1
|
Lanzillotta C, Tramutola A, Lanzillotta S, Greco V, Pagnotta S, Sanchini C, Di Angelantonio S, Forte E, Rinaldo S, Paone A, Cutruzzolà F, Cimini FA, Barchetta I, Cavallo MG, Urbani A, Butterfield DA, Di Domenico F, Paul BD, Perluigi M, Duarte JMN, Barone E. Biliverdin Reductase-A integrates insulin signaling with mitochondrial metabolism through phosphorylation of GSK3β. Redox Biol 2024; 73:103221. [PMID: 38843768 PMCID: PMC11190564 DOI: 10.1016/j.redox.2024.103221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
Brain insulin resistance links the failure of energy metabolism with cognitive decline in both type 2 Diabetes Mellitus (T2D) and Alzheimer's disease (AD), although the molecular changes preceding overt brain insulin resistance remain unexplored. Abnormal biliverdin reductase-A (BVR-A) levels were observed in both T2D and AD and were associated with insulin resistance. Here, we demonstrate that reduced BVR-A levels alter insulin signaling and mitochondrial bioenergetics in the brain. Loss of BVR-A leads to IRS1 hyper-activation but dysregulates Akt-GSK3β complex in response to insulin, hindering the accumulation of pGSK3βS9 into the mitochondria. This event impairs oxidative phosphorylation and fosters the activation of the mitochondrial Unfolded Protein Response (UPRmt). Remarkably, we unveil that BVR-A is required to shuttle pGSK3βS9 into the mitochondria. Our data sheds light on the intricate interplay between insulin signaling and mitochondrial metabolism in the brain unraveling potential targets for mitigating the development of brain insulin resistance and neurodegeneration.
Collapse
Affiliation(s)
- Chiara Lanzillotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Antonella Tramutola
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Simona Lanzillotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Viviana Greco
- Department of Basic Biotechnology, Perioperative and Intensive Clinics, Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, L.go F.Vito 1, 00168, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A.Gemelli 8, 00168, Rome, Italy
| | - Sara Pagnotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Caterina Sanchini
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | - Silvia Di Angelantonio
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, 00161, Rome, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, Italy
| | - Elena Forte
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Alessio Paone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Francesca Cutruzzolà
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | | | - Ilaria Barchetta
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | | | - Andrea Urbani
- Department of Basic Biotechnology, Perioperative and Intensive Clinics, Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, L.go F.Vito 1, 00168, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A.Gemelli 8, 00168, Rome, Italy
| | - D Allan Butterfield
- Sanders-Brown Center on Aging, Department of Chemistry, University of Kentucky, Lexington, KY, USA
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Bindu D Paul
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy
| | - Joao M N Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Italy.
| |
Collapse
|
2
|
Paul BD, Pieper AA. Neuroprotective Roles of the Biliverdin Reductase-A/Bilirubin Axis in the Brain. Biomolecules 2024; 14:155. [PMID: 38397392 PMCID: PMC10887292 DOI: 10.3390/biom14020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Biliverdin reductase-A (BVRA) is a multi-functional enzyme with a multitude of important roles in physiologic redox homeostasis. Classically, BVRA is well known for converting the heme metabolite biliverdin to bilirubin, which is a potent antioxidant in both the periphery and the brain. However, BVRA additionally participates in many neuroprotective signaling cascades in the brain that preserve cognition. Here, we review the neuroprotective roles of BVRA and bilirubin in the brain, which together constitute a BVRA/bilirubin axis that influences healthy aging and cognitive function.
Collapse
Affiliation(s)
- Bindu D. Paul
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
| | - Andrew A. Pieper
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
3
|
Perluigi M, Di Domenico F, Butterfield DA. Oxidative damage in neurodegeneration: roles in the pathogenesis and progression of Alzheimer disease. Physiol Rev 2024; 104:103-197. [PMID: 37843394 PMCID: PMC11281823 DOI: 10.1152/physrev.00030.2022] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/30/2023] [Accepted: 05/24/2023] [Indexed: 10/17/2023] Open
Abstract
Alzheimer disease (AD) is associated with multiple etiologies and pathological mechanisms, among which oxidative stress (OS) appears as a major determinant. Intriguingly, OS arises in various pathways regulating brain functions, and it seems to link different hypotheses and mechanisms of AD neuropathology with high fidelity. The brain is particularly vulnerable to oxidative damage, mainly because of its unique lipid composition, resulting in an amplified cascade of redox reactions that target several cellular components/functions ultimately leading to neurodegeneration. The present review highlights the "OS hypothesis of AD," including amyloid beta-peptide-associated mechanisms, the role of lipid and protein oxidation unraveled by redox proteomics, and the antioxidant strategies that have been investigated to modulate the progression of AD. Collected studies from our groups and others have contributed to unraveling the close relationships between perturbation of redox homeostasis in the brain and AD neuropathology by elucidating redox-regulated events potentially involved in both the pathogenesis and progression of AD. However, the complexity of AD pathological mechanisms requires an in-depth understanding of several major intracellular pathways affecting redox homeostasis and relevant for brain functions. This understanding is crucial to developing pharmacological strategies targeting OS-mediated toxicity that may potentially contribute to slow AD progression as well as improve the quality of life of persons with this severe dementing disorder.
Collapse
Affiliation(s)
- Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
4
|
Zhou HL, Grimmett ZW, Venetos NM, Stomberski CT, Qian Z, McLaughlin PJ, Bansal PK, Zhang R, Reynolds JD, Premont RT, Stamler JS. An enzyme that selectively S-nitrosylates proteins to regulate insulin signaling. Cell 2023; 186:5812-5825.e21. [PMID: 38056462 PMCID: PMC10794992 DOI: 10.1016/j.cell.2023.11.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/01/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
Acyl-coenzyme A (acyl-CoA) species are cofactors for numerous enzymes that acylate thousands of proteins. Here, we describe an enzyme that uses S-nitroso-CoA (SNO-CoA) as its cofactor to S-nitrosylate multiple proteins (SNO-CoA-assisted nitrosylase, SCAN). Separate domains in SCAN mediate SNO-CoA and substrate binding, allowing SCAN to selectively catalyze SNO transfer from SNO-CoA to SCAN to multiple protein targets, including the insulin receptor (INSR) and insulin receptor substrate 1 (IRS1). Insulin-stimulated S-nitrosylation of INSR/IRS1 by SCAN reduces insulin signaling physiologically, whereas increased SCAN activity in obesity causes INSR/IRS1 hypernitrosylation and insulin resistance. SCAN-deficient mice are thus protected from diabetes. In human skeletal muscle and adipose tissue, SCAN expression increases with body mass index and correlates with INSR S-nitrosylation. S-nitrosylation by SCAN/SNO-CoA thus defines a new enzyme class, a unique mode of receptor tyrosine kinase regulation, and a revised paradigm for NO function in physiology and disease.
Collapse
Affiliation(s)
- Hua-Lin Zhou
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Zachary W Grimmett
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Nicholas M Venetos
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Colin T Stomberski
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Zhaoxia Qian
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Precious J McLaughlin
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Puneet K Bansal
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Rongli Zhang
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - James D Reynolds
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Anesthesiology and Perioperative Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Richard T Premont
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Jonathan S Stamler
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
5
|
Cimini FA, Tramutola A, Barchetta I, Ceccarelli V, Gangitano E, Lanzillotta S, Lanzillotta C, Cavallo MG, Barone E. Dynamic Changes of BVRA Protein Levels Occur in Response to Insulin: A Pilot Study in Humans. Int J Mol Sci 2023; 24:ijms24087282. [PMID: 37108445 PMCID: PMC10138944 DOI: 10.3390/ijms24087282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Biliverdin reductase-A (BVRA) is involved in the regulation of insulin signaling and the maintenance of glucose homeostasis. Previous research showed that BVRA alterations are associated with the aberrant activation of insulin signaling in dysmetabolic conditions. However, whether BVRA protein levels change dynamically within the cells in response to insulin and/or glucose remains an open question. To this aim, we evaluated changes of intracellular BVRA levels in peripheral blood mononuclear cells (PBMC) collected during the oral glucose tolerance test (OGTT) in a group of subjects with different levels of insulin sensitivity. Furthermore, we looked for significant correlations with clinical measures. Our data show that BVRA levels change dynamically during the OGTT in response to insulin, and greater BVRA variations occur in those subjects with lower insulin sensitivity. Changes of BVRA significantly correlate with indexes of increased insulin resistance and insulin secretion (HOMA-IR, HOMA-β, and insulinogenic index). At the multivariate regression analysis, the insulinogenic index independently predicted increased BVRA area under curve (AUC) during the OGTT. This pilot study showed, for the first time, that intracellular BVRA protein levels change in response to insulin during OGTT and are greater in subjects with lower insulin sensitivity, supporting the role of BVR-A in the dynamic regulation of the insulin signaling pathway.
