1
|
Murck H, Lehr L, Jezova D. A viewpoint on aldosterone and BMI related brain morphology in relation to treatment outcome in patients with major depression. J Neuroendocrinol 2023; 35:e13219. [PMID: 36539978 DOI: 10.1111/jne.13219] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/06/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
An abundance of knowledge has been collected describing the involvement of neuroendocrine parameters in major depression. The hypothalamic-pituitary-adrenocortical (HPA) axis regulating cortisol release has been extensively studied; however, attempts to target the HPA axis pharmacologically to treat major depression have failed. This review focuses on the importance of the adrenocortical stress hormone aldosterone, which is released by adrenocorticotropic hormone and angiotensin, and the mineralocorticoid receptor (MR) in depression. Depressed patients, in particular those with atypical depression, have signs of central hyperactivation of the aldosterone sensitive MR, potentially as a consequence of a reactive aldosterone release induced by low blood pressure and as a result of low sensitivity of peripheral MR. This is reflected in reduced heart rate variability, increased salt appetite and sleep changes in this group of patients. In addition, enlarged brain ventricles, compressed corpus callosum and changes of the choroid plexus are associated with increased aldosterone (in relation to cortisol). Furthermore, subjects with these features often show obesity. These characteristics are related to a worse antidepressant treatment outcome. Alterations in choroid plexus function as a consequence of increased aldosterone levels, autonomic dysregulation, metabolic changes and/or inflammation may be involved. The characterization of this regulatory system is in its early days but may identify new targets for therapeutic interventions.
Collapse
Affiliation(s)
- Harald Murck
- Philipps-University Marburg, Marburg, Germany
- Murck-Neuroscience LLC Westfield, Westfield, NJ, USA
| | - Lisa Lehr
- Department of Nephrology, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Daniela Jezova
- Slovak Academy of Sciences, Biomedical Research Center, Institute of Experimental Endocrinology, Bratislava, Slovakia
| |
Collapse
|
2
|
Lu YT, Zhang D, Zhang QY, Zhou ZM, Yang KQ, Zhou XL, Peng F. Apparent mineralocorticoid excess: comprehensive overview of molecular genetics. J Transl Med 2022; 20:500. [PMID: 36329487 PMCID: PMC9632093 DOI: 10.1186/s12967-022-03698-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/17/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
Apparent mineralocorticoid excess is an autosomal recessive form of monogenic disease characterized by juvenile resistant low-renin hypertension, marked hypokalemic alkalosis, low aldosterone levels, and high ratios of cortisol to cortisone metabolites. It is caused by defects in the HSD11B2 gene, encoding the enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), which is primarily involved in the peripheral conversion of cortisol to cortisone. To date, over 50 deleterious HSD11B2 mutations have been identified worldwide. Multiple molecular mechanisms function in the lowering of 11β-HSD2 activity, including damaging protein stability, lowered affinity for the substrate and cofactor, and disrupting the dimer interface. Genetic polymorphism, environmental factors as well as epigenetic modifications may also offer an implicit explanation for the molecular pathogenesis of AME. A precise diagnosis depends on genetic testing, which allows for early and specific management to avoid the morbidity and mortality from target organ damage. In this review, we provide insights into the molecular genetics of classic and non-classic apparent mineralocorticoid excess and aim to offer a comprehensive overview of this monogenic disease.
Collapse
Affiliation(s)
- Yi-Ting Lu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Di Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiong-Yu Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ze-Ming Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kun-Qi Yang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xian-Liang Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Fan Peng
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Maaliki D, Itani MM, Itani HA. Pathophysiology and genetics of salt-sensitive hypertension. Front Physiol 2022; 13:1001434. [PMID: 36176775 PMCID: PMC9513236 DOI: 10.3389/fphys.2022.1001434] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Most hypertensive cases are primary and heavily associated with modifiable risk factors like salt intake. Evidence suggests that even small reductions in salt consumption reduce blood pressure in all age groups. In that regard, the ACC/AHA described a distinct set of individuals who exhibit salt-sensitivity, regardless of their hypertensive status. Data has shown that salt-sensitivity is an independent risk factor for cardiovascular events and mortality. However, despite extensive research, the pathogenesis of salt-sensitive hypertension is still unclear and tremendously challenged by its multifactorial etiology, complicated genetic influences, and the unavailability of a diagnostic tool. So far, the important roles of the renin-angiotensin-aldosterone system, sympathetic nervous system, and immune system in the pathogenesis of salt-sensitive hypertension have been studied. In the first part of this review, we focus on how the systems mentioned above are aberrantly regulated in salt-sensitive hypertension. We follow this with an emphasis on genetic variants in those systems that are associated with and/or increase predisposition to salt-sensitivity in humans.
Collapse
Affiliation(s)
- Dina Maaliki
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Maha M. Itani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hana A. Itani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
4
|
Ahbara AM, Musa HH, Robert C, Abebe A, Al-Jumaili AS, Kebede A, Latairish S, Agoub MO, Clark E, Hanotte O, Mwacharo JM. Natural adaptation and human selection of northeast African sheep genomes. Genomics 2022; 114:110448. [PMID: 35964803 DOI: 10.1016/j.ygeno.2022.110448] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/25/2022] [Accepted: 08/07/2022] [Indexed: 11/26/2022]
Abstract
African sheep manifest diverse but distinct physio-anatomical traits, which are the outcomes of natural- and human-driven selection. Here, we generated 34.8 million variants from 150 indigenous northeast African sheep genomes sequenced at an average depth of ∼54× for 130 samples (Ethiopia, Libya) and ∼20× for 20 samples (Sudan). These represented sheep from diverse environments, tail morphology and post-Neolithic introductions to Africa. Phylogenetic and model-based admixture analysis provided evidence of four genetic groups corresponding to altitudinal geographic origins, tail morphotypes and possible historical introduction and dispersal of the species into and across the continent. Running admixture at higher levels of K (6 ≤ K ≤ 25), revealed cryptic levels of genome intermixing as well as distinct genetic backgrounds in some populations. Comparative genomic analysis identified targets of selection that spanned conserved haplotype structures overlapping clusters of genes and gene families. These were related to hypoxia responses, ear morphology, caudal vertebrae and tail skeleton length, and tail fat-depot structures. Our findings provide novel insights underpinning morphological variation and response to human-driven selection and environmental adaptation in African indigenous sheep.
Collapse
Affiliation(s)
- Abulgasim M Ahbara
- Department of Zoology, Faculty of Sciences, Misurata University, Misurata, Libya; School of Life Sciences, University of Nottingham, University Park, Nottingham, UK; Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia; LiveGene, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia; Animal and Veterinary Sciences, SRUC, The Roslin Institute Building, Midlothian, Edinburgh, UK.
| | - Hassan H Musa
- Faculty of Medical Laboratory Sciences, University of Khartoum, Sudan
| | - Christelle Robert
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, UK
| | - Ayele Abebe
- Debre Berhan Research Centre, Debre Berhan, Ethiopia
| | - Ahmed S Al-Jumaili
- Department of Medical Laboratory Techniques, Al-Maarif University College, Ramadi, Anbar, Iraq
| | - Adebabay Kebede
- LiveGene-CTLGH, International Livestock Research Institute (ILRI) Ethiopia, Addis Ababa, Ethiopia; Amhara Regional Agricultural Research Institute, Bahir Dar, Ethiopia
| | - Suliman Latairish
- Department of Animal Production, Faculty of Agriculture, Misurata University, Misurata, Libya
| | | | - Emily Clark
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, UK
| | - Olivier Hanotte
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK; LiveGene-CTLGH, International Livestock Research Institute (ILRI) Ethiopia, Addis Ababa, Ethiopia.
| | - Joram M Mwacharo
- Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia; Animal and Veterinary Sciences, SRUC, The Roslin Institute Building, Midlothian, Edinburgh, UK; Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, UK.
| |
Collapse
|
5
|
Cadmium induces placental glucocorticoid barrier damage by suppressing the cAMP/PKA/Sp1 pathway and the protective role of taurine. Toxicol Appl Pharmacol 2022; 440:115938. [DOI: 10.1016/j.taap.2022.115938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/20/2022]
|
6
|
De Santis D, Castagna A, Danese E, Udali S, Martinelli N, Morandini F, Veneri M, Bertolone L, Olivieri O, Friso S, Pizzolo F. Detection of Urinary Exosomal HSD11B2 mRNA Expression: A Useful Novel Tool for the Diagnostic Approach of Dysfunctional 11β-HSD2-Related Hypertension. Front Endocrinol (Lausanne) 2021; 12:681974. [PMID: 34497581 PMCID: PMC8419411 DOI: 10.3389/fendo.2021.681974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/29/2021] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Apparent mineralocorticoid excess (AME) is an autosomal recessive disorder caused by the 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) enzyme deficiency, traditionally assessed by measuring either the urinary cortisol metabolites ratio (tetrahydrocortisol+allotetrahydrocortisol/tetrahydrocortisone, THF+5αTHF/THE) or the urinary cortisol/cortisone (F/E) ratio. Exosomal mRNA is an emerging diagnostic tool due to its stability in body fluids and its biological regulatory function. It is unknown whether urinary exosomal HSD11B2 mRNA is related to steroid ratio or the HSD11B2 662 C>G genotype (corresponding to a 221 A>G substitution) in patients with AME and essential hypertension (EH). AIM OF THE STUDY To detect and quantify HSD11B2 mRNA from urinary exosomes in samples from family members affected by AME and EH, and to evaluate the relationship between exosomal HSD11B2 mRNA, steroid ratio, 662C>G genotype, and hypertension. METHODS In this observational case-control study, urinary steroid ratios and biochemical parameters were measured. Urinary exosomes were extracted from urine and exosomal HSD11B2 mRNA was quantified by Droplet Digital PCR (ddPCR). B2M (β-2 microglobulin) gene was selected as the reference housekeeping gene. RESULTS Among family members affected by AME, exosomal urinary HSD11B2 mRNA expression was strictly related to genotypes. The two homozygous mutant probands showed the highest HSD11B2 mRNA levels (median 169, range 118-220 copies/µl) that progressively decreased in 221 AG heterozygous with hypertension (108, range 92-124 copies/µl), 221 AG heterozygous normotensives (23.35, range 8-38.7 copies/µl), and wild-type 221 AA subjects (5.5, range 4.5-14 copies/µl). Heterozygous hypertensive subjects had more HSD11B2 mRNA than heterozygous normotensive subjects. The F/E urinary ratio correlated with HSD11B2 mRNA copy number (p < 0.05); HSD11B2 mRNA strongly decreased while THF+5αTHF/THE increased in the two probands after therapy. In the AME family, HSD11B2 copy number correlated with both F/E and THF+5αTHF/THE ratios, whereas in EH patients, a high F/E ratio reflected a reduced HSD11B2 mRNA expression. CONCLUSIONS HSD11B2 mRNA is detectable and quantifiable in urinary exosomes; its expression varies according to the 662 C>G genotype with the highest levels in homozygous mutant subjects. The HSD11B2 mRNA overexpression in AME could be due to a compensatory mechanism of the enzyme impairment. Exosomal mRNA is a useful tool to investigate HSD11B2 dysregulation in hypertension.
