli S, Bagni G, Lulli M, Capitani C, Bouazzi R, Stefanini M, Carraresi L, Iamele L, De Jonge H, Arcangeli A. Harnessing the hERG1/β1 Integrin Complex via a Novel Bispecific Single-chain Antibody: An Effective Strategy against Solid Cancers. Mol Cancer Ther 2021; 20:1338-1349. [PMID: 34045227 DOI: 10.1158/1535-7163.mct-20-1111] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/12/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022]
Abstract
mAbs, either mono- or bispecific (bsAb), represent one of the most successful approaches to treat many types of malignancies. However, there are certain limitations to the use of full length mAbs for clinical applications, which can be overcome by engineered antibody fragments. The aim of this study was to develop a small bsAb, in the format of a single-chain diabody (scDb), to efficiently target two proteins, the hERG1 potassium channel and the β1 subunit of integrin receptors, which specifically form a macromolecular complex in cancer cells. We provide evidence that the scDb we produced binds to the hERG1/β1 complex in cancer cells and tissues, but does not bind to the hERG1 channel in nonpathologic tissues, in particular the heart. The scDb-hERG1-β1 (i) downregulates the formation of the hERG1/β1 complex, (ii) inhibits Akt phosphorylation and HIF-1α expression, and (iii) decreases cell survival, proliferation, and migration in vitro These effects only occur in cancer cells (either colon, pancreatic, or breast), but not in normal cells. In vivo, the scDb-hERG1-β1 shows a good pharmacokinetic profile, with a half-life of 13.5 hours and no general, cardiac, or renal toxicity when injected intravenously up to the dose of 8 mg/kg. The scDb-hERG1-β1 accumulates into subcutaneous xenografted tumors, arising from either colon or pancreatic human cancer cells, and induces a reduction of tumor growth and vascularization. Overall, the scDb-hERG1-β1 represents an innovative single-chain bispecific antibody for therapeutic applications in solid cancers that overexpress the hERG1/β1 integrin signaling complex.
Collapse
Affiliation(s)
- Claudia Duranti
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Firenze, Italy
| | - Jessica Iorio
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Firenze, Italy
| | - Tiziano Lottini
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Firenze, Italy
| | - Elena Lastraioli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Firenze, Italy
| | - Silvia Crescioli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Firenze, Italy
| | - Giacomo Bagni
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Firenze, Italy
| | - Matteo Lulli
- Department of Biomedical and Clinical Sciences, Section of General Pathology, University of Florence, Firenze, Italy
| | - Chiara Capitani
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Firenze, Italy
| | - Rayhana Bouazzi
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Firenze, Italy
| | | | | | - Luisa Iamele
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Hugo De Jonge
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Firenze, Italy. .,CSDC-Center for the Study of Complex Dynamics, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
8
|
Matsuoka T, Yamasaki M, Abe M, Matsuda Y, Morino H, Kawakami H, Sakimura K, Watanabe M, Hashimoto K. Kv11 (ether-à-go-go-related gene) voltage-dependent K + channels promote resonance and oscillation of subthreshold membrane potentials. J Physiol 2020; 599:547-569. [PMID: 33151574 PMCID: PMC7839749 DOI: 10.1113/jp280342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
Key points Some ion channels are known to behave as inductors and make up the parallel resonant circuit in the plasma membrane of neurons, which enables neurons to respond to current inputs with a specific frequency (so‐called ‘resonant properties’). Here, we report that heterologous expression of mouse Kv11 voltage‐dependent K+ channels generate resonance and oscillation at depolarized membrane potentials in HEK293 cells; expressions of individual Kv11 subtypes generate resonance and oscillation with different frequency properties. Kv11.3‐expressing HEK293 cells exhibited transient conductance changes that opposed the current changes induced by voltage steps; this probably enables Kv11 channels to behave like an inductor. The resonance and oscillation of inferior olivary neurons were impaired at the resting membrane potential in Kv11.3 knockout mice. This study helps to elucidate basic ion channel properties that are crucial for the frequency responses of neurons.
Abstract The plasma membranes of some neurons preferentially respond to current inputs with a specific frequency, and output as large voltage changes. This property is called resonance, and is thought to be mediated by ion channels that show inductor‐like behaviour. However, details of the candidate ion channels remain unclear. In this study, we mainly focused on the functional roles of Kv11 potassium (K+) channels, encoded by ether‐á‐go‐go‐related genes, in resonance in mouse inferior olivary (IO) neurons. We transfected HEK293 cells with long or short splice variants of Kv11.1 (Merg1a and Merg1b) or Kv11.3, and examined membrane properties using whole‐cell recording. Transfection with Kv11 channels reproduced resonance at membrane potentials depolarized from the resting state. Frequency ranges of Kv11.3‐, Kv11.1(Merg1b)‐ and Kv11.1(Merg1a)‐expressing cells were 2–6 Hz, 2–4 Hz, and 0.6–0.8 Hz, respectively. Responses of Kv11.3 currents to step voltage changes were essentially similar to those of inductor currents in the resistor–inductor–capacitor circuit. Furthermore, Kv11 transfections generated membrane potential oscillations. We also confirmed the contribution of HCN1 channels as a major mediator of resonance at more hyperpolarized potentials by transfection into HEK293 cells. The Kv11 current kinetics and properties of Kv11‐dependent resonance suggested that Kv11.3 mediated resonance in IO neurons. This finding was confirmed by the impairment of resonance and oscillation at –30 to –60 mV in Kcnh7 (Kv11.3) knockout mice. These results suggest that Kv11 channels have important roles in inducing frequency‐dependent responses in a subtype‐dependent manner from resting to depolarized membrane potentials. Some ion channels are known to behave as inductors and make up the parallel resonant circuit in the plasma membrane of neurons, which enables neurons to respond to current inputs with a specific frequency (so‐called ‘resonant properties’). Here, we report that heterologous expression of mouse Kv11 voltage‐dependent K+ channels generate resonance and oscillation at depolarized membrane potentials in HEK293 cells; expressions of individual Kv11 subtypes generate resonance and oscillation with different frequency properties. Kv11.3‐expressing HEK293 cells exhibited transient conductance changes that opposed the current changes induced by voltage steps; this probably enables Kv11 channels to behave like an inductor. The resonance and oscillation of inferior olivary neurons were impaired at the resting membrane potential in Kv11.3 knockout mice. This study helps to elucidate basic ion channel properties that are crucial for the frequency responses of neurons.
Collapse
Affiliation(s)
- Toshinori Matsuoka
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Miwako Yamasaki
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yukiko Matsuda
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hiroyuki Morino
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hideshi Kawakami
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Kouichi Hashimoto
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
9
|
Lu J, Shen H, Li Q, Xiong F, Xie R, Yuan M, Yang JK. KCNH6 protects pancreatic β-cells from endoplasmic reticulum stress and apoptosis. FASEB J 2020; 34:15015-15028. [PMID: 32918525 DOI: 10.1096/fj.202001218r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/15/2020] [Accepted: 08/31/2020] [Indexed: 01/08/2023]
Abstract
Adult patients with dysfunction in human ether-a-go-go 2 (hERG2) protein, encoded by KCNH6, present with hypoinsulinemia and hyperglycemia. However, the mechanism of KCNH6 action in glucose disorders has not been clearly defined. Previous studies identified that sustained endoplasmic reticulum (ER) stress-mediated apoptosis of pancreatic β-cells and directly contributed to diabetes. In the present study, we showed that Kcnh6 knockout (KO) mice had impaired glucose tolerance mediated by high ER stress levels, and showed increased apoptosis and elevated intracellular calcium levels in pancreatic β-cells. In contrast, KCNH6 overexpression in islets isolated from C57BL/6J mice attenuated ER stress induced by thapsigargin or palmitic acid. This effect contributed to better preservation of β-cells, as reflected in increased β cell survival and enhanced glucose-stimulated insulin secretion. These results were further corroborated by studies evaluating KCNH6 overexpression in KO islets. Similarly, induction of Kcnh6 in KO mice by lentivirus injection improved glucose tolerance by reducing pancreatic ER stress and apoptosis. Our data provide new insights into how Kcnh6 deficiency causes ER calcium depletion and β cell dysfunction.
Collapse
Affiliation(s)
- Jing Lu
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Han Shen
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Beijing Sijiqing Hospital, Beijing, China
| | - Qi Li
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Fengran Xiong
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Rongrong Xie
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Mingxia Yuan
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jin-Kui Yang
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
From Hyper- to Hypoinsulinemia and Diabetes: Effect of KCNH6 on Insulin Secretion. Cell Rep 2019; 25:3800-3810.e6. [PMID: 30590050 DOI: 10.1016/j.celrep.2018.12.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/26/2018] [Accepted: 11/30/2018] [Indexed: 01/03/2023] Open
Abstract
Glucose-stimulated insulin secretion from islet β cells is mediated by KATP channels. However, the role of non-KATP K+ channels in insulin secretion is largely unknown. Here, we show that a non-KATP K+ channel, KCNH6, plays a key role in insulin secretion and glucose hemostasis in humans and mice. KCNH6 p.P235L heterozygous mutation co-separated with diabetes in a four-generation pedigree. Kcnh6 knockout (KO) or Kcnh6 p.P235L knockin (KI) mice had a phenotype characterized by changing from hypoglycemia with hyperinsulinemia to hyperglycemia with insulin deficiency. Islets from the young KO mice had increased intracellular calcium concentration and increased insulin secretion. However, islets from the adult KO mice not only had increased intracellular calcium levels but also had remarkable ER stress and apoptosis, associated with loss of β cell mass and decreased insulin secretion. Therefore, dysfunction of KCNH6 causes overstimulation of insulin secretion in the short term and β cell failure in the long term.
Collapse
|
11
|
Sarmiento BE, Santos Menezes LF, Schwartz EF. Insulin Release Mechanism Modulated by Toxins Isolated from Animal Venoms: From Basic Research to Drug Development Prospects. Molecules 2019; 24:E1846. [PMID: 31091684 PMCID: PMC6571724 DOI: 10.3390/molecules24101846] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/23/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022] Open
Abstract
Venom from mammals, amphibians, snakes, arachnids, sea anemones and insects provides diverse sources of peptides with different potential medical applications. Several of these peptides have already been converted into drugs and some are still in the clinical phase. Diabetes type 2 is one of the diseases with the highest mortality rate worldwide, requiring specific attention. Diverse drugs are available (e.g., Sulfonylureas) for effective treatment, but with several adverse secondary effects, most of them related to the low specificity of these compounds to the target. In this context, the search for specific and high-affinity compounds for the management of this metabolic disease is growing. Toxins isolated from animal venom have high specificity and affinity for different molecular targets, of which the most important are ion channels. This review will present an overview about the electrical activity of the ion channels present in pancreatic β cells that are involved in the insulin secretion process, in addition to the diversity of peptides that can interact and modulate the electrical activity of pancreatic β cells. The importance of prospecting bioactive peptides for therapeutic use is also reinforced.