Collapse
Affiliation(s)
- Flavia Agata Cimini
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonella Tramutola
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, 00185 Rome, Italy
| | - Ilaria Barchetta
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Valentina Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Elena Gangitano
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Simona Lanzillotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, 00185 Rome, Italy
| | - Chiara Lanzillotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, 00185 Rome, Italy
| | | | - Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
6
|
Yilmaz UC, Evin F, Onay H, Ozen S, Darcan S, Simsek DG. Molecular genetic etiology by whole exome sequence analysis in cases with familial type 1 diabetes mellitus without HLA haplotype predisposition or incomplete predisposition. J Pediatr Endocrinol Metab 2023; 36:64-73. [PMID: 36343308 DOI: 10.1515/jpem-2022-0295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVES Familial transmission is observed in approximately 10% of cases with type 1 diabetes mellitus (T1DM). The most important gene determining susceptibility is the human leukocyte antigen complex (HLA) located on chromosome 6. More than 50 susceptible loci are associated with T1DM susceptibility have been identified in genes other than HLA. In this study, it was aimed to investigate the molecular genetic etiology by whole-exome sequence (WES) analysis in cases with familial T1DM with no or weakly detected HLA tissue type susceptibility. We aimed to identify new genes responsible for the development of type 1 diabetes and to reveal new genes that have not been shown in the literature before. METHODS Cases with at least one T1DM diagnosis in first-degree relatives were included in the study. In the first step, HLA DQ2 and DQ8 loci, which are known to be associated with T1DM susceptibility, were investigated by. In the second step, the presence of variants that could explain the situation was investigated by WES analysis in patients who were negative for both HLA DQ2 and HLA DQ8 haplotypes, HLA DQ2 negative, HLA DQ8 positive, and HLA DQ2 positive and HLA DQ8 negative patients. RESULTS The mean age and duration of diabetes of the 30 cases (Girl/Male: 17/13) were 14.9 ± 6 and 7.56 ± 3.84 years, respectively. There was consanguineous marriage in 5 (16%) of the families. As a result of filtering all exome sequence analysis data of two cases with DQ2 (DQB1*02) (-) and DQ8 (DQB1*03:02) (-), seven cases with DQ2 (DQB1*02) (+) and DQ8 (DQB1*03:02) (-), and one case with DQ2 (DQB1*02) (-) and DQ8 (DQB1*03:02) (+), seven different variants in seven different genes were detected in five cases. The pathogenicity of the detected variants were determined according to the "American College of Medical Genetics and Genomics (ACMG)" criteria. These seven variants detected were evaluated as high-score VUS (Variants of unknown/uncertain significance). In the segregation study conducted for the mutation in the POLG gene detected in case 5, this variant was detected in the mother of the case and his brother with T1DM. Segregation studies are ongoing for variants detected in other affected individuals in the family. CONCLUSIONS In conclusion, in this study, seven different variants in seven different genes were detected in five patients by WES analysis in familial T1DM patients with no or weak HLA tissue type susceptibility. These seven variants detected were evaluated as high-score VUS. POLG might be a novel candidate gene responsible for susceptibility to T1DM. Non-HLA genes directly responsible for the development of T1DM were not detected in any of the cases.
Collapse
Affiliation(s)
- Uğur Cem Yilmaz
- Department of Pediatrics, Ege University Faculty of Medicine, Izmir, Turkey
| | - Ferda Evin
- Division of Pediatric Endocrinology and Diabetes, Ege University Faculty of Medicine, Izmir, Turkey
| | - Huseyin Onay
- Multigen Genetic Diseases Diagnosis Center, Izmir, Turkey
| | - Samim Ozen
- Division of Pediatric Endocrinology and Diabetes, Ege University Faculty of Medicine, Izmir, Turkey
| | - Sukran Darcan
- Division of Pediatric Endocrinology and Diabetes, Ege University Faculty of Medicine, Izmir, Turkey
| | - Damla Goksen Simsek
- Division of Pediatric Endocrinology and Diabetes, Ege University Faculty of Medicine, Izmir, Turkey
| |
Collapse
|
7
|
Intranasal Administration of KYCCSRK Peptide Rescues Brain Insulin Signaling Activation and Reduces Alzheimer's Disease-like Neuropathology in a Mouse Model for Down Syndrome. Antioxidants (Basel) 2023; 12:antiox12010111. [PMID: 36670973 PMCID: PMC9854894 DOI: 10.3390/antiox12010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Down syndrome (DS) is the most frequent genetic cause of intellectual disability and is strongly associated with Alzheimer's disease (AD). Brain insulin resistance greatly contributes to AD development in the general population and previous studies from our group showed an early accumulation of insulin resistance markers in DS brain, already in childhood, and even before AD onset. Here we tested the effects promoted in Ts2Cje mice by the intranasal administration of the KYCCSRK peptide known to foster insulin signaling activation by directly interacting and activating the insulin receptor (IR) and the AKT protein. Therefore, the KYCCSRK peptide might represent a promising molecule to overcome insulin resistance. Our results show that KYCCSRK rescued insulin signaling activation, increased mitochondrial complexes levels (OXPHOS) and reduced oxidative stress levels in the brain of Ts2Cje mice. Moreover, we uncovered novel characteristics of the KYCCSRK peptide, including its efficacy in reducing DYRK1A (triplicated in DS) and BACE1 protein levels, which resulted in reduced AD-like neuropathology in Ts2Cje mice. Finally, the peptide elicited neuroprotective effects by ameliorating synaptic plasticity mechanisms that are altered in DS due to the imbalance between inhibitory vs. excitatory currents. Overall, our results represent a step forward in searching for new molecules useful to reduce intellectual disability and counteract AD development in DS.
Collapse
|
8
|
Cimini FA, Perluigi M, Barchetta I, Cavallo MG, Barone E. Role of Biliverdin Reductase A in the Regulation of Insulin Signaling in Metabolic and Neurodegenerative Diseases: An Update. Int J Mol Sci 2022; 23:5574. [PMID: 35628384 PMCID: PMC9141761 DOI: 10.3390/ijms23105574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/16/2022] Open
Abstract
Insulin signaling is a conserved pathway that orchestrates glucose and lipid metabolism, energy balance, and inflammation, and its dysregulation compromises the homeostasis of multiple systems. Insulin resistance is a shared hallmark of several metabolic diseases, including obesity, metabolic syndrome, and type 2 diabetes, and has been associated with cognitive decline during aging and dementia. Numerous mechanisms promoting the development of peripheral and central insulin resistance have been described, although most of them were not completely clarified. In the last decades, several studies have highlighted that biliverdin reductase-A (BVR-A), over its canonical role in the degradation of heme, acts as a regulator of insulin signaling. Evidence from human and animal studies show that BVR-A alterations are associated with the aberrant activation of insulin signaling, metabolic syndrome, liver steatosis, and visceral adipose tissue inflammation in obese and diabetic individuals. In addition, recent findings demonstrated that reduced BVR-A levels or impaired BVR-A activation contribute to the development of brain insulin resistance and metabolic alterations in Alzheimer's disease. In this narrative review, we will provide an overview on the literature by focusing on the role of BVR-A in the regulation of insulin signaling and how BVR-A alterations impact on cell dysfunctions in both metabolic and neurodegenerative disorders.
Collapse
Affiliation(s)
- Flavia Agata Cimini
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (F.A.C.); (I.B.)
| | - Marzia Perluigi
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (M.P.); (E.B.)
| | - Ilaria Barchetta
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (F.A.C.); (I.B.)
| | - Maria Gisella Cavallo
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (F.A.C.); (I.B.)
| | - Eugenio Barone
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (M.P.); (E.B.)
| |
Collapse
|
9
|
Barone E, Di Domenico F, Perluigi M, Butterfield DA. The interplay among oxidative stress, brain insulin resistance and AMPK dysfunction contribute to neurodegeneration in type 2 diabetes and Alzheimer disease. Free Radic Biol Med 2021; 176:16-33. [PMID: 34530075 PMCID: PMC8595768 DOI: 10.1016/j.freeradbiomed.2021.09.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly followed by vascular dementia. In addition to clinically diagnosed dementia, cognitive dysfunction has been reported in diabetic patients. Recent studies are now beginning to recognize type 2 diabetes mellitus (T2DM), characterized by chronic hyperglycemia and insulin resistance, as a risk factor for AD and other cognitive disorders. While studies on insulin action have remained traditionally in the domain of peripheral tissues, the detrimental effects of insulin resistance in the central nervous system on cognitive dysfunction are increasingly being reported in recent clinical and preclinical studies. Brain functions require continuous supply of glucose and oxygen and a tight regulation of metabolic processes. Loss of this metabolic regulation has been proposed to be a contributor to memory dysfunction associated with neurodegeneration. Within the above scenario, this review will focus on the interplay among oxidative stress (OS), insulin resistance and AMPK dysfunctions in the brain by highlighting how these neurotoxic events contribute to neurodegeneration. We provide an overview on the detrimental effects of OS on proteins regulating insulin signaling and how these alterations impact cell metabolic dysfunctions through AMPK dysregulation. Such processes, we assert, are critically involved in the molecular pathways that underlie AD.