Collapse
Affiliation(s)
- Domenica De Santis
- Unit of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Annalisa Castagna
- Unit of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Elisa Danese
- Section of Clinical Biochemistry, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Silvia Udali
- Unit of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Nicola Martinelli
- Unit of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Francesca Morandini
- Unit of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Mariangela Veneri
- Unit of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Lorenzo Bertolone
- Unit of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Oliviero Olivieri
- Unit of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Simonetta Friso
- Unit of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Francesca Pizzolo
- Unit of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
- *Correspondence: Francesca Pizzolo,
| |
Collapse
|
7
|
Carvajal CA, Tapia-Castillo A, Vecchiola A, Baudrand R, Fardella CE. Classic and Nonclassic Apparent Mineralocorticoid Excess Syndrome. J Clin Endocrinol Metab 2020; 105:5691192. [PMID: 31909799 DOI: 10.1210/clinem/dgz315] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/28/2019] [Indexed: 02/13/2023]
Abstract
CONTEXT Arterial hypertension (AHT) is one of the most frequent pathologies in the general population. Subtypes of essential hypertension characterized by low renin levels allowed the identification of 2 different clinical entities: aldosterone-mediated mineralocorticoid receptor (MR) activation and cortisol-mediated MR activation. EVIDENCE ACQUISITION This review is based upon a search of Pubmed and Google Scholar databases, up to August 2019, for all publications relating to endocrine hypertension, apparent mineralocorticoid excess (AME) and cortisol (F) to cortisone (E) metabolism. EVIDENCE SYNTHESIS The spectrum of cortisol-mediated MR activation includes the classic AME syndrome to milder (nonclassic) forms of AME, the latter with a much higher prevalence (7.1%) than classic AME but different phenotype and genotype. Nonclassic AME (NC-AME) is mainly related to partial 11βHSD2 deficiency associated with genetic variations and epigenetic modifications (first hit) and potential additive actions of endogenous or exogenous inhibitors (ie, glycyrrhetinic acid-like factors [GALFS]) and other factors (ie, age, high sodium intake) (second hit). Subjects with NC-AME are characterized by a high F/E ratio, low E levels, normal to elevated blood pressure, low plasma renin and increased urinary potassium excretion. NC-AME condition should benefit from low-sodium and potassium diet recommendations and monotherapy with MR antagonists. CONCLUSION NC-AME has a higher prevalence and a milder phenotypical spectrum than AME. NC-AME etiology is associated to a first hit (gene and epigene level) and an additive second hit. NC-AME subjects are candidates to be treated with MR antagonists aimed to improve blood pressure, end-organ damage, and modulate the renin levels.
Collapse
Affiliation(s)
- Cristian A Carvajal
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN), Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Alejandra Tapia-Castillo
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN), Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Andrea Vecchiola
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN), Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Rene Baudrand
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN), Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Carlos E Fardella
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN), Pontificia Universidad Catolica de Chile, Santiago, Chile
| |
Collapse
|
8
|
Vitellius G, Delemer B, Caron P, Chabre O, Bouligand J, Pussard E, Trabado S, Lombes M. Impaired 11β-Hydroxysteroid Dehydrogenase Type 2 in Glucocorticoid-Resistant Patients. J Clin Endocrinol Metab 2019; 104:5205-5216. [PMID: 31225872 DOI: 10.1210/jc.2019-00800] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/17/2019] [Indexed: 02/13/2023]
Abstract
CONTEXT Six patients carrying heterozygous loss-of-function mutations of glucocorticoid (GC) receptor (GR) presented with hypercortisolism, associated with low kalemia, low plasma renin, and aldosterone levels, with or without hypertension, suggesting a pseudohypermineralocorticism whose mechanisms remain unclear. We hypothesize that an impaired activity of the 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2; encoded by the HSD11B2 gene), catalyzing cortisol (F) inactivation, may account for an inappropriate activation of a renal mineralocorticoid signaling pathway in these GC-resistant patients. OBJECTIVE We aim at studying the GR-mediated regulation of HSD11B2. DESIGN The HSD11B2 promoter was subcloned and luciferase reporter assays evaluated GR-dependent HSD11B2 regulation, and 11β-HSD2 expression/activity was studied in human breast cancer MCF7 cells, endogenously expressing this enzyme. RESULTS Transfection assays revealed that GR transactivated the long (2.1-kbp) HSD11B2 promoter construct, whereas a defective 501H GR mutant was unable to stimulate luciferase activity. GR-mediated transactivation of the HSD11B2 gene was inhibited by the GR antagonist RU486. A threefold increase in HSD11B2 mRNA levels was observed after dexamethasone (DXM) treatment of MCF7 cells, inhibited by RU486 or by actinomycin, supporting a GR-dependent transcription. Chromatin immunoprecipitation further demonstrated a DXM-dependent GR recruitment onto the HSD11B2 promoter. 11β-HSD2 activity, evaluated by the cortisone/F ratio, quantified by liquid chromatography/tandem mass spectrometry, was 10-fold higher in the supernatant of DXM-treated cells than controls, consistent with a GR-dependent stimulation of 11β-HSD2 catalytic activity. CONCLUSION Collectively, we demonstrate that 11β-HSD2 expression and activity are transcriptionally regulated by GR. In the context of GR haploinsufficiency, these findings provide evidence that defective GR signaling may account for apparent mineralocorticoid excess in GC-resistant patients.
Collapse
Affiliation(s)
- Géraldine Vitellius
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche_S U1185, Faculty of Medicine at Université Paris-Sud, University Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Brigitte Delemer
- Service d'Endocrinologie-Diabète-Nutrition, Hôpital Robert Debré, Centre Hospitalier Universitaire de Reims, Reims, France
| | - Philippe Caron
- Service d'Endocrinologie, Pôle Cardio-Vasculaire et Métabolique, Centre Hospitalier Universitaire de Larrey, Toulouse, France
| | - Olivier Chabre
- Endocrinologie, Pavillon des Écrins, Centre Hospitalier Universitaire de Grenoble, La Tronche, Grenoble, France
| | - Jérôme Bouligand
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche_S U1185, Faculty of Medicine at Université Paris-Sud, University Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpitaux Universitaires Paris-Sud, Assistance Publique-Hôpitaux de Paris, Centre Hospitalier Universitaire de Bicêtre, France
| | - Eric Pussard
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche_S U1185, Faculty of Medicine at Université Paris-Sud, University Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpitaux Universitaires Paris-Sud, Assistance Publique-Hôpitaux de Paris, Centre Hospitalier Universitaire de Bicêtre, France
| | - Séverine Trabado
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche_S U1185, Faculty of Medicine at Université Paris-Sud, University Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpitaux Universitaires Paris-Sud, Assistance Publique-Hôpitaux de Paris, Centre Hospitalier Universitaire de Bicêtre, France
| | - Marc Lombes
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche_S U1185, Faculty of Medicine at Université Paris-Sud, University Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France
| |
Collapse
|
9
|
Sodium sensitivity of blood pressure in Chinese populations. J Hum Hypertens 2019; 34:94-107. [PMID: 30631129 DOI: 10.1038/s41371-018-0152-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/15/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022]
Abstract
Hypertension is an enormous public-health challenge in the world due to its high prevalence and consequent increased cardiovascular disease morbidity and mortality. Observational epidemiologic studies and clinical trials have demonstrated a causal relationship between sodium intake and elevated blood pressure (BP). However, BP changes in response to sodium intervention vary among individuals-a trait called sodium sensitivity. This paper aims to review the recent advances in sodium-sensitivity research in Chinese and other populations. Older age, female gender, and black race are associated with high sodium sensitivity. Both genetic and environmental factors influence BP sodium sensitivity. Physical activity and dietary potassium intake are associated with reduced sodium sensitivity while obesity, metabolic syndrome, and elevated BP are associated with increased sodium sensitivity. Familial studies have documented a moderate heritability of sodium sensitivity. Candidate gene association studies, genome-wide association studies, whole-exome, and whole-genome sequencing studies have been conducted to elucidate the genomic mechanisms of sodium sensitivity. The Genetic Epidemiology Network of Salt Sensitivity (GenSalt) study, the largest family-based feeding study to date, was conducted among 1906 Han Chinese in rural northern China. This study showed that ~32.4% of Chinese adults were sodium sensitive. Additionally, several genetic variants were found to be associated with sodium sensitivity. Findings from the GenSalt Study and others indicate that sodium sensitivity is a reproducible trait and both lifestyle factors and genetic variants play a role in this complex trait. Discovering biomarkers and underlying mechanisms for sodium sensitivity will help to develop individualized intervention strategies for hypertension.
Collapse
|
10
|
Herbert J. Testosterone, Cortisol and Financial Risk-Taking. Front Behav Neurosci 2018; 12:101. [PMID: 29867399 PMCID: PMC5964298 DOI: 10.3389/fnbeh.2018.00101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/27/2018] [Indexed: 11/13/2022] Open
Abstract
Both testosterone and cortisol have major actions on financial decision-making closely related to their primary biological functions, reproductive success and response to stress, respectively. Financial risk-taking represents a particular example of strategic decisions made in the context of choice under conditions of uncertainty. Such decisions have multiple components, and this article considers how much we know of how either hormone affects risk-appetite, reward value, information processing and estimation of the costs and benefits of potential success or failure, both personal and social. It also considers how far we can map these actions on neural mechanisms underlying risk appetite and decision-making, with particular reference to areas of the brain concerned in either cognitive or emotional functions.
