1
|
Yang Y, Shao Y, Dai Q, Zhang Y, Sun Y, Wang K, Xu A. Transcription factor AP-2 Beta, a potential target of repetitive Transspinal magnetic stimulation in spinal cord injury treatment, reduced inflammation and alleviated spinal cord injury. Exp Neurol 2025; 386:115144. [PMID: 39798694 DOI: 10.1016/j.expneurol.2025.115144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Spinal cord injury (SCI) is a neurodegenerative disease, with a high disability rate. According to the results of mRNA-seq, transcription factor AP-2 Beta (TFAP2B) is a potential target of repetitive Transspinal Magnetic Stimulation (rTSMS) in SCI treatment. Our results demonstrated that rTSMS significantly improved motor function and promoted neuronal survival post-SCI. The result showed that TFAP2B was downregulated following SCI, while significant upregulation after rTSMS treatment, suggesting its pivotal role in neuronal repair. Overexpression of TFAP2B improved Basso Beattie and Bresnahan (BBB) score and athletic ability, and decreased cell apoptosis in SCI rats. Additionally, overexpression of TFAP2B reduced the expression of Iba1 and GFAP in spinal cord, and the expression of PDGFrβ was also reduced in SCI rats after TFAP2B overexpression. Knockdown of TFAP2B reverses the effect of rTSMS treatment in SCI. We found that rTSMS alleviate osteoporosis caused by SCI, resulting in increased BMD, BV/TV, and Tb.Th. rTSMS treatment lowered the RANKL/OPG ratio. In all, our study illustrated TFAP2B is a downstream target of rTSMS for the treatment of SCI, and overexpression of TFAP2B enhanced the therapeutic effect of rTSMS.
Collapse
Affiliation(s)
- Yang Yang
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Yang Shao
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Qi Dai
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Yuxi Zhang
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Yongxin Sun
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Kunpeng Wang
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, China.
| | - Aihua Xu
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Ganguly K, Adhikary K, Acharjee A, Acharjee P, Trigun SK, Mutlaq AS, Ashique S, Yasmin S, Alshahrani AM, Ansari MY. Biological significance and pathophysiological role of Matrix Metalloproteinases in the Central Nervous System. Int J Biol Macromol 2024; 280:135967. [PMID: 39322129 DOI: 10.1016/j.ijbiomac.2024.135967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Matrix Metalloproteinases (MMPs), which are endopeptidase reliant on zinc, are low in embryonic tissues but increases in response to a variety of physiological stimulus and pathological stresses. Neuro-glial cells, endothelial cells, fibroblasts, and leucocytes secrete MMPs, which cleave extracellular matrix proteins in a time-dependent manner. MMPs affect synaptic plasticity and the development of short-term memory by controlling the size, shape, and excitatory synapses' function through the lateral diffusion of receptors. In addition, MMPs influence the Extracellular Matrix proteins in the Peri-Neuronal Net at the Neuro-glial interface, which aids in the establishment of long-term memory. Through modulating neuronal, and glial cells migration, differentiation, Neurogenesis, and survival, MMPs impact brain development in mammals. In adult brains, MMPs play a beneficial role in physiological plasticity, which includes learning, memory consolidation, social interaction, and complex behaviors, by proteolytically altering a wide variety of factors, including growth factors, cytokines, receptors, DNA repair enzymes, and matrix proteins. Additionally, stress, depression, addiction, hepatic encephalopathy, and stroke may all have negative effects on MMPs. In addition to their role in glioblastoma development, MMPs influence neurological diseases such as epilepsy, schizophrenia, autism spectrum disorder, brain damage, pain, neurodegeneration, and Alzheimer's and Parkinson's. To help shed light on the potential of MMPs as a therapeutic target for neurodegenerative diseases, this review summarizes their regulation, mode of action, and participation in brain physiological plasticity and pathological damage. Finally, by employing different MMP-based nanotools and inhibitors, MMPs may also be utilized to map the anatomical and functional connectome of the brain, analyze its secretome, and treat neurodegenerative illnesses.
Collapse
Affiliation(s)
- Krishnendu Ganguly
- Department of Medical Lab Technology, Paramedical College Durgapur, Helen Keller Sarani, Durgapur 713212, West Bengal, India.
| | - Krishnendu Adhikary
- Department of Medical Lab Technology, Paramedical College Durgapur, Helen Keller Sarani, Durgapur 713212, West Bengal, India.
| | - Arup Acharjee
- Molecular Omics Laboratory, Department of Zoology, University of Allahabad, Allahabad, Uttar Pradesh, India.
| | - Papia Acharjee
- Biochemistry Section, Department of Zoology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Surendra Kumar Trigun
- Biochemistry Section, Department of Zoology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | | | - Sumel Ashique
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India.
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia.
| | - Asma M Alshahrani
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Khalid University, Abha, Saudi Arabia; Department of Clinical Pharmacy, Shaqra University, Saudi Arabia.
| | - Mohammad Yousuf Ansari
- MM college of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India.
| |
Collapse
|
3
|
Pei Q, Zhao Q, Lang C, Feng S, Meng J, Tan G, Cui W, Zhang C, Luo X, Xu L, Chen J. Alleviating Severe Cytoskeletal Destruction of Spinal Motor Neurons: Another Effect of Docosahexaenoic Acid in Spinal Cord Injury. ACS Chem Neurosci 2024; 15:1456-1468. [PMID: 38472087 DOI: 10.1021/acschemneuro.3c00746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
Spinal cord injury (SCI) treatment remains a major challenge. Spinal motor neurons (MNs) are seriously injured in the early stage after SCI, but this has not received sufficient attention. Oxidative stress is known to play a crucial role in SCI pathology. Our studies demonstrated that oxidative stress can cause severe damage to the cytoskeleton of spinal MNs. Docosahexaenoic acid (DHA) has been shown to have beneficial effects on SCI, but the mechanism remains unclear, and no study has investigated the effect of DHA on oxidative stress-induced spinal MN injury. Here, we investigated the effect of DHA on spinal MN injury through in vivo and in vitro experiments, focusing on the cytoskeleton. We found that DHA not only promoted spinal MN survival but, more importantly, alleviated the severe cytoskeletal destruction of these neurons induced by oxidative stress in vitro and in mice with SCI in vivo. In addition, the mechanisms involved were investigated and elucidated. These results not only suggested a beneficial role of DHA in spinal MN cytoskeletal destruction caused by oxidative stress and SCI but also indicated the important role of the spinal MN cytoskeleton in the recovery of motor function after SCI. Our study provides new insights for the formulation of SCI treatment.
Collapse
Affiliation(s)
- Qinqin Pei
- Central laboratory, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Qiurong Zhao
- Central laboratory, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Chunhui Lang
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Shilong Feng
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Juanjuan Meng
- Central laboratory, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Guangjiao Tan
- Central laboratory, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Wei Cui
- Central laboratory, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Cheng Zhang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Xiaohe Luo
- Central laboratory, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Lixin Xu
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing 404000, China
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Jian Chen
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing 404000, China
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing University Three Gorges Hospital, Chongqing 404000, China
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| |
Collapse
|
4
|
Xuan L, Hu Z, Jiang Z, Zhang C, Sun X, Ming W, Liu H, Qiao R, Shen L, Liu S, Wang G, Wen L, Luan Z, Yin J. Pregnane X receptor (PXR) deficiency protects against spinal cord injury by activating NRF2/HO-1 pathway. CNS Neurosci Ther 2023; 29:3460-3478. [PMID: 37269088 PMCID: PMC10580351 DOI: 10.1111/cns.14279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 06/04/2023] Open
Abstract
INTRODUCTION As a devastating neurological disease, spinal cord injury (SCI) results in severe tissue loss and neurological dysfunction. Pregnane X receptor (PXR) is a ligand-activated nuclear receptor with a major regulatory role in xenobiotic and endobiotic metabolism and recently has been implicated in the central nervous system. In the present study, we aimed to investigate the role and mechanism of PXR in SCI. METHODS The clip-compressive SCI model was performed in male wild-type C57BL/6 (PXR+/+ ) and PXR-knockout (PXR-/- ) mice. The N2a H2 O2 -induced injury model mimicked the pathological process of SCI in vitro. Pregnenolone 16α-carbonitrile (PCN), a mouse-specific PXR agonist, was used to activate PXR in vivo and in vitro. The siRNA was applied to knock down the PXR expression in vitro. Transcriptome sequencing analysis was performed to discover the relevant mechanism, and the NRF2 inhibitor ML385 was used to validate the involvement of PXR in influencing the NRF2/HO-1 pathway in the SCI process. RESULTS The expression of PXR decreased after SCI and reached a minimum on the third day. In vivo, PXR knockout significantly improved the motor function of mice after SCI, meanwhile, inhibited apoptosis, inflammation, and oxidative stress induced by SCI. On the contrary, activation of PXR by PCN negatively influenced the recovery of SCI. Mechanistically, transcriptome sequencing analysis revealed that PXR activation downregulated the mRNA level of heme oxygenase-1 (HO-1) after SCI. We further verified that PXR deficiency activated the NRF2/HO-1 pathway and PXR activation inhibited this pathway in vitro. CONCLUSION PXR is involved in the recovery of motor function after SCI by regulating NRF2/HO-1 pathway.
Collapse
Affiliation(s)
- Li‐Na Xuan
- Department of Neurosurgerythe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
- Epileptic Center of Liaoningthe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Zhen‐Xin Hu
- Department of OrthopedicsThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Zhen‐Fu Jiang
- Department of Neurosurgerythe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
- Epileptic Center of Liaoningthe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Cong Zhang
- Advanced Institute for Medical SciencesDalian Medical UniversityDalianChina
| | - Xiao‐Wan Sun
- Advanced Institute for Medical SciencesDalian Medical UniversityDalianChina
| | - Wen‐Hua Ming
- Advanced Institute for Medical SciencesDalian Medical UniversityDalianChina
| | - Hui‐Tao Liu
- Department of OrthopedicsTaizhou Hospital of Zhejiang ProvinceLinhaiChina
| | - Rong‐Fang Qiao
- Advanced Institute for Medical SciencesDalian Medical UniversityDalianChina
| | - Lin‐Jie Shen
- Department of GastroenterologyNingbo First HospitalNingboChina
| | - Shao‐Bo Liu
- Department of Neurosurgerythe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
- Epileptic Center of Liaoningthe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Guan‐Yu Wang
- Department of Neurosurgerythe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
- Epileptic Center of Liaoningthe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Lin Wen
- Advanced Institute for Medical SciencesDalian Medical UniversityDalianChina
| | - Zhi‐Lin Luan
- Advanced Institute for Medical SciencesDalian Medical UniversityDalianChina
- Dalian Key Laboratory for Nuclear Receptors in Major Metabolic DiseasesDalianChina
| | - Jian Yin
- Department of Neurosurgerythe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
- Epileptic Center of Liaoningthe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| |
Collapse
|
5
|
Chiricosta L, D’Angiolini S, Gugliandolo A, Salamone S, Pollastro F, Mazzon E. Transcriptomic Profiling after In Vitro Δ 8-THC Exposure Shows Cytoskeletal Remodeling in Trauma-Injured NSC-34 Cell Line. Pharmaceuticals (Basel) 2023; 16:1268. [PMID: 37765076 PMCID: PMC10535185 DOI: 10.3390/ph16091268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Neuronal cell death is a physiological process that, when uncontrollable, leads to neurodegenerative disorders like spinal cord injury (SCI). SCI represents one of the major causes of trauma and disabilities worldwide for which no effective pharmacological intervention exists. Herein, we observed the beneficial effects of Δ8-Tetrahydrocannabinol (Δ8-THC) during neuronal cell death recovery. We cultured NSC-34 motoneuron cell line performing three different experiments. A traumatic scratch injury was caused in two experiments. One of the scratched was pretreated with Δ8-THC to observe the role of the cannabinoid following the trauma. An experimental control group was neither scratched nor pretreated. All the experiments underwent RNA-seq analysis. The effects of traumatic injury were observed in scratch against control comparison. Comparison of scratch models with or without pretreatment highlighted how Δ8-THC counteracts the traumatic event. Our results shown that Δ8-THC triggers the cytoskeletal remodeling probably due to the activation of the Janus Kinase Signal Transducer and Activator of Transcription (JAK/STAT) signaling pathway and the signaling cascade operated by the Mitogen-Activated Protein (MAP) Kinase signaling pathway. In light of this evidence, Δ8-THC could be a valid pharmacological approach in the treatment of abnormal neuronal cell death occurring in motoneuron cells.