Collapse
Affiliation(s)
- Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40506-0055, USA.
| |
Collapse
|
10
|
Cimini FA, Barchetta I, Zuliani I, Pagnotta S, Bertoccini L, Dule S, Zampieri M, Reale A, Baroni MG, Cavallo MG, Barone E. Biliverdin reductase-A protein levels are reduced in type 2 diabetes and are associated with poor glycometabolic control. Life Sci 2021; 284:119913. [PMID: 34453944 DOI: 10.1016/j.lfs.2021.119913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
AIM Biliverdin reductase-A (BVR-A) other than its canonical role in the degradation pathway of heme as partner of heme oxygenase-1 (HO1), has recently drawn attention as a protein with pleiotropic functions involved in insulin-glucose homeostasis. However, whether BVR-A expression is altered in type 2 diabetes (T2D) has never been evaluated. MAIN METHODS BVR-A protein levels were evaluated in T2D (n = 44) and non-T2D (n = 29) subjects, who underwent complete clinical workup and routine biochemistry. In parallel, levels HO1, whose expression is regulated by BVR-A as well as levels of tumor necrosis factor α (TNFα), which is a known repressor for BVR-A with pro-inflammatory properties, were also assessed. KEY FINDINGS BVR-A levels were significantly lower in T2D subjects than in non-T2D subjects. Reduced BVR-A levels were associated with greater body mass, systolic blood pressure, fasting blood glucose (FBG), glycated hemoglobin (HbA1c), triglycerides, transaminases and TNFα, and with lower high-density lipoprotein (HDL) levels. Lower BVR-A levels are associated with reduced HO1 protein levels and the multivariate analysis showed that BVR-A represented the main determinant of HO1 levels in T2D after adjustment. In addition, reduced BVR-A levels were able to predict the presence of T2D with AUROC = 0.69. for potential confounders. SIGNIFICANCE Our results demonstrate for the first time that BVR-A protein levels are reduced in T2D individuals, and that this alteration strictly correlates with poor glycometabolic control and a pro-inflammatory state. Hence, these observations reinforce the hypothesis that reduced BVR-A protein levels may represent a key event in the dysregulation of intracellular pathways finally leading to metabolic disorders.
Collapse
Affiliation(s)
| | - Ilaria Barchetta
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Ilaria Zuliani
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Sara Pagnotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Laura Bertoccini
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Sara Dule
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Michele Zampieri
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Anna Reale
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Marco Giorgio Baroni
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences (MeSVA), University of L'Aquila, Italy; Neuroendocrinology and Metabolic Diseases, IRCCS Neuromed, Pozzilli, Is, Italy
| | | | - Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy.
| |
Collapse
|
11
|
Bilirubin deficiency renders mice susceptible to hepatic steatosis in the absence of insulin resistance. Redox Biol 2021; 47:102152. [PMID: 34610553 PMCID: PMC8498001 DOI: 10.1016/j.redox.2021.102152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/26/2021] [Accepted: 09/26/2021] [Indexed: 12/31/2022] Open
Abstract
Background & aims Plasma concentrations of bilirubin, a product of heme catabolism formed by biliverdin reductase A (BVRA), inversely associate with the risk of metabolic diseases including hepatic steatosis and diabetes mellitus in humans. Bilirubin has antioxidant and anti-inflammatory activities and may also regulate insulin signaling and peroxisome proliferator-activated receptor alpha (PPARα) activity. However, a causal link between bilirubin and metabolic diseases remains to be established. Here, we used the global Bvra gene knockout (Bvra–/–) mouse as a model of deficiency in bilirubin to assess its role in metabolic diseases. Approach & results We fed mice fat-rich diets to induce hepatic steatosis and insulin resistance. Bile pigments were measured by LC-MS/MS, and hepatic lipids by LC-MS/MS (non-targeted lipidomics), HPLC-UV and Oil-Red-O staining. Oxidative stress was evaluated measuring F2-isoprostanes by GC-MS. Glucose metabolism and insulin sensitivity were verified by glucose and insulin tolerance tests, ex vivo and in vivo glucose uptake, and Western blotting for insulin signaling. Compared with wild type littermates, Bvra–/– mice contained negligible bilirubin in plasma and liver, and they had comparable glucose metabolism and insulin sensitivity. However, Bvra–/– mice exhibited an inflamed and fatty liver phenotype, accompanied by hepatic accumulation of oxidized triacylglycerols and F2-isoprostanes, in association with depletion of α-tocopherol. α-Tocopherol supplementation reversed the hepatic phenotype and observed biochemical changes in Bvra–/– mice. Conclusions Our data suggests that BVRA deficiency renders mice susceptible to oxidative stress-induced hepatic steatosis in the absence of insulin resistance. Low plasma levels of bilirubin associate with increased metabolic disease risk. A direct link between bilirubin and metabolic disease remains to be established. Global BVRA deficiency causes global bilirubin deficiency and a fatty, inflamed liver. This hepatic phenotype is linked to decreased vitamin E and increased lipid oxidation. Vitamin E supplements restore normal liver phenotype in BVRA deficiency.
Collapse
|
12
|
Abstract
Significance: As the central metabolic organ, the liver is exposed to a variety of potentially cytotoxic, proinflammatory, profibrotic, and carcinogenic stimuli. To protect the organism from these deleterious effects, the liver has evolved a number of defense systems, which include antioxidant substrates and enzymes, anti-inflammatory tools, enzymatic biotransformation systems, and metabolic pathways. Recent Advances: One of the pivotal systems that evolved during phylogenesis was the heme catabolic pathway. Comprising the important enzymes heme oxygenase and biliverdin reductase, this complex pathway has a number of key functions including enzymatic activities, but also cell signaling, and DNA transcription. It further generates two important bile pigments, biliverdin and bilirubin, as well as the gaseous molecule carbon monoxide. These heme degradation products have potent antioxidant, immunosuppressive, and cytoprotective effects. Recent data suggest that the pathway participates in the regulation of metabolic and hormonal processes implicated in the pathogenesis of hepatic and other diseases. Critical Issues: This review discusses the impact of the heme catabolic pathway on major liver diseases, with particular focus on the involvement of cellular targeting and signaling in the pathogenesis of these conditions. Future Directions: To utilize the biological consequences of the heme catabolic pathway, several unique therapeutic strategies have been developed. Research indicates that pharmaceutical, nutraceutical, and lifestyle modifications positively affect the pathway, delivering potentially long-term clinical benefits. However, further well-designed studies are needed to confirm the clinical benefits of these approaches. Antioxid. Redox Signal. 35, 734-752.
Collapse
Affiliation(s)
- Libor Vítek
- Fourth Department of Internal Medicine, and Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
13
|
McClung JA, Levy L, Garcia V, Stec DE, Peterson SJ, Abraham NG. Heme-oxygenase and lipid mediators in obesity and associated cardiometabolic diseases: Therapeutic implications. Pharmacol Ther 2021; 231:107975. [PMID: 34499923 DOI: 10.1016/j.pharmthera.2021.107975] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
Obesity-mediated metabolic syndrome remains the leading cause of death worldwide. Among many potential targets for pharmacological intervention, a promising strategy involves the heme oxygenase (HO) system, specifically its inducible form, HO-1. This review collects and updates much of the current knowledge relevant to pharmacology and clinical medicine concerning HO-1 in metabolic diseases and its effect on lipid metabolism. HO-1 has pleotropic effects that collectively reduce inflammation, while increasing vasodilation and insulin and leptin sensitivity. Recent reports indicate that HO-1 with its antioxidants via the effect of bilirubin increases formation of biologically active lipid metabolites such as epoxyeicosatrienoic acid (EET), omega-3 and other polyunsaturated fatty acids (PUFAs). Similarly, HO-1and bilirubin are potential therapeutic targets in the treatment of fat-induced liver diseases. HO-1-mediated upregulation of EET is capable not only of reversing endothelial dysfunction and hypertension, but also of reversing cardiac remodeling, a hallmark of the metabolic syndrome. This process involves browning of white fat tissue (i.e. formation of healthy adipocytes) and reduced lipotoxicity, which otherwise will be toxic to the heart. More importantly, this review examines the activity of EET in biological systems and a series of pathways that explain its mechanism of action and discusses how these might be exploited for potential therapeutic use. We also discuss the link between cardiac ectopic fat deposition and cardiac function in humans, which is similar to that described in obese mice and is regulated by HO-1-EET-PGC1α signaling, a potent negative regulator of the inflammatory adipokine NOV.
Collapse
Affiliation(s)
- John A McClung
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America
| | - Lior Levy
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America
| | - Victor Garcia
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States of America
| | - David E Stec
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, United States of America.
| | - Stephen J Peterson
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, United States of America; New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, United States of America
| | - Nader G Abraham
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America; Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States of America.
| |
Collapse
|
14
|
Mancuso C. Biliverdin reductase as a target in drug research and development: Facts and hypotheses. Free Radic Biol Med 2021; 172:521-529. [PMID: 34224815 DOI: 10.1016/j.freeradbiomed.2021.06.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/14/2021] [Accepted: 06/30/2021] [Indexed: 12/26/2022]
Abstract
Biliverdin reductase-A (BVR) catalyzes the reduction of heme-derived biliverdin into bilirubin, this latter being a powerful endogenous free radical scavenger. Furthermore, BVR is also endowed with both serine/threonine/tyrosine kinase and scaffold activities, through which it interacts with the insulin receptor kinase, conventional and atypical protein kinase C isoforms, mitogen-activated protein kinases as well as the phosphatidylinositol-3 kinase/Akt system. By regulating this complex array of signal transduction pathways, BVR is involved in the pathogenesis of neurodegenerative, metabolic, cardiovascular and immune-inflammatory diseases as well as in cancer. In addition, both BVR and BVR-B, this latter being an alternate isozyme predominant during fetal development but sometimes detectable through adulthood, have been studied as peripheral biomarkers for an early detection of Alzheimer's disease, atherosclerosis and some types of cancer. However, despite these interesting lines of evidence, to date BVR has not been considered as an appealing drug target. Only limited evidence supports the neuroprotective effects of atorvastatin and ferulic acid through BVR regulation in the aged canine brain and human neuroblastoma cells, whereas interesting results have been reported regarding the use of BVR-based peptides in preclinical models of cardiac diseases and cancer.