Collapse
Affiliation(s)
- Joe Herbert
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
Jiménez-Canino R, Lorenzo-Díaz F, Odermatt A, Bailey MA, Livingstone DEW, Jaisser F, Farman N, Alvarez de la Rosa D. 11β-HSD2 SUMOylation Modulates Cortisol-Induced Mineralocorticoid Receptor Nuclear Translocation Independently of Effects on Transactivation. Endocrinology 2017; 158:4047-4063. [PMID: 28938454 DOI: 10.1210/en.2017-00440] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/12/2017] [Indexed: 12/26/2022]
Abstract
The enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) has an essential role in aldosterone target tissues, conferring aldosterone selectivity for the mineralocorticoid receptor (MR) by converting 11β-hydroxyglucocorticoids to inactive 11-ketosteroids. Congenital deficiency of 11β-HSD2 causes a form of salt-sensitive hypertension known as the syndrome of apparent mineralocorticoid excess. The disease phenotype, which ranges from mild to severe, correlates well with reduction in enzyme activity. Furthermore, polymorphisms in the 11β-HSD2 coding gene (HSD11B2) have been linked to high blood pressure and salt sensitivity, major cardiovascular risk factors. 11β-HSD2 expression is controlled by different factors such as cytokines, sex steroids, or vasopressin, but posttranslational modulation of its activity has not been explored. Analysis of 11β-HSD2 sequence revealed a consensus site for conjugation of small ubiquitin-related modifier (SUMO) peptide, a major posttranslational regulatory event in several cellular processes. Our results demonstrate that 11β-HSD2 is SUMOylated at lysine 266. Non-SUMOylatable mutant K266R showed slightly higher substrate affinity and decreased Vmax, but no effects on protein stability or subcellular localization. Despite mild changes in enzyme activity, mutant K266R was unable to prevent cortisol-dependent MR nuclear translocation. The same effect was achieved by coexpression of wild-type 11β-HSD2 with sentrin-specific protease 1, a protease that catalyzes SUMO deconjugation. In the presence of 11β-HSD2-K266R, increased nuclear MR localization did not correlate with increased response to cortisol or increased recruitment of transcriptional coregulators. Taken together, our data suggests that SUMOylation of 11β-HSD2 at residue K266 modulates cortisol-mediated MR nuclear translocation independently of effects on transactivation.
Collapse
Affiliation(s)
- Rubén Jiménez-Canino
- Department of Basic Medical Sciences, Institute of Biomedical Technologies and Center for Biomedical Research of the Canary Islands, Universidad de La Laguna, 38200 Tenerife, Spain
| | - Fabián Lorenzo-Díaz
- Department of Basic Medical Sciences, Institute of Biomedical Technologies and Center for Biomedical Research of the Canary Islands, Universidad de La Laguna, 38200 Tenerife, Spain
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland
| | - Matthew A Bailey
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Dawn E W Livingstone
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Frederic Jaisser
- INSERM UMRS 1138, Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, 75006 Paris, France
| | - Nicolette Farman
- INSERM UMRS 1138, Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, 75006 Paris, France
| | - Diego Alvarez de la Rosa
- Department of Basic Medical Sciences, Institute of Biomedical Technologies and Center for Biomedical Research of the Canary Islands, Universidad de La Laguna, 38200 Tenerife, Spain
| |
Collapse
|
12
|
Identification of a tumor-promoter cholesterol metabolite in human breast cancers acting through the glucocorticoid receptor. Proc Natl Acad Sci U S A 2017; 114:E9346-E9355. [PMID: 29078321 DOI: 10.1073/pnas.1707965114] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Breast cancer (BC) remains the primary cause of death from cancer among women worldwide. Cholesterol-5,6-epoxide (5,6-EC) metabolism is deregulated in BC but the molecular origin of this is unknown. Here, we have identified an oncometabolism downstream of 5,6-EC that promotes BC progression independently of estrogen receptor α expression. We show that cholesterol epoxide hydrolase (ChEH) metabolizes 5,6-EC into cholestane-3β,5α,6β-triol, which is transformed into the oncometabolite 6-oxo-cholestan-3β,5α-diol (OCDO) by 11β-hydroxysteroid-dehydrogenase-type-2 (11βHSD2). 11βHSD2 is known to regulate glucocorticoid metabolism by converting active cortisol into inactive cortisone. ChEH inhibition and 11βHSD2 silencing inhibited OCDO production and tumor growth. Patient BC samples showed significant increased OCDO levels and greater ChEH and 11βHSD2 protein expression compared with normal tissues. The analysis of several human BC mRNA databases indicated that 11βHSD2 and ChEH overexpression correlated with a higher risk of patient death, highlighting that the biosynthetic pathway producing OCDO is of major importance to BC pathology. OCDO stimulates BC cell growth by binding to the glucocorticoid receptor (GR), the nuclear receptor of endogenous cortisol. Interestingly, high GR expression or activation correlates with poor therapeutic response or prognosis in many solid tumors, including BC. Targeting the enzymes involved in cholesterol epoxide and glucocorticoid metabolism or GR may be novel strategies to prevent and treat BC.
Collapse
|
13
|
Elijovich F, Weinberger MH, Anderson CAM, Appel LJ, Bursztyn M, Cook NR, Dart RA, Newton-Cheh CH, Sacks FM, Laffer CL. Salt Sensitivity of Blood Pressure: A Scientific Statement From the American Heart Association. Hypertension 2016; 68:e7-e46. [PMID: 27443572 DOI: 10.1161/hyp.0000000000000047] [Citation(s) in RCA: 360] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Evans LC, Ivy JR, Wyrwoll C, McNairn JA, Menzies RI, Christensen TH, Al-Dujaili EAS, Kenyon CJ, Mullins JJ, Seckl JR, Holmes MC, Bailey MA. Conditional Deletion of Hsd11b2 in the Brain Causes Salt Appetite and Hypertension. Circulation 2016; 133:1360-70. [PMID: 26951843 PMCID: PMC4819772 DOI: 10.1161/circulationaha.115.019341] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/12/2016] [Indexed: 11/30/2022]
Abstract
Supplemental Digital Content is available in the text. Background— The hypertensive syndrome of Apparent Mineralocorticoid Excess is caused by loss-of-function mutations in the gene encoding 11β-hydroxysteroid dehydrogenase type 2 (11βHSD2), allowing inappropriate activation of the mineralocorticoid receptor by endogenous glucocorticoid. Hypertension is attributed to sodium retention in the distal nephron, but 11βHSD2 is also expressed in the brain. However, the central contribution to Apparent Mineralocorticoid Excess and other hypertensive states is often overlooked and is unresolved. We therefore used a Cre-Lox strategy to generate 11βHSD2 brain-specific knockout (Hsd11b2.BKO) mice, measuring blood pressure and salt appetite in adults. Methods and Results— Basal blood pressure, electrolytes, and circulating corticosteroids were unaffected in Hsd11b2.BKO mice. When offered saline to drink, Hsd11b2.BKO mice consumed 3 times more sodium than controls and became hypertensive. Salt appetite was inhibited by spironolactone. Control mice fed the same daily sodium intake remained normotensive, showing the intrinsic salt resistance of the background strain. Dexamethasone suppressed endogenous glucocorticoid and abolished the salt-induced blood pressure differential between genotypes. Salt sensitivity in Hsd11b2.BKO mice was not caused by impaired renal sodium excretion or volume expansion; pressor responses to phenylephrine were enhanced and baroreflexes impaired in these animals. Conclusions— Reduced 11βHSD2 activity in the brain does not intrinsically cause hypertension, but it promotes a hunger for salt and a transition from salt resistance to salt sensitivity. Our data suggest that 11βHSD2-positive neurons integrate salt appetite and the blood pressure response to dietary sodium through a mineralocorticoid receptor–dependent pathway. Therefore, central mineralocorticoid receptor antagonism could increase compliance to low-sodium regimens and help blood pressure management in cardiovascular disease.