Collapse
Affiliation(s)
- Beatriz Elena Sarmiento
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| | - Luis Felipe Santos Menezes
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| | - Elisabeth F Schwartz
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| |
Collapse
|
12
|
Farashi S, Sasanpour P, Rafii-Tabar H. Interaction of low frequency external electric fields and pancreatic β-cell: a mathematical modeling approach to identify the influence of excitation parameters. Int J Radiat Biol 2018; 94:1038-1048. [DOI: 10.1080/09553002.2018.1478162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sajjad Farashi
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pezhman Sasanpour
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Computational Nano-Bioelectromagnetics Research Group, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Hashem Rafii-Tabar
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Farashi S, Sasanpour P, Rafii-Tabar H. The role of the transient receptor potential melastatin5 (TRPM5) channels in the pancreatic β-cell electrical activity: A computational modeling study. Comput Biol Chem 2018; 76:101-108. [DOI: 10.1016/j.compbiolchem.2018.05.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 03/31/2018] [Accepted: 05/15/2018] [Indexed: 01/27/2023]
|
14
|
Computational modeling of the effect of temperature variations on human pancreatic β-cell activity. J Therm Biol 2018; 75:69-80. [PMID: 30017054 DOI: 10.1016/j.jtherbio.2018.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 11/22/2022]
Abstract
The effect of temperature variations on the pancreatic β-cell activity and the role of different model compartments in temperature sensing have been investigated using a computational modeling approach. The results of our study show that temperature variations by several degrees can change the dynamical states of the β-cell system. In addition, temperature variations can alter the characteristic features of the membrane voltage, which correlates with insulin secretion. Simulation results show that the ion channels such as the L-type calcium, the hERG potassium, sodium channels and the glycolysis pathway are the possible sites for sensing temperature variation. Results indicate that for a small temperature change, even though the frequency and amplitude of electrical activity are altered, the area under the membrane potential curve remains almost unchanged, which implies the existence of a thermoregulatory mechanism for preserving the amount of insulin secretion. Furthermore, the computational analysis shows that the β-cell electrical activity exhibits a bursting pattern in physiological temperature (37 °C) while in vitro studies reported almost the spiking activity at lower temperatures. Since hormone-secreting systems work more efficient in bursting mode, we propose that the pancreatic β-cell works better in the physiological temperature compared with the reference temperature (33 °C).
Collapse
|
15
|
Engelbrechtsen L, Mahendran Y, Jonsson A, Gjesing AP, Weeke PE, Jørgensen ME, Færch K, Witte DR, Holst JJ, Jørgensen T, Grarup N, Pedersen O, Vestergaard H, Torekov S, Kanters JK, Hansen T. Common variants in the hERG (KCNH2) voltage-gated potassium channel are associated with altered fasting and glucose-stimulated plasma incretin and glucagon responses. BMC Genet 2018; 19:15. [PMID: 29548277 PMCID: PMC5857134 DOI: 10.1186/s12863-018-0602-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/13/2018] [Indexed: 01/29/2023] Open
Abstract
Background Patients with long QT syndrome due to rare loss-of-function mutations in the human ether-á-go-go-related gene (hERG) have prolonged QT interval, risk of arrhythmias, increased secretion of insulin and incretins and impaired glucagon response to hypoglycemia. This is caused by a dysfunctional Kv11.1 voltage-gated potassium channel. Based on these findings in patients with rare variants in hERG, we hypothesized that common variants in hERG may also lead to alterations in glucose homeostasis. Subsequently, we aimed to evaluate the effect of two common gain-of-function variants in hERG (rs36210421 and rs1805123) on QT interval and plasma levels of glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), insulin and glucagon during an oral glucose tolerance test (OGTT). We used two population-based cohorts for evaluation of the effect of common variants in hERG on QT-interval and circulation levels of incretins, insulin and glucagon. The Danish population-based Inter99 cohort (n = 5895) was used to assess the effect of common variants on QT-interval. The Danish ADDITION-PRO cohort was used (n = 1329) to study genetic associations with levels of GLP-1, GIP, insulin and glucagon during an OGTT. Results Carriers of either the minor A-allele of rs36210421 or the minor G-allele of rs1805123 had ~ 2 ms shorter QT interval per risk allele (p = 0.025 and p = 1.9 × 10− 7). Additionally, both variants were associated with alterations in pancreatic and gut hormone release among carriers. The minor A- allele of rs36210421 was associated with increased GLP-1 and decreased GIP response to oral glucose stimulation, whereas the minor G-allele of rs1805123 is associated with decreased fasting plasma insulin and glucagon release. A genetic risk score combining the two gene variants revealed reductions in glucose-stimulated GIP, as well as suppressed glucagon response to increased glucose levels during an OGTT. Conclusions Two common missense polymorphisms of the Kv11.1 voltage-gated hERG potassium channel are associated with alterations in circulating levels of GIP and glucagon, suggesting that hERG potassium channels play a role in fasting and glucose-stimulated release of GIP and glucagon. Trial registration ClinicalTrials.gov (NCT00289237). Trial retrospectively registered at February 9, 2006. Studies were approved by the Ethical Committee of the Central Denmark Region (journal no. 20080229) and by the Copenhagen County Ethical Committee (KA 98155). Electronic supplementary material The online version of this article (10.1186/s12863-018-0602-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Line Engelbrechtsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3B, Maersk Tower 8. floor, -2200, Copenhagen, DK, Denmark. .,Danish Diabetes Academy, Odense, Denmark.
| | - Yuvaraj Mahendran
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3B, Maersk Tower 8. floor, -2200, Copenhagen, DK, Denmark.,Danish Diabetes Academy, Odense, Denmark
| | - Anna Jonsson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3B, Maersk Tower 8. floor, -2200, Copenhagen, DK, Denmark
| | - Anette Prior Gjesing
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3B, Maersk Tower 8. floor, -2200, Copenhagen, DK, Denmark
| | - Peter E Weeke
- Department of Cardiology, Rigshospitalet, Copenhagen, Denmark
| | - Marit E Jørgensen
- National Institute of Public Health, University of Southern Denmark, Odense, Denmark.,Steno Diabetes Center, Gentofte, Denmark
| | | | - Daniel R Witte
- Section of General Practice, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3B, Maersk Tower 8. floor, -2200, Copenhagen, DK, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Jørgensen
- Research Centre for Prevention and Health, The Capital Region of Denmark, Hillerød, Denmark.,Department of Public health, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark.,Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3B, Maersk Tower 8. floor, -2200, Copenhagen, DK, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3B, Maersk Tower 8. floor, -2200, Copenhagen, DK, Denmark
| | - Henrik Vestergaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3B, Maersk Tower 8. floor, -2200, Copenhagen, DK, Denmark.,Steno Diabetes Center, Gentofte, Denmark
| | - Signe Torekov
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3B, Maersk Tower 8. floor, -2200, Copenhagen, DK, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen K Kanters
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3B, Maersk Tower 8. floor, -2200, Copenhagen, DK, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3B, Maersk Tower 8. floor, -2200, Copenhagen, DK, Denmark
| |
Collapse
|
16
|
Rorsman P, Ashcroft FM. Pancreatic β-Cell Electrical Activity and Insulin Secretion: Of Mice and Men. Physiol Rev 2018; 98:117-214. [PMID: 29212789 PMCID: PMC5866358 DOI: 10.1152/physrev.00008.2017] [Citation(s) in RCA: 519] [Impact Index Per Article: 74.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/30/2017] [Accepted: 06/18/2017] [Indexed: 12/14/2022] Open
Abstract
The pancreatic β-cell plays a key role in glucose homeostasis by secreting insulin, the only hormone capable of lowering the blood glucose concentration. Impaired insulin secretion results in the chronic hyperglycemia that characterizes type 2 diabetes (T2DM), which currently afflicts >450 million people worldwide. The healthy β-cell acts as a glucose sensor matching its output to the circulating glucose concentration. It does so via metabolically induced changes in electrical activity, which culminate in an increase in the cytoplasmic Ca2+ concentration and initiation of Ca2+-dependent exocytosis of insulin-containing secretory granules. Here, we review recent advances in our understanding of the β-cell transcriptome, electrical activity, and insulin exocytosis. We highlight salient differences between mouse and human β-cells, provide models of how the different ion channels contribute to their electrical activity and insulin secretion, and conclude by discussing how these processes become perturbed in T2DM.
Collapse
Affiliation(s)
- Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom; Department of Neuroscience and Physiology, Metabolic Research Unit, Göteborg, Sweden; and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Frances M Ashcroft
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom; Department of Neuroscience and Physiology, Metabolic Research Unit, Göteborg, Sweden; and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
Zhang A, Li D, Liu Y, Li J, Zhang Y, Zhang CY. Islet β cell: An endocrine cell secreting miRNAs. Biochem Biophys Res Commun 2018; 495:1648-1654. [DOI: 10.1016/j.bbrc.2017.12.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 12/05/2017] [Indexed: 12/28/2022]
|
18
|
Skelin Klemen M, Dolenšek J, Slak Rupnik M, Stožer A. The triggering pathway to insulin secretion: Functional similarities and differences between the human and the mouse β cells and their translational relevance. Islets 2017; 9:109-139. [PMID: 28662366 PMCID: PMC5710702 DOI: 10.1080/19382014.2017.1342022] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In β cells, stimulation by metabolic, hormonal, neuronal, and pharmacological factors is coupled to secretion of insulin through different intracellular signaling pathways. Our knowledge about the molecular machinery supporting these pathways and the patterns of signals it generates comes mostly from rodent models, especially the laboratory mouse. The increased availability of human islets for research during the last few decades has yielded new insights into the specifics in signaling pathways leading to insulin secretion in humans. In this review, we follow the most central triggering pathway to insulin secretion from its very beginning when glucose enters the β cell to the calcium oscillations it produces to trigger fusion of insulin containing granules with the plasma membrane. Along the way, we describe the crucial building blocks that contribute to the flow of information and focus on their functional role in mice and humans and on their translational implications.