Collapse
Affiliation(s)
- Cesare Mancuso
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore, Largo F. Vito, 1, 00168, Rome, Italy.
| |
Collapse
|
15
|
Causal effect between total cholesterol and HDL cholesterol as risk factors for chronic kidney disease: a mendelian randomization study. BMC Nephrol 2021; 22:35. [PMID: 33472594 PMCID: PMC7818570 DOI: 10.1186/s12882-020-02228-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/29/2020] [Indexed: 12/31/2022] Open
Abstract
Background While observational studies show an association between serum lipid levels and cardiovascular disease (CVD), intervention studies that examine the preventive effects of serum lipid levels on the development of CKD are lacking. Methods To estimate the role of serum lipid levels in the etiology of CKD, we conducted a two-sample mendelian randomization (MR) study on serum lipid levels. Single nucleotide polymorphisms (SNPs), which were significantly associated genome-wide with serum lipid levels from the GLGC and CKDGen consortium genome-wide association study (GWAS), including total cholesterol (TC, n = 187,365), triglyceride (TG, n = 177,861), HDL cholesterol (HDL-C, n = 187,167), LDL cholesterol (LDL-C, n = 173,082), apolipoprotein A1 (ApoA1, n = 20,687), apolipoprotein B (ApoB, n = 20,690) and CKD (n = 117,165), were used as instrumental variables. None of the lipid-related SNPs was associated with CKD (all P > 0.05). Results MR analysis genetically predicted the causal effect between TC/HDL-C and CKD. The odds ratio (OR) and 95% confidence interval (CI) of TC within CKD was 0.756 (0.579 to 0.933) (P = 0.002), and HDL-C was 0.85 (0.687 to 1.012) (P = 0.049). No causal effects between TG, LDL-C- ApoA1, ApoB and CKD were observed. Sensitivity analyses confirmed that TC and HDL-C were significantly associated with CKD. Conclusions The findings from this MR study indicate causal effects between TC, HDL-C and CKD. Decreased TC and elevated HDL-C may reduce the incidence of CKD but need to be further confirmed by using a genetic and environmental approach. Supplementary Information The online version contains supplementary material available at 10.1186/s12882-020-02228-3.
Collapse
|
16
|
Ceccarelli V, Barchetta I, Cimini FA, Bertoccini L, Chiappetta C, Capoccia D, Carletti R, Di Cristofano C, Silecchia G, Fontana M, Leonetti F, Lenzi A, Baroni MG, Barone E, Cavallo MG. Reduced Biliverdin Reductase-A Expression in Visceral Adipose Tissue is Associated with Adipocyte Dysfunction and NAFLD in Human Obesity. Int J Mol Sci 2020; 21:ijms21239091. [PMID: 33260451 PMCID: PMC7730815 DOI: 10.3390/ijms21239091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Biliverdin reductase A (BVR-A) is an enzyme involved in the regulation of insulin signalling. Knockout (KO) mice for hepatic BVR-A, on a high-fat diet, develop more severe glucose impairment and hepato-steatosis than the wild type, whereas loss of adipocyte BVR-A is associated with increased visceral adipose tissue (VAT) inflammation and adipocyte size. However, BVR-A expression in human VAT has not been investigated. We evaluated BVR-A mRNA expression levels by real-time PCR in the intra-operative omental biopsy of 38 obese subjects and investigated the association with metabolic impairment, VAT dysfunction, and biopsy-proven non-alcoholic fatty liver disease (NAFLD). Individuals with lower VAT BVR-A mRNA levels had significantly greater VAT IL-8 and Caspase 3 expression than those with higher BVR-A. Lower VAT BVR-A mRNA levels were associated with an increased adipocytes’ size. An association between lower VAT BVR-A expression and higher plasma gamma-glutamyl transpeptidase was also observed. Reduced VAT BVR-A was associated with NAFLD with an odds ratio of 1.38 (95% confidence interval: 1.02–1.9; χ2 test) and with AUROC = 0.89 (p = 0.002, 95% CI = 0.76–1.0). In conclusion, reduced BVR-A expression in omental adipose tissue is associated with VAT dysfunction and NAFLD, suggesting a possible involvement of BVR-A in the regulation of VAT homeostasis in presence of obesity.
Collapse
Affiliation(s)
- Valentina Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.C.); (I.B.); (F.A.C.); (L.B.); (A.L.)
| | - Ilaria Barchetta
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.C.); (I.B.); (F.A.C.); (L.B.); (A.L.)
| | - Flavia Agata Cimini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.C.); (I.B.); (F.A.C.); (L.B.); (A.L.)
| | - Laura Bertoccini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.C.); (I.B.); (F.A.C.); (L.B.); (A.L.)
| | - Caterina Chiappetta
- Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, 04100 Latina, Italy; (C.C.); (D.C.); (R.C.); (C.D.C.); (G.S.); (F.L.)
| | - Danila Capoccia
- Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, 04100 Latina, Italy; (C.C.); (D.C.); (R.C.); (C.D.C.); (G.S.); (F.L.)
| | - Raffaella Carletti
- Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, 04100 Latina, Italy; (C.C.); (D.C.); (R.C.); (C.D.C.); (G.S.); (F.L.)
| | - Claudio Di Cristofano
- Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, 04100 Latina, Italy; (C.C.); (D.C.); (R.C.); (C.D.C.); (G.S.); (F.L.)
| | - Gianfranco Silecchia
- Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, 04100 Latina, Italy; (C.C.); (D.C.); (R.C.); (C.D.C.); (G.S.); (F.L.)
| | - Mario Fontana
- Department of Biochemical Sciences “A. Rossi-Fanelli” Sapienza University of Rome, 00185 Rome, Italy;
| | - Frida Leonetti
- Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, 04100 Latina, Italy; (C.C.); (D.C.); (R.C.); (C.D.C.); (G.S.); (F.L.)
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.C.); (I.B.); (F.A.C.); (L.B.); (A.L.)
| | - Marco Giorgio Baroni
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences (MeSVA), University of L’Aquila, 67100 Coppito, Italy;
- Neuroendocrinology and Metabolic Diseases, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences “A. Rossi-Fanelli” Sapienza University of Rome, 00185 Rome, Italy;
- Correspondence: (E.B.); (M.G.C.); Tel.: +39-(0)6-4997-4692 (M.G.C.)
| | - Maria Gisella Cavallo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.C.); (I.B.); (F.A.C.); (L.B.); (A.L.)
- Correspondence: (E.B.); (M.G.C.); Tel.: +39-(0)6-4997-4692 (M.G.C.)
| |
Collapse
|
17
|
Jayanti S, Vítek L, Tiribelli C, Gazzin S. The Role of Bilirubin and the Other "Yellow Players" in Neurodegenerative Diseases. Antioxidants (Basel) 2020; 9:900. [PMID: 32971784 PMCID: PMC7555389 DOI: 10.3390/antiox9090900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 02/07/2023] Open
Abstract
Bilirubin is a yellow endogenous derivate of the heme catabolism. Since the 1980s, it has been recognized as one of the most potent antioxidants in nature, able to counteract 10,000× higher intracellular concentrations of H2O2. In the recent years, not only bilirubin, but also its precursor biliverdin, and the enzymes involved in their productions (namely heme oxygenase and biliverdin reductase; altogether the "yellow players"-YPs) have been recognized playing a protective role in diseases characterized by a chronic prooxidant status. Based on that, there is an ongoing effort in inducing their activity as a therapeutic option. Nevertheless, the understanding of their specific contributions to pathological conditions of the central nervous system (CNS) and their role in these diseases are limited. In this review, we will focus on the most recent evidence linking the role of the YPs specifically to neurodegenerative and neurological conditions. Both the protective, as well as potentially worsening effects of the YP's activity will be discussed.
Collapse
Affiliation(s)
- Sri Jayanti
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (S.J.); (C.T.)
- Faculty of Medicine, Universitas Hasanuddin, Makassar 90245, Indonesia
- Molecular Biomedicine Ph.D. Program, University of Trieste, 34127 Trieste, Italy
| | - Libor Vítek
- Institute of Medical Biochemistry and Laboratory Diagnostics, and 4th Department of Internal Medicine, Faculty General Hospital and 1st Faculty of Medicine, Charles University, 12000 Prague, Czech Republic;
| | - Claudio Tiribelli
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (S.J.); (C.T.)
| | - Silvia Gazzin
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (S.J.); (C.T.)
| |
Collapse
|
18
|
Lanzillotta C, Zuliani I, Vasavda C, Snyder SH, Paul BD, Perluigi M, Di Domenico F, Barone E. BVR-A Deficiency Leads to Autophagy Impairment through the Dysregulation of AMPK/mTOR Axis in the Brain-Implications for Neurodegeneration. Antioxidants (Basel) 2020; 9:antiox9080671. [PMID: 32727065 PMCID: PMC7466043 DOI: 10.3390/antiox9080671] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/15/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
Biliverdin reductase-A (BVR-A) impairment is associated with increased accumulation of oxidatively-damaged proteins along with the impairment of autophagy in the brain during neurodegenerative disorders. Reduced autophagy inhibits the clearance of misfolded proteins, which then form neurotoxic aggregates promoting neuronal death. The aim of our study was to clarify the role for BVR-A in the regulation of the mTOR/autophagy axis by evaluating age-associated changes (2, 6 and 11 months) in cerebral cortex samples collected from BVR-A knock-out (BVR-A−/−) and wild-type (WT) mice. Our results show that BVR-A deficiency leads to the accumulation of oxidatively-damaged proteins along with mTOR hyper-activation in the cortex. This process starts in juvenile mice and persists with aging. mTOR hyper-activation is associated with the impairment of autophagy as highlighted by reduced levels of Beclin-1, LC3β, LC3II/I ratio, Atg5–Atg12 complex and Atg7 in the cortex of BVR-A−/− mice. Furthermore, we have identified the dysregulation of AMP-activated protein kinase (AMPK) as a critical event driving mTOR hyper-activation in the absence of BVR-A. Overall, our results suggest that BVR-A is a new player in the regulation of autophagy, which may be targeted to arrive at novel therapeutics for diseases involving impaired autophagy.
