1
|
Salum KCR, Assis ISDS, Kopke ÚDA, Palhinha L, Abreu GDM, Gouvêa LW, Teixeira MR, Mattos FCC, Nogueira Neto JF, Felício RDFM, Rosado EL, Zembrzuski VM, Campos Junior M, Maya-Monteiro CM, Cabello PH, Carneiro JRI, Bozza PT, Kohlrausch FB, da Fonseca ACP. FTO rs17817449 Variant Increases the Risk of Severe Obesity in a Brazilian Cohort: A Case-Control Study. Diabetes Metab Syndr Obes 2025; 18:283-303. [PMID: 39906696 PMCID: PMC11792641 DOI: 10.2147/dmso.s451401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/17/2024] [Indexed: 02/06/2025] Open
Abstract
Purpose Obesity is a complex disease caused by a combination of genetic, environmental, and epigenetic factors, and is associated with an increased risk of chronic diseases. The leptin-melanocortin pathway integrates peripheral signals about the body's energy stores with a central neuronal circuit in the hypothalamus. This pathway has been extensively studied over the years, as genetic variations in genes related to it may play a crucial role in determining an individual's susceptibility to obesity. Therefore, we analyzed the association between obesity and specific polymorphisms in leptin-melanocortin-related genes such as LEPR rs1137101, POMC rs1042571, LEP rs7799039, BDNF rs6265, FTO rs17817449, CART rs121909065, and NPY rs16147/rs5574. Patients and Methods The study enrolled 501 participants from Rio de Janeiro, Brazil, with obesity class II or greater (BMI ≥ 35 kg/m2) and normal weight controls (18.5≤ BMI ≤24.9 kg/m2). We collected demographic, body composition, biochemical, and genotyping data by real-time PCR, and performed logistic and linear regression analyses to investigate the association of polymorphisms with severe obesity status and obesity-related quantitative parameters. Results Individuals with severe obesity had significantly higher anthropometric measures, blood pressure, and biochemical levels. The FTO rs17817449 TT genotype was associated with a significantly higher risk of developing severe obesity, and distinct cytokine expression was observed across the FTO rs17817449 genotypes. The BDNF rs6265 dominant-model and NPY rs16147 CC genotypes were associated with triglyceride levels and childhood obesity, respectively. Finally, individuals with obesity were more likely to carry a greater number of risk alleles than those without obesity. Conclusion Our study observed an important association between FTO rs17817449 polymorphism with obesity and obesity-related traits. Additionally, BDNF rs6265 dominant-model was associated with triglyceride serum levels, and NPY rs16147 may have a role in obesity onset.
Collapse
Affiliation(s)
- Kaio Cezar Rodrigues Salum
- Medical Clinic Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Human Genetics Laboratory, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | - Izadora Sthephanie da Silva Assis
- Medical Clinic Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Human Genetics Laboratory, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | | | - Lohanna Palhinha
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | - Gabriella de Medeiros Abreu
- Human Genetics Laboratory, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
- Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Laura Wendling Gouvêa
- Medical Clinic Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Human Genetics Laboratory, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | - Myrela Ribeiro Teixeira
- Human Genetics Laboratory, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
- Human Genetics Laboratory, Institute of Biology, Federal Fluminense University Niterói, Rio de Janeiro, Brazil
- Postgraduate in Sciences and Biotechnology, Fluminense Federal University Niterói, Rio de Janeiro, Brazil
| | | | | | - Rafaela de Freitas Martins Felício
- Birth Defect Epidemiology laboratory, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
- Health Care Network for Congenital Anomalies of the Central Nervous System, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Eliane Lopes Rosado
- Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | - Fabiana Barzotto Kohlrausch
- Human Genetics Laboratory, Institute of Biology, Federal Fluminense University Niterói, Rio de Janeiro, Brazil
| | - Ana Carolina Proença da Fonseca
- Human Genetics Laboratory, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
- Genetics Laboratory, Grande Rio University, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Zhao D, Han X, Mu Q, Wu Y, Shan L, Su L, Wang W, Wang P, Kang Y, Wang F. Association of cerebrospinal fluid NPY with peripheral ApoA: a moderation effect of BMI. Nutr Metab (Lond) 2024; 21:52. [PMID: 39054540 PMCID: PMC11270855 DOI: 10.1186/s12986-024-00828-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Apoprotein A-I (ApoA-I) and Apoprotein B (ApoB) have emerged as novel cardiovascular risk biomarkers influenced by feeding behavior. Hypothalamic appetite peptides regulate feeding behavior and impact lipoprotein levels, which effects vary in different weight states. This study explores the intricate relationship between body mass index (BMI), hypothalamic appetite peptides, and apolipoproteins with emphasis on the moderating role of body weight in the association between neuropeptide Y (NPY), ghrelin, orexin A (OXA), oxytocin in cerebrospinal fluid (CSF) and peripheral ApoA-I and ApoB. METHODS In this cross-sectional study, we included participants with a mean age of 31.77 ± 10.25 years, categorized into a normal weight (NW) (n = 73) and an overweight/obese (OW/OB) (n = 117) group based on BMI. NPY, ghrelin, OXA, and oxytocin levels in CSF were measured. RESULTS In the NW group, peripheral ApoA-I levels were higher, while ApoB levels were lower than in the OW/OB group (all p < 0.05). CSF NPY exhibited a positive correlation with peripheral ApoA-I in the NW group (r = 0.39, p = 0.001). Notably, participants with higher CSF NPY levels had higher peripheral ApoA-I levels in the NW group and lower peripheral ApoA-I levels in the OW/OB group, showing the significant moderating effect of BMI on this association (R2 = 0.144, β=-0.54, p < 0.001). The correlation between ghrelin, OXA and oxytocin in CSF and peripheral ApoB in both groups exhibited opposing trends (Ghrelin: r = -0.03 and r = 0.04; OXA: r = 0.23 and r=-0.01; Oxytocin: r=-0.09 and r = 0.04). CONCLUSION This study provides hitherto undocumented evidence that BMI moderates the relationship between CSF NPY and peripheral ApoA-I levels. It also reveals the protective role of NPY in the NW population, contrasting with its risk factor role in the OW/OB population, which was associated with the at-risk for cardiovascular disease.
Collapse
Affiliation(s)
- Danyang Zhao
- Medical Neurobiology Lab, Inner Mongolia Medical University, Huhhot, 010110, China
| | - Xiaoli Han
- Clinical Nutrition Department, Friendship hospital of Urumqi in Xinjiang, Urumqi, 830049, China
| | - Qingshuang Mu
- Xinjiang Key Laboratory of Neurological Disorder Research, the Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830063, China
| | - Yan Wu
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, 100096, China
| | - Ligang Shan
- Department of Anesthesiology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen, 361021, China
| | - Lidong Su
- Department of Anesthesiology, the Third Affiliated Hospital of Inner Mongolia Medical University, BaoGang Hospital, Baotou, 014010, China
| | - Wenyan Wang
- School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Pengxiang Wang
- Medical Neurobiology Lab, Inner Mongolia Medical University, Huhhot, 010110, China
| | - Yimin Kang
- Medical Neurobiology Lab, Inner Mongolia Medical University, Huhhot, 010110, China.
| | - Fan Wang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, 100096, China.
| |
Collapse
|
3
|
De Jesus AN, Henry BA. The role of oestrogen in determining sexual dimorphism in energy balance. J Physiol 2023; 601:435-449. [PMID: 36117117 PMCID: PMC10092637 DOI: 10.1113/jp279501] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/26/2022] [Indexed: 02/03/2023] Open
Abstract
Energy balance is determined by caloric intake and the rate at which energy is expended, with the latter comprising resting energy expenditure, physical activity and adaptive thermogenesis. The regulation of both energy intake and expenditure exhibits clear sexual dimorphism, with young women being relatively protected against weight gain and the development of cardiometabolic diseases. Preclinical studies have indicated that females are more sensitive to the satiety effects of leptin and insulin compared to males. Furthermore, females have greater thermogenic activity than males, whereas resting energy expenditure is generally higher in males than females. In addition to this, in post-menopausal women, the decline in sex steroid concentration, particularly in oestrogen, is associated with a shift in the distribution of adipose tissue and overall increased propensity to gain weight. Oestrogens are known to regulate energy balance and weight homeostasis via effects on both food intake and energy expenditure. Indeed, 17β-oestradiol treatment increases melanocortin signalling in the hypothalamus to cause satiety. Furthermore, oestrogenic action at the ventromedial hypothalamus has been linked with increased energy expenditure in female mice. We propose that oestrogen action on energy balance is multi-faceted and is fundamental to determining sexual dimorphism in weight control. Furthermore, evidence suggests that the decline in oestrogen levels leads to increased risk of weight gain and development of cardiometabolic disease in women across the menopausal transition.
Collapse
Affiliation(s)
- Anne Nicole De Jesus
- Metabolism, Obesity and Diabetes Program, Biomedicine, Discovery Institute, Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Belinda A Henry
- Metabolism, Obesity and Diabetes Program, Biomedicine, Discovery Institute, Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
4
|
Aylwin CF, Lomniczi A. Sirtuin (SIRT)-1: At the crossroads of puberty and metabolism. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2020; 14:65-72. [PMID: 32905232 PMCID: PMC7467505 DOI: 10.1016/j.coemr.2020.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In the arcuate nucleus (ARC) of the hypothalamus reside two neuronal systems in charge of regulating feeding control and reproductive development. The melanocortin system responds to metabolic fluctuations adjusting food intake, whereas kisspeptin neurons are in charge of the excitatory control of Gonadotropin Hormone Releasing Hormone (GnRH) neurons. While it is known that the melanocortin system regulates GnRH neuronal activity, it was recently demonstrated that kisspeptin neurons not only innervate melanocortin neurons, but also play an active role in the control of metabolism. These two neuronal systems are intricately interconnected forming loops of stimulation and inhibition according to metabolic status. Furthermore, intracellular and epigenetic pathways respond to external environmental signals by changing DNA conformation and gene expression. Here we review the role of Silent mating type Information Regulation 2 homologue 1 (Sirt1), a class III NAD+ dependent protein deacetylase, in the ARC control of pubertal development and feeding behavior.