Collapse
Affiliation(s)
- Luigi Chiricosta
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Simone D’Angiolini
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Agnese Gugliandolo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Stefano Salamone
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| |
Collapse
|
6
|
Maugeri G, Amato A, Sortino M, D Agata V, Musumeci G. The Influence of Exercise on Oxidative Stress after Spinal Cord Injury: A Narrative Review. Antioxidants (Basel) 2023; 12:1401. [PMID: 37507940 PMCID: PMC10376509 DOI: 10.3390/antiox12071401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Spinal cord injury (SCI) is an irreversible disease resulting in partial or total loss of sensory and motor function. The pathophysiology of SCI is characterized by an initial primary injury phase followed by a secondary phase in which reactive oxygen species (ROSs) and associated oxidative stress play hallmark roles. Physical exercise is an indispensable means of promoting psychophysical well-being and improving quality of life. It positively influences the neuromuscular, cardiovascular, respiratory, and immune systems. Moreover, exercise may provide a mechanism to regulate the variation and equilibrium between pro-oxidants and antioxidants. After a brief overview of spinal cord anatomy and the different types of spinal cord injury, the purpose of this review is to investigate the evidence regarding the effect of exercise on oxidative stress among individuals with SCI.
Collapse
Affiliation(s)
- Grazia Maugeri
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Alessandra Amato
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Martina Sortino
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Velia D Agata
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giuseppe Musumeci
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Research Center on Motor Activities (CRAM), University of Catania, 95123 Catania, Italy
| |
Collapse
|
7
|
Scheijen EEM, Hendrix S, Wilson DM. Oxidative DNA Damage in the Pathophysiology of Spinal Cord Injury: Seems Obvious, but Where Is the Evidence? Antioxidants (Basel) 2022; 11:antiox11091728. [PMID: 36139802 PMCID: PMC9495924 DOI: 10.3390/antiox11091728] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Oxidative stress occurs at various phases of spinal cord injury (SCI), promoting detrimental processes such as free radical injury of proteins, nucleic acids, lipids, cytoskeleton, and organelles. Oxidative DNA damage is likely a major contributor to the pathogenesis of SCI, as a damaged genome cannot be simply turned over to avert detrimental molecular and cellular outcomes, most notably cell death. Surprisingly, the evidence to support this hypothesis is limited. There is some evidence that oxidative DNA damage is increased following SCI, mainly using comet assays and immunohistochemistry. However, there is great variability in the timing and magnitude of its appearance, likely due to differences in experimental models, measurement techniques, and the rigor of the approach. Evidence indicates that 8-oxodG is most abundant at 1 and 7 days post-injury (dpi), while DNA strand breaks peak at 7 and 28 dpi. The DNA damage response seems to be characterized by upregulation of PCNA and PARP1 but downregulation of APEX1. Significant improvements in the analysis of oxidative DNA damage and repair after SCI, including single-cell analysis at time points representative for each phase post-injury using new methodologies and better reporting, will uncover the role of DNA damage and repair in SCI.
Collapse
Affiliation(s)
- Elle E. M. Scheijen
- Neurosciences, Biomedical Research Institute, Hasselt University, Agoralaan Building C, 3590 Diepenbeek, Belgium
| | - Sven Hendrix
- Institute for Translational Medicine, Medical School Hamburg, Germany, Am Kaiserkai 1, 20457 Hamburg, Germany
- Correspondence: (S.H.); (D.M.W.III)
| | - David M. Wilson
- Neurosciences, Biomedical Research Institute, Hasselt University, Agoralaan Building C, 3590 Diepenbeek, Belgium
- Correspondence: (S.H.); (D.M.W.III)
| |
Collapse
|
8
|
The Cell Autonomous and Non-Cell Autonomous Aspects of Neuronal Vulnerability and Resilience in Amyotrophic Lateral Sclerosis. BIOLOGY 2022; 11:biology11081191. [PMID: 36009818 PMCID: PMC9405388 DOI: 10.3390/biology11081191] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/14/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by a progressive paralysis due to the loss of particular neurons in our nervous system called motor neurons, that exert voluntary control of all our skeletal muscles. It is not entirely understood why motor neurons are particularly vulnerable in ALS, neither is it completely clear why certain groups of motor neurons, including those that regulate eye movement, are rather resilient to this disease. However, both vulnerability and resilience to ALS likely reflect cell intrinsic properties of different motor neuron subpopulations as well as non-cell autonomous events regulated by surrounding cell types. In this review we dissect the particular properties of different motor neuron types and their responses to disease that may underlie their respective vulnerabilities and resilience. Disease progression in ALS involves multiple cell types that are closely connected to motor neurons and we here also discuss their contributions to the differential vulnerability of motor neurons. Abstract Amyotrophic lateral sclerosis (ALS) is defined by the loss of upper motor neurons (MNs) that project from the cerebral cortex to the brain stem and spinal cord and of lower MNs in the brain stem and spinal cord which innervate skeletal muscles, leading to spasticity, muscle atrophy, and paralysis. ALS involves several disease stages, and multiple cell types show dysfunction and play important roles during distinct phases of disease initiation and progression, subsequently leading to selective MN loss. Why MNs are particularly vulnerable in this lethal disease is still not entirely clear. Neither is it fully understood why certain MNs are more resilient to degeneration in ALS than others. Brain stem MNs of cranial nerves III, IV, and VI, which innervate our eye muscles, are highly resistant and persist until the end-stage of the disease, enabling paralyzed patients to communicate through ocular tracking devices. MNs of the Onuf’s nucleus in the sacral spinal cord, that innervate sphincter muscles and control urogenital functions, are also spared throughout the disease. There is also a differential vulnerability among MNs that are intermingled throughout the spinal cord, that directly relate to their physiological properties. Here, fast-twitch fatigable (FF) MNs, which innervate type IIb muscle fibers, are affected early, before onset of clinical symptoms, while slow-twitch (S) MNs, that innervate type I muscle fibers, remain longer throughout the disease progression. The resilience of particular MN subpopulations has been attributed to intrinsic determinants and multiple studies have demonstrated their unique gene regulation and protein content in health and in response to disease. Identified factors within resilient MNs have been utilized to protect more vulnerable cells. Selective vulnerability may also, in part, be driven by non-cell autonomous processes and the unique surroundings and constantly changing environment close to particular MN groups. In this article, we review in detail the cell intrinsic properties of resilient and vulnerable MN groups, as well as multiple additional cell types involved in disease initiation and progression and explain how these may contribute to the selective MN resilience and vulnerability in ALS.
Collapse
|
9
|
Thomas C, Wurzer L, Malle E, Ristow M, Madreiter-Sokolowski CT. Modulation of Reactive Oxygen Species Homeostasis as a Pleiotropic Effect of Commonly Used Drugs. FRONTIERS IN AGING 2022; 3:905261. [PMID: 35821802 PMCID: PMC9261327 DOI: 10.3389/fragi.2022.905261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/18/2022] [Indexed: 01/17/2023]
Abstract
Age-associated diseases represent a growing burden for global health systems in our aging society. Consequently, we urgently need innovative strategies to counteract these pathological disturbances. Overwhelming generation of reactive oxygen species (ROS) is associated with age-related damage, leading to cellular dysfunction and, ultimately, diseases. However, low-dose ROS act as crucial signaling molecules and inducers of a vaccination-like response to boost antioxidant defense mechanisms, known as mitohormesis. Consequently, modulation of ROS homeostasis by nutrition, exercise, or pharmacological interventions is critical in aging. Numerous nutrients and approved drugs exhibit pleiotropic effects on ROS homeostasis. In the current review, we provide an overview of drugs affecting ROS generation and ROS detoxification and evaluate the potential of these effects to counteract the development and progression of age-related diseases. In case of inflammation-related dysfunctions, cardiovascular- and neurodegenerative diseases, it might be essential to strengthen antioxidant defense mechanisms in advance by low ROS level rises to boost the individual ROS defense mechanisms. In contrast, induction of overwhelming ROS production might be helpful to fight pathogens and kill cancer cells. While we outline the potential of ROS manipulation to counteract age-related dysfunction and diseases, we also raise the question about the proper intervention time and dosage.
Collapse
Affiliation(s)
- Carolin Thomas
- Laboratory of Energy Metabolism Institute of Translational Medicine Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Lia Wurzer
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Ernst Malle
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Michael Ristow
- Laboratory of Energy Metabolism Institute of Translational Medicine Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | | |
Collapse
|
10
|
Lee MH, Lee JH, Kim WJ, Kim SH, Kim SY, Kim HS, Kim TJ. Linoleic Acid Attenuates Denervation-Induced Skeletal Muscle Atrophy in Mice through Regulation of Reactive Oxygen Species-Dependent Signaling. Int J Mol Sci 2022; 23:4778. [PMID: 35563168 PMCID: PMC9105847 DOI: 10.3390/ijms23094778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/17/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Muscle atrophy is a major muscle disease, the symptoms of which include decreased muscle volume leading to insufficient muscular support during exercise. One cause of muscle atrophy is the induction of oxidative stress by reactive oxygen species (ROS). This study aimed to identify the antioxidant mechanism of linoleic acid (LA) in muscle atrophy caused by oxidative stress. H2O2 has been used to induce oxidative stress in myoblasts in vitro. C2C12 myoblasts treated with H2O2 exhibited decreased viability and increased ROS synthesis. However, with LA treatment, the cells tended to recover from oxidative effects similar to those of the control groups. At the molecular level, the expression of superoxide dismutase 1 (SOD1), Bax, heat shock protein 70 (HSP70), and phosphorylated forkhead box protein O1 was increased by oxidative stress, causing apoptosis. LA treatment suppressed these changes. In addition, the expression of MuRF1 and Atrogin-1/MAFbx mRNA increased under oxidative stress but not in the LA-treated group. Sciatic denervation of C57BL/6 mice manifested as atrophy of the skeletal muscle in micro-computed tomography (micro-CT). The protein expression levels of SOD1, HSP70, and MuRF1 did not differ between the atrophied muscle tissues and C2C12 myoblasts under oxidative stress. With LA treatment, muscle atrophy recovered and protein expression was restored to levels similar to those in the control. Therefore, this study suggests that LA may be a candidate substance for preventing muscle atrophy.
Collapse
Affiliation(s)
- Myung-Hun Lee
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Korea; (M.-H.L.); (J.-H.L.); (W.-J.K.); (S.H.K.); (S.-Y.K.)
| | - Jin-Ho Lee
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Korea; (M.-H.L.); (J.-H.L.); (W.-J.K.); (S.H.K.); (S.-Y.K.)
| | - Wan-Joong Kim
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Korea; (M.-H.L.); (J.-H.L.); (W.-J.K.); (S.H.K.); (S.-Y.K.)
| | - Seo Ho Kim
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Korea; (M.-H.L.); (J.-H.L.); (W.-J.K.); (S.H.K.); (S.-Y.K.)
| | - Sun-Young Kim
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Korea; (M.-H.L.); (J.-H.L.); (W.-J.K.); (S.H.K.); (S.-Y.K.)
| | - Han Sung Kim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Korea;
| | - Tack-Joong Kim
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Korea; (M.-H.L.); (J.-H.L.); (W.-J.K.); (S.H.K.); (S.-Y.K.)