Collapse
Affiliation(s)
- Chiara Lanzillotta
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (C.L.); (I.Z.); (M.P.)
| | - Ilaria Zuliani
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (C.L.); (I.Z.); (M.P.)
| | - Chirag Vasavda
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.V.); (S.H.S.); (B.D.P.)
| | - Solomon H. Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.V.); (S.H.S.); (B.D.P.)
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bindu D. Paul
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.V.); (S.H.S.); (B.D.P.)
| | - Marzia Perluigi
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (C.L.); (I.Z.); (M.P.)
| | - Fabio Di Domenico
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (C.L.); (I.Z.); (M.P.)
- Correspondence: (F.D.D.); (E.B.)
| | - Eugenio Barone
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (C.L.); (I.Z.); (M.P.)
- Correspondence: (F.D.D.); (E.B.)
| |
Collapse
|
19
|
Biliverdin Reductase A (BVRA) Knockout in Adipocytes Induces Hypertrophy and Reduces Mitochondria in White Fat of Obese Mice. Biomolecules 2020; 10:biom10030387. [PMID: 32131495 PMCID: PMC7175174 DOI: 10.3390/biom10030387] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
Biliverdin reductase (BVR) is an enzymatic and signaling protein that has multifaceted roles in physiological systems. Despite the wealth of knowledge about BVR, no data exist regarding its actions in adipocytes. Here, we generated an adipose-specific deletion of biliverdin reductase-A (BVRA) (BlvraFatKO) in mice to determine the function of BVRA in adipocytes and how it may impact adipose tissue expansion. The BlvraFatKO and littermate control (BlvraFlox) mice were placed on a high-fat diet (HFD) for 12 weeks. Body weights were measured weekly and body composition, fasting blood glucose and insulin levels were quantitated at the end of the 12 weeks. The data showed that the percent body fat and body weights did not differ between the groups; however, BlvraFatKO mice had significantly higher visceral fat as compared to the BlvraFlox. The loss of adipocyte BVRA decreased the mitochondrial number in white adipose tissue (WAT), and increased inflammation and adipocyte size, but this was not observed in brown adipose tissue (BAT). There were genes significantly reduced in WAT that induce the browning effect such as Ppara and Adrb3, indicating that BVRA improves mitochondria function and beige-type white adipocytes. The BlvraFatKO mice also had significantly higher fasting blood glucose levels and no changes in plasma insulin levels, which is indicative of decreased insulin signaling in WAT, as evidenced by reduced levels of phosphorylated AKT (pAKT) and Glut4 mRNA. These results demonstrate the essential role of BVRA in WAT in insulin signaling and adipocyte hypertrophy.
Collapse
|
20
|
Canesin G, Hejazi SM, Swanson KD, Wegiel B. Heme-Derived Metabolic Signals Dictate Immune Responses. Front Immunol 2020; 11:66. [PMID: 32082323 PMCID: PMC7005208 DOI: 10.3389/fimmu.2020.00066] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/10/2020] [Indexed: 12/21/2022] Open
Abstract
Heme is one of the most abundant molecules in the body acting as the functional core of hemoglobin/myoglobin involved in the O2/CO2 carrying in the blood and tissues, redox enzymes and cytochromes in mitochondria. However, free heme is toxic and therefore its removal is a significant priority for the host. Heme is a well-established danger-associated molecular pattern (DAMP), which binds to toll-like receptor 4 (TLR4) to induce immune responses. Heme-derived metabolites including the bile pigments, biliverdin (BV) and bilirubin (BR), were first identified as toxic drivers of neonatal jaundice in 1800 but have only recently been appreciated as endogenous drivers of multiple signaling pathways involved in protection from oxidative stress and regulators of immune responses. The tissue concentration of heme, BV and BR is tightly controlled. Heme oxygenase-1 (HO-1, encoded by HMOX1) produces BV by heme degradation, while biliverdin reductase-A (BLVR-A) generates BR by the subsequent conversion of BV. BLVR-A is a fascinating protein that possesses a classical protein kinase domain, which is activated in response to BV binding to its enzymatic site and initiates the downstream mitogen-activated protein kinases (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways. This links BLVR-A activity to cell growth and survival pathways. BLVR-A also contains a bZip DNA binding domain and a nuclear export sequence (NES) and acts as a transcription factor to regulate the expression of immune modulatory genes. Here we will discuss the role of heme-related immune response and the potential for targeting the heme system for therapies directed toward hepatitis and cancer.
Collapse
Affiliation(s)
- Giacomo Canesin
- Department of Surgery, Cancer Research Institute and Transplant Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Seyed M. Hejazi
- Department of Surgery, Cancer Research Institute and Transplant Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Kenneth D. Swanson
- Brain Tumor Center and Neuro-Oncology Unit, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Barbara Wegiel
- Department of Surgery, Cancer Research Institute and Transplant Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
21
|
Gordon DM, Adeosun SO, Ngwudike SI, Anderson CD, Hall JE, Hinds TD, Stec DE. CRISPR Cas9-mediated deletion of biliverdin reductase A (BVRA) in mouse liver cells induces oxidative stress and lipid accumulation. Arch Biochem Biophys 2019; 672:108072. [PMID: 31422074 PMCID: PMC6718297 DOI: 10.1016/j.abb.2019.108072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/29/2019] [Accepted: 08/10/2019] [Indexed: 12/30/2022]
Abstract
Obesity is the predominant cause of non-alcoholic fatty liver disease (NAFLD), which is associated with insulin resistance and diabetes. NAFLD includes a spectrum of pathologies that starts with simple steatosis, which can progress to non-alcoholic steatohepatitis (NASH) with the commission of other factors such as the enhancement of reactive oxygen species (ROS). Biliverdin reductase A (BVRA) reduces biliverdin to the antioxidant bilirubin, which may serve to prevent NAFLD, and possibly the progression to NASH. To further understand the role of BVRA in hepatic function, we used CRISPR-Cas9 technology to target the Blvra gene in the murine hepa1c1c7 hepatocyte cell line (BVRA KO). BVRA activity and protein levels were significantly lower in BVRA KO vs. wild-type (WT) hepatocytes. Lipid accumulation under basal and serum-starved conditions was significantly (p < 0.05) higher in BVRA KO vs. WT cells. The loss of BVRA resulted in the reduction of mitochondria number, decreased expression of markers of mitochondrial biogenesis, uncoupling, oxidation, and fusion, which paralleled reduced mitochondrial oxygen consumption. BVRA KO cells exhibited increased levels of ROS generation and decreased levels of superoxide dismutase mRNA expression. In conclusion, our data demonstrate a critical role for BVRA in protecting against lipid accumulation and oxidative stress in hepatocytes, which may serve as a future therapeutic target for NAFLD and its progression to NASH.
Collapse
Affiliation(s)
- Darren M Gordon
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, 43614, USA
| | - Samuel O Adeosun
- Department of Physiology & Biophysics, Mississippi Center for Obesity Research, USA
| | | | - Christopher D Anderson
- Departments of Surgery and Medicine, University of Mississippi Medical Center, 2500 North State St, Jackson, MS, 39216, USA
| | - John E Hall
- Department of Physiology & Biophysics, Mississippi Center for Obesity Research, USA
| | - Terry D Hinds
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, 43614, USA
| | - David E Stec
- Department of Physiology & Biophysics, Mississippi Center for Obesity Research, USA.
| |
Collapse
|
22
|
Affiliation(s)
- Terry D Hinds
- From the Department of Physiology and Pharmacology, University of Toledo College of Medicine, OH (T.D.H.)
| | - David E Stec
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson (D.E.S.)
| |
Collapse
|
23
|
Lipid Accumulation and Chronic Kidney Disease. Nutrients 2019; 11:nu11040722. [PMID: 30925738 PMCID: PMC6520701 DOI: 10.3390/nu11040722] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022] Open
Abstract
Obesity and hyperlipidemia are the most prevalent independent risk factors of chronic kidney disease (CKD), suggesting that lipid accumulation in the renal parenchyma is detrimental to renal function. Non-esterified fatty acids (also known as free fatty acids, FFA) are especially harmful to the kidneys. A concerted, increased FFA uptake due to high fat diets, overexpression of fatty acid uptake systems such as the CD36 scavenger receptor and the fatty acid transport proteins, and a reduced β-oxidation rate underlie the intracellular lipid accumulation in non-adipose tissues. FFAs in excess can damage podocytes, proximal tubular epithelial cells and the tubulointerstitial tissue through various mechanisms, in particular by boosting the production of reactive oxygen species (ROS) and lipid peroxidation, promoting mitochondrial damage and tissue inflammation, which result in glomerular and tubular lesions. Not all lipids are bad for the kidneys: polyunsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) seem to help lag the progression of chronic kidney disease (CKD). Lifestyle interventions, especially dietary adjustments, and lipid-lowering drugs can contribute to improve the clinical outcome of patients with CKD.