Collapse
Affiliation(s)
- Carlos F Aylwin
- Division of Neuroscience, Oregon National Primate Research Center, OHSU, Beaverton, OR, USA
| | - Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center, OHSU, Beaverton, OR, USA
| |
Collapse
|
5
|
Seki S, Tanaka S, Yamada S, Tsuji T, Enomoto A, Ono Y, Chandler SH, Kogo M. Neuropeptide Y modulates membrane excitability in neonatal rat mesencephalic V neurons. J Neurosci Res 2020; 98:921-935. [DOI: 10.1002/jnr.24583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Soju Seki
- The 1st Department of Oral and Maxillofacial Surgery Graduate School of Dentistry Osaka University Suita Japan
- Department of Integrative Biology and Physiology and the Brain Research Institute University of California Los Angeles CA USA
| | - Susumu Tanaka
- The 1st Department of Oral and Maxillofacial Surgery Graduate School of Dentistry Osaka University Suita Japan
| | - Saori Yamada
- The 1st Department of Oral and Maxillofacial Surgery Graduate School of Dentistry Osaka University Suita Japan
| | - Tadataka Tsuji
- The 1st Department of Oral and Maxillofacial Surgery Graduate School of Dentistry Osaka University Suita Japan
| | - Akifumi Enomoto
- Department of Oral and Maxillofacial Surgery Faculty of Medicine Kindai University Osakasayama Japan
| | - Yudai Ono
- The 1st Department of Oral and Maxillofacial Surgery Graduate School of Dentistry Osaka University Suita Japan
| | - Scott H. Chandler
- Department of Integrative Biology and Physiology and the Brain Research Institute University of California Los Angeles CA USA
| | - Mikihiko Kogo
- The 1st Department of Oral and Maxillofacial Surgery Graduate School of Dentistry Osaka University Suita Japan
| |
Collapse
|
6
|
Coutinho EA, Prescott M, Hessler S, Marshall CJ, Herbison AE, Campbell RE. Activation of a Classic Hunger Circuit Slows Luteinizing Hormone Pulsatility. Neuroendocrinology 2020; 110:671-687. [PMID: 31630145 DOI: 10.1159/000504225] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/11/2019] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The central regulation of fertility is carefully coordinated with energy homeostasis, and infertility is frequently the outcome of energy imbalance. Neurons in the hypothalamus expressing neuropeptide Y and agouti-related peptide (NPY/AgRP neurons) are strongly implicated in linking metabolic cues with fertility regulation. OBJECTIVE We aimed here to determine the impact of selectively activating NPY/AgRP neurons, critical regulators of metabolism, on the activity of luteinizing hormone (LH) pulse generation. METHODS We employed a suite of in vivo optogenetic and chemogenetic approaches with serial measurements of LH to determine the impact of selectively activating NPY/AgRP neurons on dynamic LH secretion. In addition, electrophysiological studies in ex vivo brain slices were employed to ascertain the functional impact of activating NPY/AgRP neurons on gonadotropin-releasing hormone (GnRH) neurons. RESULTS Selective activation of NPY/AgRP neurons significantly decreased post-castration LH secretion. This was observed in males and females, as well as in prenatally androgenized females that recapitulate the persistently elevated LH pulse frequency characteristic of polycystic ovary syndrome (PCOS). Reduced LH pulse frequency was also observed when optogenetic stimulation was restricted to NPY/AgRP fiber projections surrounding GnRH neuron cell bodies in the rostral preoptic area. However, electrophysiological studies in ex vivo brain slices indicated these effects were likely to be indirect. CONCLUSIONS These data demonstrate the ability of NPY/AgRP neuronal signaling to modulate and, specifically, reduce GnRH/LH pulse generation. The findings suggest a mechanism by which increased activity of this hunger circuit, in response to negative energy balance, mediates impaired fertility in otherwise reproductively fit states, and highlight a potential mechanism to slow LH pulsatility in female infertility disorders, such as PCOS, that are associated with hyperactive LH secretion.
Collapse
Affiliation(s)
- Eulalia A Coutinho
- Department of Physiology and Centre for Neuroendocrinology, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Melanie Prescott
- Department of Physiology and Centre for Neuroendocrinology, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sabine Hessler
- Department of Physiology and Centre for Neuroendocrinology, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Christopher J Marshall
- Department of Physiology and Centre for Neuroendocrinology, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Allan E Herbison
- Department of Physiology and Centre for Neuroendocrinology, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Rebecca E Campbell
- Department of Physiology and Centre for Neuroendocrinology, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand,
| |
Collapse
|
7
|
Wanka L, Babilon S, Kaiser A, Mörl K, Beck-Sickinger AG. Different mode of arrestin-3 binding at the human Y 1 and Y 2 receptor. Cell Signal 2018; 50:58-71. [DOI: 10.1016/j.cellsig.2018.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 01/04/2023]
|
8
|
Mandal SK, Shrestha PK, Alenazi FSH, Shakya M, Alhamami HN, Briski KP. Effects of estradiol on lactoprivic signaling of the hindbrain upon the contraregulatory hormonal response and metabolic neuropeptide synthesis in hypoglycemic female rats. Neuropeptides 2018; 70:37-46. [PMID: 29779845 PMCID: PMC6057805 DOI: 10.1016/j.npep.2018.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/27/2018] [Accepted: 05/09/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Caudal dorsomedial hindbrain detection of hypoglycemia-associated lactoprivation regulates glucose counter-regulation in male rats. In females, estradiol (E) determines hypothalamic neuroanatomical and molecular foci of hindbrain energy sensor activation. This study investigated the hypothesis that E signal strength governs metabolic neuropeptide and counter-regulatory hormone responses to hindbrain lactoprivic stimuli in hypoglycemic female rats. METHODS Ovariectomized animals were implanted with E-filled silastic capsules [30 (E-30) or 300 μg (E-300)/mL] to replicate plasma concentrations at estrous cycle nadir versus peak levels. E-30 and E-300 rats were injected with insulin or vehicle following initiation of continuous caudal fourth ventricular L-lactate infusion. RESULTS Hypoglycemic hypercorticosteronemia was greater in E-30 versus E-300 animals. Glucagon and corticosterone outflow was correspondingly fully or partially reversed by hindbrain lactate infusion. Insulin-injected rats exhibited lactate-reversible augmentation of norepinephrine (NE) accumulation in all preoptic/hypothalamic structures examined, excluding the dorsomedial hypothalamic nucleus (DMH) where hindbrain lactate infusion either suppressed (E-30) or enhanced (E-300) NE content. Expression profiles of hypoglycemia-reactive metabolic neuropeptides were normalized (with greater efficacy in E-300 animals) by lactate infusion. DMH RFamide-related peptide-1 and -3, arcuate neuropeptide Y and kisspeptin, and ventromedial nucleus nitric oxide synthase protein responses to hypoglycemia were E dosage-dependent. CONCLUSIONS Distinct physiological patterns of E secretion characteristic of the female rat estrous cycle elicit differential corticosterone outflow during hypoglycemia, and establish both common and different hypothalamic metabolic neurotransmitter targets of hindbrain lactate deficit signaling. Outcomes emphasize a need for insight on systems-level organization, interaction, and involvement of E signal strength-sensitive neuropeptides in counter-regulatory functions.
Collapse
Affiliation(s)
- Santosh K Mandal
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Prem K Shrestha
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Fahaad S H Alenazi
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Manita Shakya
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Hussain N Alhamami
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Karen P Briski
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States.
| |
Collapse
|
9
|
Manfredi-Lozano M, Roa J, Tena-Sempere M. Connecting metabolism and gonadal function: Novel central neuropeptide pathways involved in the metabolic control of puberty and fertility. Front Neuroendocrinol 2018; 48:37-49. [PMID: 28754629 DOI: 10.1016/j.yfrne.2017.07.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/20/2017] [Accepted: 07/23/2017] [Indexed: 02/08/2023]
Abstract
Albeit essential for perpetuation of species, reproduction is an energy-demanding function that can be adjusted to body metabolic status. Reproductive maturation and function can be suppressed in conditions of energy deficit, but can be altered also in situations of persistent energy excess, e.g., morbid obesity. This metabolic-reproductive integration, of considerable pathophysiological relevance to explain different forms of perturbed puberty and sub/infertility, is implemented by the concerted action of numerous central and peripheral regulators, which impinge at different levels of the hypothalamic-pituitary-gonadal (HPG) axis, permitting a tight fit between nutritional/energy status and gonadal function. We summarize here the major physiological mechanisms whereby nutritional and metabolic cues modulate the maturation and function of the HPG axis. We will focus on recent progress on the major central neuropeptide pathways, including kisspeptins, neurokinin B and the products of POMC and NPY neurons, which convey metabolic information to GnRH neurons, as major hierarchical hub of our reproductive brain.
Collapse
Affiliation(s)
- M Manfredi-Lozano
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, Spain; Hospital Universitario Reina Sofia, 14004 Cordoba, Spain; Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, INSERM, U1172, Lille, France
| | - J Roa
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, Spain; Hospital Universitario Reina Sofia, 14004 Cordoba, Spain.
| | - M Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, Spain; Hospital Universitario Reina Sofia, 14004 Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Cordoba, Spain; FiDiPro Program, Department of Physiology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland.
| |
Collapse
|
10
|
Sudhakumari CC, Anitha A, Murugananthkumar R, Tiwari DK, Bhasker D, Senthilkumaran B, Dutta-Gupta A. Cloning, localization and differential expression of Neuropeptide-Y during early brain development and gonadal recrudescence in the catfish, Clarias gariepinus. Gen Comp Endocrinol 2017; 251:54-65. [PMID: 28322767 DOI: 10.1016/j.ygcen.2017.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 11/22/2022]
Abstract
Neuropeptide-Y (NPY) has diverse physiological functions which are extensively studied in vertebrates. However, regulatory role of NPY in relation to brain ontogeny and recrudescence with reference to reproduction is less understood in fish. Present report for the first time evaluated the significance of NPY by transient esiRNA silencing and also analyzed its expression during brain development and gonadal recrudescence in the catfish, Clarias gariepinus. As a first step, full-length cDNA of NPY was cloned from adult catfish brain, which shared high homology with its counterparts from other teleosts upon phylogenetic analysis. Tissue distribution revealed dominant expression of NPY in brain and testis. NPY expression increased during brain development wherein the levels were higher in 100 and 150days post hatch females than the respective age-matched males. Seasonal cycle analysis showed high expression of NPY in brain during pre-spawning phase in comparison with other reproductive phases. Localization studies exhibited the presence of NPY, abundantly, in the regions of preoptic area, hypothalamus and pituitary. Transient silencing of NPY-esiRNA directly into the brain significantly decreased NPY expression in both the male and female brain of catfish which further resulted in significant decrease of transcripts of tryptophan hydroxylase 2, catfish gonadotropin-releasing hormone (cfGnRH), tyrosine hydroxylase and 3β-hydroxysteroid dehydrogenase in brain and luteinizing hormone-β/gonadotropin-II (lh-β/GTH-II) in pituitary exhibiting its influence on gonadal axis. In addition, significant decrease of several ovary-related transcripts was observed in NPY-esiRNA silenced female catfish, indicating the plausible role of NPY in ovary through cfGnRH-GTH axis.
Collapse
Affiliation(s)
- Cheni-Chery Sudhakumari
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India.
| | - Arumugam Anitha
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - Raju Murugananthkumar
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - Dinesh Kumar Tiwari
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - Dharavath Bhasker
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - Balasubramanian Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India.
| | - Aparna Dutta-Gupta
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| |
Collapse
|
11
|
El-Haddad MA, Desai M, Gayle D, Ross MG. In Utero Development of Fetal Thirst and Appetite: Potential for Programming. ACTA ACUST UNITED AC 2016; 11:123-30. [PMID: 15051031 DOI: 10.1016/j.jsgi.2003.12.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Thirst and appetite-mediated ingestive behavior develop and are likely programmed in utero, thus preparing for newborn and adult ingestive behavior. Fetal swallowing activity is markedly different from that of the adult, as spontaneous fetal swallowing occurs at a markedly (six-fold) higher rate compared with spontaneous adult drinking activity. This high rate of fetal swallowing is critical for the regulation of amniotic fluid volume and the development of the fetal gastrointestinal tract. Disordered fetal swallowing has been associated with both a decrease (oligohydramnios) and increase (polyhydramnios) in amniotic fluid volume. Both conditions are associated with a significant increase in perinatal morbidity and mortality, and limited treatment modalities are currently available. The mechanisms underlying the high rate of human fetal swallowing are regulated, in part, by tonic activity of central angiotensin II, glutamate N-methyl-D-aspartate receptors, and neuronal nitric oxide synthase. Fetal hypertonicity-mediated dipsogenesis is likely programmed in utero, as offspring of water-restricted ewes demonstrate a programmed syndrome of plasma hypertonicity, with significant hematologic and cardiovascular alterations. Similar to dipsogenic mechanisms, peripheral and central fetal orexic mechanisms also develop in utero, as demonstrated by increased fetal swallowing after both oral sucrose infusion and central injection of neuropeptide Y. The role of leptin in regulating fetal ingestive behavior is interesting because, contrary to actions in adults, leptin does not suppress fetal ingestive behavior. Teleologically, this may be of value during the newborn period, as unopposed appetite stimulatory mechanisms may facilitate rapid fetal and newborn weight gain. An adverse intrauterine environment, with altered fetal orexic factors during the critical developmental period of fetal life, may alter the normal setpoints of appetitive behavior and potentially lead to programming of adulthood hyperphagia and obesity. Further research is needed to delineate the mechanistic relationship between the intrauterine environment and the development of the setpoints of adult appetite and thirst.