- Research & Development Center, Doctor TJ Co., Ltd., Wonju 26493, Korea
| |
Collapse
|
11
|
Oxidative Stress in the Brain: Basic Concepts and Treatment Strategies in Stroke. Antioxidants (Basel) 2021; 10:antiox10121886. [PMID: 34942989 PMCID: PMC8698986 DOI: 10.3390/antiox10121886] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/31/2022] Open
Abstract
The production of free radicals is inevitably associated with metabolism and other enzymatic processes. Under physiological conditions, however, free radicals are effectively eliminated by numerous antioxidant mechanisms. Oxidative stress occurs due to an imbalance between the production and elimination of free radicals under pathological conditions. Oxidative stress is also associated with ageing. The brain is prone to oxidative damage because of its high metabolic activity and high vulnerability to ischemic damage. Oxidative stress, thus, plays a major role in the pathophysiology of both acute and chronic pathologies in the brain, such as stroke, traumatic brain injury or neurodegenerative diseases. The goal of this article is to summarize the basic concepts of oxidative stress and its significance in brain pathologies, as well as to discuss treatment strategies for dealing with oxidative stress in stroke.
Collapse
|
12
|
Wiklund L, Sharma A, Patnaik R, Muresanu DF, Sahib S, Tian ZR, Castellani RJ, Nozari A, Lafuente JV, Sharma HS. Upregulation of hemeoxygenase enzymes HO-1 and HO-2 following ischemia-reperfusion injury in connection with experimental cardiac arrest and cardiopulmonary resuscitation: Neuroprotective effects of methylene blue. PROGRESS IN BRAIN RESEARCH 2021; 265:317-375. [PMID: 34560924 DOI: 10.1016/bs.pbr.2021.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Oxidative stress plays an important role in neuronal injuries after cardiac arrest. Increased production of carbon monoxide (CO) by the enzyme hemeoxygenase (HO) in the brain is induced by the oxidative stress. HO is present in the CNS in two isoforms, namely the inducible HO-1 and the constitutive HO-2. Elevated levels of serum HO-1 occurs in cardiac arrest patients and upregulation of HO-1 in cardiac arrest is seen in the neurons. However, the role of HO-2 in cardiac arrest is not well known. In this review involvement of HO-1 and HO-2 enzymes in the porcine brain following cardiac arrest and resuscitation is discussed based on our own observations. In addition, neuroprotective role of methylene blue- an antioxidant dye on alterations in HO under in cardiac arrest is also presented. The biochemical findings of HO-1 and HO-2 enzymes using ELISA were further confirmed by immunocytochemical approach to localize selective regional alterations in cardiac arrest. Our observations are the first to show that cardiac arrest followed by successful cardiopulmonary resuscitation results in significant alteration in cerebral concentrations of HO-1 and HO-2 levels indicating a prominent role of CO in brain pathology and methylene blue during CPR followed by induced hypothermia leading to superior neuroprotection after return of spontaneous circulation (ROSC), not reported earlier.
Collapse
Affiliation(s)
- Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
13
|
Zhang X, Wada S, Zhang Y, Chen D, Deng XH, Rodeo SA. Assessment of Mitochondrial Dysfunction in a Murine Model of Supraspinatus Tendinopathy. J Bone Joint Surg Am 2021; 103:174-183. [PMID: 32941310 DOI: 10.2106/jbjs.20.00385] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND The purpose of this study was to assess mitochondrial dysfunction in a murine model of supraspinatus tendinopathy. METHODS Eighty-four mice (168 limbs) were included in the study. Supraspinatus tendinopathy was induced by inserting a microsurgical clip in the subacromial space of 63 mice bilaterally (126 limbs). Forty-two of these limbs were harvested at 4 weeks postoperatively, 42 underwent clip removal at 4 weeks after the initial procedure and were harvested at 2 weeks, and 42 underwent clip removal at 4 weeks and were harvested at 4 weeks. Forty-two limbs in the remaining 21 mice did not undergo surgical intervention and were utilized as the control group. Outcomes included biomechanical, histological, gene expression, superoxide dismutase (SOD) activity, and transmission electron microscopy (TEM) analyses. RESULTS Radiographs confirmed stable clip position in the subacromial space at 4 weeks. Biomechanical testing demonstrated a 60% decrease in failure force of the supraspinatus tendons at 4 weeks compared with the control group. The failure force gradually increased at 2 and 4 weeks after clip removal. Histological analysis demonstrated inflammation surrounding the tendon with higher modified Bonar scores at 4 weeks after clip placement followed by gradual improvement following clip removal. The expression of mitochondrial-related genes was decreased at 4 weeks after clip placement and then significantly increased after clip removal. SOD activity decreased significantly at 4 weeks after clip placement but increased following clip removal. TEM images demonstrated alterations in morphology and the number of mitochondria and cristae at 4 weeks after clip placement with improvement after clip removal. CONCLUSIONS Mitochondrial dysfunction appears to be associated with the development of tendinopathy. CLINICAL RELEVANCE Mitochondrial protection may offer a potential strategy for delaying the development of tendinopathy and promoting tendon healing.
Collapse
Affiliation(s)
- Xueying Zhang
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY.,Department of Sports Medicine & Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Susumu Wada
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY
| | - Ying Zhang
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY
| | - Daoyun Chen
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY
| | - Xiang-Hua Deng
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY
| | - Scott A Rodeo
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY
| |
Collapse
|
14
|
Khachatryan Z, Haunschild J, von Aspern K, Borger MA, Etz CD. Ischemic spinal cord injury - experimental evidence and evolution of protective measures. Ann Thorac Surg 2021; 113:1692-1702. [PMID: 33434541 DOI: 10.1016/j.athoracsur.2020.12.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 11/19/2020] [Accepted: 12/22/2020] [Indexed: 11/01/2022]
Abstract
BACKGROUND Paraplegia remains one of the most devastating complications of descending and thoracoabdominal aortic repair. The aim of this review is to outline the current state of art in the rapidly developing field of spinal cord injury (SCI) research. METHODS A review of PubMed and Web of Science databases was performed using the following terms and their combinations: spinal cord, injury, ischemia, ischemia-reperfusion, ischemic spinal cord injury, paraplegia, paraparesis. Articles published before July 2019 were screened and included if considered relevant. RESULTS The review focuses on the topic of SCI and the developments concerning methods of monitoring, diagnostics and prevention of SCI. CONCLUSIONS Translation of novel technologies from bench to bedside and into everyday clinical practice is challenging, however each of the developing areas hold great promise in SCI prevention.
Collapse
Affiliation(s)
- Zara Khachatryan
- University Department for Cardiac Surgery, Leipzig Heart Center, Struempellstrasse 39, 04289 Leipzig, Germany
| | - Josephina Haunschild
- University Department for Cardiac Surgery, Leipzig Heart Center, Struempellstrasse 39, 04289 Leipzig, Germany
| | - Konstantin von Aspern
- University Department for Cardiac Surgery, Leipzig Heart Center, Struempellstrasse 39, 04289 Leipzig, Germany
| | - Michael A Borger
- University Department for Cardiac Surgery, Leipzig Heart Center, Struempellstrasse 39, 04289 Leipzig, Germany
| | - Christian D Etz
- University Department for Cardiac Surgery, Leipzig Heart Center, Struempellstrasse 39, 04289 Leipzig, Germany.
| |
Collapse
|
15
|
Chiot A, Zaïdi S, Iltis C, Ribon M, Berriat F, Schiaffino L, Jolly A, de la Grange P, Mallat M, Bohl D, Millecamps S, Seilhean D, Lobsiger CS, Boillée S. Modifying macrophages at the periphery has the capacity to change microglial reactivity and to extend ALS survival. Nat Neurosci 2020; 23:1339-1351. [PMID: 33077946 DOI: 10.1038/s41593-020-00718-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022]
|
16
|
Abbaszadeh F, Fakhri S, Khan H. Targeting apoptosis and autophagy following spinal cord injury: Therapeutic approaches to polyphenols and candidate phytochemicals. Pharmacol Res 2020; 160:105069. [PMID: 32652198 DOI: 10.1016/j.phrs.2020.105069] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is a neurological disorder associated with the loss of sensory and motor function. Understanding the precise dysregulated signaling pathways, especially apoptosis and autophagy following SCI, is of vital importance in developing innovative therapeutic targets and treatments. The present study lies in the fact that it reveals the precise dysregulated signaling mediators of apoptotic and autophagic pathways following SCI and also examines the effects of polyphenols and other candidate phytochemicals. It provides new insights to develop new treatments for post-SCI complications. Accordingly, a comprehensive review was conducted using electronic databases including, Scopus, Web of Science, PubMed, and Medline, along with the authors' expertise in apoptosis and autophagy as well as their knowledge about the effects of polyphenols and other phytochemicals on SCI pathogenesis. The primary mechanical injury to spinal cord is followed by a secondary cascade of apoptosis and autophagy that play critical roles during SCI. In terms of pharmacological mechanisms, caspases, Bax/Bcl-2, TNF-α, and JAK/STAT in apoptosis along with LC3 and Beclin-1 in autophagy have shown a close interconnection with the inflammatory pathways mainly glutamatergic, PI3K/Akt/mTOR, ERK/MAPK, and other cross-linked mediators. Besides, apoptotic pathways have been shown to regulate autophagy mediators and vice versa. Prevailing evidence has highlighted the importance of modulating these signaling mediators/pathways by polyphenols and other candidate phytochemicals post-SCI. The present review provides dysregulated signaling mediators and therapeutic targets of apoptotic and autophagic pathways following SCI, focusing on the modulatory effects of polyphenols and other potential phytochemical candidates.
Collapse
Affiliation(s)
- Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
17
|
Qian Z, Chang J, Jiang F, Ge D, Yang L, Li Y, Chen H, Cao X. Excess administration of miR-340-5p ameliorates spinal cord injury-induced neuroinflammation and apoptosis by modulating the P38-MAPK signaling pathway. Brain Behav Immun 2020; 87:531-542. [PMID: 32014577 DOI: 10.1016/j.bbi.2020.01.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) is a destructive polyneuropathy that can result in loss of sensorimotor function and sphincter dysfunction, and even death in critical situations. MicroRNAs (miRs) are a series of non-coding RNA molecules that are involved in transcriptional regulation. Previous studies have demonstrated that modulation of multiple miRs is involved in neurological recovery after SCI. However, the functions of miR-340-5p in SCI remain uncertain. Therefore, we probed the therapeutic effect and mechanism of miR-340-5p in microglia in vitro and in vivo in SCI rats. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting were employed to examine the alterations in miR-340-5p and P38 levels in SCI rats. miR-340-5p targets in microglia were ascertained using luciferase reporter assays, immunofluorescence analyses, and western blotting. We also established an SCI model and administered miR-340-5p. The effects of miR-340-5p on the amelioration of inflammation, oxidative stress, and apoptosis following SCI were assessed using immunofluorescence, immunohistochemistry, and histological analyses. Finally, locomotor function recovery was determined using the Basso, Beattie, Bresnahan rating scale. In our study, the expression profiles and luciferase assay results clarified that P38 was a target of miR-340-5p, which was associated with activation of the P38-MAPK signaling pathway. Elevation of miR-340-5p decreased P38 expression, subsequently inhibiting the inflammatory reaction. SCI-induced secondary neuroinflammation was relieved under miR-340-5p treatment. Moreover, by controlling neuroinflammation, the increased levels of miR-340-5p might counter oxidative stress and reduce the degree of apoptosis. We also observed decreasing gliosis and glial scar formation and increasing neurotrophin expression at the chronic stage of SCI. Together, these potential effects of miR-340-5p treatment ultimately improved locomotor function recovery in SCI rats.