Collapse
Affiliation(s)
- Louise C Evans
- From British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, United Kingdom (L.C.E., J.R.I., C.W., J.A.M., R.I.M., T.H.C., C.J.K., J.J.M., J.R.S., M.C.H., M.A.B.); and Dietetics, Nutrition and Biological Sciences Department, Queen Margaret University, Edinburgh, United Kingdom (E.A.S.Al-D.). The current address for Dr Evans is Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee; the current address for Dr Wyrwoll is School of Anatomy, Physiology & Human Biology, The University of Western Australia, Crawley, Australia; and the current address for Dr Christensen is Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense
| | - Jessica R Ivy
- From British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, United Kingdom (L.C.E., J.R.I., C.W., J.A.M., R.I.M., T.H.C., C.J.K., J.J.M., J.R.S., M.C.H., M.A.B.); and Dietetics, Nutrition and Biological Sciences Department, Queen Margaret University, Edinburgh, United Kingdom (E.A.S.Al-D.). The current address for Dr Evans is Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee; the current address for Dr Wyrwoll is School of Anatomy, Physiology & Human Biology, The University of Western Australia, Crawley, Australia; and the current address for Dr Christensen is Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense
| | - Caitlin Wyrwoll
- From British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, United Kingdom (L.C.E., J.R.I., C.W., J.A.M., R.I.M., T.H.C., C.J.K., J.J.M., J.R.S., M.C.H., M.A.B.); and Dietetics, Nutrition and Biological Sciences Department, Queen Margaret University, Edinburgh, United Kingdom (E.A.S.Al-D.). The current address for Dr Evans is Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee; the current address for Dr Wyrwoll is School of Anatomy, Physiology & Human Biology, The University of Western Australia, Crawley, Australia; and the current address for Dr Christensen is Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense
| | - Julie A McNairn
- From British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, United Kingdom (L.C.E., J.R.I., C.W., J.A.M., R.I.M., T.H.C., C.J.K., J.J.M., J.R.S., M.C.H., M.A.B.); and Dietetics, Nutrition and Biological Sciences Department, Queen Margaret University, Edinburgh, United Kingdom (E.A.S.Al-D.). The current address for Dr Evans is Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee; the current address for Dr Wyrwoll is School of Anatomy, Physiology & Human Biology, The University of Western Australia, Crawley, Australia; and the current address for Dr Christensen is Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense
| | - Robert I Menzies
- From British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, United Kingdom (L.C.E., J.R.I., C.W., J.A.M., R.I.M., T.H.C., C.J.K., J.J.M., J.R.S., M.C.H., M.A.B.); and Dietetics, Nutrition and Biological Sciences Department, Queen Margaret University, Edinburgh, United Kingdom (E.A.S.Al-D.). The current address for Dr Evans is Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee; the current address for Dr Wyrwoll is School of Anatomy, Physiology & Human Biology, The University of Western Australia, Crawley, Australia; and the current address for Dr Christensen is Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense
| | - Thorbjørn H Christensen
- From British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, United Kingdom (L.C.E., J.R.I., C.W., J.A.M., R.I.M., T.H.C., C.J.K., J.J.M., J.R.S., M.C.H., M.A.B.); and Dietetics, Nutrition and Biological Sciences Department, Queen Margaret University, Edinburgh, United Kingdom (E.A.S.Al-D.). The current address for Dr Evans is Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee; the current address for Dr Wyrwoll is School of Anatomy, Physiology & Human Biology, The University of Western Australia, Crawley, Australia; and the current address for Dr Christensen is Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense
| | - Emad A S Al-Dujaili
- From British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, United Kingdom (L.C.E., J.R.I., C.W., J.A.M., R.I.M., T.H.C., C.J.K., J.J.M., J.R.S., M.C.H., M.A.B.); and Dietetics, Nutrition and Biological Sciences Department, Queen Margaret University, Edinburgh, United Kingdom (E.A.S.Al-D.). The current address for Dr Evans is Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee; the current address for Dr Wyrwoll is School of Anatomy, Physiology & Human Biology, The University of Western Australia, Crawley, Australia; and the current address for Dr Christensen is Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense
| | - Christopher J Kenyon
- From British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, United Kingdom (L.C.E., J.R.I., C.W., J.A.M., R.I.M., T.H.C., C.J.K., J.J.M., J.R.S., M.C.H., M.A.B.); and Dietetics, Nutrition and Biological Sciences Department, Queen Margaret University, Edinburgh, United Kingdom (E.A.S.Al-D.). The current address for Dr Evans is Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee; the current address for Dr Wyrwoll is School of Anatomy, Physiology & Human Biology, The University of Western Australia, Crawley, Australia; and the current address for Dr Christensen is Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense
| | - John J Mullins
- From British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, United Kingdom (L.C.E., J.R.I., C.W., J.A.M., R.I.M., T.H.C., C.J.K., J.J.M., J.R.S., M.C.H., M.A.B.); and Dietetics, Nutrition and Biological Sciences Department, Queen Margaret University, Edinburgh, United Kingdom (E.A.S.Al-D.). The current address for Dr Evans is Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee; the current address for Dr Wyrwoll is School of Anatomy, Physiology & Human Biology, The University of Western Australia, Crawley, Australia; and the current address for Dr Christensen is Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense
| | - Jonathan R Seckl
- From British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, United Kingdom (L.C.E., J.R.I., C.W., J.A.M., R.I.M., T.H.C., C.J.K., J.J.M., J.R.S., M.C.H., M.A.B.); and Dietetics, Nutrition and Biological Sciences Department, Queen Margaret University, Edinburgh, United Kingdom (E.A.S.Al-D.). The current address for Dr Evans is Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee; the current address for Dr Wyrwoll is School of Anatomy, Physiology & Human Biology, The University of Western Australia, Crawley, Australia; and the current address for Dr Christensen is Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense
| | - Megan C Holmes
- From British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, United Kingdom (L.C.E., J.R.I., C.W., J.A.M., R.I.M., T.H.C., C.J.K., J.J.M., J.R.S., M.C.H., M.A.B.); and Dietetics, Nutrition and Biological Sciences Department, Queen Margaret University, Edinburgh, United Kingdom (E.A.S.Al-D.). The current address for Dr Evans is Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee; the current address for Dr Wyrwoll is School of Anatomy, Physiology & Human Biology, The University of Western Australia, Crawley, Australia; and the current address for Dr Christensen is Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense
| | - Matthew A Bailey
- From British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, United Kingdom (L.C.E., J.R.I., C.W., J.A.M., R.I.M., T.H.C., C.J.K., J.J.M., J.R.S., M.C.H., M.A.B.); and Dietetics, Nutrition and Biological Sciences Department, Queen Margaret University, Edinburgh, United Kingdom (E.A.S.Al-D.). The current address for Dr Evans is Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee; the current address for Dr Wyrwoll is School of Anatomy, Physiology & Human Biology, The University of Western Australia, Crawley, Australia; and the current address for Dr Christensen is Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense.
| |
Collapse
|
15
|
Valdivia C, Carvajal CA, Campino C, Allende F, Martinez-Aguayo A, Baudrand R, Vecchiola A, Lagos CF, Tapia-Castillo A, Fuentes CA, Aglony M, Solari S, Kalergis AM, García H, Owen GI, Fardella CE. Citosine-Adenine-Repeat Microsatellite of 11β-hydroxysteroid dehydrogenase 2 Gene in Hypertensive Children. Am J Hypertens 2016; 29:25-32. [PMID: 25907225 DOI: 10.1093/ajh/hpv052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 01/17/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The impairment of 11β-hydroxysteroid dehydrogenase type 2 enzyme (11βHSD2) results in an inefficient conversion of cortisol to cortisone, which triggers hypertension. Cytosine-adenine repeat (CA repeat) microsatellite has been associated with low HSD11B2 gene expression. AIM To determine whether the CA-repeat length in intron 1 affect the serum cortisol to cortisone (F/E) ratio and/or blood pressure (BP) levels in pediatric subjects. SUBJECTS AND METHODS Eighty-one hypertensive (HT) and 117 normotensive (NT) subjects participated in this study. We measured BP levels, as well as the F and E and F/E ratio in morning sera and 12-hour urine samples. The length of CA repeats was determined through fragment analysis. We compared the allele distribution between the HT and NT groups, and the patients were dichotomized into groups with short alleles (S) (<21 CA repeats) or long alleles (L), and also in groups according genotype (allele combination: S/S and S/L + L/L). RESULTS We found no differences in the distribution of CA-repeat allelic length between the NT and HT groups (P = 0.7807), and there was no correlation between the CA-repeat allelic length and BP (P = 0.1151) levels or the serum F/E ratio (P = 0.6778). However, the serum F/E ratio was higher in the HT group than in the NT group (P = 0.0251). The serum F/E ratio was associated with systolic BP index independent of body mass index only in HT group. CONCLUSIONS The CA-repeat length did not influence BP levels or serum F/E ratios in pediatric subjects. However, the serum F/E ratio was associated with BP, suggesting a role of 11βHSD2 in mineralocorticoid hypertension.
Collapse
Affiliation(s)
- Carolina Valdivia
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristian A Carvajal
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Carmen Campino
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Fidel Allende
- Departamento de Laboratorios Clínicos, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandro Martinez-Aguayo
- Unidad de Endocrinología, División de Pediatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rene Baudrand
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrea Vecchiola
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Carlos F Lagos
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Facultad de Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Alejandra Tapia-Castillo
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristobal A Fuentes
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Marlene Aglony
- Unidad de Endocrinología, División de Pediatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sandra Solari
- Departamento de Laboratorios Clínicos, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile
| | - Hernan García
- Unidad de Endocrinología, División de Pediatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gareth I Owen
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos E Fardella
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile;
| |
Collapse
|
16
|
Kosicka K, Siemiątkowska A, Główka FK. 11β-Hydroxysteroid Dehydrogenase 2 in Preeclampsia. Int J Endocrinol 2016; 2016:5279462. [PMID: 27200090 PMCID: PMC4856917 DOI: 10.1155/2016/5279462] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/05/2016] [Indexed: 11/17/2022] Open
Abstract
Preeclampsia is a serious medical problem affecting the mother and her child and influences their health not only during the pregnancy, but also many years after. Although preeclampsia is a subject of many research projects, the etiology of the condition remains unclear. One of the hypotheses related to the etiology of preeclampsia is the deficiency in placental 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2), the enzyme which in normal pregnancy protects the fetus from the excess of maternal cortisol. The reduced activity of the enzyme was observed in placentas from pregnancies complicated with preeclampsia. That suggests the overexposure of the developing child to maternal cortisol, which in high levels exerts proapoptotic effects and reduces fetal growth. The fetal growth restriction due to the diminished placental 11β-HSD2 function may be supported by the fact that preeclampsia is often accompanied with fetal hypotrophy. The causes of the reduced function of 11β-HSD2 in placental tissue are still discussed. This paper summarizes the phenomena that may affect the activity of the enzyme at various steps on the way from the gene to the protein.
Collapse
Affiliation(s)
- Katarzyna Kosicka
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Święcickiego Street, 60-781 Poznań, Poland
- *Katarzyna Kosicka:
| | - Anna Siemiątkowska
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Święcickiego Street, 60-781 Poznań, Poland
| | - Franciszek K. Główka
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Święcickiego Street, 60-781 Poznań, Poland
| |
Collapse
|
17
|
Behavioral epigenetics and the developmental origins of child mental health disorders. J Dev Orig Health Dis 2015; 3:395-408. [PMID: 25084292 DOI: 10.1017/s2040174412000426] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Advances in understanding the molecular basis of behavior through epigenetic mechanisms could help explain the developmental origins of child mental health disorders. However, the application of epigenetic principles to the study of human behavior is a relatively new endeavor. In this paper we discuss the 'Developmental Origins of Health and Disease' including the role of fetal programming. We then review epigenetic principles related to fetal programming and the recent application of epigenetics to behavior. We focus on the neuroendocrine system and develop a simple heuristic stress-related model to illustrate how epigenetic changes in placental genes could predispose the infant to neurobehavioral profiles that interact with postnatal environmental factors potentially leading to mental health disorders. We then discuss from an 'Evo-Devo' perspective how some of these behaviors could also be adaptive. We suggest how elucidation of these mechanisms can help to better define risk and protective factors and populations at risk.
Collapse
|
18
|
Rezaei M, Andrieu T, Neuenschwander S, Bruggmann R, Mordasini D, Frey FJ, Vogt B, Frey BM. Regulation of 11β-hydroxysteroid dehydrogenase type 2 by microRNA. Hypertension 2014; 64:860-6. [PMID: 24980668 DOI: 10.1161/hypertensionaha.114.00002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) is selectively expressed in aldosterone target tissues, conferring aldosterone selectivity for the mineralocorticoid receptor. A diminished activity causes salt-sensitive hypertension. The mechanism of the variable and distinct 11β-hydroxysteroid dehydrogenase type 2 gene (HSD11B2) expression in the cortical collecting duct is poorly understood. Here, we analyzed for the first time whether the 11β-HSD2 expression is modulated by microRNAs (miRNAs). In silico analysis revealed 53 and 27 miRNAs with potential binding sites on human or rat HSD11B2 3'-untranslated region. A reporter assay demonstrated 3'-untranslated region-dependent regulation of human and rodent HSD11B2. miRNAs were profiled from cortical collecting ducts and proximal convoluted tubules. Bioinformatic analyses showed a distinct clustering for cortical collecting ducts and proximal convoluted tubules with 53 of 375 miRNAs, where 13 were predicted to bind to the rat HSD11B2 3'-untranslated region. To gain insight into potentially relevant miRNAs in vivo, we investigated 2 models with differential 11β-HSD2 activity linked with salt-sensitive hypertension. (1) Comparing Sprague-Dawley with low and Wistar rats with high 11β-HSD2 activity revealed rno-miR-20a-5p, rno-miR-19b-3p, and rno-miR-190a-5p to be differentially expressed. (2) Uninephrectomy lowered 11β-HSD2 activity in the residual kidney with differentially expressed rno-miR-19b-3p, rno-miR-29b-3p, and rno-miR-26-5p. In conclusion, miRNA-dependent mechanisms seem to modulate 11β-HSD2 dosage in health and disease states.