Collapse
Affiliation(s)
- M A El-Haddad
- Perinatal Research Laboratories, Harbor/UCLA Medical Center, UCLA School of Medicine, Los Angeles, California, USA.
| | | | | | | |
Collapse
|
12
|
Mele P, Zammaretti F, Longo A, Panzica G, Oberto A, Eva C. Sex-dependent regulation of hypothalamic neuropeptide Y-Y1 receptor gene expression in leptin treated obese (ob/ob) or lean mice. Brain Res 2016; 1649:102-109. [PMID: 27425429 DOI: 10.1016/j.brainres.2016.07.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/22/2016] [Accepted: 07/14/2016] [Indexed: 01/05/2023]
Abstract
Pharmacological and genetic studies have shown that the Y1 receptor (Y1R) for Neuropeptide Y (NPY) plays a crucial role in the control of feeding behavior under metabolic conditions of low leptin levels or leptin deficiency. In this study, we investigated the effect of leptin deficiency and leptin replacement on Y1R gene expression in the hypothalamus of lean and obese Y1R/LacZ transgenic mice (TgY1R/LacZ) carrying the murine Y1R promoter linked to the LacZ gene that induces the expression of β-galactosidase. Two daily intraperitoneal injections with leptin (1μg/g of body weight for one week) of male and female lean (TgY1R/LacZ+/+) and obese (TgY1R/LacZob/ob) mice induced a significant decrease of body weight in both sexes and genotypes. In males, leptin administration decreased β-galactosidase activity in the PVN and DMH of lean mice, and increased transgene expression in the same hypothalamic nuclei of obese mice. Sex-related differences were also observed in both genotypes, since leptin treatment failed to affect transgene expression in hypothalamus of lean and obese female mice. These results provide further evidence for a sexual dimorphism of the hypothalamic NPY-Y1R-mediated pathway in response to changes in leptin circulating levels.
Collapse
Affiliation(s)
- Paolo Mele
- Department of Neuroscience, University of Turin, C.so Massimo d'Azeglio 52, Torino, Italy; Neuroscience Institute of the Cavalieri-Ottolenghi Foundation (NICO), Regione Gonzole 10, 10043 Orbassano, Torino, Italy
| | - Francesca Zammaretti
- Department of Neuroscience, University of Turin, C.so Massimo d'Azeglio 52, Torino, Italy
| | - Angela Longo
- Department of Neuroscience, University of Turin, C.so Massimo d'Azeglio 52, Torino, Italy; Neuroscience Institute of the Cavalieri-Ottolenghi Foundation (NICO), Regione Gonzole 10, 10043 Orbassano, Torino, Italy
| | - Giancarlo Panzica
- Department of Neuroscience, University of Turin, C.so Massimo d'Azeglio 52, Torino, Italy; Neuroscience Institute of the Cavalieri-Ottolenghi Foundation (NICO), Regione Gonzole 10, 10043 Orbassano, Torino, Italy
| | - Alessandra Oberto
- Department of Neuroscience, University of Turin, C.so Massimo d'Azeglio 52, Torino, Italy; Neuroscience Institute of the Cavalieri-Ottolenghi Foundation (NICO), Regione Gonzole 10, 10043 Orbassano, Torino, Italy
| | - Carola Eva
- Department of Neuroscience, University of Turin, C.so Massimo d'Azeglio 52, Torino, Italy; Neuroscience Institute of the Cavalieri-Ottolenghi Foundation (NICO), Regione Gonzole 10, 10043 Orbassano, Torino, Italy.
| |
Collapse
|
13
|
Loh K, Herzog H, Shi YC. Regulation of energy homeostasis by the NPY system. Trends Endocrinol Metab 2015; 26:125-35. [PMID: 25662369 DOI: 10.1016/j.tem.2015.01.003] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/11/2015] [Accepted: 01/12/2015] [Indexed: 01/01/2023]
Abstract
Obesity develops when energy intake exceeds energy expenditure over time. Numerous neurotransmitters, hormones, and factors have been implicated to coordinately control energy homeostasis, centrally and peripherally. However, the neuropeptide Y (NPY) system has emerged as the one with the most critical functions in this process. While NPY centrally promotes feeding and reduces energy expenditure, peptide YY (PYY) and pancreatic polypeptide (PP), the other family members, mediate satiety. Importantly, recent research has uncovered additional functions for these peptides that go beyond the simple feeding/satiety circuits and indicate a more extensive function in controlling energy homeostasis. In this review, we will discuss the actions of the NPY system in the regulation of energy balance, with a particular focus on energy expenditure.
Collapse
Affiliation(s)
- Kim Loh
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia.
| | - Yan-Chuan Shi
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia.
| |
Collapse
|
14
|
Luan X, Liu D, Cao Z, Luo L, Liu M, Gao M, Zhang X. Transcriptome profiling identifies differentially expressed genes in Huoyan goose ovaries between the laying period and ceased period. PLoS One 2014; 9:e113211. [PMID: 25419838 PMCID: PMC4242529 DOI: 10.1371/journal.pone.0113211] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/20/2014] [Indexed: 11/18/2022] Open
Abstract
The Huoyan goose is famous for its high egg-laying performance and is listed as a nationally protected domestic animal by the Chinese government. To elucidate the key regulatory genes involved in Huoyan goose egg laying, RNA from ovarian tissue during the ceased and laying periods was sequenced using the Illumina HiSeq 2000 sequencing platform. More than 12 million reads were produced in ceased and laying libraries that included 11,896,423 and 12,534,799 clean reads, respectively. More than 20% of the reads were matched to the reference genome, and 23% of the reads were matched to reference genes. Genes with a false discovery rate (FDR) ≤0.001 and log2ratio ≧1 or ≤−1 were characterized as differentially expressed, and 344 up-regulated and 344 down-regulated genes were classified into functional categories. Twelve genes that are mainly involved in pathways for reproduction regulation, such as steroid hormone biosynthesis, GnRH signaling pathways, oocyte meiosis, progesterone-mediated oocyte maturation, steroid biosynthesis, calcium signaling pathways, and G-protein coupled receptor signaling pathway were selected for validation by a quantitative real-time polymerase chain reaction (qRT-PCR) analysis, the qRT-PCR results are consistent with the general expression patterns of those genes from the Illumina sequencing. These data provide comprehensive gene expression information at the transcriptional level that might increase our understanding of the Huoyan goose's reproductive biology.
Collapse
Affiliation(s)
- Xinhong Luan
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
- * E-mail:
| | - Dawei Liu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhongzan Cao
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Lina Luo
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Mei Liu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ming Gao
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaoying Zhang
- Liaoning Province Livestock and Poultry Genetic Resources Conservation and Utilization Center, Liaoyang, 111000, China
| |
Collapse
|
15
|
Rønnekleiv OK, Fang Y, Zhang C, Nestor CC, Mao P, Kelly MJ. Research resource: Gene profiling of G protein-coupled receptors in the arcuate nucleus of the female. Mol Endocrinol 2014; 28:1362-80. [PMID: 24933249 PMCID: PMC4116592 DOI: 10.1210/me.2014-1103] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The hypothalamic arcuate nucleus controls many critical homeostatic functions including energy homeostasis, reproduction, and motivated behavior. Although G protein-coupled receptors (GPCRs) are involved in the regulation of these functions, relatively few of the GPCRs have been identified specifically within the arcuate nucleus. Here, using TaqMan low-density arrays we quantified the mRNA expression of nonolfactory GPCRs in mouse arcuate nucleus. An unprecedented number of GPCRs (total of 292) were found to be expressed, of which 183 were known and 109 were orphan GPCRs. The known GPCR genes expressed were classified into several functional clusters including hormone/neurotransmitter, growth factor, angiogenesis and vasoactivity, inflammation and immune system, and lipid messenger receptors. The plethora of orphan genes expressed in the arcuate nucleus were classified into 5 structure-related classes including class A (rhodopsin-like), class B (adhesion), class C (other GPCRs), nonsignaling 7-transmembrane chemokine-binding proteins, and other 7-transmembrane proteins. Therefore, for the first time, we provide a quantitative estimate of the numerous GPCRs expressed in the hypothalamic arcuate nucleus. Finally, as proof of principle, we documented the expression and function of one of these receptor genes, the glucagon-like peptide 1 receptor (Glp1r), which was highly expressed in the arcuate nucleus. Single-cell RT-PCR revealed that Glp1r mRNA was localized in proopiomelanocortin neurons, and using whole-cell recording we found that the glucagon-like peptide 1-selective agonist exendin-4 robustly excited proopiomelanocortin neurons. Thus, the quantitative GPCR data emphasize the complexity of the hypothalamic arcuate nucleus and furthermore provide a valuable resource for future neuroendocrine/endocrine-related experiments.
Collapse
Affiliation(s)
- Oline K Rønnekleiv
- Department of Physiology and Pharmacology (O.K.R., Y.F., C.Z., C.CN., P.M., M.J.K.), Oregon Health and Science University, Portland, Oregon 97239; and Division of Neuroscience (O.K.R., P.M., M.J.K.), Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006
| | | | | | | | | | | |
Collapse
|
16
|
Xiang J, Yang H, Zhao T, Sun M, Xu X, Zhou XF, Li SH, Li XJ. Huntingtin-associated protein 1 regulates postnatal neurogenesis and neurotrophin receptor sorting. J Clin Invest 2013; 124:85-98. [PMID: 24355921 DOI: 10.1172/jci69206] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 10/15/2013] [Indexed: 01/08/2023] Open
Abstract
Defective neurogenesis in the postnatal brain can lead to many neurological and psychiatric disorders, yet the mechanism behind postnatal neurogenesis remains to be investigated. Huntingtin-associated protein 1 (HAP1) participates in intracellular trafficking in neurons, and its absence leads to postnatal death in mice. Here, we used tamoxifen-induced (TM-induced) Cre recombination to deplete HAP1 in mice at different ages. We found that HAP1 reduction selectively affects survival and growth of postnatal mice, but not adults. Neurogenesis, but not gliogenesis, was affected in HAP1-null neurospheres and mouse brain. In the absence of HAP1, postnatal hypothalamic neurons exhibited reduced receptor tropomyosin-related kinase B (TRKB) levels and decreased survival. HAP1 stabilized the association of TRKB with the intracellular sorting protein sortilin, prevented TRKB degradation, and promoted its anterograde transport. Our findings indicate that intracellular sorting of neurotrophin receptors is critical for postnatal neurogenesis and could provide a therapeutic target for defective postnatal neurogenesis.