Collapse
Affiliation(s)
- Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marjan Slak Rupnik
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Institute of Physiology; Center for Physiology and Pharmacology; Medical University of Vienna; Vienna, Austria
| | - Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
19
|
Félix-Martínez GJ, Godínez-Fernández JR. Modeling the spatiotemporal distribution of Ca
2+
during action potential firing in human pancreatic
β
-cells. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa669f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Hyltén-Cavallius L, Iepsen EW, Wewer Albrechtsen NJ, Svendstrup M, Lubberding AF, Hartmann B, Jespersen T, Linneberg A, Christiansen M, Vestergaard H, Pedersen O, Holst JJ, Kanters JK, Hansen T, Torekov SS. Patients With Long-QT Syndrome Caused by Impaired hERG-Encoded K v11.1 Potassium Channel Have Exaggerated Endocrine Pancreatic and Incretin Function Associated With Reactive Hypoglycemia. Circulation 2017; 135:1705-1719. [PMID: 28235848 PMCID: PMC5412733 DOI: 10.1161/circulationaha.116.024279] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 02/14/2017] [Indexed: 11/23/2022]
Abstract
Supplemental Digital Content is available in the text. Background: Loss-of-function mutations in hERG (encoding the Kv11.1 voltage-gated potassium channel) cause long-QT syndrome type 2 (LQT2) because of prolonged cardiac repolarization. However, Kv11.1 is also present in pancreatic α and β cells and intestinal L and K cells, secreting glucagon, insulin, and the incretins glucagon-like peptide-1 (GLP-1) and GIP (glucose-dependent insulinotropic polypeptide), respectively. These hormones are crucial for glucose regulation, and long-QT syndrome may cause disturbed glucose regulation. We measured secretion of these hormones and cardiac repolarization in response to glucose ingestion in LQT2 patients with functional mutations in hERG and matched healthy participants, testing the hypothesis that LQT2 patients have increased incretin and β-cell function and decreased α-cell function, and thus lower glucose levels. Methods: Eleven patients with LQT2 and 22 sex-, age-, and body mass index–matched control participants underwent a 6-hour 75-g oral glucose tolerance test with ECG recording and blood sampling for measurements of glucose, insulin, C-peptide, glucagon, GLP-1, and GIP. Results: In comparison with matched control participants, LQT2 patients had 56% to 78% increased serum insulin, serum C-peptide, plasma GLP-1, and plasma GIP responses (P=0.03–0.001) and decreased plasma glucose levels after glucose ingestion (P=0.02) with more symptoms of hypoglycemia (P=0.04). Sixty-three percent of LQT2 patients developed hypoglycemic plasma glucose levels (<70 mg/dL) versus 36% control participants (P=0.16), and 18% patients developed serious hypoglycemia (<50 mg/dL) versus none of the controls. LQT2 patients had defective glucagon responses to low glucose, P=0.008. β-Cell function (Insulin Secretion Sensitivity Index-2) was 2-fold higher in LQT2 patients than in controls (4398 [95% confidence interval, 2259–8562] versus 2156 [1961–3201], P=0.03). Pharmacological Kv11.1 blockade (dofetilide) in rats had similar effect, and small interfering RNA inhibition of hERG in β and L cells increased insulin and GLP-1 secretion up to 50%. Glucose ingestion caused cardiac repolarization disturbances with increased QTc intervals in both patients and controls, but with a 122% greater increase in QTcF interval in LQT2 patients (P=0.004). Conclusions: Besides a prolonged cardiac repolarization phase, LQT2 patients display increased GLP-1, GIP, and insulin secretion and defective glucagon secretion, causing decreased plasma glucose and thus increased risk of hypoglycemia. Furthermore, glucose ingestion increased QT interval and aggravated the cardiac repolarization disturbances in LQT2 patients. Clinical Trial Registration: URL: http://clinicaltrials.gov. Unique identifier: NCT02775513.
Collapse
Affiliation(s)
- Louise Hyltén-Cavallius
- From Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.H.-C., E.W.I., N.J.W.A., A.F.L., B.H., T.J., M.C., J.J.H., J.K.K., S.S.T.); Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.H.-C., E.W.I., N.J.W.A., M.S., B.H., H.V., O.P., J.J.H., T.H., S.S.T.); Research Centre for Prevention and Health, the Capital Region of Denmark, Copenhagen (A.L.); Gentofte, Aalborg and Herlev University Hospitals, Denmark (J.K.K.); Faculty of Health Sciences, University of Southern Denmark, Odense (T.H.); Department of Clinical Experimental Research, Rigshospitalet, Denmark (A.L.); Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (A.L.); Danish Diabetes Academy, Odense, Denmark (E.W.I., M.S.); Department of Clinical Biochemistry, Statens Serum Institut, Copenhagen, Denmark (M.C.); and Steno Diabetes Center Copenhagen, Gentofte, Denmark (H.V.)
| | - Eva W Iepsen
- From Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.H.-C., E.W.I., N.J.W.A., A.F.L., B.H., T.J., M.C., J.J.H., J.K.K., S.S.T.); Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.H.-C., E.W.I., N.J.W.A., M.S., B.H., H.V., O.P., J.J.H., T.H., S.S.T.); Research Centre for Prevention and Health, the Capital Region of Denmark, Copenhagen (A.L.); Gentofte, Aalborg and Herlev University Hospitals, Denmark (J.K.K.); Faculty of Health Sciences, University of Southern Denmark, Odense (T.H.); Department of Clinical Experimental Research, Rigshospitalet, Denmark (A.L.); Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (A.L.); Danish Diabetes Academy, Odense, Denmark (E.W.I., M.S.); Department of Clinical Biochemistry, Statens Serum Institut, Copenhagen, Denmark (M.C.); and Steno Diabetes Center Copenhagen, Gentofte, Denmark (H.V.)
| | - Nicolai J Wewer Albrechtsen
- From Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.H.-C., E.W.I., N.J.W.A., A.F.L., B.H., T.J., M.C., J.J.H., J.K.K., S.S.T.); Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.H.-C., E.W.I., N.J.W.A., M.S., B.H., H.V., O.P., J.J.H., T.H., S.S.T.); Research Centre for Prevention and Health, the Capital Region of Denmark, Copenhagen (A.L.); Gentofte, Aalborg and Herlev University Hospitals, Denmark (J.K.K.); Faculty of Health Sciences, University of Southern Denmark, Odense (T.H.); Department of Clinical Experimental Research, Rigshospitalet, Denmark (A.L.); Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (A.L.); Danish Diabetes Academy, Odense, Denmark (E.W.I., M.S.); Department of Clinical Biochemistry, Statens Serum Institut, Copenhagen, Denmark (M.C.); and Steno Diabetes Center Copenhagen, Gentofte, Denmark (H.V.)
| | - Mathilde Svendstrup
- From Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.H.-C., E.W.I., N.J.W.A., A.F.L., B.H., T.J., M.C., J.J.H., J.K.K., S.S.T.); Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.H.-C., E.W.I., N.J.W.A., M.S., B.H., H.V., O.P., J.J.H., T.H., S.S.T.); Research Centre for Prevention and Health, the Capital Region of Denmark, Copenhagen (A.L.); Gentofte, Aalborg and Herlev University Hospitals, Denmark (J.K.K.); Faculty of Health Sciences, University of Southern Denmark, Odense (T.H.); Department of Clinical Experimental Research, Rigshospitalet, Denmark (A.L.); Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (A.L.); Danish Diabetes Academy, Odense, Denmark (E.W.I., M.S.); Department of Clinical Biochemistry, Statens Serum Institut, Copenhagen, Denmark (M.C.); and Steno Diabetes Center Copenhagen, Gentofte, Denmark (H.V.)
| | - Anniek F Lubberding
- From Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.H.-C., E.W.I., N.J.W.A., A.F.L., B.H., T.J., M.C., J.J.H., J.K.K., S.S.T.); Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.H.-C., E.W.I., N.J.W.A., M.S., B.H., H.V., O.P., J.J.H., T.H., S.S.T.); Research Centre for Prevention and Health, the Capital Region of Denmark, Copenhagen (A.L.); Gentofte, Aalborg and Herlev University Hospitals, Denmark (J.K.K.); Faculty of Health Sciences, University of Southern Denmark, Odense (T.H.); Department of Clinical Experimental Research, Rigshospitalet, Denmark (A.L.); Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (A.L.); Danish Diabetes Academy, Odense, Denmark (E.W.I., M.S.); Department of Clinical Biochemistry, Statens Serum Institut, Copenhagen, Denmark (M.C.); and Steno Diabetes Center Copenhagen, Gentofte, Denmark (H.V.)
| | - Bolette Hartmann
- From Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.H.-C., E.W.I., N.J.W.A., A.F.L., B.H., T.J., M.C., J.J.H., J.K.K., S.S.T.); Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.H.-C., E.W.I., N.J.W.A., M.S., B.H., H.V., O.P., J.J.H., T.H., S.S.T.); Research Centre for Prevention and Health, the Capital Region of Denmark, Copenhagen (A.L.); Gentofte, Aalborg and Herlev University Hospitals, Denmark (J.K.K.); Faculty of Health Sciences, University of Southern Denmark, Odense (T.H.); Department of Clinical Experimental Research, Rigshospitalet, Denmark (A.L.); Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (A.L.); Danish Diabetes Academy, Odense, Denmark (E.W.I., M.S.); Department of Clinical Biochemistry, Statens Serum Institut, Copenhagen, Denmark (M.C.); and Steno Diabetes Center Copenhagen, Gentofte, Denmark (H.V.)
| | - Thomas Jespersen
- From Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.H.-C., E.W.I., N.J.W.A., A.F.L., B.H., T.J., M.C., J.J.H., J.K.K., S.S.T.); Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.H.-C., E.W.I., N.J.W.A., M.S., B.H., H.V., O.P., J.J.H., T.H., S.S.T.); Research Centre for Prevention and Health, the Capital Region of Denmark, Copenhagen (A.L.); Gentofte, Aalborg and Herlev University Hospitals, Denmark (J.K.K.); Faculty of Health Sciences, University of Southern Denmark, Odense (T.H.); Department of Clinical Experimental Research, Rigshospitalet, Denmark (A.L.); Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (A.L.); Danish Diabetes Academy, Odense, Denmark (E.W.I., M.S.); Department of Clinical Biochemistry, Statens Serum Institut, Copenhagen, Denmark (M.C.); and Steno Diabetes Center Copenhagen, Gentofte, Denmark (H.V.)
| | - Allan Linneberg
- From Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.H.-C., E.W.I., N.J.W.A., A.F.L., B.H., T.J., M.C., J.J.H., J.K.K., S.S.T.); Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.H.-C., E.W.I., N.J.W.A., M.S., B.H., H.V., O.P., J.J.H., T.H., S.S.T.); Research Centre for Prevention and Health, the Capital Region of Denmark, Copenhagen (A.L.); Gentofte, Aalborg and Herlev University Hospitals, Denmark (J.K.K.); Faculty of Health Sciences, University of Southern Denmark, Odense (T.H.); Department of Clinical Experimental Research, Rigshospitalet, Denmark (A.L.); Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (A.L.); Danish Diabetes Academy, Odense, Denmark (E.W.I., M.S.); Department of Clinical Biochemistry, Statens Serum Institut, Copenhagen, Denmark (M.C.); and Steno Diabetes Center Copenhagen, Gentofte, Denmark (H.V.)
| | - Michael Christiansen
- From Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.H.-C., E.W.I., N.J.W.A., A.F.L., B.H., T.J., M.C., J.J.H., J.K.K., S.S.T.); Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.H.-C., E.W.I., N.J.W.A., M.S., B.H., H.V., O.P., J.J.H., T.H., S.S.T.); Research Centre for Prevention and Health, the Capital Region of Denmark, Copenhagen (A.L.); Gentofte, Aalborg and Herlev University Hospitals, Denmark (J.K.K.); Faculty of Health Sciences, University of Southern Denmark, Odense (T.H.); Department of Clinical Experimental Research, Rigshospitalet, Denmark (A.L.); Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (A.L.); Danish Diabetes Academy, Odense, Denmark (E.W.I., M.S.); Department of Clinical Biochemistry, Statens Serum Institut, Copenhagen, Denmark (M.C.); and Steno Diabetes Center Copenhagen, Gentofte, Denmark (H.V.)