Collapse
Affiliation(s)
- Mina Rezaei
- From the Department of Nephrology, Hypertension, and Clinical Pharmacology (M.R., T.A., D.M., F.J.F., B.V., B.M.F.) and Department of Biology and Bioinformatics (S.N., R.B.), University of Bern, Bern, Switzerland; Vital-IT, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland (S.N.); and Department of Clinical Research, University Hospital Bern, Bern, Switzerland (B.M.F.)
| | - Thomas Andrieu
- From the Department of Nephrology, Hypertension, and Clinical Pharmacology (M.R., T.A., D.M., F.J.F., B.V., B.M.F.) and Department of Biology and Bioinformatics (S.N., R.B.), University of Bern, Bern, Switzerland; Vital-IT, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland (S.N.); and Department of Clinical Research, University Hospital Bern, Bern, Switzerland (B.M.F.)
| | - Samuel Neuenschwander
- From the Department of Nephrology, Hypertension, and Clinical Pharmacology (M.R., T.A., D.M., F.J.F., B.V., B.M.F.) and Department of Biology and Bioinformatics (S.N., R.B.), University of Bern, Bern, Switzerland; Vital-IT, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland (S.N.); and Department of Clinical Research, University Hospital Bern, Bern, Switzerland (B.M.F.)
| | - Rémy Bruggmann
- From the Department of Nephrology, Hypertension, and Clinical Pharmacology (M.R., T.A., D.M., F.J.F., B.V., B.M.F.) and Department of Biology and Bioinformatics (S.N., R.B.), University of Bern, Bern, Switzerland; Vital-IT, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland (S.N.); and Department of Clinical Research, University Hospital Bern, Bern, Switzerland (B.M.F.)
| | - David Mordasini
- From the Department of Nephrology, Hypertension, and Clinical Pharmacology (M.R., T.A., D.M., F.J.F., B.V., B.M.F.) and Department of Biology and Bioinformatics (S.N., R.B.), University of Bern, Bern, Switzerland; Vital-IT, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland (S.N.); and Department of Clinical Research, University Hospital Bern, Bern, Switzerland (B.M.F.)
| | - Felix J Frey
- From the Department of Nephrology, Hypertension, and Clinical Pharmacology (M.R., T.A., D.M., F.J.F., B.V., B.M.F.) and Department of Biology and Bioinformatics (S.N., R.B.), University of Bern, Bern, Switzerland; Vital-IT, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland (S.N.); and Department of Clinical Research, University Hospital Bern, Bern, Switzerland (B.M.F.)
| | - Bruno Vogt
- From the Department of Nephrology, Hypertension, and Clinical Pharmacology (M.R., T.A., D.M., F.J.F., B.V., B.M.F.) and Department of Biology and Bioinformatics (S.N., R.B.), University of Bern, Bern, Switzerland; Vital-IT, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland (S.N.); and Department of Clinical Research, University Hospital Bern, Bern, Switzerland (B.M.F.)
| | - Brigitte M Frey
- From the Department of Nephrology, Hypertension, and Clinical Pharmacology (M.R., T.A., D.M., F.J.F., B.V., B.M.F.) and Department of Biology and Bioinformatics (S.N., R.B.), University of Bern, Bern, Switzerland; Vital-IT, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland (S.N.); and Department of Clinical Research, University Hospital Bern, Bern, Switzerland (B.M.F.)
| |
Collapse
|
19
|
Siggelkow H, Etmanski M, Bozkurt S, Groβ P, Koepp R, Brockmöller J, Tzvetkov MV. Genetic polymorphisms in 11β-hydroxysteroid dehydrogenase type 1 correlate with the postdexamethasone cortisol levels and bone mineral density in patients evaluated for osteoporosis. J Clin Endocrinol Metab 2014; 99:E293-302. [PMID: 24285685 DOI: 10.1210/jc.2013-1418] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
CONTEXT Higher physiological cortisol levels may increase the risk of age-related osteoporosis. We hypothesized that common polymorphisms in the cortisol synthesis enzyme 11β-hydroxysteroid dehydrogenase (HSD11B) may cause interindividual variations in cortisol levels and age-related bone loss. STUDY DESIGN AND PATIENTS We performed a retrospective study in a cohort of 452 ambulatory patients under evaluation for osteoporosis. We investigated the associations of 16 single-nucleotide polymorphisms (in the HSD11B1 and HSD11B2 genes with a postdexamethasone cortisol (PDC) level and bone mineral density (BMD; primary end points) and fracture risk (secondary end point) in a subgroup of 304 patients. The observed associations with BMD were validated in a subgroup of 148 patients. RESULTS The PDC level increased with age (R = 0.274, P < 10(-5), n = 287) and was negatively correlated with BMD at the femoral neck (R = -0.278, P < 10(-5), n = 258). Three genetically linked single-nucleotide polymorphisms (in intron 5 of HSD11B1), rs1000283, rs932335, and rs11811440, were significantly associated with BMD, with rs11811440 having the strongest association. The presence of the minor rs11811440 A allele was correlated with a lower PDC level (R = -0.128, P = .03, n = 304). The A allele was also consistently correlated with a higher spinal BMD in both patient subgroups (R = 0.17, Bonferroni corrected P = .006, n = 452). The correlation with BMD remained significant after adjustment for age, gender, body mass index, and type of osteoporosis and was stronger in patients older than 65 years. CONCLUSION Genetic variations in HSD11B1 may affect the physiological cortisol levels and the severity of age-related osteoporosis. Underlying functional mechanisms remain to be elucidated.
Collapse
Affiliation(s)
- Heide Siggelkow
- Institute of Gastroenterology and Endocrinology (H.S., M.E., S.B., P.G., R.K.), Endokrinologikum Göttingen (H.S.), and Institute of Clinical Pharmacology (M.E., J.B., M.V.T.), Georg-August-University Göttingen, 37073 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Chapman K, Holmes M, Seckl J. 11β-hydroxysteroid dehydrogenases: intracellular gate-keepers of tissue glucocorticoid action. Physiol Rev 2013; 93:1139-206. [PMID: 23899562 DOI: 10.1152/physrev.00020.2012] [Citation(s) in RCA: 603] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoid action on target tissues is determined by the density of "nuclear" receptors and intracellular metabolism by the two isozymes of 11β-hydroxysteroid dehydrogenase (11β-HSD) which catalyze interconversion of active cortisol and corticosterone with inert cortisone and 11-dehydrocorticosterone. 11β-HSD type 1, a predominant reductase in most intact cells, catalyzes the regeneration of active glucocorticoids, thus amplifying cellular action. 11β-HSD1 is widely expressed in liver, adipose tissue, muscle, pancreatic islets, adult brain, inflammatory cells, and gonads. 11β-HSD1 is selectively elevated in adipose tissue in obesity where it contributes to metabolic complications. Similarly, 11β-HSD1 is elevated in the ageing brain where it exacerbates glucocorticoid-associated cognitive decline. Deficiency or selective inhibition of 11β-HSD1 improves multiple metabolic syndrome parameters in rodent models and human clinical trials and similarly improves cognitive function with ageing. The efficacy of inhibitors in human therapy remains unclear. 11β-HSD2 is a high-affinity dehydrogenase that inactivates glucocorticoids. In the distal nephron, 11β-HSD2 ensures that only aldosterone is an agonist at mineralocorticoid receptors (MR). 11β-HSD2 inhibition or genetic deficiency causes apparent mineralocorticoid excess and hypertension due to inappropriate glucocorticoid activation of renal MR. The placenta and fetus also highly express 11β-HSD2 which, by inactivating glucocorticoids, prevents premature maturation of fetal tissues and consequent developmental "programming." The role of 11β-HSD2 as a marker of programming is being explored. The 11β-HSDs thus illuminate the emerging biology of intracrine control, afford important insights into human pathogenesis, and offer new tissue-restricted therapeutic avenues.
Collapse
Affiliation(s)
- Karen Chapman
- Endocrinology Unit, Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | | |
Collapse
|
21
|
Campino C, Martinez-Aguayo A, Baudrand R, Carvajal CA, Aglony M, Garcia H, Padilla O, Kalergis AM, Fardella CE. Age-related changes in 11β-hydroxysteroid dehydrogenase type 2 activity in normotensive subjects. Am J Hypertens 2013; 26:481-7. [PMID: 23443726 DOI: 10.1093/ajh/hps080] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Impairment in 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) activity results in inefficient inactivation of cortisol to cortisone, and it can trigger hypertension through activation of the mineralocorticoid receptor. Information about age-related changes in 11β-HSD2 activity and its physiological consequences is scarce. Our aim was to investigate whether 11β-HSD2 activity is age dependent in normotensive subjects. METHODS We recruited 196 healthy, normotensive subjects. Of these, 93 were children (Group 1: aged 5-15 years), and 103 were adults who were divided according to their ages: Group 2: aged 30-41 years (n = 10); Group 3: aged 42-53 years (n = 72); and Group 4: aged 54-65 years (n = 21). Fasting serum cortisol, cortisone, aldosterone, and plasma renin activity (PRA) were measured. The 11β-HSD2 activity was estimated by the cortisol/cortisone ratio. The results were expressed as median (interquartile range (IQR)) values and compared using Kruskal-Wallis and Dunn's multiple-comparison tests. RESULTS As subject age increased, cortisol concentrations increased (Group 1 median = 8.6, IQR = 6.3-10.8 µg/dl; Group 4 median = 12.4, IQR = 10.7-14.7 µg/dl; P < 0.001), and cortisone concentrations showed a gradual decrease (Group 2 median = 4.0, IQR = 3.3-4.2 µg/dl; Group 4 median =2.8, IQR = 2.6-3.3 µg/dl; P < 0.01). As a consequence, the cortisol/cortisone ratio was higher in the oldest subjects (Group 4) than in the subjects from the other 3 groups; the ratios from Group 4 to Group 1 were 4.4 (IQR = 3.7-5.1) µg/dl, 3.3 (IQR = 2.7-3.8) µg/dl, 2.5 (IQR = 2.3-3.8) µg/dl, and 2.7 (IQR = 2.1-3.4) µg/dl, respectively (P < 0.01). The PRA decreased with age. Blood pressure levels increased with age but stayed within the normal range. CONCLUSIONS Cortisol and the cortisol/cortisone ratio increased with age, but cortisone decreased, suggesting a decrease in 11β-HSD2 activity. These results suggest that the cortisol-mediated activation of the mineralocorticoid receptor may explain the blood pressure increase in elderly subjects.