Collapse
Affiliation(s)
- Zhanyang Qian
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Chang
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fan Jiang
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dawei Ge
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lei Yang
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - You Li
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongtao Chen
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Xiaojian Cao
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
18
|
Abstract
Traumatic brain injury (TBI) is the leading cause of morbidity and mortality worldwide. Although TBI leads to mechanical damage during initial impact, secondary damage also occurs as results from delayed neurochemical process and intracellular signaling pathways. Accumulated animal and human studies demonstrated that apoptotic mechanism contributes to overall pathology of TBI. Apoptotic cell death has been identified within contusional brain lesion at acute phase of TBI and in region remote from the site directly injured in days to weeks after trauma. TBI is also dynamic conditions that cause neuronal decline overtime and is likely due to neurodegenerative mechanisms years after trauma. Current studies have even suggested association of neuronal damage through apoptotic pathway with mild TBI, which contributes chronic persistent neurological symptoms and cognitive deficits. Thus, a better understanding of the acute and chronic consequences of apoptosis following TBI is required. The purpose of this review is to describe (1) neuronal apoptotic pathway following TBI, (2) contribution of apoptosis to acute and chronic phase of TBI, and (3) current treatment targeting on apoptotic pathway.
Collapse
Affiliation(s)
- Yosuke Akamatsu
- Division of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Iwate Medical University, Morioka, Japan
| | - Khalid A Hanafy
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
- Division of Neurointensive Care, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle Rm 639, Boston, MA, 02115, USA.
| |
Collapse
|
19
|
Metformin Promotes Axon Regeneration after Spinal Cord Injury through Inhibiting Oxidative Stress and Stabilizing Microtubule. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9741369. [PMID: 31998447 PMCID: PMC6969994 DOI: 10.1155/2020/9741369] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022]
Abstract
Spinal cord injury (SCI) is a devastating disease that may lead to lifelong disability. Thus, seeking for valid drugs that are beneficial to promoting axonal regrowth and elongation after SCI has gained wide attention. Metformin, a glucose-lowering agent, has been demonstrated to play roles in various central nervous system (CNS) disorders. However, the potential protective effect of metformin on nerve regeneration after SCI is still unclear. In this study, we found that the administration of metformin improved functional recovery after SCI through reducing neuronal cell apoptosis and repairing neurites by stabilizing microtubules via PI3K/Akt signaling pathway. Inhibiting the PI3K/Akt pathway with LY294002 partly reversed the therapeutic effects of metformin on SCI in vitro and vivo. Furthermore, metformin treatment weakened the excessive activation of oxidative stress and improved the mitochondrial function by activating the nuclear factor erythroid-related factor 2 (Nrf2) transcription and binding to the antioxidant response element (ARE). Moreover, treatment with Nrf2 inhibitor ML385 partially abolished its antioxidant effect. We also found that the Nrf2 transcription was partially reduced by LY294002 in vitro. Taken together, these results revealed that the role of metformin in nerve regeneration after SCI was probably related to stabilization of microtubules and inhibition of the excessive activation of Akt-mediated Nrf2/ARE pathway-regulated oxidative stress and mitochondrial dysfunction. Overall, our present study suggests that metformin administration may provide a potential therapy for SCI.
Collapse
|
20
|
Im JH, Yeo IJ, Park PH, Choi DY, Han SB, Yun J, Hong JT. Deletion of Chitinase-3-like 1 accelerates stroke development through enhancement of Neuroinflammation by STAT6-dependent M2 microglial inactivation in Chitinase-3-like 1 knockout mice. Exp Neurol 2020; 323:113082. [PMID: 31669069 DOI: 10.1016/j.expneurol.2019.113082] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/02/2019] [Accepted: 10/12/2019] [Indexed: 11/18/2022]
Abstract
Chitinase 3-like 1 (Chi3L1) plays a major role in the pathogenesis of inflammatory diseases. We investigated the effect of Chi3L1 knockout on stroke development. Ischemia/reperfusion was induced by middle cerebral artery occlusion (MCAO) in Chi3L1 knockout and wildtype mice. Significantly increased infarct volume and decreased neurological deficit scores at 24 h after ischemia/reperfusion were found in Chi3L1 knockout mice compared to wildtype mice. Moreover, ischemic neuronal cell death was increased in Chi3L1 knockout mice through increased oxidative stress and release of IL-6 and IL-1β but IL-10 and IL-4 were reduced. Furthermore, expression of inflammation-related proteins (iNOS, COX-2, Iba-1, and GFAP) was significantly increased in Chi3L1 knockout mice compared to wildtype. In microglia isolated from MCAO-injured Chi3L1 knockout mice, expression of M1 markers (iNOS, CD86, IL-1β, and IL-6) was increased and M2 markers (Arg1, Mrc1, IL-10, and IL-4Ra) was decreased. In BV-2 cells, knockdown of Chi3L1 increased TNF-α- and INF-γ-induced expression of iNOS, COX-2, and Iba-1, but decreased the expression of Arg1, MRC1, and IL-4 receptor-alpha (IL-4Rα). Expression of IL-4Rα, an important factor of M2 polarization, and its downstream signals p-JAK1, p-JAK3, and p-STAT6, was much reduced in the knockout mice. Additionally, in BV-2 cells, knockdown of Chi3L1 by siRNA Chi3L1 decreased rhTNF-α- and INF-γ-induced expression of IL-4Rα, p-JAK1, p-JAK3, and p-STAT6. Furthermore, treatment with AS1517499 abolished Chi3L1 knockdown-induced reduced IL-4Rα and Arg1 but not CD86 expression. Our results indicate that deletion of Chi3L1 accelerates stroke development through enhancement of neuroinflammation by markedly decreasing STAT6-dependent M2 macrophage polarization.
Collapse
Affiliation(s)
- Jun Hyung Im
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-21, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - In Jun Yeo
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-21, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Pil Hoon Park
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Dong Young Choi
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-21, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-21, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-21, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea.
| |
Collapse
|
21
|
Aspirin suppresses neuronal apoptosis, reduces tissue inflammation, and restrains astrocyte activation by activating the Nrf2/HO-1 signaling pathway. Neuroreport 2019; 29:524-531. [PMID: 29381509 DOI: 10.1097/wnr.0000000000000969] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element signaling pathway plays a substantial role in preventing oxidative stress-related diseases. Aspirin has been shown to exert several pharmacological effects by inducing the expression of the heme oxygenase-1 (HO-1) protein. However, the effects of aspirin on spinal cord injury (SCI) have rarely been studied. Therefore, we sought to investigate the neuroprotective effects of aspirin after SCI. We employed a spinal cord contusion model in Sprague-Dawley rats, and aspirin was administered intraperitoneally for 7 days. Nissl staining showed that the aspirin treatment significantly reduced the loss of motor neurons after SCI compared with vehicle-treated animals. The expression of Nrf2, quinine oxidoreductase 1, and HO-1 proteins was increased in aspirin-treated animals after SCI compared with the vehicle group. In addition, aspirin simultaneously decreased the expression of inflammation-related proteins, such as tumor necrosis factor-α and interleukin-6 after SCI. Moreover, the ratio of apoptotic neurons in the anterior horn and the levels of the apoptosis-related proteins caspase-3, cleaved caspase-3, and Bax were significantly decreased in the aspirin group compared with the vehicle group. Immunofluorescence staining was used to detect the colocalization of NeuN and HO-1, and the results showed that aspirin significantly increased expression of the HO-1 protein in neurons. In addition, western blots and immunofluorescence staining showed aspirin restrained astrocyte activation. In conclusion, aspirin induces neuroprotective effects by inhibiting astrocyte activation and apoptosis after SCI through the activation of the Nrf2/HO-1 signaling pathway.
Collapse
|
22
|
Zhao XY, Lu MH, Yuan DJ, Xu DE, Yao PP, Ji WL, Chen H, Liu WL, Yan CX, Xia YY, Li S, Tao J, Ma QH. Mitochondrial Dysfunction in Neural Injury. Front Neurosci 2019; 13:30. [PMID: 30778282 PMCID: PMC6369908 DOI: 10.3389/fnins.2019.00030] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/14/2019] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are the double membrane organelles providing most of the energy for cells. In addition, mitochondria also play essential roles in various cellular biological processes such as calcium signaling, apoptosis, ROS generation, cell growth, and cell cycle. Mitochondrial dysfunction is observed in various neurological disorders which harbor acute and chronic neural injury such as neurodegenerative diseases and ischemia, hypoxia-induced brain injury. In this review, we describe how mitochondrial dysfunction contributes to the pathogenesis of neurological disorders which manifest chronic or acute neural injury.
Collapse
Affiliation(s)
- Xiu-Yun Zhao
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, China
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Mei-Hong Lu
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, China
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - De-Juan Yuan
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, China
- Department of Physiology, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
| | - De-En Xu
- Wuxi No. 2 People’s Hospital, Wuxi, China
| | - Pei-Pei Yao
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, China
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wen-Li Ji
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, China
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Chen
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, China
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wen-Long Liu
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, China
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chen-Xiao Yan
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, China
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi-Yuan Xia
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, China
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shao Li
- Department of Physiology, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
| | - Jin Tao
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, China
- Department of Physiology and Neurobiology and Centre for Ion Channelopathy, Medical College of Soochow University, Suzhou, China
| | - Quan-Hong Ma
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, China
| |
Collapse
|
23
|
Zheng G, Zhan Y, Wang H, Luo Z, Zheng F, Zhou Y, Wu Y, Wang S, Wu Y, Xiang G, Xu C, Xu H, Tian N, Zhang X. Carbon monoxide releasing molecule-3 alleviates neuron death after spinal cord injury via inflammasome regulation. EBioMedicine 2019; 40:643-654. [PMID: 30612943 PMCID: PMC6412161 DOI: 10.1016/j.ebiom.2018.12.059] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/29/2018] [Accepted: 12/29/2018] [Indexed: 12/23/2022] Open
Abstract
Background Genetic overexpression or pharmacological activation of heme oxygenase (HO) are identified as potential therapeutic target for spinal cord injury (SCI); however, the role of carbon monoxide (CO), which is a major product of haem degenerated by HO, in SCI remains unknown. Applying hemin or chemicals which may regulate HO expression or activity to increase CO production are inadequate to elaborate the direct role of CO. Here, we assessed the effect of CO releasing molecule-3 (CORM-3), the classical donor of CO, in SCI and explained its possible protective mechanism. Methods Rat SCI model was performed with a vascular clip (30 g) compressing at T9 vertebral level for 1 min and CO was delivered immediately after SCI by CORM-3. The neurological deficits and neuron survival were assessed. Inflammasome and inositol-requiring enzyme 1 (IRE1) pathway were measured by western blot and immunofluorescence. For in vitro study, oxygen glucose deprivation (OGD) simulated the SCI-inflammasome change in cultured the primary neurons. Findings CORM-3 suppressed inflammasome signaling and pyroptosis occurrence, which consequently alleviated neuron death and improved motor functional recovery following SCI. As a pivotal sensor involving in endoplasmic reticulum stress-medicated inflammasome signaling, IRE1 and its downstream X-box binding protein 1 (XBP1) were activated in SCI tissues as well as in OGD neurons; while inhibition of IRE1 by STF-083010 in SCI rats or by si-RNA in OGD neurons suppressed inflammasome signaling and pyroptosis. Interestingly, the SCI/OGD-stimulated IRE1 activation was attenuated by CORM-3 treatment. Interpretations CO may alleviate neuron death and improve motor functional recovery in SCI through IRE1 regulation, and administration of CO could be a promising therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Gang Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou 325000, Zhejiang Province, China
| | - Yu Zhan
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Haoli Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou 325000, Zhejiang Province, China
| | - Zucheng Luo
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou 325000, Zhejiang Province, China
| | - Fanghong Zheng
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Sheng Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Yan Wu
- Department of Orthopaedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 310058 Zhejiang Province, China
| | - Guangheng Xiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou 325000, Zhejiang Province, China
| | - Cong Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou 325000, Zhejiang Province, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China; Chinese Orthopaedic Regenerative Medicine Society, Hangzhou 310058, Zhejiang Province, China.