Collapse
|
17
|
Zhou X, Chai Y, Chen K, Yang Y, Liu Z. A meta-analysis of reference values of leptin concentration in healthy postmenopausal women. PLoS One 2013; 8:e72734. [PMID: 24023638 PMCID: PMC3758328 DOI: 10.1371/journal.pone.0072734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 07/12/2013] [Indexed: 02/07/2023] Open
Abstract
Objective There are numerous reports about the leptin concentration (LC) in postmenopausal women (PW). Changes in LC can elicit different clinical outcomes. We systematically analyzed the LC in PW. Methods A search was conducted in original English-language studies published from 1994 to October 2012 in the following databases: Medline (78), Cochrane Center (123) Embase (505), Biological abstracts (108), Cochrane (53) and Science Finder Scholar (0). A meta-analysis was undertaken on the correction coefficient (r) between the serum LC and body mass index (BMI) for healthy PW across studies containing a dataset and sample size. Pre-analytical and analytical variations were examined. Pre-analytical variables included fasting status (FS) and sampling timing. Analytical variation comprised assay methodology, LC in those undertaking hormone replacement therapy (HRT) and those not having HRT as well as LC change according to age. Results Twenty-seven studies met the inclusion criteria. Eighteen studies detected LC in the morning in a FS, 15 studies denoted the r between leptin and the BMI. A combined r was counted for the 15 studies (r = 0.51 [95% confidence interval (CI), 0.46–0.54], P = 0.025), and if sampling collection was in the FSat morning, a combined r was form 10 studies (r = 0.54 [95% CI, 0.45–0.54], P = 0.299) and heterogeneity was diminished. LC did not change between HRT users and non-users in 7 studies. Five studies analyzed changes in LC according to age. Conclusion Based on all studies that investigated both LC and BMI, LC was positively correlated with the BMI. No studies established reference ranges according to the Clinical and Laboratory Standards Institute (CLSI) in healthy PW, and there was a wide variation in LC values. These differences suggest that caution should be used in the interpretation and comparison between studies.
Collapse
Affiliation(s)
- Xi Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of the Medical College, Xi'an Jiaotong University, China
- Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - YanLan Chai
- Department of Radiation Oncology, The First Affiliated Hospital of the Medical College, Xi'an Jiaotong University, China
| | - Ke Chen
- Department of Physiology and Pathophysiology, Health Science Center, Xi'an Jiaotong University, China
| | - YunYi Yang
- Department of Radiation Oncology, The First Affiliated Hospital of the Medical College, Xi'an Jiaotong University, China
| | - Zi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of the Medical College, Xi'an Jiaotong University, China
- * E-mail:
| |
Collapse
|
18
|
Rojas JM, Stafford JM, Saadat S, Printz RL, Beck-Sickinger AG, Niswender KD. Central nervous system neuropeptide Y signaling via the Y1 receptor partially dissociates feeding behavior from lipoprotein metabolism in lean rats. Am J Physiol Endocrinol Metab 2012; 303:E1479-88. [PMID: 23074243 PMCID: PMC3532466 DOI: 10.1152/ajpendo.00351.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Elevated plasma triglyceride (TG) levels contribute to an atherogenic dyslipidemia that is associated with obesity, diabetes, and metabolic syndrome. Numerous models of obesity are characterized by increased central nervous system (CNS) neuropeptide Y (NPY) tone that contributes to excess food intake and obesity. Previously, we demonstrated that intracerebroventricular (icv) administration of NPY in lean fasted rats also elevates hepatic production of very low-density lipoprotein (VLDL)-TG. Thus, we hypothesize that elevated CNS NPY action contributes to not only the pathogenesis of obesity but also dyslipidemia. Here, we sought to determine whether the effects of NPY on feeding and/or obesity are dissociable from effects on hepatic VLDL-TG secretion. Pair-fed, icv NPY-treated, chow-fed Long-Evans rats develop hypertriglyceridemia in the absence of increased food intake and body fat accumulation compared with vehicle-treated controls. We then modulated CNS NPY signaling by icv injection of selective NPY receptor agonists and found that Y1, Y2, Y4, and Y5 receptor agonists all induced hyperphagia in lean, ad libitum chow-fed Long-Evans rats, with the Y2 receptor agonist having the most pronounced effect. Next, we found that at equipotent doses for food intake NPY Y1 receptor agonist had the most robust effect on VLDL-TG secretion, a Y2 receptor agonist had a modest effect, and no effect was observed for Y4 and Y5 receptor agonists. These findings, using selective agonists, suggest the possibility that the effect of CNS NPY signaling on hepatic VLDL-TG secretion may be relatively dissociable from effects on feeding behavior via the Y1 receptor.
Collapse
|
19
|
Mohr MA, Leathley E, Fraley GS. Hypothalamic galanin-like peptide rescues the onset of puberty in food-restricted weanling rats. J Neuroendocrinol 2012; 24:1412-22. [PMID: 22681480 DOI: 10.1111/j.1365-2826.2012.02351.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Galanin-like peptide (GALP) is a known mediator of metabolism and reproduction; however, the role that GALP plays in the onset of puberty is unknown. First, we tested the hypothesis that central GALP administration could rescue puberty in food-restricted weanling rats. GALP treatment in food-restricted rats of both sexes rescued the timing of the onset of puberty to that seen in ad lib. fed controls. Second, we tested whether GALP translation knocked-down in ad lib. fed, prepubertal rats would alter the timing of puberty. Knock-down females, but not males, showed a significant (P < 0.01) delay in the onset of puberty compared to controls. Third, we sought evidence that the role of GALP in pubertal onset is mediated by the kisspeptin system. In situ hybridisation analyses showed a significant (P < 0.01) reduction in Kiss1 mRNA within the hypothalamic arcuate nucleus in food-restricted rats compared to ad lib. fed controls and this reduction was prevented with i.c.v. GALP administration. Furthermore, analyses of Fos-immunoreactivity (-IR) after i.c.v. GALP treatment did not elicit Fos-IR within any kisspeptin neurones, nor are GALP and kisspeptin peptides or mRNA colocalised. These data demonstrate that hypothalamic GALP infusion maintained the onset of puberty in food-restricted weanling rats, although probably not via direct innervation of kisspeptin neurones.
Collapse
Affiliation(s)
- M A Mohr
- Biology Department and Neuroscience Program, Hope College, Holland, MI 49423, USA
| | | | | |
Collapse
|
20
|
Diet-induced obesity in mice overexpressing neuropeptide y in noradrenergic neurons. INTERNATIONAL JOURNAL OF PEPTIDES 2012; 2012:452524. [PMID: 23118773 PMCID: PMC3483820 DOI: 10.1155/2012/452524] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 09/06/2012] [Indexed: 12/04/2022]
Abstract
Neuropeptide Y (NPY) is a neurotransmitter associated with feeding and obesity. We have constructed an NPY transgenic mouse model (OE-NPYDBH mouse), where targeted overexpression leads to increased levels of NPY in noradrenergic and adrenergic neurons. We previously showed that these mice become obese on a normal chow. Now we aimed to study the effect of a Western-type diet in OE-NPYDBH and wildtype (WT) mice, and to compare the genotype differences in the development of obesity, insulin resistance, and diabetes. Weight gain, glucose, and insulin tolerance tests, fasted plasma insulin, and cholesterol levels were assayed. We found that female OE-NPYDBH mice gained significantly more weight without hyperphagia or decreased activity, and showed larger white and brown fat depots with no difference in UCP-1 levels. They also displayed impaired glucose tolerance and decreased insulin sensitivity. OE-NPYDBH and WT males gained weight robustly, but no difference in the degree of adiposity was observed. However, 40% of OE-NPYDBH but none of the WT males developed hyperglycaemia while on the diet. The present study shows that female OE-NPYDBH mice were not protected from the obesogenic effect of the diet suggesting that increased NPY release may predispose females to a greater risk of weight gain under high caloric conditions.
Collapse
|
21
|
Shi YC, Baldock PA. Central and peripheral mechanisms of the NPY system in the regulation of bone and adipose tissue. Bone 2012; 50:430-6. [PMID: 22008645 DOI: 10.1016/j.bone.2011.10.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 10/02/2011] [Accepted: 10/03/2011] [Indexed: 12/24/2022]
Abstract
Skeletal research is currently undergoing a period of marked expansion. The boundaries of "bone" research are being re-evaluated and with this, a growing recognition of a more complex and interconnected biology than previously considered. One aspect that has become the focus of particular attention is the relationship between bone and fat homeostasis. Evidence from a number of avenues indicates that bone and adipose regulation are both related and interdependent. This review examines the neuropeptide Y (NPY) system, known to exert powerful control over both bone and fat tissue. The actions of this system are characterized by signaling both within specific nuclei of the hypothalamus and also the target tissues, mediated predominantly through two G-protein coupled receptors (Y1 and Y2). In bone tissue, elevated NPY levels act consistently to repress osteoblast activity. Moreover, both central Y2 receptor and osteoblastic Y1 receptor signaling act similarly to repress bone formation. Conversely, loss of NPY expression or receptor signaling induces increased osteoblast activity and bone mass in both cortical and cancellous envelopes. In fat tissue, NPY action is more complex. Energy homeostasis is powerfully altered by elevations in hypothalamic NPY, resulting in increases in fat accretion and body-wide energy conservation, through the action of locally expressed Y1 receptors, while local Y2 receptors act to inhibit NPY-ergic tone. Loss of central NPY expression has a markedly reduced effect, consistent with a physiological drive to promote fat accretion. In fat tissue, NPY and Y1 receptors act to promote lipogenesis, consistent with their roles in the brain. Y2 receptors expressed in adipocytes also act in this manner, showing an opposing action to their role in the hypothalamus. While direct investigation of these processes has yet to be completed, these responses appear to be interrelated to some degree. The starvation-based signal of elevated central NPY inducing marked inhibition of osteoblast activity, whilst promoting fat accretion, indicating skeletal tissue is a component of the energy conservation system. Moreover, when NPY expression is reduced, consistent with high calorie intake and weight gain, bone formation is stimulated, strengthening the skeleton. In conclusion, NPY acts to regulate both bone and fat tissue in a coordinated manner, and remains a strong candidate for mediating interactions between these two tissues.
Collapse
Affiliation(s)
- Yan-Chuan Shi
- Neuroscience Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst NSW 2010, Australia
| | | |
Collapse
|
22
|
Yulyaningsih E, Zhang L, Herzog H, Sainsbury A. NPY receptors as potential targets for anti-obesity drug development. Br J Pharmacol 2011; 163:1170-202. [PMID: 21545413 DOI: 10.1111/j.1476-5381.2011.01363.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The neuropeptide Y system has proven to be one of the most important regulators of feeding behaviour and energy homeostasis, thus presenting great potential as a therapeutic target for the treatment of disorders such as obesity and at the other extreme, anorexia. Due to the initial lack of pharmacological tools that are active in vivo, functions of the different Y receptors have been mainly studied in knockout and transgenic mouse models. However, over recent years various Y receptor selective peptidic and non-peptidic agonists and antagonists have been developed and tested. Their therapeutic potential in relation to treating obesity and other disorders of energy homeostasis is discussed in this review.
Collapse
Affiliation(s)
- Ernie Yulyaningsih
- Neuroscience Research Program, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
23
|
Mercer RE, Chee MJS, Colmers WF. The role of NPY in hypothalamic mediated food intake. Front Neuroendocrinol 2011; 32:398-415. [PMID: 21726573 DOI: 10.1016/j.yfrne.2011.06.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/17/2011] [Accepted: 06/13/2011] [Indexed: 12/29/2022]
Abstract
Neuropeptide Y (NPY) is a highly conserved neuropeptide with orexigenic actions in discrete hypothalamic nuclei that plays a role in regulating energy homeostasis. NPY signals via a family of high affinity receptors that mediate the widespread actions of NPY in all hypothalamic nuclei. These actions are also subject to tight, intricate regulation by numerous peripheral and central energy balance signals. The NPY system is embedded within a densely-redundant network designed to ensure stable energy homeostasis. This redundancy may underlie compensation for the loss of NPY or its receptors in germline knockouts, explaining why conventional knockouts of NPY or its receptors rarely yield a marked phenotypic change. We discuss insights into the hypothalamic role of NPY from studies of its physiological actions, responses to genetic manipulations and interactions with other energy balance signals. We conclude that numerous approaches must be employed to effectively study different aspects of NPY action.