Collapse
Affiliation(s)
- Carmen Campino
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lauterburg M, Escher G, Dick B, Ackermann D, Frey FJ. Uninephrectomy reduces 11β-hydroxysteroid dehydrogenase type 1 and type 2 concomitantly with an increase in blood pressure in rats. J Endocrinol 2012; 214:373-80. [PMID: 22739210 DOI: 10.1530/joe-12-0200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Renal allograft donors are at risk of developing hypertension. Here, we hypothesized that this risk is at least in part explained by an enhanced intracellular availability of 11β-hydroxyglucocorticoids due to an increased 11β-hydroxysteroid dehydrogenase type 1 enzyme (11β-HSD1), an intracellular prereceptor activator of biologically inactive 11-ketocorticosteroids in the liver, and/or a diminished 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), an inactivator of 11β-hydroxyglucocorticoids in the kidney. To test this hypothesis, uninephrectomized (UNX) (n=9) and sham-operated (n=10) adult Sprague-Dawley rats were investigated. Mean arterial blood pressure and heart rate were measured continuously by telemetry for 6 days in week 5 after UNX. The mRNA of 11β-Hsd1 and 11β-Hsd2 in liver and kidney tissues were assessed by RT-PCR and the 11β-HSD activities were directly quantified in their corresponding tissues by determining the ratios of (tetrahydrocorticosterone+5α-tetrahydrocorticosterone)/tetrahydrodehydrocorticosterone ((THB+5α-THB)/THA) and of corticosterone/dehydrocorticosterone (B/A) by gas chromatography-mass spectrometry. The apparent total body activities of 11β-HSD1 and 11β-HSD2 were estimated using the urinary and plasma ratios of (THB+5α-THB)/THA and B/A. Mean arterial blood pressure was increased after UNX when compared with sham operation. Hepatic mRNA content of 11β-Hsd1 and hepatic, plasma, and urinary ratios of (THB+5α-THB)/THA were decreased after UNX, indicating diminished access of glucocorticoids to its receptors. In renal tissue, 11β-Hsd2 mRNA was reduced and B/A ratios measured in kidney, plasma, and urine were increased, indicating reduced 11β-HSD2 activity and enhanced access of glucocorticoids to mineralocorticoid receptors. Both 11β-HSD1 and 11β-HSD2 are downregulated after UNX in rats, a constellation considered to induce hypertension.
Collapse
Affiliation(s)
- M Lauterburg
- Department of Nephrology and Hypertension, University Hospital Bern, Inselspital, Freiburgstrasse 15, 3010 Bern, Switzerland
| | | | | | | | | |
Collapse
|
23
|
Abstract
High blood pressure (BP) is a complex trait determined by genetic and environmental factors, as well as their interactions. Over the past few decades, there has been substantial progress elucidating the genetic determinants underlying BP response to sodium intake, or BP salt sensitivity. Research of monogenic BP disorders has highlighted the importance of renal salt handling in BP regulation, implicating genes and biological pathways subsequently identified in candidate gene studies of salt sensitivity. Despite these advancements, certain candidate gene findings await replication evidence, and some biological pathways warrant further investigation. Furthermore, results from genome-wide association studies (GWASs) and sequencing work have yet to be reported. GWAS will be valuable for uncovering novel mechanisms underlying salt sensitivity, whereas future sequencing efforts promise the discovery of functional variants related to this complex trait. Delineating the genetic architecture of salt sensitivity will be critical to understanding how genes and dietary sodium interact to influence BP.
Collapse
|
24
|
Craigie E, Evans LC, Mullins JJ, Bailey MA. Failure to downregulate the epithelial sodium channel causes salt sensitivity in Hsd11b2 heterozygote mice. Hypertension 2012; 60:684-90. [PMID: 22777941 DOI: 10.1161/hypertensionaha.112.196410] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In vivo, the enzyme 11β-hydroxysteroid dehydrogenase type 2 influences ligand access to the mineralocorticoid receptor. Ablation of the encoding gene, HSD11B2, causes the hypertensive syndrome of apparent mineralocorticoid excess. Studies in humans and experimental animals have linked reduced 11β-hydroxysteroid dehydrogenase type 2 activity and salt sensitivity of blood pressure. In the present study, renal mechanisms underpinning salt sensitivity were investigated in Hsd11b2(+/-) mice fed low-, standard-, and high-sodium diets. In wild-type mice, there was a strong correlation between dietary sodium content and fractional sodium excretion but not blood pressure. High sodium feeding abolished amiloride-sensitive sodium reabsorption, consistent with downregulation of the epithelial sodium channel. In Hsd11b2(+/-) mice, the natriuretic response to increased dietary sodium content was blunted, and epithelial sodium channel activity persisted. High-sodium diet also reduced renal blood flow and increased blood pressure in Hsd11b2(+/-) mice. Aldosterone was modulated by dietary sodium in both genotypes, and salt sensitivity in Hsd11b2(+/-) mice was associated with increased plasma corticosterone levels. Chronic administration of an epithelial sodium channel blocker or a glucocorticoid receptor antagonist prevented salt sensitivity in Hsd11b2(+/-) mice, whereas mineralocorticoid receptor blockade with spironolactone did not. This study shows that reduced 11β-hydroxysteroid dehydrogenase type 2 causes salt sensitivity of blood pressure because of impaired renal natriuretic capacity. This reflects deregulation of epithelial sodium channels and increased renal vascular resistance. The phenotype is not caused by illicit activation of mineralocorticoid receptors by glucocorticoids but by direct activation of glucocorticoid receptors.
Collapse
Affiliation(s)
- Eilidh Craigie
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | |
Collapse
|
25
|
Abstract
The central goal of this overview article is to summarize recent findings in renal epithelial transport,focusing chiefly on the connecting tubule (CNT) and the cortical collecting duct (CCD).Mammalian CCD and CNT are involved in fine-tuning of electrolyte and fluid balance through reabsorption and secretion. Specific transporters and channels mediate vectorial movements of water and solutes in these segments. Although only a small percent of the glomerular filtrate reaches the CNT and CCD, these segments are critical for water and electrolyte homeostasis since several hormones, for example, aldosterone and arginine vasopressin, exert their main effects in these nephron sites. Importantly, hormones regulate the function of the entire nephron and kidney by affecting channels and transporters in the CNT and CCD. Knowledge about the physiological and pathophysiological regulation of transport in the CNT and CCD and particular roles of specific channels/transporters has increased tremendously over the last two decades.Recent studies shed new light on several key questions concerning the regulation of renal transport.Precise distribution patterns of transport proteins in the CCD and CNT will be reviewed, and their physiological roles and mechanisms mediating ion transport in these segments will also be covered. Special emphasis will be given to pathophysiological conditions appearing as a result of abnormalities in renal transport in the CNT and CCD.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Physiology and Kidney Disease Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
26
|
Abstract
The assessment of salt sensitivity of blood pressure is difficult because of the lack of universal consensus on definition. Regardless of the variability in the definition of salt sensitivity, increased salt intake, independent of the actual level of blood pressure, is also a risk factor for cardiovascular morbidity and mortality and kidney disease. A modest reduction in salt intake results in an immediate decrease in blood pressure, with long-term beneficial consequences. However, some have suggested that dietary sodium restriction may not be beneficial to everyone. Thus, there is a need to distinguish salt-sensitive from salt-resistant individuals, but it has been difficult to do so with phenotypic studies. Therefore, there is a need to determine the genes that are involved in salt sensitivity. This review focuses on genes associated with salt sensitivity, with emphasis on the variants associated with salt sensitivity in humans that are not due to monogenic causes. Special emphasis is given to gene variants associated with salt sensitivity whose protein products interfere with cell function and increase blood pressure in transgenic mice.
Collapse
Affiliation(s)
- Hironobu Sanada
- Division of Health Science Research, Fukushima Welfare Federation of Agricultural Cooperatives, Fukushima, Japan.
| | | | | |
Collapse
|
27
|
Bailey MA, Craigie E, Livingstone DEW, Kotelevtsev YV, Al-Dujaili EAS, Kenyon CJ, Mullins JJ. Hsd11b2 haploinsufficiency in mice causes salt sensitivity of blood pressure. Hypertension 2011; 57:515-520. [PMID: 21282561 DOI: 10.1161/hypertensionaha.110.163782] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Salt sensitivity of blood pressure is an independent risk factor for cardiovascular morbidity. Mechanistically, abnormal mineralocorticoid action and subclinical renal impairment may blunt the natriuretic response to high sodium intake, causing blood pressure to rise. 11β-Hydroxysteroid dehydrogenase type 2 (11βHSD2) controls ligand access to the mineralocorticoid receptor, and ablation of the enzyme causes severe hypertension. Polymorphisms in HSD11B2 are associated with salt sensitivity of blood pressure in normotensives. In this study, we used mice heterozygote for a null mutation in Hsd11b2 (Hsd11b2(+/-)) to define the mechanisms linking reduced enzyme activity to salt sensitivity of blood pressure. A high-sodium diet caused a rapid and sustained increase in blood pressure in Hsd11b2(+/-) mice but not in wild-type littermates. During the adaptation to high-sodium diet, heterozygotes displayed impaired sodium excretion, a transient positive sodium balance, and hypokalemia. After 21 days of high-sodium feeding, Hsd11b2(+/-) mice had an increased heart weight. Mineralocorticoid receptor antagonism partially prevented the increase in heart weight but not the increase in blood pressure. Glucocorticoid receptor antagonism prevented the rise in blood pressure. In Hsd11b2(+/-) mice, high-sodium feeding caused suppression of aldosterone and a moderate but sustained increase in corticosterone. This study demonstrates an inverse relationship among 11βHSD2 activity, heart weight, and blood pressure in a clinically important context. Reduced activity causes salt sensitivity of blood pressure, but this does not reflect illicit activation of mineralocorticoid receptors by glucocorticoids. Instead, we have identified a novel interaction among 11βHSD2, dietary salt, and circulating glucocorticoids.