| | - Henrik Vestergaard
- From Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.H.-C., E.W.I., N.J.W.A., A.F.L., B.H., T.J., M.C., J.J.H., J.K.K., S.S.T.); Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.H.-C., E.W.I., N.J.W.A., M.S., B.H., H.V., O.P., J.J.H., T.H., S.S.T.); Research Centre for Prevention and Health, the Capital Region of Denmark, Copenhagen (A.L.); Gentofte, Aalborg and Herlev University Hospitals, Denmark (J.K.K.); Faculty of Health Sciences, University of Southern Denmark, Odense (T.H.); Department of Clinical Experimental Research, Rigshospitalet, Denmark (A.L.); Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (A.L.); Danish Diabetes Academy, Odense, Denmark (E.W.I., M.S.); Department of Clinical Biochemistry, Statens Serum Institut, Copenhagen, Denmark (M.C.); and Steno Diabetes Center Copenhagen, Gentofte, Denmark (H.V.)
| | - Oluf Pedersen
- From Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.H.-C., E.W.I., N.J.W.A., A.F.L., B.H., T.J., M.C., J.J.H., J.K.K., S.S.T.); Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.H.-C., E.W.I., N.J.W.A., M.S., B.H., H.V., O.P., J.J.H., T.H., S.S.T.); Research Centre for Prevention and Health, the Capital Region of Denmark, Copenhagen (A.L.); Gentofte, Aalborg and Herlev University Hospitals, Denmark (J.K.K.); Faculty of Health Sciences, University of Southern Denmark, Odense (T.H.); Department of Clinical Experimental Research, Rigshospitalet, Denmark (A.L.); Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (A.L.); Danish Diabetes Academy, Odense, Denmark (E.W.I., M.S.); Department of Clinical Biochemistry, Statens Serum Institut, Copenhagen, Denmark (M.C.); and Steno Diabetes Center Copenhagen, Gentofte, Denmark (H.V.)
| | - Jens J Holst
- From Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.H.-C., E.W.I., N.J.W.A., A.F.L., B.H., T.J., M.C., J.J.H., J.K.K., S.S.T.); Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.H.-C., E.W.I., N.J.W.A., M.S., B.H., H.V., O.P., J.J.H., T.H., S.S.T.); Research Centre for Prevention and Health, the Capital Region of Denmark, Copenhagen (A.L.); Gentofte, Aalborg and Herlev University Hospitals, Denmark (J.K.K.); Faculty of Health Sciences, University of Southern Denmark, Odense (T.H.); Department of Clinical Experimental Research, Rigshospitalet, Denmark (A.L.); Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (A.L.); Danish Diabetes Academy, Odense, Denmark (E.W.I., M.S.); Department of Clinical Biochemistry, Statens Serum Institut, Copenhagen, Denmark (M.C.); and Steno Diabetes Center Copenhagen, Gentofte, Denmark (H.V.)
| | - Jørgen K Kanters
- From Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.H.-C., E.W.I., N.J.W.A., A.F.L., B.H., T.J., M.C., J.J.H., J.K.K., S.S.T.); Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.H.-C., E.W.I., N.J.W.A., M.S., B.H., H.V., O.P., J.J.H., T.H., S.S.T.); Research Centre for Prevention and Health, the Capital Region of Denmark, Copenhagen (A.L.); Gentofte, Aalborg and Herlev University Hospitals, Denmark (J.K.K.); Faculty of Health Sciences, University of Southern Denmark, Odense (T.H.); Department of Clinical Experimental Research, Rigshospitalet, Denmark (A.L.); Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (A.L.); Danish Diabetes Academy, Odense, Denmark (E.W.I., M.S.); Department of Clinical Biochemistry, Statens Serum Institut, Copenhagen, Denmark (M.C.); and Steno Diabetes Center Copenhagen, Gentofte, Denmark (H.V.)
| | - Torben Hansen
- From Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.H.-C., E.W.I., N.J.W.A., A.F.L., B.H., T.J., M.C., J.J.H., J.K.K., S.S.T.); Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.H.-C., E.W.I., N.J.W.A., M.S., B.H., H.V., O.P., J.J.H., T.H., S.S.T.); Research Centre for Prevention and Health, the Capital Region of Denmark, Copenhagen (A.L.); Gentofte, Aalborg and Herlev University Hospitals, Denmark (J.K.K.); Faculty of Health Sciences, University of Southern Denmark, Odense (T.H.); Department of Clinical Experimental Research, Rigshospitalet, Denmark (A.L.); Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (A.L.); Danish Diabetes Academy, Odense, Denmark (E.W.I., M.S.); Department of Clinical Biochemistry, Statens Serum Institut, Copenhagen, Denmark (M.C.); and Steno Diabetes Center Copenhagen, Gentofte, Denmark (H.V.).
| | - Signe S Torekov
- From Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.H.-C., E.W.I., N.J.W.A., A.F.L., B.H., T.J., M.C., J.J.H., J.K.K., S.S.T.); Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (L.H.-C., E.W.I., N.J.W.A., M.S., B.H., H.V., O.P., J.J.H., T.H., S.S.T.); Research Centre for Prevention and Health, the Capital Region of Denmark, Copenhagen (A.L.); Gentofte, Aalborg and Herlev University Hospitals, Denmark (J.K.K.); Faculty of Health Sciences, University of Southern Denmark, Odense (T.H.); Department of Clinical Experimental Research, Rigshospitalet, Denmark (A.L.); Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (A.L.); Danish Diabetes Academy, Odense, Denmark (E.W.I., M.S.); Department of Clinical Biochemistry, Statens Serum Institut, Copenhagen, Denmark (M.C.); and Steno Diabetes Center Copenhagen, Gentofte, Denmark (H.V.).
| |
Collapse
|
21
|
O'Neill K, Musgrave IF, Humpage A. Low dose extended exposure to saxitoxin and its potential neurodevelopmental effects: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 48:7-16. [PMID: 27716534 DOI: 10.1016/j.etap.2016.09.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 09/27/2016] [Indexed: 06/06/2023]
Abstract
Saxitoxin (STX) and its analogs, the paralytic shellfish toxins (PSTs), are a group of potent neurotoxins well known for their role in acute paralytic poisoning by preventing the generation of action potentials in neuronal cells. They are found in both marine and freshwater environments globally and although acute exposure from the former has previously received more attention, low dose extended exposure from both sources is possible and to date has not been investigated. Given the known role of cellular electrical activity in neurodevelopment this pattern of exposure may be a significant public health concern. Additionally, the presence of PSTs is likely to be an ongoing and possibly increasing problem in the future. This review examines the neurodevelopmental toxicity of STX, the risk of extended or repeated exposure to doses with neurodevelopmental effects, the potential implications of this exposure and briefly, the steps taken and difficulties faced in preventing exposure.
Collapse
Affiliation(s)
- Katie O'Neill
- Discipline of Pharmacology, School of Medicine, The University of Adelaide, Level 3 Medical School South, Frome Rd, Adelaide, 5005, South Australia, Australia.
| | - Ian F Musgrave
- Discipline of Pharmacology, School of Medicine, The University of Adelaide, Level 3 Medical School South, Frome Rd, Adelaide, 5005, South Australia, Australia.
| | - Andrew Humpage
- Australian Water Quality Center, SA Water House, 250 Victoria Square, Adelaide, 5000, South Australia, Australia.
| |
Collapse
|
22
|
Gentile S. hERG1 potassium channel in cancer cells: a tool to reprogram immortality. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:649-655. [PMID: 27649700 DOI: 10.1007/s00249-016-1169-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 07/21/2016] [Accepted: 08/30/2016] [Indexed: 12/12/2022]
Abstract
It has been well established that changes in ion fluxes across cellular membranes as a function of time is fundamental in maintaining cellular homeostasis of every living cell. Consequently, dysregulation of ion channels activity is a critical event in pathological conditions of several tissues, including cancer. Nevertheless, the role of ion channels in cancer biology is still not well understood and very little is known about the possible therapeutic opportunities offered by the use of the vast collection of drugs that target ion channels. In this review, we focus on the recent advances in understanding the role of the voltage-gated hERG1 potassium channel in cancer and on the effects of pharmacologic manipulation of the hERG1 in cancer cells aiming to provide insights into the biochemical signaling and cellular processes that are altered by using these drugs.
Collapse
|
23
|
Qiu HY, Yuan SS, Yang FY, Shi TT, Yang JK. HERG Protein Plays a Role in Moxifloxacin-Induced Hypoglycemia. J Diabetes Res 2016; 2016:6741745. [PMID: 26649323 PMCID: PMC4663361 DOI: 10.1155/2016/6741745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/06/2015] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to investigate the effect of moxifloxacin on HERG channel protein and glucose metabolism. HERG expression was investigated using immunohistochemistry. The whole-cell patch clamp method was used to examine the effect of moxifloxacin on HERG channel currents. A glucose tolerance test was used to analyze the effects of moxifloxacin on blood glucose and insulin concentrations in mice. Results show that HERG protein was expressed in human pancreatic β-cells. Moxifloxacin inhibited HERG time-dependent and tail currents in HEK293 cells in a concentration-dependent manner. The IC50 of moxifloxacin inhibition was 36.65 μmol/L. Moxifloxacin (200 mg/kg) reduced blood glucose levels and increased insulin secretion in wild-type mice at 60 min after the start of the glucose tolerance test. In contrast, moxifloxacin did not significantly alter blood glucose and insulin levels in HERG knockout mice. Serum glucose levels increased and insulin concentrations decreased in HERG knockout mice when compared to wild-type mice. The moxifloxacin-induced decrease in blood glucose and increase in insulin secretion occurred via the HERG protein; thus, HERG protein plays a role in insulin secretion.
Collapse
Affiliation(s)
- Hai-Yan Qiu
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China
| | - Sha-Sha Yuan
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China
| | - Fang-Yuan Yang
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China
| | - Ting-Ting Shi
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China
| | - Jin-Kui Yang
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China
- *Jin-Kui Yang:
| |
Collapse
|
24
|
Loppini A, Braun M, Filippi S, Pedersen MG. Mathematical modeling of gap junction coupling and electrical activity in human β-cells. Phys Biol 2015; 12:066002. [PMID: 26403477 DOI: 10.1088/1478-3975/12/6/066002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Coordinated insulin secretion is controlled by electrical coupling of pancreatic β-cells due to connexin-36 gap junctions. Gap junction coupling not only synchronizes the heterogeneous β-cell population, but can also modify the electrical behavior of the cells. These phenomena have been widely studied with mathematical models based on data from mouse β-cells. However, it is now known that human β-cell electrophysiology shows important differences to its rodent counterpart, and although human pancreatic islets express connexin-36 and show evidence of β-cell coupling, these aspects have been little investigated in human β-cells. Here we investigate theoretically, the gap junction coupling strength required for synchronizing electrical activity in a small cluster of cells simulated with a recent mathematical model of human β-cell electrophysiology. We find a lower limit for the coupling strength of approximately 20 pS (i.e., normalized to cell size, ∼2 pS pF(-1)) below which spiking electrical activity is asynchronous. To confront this theoretical lower bound with data, we use our model to estimate from an experimental patch clamp recording that the coupling strength is approximately 100-200 pS (10-20 pS pF(-1)), similar to previous estimates in mouse β-cells. We then investigate the role of gap junction coupling in synchronizing and modifying other forms of electrical activity in human β-cell clusters. We find that electrical coupling can prolong the period of rapid bursting electrical activity, and synchronize metabolically driven slow bursting, in particular when the metabolic oscillators are in phase. Our results show that realistic coupling conductances are sufficient to promote synchrony in small clusters of human β-cells as observed experimentally, and provide motivation for further detailed studies of electrical coupling in human pancreatic islets.