Collapse
Affiliation(s)
- Rebecca E Mercer
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | | | | |
Collapse
|
24
|
The neuropeptide Y system: Pathophysiological and therapeutic implications in obesity and cancer. Pharmacol Ther 2011; 131:91-113. [DOI: 10.1016/j.pharmthera.2011.03.011] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Accepted: 03/07/2011] [Indexed: 12/28/2022]
|
25
|
Körner M, Waser B, Thalmann GN, Reubii JC. High expression of NPY receptors in the human testis. Mol Cell Endocrinol 2011; 337:62-70. [PMID: 21295110 DOI: 10.1016/j.mce.2011.01.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 01/04/2011] [Accepted: 01/27/2011] [Indexed: 10/18/2022]
Abstract
NPY receptors represent novel molecular therapeutic targets in cancer and obesity. However, the extent of NPY receptor expression in normal human tissues is poorly investigated. Based on the role of NPY in reproductive functions, the NPY receptor expression was studied in 25 normal human testes and, additionally, 24 testicular tumors using NPY receptor autoradiography. In the normal testis, Leydig cells strongly expressed NPY receptor subtype Y2, and small arterial blood vessels Y1. Y2 receptors were found to be functional with agonist-stimulated [(35)S]GTPγS binding autoradiography. Full functional integrity of the NPY system was further suggested by the immunohistochemical detection of NPY peptide in nerve fibers directly adjacent to Leydig cells and arteries. Germ cell tumors expressed Y1 and Y2 on tumor cells in 33% and Y1 on intratumoral blood vessels in 50%. Based on its strong NPY receptor expression in Leydig cells and blood vessels, the normal human testis represents a potentially important physiological and pharmalogical NPY target.
Collapse
Affiliation(s)
- Meike Körner
- Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, University of Berne, Switzerland
| | | | | | | |
Collapse
|
26
|
Akimoto S, Miyasaka K. Age-associated changes of appetite-regulating peptides. Geriatr Gerontol Int 2010; 10 Suppl 1:S107-19. [PMID: 20590826 DOI: 10.1111/j.1447-0594.2010.00587.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aging is associated with a progressive decrease in appetite and food intake. The reasons for the decline in food intake are multifactorial, and relate to both peripheral and central mechanisms. Current studies about the regulation of food intake suggest that there are many central mediators that control the appetite. To determine the mechanism of age-associated decrease in appetite and food intake, we focused on the age-associated changes of the suppressing and stimulatory effect of some appetite-regulating peptides. At first, we examined cholecystokinin (CCK), one of the typical appetite-suppressing factors. Although sensitivity to CCK is enhanced in old animals, the mechanism underlying this effect has not been elucidated. Next, we focused on the appetite-stimulating peptides, orexin-A, neuropeptide Y (NPY) and ghrelin, which are known to play a critical role in food intake. To determine the age-associated decrease in appetite and food intake, we compared the stimulatory effect of intracerebroventricular administration of orexin-A, NPY and ghrelin. We report the studies of the age-associated changes of appetite-regulating peptides in this review.
Collapse
Affiliation(s)
- Saeko Akimoto
- Tokyo Metropolitan Institute of Gerontology, Tokyo Kasei University, Itabashiku, Tokyo, Japan
| | | |
Collapse
|
27
|
Pralong FP. Insulin and NPY pathways and the control of GnRH function and puberty onset. Mol Cell Endocrinol 2010; 324:82-6. [PMID: 20138117 DOI: 10.1016/j.mce.2010.01.037] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 01/26/2010] [Accepted: 01/27/2010] [Indexed: 11/16/2022]
Abstract
Energy balance exerts a critical influence on reproductive function. Leptin and insulin are among the metabolic factors signaling the nutritional status of an individual to the hypothalamus, and their role in the overall modulation of the activity of GnRH neurons is increasingly recognized. As such, they participate to a more generalized phenomenon: the signaling of peripheral metabolic changes to the central nervous system. The physiological importance that the interactions occurring between peripheral metabolic factors and the central nervous system bear for the control of food intake is increasingly recognized. The central mechanisms implicated are the focus of attention of very many research groups worldwide. We review here the experimental data that suggest that similar mechanisms are at play for the metabolic control of the neuroendocrine reproductive function. It is appearing that metabolic signals are integrated at the levels of first-order neurons equipped with the proper receptors, ant that these neurons send their signals towards hypothalamic GnRH neurons which constitute the integrative element of this network.
Collapse
Affiliation(s)
- François P Pralong
- Services of Endocrinology, Diabetology and Metabolism, University Hospitals of Lausanne and Geneva, Switzerland.
| |
Collapse
|
28
|
Ratliff J, Leite JO, de Ogburn R, Puglisi MJ, VanHeest J, Fernandez ML. Consuming eggs for breakfast influences plasma glucose and ghrelin, while reducing energy intake during the next 24 hours in adult men. Nutr Res 2010; 30:96-103. [PMID: 20226994 DOI: 10.1016/j.nutres.2010.01.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 12/31/2009] [Accepted: 01/06/2010] [Indexed: 12/30/2022]
Abstract
We hypothesized that consuming eggs for breakfast would significantly lower postprandial satiety and energy intake throughout the day. Using a crossover design, 21 men, 20 to 70 years old, consumed 2 isoenergetic test breakfasts, in a random order separated by 1 week. The macronutrient composition of the test breakfasts were as follows: (EGG, % CHO/fat/protein = 22:55:23) and (BAGEL, % CHO/fat/protein = 72:12:16). Fasting blood samples were drawn at baseline before the test breakfast and at 30, 60, 120, and 180 minutes after breakfast. After 180 minutes, subjects were given a buffet lunch and asked to eat until satisfied. Subjects filled out Visual Analog Scales (VAS) during each blood draw and recorded food intake the days before and after the test breakfasts. Plasma glucose, insulin, and appetite hormones were analyzed at each time point. Subjects consumed fewer kilocalories after the EGG breakfast compared with the BAGEL breakfast (P< .01). In addition, subjects consumed more kilocalories in the 24-hour period after the BAGEL compared with the EGG breakfast (P < .05). Based on VAS, subjects were hungrier and less satisfied 3 hours after the BAGEL breakfast compared with the EGG breakfast (P < .01). Participants had higher plasma glucose area under the curve (P < .05) as well as an increased ghrelin and insulin area under the curve with BAGEL (P < .05). These findings suggest that consumption of eggs for breakfast results in less variation of plasma glucose and insulin, a suppressed ghrelin response, and reduced energy intake.
Collapse
Affiliation(s)
- Joseph Ratliff
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | | | | | | | | | | |
Collapse
|
29
|
Shi YC, Lin S, Wong IPL, Baldock PA, Aljanova A, Enriquez RF, Castillo L, Mitchell NF, Ye JM, Zhang L, Macia L, Yulyaningsih E, Nguyen AD, Riepler SJ, Herzog H, Sainsbury A. NPY neuron-specific Y2 receptors regulate adipose tissue and trabecular bone but not cortical bone homeostasis in mice. PLoS One 2010; 5:e11361. [PMID: 20613867 PMCID: PMC2894044 DOI: 10.1371/journal.pone.0011361] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 06/01/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Y2 receptor signalling is known to be important in neuropeptide Y (NPY)-mediated effects on energy homeostasis and bone physiology. Y2 receptors are located post-synaptically as well as acting as auto receptors on NPY-expressing neurons, and the different roles of these two populations of Y2 receptors in the regulation of energy homeostasis and body composition are unclear. METHODOLOGY/PRINCIPAL FINDINGS We thus generated two conditional knockout mouse models, Y2(lox/lox) and NPYCre/+;Y2(lox/lox), in which Y2 receptors can be selectively ablated either in the hypothalamus or specifically in hypothalamic NPY-producing neurons of adult mice. Specific deletion of hypothalamic Y2 receptors increases food intake and body weight compared to controls. Importantly, specific ablation of hypothalamic Y2 receptors on NPY-containing neurons results in a significantly greater adiposity in female but not male mice, accompanied by increased hepatic triglyceride levels, decreased expression of liver carnitine palmitoyltransferase (CPT1) and increased expression of muscle phosphorylated acetyl-CoA carboxylase (ACC). While food intake, body weight, femur length, bone mineral content, density and cortical bone volume and thickness are not significantly altered, trabecular bone volume and number were significantly increased by hypothalamic Y2 deletion on NPY-expressing neurons. Interestingly, in situ hybridisation reveals increased NPY and decreased proopiomelanocortin (POMC) mRNA expression in the arcuate nucleus of mice with hypothalamus-specific deletion of Y2 receptors in NPY neurons, consistent with a negative feedback mechanism between NPY expression and Y2 receptors on NPY-ergic neurons. CONCLUSIONS/SIGNIFICANCE Taken together these data demonstrate the anti-obesogenic role of Y2 receptors in the brain, notably on NPY-ergic neurons, possibly via inhibition of NPY neurons and concomitant stimulation of POMC-expressing neurons in the arcuate nucleus of the hypothalamus, reducing lipogenic pathways in liver and/or skeletal muscle in females. These data also reveal as an anti-osteogenic effect of Y2 receptors on hypothalamic NPY-expressing neurons on trabecular but not on cortical bone.
Collapse
Affiliation(s)
- Yan-Chuan Shi
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Shu Lin
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Iris P. L. Wong
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Paul A. Baldock
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Aygul Aljanova
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ronaldo F. Enriquez
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Lesley Castillo
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Natalie F. Mitchell
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ji-Ming Ye
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Lei Zhang
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Laurence Macia
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ernie Yulyaningsih
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Amy D. Nguyen
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Sabrina J. Riepler
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Herbert Herzog
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Amanda Sainsbury
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
30
|
Klenke U, Constantin S, Wray S. Neuropeptide Y directly inhibits neuronal activity in a subpopulation of gonadotropin-releasing hormone-1 neurons via Y1 receptors. Endocrinology 2010; 151:2736-46. [PMID: 20351316 PMCID: PMC2875836 DOI: 10.1210/en.2009-1198] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neuropeptide Y (NPY), a member of the pancreatic polypeptide family, is an orexigenic hormone. GnRH-1 neurons express NPY receptors. This suggests a direct link between metabolic function and reproduction. However, the effect of NPY on GnRH-1 cells has been variable, dependent on metabolic and reproductive status of the animal. This study circumvents these issues by examining the role of NPY on GnRH-1 neuronal activity in an explant model that is based on the extra-central nervous system origin of GnRH-1 neurons. These prenatal GnRH-1 neurons express many receptors found in GnRH-1 neurons in the brain and use similar transduction pathways. In addition, these GnRH-1 cells exhibit spontaneous and ligand-induced oscillations in intracellular calcium as well as pulsatile calcium-controlled GnRH-1 release. Single-cell PCR determined that prenatal GnRH-1 neurons express the G protein-coupled Y1 receptor (Y1R). To address the influence of NPY on GnRH-1 neuronal activity, calcium imaging was used to monitor individual and population dynamics. NPY treatment, mimicked with Y1R agonist, significantly decreased the number of calcium peaks per minute in GnRH-1 neurons and was prevented by a Y1R antagonist. Pertussis toxin blocked the effect of NPY on GnRH-1 neuronal activity, indicating the coupling of Y1R to inhibitory G protein. The NPY-induced inhibition was independent of the adenylate cyclase pathway but mediated by the activation of G protein-coupled inwardly rectifying potassium channels. These results indicate that at an early developmental stage, GnRH-1 neuronal activity can be directly inhibited by NPY via its Y1R.