Collapse
Affiliation(s)
- Matthew A Bailey
- British Heart Foundation/University Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Eilidh Craigie
- British Heart Foundation/University Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Dawn E W Livingstone
- British Heart Foundation/University Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Yuri V Kotelevtsev
- British Heart Foundation/University Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, Scotland, UK.,Stem Cell Genome Modification Laboratory, Puschino State University, Russia
| | - Emad A S Al-Dujaili
- Dietetics, Nutrition and Biological Sciences Research, Queen Margaret University, Edinburgh, Scotland, UK
| | - Christopher J Kenyon
- British Heart Foundation/University Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, Scotland, UK
| | - John J Mullins
- British Heart Foundation/University Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
28
|
Familial glucocorticoid receptor haploinsufficiency by non-sense mediated mRNA decay, adrenal hyperplasia and apparent mineralocorticoid excess. PLoS One 2010; 5:e13563. [PMID: 21042587 PMCID: PMC2962642 DOI: 10.1371/journal.pone.0013563] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 09/29/2010] [Indexed: 12/24/2022] Open
Abstract
Primary glucocorticoid resistance (OMIM 138040) is a rare hereditary disease that causes a generalized partial insensitivity to glucocorticoid action, due to genetic alterations of the glucocorticoid receptor (GR). Investigation of adrenal incidentalomas led to the discovery of a family (eight affected individuals spanning three generations), prone to cortisol resistance, bilateral adrenal hyperplasia, arterial hypertension and hypokalemia. This phenotype exacerbated over time, cosegregates with the first heterozygous nonsense mutation p.R469[R,X] reported to date for the GR, replacing an arginine (CGA) by a stop (TGA) at amino-acid 469 in the second zinc finger of the DNA-binding domain of the receptor. In vitro, this mutation leads to a truncated 50-kDa GR lacking hormone and DNA binding capacity, devoid of hormone-dependent nuclear translocation and transactivation properties. In the proband's fibroblasts, we provided evidence for the lack of expression of the defective allele in vivo. The absence of detectable mutated GR mRNA was accompanied by a 50% reduction in wild type GR transcript and protein. This reduced GR expression leads to a significantly below-normal induction of glucocorticoid-induced target genes, FKBP5 in fibroblasts. We demonstrated that the molecular mechanisms of glucocorticoid signaling dysfunction involved GR haploinsufficiency due to the selective degradation of the mutated GR transcript through a nonsense-mediated mRNA Decay that was experimentally validated on emetine-treated propositus' fibroblasts. GR haploinsufficiency leads to hypertension due to illicit occupation of renal mineralocorticoid receptor by elevated cortisol rather than to increased mineralocorticoid production reported in primary glucocorticoid resistance. Indeed, apparent mineralocorticoid excess was demonstrated by a decrease in urinary tetrahydrocortisone-tetrahydrocortisol ratio in affected patients, revealing reduced glucocorticoid degradation by renal activity of the 11β-hydroxysteroid dehydrogenase type 2, a GR regulated gene. We propose thus that GR haploinsufficiency compromises glucocorticoid sensitivity and may represent a novel genetic cause of subclinical hypercortisolism, incidentally revealed bilateral adrenal hyperplasia and mineralocorticoid-independent hypertension.
Collapse
|
29
|
Glycyrrhetinic acid attenuates vascular smooth muscle vasodilatory function in healthy humans. Clin Sci (Lond) 2010; 119:437-42. [DOI: 10.1042/cs20100087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Abnormal glucocorticoid metabolism contributes to vascular dysfunction and cardiovascular disease. Cortisol activation of vascular mineralocorticoid and glucocorticoid receptors is regulated by two types of 11β-HSD (11-β hydroxysteroid dehydrogenase), namely 11β-HSD2 and 11β-HSD1 (type 2 and type 1 11β-HSD respectively). We hypothesized that inhibition of 11β-HSD would attenuate vascular function in healthy humans. A total of 15 healthy subjects were treated with the selective 11β-HSD inhibitor GA (glycyrrhetinic acid) or matching placebo in a randomized double-blinded cross-over trial. 11β-HSD activity was assessed by the urinary cortisol/cortisone ratio, and vascular function was measured using strain-gauge plethysmography. Endothelial function was measured through incremental brachial artery administration of methacholine (0.3–10 μg/min) and vascular smooth muscle function with incremental verapamil (10–300 μg/min). GA increased the 24-h urinary cortisol/cortisone ratio compared with placebo (P=0.008). GA tended to reduce the FBF (forearm blood flow) response to methacholine (P=0.09) and significantly reduced the FBF response to verapamil compared with placebo (P=0.04). MAP (mean arterial pressure) did not differ between the study conditions. 11β-HSD inhibition attenuated vascular smooth muscle vasodilatory function in healthy humans. Disturbances in cortisol activity resulting from 11β-HSD inactivation is therefore a second plausible mechanism for mineralocorticoid-mediated hypertension in humans.
Collapse
|
30
|
Heidbrink C, Häusler SFM, Buttmann M, Ossadnik M, Strik HM, Keller A, Buck D, Verbraak E, van Meurs M, Krockenberger M, Mehling M, Mittelbronn M, Laman JD, Wiendl H, Wischhusen J. Reduced cortisol levels in cerebrospinal fluid and differential distribution of 11beta-hydroxysteroid dehydrogenases in multiple sclerosis: implications for lesion pathogenesis. Brain Behav Immun 2010; 24:975-84. [PMID: 20385225 DOI: 10.1016/j.bbi.2010.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 03/25/2010] [Accepted: 04/08/2010] [Indexed: 11/19/2022] Open
Abstract
Relapses during multiple sclerosis (MS) are treated by administration of exogenous corticosteroids. However, little is known about the bioavailability of endogenous steroids in the central nervous system (CNS) of MS patients. We thus determined cortisol and dehydroepiandrosterone (DHEA) levels in serum and cerebrospinal fluid (CSF) samples from 34 MS patients, 28 patients with non-inflammatory neurological diseases (NIND) and 16 patients with other inflammatory neurological diseases (OIND). This revealed that MS patients - in sharp contrast to patients with OIND - show normal cortisol concentrations in serum and lowered cortisol levels in the CSF during acute relapses. This local cortisol deficit may relate to poor local activation of cortisone via 11beta-hydroxysteroid dehydrogenase type 1 (11bHSD1) or to inactivation via 11bHSD2. Accordingly, 11bHSD2 was found to be expressed within active plaques, whereas 11bHSD1 was predominantly detected in surrounding "foamy" macrophages. Our study thus provides new insights into the impaired endogenous CNS cortisol regulation in MS patients and its possible relation to MS lesion pathogenesis. Moreover, an observed upregulation of 11bHSD1 in myelin-loaded macrophages in vitro suggests an intriguing hypothesis for the self-limiting nature of MS lesion development. Finally, our findings provide an attractive explanation for the effectivity of high- vs. low-dose exogenous corticosteroids in the therapy of acute relapses.
Collapse
Affiliation(s)
- Claudia Heidbrink
- Department for Obstetrics and Gynecology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Manning JR, Bailey MA, Soares DC, Dunbar DR, Mullins JJ. In silico structure-function analysis of pathological variation in the HSD11B2 gene sequence. Physiol Genomics 2010; 42:319-30. [PMID: 20571110 DOI: 10.1152/physiolgenomics.00053.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
11beta-Hydroxysteroid dehydrogenase type 2 (11betaHSD2) is a short-chain dehydrogenase/reductase (SDR) responsible for inactivating cortisol and preventing its binding to the mineralocorticoid receptor (MR). Nonfunctional mutations in HSD11B2, the gene encoding 11betaHSD2, cause the hypertensive syndrome of apparent mineralocorticoid excess (AME). Like other such Mendelian disorders, AME is rare but has nevertheless helped to illuminate principles fundamental to the regulation of blood pressure. Furthermore, polymorphisms in HSD11B2 have been associated with salt sensitivity, a major risk factor for cardiovascular mortality. It is therefore highly likely that sequence variation in HSD11B2, having subtle functional ramifications, will affect blood pressure in the wider population. In this study, a three-dimensional homology model of 11betaHSD2 was created and used to hypothesize the functional consequences in terms of protein structure of published mutations in HSD11B2. This approach underscored the strong genotype-phenotype correlation of AME: severe forms of the disease, associated with little in vivo enzyme activity, arise from mutations occurring in invariant alignment positions. These were predicted to exert gross structural changes in the protein. In contrast, those mutations causing a mild clinical phenotype were in less conserved regions of the protein that were predicted to be relatively more tolerant to substitution. Finally, a number of pathogenic mutations are shown to be associated with regions predicted to participate in dimer formation, and in protein stabilization, which may therefore suggest molecular mechanisms of disease.
Collapse
Affiliation(s)
- Jonathan R Manning
- Centre for Cardiovascular Science, Queen's Medical Research Institute, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | | | |
Collapse
|
32
|
Staab CA, Maser E. 11beta-Hydroxysteroid dehydrogenase type 1 is an important regulator at the interface of obesity and inflammation. J Steroid Biochem Mol Biol 2010; 119:56-72. [PMID: 20045052 DOI: 10.1016/j.jsbmb.2009.12.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 12/17/2009] [Accepted: 12/21/2009] [Indexed: 12/13/2022]
Abstract
Systemic glucocorticoid excess, as exemplified by the Cushing syndrome, leads to obesity and all further symptoms of the metabolic syndrome. The current obesity epidemic, however, is not characterized by increased plasma cortisol concentrations, but instead comes along with chronic low-grade inflammation in adipose tissue and concomitant increased levels of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1, gene HSD11B1), a parameter known to cause obesity in a mouse model. 11beta-HSD1 represents an intracellular amplifier of active glucocorticoid, thus enhances the associated effects on the inflammatory response as well as on nutrient and energy metabolism, and may therefore cause and exacerbate obesity by local increase of glucocorticoid concentrations. Obtained by extensive literature and database searching, the present review includes comprehensive lists of primary glucocorticoid-sensitive genes and gene products as well as of the thus far known regulators of HSD11B1 expression with implication in inflammation and metabolic disease. Collectively, the data clearly show that, in addition to amplifying active glucocorticoid and thus profoundly modulating inflammation and nutrient metabolism, 11beta-HSD1 is subject to tight control of multiple additional immunomodulatory and metabolic regulators. Hence, 11beta-HSD1 acts at the interface of inflammation and obesity and represents an efficient integrator and effector of local inflammatory and metabolic state.