| |
Collapse
|
24
|
Zhao Q, Wang X, Chen A, Cheng X, Zhang G, Sun J, Zhao Y, Huang Y, Zhu Y. Rhein protects against cerebral ischemic‑/reperfusion‑induced oxidative stress and apoptosis in rats. Int J Mol Med 2018; 41:2802-2812. [PMID: 29436613 PMCID: PMC5846655 DOI: 10.3892/ijmm.2018.3488] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 02/08/2018] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to investigate the protective effects of rhein on cerebral ischemic/reperfusion (I/R) injury in rats. The present study focused on the effect of rhein on oxidative stress and apoptotic factors, which are considered to serve an important role in the onset of I/R injury. Sprague-Dawley rats were subjected to middle cerebral artery occlusion. Neurological functional scores (NFSs) were evaluated according to the Zea Longa's score criteria and the area of brain infarct was determined by triphenyltetrazolium chloride staining. The morphology of the nerve cells in the cortex was observed following hematoxylin and eosin staining. In addition, levels of oxidative stress were assessed by measuring the levels of superoxide dismutase (SOD), glutathione-peroxidase (GSH-Px), catalase (CAT) and malondialdehyde (MDA). Levels of B-cell lymphoma-2 (Bcl-2), apoptosis regulator Bax (BAX), caspase-9, caspase-3 and cleaved caspase-3 expression were analyzed using western blot analysis. Levels of caspase-9 and caspase-3 mRNA expression were obtained using reverse transcription-quantitative polymerase chain reaction. The results revealed that treatment with 50 or 100 mg/kg rhein significantly improved the NFS and markedly attenuated the area of infarction. Rhein also significantly reduced the content of MDA and significantly increased SOD, GSH-Px and CAT activity. Western blot analysis indicated that rhein significantly decreased the expression of BAX and enhanced the expression of Bcl-2. Compared with the I/R group, levels of caspase-9, caspase-3 and cleaved caspase-3 protein expression were significantly decreased in the rhein treatment groups. Additionally, rhein treatment significantly reduced levels of caspase-9 and caspase-3 mRNA expression. These results suggest that rhein exhibits protective effects during cerebral I/R injury and its underlying mechanism of action may involve the inhibition of oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Qipeng Zhao
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Xiaobo Wang
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Ailing Chen
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Xiuli Cheng
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Guoxin Zhang
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jianmin Sun
- College of Basic Medicine, Yinchuan, Ningxia 750004, P.R. China
| | - Yunsheng Zhao
- Ningxia Hui Modern Medicine Engineering Research Center, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yu Huang
- Ningxia Hui Modern Medicine Engineering Research Center, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yafei Zhu
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
25
|
Chen J, Wang Z, Mao Y, Zheng Z, Chen Y, Khor S, Shi K, He Z, Li J, Gong F, Liu Y, Hu A, Xiao J, Wang X. Liraglutide activates autophagy via GLP-1R to improve functional recovery after spinal cord injury. Oncotarget 2017; 8:85949-85968. [PMID: 29156769 PMCID: PMC5689659 DOI: 10.18632/oncotarget.20791] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/13/2017] [Indexed: 12/18/2022] Open
Abstract
Therapeutics used to treat central nervous system (CNS) injury are designed to promote axonal regeneration and inhibit cell death. Previous studies have shown that liraglutide exerts potent neuroprotective effects after brain injury. However, little is known if liraglutide treatment has neuroprotective effects after spinal cord injury (SCI). This study explores the neuroprotective effects of liraglutide and associated underlying mechanisms. Our results showed that liraglutide could improve recovery after injury by decreasing apoptosis as well as increasing microtubulin acetylation, and autophagy. Autophagy inhibition with 3-methyladenine (3-MA) partially reversed the preservation of spinal cord tissue and decreased microtubule acetylation and polymerization. Additionally, siRNA knockdown of GLP-1R suppressed autophagy and reversed mTOR inhibition induced by liraglutide in vitro, indicating that GLP-1R regulates autophagic flux. GLP-1R knockdown ameliorated the mTOR inhibition and autophagy induction seen with liraglutide treatment in PC12 cells under H2O2 stimulation. Taken together, our study demonstrated that liraglutide could reduce apoptosis, improve functional recovery, and increase microtubule acetylation via autophagy stimulation after SCI. GLP-1R was associated with both the induction of autophagy and suppression of apoptosis in neuronal cultures.
Collapse
Affiliation(s)
- Jian Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhouguang Wang
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuqin Mao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zengming Zheng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yu Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sinan Khor
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, U.S.A
| | - Kesi Shi
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zili He
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiawei Li
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fanghua Gong
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanlong Liu
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Aiping Hu
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Xiao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangyang Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
26
|
Kartha S, Yan L, Weisshaar CL, Ita ME, Shuvaev VV, Muzykantov VR, Tsourkas A, Winkelstein BA, Cheng Z. Superoxide Dismutase-Loaded Porous Polymersomes as Highly Efficient Antioxidants for Treating Neuropathic Pain. Adv Healthc Mater 2017; 6:10.1002/adhm.201700500. [PMID: 28671302 PMCID: PMC5591629 DOI: 10.1002/adhm.201700500] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/15/2017] [Indexed: 01/27/2023]
Abstract
A highly efficient antioxidant is developed by encapsulating superoxide dismutase (SOD) within the aqueous interior of porous polymersomes. The porous polymersomes provide a permeable membrane that allows free superoxide radicals to pass into the aqueous interior and interact with the encapsulated antioxidant enzyme SOD. In vivo studies in the rat demonstrate that administration of SOD-encapsulated porous polymersomes can prevent neuropathic pain after nerve root compression more effectively than treatment with free antioxidant enzyme alone.
Collapse
Affiliation(s)
- Sonia Kartha
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, PA, 19104, USA
| | - Lesan Yan
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, PA, 19104, USA
| | - Christine L Weisshaar
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, PA, 19104, USA
| | - Meagan E Ita
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, PA, 19104, USA
| | - Vladimir V Shuvaev
- Department of Systems Pharmacology and Translational Therapeutics, Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, PA, 19104, USA
| | - Beth A Winkelstein
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, PA, 19104, USA
| | - Zhiliang Cheng
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, PA, 19104, USA
| |
Collapse
|
27
|
Zhou Z, Liu C, Chen S, Zhao H, Zhou K, Wang W, Yuan Y, Li Z, Guo Y, Shen Z, Mei X. Activation of the Nrf2/ARE signaling pathway by probucol contributes to inhibiting inflammation and neuronal apoptosis after spinal cord injury. Oncotarget 2017; 8:52078-52093. [PMID: 28881715 PMCID: PMC5581014 DOI: 10.18632/oncotarget.19107] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 06/28/2017] [Indexed: 12/11/2022] Open
Abstract
The nuclear erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway plays an essential role in the cellular antioxidant and anti-inflammatory responses. Spinal cord injury (SCI) results in a massive release of inflammatory factors and free radicals, which seriously compromise nerve recovery and axon regeneration. In this study, we examined the efficacy of probucol on anti-inflammatory responses and functional recovery after SCI by activating the Nrf2/ARE signaling pathway. We also investigated the mechanism by which inflammation is inhibited in this process. We found that treatment of injured rats with probucol significantly increased levels of Nrf2, heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase-1 (NQO1), while levels of inflammatory cytokines, interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were decreased. This was associated with a reduction in neural cell apoptosis and promotion of nerve function recovery. These results demonstrate that the neuroprotective effects of probucol after SCI are mediated by activation of the Nrf2/ARE signaling pathway. These findings indicate that the anti-inflammatory effects of probucol represent a viable treatment for improving functional recovery following SCI.
Collapse
Affiliation(s)
- Zipeng Zhou
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Chang Liu
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Shurui Chen
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Haosen Zhao
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Kang Zhou
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Wei Wang
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yajiang Yuan
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zhuo Li
- Department of Orthopedics, Second Hospital of Jinzhou, Jinzhou, China
| | - Yue Guo
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zhaoliang Shen
- Department of Orthopedics, Second Hospital of Jinzhou, Jinzhou, China
| | - Xifan Mei
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
28
|
Lee JY, Choi HY, Baik HH, Ju BG, Kim WK, Yune TY. Cordycepin-enriched WIB-801C from Cordyceps militaris improves functional recovery by attenuating blood-spinal cord barrier disruption after spinal cord injury. JOURNAL OF ETHNOPHARMACOLOGY 2017; 203:90-100. [PMID: 28363523 DOI: 10.1016/j.jep.2017.03.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/07/2017] [Accepted: 03/25/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cordyceps militaris is an ingredient of traditional Chinese medicine and have been widely used for inflammatory diseases and cancer. Cordycepin is one of the major bioactive components of Cordyceps militaris, and has been known to have anti-inflammatory and anti-oxidant effects. AIM OF THIS STUDY In the present study, we examined whether WIB-801C, a standardized and cordycepin-enriched extract of caterpillar fungus (Cordyceps militaris), would attenuate blood-spinal cord barrier (BSCB) disruption by inhibiting matrix metalloprotease (MMP)-9 activity, leading to improvement of functional outcomes after spinal cord injury (SCI). MATERIALS AND METHODS Male Sprague-Dawley rats were subjected to contusive SCI using a New York University (NYU) impactor, and WIB-801C (50mg/kg) was administered at 2h and 8h after injury orally and further treated once a day for indicated time points. BSCB disruption, MMP-9 activity, blood infiltration, inflammation, neuronal apoptosis, axonal loss, demyelination, and neurological deficit were evaluated. RESULTS We found that WIB-801C significantly attenuated BSCB disruption by inhibiting MMP-9 expression and activation after injury. The infiltration of neutrophils at 1 d and macrophage at 5 d after SCI was also ameliorated by WIB-801C as compared with vehicle control. In addition, the expression of inflammatory cytokines and mediators such as Tnf-α, IL-1β, IL-6, Cox-2, and inos as well as chemokines such as Gro-α and Mip-2α was significantly inhibited by WIB-801C. Furthermore, WIB-801C inhibits p38MAPK activation and proNGF production in microglia after injury. These events eventually led to the inhibition of apoptotic cell death of neurons and oligodendrocytes, improved functional recovery and attenuated demyelination and axon loss after SCI. CONCLUSION Our results suggest that WIB-801C can be used as a therapeutic agent after SCI by attenuating BSCB disruption followed inflammation.
Collapse
Affiliation(s)
- Jee Youn Lee
- Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Hye Young Choi
- Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Hyung Hwan Baik
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Bong G Ju
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea.
| | - Won-Ki Kim
- Department of Neuroscience, College of Medicine, Korea University, Seoul 02841, Republic of Korea.
| | - Tae Young Yune
- Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
29
|
Abstract
Ischaemic heart disease and stroke are vascular events with serious health consequences worldwide. Recent genetic and epigenetic techniques have revealed many genetic determinants of these vascular events and simplified the approaches to research focused on ischaemic heart disease and stroke. The pathogenetic mechanisms of ischaemic heart disease and stroke are complex, with mitochondrial involvement (partially or entirely) recently gaining substantial support. Not only can mitochondrial reactive oxygen species give rise to ischaemic heart disease and stroke by production of oxidised low-density lipoprotein and induction of apoptosis, but the impact on pericytes contributes directly to the pathogenesis. Over the past two decades, publications implicate the causative role of nuclear genes in the development of ischaemic heart disease and stroke, in contrast to the potential role of mitochondrial DNA (mtDNA) in the pathophysiology of the disorders, which is much less understood, although recent studies do demonstrate that the involvement of mitochondria and mtDNA in the development of ischaemic heart disease and stroke is likely to be larger than originally thought, with the novel discovery of links among mitochondria, mtDNA and vascular events. Here we explore the molecular events and mtDNA alterations in relation to the role of mitochondria in ischaemic heart disease and stroke.