Collapse
Affiliation(s)
- Ulrike Klenke
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
31
|
Zhang L, Macia L, Turner N, Enriquez RF, Riepler SJ, Nguyen AD, Lin S, Lee NJ, Shi YC, Yulyaningsih E, Slack K, Baldock PA, Herzog H, Sainsbury A. Peripheral neuropeptide Y Y1 receptors regulate lipid oxidation and fat accretion. Int J Obes (Lond) 2009; 34:357-73. [PMID: 19918245 DOI: 10.1038/ijo.2009.232] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Neuropeptide Y and its Y receptors are important players in the regulation of energy homeostasis. However, while their functions in feeding regulation are well recognized, functions in other critical aspects of energy homeostasis are largely unknown. To investigate the function of Y1 receptors in the regulation of energy homeostasis, we examined energy expenditure, physical activity, body composition, oxidative fuel selection and mitochondrial oxidative capacity in germline Y1(-/-) mice as well as in a conditional Y1-receptor-knockdown model in which Y1 receptors were knocked down in peripheral tissues of adult mice. RESULTS Germline Y1(-/-) mice of both genders not only exhibit a decreased respiratory exchange ratio, indicative of increased lipid oxidation, but interestingly also develop late-onset obesity. However, the increased lipid oxidation is a primary effect of Y1 deletion rather than secondary to increased adiposity, as young Y1(-/-) mice are lean and show the same effect. The mechanism behind this is likely because of increased liver and muscle protein levels of carnitine palmitoyltransferase-1 (CPT-1) and maximal activity of key enzymes involved in beta-oxidation; beta-hydroxyacyl CoA dehydrogenase (betaHAD) and medium-chain acyl-CoA dehydrogenase (MCAD), leading to increased mitochondrial capacity for fatty acid transport and oxidation. These effects are controlled by peripheral Y1-receptor signalling, as adult-onset conditional Y1 knockdown in peripheral tissues also leads to increased lipid oxidation, liver CPT-1 levels and betaHAD activity. Importantly, these mice are resistant to diet-induced obesity. CONCLUSIONS This work shows the primary function of peripheral Y1 receptors in the regulation of oxidative fuel selection and adiposity, opening up new avenues for anti-obesity treatments by targeting energy utilization in peripheral tissues rather than suppressing appetite by central effects.
Collapse
Affiliation(s)
- L Zhang
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Chen H, Simar D, Morris MJ. Hypothalamic neuroendocrine circuitry is programmed by maternal obesity: interaction with postnatal nutritional environment. PLoS One 2009; 4:e6259. [PMID: 19606226 PMCID: PMC2707610 DOI: 10.1371/journal.pone.0006259] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 06/15/2009] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Early life nutrition is critical for the development of hypothalamic neurons involved in energy homeostasis. We previously showed that intrauterine and early postnatal overnutrition programmed hypothalamic neurons expressing the appetite stimulator neuropeptide Y (NPY) and suppressor proopiomelanocortin (POMC) in offspring at weaning. However, the long-term effects of such programming and its interactions with post-weaning high-fat-diet (HFD) consumption are unclear. RESEARCH DESIGN AND METHODS Female Sprague Dawley rats were exposed to chow or HFD for 5 weeks before mating, throughout gestation and lactation. On postnatal day 1, litters were adjusted to 3/litter to induce postnatal overnutrition (vs. 12 in control). At postnatal day 20, half of the rats from each maternal group were weaned onto chow or HFD for 15 weeks. Hypothalamic appetite regulators, and fuel (glucose and lipid) metabolic markers were measured. RESULTS Offspring from obese dams gained more weight than those from lean dams independent of post-weaning diet. Maternal obesity interacted with post-weaning HFD consumption to cause greater levels of hyperphagia, adiposity, hyperlipidemia, and glucose intolerance in offspring. This was linked to increased hypothalamic NPY signaling and leptin resistance in adult offspring. Litter size reduction had a detrimental impact on insulin and adiponectin, while hypothalamic NPY and POMC mRNA expression were suppressed in the face of normal energy intake and weight gain. CONCLUSIONS Maternal obesity, postnatal litter size reduction and post-weaning HFD consumption caused obesity via different neuroendocrine mechanism. There were strong additive effects of maternal obesity and post-weaning HFD consumption to increase the metabolic disorders in offspring.
Collapse
Affiliation(s)
- Hui Chen
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, New South Wales, Australia
- Department of Medical and Molecular Bioscience, Faculty of Science, University of Technology, Sydney, Australia
| | - David Simar
- Health and Exercise Science, School of Medical Sciences, University of New South Wales, New South Wales, Australia
| | - Margaret J. Morris
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, New South Wales, Australia
| |
Collapse
|
33
|
Dhillon SS, Gingerich S, Belsham DD. Neuropeptide Y induces gonadotropin-releasing hormone gene expression directly and through conditioned medium from mHypoE-38 NPY neurons. ACTA ACUST UNITED AC 2009; 156:96-103. [PMID: 19371763 DOI: 10.1016/j.regpep.2009.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Revised: 03/10/2009] [Accepted: 04/05/2009] [Indexed: 11/16/2022]
Abstract
Neuropeptide Y (NPY) regulates reproductive function at the level of the hypothalamus through control of GnRH secretion. However, the direct control of GnRH gene expression by NPY has not yet been studied. GT1-7 neurons were treated with 100 nM of NPY over a 36 h time course. GnRH mRNA levels were significantly increased by NPY up to 12 h. We determined that GT1-7 neurons expressed Y1, Y2, and Y4 NPY receptors, but not Y5. Functional analysis of NPY receptor activation indicated that the Y1/Y4/Y5 receptor agonist [Leu31, Pro34] significantly induced cAMP accumulation in the GT1-7 neurons. Western blot studies demonstrated changes in the phosphorylation status of AKT, ERK1/2, CREB and ATF-1 after NPY exposure. Pharmacological inhibitors of the MAPK and PKA signal transduction pathways attenuated the NPY-mediated increase in GnRH transcription. This NPY-mediated increase in GnRH mRNA was also inhibited with the Y1-receptor specific antagonist BIBP-3226. The mHypoE-38 neurons secrete detectable levels of NPY and can be used as an endogenous source of NPY. Conditioned medium from mHypoE-38 neurons induced an increase in GnRH mRNA, which was inhibited by the Y1 receptor antagonist BIBP-3226. Together, these studies strengthen the evidence for the importance of NPY in the regulation of reproductive function.
Collapse
Affiliation(s)
- Sandeep S Dhillon
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 Kings College Circle, Toronto, ON, Canada M5S 1A8
| | | | | |
Collapse
|
34
|
Abstract
Obesity prevalence is generally higher in women than in men, and there is also a sex difference in body fat distribution. Sex differences in obesity can be explained in part by the influence of gonadal steroids on body composition and appetite; however, behavioural, socio-cultural and chromosomal factors may also play a role. This review, which evolved from the 2008 Stock Conference on sex differences in obesity, summarizes current research and recommendations related to hormonal and neuroendocrine influences on energy balance and fat distribution. A number of important gaps in the research are identified, including a need for more studies on chromosomal sex effects on energy balance, the role of socio-cultural (i.e. gender) factors in obesity and the potential deleterious effects of high-fat diets during pregnancy on the foetus. Furthermore, there is a paucity of clinical trials examining sex-specific approaches and outcomes of obesity treatment (lifestyle-based or pharmacological), and research is urgently needed to determine whether current weight loss programmes, largely developed and tested on women, are appropriate for men. Last, it is important that both animal and clinical research on obesity be designed and analysed in such a way that data can be separately examined in both men and women.
Collapse
Affiliation(s)
- J C Lovejoy
- Free and Clear Inc., 999 Third Avenue, Seattle, WA 98104, USA.
| | | | | |
Collapse
|
35
|
Kalamatianos T, Grimshaw SE, Poorun R, Hahn JD, Coen CW. Fasting reduces KiSS-1 expression in the anteroventral periventricular nucleus (AVPV): effects of fasting on the expression of KiSS-1 and neuropeptide Y in the AVPV or arcuate nucleus of female rats. J Neuroendocrinol 2008; 20:1089-97. [PMID: 18573184 DOI: 10.1111/j.1365-2826.2008.01757.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Changes in metabolic state, such as those induced by fasting, have profound effects on reproduction. In rats, the time-course over which fasting inhibits luteinising hormone (LH) release is reduced to 48 h by the presence of oestradiol-17beta (E(2)). Hypothalamic kisspeptin plays a key role in mediating the actions of E(2) on gonadotrophin-releasing hormone (GnRH) neurones, and thereby promotes LH release. KiSS-1-expressing neurones are found in the anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC). Extensive evidence implicates the AVPV in GnRH release and the ARC in energy balance. The latter nucleus also contains neurones that express neuropeptide Y (NPY), an orexigenic peptide implicated in GnRH control. To elucidate the involvement of kisspeptin and/or NPY in hypothalamic responses to fasting, their expression was quantified by in situ hybridisation histochemistry in ovariectomised rats, with or without E(2) replacement, before and after 48 h of fasting. In the presence of E(2), but not in its absence, the fasting suppressed plasma LH. In the AVPV, the low level of KiSS-1 expression found in the absence of E(2) was unaffected by fasting. By contrast, the elevated level found in the presence of E(2) was suppressed by fasting. Independent of E(2), fasting had no effect on KiSS-1 expression in the ARC, but increased NPY expression at that site. The present study has identified the AVPV as a site at which KiSS-1 expression can be influenced by fasting. The results suggest that inhibition of KiSS-1 expression in the AVPV may be a significant factor in restraining the gonadotrophic axis in response to negative energy balance in the presence of oestrogen. The extent to which the concurrent rise in NPY expression in the ARC may contribute to the suppression of LH release by influencing AVPV kisspeptin neurones, directly or indirectly, or by actions independent of kisspeptin, remains to be established.
Collapse
Affiliation(s)
- T Kalamatianos
- Division of Reproduction and Endocrinology, School of Biomedical and Health Sciences, King's College London, London, UK
| | | | | | | | | |
Collapse
|
36
|
Baltatzi M, Hatzitolios A, Tziomalos K, Iliadis F, Zamboulis C. Neuropeptide Y and alpha-melanocyte-stimulating hormone: interaction in obesity and possible role in the development of hypertension. Int J Clin Pract 2008; 62:1432-1440. [PMID: 18793378 DOI: 10.1111/j.1742-1241.2008.01823.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
AIM Obesity and hypertension frequently coexist and both represent important risk factors for cardiovascular disease. The mechanisms implicated in the regulation of food intake have not been completely elucidated. Recent data suggests that peripheral and central neuropeptides play an important role in the maintenance of energy balance. More specifically, leptin, neuropeptide Y (NPY) and alpha-melanocyte-stimulating hormone (a-MSH) appear to be implicated in the pathogenesis of obesity and also contribute to the development of hypertension in obesity. METHODS Analysis of the pertinent bibliography published in PubMed database. RESULTS Leptin is produced in the adipose tissue directly correlated with fat tissue mass. Leptin acts on two distinct neural populations in the hypothalamus: the first expresses the orexigenic peptides NPY and agouti-related protein (AgRP), the second pro-opiomelanocortin (POMC). The activation of POMC neurons increases the production of the anorexigenic hormone a-MSH and inhibits the release of NPY and AgRP. In addition, the hypothalamus integrates the neuroendocrine systems with the autonomic nervous system and controls the activity of the latter. Stimulation of hypothalamic nuclei elicits sympathetic responses including blood pressure elevation. Both NPY and a-MSH appears to be implicated in the hypothalamic regulation of sympathetic nervous system (SNS) activity. CONCLUSION Alterations in leptin, NPY and a-MSH are frequently observed in obesity and might stimulate SNS activity, contributing to the development of hypertension in obese patients. These neuropeptides might provide a pathophysiologic link between excess weight and hypertension. However, more research is needed before the pharmacologic manipulation of these complex neuroendocrine systems can be applied in the treatment of obesity and hypertension.