Collapse
Affiliation(s)
- Alessandro Loppini
- Nonlinear Physics and Mathematical Modeling Laboratory, University Campus Bio-Medico, I-00128, Rome, Italy
| | | | | | | |
Collapse
|
25
|
Arcangeli A, Becchetti A. Novel perspectives in cancer therapy: Targeting ion channels. Drug Resist Updat 2015; 21-22:11-9. [DOI: 10.1016/j.drup.2015.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 06/24/2015] [Accepted: 06/27/2015] [Indexed: 01/04/2023]
|
26
|
Poterucha JT, Bos JM, Cannon BC, Ackerman MJ. Frequency and severity of hypoglycemia in children with beta-blocker-treated long QT syndrome. Heart Rhythm 2015; 12:1815-9. [PMID: 25929701 DOI: 10.1016/j.hrthm.2015.04.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Indexed: 11/18/2022]
Abstract
BACKGROUND Hypoglycemia is a potential side effect of beta-blockers; however, no cases have been reported in children with long QT syndrome (LQTS). OBJECTIVE The purpose of this study was to determine the frequency and severity of hypoglycemia among children with beta-blocker-treated LQTS. METHODS A retrospective study was performed to identify children with LQTS evaluated from 2000 to 2014 who developed symptomatic hypoglycemia while being treated with a beta-blocker. RESULTS Nine children (3%; 7 boys; average corrected QT interval 486 ± 35 ms) developed 13 episodes (0.005 events per 100 treatment years) of beta-blocker-associated hypoglycemia (mean initial glucose 21 ± 7 mg/dL), including 3 of 157 patients with LQTS type 1 (LQT1; 1.9%) and 6 of 105 with LQTS type 2 (LQT2; 5.7%). The mean age at hypoglycemic event was 3.5 ± 2 years (range 7 months to 9 years), involving nadolol in 6 cases (mean dose 1.4 ± 0.2 mg/kg/d) and propranolol in 3 (mean dose 2.7±1 mg/kg/d). Hypoglycemic events were more frequent in patients with LQT2 than in those with LQT1 (10 vs. 3 events; P = .02). Hypoglycemia-triggered seizures were observed in 6 patients, fasting ketoacidosis in 5, and 7 patients required hospitalization (mean of 3 ± 2 days). Decreased caloric intake before the event was identified in all patients and a concomitant viral infection in 3. CONCLUSION This is the largest single-center case series of beta-blocker-induced hypoglycemia. Clinicians should be cognizant of hypoglycemia symptoms in younger children during periods of poor appetite and during viral illness, and parents of these children should be educated about the signs and symptoms of hypoglycemia. A potential LQT2-hypoglycemia genotype-phenotype relationship warrants further investigation.
Collapse
Affiliation(s)
- Joseph T Poterucha
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - J Martijn Bos
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota; Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Bryan C Cannon
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - Michael J Ackerman
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota; Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota; Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
27
|
Riz M, Braun M, Wu X, Pedersen MG. Inwardly rectifying Kir2.1 currents in human β-cells control electrical activity: Characterisation and mathematical modelling. Biochem Biophys Res Commun 2015; 459:284-287. [DOI: 10.1016/j.bbrc.2015.02.099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 02/18/2015] [Indexed: 11/26/2022]
|
28
|
Lastraioli E, Perrone G, Sette A, Fiore A, Crociani O, Manoli S, D'Amico M, Masselli M, Iorio J, Callea M, Borzomati D, Nappo G, Bartolozzi F, Santini D, Bencini L, Farsi M, Boni L, Di Costanzo F, Schwab A, Onetti Muda A, Coppola R, Arcangeli A. hERG1 channels drive tumour malignancy and may serve as prognostic factor in pancreatic ductal adenocarcinoma. Br J Cancer 2015; 112:1076-1087. [PMID: 25719829 PMCID: PMC4366888 DOI: 10.1038/bjc.2015.28] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/02/2015] [Accepted: 01/12/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND hERG1 channels are aberrantly expressed in human cancers. The expression, functional role and clinical significance of hERG1 channels in pancreatic ductal adenocarcinoma (PDAC) is lacking. METHODS hERG1 expression was tested in PDAC primary samples assembled as tissue microarray by immunohistochemistry using an anti-hERG1 monoclonal antibody (α-hERG1-MoAb). The functional role of hERG1 was studied in PDAC cell lines and primary cultures. ERG1 expression during PDAC progression was studied in Pdx-1-Cre,LSL-Kras(G12D/+),LSL-Trp53(R175H/+) transgenic (KPC) mice. ERG1 expression in vivo was determined by optical imaging using Alexa-680-labelled α-hERG1-MoAb. RESULTS (i) hERG1 was expressed at high levels in 59% of primary PDAC; (ii) hERG1 blockade decreased PDAC cell growth and migration; (iii) hERG1 was physically and functionally linked to the Epidermal Growth Factor-Receptor pathway; (iv) in transgenic mice, ERG1 was expressed in PanIN lesions, reaching high expression levels in PDAC; (v) PDAC patients whose primary tumour showed high hERG1 expression had a worse prognosis; (vi) the α-hERG1-MoAb could detect PDAC in vivo. CONCLUSIONS hERG1 regulates PDAC malignancy and its expression, once validated in a larger cohort also comprising of late-stage, non-surgically resected cases, may be exploited for diagnostic and prognostic purposes in PDAC either ex vivo or in vivo.
Collapse
Affiliation(s)
- E Lastraioli
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, Florence 50134, Italy
| | - G Perrone
- Department of Pathology, Pathology Unit, Campus Bio-Medico University, via del Portillo 200, Rome 00128, Italy
| | - A Sette
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, Florence 50134, Italy
| | - A Fiore
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, Florence 50134, Italy
| | - O Crociani
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, Florence 50134, Italy
| | - S Manoli
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, Florence 50134, Italy
| | - M D'Amico
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, Florence 50134, Italy
- DI.V.A.L Toscana Srl, Via Madonna del Piano 6, Sesto Fiorentino 50019, Italy
| | - M Masselli
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, Florence 50134, Italy
| | - J Iorio
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, Florence 50134, Italy
| | - M Callea
- Department of Pathology, Pathology Unit, Campus Bio-Medico University, via del Portillo 200, Rome 00128, Italy
| | - D Borzomati
- Department of General Surgery, Campus Bio-Medico University, via del Portillo 200, Rome 00128, Italy
| | - G Nappo
- Department of General Surgery, Campus Bio-Medico University, via del Portillo 200, Rome 00128, Italy
| | - F Bartolozzi
- Casa di Cura Villa Margherita, Viale di Villa Massimo 48, Rome 00161, Italy
| | - D Santini
- Department of Medical Oncology, Campus Bio-Medico University, via del Portillo 200, Rome 00128, Italy
| | - L Bencini
- Department of General Surgery and Surgical Oncology, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy
| | - M Farsi
- Department of General Surgery and Surgical Oncology, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy
| | - L Boni
- Clinical Trials Coordinating Center, Azienda Ospedaliero-Universitaria Careggi/Istituto Toscano Tumori, Largo Brambilla 3, Florence 50134, Italy
| | - F Di Costanzo
- Department of Medical Oncology, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy
| | - A Schwab
- Physiologisches Institut II, University of Münster, Robert-Koch-Str. 27b, Münster D-48149, Germany
| | - A Onetti Muda
- Department of Pathology, Pathology Unit, Campus Bio-Medico University, via del Portillo 200, Rome 00128, Italy
| | - R Coppola
- Department of General Surgery, Campus Bio-Medico University, via del Portillo 200, Rome 00128, Italy
| | - A Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, Florence 50134, Italy
| |
Collapse
|
29
|
Molbaek K, Scharff-Poulsen P, Helix-Nielsen C, Klaerke DA, Pedersen PA. High yield purification of full-length functional hERG K+ channels produced in Saccharomyces cerevisiae. Microb Cell Fact 2015; 14:15. [PMID: 25656388 PMCID: PMC4341239 DOI: 10.1186/s12934-015-0193-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/11/2014] [Indexed: 11/23/2022] Open
Abstract
The hERG potassium channel is essential for repolarization of the cardiac action potential. Due to this vital function, absence of unintended and potentially life-threatening interactions with hERG is required for approval of new drugs. The structure of hERG is therefore one of the most sought-after. To provide purified hERG for structural studies and new hERG biomimetic platforms for detection of undesirable interactions, we have developed a hERG expression platform generating unprecedented amounts of purified and functional hERG channels. Full-length hERG, with or without a C-terminally fused green fluorescent protein (GFP) His 8-tag was produced from a codon-optimized hERG cDNA in Saccharomyces cerevisiae. Both constructs complemented the high potassium requirement of a knock-out Saccharomyces cerevisiae strain, indicating correct tetramer assembly in vivo. Functionality was further demonstrated by Astemizole binding to membrane embedded hERG-GFP-His 8 with a stoichiometry corresponding to tetramer assembly. The 156 kDa hERG-GFP protein accumulated to a membrane density of 1.6%. Fluorescence size exclusion chromatography of hERG-GFP-His 8 solubilized in Fos-Choline-12 supplemented with cholesteryl-hemisuccinate and Astemizole resulted in a monodisperse elution profile demonstrating a high quality of the hERG channels. hERG-GFP-His 8 purified by Ni-affinity chromatography maintained the ability to bind Astemizole with the correct stoichiometry indicating that the native, tetrameric structure was preserved. To our knowledge this is the first reported high-yield production and purification of full length, tetrameric and functional hERG. This significant breakthrough will be paramount in obtaining hERG crystal structures, and in establishment of new high-throughput hERG drug safety screening assays.