Collapse
|
24
|
Cimini FA, Arena A, Barchetta I, Tramutola A, Ceccarelli V, Lanzillotta C, Fontana M, Bertoccini L, Leonetti F, Capoccia D, Silecchia G, Di Cristofano C, Chiappetta C, Di Domenico F, Baroni MG, Perluigi M, Cavallo MG, Barone E. Reduced biliverdin reductase-A levels are associated with early alterations of insulin signaling in obesity. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1490-1501. [PMID: 30826467 DOI: 10.1016/j.bbadis.2019.02.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/11/2019] [Accepted: 02/26/2019] [Indexed: 12/14/2022]
Abstract
Biliverdin reductase-A (BVR-A) is a serine/threonine/tyrosine kinase involved in the regulation of insulin signaling. In vitro studies have demonstrated that BVR-A is a substrate of the insulin receptor and regulates IRS1 by avoiding its aberrant activation, and in animal model of obesity the loss of hepatic BVR-A has been associated with glucose/insulin alterations and fatty liver disease. However, no studies exist in humans. Here, we evaluated BVR-A expression levels and activation in peripheral blood mononuclear cells (PBMC) from obese subjects and matched lean controls and we investigated the related molecular alterations of the insulin along with clinical correlates. We showed that BVR-A levels are significantly reduced in obese subjects and associated with a hyper-activation of the IR/IRS1/Akt/GSK-3β/AS160/GLUT4 pathway. Low BVR-A levels also associate with the presence of obesity, metabolic syndrome, NASH and visceral adipose tissue inflammation. These data suggest that the reduction of BVR-A may be responsible for early alterations of the insulin signaling pathway in obesity and in this context may represent a novel molecular target to be investigated for the comprehension of the process of insulin resistance development in obesity.
Collapse
Affiliation(s)
- Flavia Agata Cimini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Arena
- Department of Biochemical Sciences "A. Rossi-Fanelli" Sapienza University of Rome, Rome, Italy
| | - Ilaria Barchetta
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonella Tramutola
- Department of Biochemical Sciences "A. Rossi-Fanelli" Sapienza University of Rome, Rome, Italy
| | | | - Chiara Lanzillotta
- Department of Biochemical Sciences "A. Rossi-Fanelli" Sapienza University of Rome, Rome, Italy
| | - Mario Fontana
- Department of Biochemical Sciences "A. Rossi-Fanelli" Sapienza University of Rome, Rome, Italy
| | - Laura Bertoccini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Frida Leonetti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Danila Capoccia
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Gianfranco Silecchia
- Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Rome, Italy
| | - Claudio Di Cristofano
- Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Rome, Italy
| | - Caterina Chiappetta
- Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi-Fanelli" Sapienza University of Rome, Rome, Italy
| | | | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi-Fanelli" Sapienza University of Rome, Rome, Italy
| | | | - Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli" Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
25
|
Sharma N, Tramutola A, Lanzillotta C, Arena A, Blarzino C, Cassano T, Butterfield DA, Di Domenico F, Perluigi M, Barone E. Loss of biliverdin reductase-A favors Tau hyper-phosphorylation in Alzheimer's disease. Neurobiol Dis 2019; 125:176-189. [PMID: 30738142 DOI: 10.1016/j.nbd.2019.02.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 01/16/2023] Open
Abstract
Hyper-active GSK-3β favors Tau phosphorylation during the progression of Alzheimer's disease (AD). Akt is one of the main kinases inhibiting GSK-3β and its activation occurs in response to neurotoxic stimuli including, i.e., oxidative stress. Biliverdin reductase-A (BVR-A) is a scaffold protein favoring the Akt-mediated inhibition of GSK-3β. Reduced BVR-A levels along with increased oxidative stress were observed early in the hippocampus of 3xTg-AD mice (at 6 months), thus suggesting that loss of BVR-A could be a limiting factor in the oxidative stress-induced Akt-mediated inhibition of GSK-3β in AD. We evaluated changes of BVR-A, Akt, GSK-3β, oxidative stress and Tau phosphorylation levels: (a) in brain from young (6-months) and old (12-months) 3xTg-AD mice; and (b) in post-mortem inferior parietal lobule (IPL) samples from amnestic mild cognitive impairment (MCI), from AD and from age-matched controls. Furthermore, similar analyses were performed in vitro in cells lacking BVR-A and treated with H2O2. Reduced BVR-A levels along with: (a) increased oxidative stress; (b) reduced GSK-3β inhibition; and (c) increased Tau Ser404 phosphorylation (target of GSK-3β activity) without changes of Akt activation in young mice, were observed. Similar findings were obtained in MCI, consistent with the notion that this is a molecular mechanism disrupted in humans. Interestingly, cells lacking BVR-A and treated with H2O2 showed reduced GSK-3β inhibition and increased Tau Ser404 phosphorylation, which resulted from a defect of Akt and GSK-3β physical interaction. Reduced levels of Akt/GSK-3β complex were confirmed in both young 3xTg-AD and MCI brain. We demonstrated that loss of BVR-A impairs the neuroprotective Akt-mediated inhibition of GSK-3β in response to oxidative stress, thus contributing to Tau hyper-phosphorylation in early stage AD. Such changes potential provide promising therapeutic targets for this devastating disorder.
Collapse
Affiliation(s)
- Nidhi Sharma
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, Roma 00185, Italy
| | - Antonella Tramutola
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, Roma 00185, Italy
| | - Chiara Lanzillotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, Roma 00185, Italy
| | - Andrea Arena
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, Roma 00185, Italy
| | - Carla Blarzino
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, Roma 00185, Italy
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, Via L. Pinto, Foggia 71122, Italy
| | - D Allan Butterfield
- Department of Chemistry, Markey Cancer Center, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, Roma 00185, Italy
| | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, Roma 00185, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, Roma 00185, Italy.
| |
Collapse
|
26
|
Biliverdin reductase-A impairment links brain insulin resistance with increased Aβ production in an animal model of aging: Implications for Alzheimer disease. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3181-3194. [PMID: 29981845 DOI: 10.1016/j.bbadis.2018.07.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/21/2018] [Accepted: 07/03/2018] [Indexed: 12/26/2022]
|
27
|
Biliverdin Reductase-A Mediates the Beneficial Effects of Intranasal Insulin in Alzheimer Disease. Mol Neurobiol 2018; 56:2922-2943. [PMID: 30073505 DOI: 10.1007/s12035-018-1231-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/10/2018] [Indexed: 12/19/2022]
Abstract
Impairment of biliverdin reductase-A (BVR-A) is an early event leading to brain insulin resistance in AD. Intranasal insulin (INI) administration is under evaluation as a strategy to alleviate brain insulin resistance; however, the molecular mechanisms underlying INI beneficial effects are still unclear. We show that INI improves insulin signaling activation in the hippocampus and cortex of adult and aged 3×Tg-AD mice by ameliorating BVR-A activation. These changes were associated with a reduction of nitrosative stress, Tau phosphorylation, and Aβ oligomers in brain, along with improved cognitive functions. The role of BVR-A was strengthened by showing that cells lacking BVR-A: (i) develop insulin resistance if treated with insulin and (ii) can be recovered from insulin resistance only if treated with a BVR-A-mimetic peptide. These novel findings shed light on the mechanisms underlying INI treatment effects and suggest BVR-A as potential therapeutic target to prevent brain insulin resistance in AD.
Collapse
|
28
|
Weaver L, Hamoud AR, Stec DE, Hinds TD. Biliverdin reductase and bilirubin in hepatic disease. Am J Physiol Gastrointest Liver Physiol 2018; 314:G668-G676. [PMID: 29494209 PMCID: PMC6032063 DOI: 10.1152/ajpgi.00026.2018] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The buildup of fat in the liver (hepatic steatosis) is the first step in a series of incidents that may drive hepatic disease. Obesity is the leading cause of nonalcoholic fatty liver disease (NAFLD), in which hepatic steatosis progresses to liver disease. Chronic alcohol exposure also induces fat accumulation in the liver and shares numerous similarities to obesity-induced NAFLD. Regardless of whether hepatic steatosis is due to obesity or long-term alcohol use, it still may lead to hepatic fibrosis, cirrhosis, or possibly hepatocellular carcinoma. The antioxidant bilirubin and the enzyme that generates it, biliverdin reductase A (BVRA), are components of the heme catabolic pathway that have been shown to reduce hepatic steatosis. This review discusses the roles for bilirubin and BVRA in the prevention of steatosis, their functions in the later stages of liver disease, and their potential therapeutic application.