Collapse
Affiliation(s)
- M Baltatzi
- 1st Propedeutic Medical Department, AXEPA Hospital, Aristotles University of Thessaloniki, Thessaloniki, Greece
| | | | | | | | | |
Collapse
|
37
|
Lee NJ, Enriquez RF, Boey D, Lin S, Slack K, Baldock PA, Herzog H, Sainsbury A. Synergistic attenuation of obesity by Y2- and Y4-receptor double knockout in ob/ob mice. Nutrition 2008; 24:892-9. [PMID: 18662863 DOI: 10.1016/j.nut.2008.06.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 06/19/2008] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Neuropeptide Y regulates numerous processes including food intake, body composition, and reproduction by at least five different Y receptors. We previously demonstrated a synergistic interaction between Y2 and Y4 receptors in reducing adiposity in chow- or fat-fed Y2Y4-receptor double-knockout mice. In the present study, we investigated whether this synergy could reduce the massive obesity of leptin-deficient ob/ob mice. METHODS Mice with germline deletions of Y2 and Y4 receptors were crossed onto the ob/ob strain. Body weight was measured weekly until 15-18 wk of age before decapitation for collection of trunk blood and tissues. RESULTS Male and female Y24ob triple mutants showed highly significant reductions in body weight and white adipose tissue mass compared with ob/ob mice. This reduction in body weight was not evident in Y2ob or Y4ob double mutants, and the effect on adiposity was significantly greater than that seen in Y2ob or Y4ob mice. These changes were associated with significant attenuation of the increased brown adipose tissue mass and small intestinal hypertrophy seen in ob/ob mice and with normalization of the low circulating free thyroxine concentrations seen in female ob/ob mice and the high circulating corticosterone concentrations seen in male ob/ob mice. CONCLUSION These data reveal a synergistic interaction between Y2 and Y4 receptors in attenuating the massive obesity of ob/ob mice, possibly mediated by stimulation of thyroid function and inhibition of intestinal nutrient absorption. Dual pharmacologic antagonism of Y2 and Y4 receptors could help people to attain and maintain a healthy weight.
Collapse
Affiliation(s)
- Nicola J Lee
- Neuroscience Research Program, Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Martin B, Golden E, Carlson OD, Egan JM, Mattson MP, Maudsley S. Caloric restriction: impact upon pituitary function and reproduction. Ageing Res Rev 2008; 7:209-24. [PMID: 18329344 DOI: 10.1016/j.arr.2008.01.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 01/25/2008] [Accepted: 01/28/2008] [Indexed: 01/05/2023]
Abstract
Reduced energy intake, or caloric restriction (CR), is known to extend life span and to retard age-related health decline in a number of different species, including worms, flies, fish, mice and rats. CR has been shown to reduce oxidative stress, improve insulin sensitivity, and alter neuroendocrine responses and central nervous system (CNS) function in animals. CR has particularly profound and complex actions upon reproductive health. At the reductionist level the most crucial physiological function of any organism is its capacity to reproduce. For a successful species to thrive, the balance between available energy (food) and the energy expenditure required for reproduction must be tightly linked. An ability to coordinate energy balance and fecundity involves complex interactions of hormones from both the periphery and the CNS and primarily centers upon the master endocrine gland, the anterior pituitary. In this review article we review the effects of CR on pituitary gonadotrope function and on the male and female reproductive axes. A better understanding of how dietary energy intake affects reproductive axis function and endocrine pulsatility could provide novel strategies for the prevention and management of reproductive dysfunction and its associated comorbidities.
Collapse
Affiliation(s)
- Bronwen Martin
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Vaiciunas A, Coutinho LL, Meirelles FV, Pires AV, Silva LFP. Leptin and hypothalamic gene expression in early- and late-maturing Bos indicus Nellore heifers. Genet Mol Biol 2008. [DOI: 10.1590/s1415-47572008000400010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
40
|
Abstract
Obesity is a serious public health problem throughout the world, affecting both developed societies and developing countries. The central nervous system has developed a meticulously interconnected circuitry in order to keep us fed and in an adequate nutritional state. One of these consequences is that an energy-dense environment favors the development of obesity. Neuropeptide Y (NPY) is one of the most abundant and widely distributed peptides in the central nervous system of both rodents and humans and has been implicated in a variety of physiological actions. Within the hypothalamus, NPY plays an essential role in the control of food intake and body weight. Centrally administered NPY causes robust increases in food intake and body weight and, with chronic administration, can eventually produce obesity. NPY activates a population of at least six G protein-coupled Y receptors. NPY analogs exhibit varying degrees of affinity and specificity for these Y receptors. There has been renewed speculation that ligands for Y receptors may be of benefit for the treatment of obesity. This review highlights the therapeutic potential of Y(1), Y(2), Y(4), and Y(5) receptor agonists and antagonists as additional intervention to treat human obesity.
Collapse
Affiliation(s)
- M M Kamiji
- Department of Gastroenterology, Faculty of Medicine, University of Sao Paulo, Ribeirão Preto Campus 14048-900, Ribeirão Preto-SP, Brazil
| | | |
Collapse
|
41
|
Baldock PA, Allison SJ, Lundberg P, Lee NJ, Slack K, Lin EJD, Enriquez RF, McDonald MM, Zhang L, During MJ, Little DG, Eisman JA, Gardiner EM, Yulyaningsih E, Lin S, Sainsbury A, Herzog H. Novel role of Y1 receptors in the coordinated regulation of bone and energy homeostasis. J Biol Chem 2007; 282:19092-102. [PMID: 17491016 DOI: 10.1074/jbc.m700644200] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The importance of neuropeptide Y (NPY) and Y2 receptors in the regulation of bone and energy homeostasis has recently been demonstrated. However, the contributions of the other Y receptors are less clear. Here we show that Y1 receptors are expressed on osteoblastic cells. Moreover, bone and adipose tissue mass are elevated in Y1(-/-) mice with a generalized increase in bone formation on cortical and cancellous surfaces. Importantly, the inhibitory effects of NPY on bone marrow stromal cells in vitro are absent in cells derived from Y1(-/-) mice, indicating a direct action of NPY on bone cells via this Y receptor. Interestingly, in contrast to Y2 receptor or germ line Y1 receptor deletion, conditional deletion of hypothalamic Y1 receptors in adult mice did not alter bone homeostasis, food intake, or adiposity. Furthermore, deletion of both Y1 and Y2 receptors did not produce additive effects in bone or adiposity. Thus Y1 receptor pathways act powerfully to inhibit bone production and adiposity by nonhypothalamic pathways, with potentially direct effects on bone tissue through a single pathway with Y2 receptors.
Collapse
Affiliation(s)
- Paul A Baldock
- Bone and Mineral Program, Garvan Institute of Medical Research, St Vincent's Hospital, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chalmers L, Kaskel FJ, Bamgbola O. The role of obesity and its bioclinical correlates in the progression of chronic kidney disease. Adv Chronic Kidney Dis 2006; 13:352-64. [PMID: 17045221 DOI: 10.1053/j.ackd.2006.07.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In spite of a progressive fall in the incidence of traditional risk factors of cardiovascular morbidity (cigarette smoking, high blood pressure, and hyperlipidemia), there is an upward trend in the prevalence of obesity and chronic kidney disease (CKD). Furthermore, there is a strong correlation between body mass indices and the relative risk of progression of CKD. The close biophysiological interaction between obesity and CKD is evident by a similar occurrence of comorbidities including insulin resistance, hyperlipidermia, endothelial dysfunction, and sleep disorders. Truncal obesity is a primary component of metabolic syndrome; unlike peripheral fat, the visceral adipocytes are more resistant to insulin. In addition, lipolysis results in a release of free fatty acid and TG, whereas hypertriglycedemia is potentiated by uremic activation of fatty acid synthase. Hypertriglycedemia and low HDL cholesterol increase the relative risk of progression of CKD. Furthermore, endothelial inflammation and premature atherosclerosis are promoted by hyperhomocysteinemia and oxidation of LDL, both of which are commonly observed in CKD and obesity. Predominance of oxidative stress in both obesity and azotemia stimulate synthesis of angiotensin II, which in turn increases TGF-B and plasminogen activator inhibitor-1, thereby propagating glomerular fibrosis. Furthermore, local synthesis of angiotensinogen by adipocytes, leptin activation of sympathetic nervous system, and hyperinsulinemia contribute to the development of hypertension in obesity and CKD. In addition, increased renal tubular expression of Na-K-ATPase and a blunted response to natiuretic hormones in obesity promote salt and water retention. Glomerular hyperfiltration from systemic volume load and hypertension results in mesangial cellular proliferation and progressive renal fibrosis. In addition, maternal nutritional deprivation increases the incidence of obesity, hypertension, and diabetes in adulthood. Reduced fetal protein synthesis contributes to oxidative glomerular injury and impairment of renal morphogenesis. Thus, kidneys are poorly equipped to handle physiologic stress that may result from the rapid body growth and programmed metabolic dysfunction later in life. Finally, in order to minimize morbidity of obesity-related kidney disease, preventive strategy must include optimal maternal health care, promotion of healthy nutrition and routine physical exercise, and early detection of CKD.
Collapse
Affiliation(s)
- Laura Chalmers
- Department of Pediatrics, Oklahoma University Health Science Center, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
43
|
Eva C, Serra M, Mele P, Panzica G, Oberto A. Physiology and gene regulation of the brain NPY Y1 receptor. Front Neuroendocrinol 2006; 27:308-39. [PMID: 16989896 DOI: 10.1016/j.yfrne.2006.07.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 07/18/2006] [Accepted: 07/25/2006] [Indexed: 10/24/2022]
Abstract
Neuropeptide Y (NPY) is one of the most prominent and abundant neuropeptides in the mammalian brain where it interacts with a family of G-protein coupled receptors, including the Y(1) receptor subtype (Y(1)R). NPY-Y(1)R signalling plays a prominent role in the regulation of several behavioural and physiological functions including feeding behaviour and energy balance, sexual hormone secretion, stress response, emotional behaviour, neuronal excitability and ethanol drinking. Y(1)R expression is regulated by neuronal activity and peripheral hormones. The Y(1)R gene has been isolated from rodents and humans and it contains multiple regulatory elements that may participate in the regulation of its expression. Y(1)R expression in the hypothalamus is modulated by changes in energetic balance induced by a wide variety of conditions (fasting, pregnancy, hyperglycaemic challenge, hypophagia, diet induced obesity). Estrogens up-regulate responsiveness to NPY to stimulate preovulatory GnRH and gonadotropin surges by increasing Y(1)R gene expression both in the hypothalamus and the pituitary. Y(1)R expression is modulated by different kinds of brain insults, such as stress and seizure activity, and alteration in its expression may contribute to antidepressant action. Chronic modulation of GABA(A) receptor function by benzodiazepines or neuroactive steroids also affects Y(1)R expression in the amygdala, suggesting that a functional interaction between the GABA(A) receptor and Y(1)R mediated signalling may contribute to the regulation of emotional behaviour. In this paper, we review the state of the art concerning Y(1)R function and gene expression, including our personal contribution to many of the subjects mentioned above.