Collapse
Affiliation(s)
- Karen Molbaek
- Department of Veterinary and Clinical Animal Science, University of Copenhagen, Dyrlaegevej 100, Frederiksberg, DK-1870, Denmark.
| | - Peter Scharff-Poulsen
- Department of Biology, University of Copenhagen, Universitetsparken 13, Copenhagen OE, DK- 2100, Denmark.
| | - Claus Helix-Nielsen
- Department of Environmental Engineering, Technical University of Denmark, Miljoevej building 113, Kgs Lyngby, 24105, Denmark. .,Aquaporin A/S, Ole Maaloesvej 3, Copenhagen N, DK-2200, Denmark. .,Laboratory for Water Biophysics and Membrane Technology, University of Maribor, Smetanova ulica 17, Maribor, SL-2000, Slovenia.
| | - Dan A Klaerke
- Department of Veterinary and Clinical Animal Science, University of Copenhagen, Dyrlaegevej 100, Frederiksberg, DK-1870, Denmark.
| | - Per Amstrup Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 13, Copenhagen OE, DK- 2100, Denmark.
| |
Collapse
|
30
|
Balasuriya D, D'Sa L, Talker R, Dupuis E, Maurin F, Martin P, Borgese F, Soriani O, Edwardson JM. A direct interaction between the sigma-1 receptor and the hERG voltage-gated K+ channel revealed by atomic force microscopy and homogeneous time-resolved fluorescence (HTRF®). J Biol Chem 2014; 289:32353-32363. [PMID: 25266722 PMCID: PMC4231707 DOI: 10.1074/jbc.m114.603506] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/17/2014] [Indexed: 01/29/2023] Open
Abstract
The sigma-1 receptor is an endoplasmic reticulum chaperone protein, widely expressed in central and peripheral tissues, which can translocate to the plasma membrane and modulate the function of various ion channels. The human ether-à-go-go-related gene encodes hERG, a cardiac voltage-gated K(+) channel that is abnormally expressed in many human cancers and is known to interact functionally with the sigma-1 receptor. Our aim was to investigate the nature of the interaction between the sigma-1 receptor and hERG. We show that the two proteins can be co-isolated from a detergent extract of stably transfected HEK-293 cells, consistent with a direct interaction between them. Atomic force microscopy imaging of the isolated protein confirmed the direct binding of the sigma-1 receptor to hERG monomers, dimers, and tetramers. hERG dimers and tetramers became both singly and doubly decorated by sigma-1 receptors; however, hERG monomers were only singly decorated. The distribution of angles between pairs of sigma-1 receptors bound to hERG tetramers had two peaks, at ∼90 and ∼180° in a ratio of ∼2:1, indicating that the sigma-1 receptor interacts with hERG with 4-fold symmetry. Homogeneous time-resolved fluorescence (HTRF®) allowed the detection of the interaction between the sigma-1 receptor and hERG within the plane of the plasma membrane. This interaction was resistant to sigma ligands, but was decreased in response to cholesterol depletion of the membrane. We suggest that the sigma-1 receptor may bind to hERG in the endoplasmic reticulum, aiding its assembly and trafficking to the plasma membrane.
Collapse
Affiliation(s)
- Dilshan Balasuriya
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| | - Lauren D'Sa
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| | - Ronel Talker
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| | - Elodie Dupuis
- CisBio Bioassays, Parc Marcel Boiteux BP 84175, 30200 Codolet, France, and
| | - Fabrice Maurin
- CisBio Bioassays, Parc Marcel Boiteux BP 84175, 30200 Codolet, France, and
| | - Patrick Martin
- Institut de Biologie de Valrose (iBV), CNRS UMR 7277, INSERM U1091 UNS, Faculté des Sciences, Université de Nice Sophia Antipolis, 06108 Nice Cedex 2, France
| | - Franck Borgese
- Institut de Biologie de Valrose (iBV), CNRS UMR 7277, INSERM U1091 UNS, Faculté des Sciences, Université de Nice Sophia Antipolis, 06108 Nice Cedex 2, France
| | - Olivier Soriani
- Institut de Biologie de Valrose (iBV), CNRS UMR 7277, INSERM U1091 UNS, Faculté des Sciences, Université de Nice Sophia Antipolis, 06108 Nice Cedex 2, France.
| | - J Michael Edwardson
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom,.
| |
Collapse
|
31
|
Late sodium current (INaL) in pancreatic β-cells. Pflugers Arch 2014; 467:1757-68. [DOI: 10.1007/s00424-014-1613-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 09/01/2014] [Accepted: 09/08/2014] [Indexed: 12/20/2022]
|
32
|
Mitcheson J, Arcangeli A. The Therapeutic Potential of hERG1 K+ Channels for Treating Cancer and Cardiac Arrhythmias. ION CHANNEL DRUG DISCOVERY 2014. [DOI: 10.1039/9781849735087-00258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
hERG potassium channels present pharmacologists and medicinal chemists with a dilemma. On the one hand hERG is a major reason for drugs being withdrawn from the market because of drug induced long QT syndrome and the associated risk of inducing sudden cardiac death, and yet hERG blockers are still widely used in the clinic to treat cardiac arrhythmias. Moreover, in the last decade overwhelming evidence has been provided that hERG channels are aberrantly expressed in cancer cells and that they contribute to tumour cell proliferation, resistance to apoptosis, and neoangiogenesis. Here we provide an overview of the properties of hERG channels and their role in excitable cells of the heart and nervous system as well as in cancer. We consider the therapeutic potential of hERG, not only with regard to the negative impact due to drug induced long QT syndrome, but also its future potential as a treatment in the fight against cancer.
Collapse
Affiliation(s)
- John Mitcheson
- University of Leicester, Department of Cell Physiology and Pharmacology, Medical Sciences Building University Road Leicester LE1 9HN UK
| | - Annarosa Arcangeli
- Department of Experimental Pathology and Oncology, University of Florence Viale GB Morgagni, 50 50134 Firenze Italy
| |
Collapse
|
33
|
Urrego D, Tomczak AP, Zahed F, Stühmer W, Pardo LA. Potassium channels in cell cycle and cell proliferation. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130094. [PMID: 24493742 PMCID: PMC3917348 DOI: 10.1098/rstb.2013.0094] [Citation(s) in RCA: 288] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Normal cell-cycle progression is a crucial task for every multicellular organism, as it determines body size and shape, tissue renewal and senescence, and is also crucial for reproduction. On the other hand, dysregulation of the cell-cycle progression leading to uncontrolled cell proliferation is the hallmark of cancer. Therefore, it is not surprising that it is a tightly regulated process, with multifaceted and very complex control mechanisms. It is now well established that one of those mechanisms relies on ion channels, and in many cases specifically on potassium channels. Here, we summarize the possible mechanisms underlying the importance of potassium channels in cell-cycle control and briefly review some of the identified channels that illustrate the multiple ways in which this group of proteins can influence cell proliferation and modulate cell-cycle progression.
Collapse
Affiliation(s)
- Diana Urrego
- Oncophysiology Group, Max Planck Institute of Experimental Medicine, , Hermann-Rein-Strasse 3, Göttingen 37075, Germany
| | | | | | | | | |
Collapse
|
34
|
Riz M, Braun M, Pedersen MG. Mathematical modeling of heterogeneous electrophysiological responses in human β-cells. PLoS Comput Biol 2014; 10:e1003389. [PMID: 24391482 PMCID: PMC3879095 DOI: 10.1371/journal.pcbi.1003389] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/22/2013] [Indexed: 11/19/2022] Open
Abstract
Electrical activity plays a pivotal role in glucose-stimulated insulin secretion from pancreatic β-cells. Recent findings have shown that the electrophysiological characteristics of human β-cells differ from their rodent counterparts. We show that the electrophysiological responses in human β-cells to a range of ion channels antagonists are heterogeneous. In some cells, inhibition of small-conductance potassium currents has no effect on action potential firing, while it increases the firing frequency dramatically in other cells. Sodium channel block can sometimes reduce action potential amplitude, sometimes abolish electrical activity, and in some cells even change spiking electrical activity to rapid bursting. We show that, in contrast to L-type Ca2+-channels, P/Q-type Ca2+-currents are not necessary for action potential generation, and, surprisingly, a P/Q-type Ca2+-channel antagonist even accelerates action potential firing. By including SK-channels and Ca2+ dynamics in a previous mathematical model of electrical activity in human β-cells, we investigate the heterogeneous and nonintuitive electrophysiological responses to ion channel antagonists, and use our findings to obtain insight in previously published insulin secretion measurements. Using our model we also study paracrine signals, and simulate slow oscillations by adding a glycolytic oscillatory component to the electrophysiological model. The heterogenous electrophysiological responses in human β-cells must be taken into account for a deeper understanding of the mechanisms underlying insulin secretion in health and disease, and as shown here, the interdisciplinary combination of experiments and modeling increases our understanding of human β-cell physiology.
Collapse
Affiliation(s)
- Michela Riz
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Matthias Braun
- Alberta Diabetes Institute, Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Morten Gram Pedersen
- Department of Information Engineering, University of Padua, Padua, Italy
- * E-mail:
| |
Collapse
|
35
|
Abstract
Mathematical modeling of the electrical activity of the pancreatic β-cell has been extremely important for understanding the cellular mechanisms involved in glucose-stimulated insulin secretion. Several models have been proposed over the last 30 y, growing in complexity as experimental evidence of the cellular mechanisms involved has become available. Almost all the models have been developed based on experimental data from rodents. However, given the many important differences between species, models of human β-cells have recently been developed. This review summarizes how modeling of β-cells has evolved, highlighting the proposed physiological mechanisms underlying β-cell electrical activity.
Collapse
Key Words
- ADP, adenosine diphosphate
- ATP, adenosine triphosphate
- CK, Chay-Keizer
- CRAC, calcium release-activated current
- Ca2+, calcium ions
- DOM, dual oscillator model
- ER, endoplasmic reticulum
- F6P, fructose-6-phosphate
- FBP, fructose-1,6-bisphosphate
- GLUT, glucose transporter
- GSIS, glucose-stimulated insulin secretion
- HERG, human eter à-go-go related gene
- IP3R, inositol-1,4,5-trisphosphate receptors
- KATP, ATP-sensitive K+ channels
- KCa, Ca2+-dependent K+ channels
- Kv, voltage-dependent K+ channels
- MCU, mitochondrial Ca2+ uniporter
- NCX, Na+/Ca2+ exchanger
- PFK, phosphofructokinase
- PMCA, plasma membrane Ca2+-ATPase
- ROS, reactive oxygen species
- RyR, ryanodine receptors
- SERCA, sarco-endoplasmic reticulum Ca2+-ATPase
- T2D, Type 2 Diabetes
- TCA, trycarboxylic acid cycle
- TRP, transient receptor potential
- VDCC, voltage-dependent Ca2+ channels
- Vm, membrane potential
- [ATP]i, cytosolic ATP
- [Ca2+]i, intracellular calcium concentration
- [Ca2+]m, mitochondrial calcium
- [Na+], Na+ concentration
- action potentials
- bursting
- cAMP, cyclic AMP
- calcium
- electrical activity
- ion channels
- mNCX, mitochondrial Na+/Ca2+ exchanger
- mathematical model
- β-cell
Collapse
Affiliation(s)
- Gerardo J Félix-Martínez
- Department of Electrical Engineering; Universidad
Autónoma Metropolitana-Iztapalapa; México, DF,
México
- Correspondence to: Gerardo J
Félix-Martínez;
| | | |
Collapse
|
36
|
Bellin M, Casini S, Davis RP, D'Aniello C, Haas J, Ward-van Oostwaard D, Tertoolen LGJ, Jung CB, Elliott DA, Welling A, Laugwitz KL, Moretti A, Mummery CL. Isogenic human pluripotent stem cell pairs reveal the role of a KCNH2 mutation in long-QT syndrome. EMBO J 2013; 32:3161-75. [PMID: 24213244 PMCID: PMC3981141 DOI: 10.1038/emboj.2013.240] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 10/11/2013] [Indexed: 12/16/2022] Open
Abstract
Patient-specific induced pluripotent stem cells (iPSCs) will assist research on genetic cardiac maladies if the disease phenotype is recapitulated in vitro. However, genetic background variations may confound disease traits, especially for disorders with incomplete penetrance, such as long-QT syndromes (LQTS). To study the LQT2-associated c.A2987T (N996I) KCNH2 mutation under genetically defined conditions, we derived iPSCs from a patient carrying this mutation and corrected it. Furthermore, we introduced the same point mutation in human embryonic stem cells (hESCs), generating two genetically distinct isogenic pairs of LQTS and control lines. Correction of the mutation normalized the current (IKr) conducted by the HERG channel and the action potential (AP) duration in iPSC-derived cardiomyocytes (CMs). Introduction of the same mutation reduced IKr and prolonged the AP duration in hESC-derived CMs. Further characterization of N996I-HERG pathogenesis revealed a trafficking defect. Our results demonstrated that the c.A2987T KCNH2 mutation is the primary cause of the LQTS phenotype. Precise genetic modification of pluripotent stem cells provided a physiologically and functionally relevant human cellular context to reveal the pathogenic mechanism underlying this specific disease phenotype. Isogenic pairs of patient-derived iPS- and ES-cell lines reveal the molecular problems contributing to cardiac arrest in long-QT syndrome.