Collapse
Affiliation(s)
- Claudia A Staab
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Str. 10, 24105 Kiel, Germany
| | | |
Collapse
|
33
|
Campino C, Carvajal CA, Cornejo J, San Martín B, Olivieri O, Guidi G, Faccini G, Pasini F, Sateler J, Baudrand R, Mosso L, Owen GI, Kalergis AM, Padilla O, Fardella CE. 11β-Hydroxysteroid dehydrogenase type-2 and type-1 (11β-HSD2 and 11β-HSD1) and 5β-reductase activities in the pathogenia of essential hypertension. Endocrine 2010; 37:106-14. [PMID: 19882252 DOI: 10.1007/s12020-009-9269-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 10/11/2009] [Indexed: 10/20/2022]
Abstract
Cortisol availability is modulated by several enzymes: 11β-HSD2, which transforms cortisol (F) to cortisone (E) and 11β-HSD1 which predominantly converts inactive E to active F. Additionally, the A-ring reductases (5α- and 5β-reductase) inactivate cortisol (together with 3α-HSD) to tetrahydrometabolites: 5αTHF, 5βTHF, and THE. The aim was to assess 11β-HSD2, 11β-HSD1, and 5β-reductase activity in hypertensive patients. Free urinary F, E, THF, and THE were measured by HPLC-MS/MS in 102 essential hypertensive patients and 18 normotensive controls. 11β-HSD2 enzyme activity was estimated by the F/E ratio, the activity of 11β-HSD1 in compare to 11β-HSD2 was inferred by the (5αTHF + 5βTHF)/THE ratio and 5β-reductase activity assessed using the E/THE ratio. Activity was considered altered when respective ratios exceeded the maximum value observed in the normotensive controls. A 15.7% of patients presented high F/E ratio suggesting a deficit of 11β-HSD2 activity. Of the remaining 86 hypertensive patients, two possessed high (5αTHF + 5βTHF)/THE ratios and 12.8% had high E/THE ratios. We observed a high percentage of alterations in cortisol metabolism at pre-receptor level in hypertensive patients, previously misclassified as essential. 11β-HSD2 and 5β-reductase decreased activity and imbalance of 11β-HSDs should be considered in the future management of hypertensive patients.
Collapse
Affiliation(s)
- Carmen Campino
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Lira 85, 5° Piso, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Glycyrrhetinic acid food supplementation lowers serum potassium concentration in chronic hemodialysis patients. Kidney Int 2009; 76:877-84. [PMID: 19641483 DOI: 10.1038/ki.2009.269] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hyperkalemia is a common life-threatening problem in hemodialysis patients. Because glycyrrhetinic acid (GA) inhibits the enzyme 11beta-hydroxy-steroid dehydrogenase II and thereby increases cortisol availability to the colonic mineralocorticoid receptor, it has the potential to lower serum potassium concentrations. To test this, 10 patients in a 6 month prospective, double-blind, placebo-controlled crossover study were given cookies or bread rolls supplemented with glycyrrhetinic acid or placebo. Twenty-four-hour blood pressure measurements were performed at baseline and week 6 and 12 of each treatment period. The ratio of plasma cortisol/cortisone was significantly increased in all patients on GA as compared to baseline or placebo, indicating appropriate enzyme inhibition. Nine of the 10 patients had a persistent decrease in predialysis serum potassium concentration. On GA, mean predialysis serum potassium was significantly lower than at baseline or on placebo. On placebo, serum potassium was significantly elevated above the upper limit of normal in 76% compared to 30% of measurements during GA treatment. Furthermore, on this treatment the frequency of severe hyperkalemia significantly decreased from 9% to 0.6%. No differences were found in parameters reflecting sodium retention. Although these studies show that prolonged GA supplementation persistently lowers serum potassium in dialysis patients, a long-term toxicity study will be mandatory before we recommend the routine use of this treatment.
Collapse
|
35
|
Bunck M, Czibere L, Horvath C, Graf C, Frank E, Kessler MS, Murgatroyd C, Müller-Myhsok B, Gonik M, Weber P, Pütz B, Muigg P, Panhuysen M, Singewald N, Bettecken T, Deussing JM, Holsboer F, Spengler D, Landgraf R. A hypomorphic vasopressin allele prevents anxiety-related behavior. PLoS One 2009; 4:e5129. [PMID: 19357765 PMCID: PMC2663030 DOI: 10.1371/journal.pone.0005129] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Accepted: 02/18/2009] [Indexed: 12/13/2022] Open
Abstract
Background To investigate neurobiological correlates of trait anxiety, CD1 mice were selectively bred for extremes in anxiety-related behavior, with high (HAB) and low (LAB) anxiety-related behavior mice additionally differing in behavioral tests reflecting depression-like behavior. Methodology/ Principal Findings In this study, microarray analysis, in situ hybridization, quantitative real-time PCR and immunohistochemistry revealed decreased expression of the vasopressin gene (Avp) in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei of adult LAB mice compared to HAB, NAB (normal anxiety-related behavior) and HABxLAB F1 intercross controls, without detecting differences in receptor expression or density. By sequencing the regions 2.5 kbp up- and downstream of the Avp gene locus, we could identify several polymorphic loci, differing between the HAB and LAB lines. In the gene promoter, a deletion of twelve bp Δ(−2180–2191) is particularly likely to contribute to the reduced Avp expression detected in LAB animals under basal conditions. Indeed, allele-specific transcription analysis of F1 animals revealed a hypomorphic LAB-specific Avp allele with a reduced transcription rate by 75% compared to the HAB-specific allele, thus explaining line-specific Avp expression profiles and phenotypic features. Accordingly, intra-PVN Avp mRNA levels were found to correlate with anxiety-related and depression-like behaviors. In addition to this correlative evidence, a significant, though moderate, genotype/phenotype association was demonstrated in 258 male mice of a freely-segregating F2 panel, suggesting a causal contribution of the Avp promoter deletion to anxiety-related behavior. Discussion Thus, the identification of polymorphisms in the Avp gene promoter explains gene expression differences in association with the observed phenotype, thus further strengthening the concept of the critical involvement of centrally released AVP in trait anxiety.
Collapse
Affiliation(s)
- Mirjam Bunck
- Max Planck Institute of Psychiatry, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tsugita M, Iwasaki Y, Nishiyama M, Taguchi T, Shinahara M, Taniguchi Y, Kambayashi M, Terada Y, Hashimoto K. Differential regulation of 11β-hydroxysteroid dehydrogenase type-1 and -2 gene transcription by proinflammatory cytokines in vascular smooth muscle cells. Life Sci 2008; 83:426-32. [DOI: 10.1016/j.lfs.2008.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 06/21/2008] [Accepted: 07/12/2008] [Indexed: 11/26/2022]
|
37
|
Henschkowski J, Stuck AE, Frey BM, Gillmann G, Dick B, Frey FJ, Mohaupt MG. Age-dependent decrease in 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2) activity in hypertensive patients. Am J Hypertens 2008; 21:644-9. [PMID: 18443572 DOI: 10.1038/ajh.2008.152] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The prevalence of arterial hypertension lacking a defined underlying cause increases with age. Age-related arterial hypertension is insufficiently understood, yet known characteristics suggest an aldosterone-independent activation of the mineralocorticoid receptor. Therefore, we hypothesized that 11beta-HSD2 activity is age-dependently impaired, resulting in a compromised intracellular inactivation of cortisol (F) with F-mediated mineralocorticoid hypertension. METHODS Steroid hormone metabolites in 24-h urine samples of 165 consecutive hypertensive patients were analyzed for F and cortisone (E), and their TH-metabolites tetrahydro-F (THF), 5alphaTHF, TH-deoxycortisol (THS), and THE by gas chromatography-mass spectroscopy. Apparent 11beta-HSD2 and 11beta-hydroxylase activity and excretion of F metabolites were assessed. RESULTS In 72 female and 93 male patients aged 18-84 years, age correlated positively with the ratios of (THF + 5alphaTHF)/THE (P = 0.065) and F/E (P < 0.002) suggesting an age-dependent reduction in the apparent 11beta-HSD2 activity, which persisted (F/E; P = 0.020) after excluding impaired renal function. Excretion of F metabolites remained age-independent most likely as a consequence of an age-dependent diminished apparent 11beta-hydroxylase activity (P = 0.038). CONCLUSION Reduced 11beta-HSD2 activity emerges as a previously unrecognized risk factor contributing to the rising prevalence of arterial hypertension in elderly. This opens new perspectives for targeted treatment of age-related hypertension.
Collapse
|
38
|
Salt-sensitive men show reduced heart rate variability, lower norepinephrine and enhanced cortisol during mental stress. J Hum Hypertens 2008; 22:423-31. [PMID: 18337758 DOI: 10.1038/jhh.2008.11] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Salt sensitivity (SS) represents a risk factor for essential hypertension, which has been related to enhanced cardiovascular stress reactivity possibly mediated by increased noradrenergic susceptibility. We investigated biophysiological responses to mental stress in salt-sensitive (ss) and salt-resistant (sr) subjects, hypothesizing lower heart rate variability (HRV) and higher cortisol in the ss. A total of 48 healthy normotensive Caucasian men (age 25.6+/-2.6, body mass index 22.9+/-2.3) were phenotyped for SS (defined as significant drop in mean arterial pressure>3 mm Hg under the low-salt diet) by a 2-week high- versus low-salt diet. Subjects underwent a standardized mental stress task with continuous cardiovascular monitoring before, during and after the test (Finapres; Ohmeda, Louisville, CO, USA). Blood samples were drawn to examine cortisol and catecholamines before, after and 20 min after stress. The task elicited significant increases of systolic blood pressure (SBP), diastolic BP (DBP) and heart rate (HR) and a significant decrease of HRV (all time effects P<0.0001). The ss subjects showed lower norepinephrine (NE) and higher cortisol, indicated by significant group effects (P=0.009 and 0.025, respectively). HR increased and HRV decreased more in the ss under the stress, shown by significant time by group interactions (P=0.045 and 0.003, respectively). The observation of a more pronounced HR rise coupled with a greater decrease of HRV in healthy ss men under the influence of brief mental stress confirms their enhanced physiological stress reactivity. The lower peripheral NE may represent an effort to compensate for increased noradrenergic receptor sensitivity. The enhanced cortisol levels are backed by recent genetic findings on HSD11B2 polymorphisms and may promote hypertension.
Collapse
|