Collapse
Affiliation(s)
- Carola Eva
- Sezione di Farmacologia, Dipartimento di Anatomia, Farmacologia e Medicina Legale, Università di Torino, Italy; Centro Rita Levi Montalcini, Università di Torino, Italy.
| | | | | | | | | |
Collapse
|
44
|
Gamba M, Pralong FP. Control of GnRH neuronal activity by metabolic factors: the role of leptin and insulin. Mol Cell Endocrinol 2006; 254-255:133-9. [PMID: 16757107 DOI: 10.1016/j.mce.2006.04.023] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Energy balance exerts a critical influence on reproductive function. Leptin and insulin are among the metabolic factors signaling the nutritional status of an individual to the hypothalamus, and their role in the overall modulation of the activity of GnRH neurons is increasingly recognized. The experiments described here were designed to further investigate the central mechanisms of action of these two hormones and the precise hypothalamic pathways implicated in their effects on the reproductive axis. NPY neurons represent a primary target of leptin actions within the hypothalamus We used mice lacking the NPY Y1 receptor (Y1-/- mice) to investigate the physiological importance of the hypothalamic NPY neuronal system and its downstream pathways involving Y1 in the reproductive effects of leptin. Results point to a crucial role for the NPY Y1 receptor in the control of the onset of puberty and the maintenance of reproductive functions by leptin. A striking finding of these experiments was the observation that juvenile Y1-/- mice submitted to food restriction can proceed through puberty like normally fed animals, demonstrating that the absence of Y1 impairs the perception of decreasing energy stores by the gonadotrope axis. Next, we used parallel in vivo and in vitro experiments to delineate the role of insulin in the stimulation and maintenance of the activity of the neuroendocrine reproductive axis. First, we observed that the increase in circulating insulin levels achieved during hyperinsulinemic clamp studies in normal male mice was associated with a significant rise in LH secretion. This effect of insulin is likely mediated at the hypothalamic level, as insulin stimulates the secretion and the expression of GnRH by hypothalamic neurons in culture. Using primary neuronal cultures as well as a novel GnRH neuronal cell line obtained by conditional immortalization of adult rat hypothalamic neurons, we have recently demonstrated that this effect of insulin on GnRH gene expression is probably mediated directly at the level of GnRH neurons, and involves the stimulation of the MAP kinase Erk1/2 pathway. Taken together, these results provide new insights into the mechanisms involved in the regulation of GnRH neuronal activity by metabolic factors.
Collapse
Affiliation(s)
- Marcella Gamba
- Services of Endocrinology, Diabetology and Metabolism, BH 19-709, University Hospitals of Lausanne and Geneva, Switzerland
| | | |
Collapse
|
45
|
Millan MJ. Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther 2006; 110:135-370. [PMID: 16522330 DOI: 10.1016/j.pharmthera.2005.11.006] [Citation(s) in RCA: 389] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 12/20/2022]
Abstract
Major depression is a debilitating and recurrent disorder with a substantial lifetime risk and a high social cost. Depressed patients generally display co-morbid symptoms, and depression frequently accompanies other serious disorders. Currently available drugs display limited efficacy and a pronounced delay to onset of action, and all provoke distressing side effects. Cloning of the human genome has fuelled expectations that symptomatic treatment may soon become more rapid and effective, and that depressive states may ultimately be "prevented" or "cured". In pursuing these objectives, in particular for genome-derived, non-monoaminergic targets, "specificity" of drug actions is often emphasized. That is, priority is afforded to agents that interact exclusively with a single site hypothesized as critically involved in the pathogenesis and/or control of depression. Certain highly selective drugs may prove effective, and they remain indispensable in the experimental (and clinical) evaluation of the significance of novel mechanisms. However, by analogy to other multifactorial disorders, "multi-target" agents may be better adapted to the improved treatment of depressive states. Support for this contention is garnered from a broad palette of observations, ranging from mechanisms of action of adjunctive drug combinations and electroconvulsive therapy to "network theory" analysis of the etiology and management of depressive states. The review also outlines opportunities to be exploited, and challenges to be addressed, in the discovery and characterization of drugs recognizing multiple targets. Finally, a diversity of multi-target strategies is proposed for the more efficacious and rapid control of core and co-morbid symptoms of depression, together with improved tolerance relative to currently available agents.
Collapse
Affiliation(s)
- Mark J Millan
- Institut de Recherches Servier, Centre de Recherches de Croissy, Psychopharmacology Department, 125, Chemin de Ronde, 78290-Croissy/Seine, France.
| |
Collapse
|
46
|
Blom WAM, Mars M, Hendriks HFJ, de Groot LCPGM, Stafleu A, Kok FJ, de Graaf C. Fasting ghrelin does not predict food intake after short-term energy restriction. Obesity (Silver Spring) 2006; 14:838-46. [PMID: 16855193 DOI: 10.1038/oby.2006.97] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To study the role of ghrelin as a hunger signal during energy restriction and to test the hypothesis that changes in fasting leptin concentrations during energy restriction are associated with changes in fasting ghrelin concentrations. RESEARCH METHODS AND PROCEDURES Thirty-five healthy, lean men (23 +/- 3 years of age; BMI: 22.3 +/- 1.6 kg/m(2)) participated in a controlled intervention study. Fasting ghrelin and leptin concentrations were measured before and after 2 days of 62% energy restriction and after a 2-day period of ad libitum food intake. Energy intake during the latter period was assessed. RESULTS On average, ghrelin concentrations did not change (0.05 mug/liter; 95% confidence interval, -0.03; 0.12) during energy restriction. Changes in ghrelin concentration during energy restriction were not associated with energy intake during the ad libitum period (r = 0.07; not significant). Ad libitum energy intake was, however, associated with the change in ghrelin concentrations during the same period (r = -0.34; p = 0.05). Ghrelin and leptin concentrations were not associated. In addition, the ratio of percentage changes in ghrelin and leptin during energy restriction was not correlated with ad libitum food intake after energy restriction (r = -0.26; p = 0.14). DISCUSSION Fasting ghrelin concentrations did not rise after a 2-day energy restriction regimen. Moreover, changes in ghrelin concentrations during energy restriction were not associated with subsequent ad libitum food intake, suggesting that fasting ghrelin does not act as a hunger signal to the brain. The data did not support our hypothesis that leptin suppresses ghrelin levels.
Collapse
Affiliation(s)
- Wendy A M Blom
- TNO Quality of Life, Business Centre Nutrition, Zeist, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Sequencing of the human genome has yielded thousands of potential drug targets. The difficulty now is in determining which targets have real therapeutic value and should be the focus of a drug discovery effort. The available evidence suggests that knockout technology can be used prospectively to identify targets that are amenable to drug development for the treatment of a variety of diseases. This review compares the knockout phenotypes of 21 potential obesity targets with the effects of therapeutics designed for those targets on rodents and, when data were available, on humans. The phenotypes of obesity target knockouts model the effects seen when therapeutics designed for those obesity targets are delivered to rodents; of the 21 obesity targets reviewed, 16 showed a correspondence between knockout phenotype and drug effect in mice and/or rats. This suggests that, at least in terms of evaluating obesity targets, it is rare for compensatory developmental changes caused by the gene knockout to prevent detection of the relevant phenotype. In the majority of cases, the knockout phenotypes also modelled the effects seen when the relevant therapeutics were delivered to humans. Thus, it seems rational to use mouse knockout technology prospectively to identify genes that regulate body fat in vivo, and then to develop anti-obesity therapeutics by targeting the human protein products of these genes. Ultimately, the value of using this approach to identify novel targets for human anti-obesity therapies will be judged by future studies examining the anti-obesity effect, in humans, of the therapeutics that result from this approach.
Collapse
Affiliation(s)
- D R Powell
- Department of Endocrinology, Pharmaceutical Biology, Lexicon Genetics Incorporated, 8800 Technology Forest Place, The Woodlands, TX 77381-1160, USA.
| |
Collapse
|
48
|
Salvi R, Castillo E, Voirol MJ, Glauser M, Rey JP, Gaillard RC, Vollenweider P, Pralong FP. Gonadotropin-releasing hormone-expressing neurons immortalized conditionally are activated by insulin: implication of the mitogen-activated protein kinase pathway. Endocrinology 2006; 147:816-26. [PMID: 16293665 DOI: 10.1210/en.2005-0728] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Energy balance exerts a critical influence on reproduction via changes in the circulating levels of hormones such as insulin. This modulation of the neuroendocrine reproductive axis ultimately involves variations in the activity of hypothalamic neurons expressing GnRH. Here we studied the effects of insulin in primary hypothalamic cell cultures as well as a GnRH neuronal cell line that we generated by conditional immortalization of adult hypothalamic neurons. These cells, which represent the first successful conditional immortalization of GnRH neurons, retain many of their mature phenotypic characteristics. In addition, we show that they express the insulin receptor. Consistently, their stimulation with insulin activates both the phosphatidylinositol 3-kinase and the Erk1/2 MAPK signaling pathways and stimulates a rapid increase in the expression of c-fos, demonstrating their responsiveness to this hormone. Further work performed in parallel in immortalized GnRH-expressing cells and primary neuronal cultures containing non-GnRH-expressing neurons shows that insulin induces the expression of GnRH in both models. In primary cultures, inhibition of the Erk1/2 pathway abolishes the stimulation of GnRH expression by insulin, whereas blockade of the phosphatidylinositol 3-kinase pathway has no effect. In conclusion, these data strongly suggest that GnRH neurons are directly sensitive to insulin and implicate for the first time the MAPK Erk1/2 signaling pathway in the central effects of insulin on the neuroendocrine reproductive axis.
Collapse
Affiliation(s)
- Roberto Salvi
- Service of Endocrinology, Diabetology, and Metabolism, Department of Medicine, University Hospital, Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
49
|
MacNeil DJ, Kanatani A. NPY and energy homeostasis: an opportunity for novel anti-obesity therapies. EXS 2006:143-56. [PMID: 16383004 DOI: 10.1007/3-7643-7417-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Douglas J MacNeil
- Metabolic Disorders, Merck Research Laboratories, Rahway, NJ 07090, USA.
| | | |
Collapse
|
50
|
Vulliémoz NR, Xiao E, Xia-Zhang L, Wardlaw SL, Ferin M. Central infusion of agouti-related peptide suppresses pulsatile luteinizing hormone release in the ovariectomized rhesus monkey. Endocrinology 2005; 146:784-9. [PMID: 15514083 DOI: 10.1210/en.2004-1093] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Agouti-related peptide (AGRP), an endogenous melanocortin receptor antagonist, is a powerful orexigenic peptide when infused centrally. AGRP and neuropeptide Y (NPY), another orexigenic peptide, are colocated within the same neurons in the arcuate nucleus. Both NPY and AGRP mRNA expression increases during food restriction, a condition that is known to suppress the GnRH pulse generator and reproductive function. Although NPY has been shown previously to suppress LH secretion in the ovariectomized monkey, data on AGRP are lacking. In this study, we examined the effect of AGRP infusion into the third ventricle on pulsatile LH release in five adult monkeys. The 8-h protocol included a 3-h intraventricular saline infusion to establish baseline pulsatile LH release, followed by a 5-h infusion of AGRP (83-132) [5 microg/h (n=1) or 10 microg/h (n=4)]. In separate experiments, each animal received an 8-h saline treatment as a control. Blood samples were collected every 15 min for LH measurements. Cortisol levels were measured every 45 min. AGRP infusion significantly decreased LH pulse frequency (from a baseline of 0.74 +/- 0.07 pulse/h to 0.36 +/- 0.12 during AGRP infusion; P <0.01) and mean LH concentrations (to 41.1 +/- 7.5% of baseline by h 5 of AGRP infusion; P < 0.001). LH pulse amplitude was not modified by AGRP treatment. AGRP infusion also significantly increased cortisol release, as previously reported. The data demonstrate that central administration of AGRP inhibits pulsatile LH release in the monkey and suggest that AGRP, like NPY, may mediate the effect of a negative energy balance on the reproductive system by suppressing the GnRH pulse generator.
Collapse
Affiliation(s)
- Nicolas R Vulliémoz
- Department of Obstetrics and Gynecology, College of Physicians and Surgeons, 630 West 168th Street, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|