Collapse
|
30
|
Maggio DM, Singh A, Iorgulescu JB, Bleicher DH, Ghosh M, Lopez MM, Tuesta LM, Flora G, Dietrich WD, Pearse DD. Identifying the Long-Term Role of Inducible Nitric Oxide Synthase after Contusive Spinal Cord Injury Using a Transgenic Mouse Model. Int J Mol Sci 2017; 18:ijms18020245. [PMID: 28125047 PMCID: PMC5343782 DOI: 10.3390/ijms18020245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/05/2017] [Accepted: 01/15/2017] [Indexed: 02/07/2023] Open
Abstract
Inducible nitric oxide synthase (iNOS) is a potent mediator of oxidative stress during neuroinflammation triggered by neurotrauma or neurodegeneration. We previously demonstrated that acute iNOS inhibition attenuated iNOS levels and promoted neuroprotection and functional recovery after spinal cord injury (SCI). The present study investigated the effects of chronic iNOS ablation after SCI using inos-null mice. iNOS-/- knockout and wild-type (WT) control mice underwent a moderate thoracic (T8) contusive SCI. Locomotor function was assessed weekly, using the Basso Mouse Scale (BMS), and at the endpoint (six weeks), by footprint analysis. At the endpoint, the volume of preserved white and gray matter, as well as the number of dorsal column axons and perilesional blood vessels rostral to the injury, were quantified. At weeks two and three after SCI, iNOS-/- mice exhibited a significant locomotor improvement compared to WT controls, although a sustained improvement was not observed during later weeks. At the endpoint, iNOS-/- mice showed significantly less preserved white and gray matter, as well as fewer dorsal column axons and perilesional blood vessels, compared to WT controls. While short-term antagonism of iNOS provides histological and functional benefits, its long-term ablation after SCI may be deleterious, blocking protective or reparative processes important for angiogenesis and tissue preservation.
Collapse
Affiliation(s)
- Dominic M Maggio
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Neurological Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institute of Heath, Bethesda, MD 20824, USA.
| | - Amanpreet Singh
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - J Bryan Iorgulescu
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Drew H Bleicher
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Mousumi Ghosh
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Michael M Lopez
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Luis M Tuesta
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | - Govinder Flora
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - W Dalton Dietrich
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL 33136, USA.
| |
Collapse
|
31
|
Liu J, Jiang X, Zhang Q, Lin S, Zhu J, Zhang Y, Du J, Hu X, Meng W, Zhao Q. Neuroprotective effects of Kukoamine A against cerebral ischemia via antioxidant and inactivation of apoptosis pathway. Neurochem Int 2017; 107:191-197. [PMID: 28088348 DOI: 10.1016/j.neuint.2016.12.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 12/15/2016] [Accepted: 12/21/2016] [Indexed: 01/08/2023]
Abstract
Kukoamine A (KuA) is a bioactive compound, which is known for a hypotensive effect. Recent studies have shown that KuA has anti-oxidative effect and anti-apoptosis stress in vitro. However, its neuroprotective effect in rats with cerebral ischemia is still unclear. In the study, we investigated whether KuA could attenuate cerebral ischemia induced by permanent middle cerebral artery occlusion (pMCAO) in rats. Results revealed that KuA could significantly reduce infarct volume both pre-treatment and post-treatment, and increase corresponding Garcia neurological scores. Acute KuA postconditioning not only significantly reduced cerebral infarct volume, brain water content and improved neurological deficit scores, but also decreased the number of TUNEL-positive cells. Moreover, it markedly increased the activities of Cu/Zn-SOD and Mn-SOD, reduced levels of MDA and H2O2. Increased expressions of caspase-3, cytochrome c and the ratio of Bax/Bcl-2 were significantly alleviated with KuA treatment. These findings demonstrated that KuA was able to protect the brain against injury induced by pMCAO via mitochondria mediated apoptosis signaling pathway.
Collapse
Affiliation(s)
- Jia Liu
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang 110840, China; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaowen Jiang
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qiao Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Sen Lin
- Department of Radiology, General Hospital of Shenyang Military Area Command, Shenyang 110840, China
| | - Jun Zhu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yajun Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiabao Du
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaolong Hu
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Weihong Meng
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang 110840, China
| | - Qingchun Zhao
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang 110840, China.
| |
Collapse
|
32
|
Zhao Q, Cheng X, Wang X, Wang J, Zhu Y, Ma X. Neuroprotective effect and mechanism of Mu-Xiang-You-Fang on cerebral ischemia-reperfusion injury in rats. JOURNAL OF ETHNOPHARMACOLOGY 2016; 192:140-147. [PMID: 27396346 DOI: 10.1016/j.jep.2016.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 04/29/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The present study is to investigate the neuroprotective effect of Mu-Xiang-You-Fang (MXYF), a classic Traditional Chinese Medicine used by Chinese minorities to treat stroke, on cerebral ischemia-reperfusion (I/R) injury and the related signaling pathways. MATERIALS AND METHODS Male Sprague-Dawley rats were divided into 6 groups: sham group, I/R group, nimodipine and MXYF (58, 116 and 232mg/kg respectively) groups. Cerebral ischemia model was induced by middle cerebral artery occlusion for 2h followed by reperfusion for 48h. Neurological functional score was evaluated according to the method of Zea longa's score and the infarct area was determined by 2,3,5-triphenyltetrazolium chloride (TTC) staining at 48h after reperfusion. The protein expression of cytochrome c (cyt-c), Bcl-2, Bax, caspase-9, caspase-3 and caspase-7 were analyzed by western blot and the mRNA expression of Caspase-9, Caspase-3 and Caspase-7 were determined by the reverse transcription-polymerase chain reaction. RESULTS Oral administration of MXYF (116 and 232mg/kg) significantly reduced the neurological functional score and attenuated the cerebral infarct area. Western blot analysis showed that the expression of Bcl-2 is enhanced and Bax expression is inhibited after treatment with MXYF (116 and 232mg/kg), leading to significant increase of the ratio between Bcl-2 and Bax. Furthermore, the protein expression of cyt-c, caspase-9, caspase-3 and caspase-7 was significantly inhibited while the mRNA expression of caspase-9, caspase-3 and caspase-7 but not cyt-c was markedly inhibited in the MXYF (116 and 232mg/kg) treatment groups compared with the I/R group. CONCLUSIONS The above data suggested that MXYF has potential neuroprotective activities by the regulation of apoptotic pathway, MXYF is a promising agent in treatment of stroke.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- Behavior, Animal/drug effects
- Brain/drug effects
- Brain/metabolism
- Brain/pathology
- Brain/physiopathology
- Cytoprotection
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drugs, Chinese Herbal/pharmacology
- Gas Chromatography-Mass Spectrometry
- Gene Expression Regulation
- Infarction, Middle Cerebral Artery/drug therapy
- Infarction, Middle Cerebral Artery/genetics
- Infarction, Middle Cerebral Artery/metabolism
- Infarction, Middle Cerebral Artery/pathology
- Male
- Neuroprotective Agents/isolation & purification
- Neuroprotective Agents/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Reperfusion Injury/genetics
- Reperfusion Injury/metabolism
- Reperfusion Injury/pathology
- Reperfusion Injury/prevention & control
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Qipeng Zhao
- Department of Pharmacology, Ningxia Medical University, Yinchuan, People's Republic of China; Ningxia Hui Medicine Modern Engineering Research Center, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Xiuli Cheng
- Department of Pharmacology, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Xiaobo Wang
- Department of Pharmacology, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Jing Wang
- Department of Pharmacology, Ningxia Medical University, Yinchuan, People's Republic of China; Ningxia Hui Medicine Modern Engineering Research Center, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Yafei Zhu
- Department of Pharmacology, Ningxia Medical University, Yinchuan, People's Republic of China.
| | - Xueqin Ma
- Department of Pharmacology, Ningxia Medical University, Yinchuan, People's Republic of China; Ningxia Hui Medicine Modern Engineering Research Center, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, People's Republic of China.
| |
Collapse
|
33
|
Metformin Improves Functional Recovery After Spinal Cord Injury via Autophagy Flux Stimulation. Mol Neurobiol 2016; 54:3327-3341. [PMID: 27167128 DOI: 10.1007/s12035-016-9895-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 04/21/2016] [Indexed: 12/15/2022]
Abstract
Spinal cord injury (SCI) is a severe neurological disease with few efficacious drugs. Autophagy is a cellular process to confront with stress after SCI and considered to be a therapeutic target of SCI. In this study, we investigated the therapeutic effect of metformin on functional recovery after SCI and its underlying mechanism of autophagy regulation. Using a rat model of traumatic SCI, we found improved function recovery which was paralleled by a reduction of apoptosis after metformin treatment. We further examined autophagy via detecting autophagosomes by transmission electron microscopy and immunofluorescence, as well as autophagy markers by western blot in each groups. The results showed that the number of autophagosomes and expression of autophagy markers such as LC3 and beclin1 were increased in SCI group, while autophagy substrate protein p62 as well as ubiquitinated proteins were found to accumulate in SCI group, indicating an impaired autophagy flux in SCI. But, metformin treatment attenuated the accumulation of p62 and ubiquitinated proteins, suggesting a stimulative effect of autophagy flux by metformin. Blockage of autophagy flux by chloroquine partially abolished the apoptosis inhibition and functional recovery effect of metformin on SCI, which suggested that the protective effect of metformin on SCI was through autophagy flux stimulation. Activation of AMPK as well as inhibition of its downstream mTOR signaling were detected under metformin treatment in vivo and in vitro; inhibition of AMPK signaling by compound C suppressed autophagy flux induced by metformin in vitro, indicating that AMPK signaling was involved in the effect of metformin on autophagy flux regulation. Together, these results illustrated that metformin improved functional recovery effect through autophagy flux stimulation and implied metformin to be a potential drug for SCI therapy.
Collapse
|
34
|
Lei XG, Zhu JH, Cheng WH, Bao Y, Ho YS, Reddi AR, Holmgren A, Arnér ESJ. Paradoxical Roles of Antioxidant Enzymes: Basic Mechanisms and Health Implications. Physiol Rev 2016; 96:307-64. [PMID: 26681794 DOI: 10.1152/physrev.00010.2014] [Citation(s) in RCA: 277] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from aerobic metabolism, as a result of accidental electron leakage as well as regulated enzymatic processes. Because ROS/RNS can induce oxidative injury and act in redox signaling, enzymes metabolizing them will inherently promote either health or disease, depending on the physiological context. It is thus misleading to consider conventionally called antioxidant enzymes to be largely, if not exclusively, health protective. Because such a notion is nonetheless common, we herein attempt to rationalize why this simplistic view should be avoided. First we give an updated summary of physiological phenotypes triggered in mouse models of overexpression or knockout of major antioxidant enzymes. Subsequently, we focus on a series of striking cases that demonstrate "paradoxical" outcomes, i.e., increased fitness upon deletion of antioxidant enzymes or disease triggered by their overexpression. We elaborate mechanisms by which these phenotypes are mediated via chemical, biological, and metabolic interactions of the antioxidant enzymes with their substrates, downstream events, and cellular context. Furthermore, we propose that novel treatments of antioxidant enzyme-related human diseases may be enabled by deliberate targeting of dual roles of the pertaining enzymes. We also discuss the potential of "antioxidant" nutrients and phytochemicals, via regulating the expression or function of antioxidant enzymes, in preventing, treating, or aggravating chronic diseases. We conclude that "paradoxical" roles of antioxidant enzymes in physiology, health, and disease derive from sophisticated molecular mechanisms of redox biology and metabolic homeostasis. Simply viewing antioxidant enzymes as always being beneficial is not only conceptually misleading but also clinically hazardous if such notions underpin medical treatment protocols based on modulation of redox pathways.