Collapse
Affiliation(s)
- Lauren Weaver
- 1Department of Physiology and Pharmacology, Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine, Toledo, Ohio
| | - Abdul-rizaq Hamoud
- 1Department of Physiology and Pharmacology, Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine, Toledo, Ohio
| | - David E. Stec
- 2Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Terry D. Hinds
- 1Department of Physiology and Pharmacology, Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine, Toledo, Ohio
| |
Collapse
|
29
|
Hinds TD, Burns KA, Hosick PA, McBeth L, Nestor-Kalinoski A, Drummond HA, AlAmodi AA, Hankins MW, Vanden Heuvel JP, Stec DE. Biliverdin Reductase A Attenuates Hepatic Steatosis by Inhibition of Glycogen Synthase Kinase (GSK) 3β Phosphorylation of Serine 73 of Peroxisome Proliferator-activated Receptor (PPAR) α. J Biol Chem 2016; 291:25179-25191. [PMID: 27738106 DOI: 10.1074/jbc.m116.731703] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 09/30/2016] [Indexed: 01/21/2023] Open
Abstract
Non-alcoholic fatty liver disease is the most rapidly growing form of liver disease and if left untreated can result in non-alcoholic steatohepatitis, ultimately resulting in liver cirrhosis and failure. Biliverdin reductase A (BVRA) is a multifunctioning protein primarily responsible for the reduction of biliverdin to bilirubin. Also, BVRA functions as a kinase and transcription factor, regulating several cellular functions. We report here that liver BVRA protects against hepatic steatosis by inhibiting glycogen synthase kinase 3β (GSK3β) by enhancing serine 9 phosphorylation, which inhibits its activity. We show that GSK3β phosphorylates serine 73 (Ser(P)73) of the peroxisome proliferator-activated receptor α (PPARα), which in turn increased ubiquitination and protein turnover, as well as decreased activity. Interestingly, liver-specific BVRA KO mice had increased GSK3β activity and Ser(P)73 of PPARα, which resulted in decreased PPARα protein and activity. Furthermore, the liver-specific BVRA KO mice exhibited increased plasma glucose and insulin levels and decreased glycogen storage, which may be due to the manifestation of hepatic steatosis observed in the mice. These findings reveal a novel BVRA-GSKβ-PPARα axis that regulates hepatic lipid metabolism and may provide unique targets for the treatment of non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Terry D Hinds
- the Center for Hypertension and Personalized Medicine, Department of Physiology & Pharmacology,
| | - Katherine A Burns
- the Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, and.,the Department of Environmental Health, Division of Environmental Genetics and Molecular Toxicology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Peter A Hosick
- From the Department of Physiology & Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi 39216.,the Department of Exercise Science and Physical Education, Montclair State University, Montclair, New Jersey 07043
| | - Lucien McBeth
- the Center for Hypertension and Personalized Medicine, Department of Physiology & Pharmacology
| | - Andrea Nestor-Kalinoski
- Advanced Microscopy & Imaging Center, Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo Ohio 43614
| | - Heather A Drummond
- From the Department of Physiology & Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Abdulhadi A AlAmodi
- From the Department of Physiology & Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Michael W Hankins
- From the Department of Physiology & Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - John P Vanden Heuvel
- the Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, and
| | - David E Stec
- From the Department of Physiology & Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi 39216,
| |
Collapse
|
30
|
Miralem T, Lerner-Marmarosh N, Gibbs PEM, Jenkins JL, Heimiller C, Maines MD. Interaction of human biliverdin reductase with Akt/protein kinase B and phosphatidylinositol-dependent kinase 1 regulates glycogen synthase kinase 3 activity: a novel mechanism of Akt activation. FASEB J 2016; 30:2926-44. [PMID: 27166089 DOI: 10.1096/fj.201600330rr] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/26/2016] [Indexed: 01/07/2023]
Abstract
Biliverdin reductase A (BVR) and Akt isozymes have overlapping pleiotropic functions in the insulin/PI3K/MAPK pathway. Human BVR (hBVR) also reduces the hemeoxygenase activity product biliverdin to bilirubin and is directly activated by insulin receptor kinase (IRK). Akt isoenzymes (Akt1-3) are downstream of IRK and are activated by phosphatidylinositol-dependent kinase 1 (PDK1) phosphorylating T(308) before S(473) autophosphorylation. Akt (RxRxxSF) and PDK1 (RFxFPxFS) binding motifs are present in hBVR. Phosphorylation of glycogen synthase kinase 3 (GSK3) isoforms α/β by Akts inhibits their activity; nonphosphorylated GSK3β inhibits activation of various genes. We examined the role of hBVR in PDK1/Akt1/GSK3 signaling and Akt1 in hBVR phosphorylation. hBVR activates phosphorylation of Akt1 at S(473) independent of hBVR's kinase competency. hBVR and Akt1 coimmunoprecipitated, and in-cell Förster resonance energy transfer (FRET) and glutathione S-transferase pulldown analyses identified Akt1 pleckstrin homology domain as the interactive domain. hBVR activates phosphorylation of Akt1 at S(473) independent of hBVR's kinase competency. Site-directed mutagenesis, mass spectrometry, and kinetic analyses identified S(230) in hBVR (225)RNRYLSF sequence as the Akt1 target. Underlined amino acids are the essential residues of the signaling motifs. In cells, hBVR-activated Akt1 increased both GSK3α/β and forkhead box of the O class transcription class 3 (FoxO3) phosphorylation and inhibited total GSK3 activity; depletion of hBVR released inhibition and stimulated glucose uptake. Immunoprecipitation analysis showed that PDK1 and hBVR interact through hBVR's PDK1 binding (161)RFGFPAFS motif and formation of the PDK1/hBVR/Akt1 complex. sihBVR blocked complex formation. Findings identify hBVR as a previously unknown coactivator of Akt1 and as a key mediator of Akt1/GSK3 pathway, as well as define a key role for hBVR in Akt1 activation by PDK1.-Miralem, T., Lerner-Marmarosh, N., Gibbs, P. E. M., Jenkins, J. L., Heimiller, C., Maines, M. D. Interaction of human biliverdin reductase with Akt/protein kinase B and phosphatidylinositol-dependent kinase 1 regulates glycogen synthase kinase 3 activity: a novel mechanism of Akt activation.
Collapse
Affiliation(s)
- Tihomir Miralem
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Nicole Lerner-Marmarosh
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Peter E M Gibbs
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Jermaine L Jenkins
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Chelsea Heimiller
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Mahin D Maines
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
31
|
Barone E, Di Domenico F, Cassano T, Arena A, Tramutola A, Lavecchia MA, Coccia R, Butterfield DA, Perluigi M. Impairment of biliverdin reductase-A promotes brain insulin resistance in Alzheimer disease: A new paradigm. Free Radic Biol Med 2016; 91:127-42. [PMID: 26698666 DOI: 10.1016/j.freeradbiomed.2015.12.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 01/12/2023]
Abstract
Clinical studies suggest a link between peripheral insulin resistance and cognitive dysfunction. Interestingly, post-mortem analyses of Alzheimer disease (AD) subjects demonstrated insulin resistance in the brain proposing a role for cognitive deficits observed in AD. However, the mechanisms responsible for the onset of brain insulin resistance (BIR) need further elucidations. Biliverdin reductase-A (BVR-A) emerged as a unique Ser/Thr/Tyr kinase directly involved in the insulin signaling and represents an up-stream regulator of the insulin signaling cascade. Because we previously demonstrated the oxidative stress (OS)-induced impairment of BVR-A in human AD brain, we hypothesize that BVR-A dysregulation could be associated with the onset of BIR in AD. In the present work, we longitudinally analyze the age-dependent changes of (i) BVR-A protein levels and activation, (ii) total oxidative stress markers levels (PC, HNE, 3-NT) as well as (iii) IR/IRS1 levels and activation in the hippocampus of the triple transgenic model of AD (3xTg-AD) mice. Furthermore, ad hoc experiments have been performed in SH-SY5Y neuroblastoma cells to clarify the molecular mechanism(s) underlying changes observed in mice. Our results show that OS-induced impairment of BVR-A kinase activity is an early event, which starts prior the accumulation of Aβ and tau pathology or the elevation of TNF-α, and that greatly contribute to the onset of BIR along the progression of AD pathology in 3xTg-Ad mice. Based on these evidence we, therefore, propose a new paradigm for which: OS-induced impairment of BVR-A is firstly responsible for a sustained activation of IRS1, which then causes the stimulation of negative feedback mechanisms (i.e. mTOR) aimed to turn-off IRS1 hyper-activity and thus BIR. Similar alterations characterize also the normal aging process in mice, positing BVR-A impairment as a possible bridge in the transition from normal aging to AD.