Collapse
Affiliation(s)
- Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Proverbio MC, Mangano E, Gessi A, Bordoni R, Spinelli R, Asselta R, Valin PS, Di Candia S, Zamproni I, Diceglie C, Mora S, Caruso-Nicoletti M, Salvatoni A, De Bellis G, Battaglia C. Whole genome SNP genotyping and exome sequencing reveal novel genetic variants and putative causative genes in congenital hyperinsulinism. PLoS One 2013; 8:e68740. [PMID: 23869231 PMCID: PMC3711910 DOI: 10.1371/journal.pone.0068740] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 05/31/2013] [Indexed: 01/27/2023] Open
Abstract
Congenital hyperinsulinism of infancy (CHI) is a rare disorder characterized by severe hypoglycemia due to inappropriate insulin secretion. The genetic causes of CHI have been found in genes regulating insulin secretion from pancreatic β-cells; recessive inactivating mutations in the ABCC8 and KCNJ11 genes represent the most common events. Despite the advances in understanding the molecular pathogenesis of CHI, specific genetic determinants in about 50 % of the CHI patients remain unknown, suggesting additional locus heterogeneity. In order to search for novel loci contributing to the pathogenesis of CHI, we combined a family-based association study, using the transmission disequilibrium test on 17 CHI patients lacking mutations in ABCC8/KCNJ11, with a whole-exome sequencing analysis performed on 10 probands. This strategy allowed the identification of the potential causative mutations in genes implicated in the regulation of insulin secretion such as transmembrane proteins (CACNA1A, KCNH6, KCNJ10, NOTCH2, RYR3, SCN8A, TRPV3, TRPC5), cytosolic (ACACB, CAMK2D, CDKAL1, GNAS, NOS2, PDE4C, PIK3R3) and mitochondrial enzymes (PC, SLC24A6), and in four genes (CSMD1, SLC37A3, SULF1, TLL1) suggested by TDT family-based association study. Moreover, the exome-sequencing approach resulted to be an efficient diagnostic tool for CHI, allowing the identification of mutations in three causative CHI genes (ABCC8, GLUD1, and HNF1A) in four out of 10 patients. Overall, the present study should be considered as a starting point to design further investigations: our results might indeed contribute to meta-analysis studies, aimed at the identification/confirmation of novel causative or modifier genes.
Collapse
Affiliation(s)
- Maria Carla Proverbio
- Dipartimento di Fisiopatologia e dei Trapianti (DePT), Università degli Studi di Milano, Milan, Italy
| | - Eleonora Mangano
- Institute of Biomedical Technologies (ITB), CNR, Segrate, Milan, Italy
| | - Alessandra Gessi
- Scuola di Dottorato di Medicina Molecolare, Università degli Studi di Milano, Milan, Italy
| | - Roberta Bordoni
- Institute of Biomedical Technologies (ITB), CNR, Segrate, Milan, Italy
| | - Roberta Spinelli
- Institute of Biomedical Technologies (ITB), CNR, Segrate, Milan, Italy
| | - Rosanna Asselta
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Paola Sogno Valin
- Department of Pediatrics, San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Di Candia
- Department of Pediatrics, San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Zamproni
- Laboratory of Pediatric Endocrinology, Division of Metabolic and Cardiovascular Sciences, San Raffaele Scientific Institute, Milan, Italy
| | - Cecilia Diceglie
- Laboratory of Pediatric Endocrinology, Division of Metabolic and Cardiovascular Sciences, San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Mora
- Laboratory of Pediatric Endocrinology, Division of Metabolic and Cardiovascular Sciences, San Raffaele Scientific Institute, Milan, Italy
| | | | - Alessandro Salvatoni
- Department of Clinical and Experimental Medicine, Pediatric Unit, Insubria University, Varese, Italy
| | | | - Cristina Battaglia
- Institute of Biomedical Technologies (ITB), CNR, Segrate, Milan, Italy
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
38
|
Abstract
To date, research on the human ether-a-go-go related gene (hERG) has focused on this potassium channel's role in cardiac repolarization and Long QT Syndrome (LQTS). However, growing evidence implicates hERG in a diversity of physiologic and pathological processes. Here we discuss these other functions of hERG, particularly their impact on diseases beyond cardiac arrhythmia.
Collapse
|
39
|
Fridlyand LE, Jacobson DA, Philipson LH. Ion channels and regulation of insulin secretion in human β-cells: a computational systems analysis. Islets 2013; 5:1-15. [PMID: 23624892 PMCID: PMC3662377 DOI: 10.4161/isl.24166] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In mammals an increase in glucose leads to block of ATP dependent potassium channels in pancreatic β cells leading to membrane depolarization. This leads to the repetitive firing of action potentials that increases calcium influx and triggers insulin granule exocytosis. Several important differences between species in this process suggest that a dedicated human-oriented approach is advantageous as extrapolating from rodent data may be misleading in several respects. We examined depolarization-induced spike activity in pancreatic human islet-attached β-cells employing whole-cell patch-clamp methods. We also reviewed the literature concerning regulation of insulin secretion by channel activity and constructed a data-based computer model of human β cell function. The model couples the Hodgkin-Huxley-type ionic equations to the equations describing intracellular Ca²⁺ homeostasis and insulin release. On the basis of this model we employed computational simulations to better understand the behavior of action potentials, calcium handling and insulin secretion in human β cells under a wide range of experimental conditions. This computational system approach provides a framework to analyze the mechanisms of human β cell insulin secretion.
Collapse
|
40
|
Hausammann GJ, Heitkamp T, Matile H, Gsell B, Thoma R, Schmid G, Frasson D, Sievers M, Hennig M, Grütter MG. Generation of an antibody toolbox to characterize hERG. Biochem Biophys Res Commun 2012; 431:70-5. [PMID: 23277102 DOI: 10.1016/j.bbrc.2012.12.089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 12/20/2012] [Indexed: 11/28/2022]
Abstract
The human ether-a-go-go related gene (hERG) potassium channel plays a major role in the repolarization of the cardiac action potential. Inhibition of the hERG function by mutations or a wide variety of pharmaceutical compounds cause long QT syndrome and lead to potentially lethal arrhythmias. For detailed insights into the structural and biochemical background of hERG function and drug binding, the purification of recombinant protein is essential. Because the hERG channel is a challenging protein to purify, fast and easy techniques to evaluate different expression, solubilization and purification conditions are of primary importance. Here, we describe the generation of a set of 12 monoclonal antibodies against hERG. Beside their suitability in western blot, immunoprecipitation and immunostaining, these antibodies were used to establish a sandwich ELISA for the detection and relative quantification of hERG in different expression systems. Furthermore, a Fab fragment was used in fluorescence size exclusion chromatography to determine the oligomeric state of hERG after solubilization. These new tools can be used for a fast and efficient screening of expression, solubilization and purification conditions.
Collapse
Affiliation(s)
- Georg J Hausammann
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Pancreatic β cells secrete insulin, the body's only hormone capable of lowering plasma glucose levels. Impaired or insufficient insulin secretion results in diabetes mellitus. The β cell is electrically excitable; in response to an elevation of glucose, it depolarizes and starts generating action potentials. The electrophysiology of mouse β cells and the cell's role in insulin secretion have been extensively investigated. More recently, similar studies have been performed on human β cells. These studies have revealed numerous and important differences between human and rodent β cells. Here we discuss the properties of human pancreatic β cells: their glucose sensing, the ion channel complement underlying glucose-induced electrical activity that culminates in exocytotic release of insulin, the cellular control of exocytosis, and the modulation of insulin secretion by circulating hormones and locally released neurotransmitters. Finally, we consider the pathophysiology of insulin secretion and the interactions between genetics and environmental factors that may explain the current diabetes epidemic.
Collapse
Affiliation(s)
- Patrik Rorsman
- Oxford Center for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LJ, United Kingdom.
| | | |
Collapse
|
42
|
Donovan AJ, Lansu K, Williams JG, Denning MF, Gentile S. Long QT2 mutation on the Kv11.1 ion channel inhibits current activity by ablating a protein kinase Cα consensus site. Mol Pharmacol 2012; 82:428-37. [PMID: 22653970 PMCID: PMC6673708 DOI: 10.1124/mol.112.077966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/31/2012] [Indexed: 11/22/2022] Open
Abstract
Mutations that inhibit Kv11.1 ion channel activity contribute to abnormalities of cardiac repolarization that can lead to long QT2 (LQT2) cardiac arrhythmias and sudden death. However, for most of these mutations, nothing is known about the molecular mechanism linking Kv11.1 malfunction to cardiac death. We have previously demonstrated that disease-related mutations that create consensus sites for kinases on ion channels can dramatically change ion channel activity. Here, we show that a LQT2-associated mutation can inhibit Kv11.1 ion channel activity by perturbing a consensus site for the Ser/Thr protein kinase C α (PKCα). We first reveal by mass spectrometry analysis that Ser890 of the Kv11.1 ion channel is phosphorylated. Then, we demonstrate by a phospho-detection immunoassay combined with genetic manipulation that PKCα phosphorylates Ser890. Furthermore, we show that Ser890 phosphorylation is associated with an increase in Kv11.1 membrane density with alteration of recovery from inactivation. In addition, a newly discovered and as yet uncharacterized LQT2-associated nonsynonymous single nucleotide polymorphism 2660 G→A within the human ether-á-go-go-related gene 1 coding sequence, which replaces arginine 887 with a histidine residue (R887H), strongly inhibits PKCα-dependent phosphorylation of residue Ser890 on Kv11.1, and ultimately inhibits surface expression and current density. Taken together, our data provide a functional link between this channel mutation and LQT2.
Collapse
Affiliation(s)
- Alexander J Donovan
- Departments of Molecular Pharmacology and Therapeutics, Loyola University, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
43
|
Vandenberg JI, Perry MD, Perrin MJ, Mann SA, Ke Y, Hill AP. hERG K+ Channels: Structure, Function, and Clinical Significance. Physiol Rev 2012; 92:1393-478. [DOI: 10.1152/physrev.00036.2011] [Citation(s) in RCA: 463] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The human ether-a-go-go related gene (hERG) encodes the pore-forming subunit of the rapid component of the delayed rectifier K+ channel, Kv11.1, which are expressed in the heart, various brain regions, smooth muscle cells, endocrine cells, and a wide range of tumor cell lines. However, it is the role that Kv11.1 channels play in the heart that has been best characterized, for two main reasons. First, it is the gene product involved in chromosome 7-associated long QT syndrome (LQTS), an inherited disorder associated with a markedly increased risk of ventricular arrhythmias and sudden cardiac death. Second, blockade of Kv11.1, by a wide range of prescription medications, causes drug-induced QT prolongation with an increase in risk of sudden cardiac arrest. In the first part of this review, the properties of Kv11.1 channels, including biogenesis, trafficking, gating, and pharmacology are discussed, while the second part focuses on the pathophysiology of Kv11.1 channels.