Collapse
Affiliation(s)
- Xin Gen Lei
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jian-Hong Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Wen-Hsing Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yongping Bao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ye-Shih Ho
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Amit R Reddi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Arne Holmgren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Elias S J Arnér
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
35
|
Cerebral ischemia-induced mitochondrial changes in a global ischemic rat model by AFM. Biomed Pharmacother 2015; 71:15-20. [DOI: 10.1016/j.biopha.2015.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/09/2015] [Indexed: 01/14/2023] Open
|
36
|
Zhang D, Liu J, Gao J, Shahzad M, Han Z, Wang Z, Li J, Sjölinder H. Zinc supplementation protects against cadmium accumulation and cytotoxicity in Madin-Darby bovine kidney cells. PLoS One 2014; 9:e103427. [PMID: 25105504 PMCID: PMC4126686 DOI: 10.1371/journal.pone.0103427] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 07/02/2014] [Indexed: 01/29/2023] Open
Abstract
Cadmium ions (Cd2+) have been reported to accumulate in bovine tissues, although Cd2+ cytotoxicity has not been investigated thoroughly in this species. Zinc ions (Zn2+) have been shown to antagonize the toxic effects of heavy metals such as Cd2+ in some systems. The present study investigated Cd2+ cytotoxicity in Madin-Darby bovine kidney (MDBK) epithelial cells, and explored whether this was modified by Zn2+. Exposure to Cd2+ led to a dose- and time-dependent increase in apoptotic cell death, with increased intracellular levels of reactive oxygen species and mitochondrial damage. Zn2+ supplementation alleviated Cd2+-induced cytotoxicity and this protective effect was more obvious when cells were exposed to a lower concentration of Cd2+ (10 μM), as compared to 50 μM Cd2+. This indicated that high levels of Cd2+ accumulation might induce irreversible damage in bovine kidney cells. Metallothioneins (MTs) are metal-binding proteins that play an essential role in heavy metal ion detoxification. We found that co-exposure to Zn2+ and Cd2+ synergistically enhanced RNA and protein expression of MT-1, MT-2, and the metal-regulatory transcription factor 1 in MDBK cells. Notably, addition of Zn2+ reduced the amounts of cytosolic Cd2+ detected following MDBK exposure to 10 μM Cd2+. These findings revealed a protective role of Zn2+ in counteracting Cd2+ uptake and toxicity in MDBK cells, indicating that this approach may provide a means to protect livestock from excessive Cd2+ accumulation.
Collapse
Affiliation(s)
- Ding Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
| | - Jingying Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
| | - Jianfeng Gao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
| | - Muhammad Shahzad
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
| | - Zhaoqing Han
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
| | - Zhi Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
| | - Hong Sjölinder
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
37
|
Oxidative Stress and the Use of Antioxidants in Stroke. Antioxidants (Basel) 2014; 3:472-501. [PMID: 26785066 PMCID: PMC4665418 DOI: 10.3390/antiox3030472] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/08/2014] [Accepted: 05/14/2014] [Indexed: 12/12/2022] Open
Abstract
Transient or permanent interruption of cerebral blood flow by occlusion of a cerebral artery gives rise to an ischaemic stroke leading to irreversible damage or dysfunction to the cells within the affected tissue along with permanent or reversible neurological deficit. Extensive research has identified excitotoxicity, oxidative stress, inflammation and cell death as key contributory pathways underlying lesion progression. The cornerstone of treatment for acute ischaemic stroke remains reperfusion therapy with recombinant tissue plasminogen activator (rt-PA). The downstream sequelae of events resulting from spontaneous or pharmacological reperfusion lead to an imbalance in the production of harmful reactive oxygen species (ROS) over endogenous anti-oxidant protection strategies. As such, anti-oxidant therapy has long been investigated as a means to reduce the extent of injury resulting from ischaemic stroke with varying degrees of success. Here we discuss the production and source of these ROS and the various strategies employed to modulate levels. These strategies broadly attempt to inhibit ROS production or increase scavenging or degradation of ROS. While early clinical studies have failed to translate success from bench to bedside, the combination of anti-oxidants with existing thrombolytics or novel neuroprotectants may represent an avenue worthy of clinical investigation. Clearly, there is a pressing need to identify new therapeutic alternatives for the vast majority of patients who are not eligible to receive rt-PA for this debilitating and devastating disease.
Collapse
|
38
|
Nieto-Diaz M, Esteban FJ, Reigada D, Muñoz-Galdeano T, Yunta M, Caballero-López M, Navarro-Ruiz R, Del Águila A, Maza RM. MicroRNA dysregulation in spinal cord injury: causes, consequences and therapeutics. Front Cell Neurosci 2014; 8:53. [PMID: 24701199 PMCID: PMC3934005 DOI: 10.3389/fncel.2014.00053] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 02/06/2014] [Indexed: 01/18/2023] Open
Abstract
Trauma to the spinal cord causes permanent disability to more than 180,000 people every year worldwide. The initial mechanical damage triggers a complex set of secondary events involving the neural, vascular, and immune systems that largely determine the functional outcome of the spinal cord injury (SCI). Cellular and biochemical mechanisms responsible for this secondary injury largely depend on activation and inactivation of specific gene programs. Recent studies indicate that microRNAs function as gene expression switches in key processes of the SCI. Microarray data from rodent contusion models reveal that SCI induces changes in the global microRNA expression patterns. Variations in microRNA abundance largely result from alterations in the expression of the cells at the damaged spinal cord. However, microRNA expression levels after SCI are also influenced by the infiltration of immune cells to the injury site and the death and migration of specific neural cells after injury. Evidences on the role of microRNAs in the SCI pathophysiology have come from different sources. Bioinformatic analysis of microarray data has been used to identify specific variations in microRNA expression underlying transcriptional changes in target genes, which are involved in key processes in the SCI. Direct evidences on the role of microRNAs in SCI are scarcer, although recent studies have identified several microRNAs (miR-21, miR-486, miR-20) involved in key mechanisms of the SCI such as cell death or astrogliosis, among others. From a clinical perspective, different evidences make clear that microRNAs can be potent therapeutic tools to manipulate cell state and molecular processes in order to enhance functional recovery. The present article reviews the actual knowledge on how injury affects microRNA expression and the meaning of these changes in the SCI pathophysiology, to finally explore the clinical potential of microRNAs in the SCI.
Collapse
Affiliation(s)
- Manuel Nieto-Diaz
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (Servicio de Salud de Castilla-La Mancha) Toledo, Spain
| | - Francisco J Esteban
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales y de la Salud, Universidad de Jaén Jaén, Spain
| | - David Reigada
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (Servicio de Salud de Castilla-La Mancha) Toledo, Spain
| | - Teresa Muñoz-Galdeano
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (Servicio de Salud de Castilla-La Mancha) Toledo, Spain
| | - Mónica Yunta
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (Servicio de Salud de Castilla-La Mancha) Toledo, Spain ; Unidad de Patología Mitocondrial, Unidad Funcional de Investigación en Enfermedades Crónicas, Instituto de Salud Carlos III Madrid, Spain
| | - Marcos Caballero-López
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (Servicio de Salud de Castilla-La Mancha) Toledo, Spain
| | - Rosa Navarro-Ruiz
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (Servicio de Salud de Castilla-La Mancha) Toledo, Spain
| | - Angela Del Águila
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (Servicio de Salud de Castilla-La Mancha) Toledo, Spain
| | - Rodrigo M Maza
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (Servicio de Salud de Castilla-La Mancha) Toledo, Spain
| |
Collapse
|
39
|
Lee JY, Maeng S, Kang SR, Choi HY, Oh TH, Ju BG, Yune TY. Valproic acid protects motor neuron death by inhibiting oxidative stress and endoplasmic reticulum stress-mediated cytochrome C release after spinal cord injury. J Neurotrauma 2014; 31:582-94. [PMID: 24294888 DOI: 10.1089/neu.2013.3146] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Both oxidative stress and endoplasmic reticulum (ER) stress are known to contribute to secondary injury, ultimately leading to cell death after spinal cord injury (SCI). Here, we showed that valproic acid (VPA) reduced cell death of motor neurons by inhibiting cytochrome c release mediated by oxidative stress and ER stress after SCI. After SCI, rats were immediately injected with VPA (300 mg/kg) subcutaneously and further injected every 12 h for an indicated time period. Motor neuron cell death at an early time after SCI was significantly attenuated by VPA treatment. Superoxide anion (O2-) production and inducible NO synthase (iNOS) expression linked to oxidative stress was increased after injury, which was inhibited by VPA. In addition, VPA inhibited c-Jun N-terminal kinase (JNK) activation, which was activated and peaked at an early time after SCI. Furthermore, JNK activation and c-Jun phosphorylation were inhibited by a broad-spectrum reactive oxygen species (ROS) scavenger, Mn (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP), indicating that ROS including O2- increased after SCI probably contribute to JNK activation. VPA also inhibited cytochrome c release and caspase-9 activation, which was significantly inhibited by SP600125, a JNK inhibitor. The levels of phosphorylated Bim and Mcl-1, which are known as downstream targets of JNK, were significantly reduced by SP600125. On the other hand, VPA treatment inhibited ER stress-induced caspase-12 activation, which is activated in motor neurons after SCI. In addition, VPA increased the Bcl-2/Bax ratio and inhibited CHOP expression. Taken together, our results suggest that cell death of motor neurons after SCI is mediated through oxidative stress and ER stress-mediated cytochrome c release and VPA-inhibited cytochrome c release by attenuating ROS-induced JNK activation followed by Mcl-1 and Bim phosphorylation and ER stress-coupled CHOP expression.
Collapse
Affiliation(s)
- Jee Y Lee
- 1 Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University , Korea
| | | | | | | | | | | | | |
Collapse
|
40
|
Li X, Zhang M, Zhou H. The morphological features and mitochondrial oxidative stress mechanism of the retinal neurons apoptosis in early diabetic rats. J Diabetes Res 2014; 2014:678123. [PMID: 24527463 PMCID: PMC3910261 DOI: 10.1155/2014/678123] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/10/2013] [Accepted: 11/25/2013] [Indexed: 01/01/2023] Open
Abstract
This paper aims to explore the relationship of retinal neuron apoptosis and manganese superoxidase dismutase (MnSOD) at early phase of diabetic retinopathy. Sprague-Dawley rats were grouped into normal controls and diabetics. Data were collected after 4, 8, and 12 weeks (n = 12). The pathological changes and ultrastructure of the retina, the apoptosis rate of retinal neurons by TdT-mediated dUTP nick end label (TUNEL), mRNA expressions of MnSOD and copper-zinc superoxide dismutase (Cu-Zn SOD), and the activities of total SOD (T-SOD) and subtypes of SOD were tested. For the controls, there was no abnormal structure or apoptosis of retinal neurons at any time. There was no change of structure for rats with diabetes at 4 or 8 weeks, but there was a decrease of retinal ganglion cells (RGCs) number and thinner inner nuclear layer (INL) at 12 weeks. The apoptosis ratio of RGCs was higher than that of the controls at 8 and 12 weeks (P < 0.001). The activity and mRNA levels of MnSOD were lower in diabetics at 4, 8, and 12 weeks (P < 0.05). In summary, the apoptosis of the retinal neurons occurred at 8 weeks after the onset of diabetes. Retinal neuron apoptosis in early diabetic rats may be associated with the decreased activity and mRNA of MnSOD.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Ophthalmology, The First Affiliated Hospital of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
| | - Maonian Zhang
- Department of Ophthalmology, PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853, China
- *Maonian Zhang:
| | - Huanfen Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
| |
Collapse
|
41
|
Dhiraj DK, Chrysanthou E, Mallucci GR, Bushell M. miRNAs-19b, -29b-2* and -339-5p show an early and sustained up-regulation in ischemic models of stroke. PLoS One 2013; 8:e83717. [PMID: 24376737 PMCID: PMC3869799 DOI: 10.1371/journal.pone.0083717] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/06/2013] [Indexed: 12/18/2022] Open
Abstract
Stroke, the loss of neurons after ischemic insult to the brain, is one of the leading causes of death and disability worldwide. Despite its prevalence and severity, current therapy is extremely limited, highlighting the importance of further understanding the molecular events underlying ischemia-induced neuronal cell death. An ischemic area can be subdivided into two separate pathophysiological regions: the rapidly dying necrotic core, and the potentially salvageable apoptotic penumbra. Understanding molecular events occurring in the apoptotic ischemic penumbra may give greater insight into mechanisms controlling this salvageable tissue. miRNAs are known to have key roles in the regulation of gene expression in numerous pathological conditions, including the modulation of distinct pathways in stroke. However, previous studies have profiled miRNAs in the whole ischemic infarct, and do not differentiate between miRNA regulation in the necrotic core versus the apoptotic penumbra. We asked if there were unique miRNAs that are differentially regulated following ischemic insults in the salvageable apoptotic penumbra. miRNA expression profiles were compared in the whole infarct from in vivo stroke models, using the three vessel occlusion approach, to an in vitro model of the ischemic penumbra, prior to apoptotic induction. Multiple miRNAs were found to be differentially regulated following ischemic insults in each system. However, miR-19b, miR-29b-2* and miR-339-5p were significantly up-regulated in both model systems. Further, we confirmed these results in a neuroblastoma cell line subjected to a penumbra-like ischemic insult that induced the apoptotic cell death pathway. The data show that miR-19b, miR-29b-2* and miR-339-5p are up-regulated following ischemic insults and may be regulating gene expression to control important cellular pathways in the salvageable ischemic penumbra. Further investigation of their role and mRNA target identification may lead to new insights into the molecular mechanisms taking place in the salvageable apoptotic penumbra.