Collapse
Affiliation(s)
- Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy; Universidad Autónoma de Chile, Instituto de Ciencias Biomédicas, Facultad de Salud, Avenida Pedro de Valdivia 425, Providencia, Santiago, Chile
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122 Foggia, Italy
| | - Andrea Arena
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Antonella Tramutola
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Michele Angelo Lavecchia
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Raffaella Coccia
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy
| | - D Allan Butterfield
- Department of Chemistry, Markey Cancer Center, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA.
| | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy.
| |
Collapse
|
32
|
Gibbs PEM, Miralem T, Lerner-Marmarosh N, Maines MD. Nanoparticle Delivered Human Biliverdin Reductase-Based Peptide Increases Glucose Uptake by Activating IRK/Akt/GSK3 Axis: The Peptide Is Effective in the Cell and Wild-Type and Diabetic Ob/Ob Mice. J Diabetes Res 2016; 2016:4712053. [PMID: 27294151 PMCID: PMC4886063 DOI: 10.1155/2016/4712053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/18/2016] [Indexed: 01/11/2023] Open
Abstract
Insulin's stimulation of glucose uptake by binding to the IRK extracellular domain is compromised in diabetes. We have recently described an unprecedented approach to stimulating glucose uptake. KYCCSRK (P2) peptide, corresponding to the C-terminal segment of hBVR, was effective in binding to and inducing conformational change in the IRK intracellular kinase domain. Although myristoylated P2, made of L-amino acids, was effective in cell culture, its use for animal studies was unsuitable. We developed a peptidase-resistant formulation of the peptide that was efficient in both mice and cell culture systems. The peptide was constructed of D-amino acids, in reverse order, and blocked at both termini. Delivery of the encapsulated peptide to HepG2 and HSKM cells was confirmed by its prolonged effect on stimulation of glucose uptake (>6 h). The peptide improved glucose clearance in both wild-type and Ob/Ob mice; it lowered blood glucose levels and suppressed glucose-stimulated insulin secretion. IRK activity was stimulated in the liver of treated mice and in cultured cells. The peptide potentiated function of IRK's downstream effector, Akt-GSK3-(α, β) axis. Thus, P2-based approach can be used for improving glucose uptake by cells. Also, it allows for screening peptides in vitro and in animal models for treatment of diabetes.
Collapse
Affiliation(s)
- Peter E. M. Gibbs
- Department of Biophysics and Biochemistry, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Tihomir Miralem
- Department of Biophysics and Biochemistry, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Nicole Lerner-Marmarosh
- Department of Biophysics and Biochemistry, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Mahin D. Maines
- Department of Biophysics and Biochemistry, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- *Mahin D. Maines:
| |
Collapse
|
33
|
Abraham NG, Junge JM, Drummond GS. Translational Significance of Heme Oxygenase in Obesity and Metabolic Syndrome. Trends Pharmacol Sci 2015; 37:17-36. [PMID: 26515032 DOI: 10.1016/j.tips.2015.09.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/10/2015] [Accepted: 09/17/2015] [Indexed: 01/04/2023]
Abstract
The global epidemic of obesity continues unabated with sequelae of diabetes and metabolic syndrome. This review reflects the dramatic increase in research on the role of increased expression of heme oxygenase (HO)-1/HO-2, biliverdin reductase, and HO activity on vascular disease. The HO system engages with other systems to mitigate the deleterious effects of oxidative stress in obesity and cardiovascular disease (CVD). Recent reports indicate that HO-1/HO-2 protein expression and HO activity have several important roles in hemostasis and reactive oxygen species (ROS)-dependent perturbations associated with metabolic syndrome. HO-1 protects tissue during inflammatory stress in obesity through the degradation of pro-oxidant heme and the production of carbon monoxide (CO) and bilirubin, both of which have anti-inflammatory and anti-apoptotic properties. By contrast, repression of HO-1 is associated with increases of cellular heme and inflammatory conditions including hypertension, stroke, and atherosclerosis. HO-1 is a major focus in the development of potential therapeutic strategies to reverse the clinical complications of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Nader G Abraham
- Departments of Medicine and Pharmacology, New York Medical College, School of Medicine, Valhalla, NY 10595, USA; Marshall University, Joan C. Edwards School of Medicine, Huntington, WV 25701, USA.
| | - Joshua M Junge
- Departments of Medicine and Pharmacology, New York Medical College, School of Medicine, Valhalla, NY 10595, USA
| | - George S Drummond
- Departments of Medicine and Pharmacology, New York Medical College, School of Medicine, Valhalla, NY 10595, USA
| |
Collapse
|
34
|
D'Amours O, Frenette G, Caron P, Belleannée C, Guillemette C, Sullivan R. Evidences of Biological Functions of Biliverdin Reductase A in the Bovine Epididymis. J Cell Physiol 2015; 231:1077-89. [PMID: 26395865 DOI: 10.1002/jcp.25200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/21/2015] [Indexed: 12/23/2022]
Abstract
Epididymal sperm binding protein 1 (ELSPBP1) is secreted by the epididymal epithelium via epididymosomes and is specifically transferred to dead spermatozoa during epididymal transit. We identified biliverdin reductase A (BLVRA) as a partner of ELSPBP1 by immunoprecipitation followed by tandem mass spectrometry. Pull down assays showed that these two proteins interact in the presence of zinc ions. The BLVRA enzyme is known to convert biliverdin to bilirubin, both of which possess antioxidant activity. Assessment by real-time RT-PCR showed that BLVRA is highly expressed in the caput and the corpus epididymis, but is expressed at lower levels in the testis and the cauda epididymis. It is primarily found in the soluble fraction of the caput epididymal fluid, is barely detectable in the cauda fluid, and is detectable to a lesser extent in the epididymosome fraction of both caput and cauda fluids. Immunocytometry on epididymal sperm showed that BLVRA is found on all sperm recovered from the caput region, whereas it is undetectable on cauda sperm. Biliverdin and bilirubin are found in higher concentrations in the caput epididymal fluid, as measured by mass spectrometry. Lipid peroxidation was limited by 1 μM of biliverdin, but not bilirubin when caput spermatozoa were challenged with 500 μM H2O2. Since immature spermatozoa are a source of reactive oxygen species, BLVRA may be involved in the protection of maturing spermatozoa. It is also plausible that BLVRA is implicated in haemic protein catabolism in the epididymal luminal environment.
Collapse
Affiliation(s)
- Olivier D'Amours
- Département d'obstétrique, gynécologie et reproduction, Faculté de Médecine, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Canada
| | - Gilles Frenette
- Département d'obstétrique, gynécologie et reproduction, Faculté de Médecine, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Canada
| | - Patrick Caron
- Laboratoire de pharmacogénomique, Faculté de Pharmacie, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Canada
| | - Clémence Belleannée
- Département d'obstétrique, gynécologie et reproduction, Faculté de Médecine, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Canada
| | - Chantal Guillemette
- Laboratoire de pharmacogénomique, Faculté de Pharmacie, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Canada
| | - Robert Sullivan
- Département d'obstétrique, gynécologie et reproduction, Faculté de Médecine, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Canada
| |
Collapse
|
35
|
Gibbs PEM, Miralem T, Maines MD. Biliverdin reductase: a target for cancer therapy? Front Pharmacol 2015; 6:119. [PMID: 26089799 PMCID: PMC4452799 DOI: 10.3389/fphar.2015.00119] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/20/2015] [Indexed: 12/30/2022] Open
Abstract
Biliverdin reductase (BVR) is a multifunctional protein that is the primary source of the potent antioxidant, bilirubin. BVR regulates activities/functions in the insulin/IGF-1/IRK/PI3K/MAPK pathways. Activation of certain kinases in these pathways is/are hallmark(s) of cancerous cells. The protein is a scaffold/bridge and intracellular transporter of kinases that regulate growth and proliferation of cells, including PKCs, ERK and Akt, and their targets including NF-κB, Elk1, HO-1, and iNOS. The scaffold and transport functions enable activated BVR to relocate from the cytosol to the nucleus or to the plasma membrane, depending on the activating stimulus. This enables the reductase to function in diverse signaling pathways. And, its expression at the transcript and protein levels are increased in human tumors and the infiltrating T-cells, monocytes and circulating lymphocytes, as well as the circulating and infiltrating macrophages. These functions suggest that the cytoprotective role of BVR may be permissive for cancer/tumor growth. In this review, we summarize the recent developments that define the pro-growth activities of BVR, particularly with respect to its input into the MAPK signaling pathway and present evidence that BVR-based peptides inhibit activation of protein kinases, including MEK, PKCδ, and ERK as well as downstream targets including Elk1 and iNOS, and thus offers a credible novel approach to reduce cancer cell proliferation.
Collapse
Affiliation(s)
- Peter E M Gibbs
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry , Rochester, NY, USA
| | - Tihomir Miralem
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry , Rochester, NY, USA
| | - Mahin D Maines
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry , Rochester, NY, USA
| |
Collapse
|
36
|
O'Brien L, Hosick PA, John K, Stec DE, Hinds TD. Biliverdin reductase isozymes in metabolism. Trends Endocrinol Metab 2015; 26:212-20. [PMID: 25726384 PMCID: PMC4380527 DOI: 10.1016/j.tem.2015.02.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/28/2015] [Accepted: 02/01/2015] [Indexed: 12/17/2022]
Abstract
The biliverdin reductase (BVR) isozymes BVRA and BVRB are cell surface membrane receptors with pleiotropic functions. This review compares, for the first time, the structural and functional differences between the isozymes. They reduce biliverdin, a byproduct of heme catabolism, to bilirubin, display kinase activity, and BVRA, but not BVRB, can act as a transcription factor. The binding motifs present in the BVR isozymes allow a wide range of interactions with components of metabolically important signaling pathways such as the insulin receptor kinase cascades, protein kinases (PKs), and inflammatory mediators. In addition, serum bilirubin levels have been negatively associated with abdominal obesity and hypertriglyceridemia. We discuss the roles of the BVR isozymes in metabolism and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Luke O'Brien
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Peter A Hosick
- Department of Exercise Science and Physical Education, Montclair State University, Montclair, NJ 07043, USA
| | - Kezia John
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - David E Stec
- Center for Excellence in Cardiovascular-Renal Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - Terry D Hinds
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA.
| |
Collapse
|