Collapse
Affiliation(s)
- Jamie I. Vandenberg
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Matthew D. Perry
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Mark J. Perrin
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Stefan A. Mann
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Ying Ke
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Adam P. Hill
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| |
Collapse
|
44
|
Jiménez-Vargas JM, Restano-Cassulini R, Possani LD. Toxin modulators and blockers of hERG K(+) channels. Toxicon 2012; 60:492-501. [PMID: 22497787 DOI: 10.1016/j.toxicon.2012.03.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 03/27/2012] [Indexed: 12/24/2022]
Abstract
The K(+) channel encoded by the Ether-á-go-go-Related Gene (ERG) is expressed in different tissues of different animal species. There are at least three subtypes of this channel, being the sub-type 1 (ERG1) crucial in the repolarization phase of the cardiac action potential. Mutations in this gene can affect the properties of the channel producing the type II long QT syndrome (LQTS2) and many drugs are also known to affect this channel with a similar side effect. Various scorpion, spider and sea anemone toxins affect the ERG currents by blocking the ion-conducting pore from the external side or by modulating channel gating through binding to the voltage-sensor domain. By doing so, these toxins become very useful tools for better understanding the structural and functional characteristics of these ion channels. This review discusses the interaction between the ERG channels and the peptides isolated from venoms of these animals. Special emphasis is placed on scorpion toxins, although the effects of several spider venom toxins and anemone toxins will be also revised.
Collapse
Affiliation(s)
- J M Jiménez-Vargas
- Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico, Av. Universidad 2001, P.O. Box 501-3, Cuernavaca 62210, Mexico.
| | | | | |
Collapse
|
45
|
Barros F, Domínguez P, de la Peña P. Cytoplasmic domains and voltage-dependent potassium channel gating. Front Pharmacol 2012; 3:49. [PMID: 22470342 PMCID: PMC3311039 DOI: 10.3389/fphar.2012.00049] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 03/05/2012] [Indexed: 12/20/2022] Open
Abstract
The basic architecture of the voltage-dependent K+ channels (Kv channels) corresponds to a transmembrane protein core in which the permeation pore, the voltage-sensing components and the gating machinery (cytoplasmic facing gate and sensor–gate coupler) reside. Usually, large protein tails are attached to this core, hanging toward the inside of the cell. These cytoplasmic regions are essential for normal channel function and, due to their accessibility to the cytoplasmic environment, constitute obvious targets for cell-physiological control of channel behavior. Here we review the present knowledge about the molecular organization of these intracellular channel regions and their role in both setting and controlling Kv voltage-dependent gating properties. This includes the influence that they exert on Kv rapid/N-type inactivation and on activation/deactivation gating of Shaker-like and eag-type Kv channels. Some illustrative examples about the relevance of these cytoplasmic domains determining the possibilities for modulation of Kv channel gating by cellular components are also considered.
Collapse
Affiliation(s)
- Francisco Barros
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo Oviedo, Asturias, Spain
| | | | | |
Collapse
|
46
|
Finol-Urdaneta RK, Remedi MS, Raasch W, Becker S, Clark RB, Strüver N, Pavlov E, Nichols CG, French RJ, Terlau H. Block of Kv1.7 potassium currents increases glucose-stimulated insulin secretion. EMBO Mol Med 2012; 4:424-34. [PMID: 22438204 PMCID: PMC3403299 DOI: 10.1002/emmm.201200218] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 01/12/2012] [Accepted: 01/13/2012] [Indexed: 01/26/2023] Open
Abstract
Glucose-stimulated insulin secretion (GSIS) relies on repetitive, electrical spiking activity of the beta cell membrane. Cyclic activation of voltage-gated potassium channels (Kv) generates an outward, ‘delayed rectifier’ potassium current, which drives the repolarizing phase of each spike and modulates insulin release. Although several Kv channels are expressed in pancreatic islets, their individual contributions to GSIS remain incompletely understood. We take advantage of a naturally occurring cone-snail peptide toxin, Conkunitzin-S1 (Conk-S1), which selectively blocks Kv1.7 channels to provide an intrinsically limited, finely graded control of total beta cell delayed rectifier current and hence of GSIS. Conk-S1 increases GSIS in isolated rat islets, likely by reducing Kv1.7-mediated delayed rectifier currents in beta cells, which yields increases in action potential firing and cytoplasmic free calcium. In rats, Conk-S1 increases glucose-dependent insulin secretion without decreasing basal glucose. Thus, we conclude that Kv1.7 contributes to the membrane-repolarizing current of beta cells during GSIS and that block of this specific component of beta cell Kv current offers a potential strategy for enhancing GSIS with minimal risk of hypoglycaemia during metabolic disorders such as Type 2 diabetes.
Collapse
Affiliation(s)
- Rocio K Finol-Urdaneta
- Department of Physiology and Pharmacology, and HBI, University of Calgary, Calgary, AB, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Heo DH, Kang TC. The changes of ERG channel expression after administration of antiepileptic drugs in the hippocampus of epilepsy gerbil model. Neurosci Lett 2012; 507:27-32. [DOI: 10.1016/j.neulet.2011.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 11/25/2011] [Accepted: 11/26/2011] [Indexed: 10/14/2022]
|
48
|
Abstract
The human ether-a-go-go-related gene potassium channel (hERG, Kv11.1, KCNH2) has an essential role in cardiac action potential repolarization. Electrical dysfunction of the voltage-sensitive ion channel is associated with potentially lethal ventricular arrhythmias in humans. hERG K+ channels are also expressed in a variety of cancer cells where they control cell proliferation and apoptosis. In this review, we discuss molecular mechanisms of hERG-associated cell cycle regulation and cell death. In addition, the significance of hERG K+ channels as future drug target in anticancer therapy is highlighted.
Collapse
|
49
|
Ning Y, Zhen W, Fu Z, Jiang J, Liu D, Belardinelli L, Dhalla AK. Ranolazine increases β-cell survival and improves glucose homeostasis in low-dose streptozotocin-induced diabetes in mice. J Pharmacol Exp Ther 2011; 337:50-8. [PMID: 21228065 DOI: 10.1124/jpet.110.176396] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In addition to its anti-ischemic and antianginal effects, ranolazine has been shown to lower hemoglobin A(1c) (HbA(1c)) in patients with coronary artery disease and diabetes. The present study was undertaken to test the hypothesis that ranolazine lowers HbA(1c) because of improved glucose homeostasis in an animal model. Diabetes in mice was induced by giving multiple low doses of streptozotocin. Ranolazine was given twice daily via an oral gavage (20 mg/kg) for 8 weeks. Fasting plasma glucose levels were significantly lower in the ranolazine-treated group (187 ± 19 mg/dl) compared with the vehicle group (273 ± 23 mg/dl) at 8 weeks. HbA(1c) was 5.8 ± 0.4% in the vehicle group and 4.5 ± 0.2% in the ranolazine-treated group (p < 0.05). Glucose disposal during the oral glucose tolerance test (OGTT) and insulin tolerance test were not different between the two groups; however, during OGTT, peak insulin levels were significantly (p < 0.05) higher in ranolazine-treated mice. Mice treated with ranolazine had healthier islet morphology and significantly (p < 0.01) higher β-cell mass (69 ± 2% per islet) than the vehicle group (50 ± 5% per islet) as determined from hematoxylin and eosin staining. The number of apoptotic cells was significantly (p < 0.05) less in the pancreas of the ranolazine-treated group (14 ± 2% per islet) compared with the vehicle group (24 ± 4% per islet). In addition, ranolazine increased glucose-stimulated insulin secretion in rat and human islets in a glucose-dependent manner. These data suggest that ranolazine may be a novel antidiabetic agent that causes β-cell preservation and enhances insulin secretion in a glucose-dependent manner in diabetic mice.
Collapse
Affiliation(s)
- Yun Ning
- Department of Biology, Gilead Palo Alto Inc., Palo Alto, CA 94304, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Marion V, Sankaranarayanan S, de Theije C, van Dijk P, Lindsey P, Lamers MC, Harding HP, Ron D, Lamers WH, Köhler SE. Arginine deficiency causes runting in the suckling period by selectively activating the stress kinase GCN2. J Biol Chem 2011; 286:8866-74. [PMID: 21239484 PMCID: PMC3058991 DOI: 10.1074/jbc.m110.216119] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 01/13/2011] [Indexed: 12/18/2022] Open
Abstract
Suckling "F/A2" mice, which overexpress arginase-I in their enterocytes, develop a syndrome (hypoargininemia, reduced hair and muscle growth, impaired B-cell maturation) that resembles IGF1 deficiency. The syndrome may result from an impaired function of the GH-IGF1 axis, activation of the stress-kinase GCN2, and/or blocking of the mTORC1-signaling pathway. Arginine deficiency inhibited GH secretion and decreased liver Igf1 mRNA and plasma IGF1 concentration, but did not change muscle IGF1 concentration. GH supplementation induced Igf1 mRNA synthesis, but did not restore growth, ruling out direct involvement of the GH-IGF1 axis. In C2C12 muscle cells, arginine withdrawal activated GCN2 signaling, without impacting mTORC1 signaling. In F/A2 mice, the reduction of plasma and tissue arginine concentrations to ∼25% of wild-type values activated GCN2 signaling, but mTORC1-mediated signaling remained unaffected. Gcn2-deficient F/A2 mice suffered from hypoglycemia and died shortly after birth. Because common targets of all stress kinases (eIF2α phosphorylation, Chop mRNA expression) were not increased in these mice, the effects of arginine deficiency were solely mediated by GCN2.
Collapse
Affiliation(s)
- Vincent Marion
- From the Dept of Anatomy & Embryology and NUTRIM School for Nutrition, Toxicology, and Metabolism, and
| | | | - Chiel de Theije
- From the Dept of Anatomy & Embryology and NUTRIM School for Nutrition, Toxicology, and Metabolism, and
| | - Paul van Dijk
- From the Dept of Anatomy & Embryology and NUTRIM School for Nutrition, Toxicology, and Metabolism, and
| | - Patrick Lindsey
- the Department of Population Genetics, Genomics & Bioinformatics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Marinus C. Lamers
- the Max-Planck Institute of Immunobiology, P.O. Box 1169, D-79011 Freiburg, Germany
| | - Heather P. Harding
- the Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, United Kingdom, and
| | - David Ron
- the Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, United Kingdom, and
| | - Wouter H. Lamers
- From the Dept of Anatomy & Embryology and NUTRIM School for Nutrition, Toxicology, and Metabolism, and
- the AMC Liver Center, Academic Medical Center, University of Amsterdam, P.O. Box 22660, 1100 DD, Amsterdam, The Netherlands
| | - S. Eleonore Köhler
- From the Dept of Anatomy & Embryology and NUTRIM School for Nutrition, Toxicology, and Metabolism, and
| |
Collapse
|