Collapse
Affiliation(s)
- Dalbir K. Dhiraj
- MRC Toxicology Unit, Medical Research Council, Leicester, England, United Kingdom
| | - Elvina Chrysanthou
- MRC Toxicology Unit, Medical Research Council, Leicester, England, United Kingdom
| | - Giovanna R. Mallucci
- MRC Toxicology Unit, Medical Research Council, Leicester, England, United Kingdom
| | - Martin Bushell
- MRC Toxicology Unit, Medical Research Council, Leicester, England, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
Aberrant increase in cytochrome c oxidase subunit I precedes neuronal death after cerebral ischemia. Neuroreport 2013; 24:872-7. [DOI: 10.1097/wnr.0000000000000018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Abstract
The pathogenesis of acute brain ischemia (ABI) is highly complex and involves multiple mechanisms including free radical generation. Imbalance between the cellular production of free radicals and the ability of cells to defend against them is referred to as oxidative stress. Oxidative stress is one of the mechanisms contributing to neuronal damage, potentially induced through the ABI. Through interactions with a large number of molecules, reactive oxygen species may irreversibly destroy or alter the function of the cellular lipids, proteins, and nucleic acids and initiate cell signaling pathways after cerebral ischemia. Future investigations should focus on the understanding of oxidative stress mechanisms and neuroprotection in order to discover new treatment targets.
Collapse
Affiliation(s)
- Djordje Radak
- Department of Vascular Surgery, Dedinje Cardiovascular Institute, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivana Resanovic
- Laboratory of Radiobiology and Molecular Genetics, Institute Vinca, University of Belgrade, Belgrade, Serbia
| | - Esma R Isenovic
- Laboratory of Radiobiology and Molecular Genetics, Institute Vinca, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
44
|
Reactive oxygen species contribute to neuropathic pain and locomotor dysfunction via activation of CamKII in remote segments following spinal cord contusion injury in rats. Pain 2013; 154:1699-1708. [DOI: 10.1016/j.pain.2013.05.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/06/2013] [Accepted: 05/09/2013] [Indexed: 01/09/2023]
|
45
|
Veeravalli KK, Dasari VR, Rao JS. Regulation of proteases after spinal cord injury. J Neurotrauma 2012; 29:2251-62. [PMID: 22709139 DOI: 10.1089/neu.2012.2460] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury is a major medical problem worldwide. Unfortunately, we still do not have suitable therapeutic agents for the treatment of spinal cord injury and prevention of its devastating consequences. Scientists and physicians are baffled by the challenges of controlling progressive neurodegeneration in spinal cord injury, which has not been healed with any currently-available treatments. Although extensive work has been carried out to better understand the pathophysiology of spinal cord injury, our current understanding of the repair mechanisms of secondary injury processes is still meager. Several investigators reported the crucial role played by various proteases after spinal cord injury. Understanding the beneficial and harmful roles these proteases play after spinal cord injury will allow scientists to plan and design appropriate treatment strategies to improve functional recovery after spinal cord injury. This review will focus on various proteases such as matrix metalloproteinases, cysteine proteases, and serine proteases and their inhibitors in the context of spinal cord injury.
Collapse
Affiliation(s)
- Krishna Kumar Veeravalli
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, Illinois 61605, USA
| | | | | |
Collapse
|
46
|
Yunta M, Nieto-Díaz M, Esteban FJ, Caballero-López M, Navarro-Ruíz R, Reigada D, Pita-Thomas DW, del Águila Á, Muñoz-Galdeano T, Maza RM. MicroRNA dysregulation in the spinal cord following traumatic injury. PLoS One 2012; 7:e34534. [PMID: 22511948 PMCID: PMC3325277 DOI: 10.1371/journal.pone.0034534] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 03/01/2012] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) triggers a multitude of pathophysiological events that are tightly regulated by the expression levels of specific genes. Recent studies suggest that changes in gene expression following neural injury can result from the dysregulation of microRNAs, short non-coding RNA molecules that repress the translation of target mRNA. To understand the mechanisms underlying gene alterations following SCI, we analyzed the microRNA expression patterns at different time points following rat spinal cord injury. The microarray data reveal the induction of a specific microRNA expression pattern following moderate contusive SCI that is characterized by a marked increase in the number of down-regulated microRNAs, especially at 7 days after injury. MicroRNA downregulation is paralleled by mRNA upregulation, strongly suggesting that microRNAs regulate transcriptional changes following injury. Bioinformatic analyses indicate that changes in microRNA expression affect key processes in SCI physiopathology, including inflammation and apoptosis. MicroRNA expression changes appear to be influenced by an invasion of immune cells at the injury area and, more importantly, by changes in microRNA expression specific to spinal cord cells. Comparisons with previous data suggest that although microRNA expression patterns in the spinal cord are broadly similar among vertebrates, the results of studies assessing SCI are much less congruent and may depend on injury severity. The results of the present study demonstrate that moderate spinal cord injury induces an extended microRNA downregulation paralleled by an increase in mRNA expression that affects key processes in the pathophysiology of this injury.
Collapse
Affiliation(s)
- Mónica Yunta
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - Manuel Nieto-Díaz
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - Francisco J. Esteban
- System Biology Unit, Experimental Biology Department, Faculty of Experimental and Health Sciences, Universidad de Jaén, Jaén, Spain
| | - Marcos Caballero-López
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - Rosa Navarro-Ruíz
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - David Reigada
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - D. Wolfgang Pita-Thomas
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, United States of America
| | - Ángela del Águila
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - Teresa Muñoz-Galdeano
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - Rodrigo M. Maza
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
- * E-mail:
| |
Collapse
|
47
|
Jia Z, Zhu H, Li J, Wang X, Misra H, Li Y. Oxidative stress in spinal cord injury and antioxidant-based intervention. Spinal Cord 2011; 50:264-74. [DOI: 10.1038/sc.2011.111] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
48
|
Moon YJ, Lee JY, Oh MS, Pak YK, Park KS, Oh TH, Yune TY. Inhibition of inflammation and oxidative stress by Angelica dahuricae radix extract decreases apoptotic cell death and improves functional recovery after spinal cord injury. J Neurosci Res 2011; 90:243-56. [PMID: 21922518 DOI: 10.1002/jnr.22734] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 05/19/2011] [Accepted: 06/10/2011] [Indexed: 12/17/2022]
Abstract
Inflammation and oxidative stress play major roles in the pathogenesis after spinal cord injury (SCI). Here, we examined the neuroprotective effects of Angelica dahuricae radix (ADR) extract after SCI. ADR extract significantly decreased the levels of proinflammatory factors such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) in a lipopolysaccharide (LPS)-activated microglial cell line, BV2 cells. ADR extract also significantly alleviated the level of reactive oxygen species in LPS-activated BV2 cells. To examine the neuroprotective effect of ADR extract after SCI, spinally injured rats were administered ADR extract orally at a dose of 100 mg/kg for 14 days. ADR extract treatment significantly reduced the levels of TNF-α, IL-1β, IL-6, iNOS, and COX-2. The levels of superoxide anion (O(2·)(-)) and protein nitration were also significantly decreased by ADR extract. In addition, ADR extract inhibited p38 mitogen-activated protein kinase activation and pronerve growth factor expression in microglia after SCI. Furthermore, ADR extract significantly inhibited caspase-3 activation following apoptotic cell death of neurons and oligodendrocytes, thereby improving functional recovery after injury. Thus, our data suggest that ADR extract provides neuroprotection by alleviating inflammation and oxidative stress and can be used as an orally administered therapeutic agent for acute SCI.
Collapse
Affiliation(s)
- Youn Joo Moon
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
OBJECTIVE To determine the cellular and molecular mechanisms by which acid-sensing ion channel 1a (ASIC1a) plays its role in the secondary injury after traumatic spinal cord injury (SCI), and validate the neuroprotective effect of ASIC1a suppression in SCI model in vivo. BACKGROUND Secondary damage after traumatic SCI contributes to the exacerbation of cellular insult and thereby contributes to spinal cord dysfunction. However, the underlying mechanisms remain largely unknown. Acidosis is commonly involved in the secondary injury process after the injury of central nervous system, but whether ASIC1a is involved in secondary injury after SCI is unclear. METHODS Male Sprague-Dawley rats were subjected to spinal contusion using a weight-drop injury approach. Western blotting and immunofluorescence assays were used to observe the change of ASIC1a expression after SCI. The TUNEL staining in vivo as well as the cell viability and death assays in spinal neuronal culture were employed to assess the role of ASIC1a in the secondary spinal neuronal injury. The electrophysiological recording and Ca(2+) imaging were performed to reveal the possible underlying mechanism. The antagonists and antisense oligonucleotide for ASIC1a, lesion volume assessment assay and behavior test were used to estimate the therapeutic effect of ASIC1a on SCI. RESULTS We show that ASIC1a expression is markedly increased in the peri-injury zone after traumatic SCI. Consistent with the change of ASIC1a expression in injured spinal neurons, both ASIC1a-mediated whole-cell currents and ASIC1a-mediated Ca(2+) entry are significantly enhanced after injury. We also show that increased activity of ASIC1a contributes to SCI-induced neuronal death. Importantly, our results indicate that down-regulation of ASIC1a by antagonists or antisense oligonucleotide reduces tissue damage and promotes the recovery of neurological function after SCI. CONCLUSION This study reveals a cellular and molecular mechanism by which ASIC1a is involved in the secondary damage process after traumatic SCI. Our results suggest that blockade of Ca(2+) -permeable ASIC1a may be a potential neuroprotection strategy for the treatment of SCI patients.
Collapse
|
50
|
Osuka K, Watanabe Y, Usuda N, Atsuzawa K, Yasuda M, Aoshima C, Wakabayashi T, Takayasu M. Activation of STAT1 in Neurons Following Spinal Cord Injury in Mice. Neurochem Res 2011; 36:2236-43. [DOI: 10.1007/s11064-011-0547-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2011] [Indexed: 01/24/2023]
|