1
|
Moghassemi S, Nikanfar S, Dadashzadeh A, Sousa MJ, Wan Y, Sun F, Colson A, De Windt S, Kwaspen L, Kanbar M, Sobhani K, Yang J, Vlieghe H, Li Y, Debiève F, Wyns C, Amorim CA. The revolutionary role of placental derivatives in biomedical research. Bioact Mater 2025; 49:456-485. [PMID: 40177109 PMCID: PMC11964572 DOI: 10.1016/j.bioactmat.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 04/05/2025] Open
Abstract
The human placenta is a transient yet crucial organ that plays a key role in sustaining the relationship between the maternal and fetal organisms. Despite its historical classification as "biowaste," placental tissues have garnered increasing attention since the early 1900s for their significant medical potential, particularly in wound repair and surgical application. As ethical considerations regarding human placental derivatives have largely been assuaged in many countries, they have gained significant attention due to their versatile applications in various biomedical fields, such as biomedical engineering, regenerative medicine, and pharmacology. Moreover, there is a substantial trend toward various animal product substitutions in laboratory research with human placental derivatives, reflecting a broader commitment to advancing ethical and sustainable research methodologies. This review provides a comprehensive examination of the current applications of human placental derivatives, explores the mechanisms behind their therapeutic effects, and outlines the future potential and directions of this rapidly advancing field.
Collapse
Affiliation(s)
- Saeid Moghassemi
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Saba Nikanfar
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Maria João Sousa
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Yuting Wan
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Fengxuan Sun
- Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Arthur Colson
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Sven De Windt
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology and Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Lena Kwaspen
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology and Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Marc Kanbar
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology and Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Keyvan Sobhani
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jie Yang
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Hanne Vlieghe
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Yongqian Li
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Frédéric Debiève
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Christine Wyns
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology and Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Christiani A. Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
2
|
Grossini E, Surico D, Venkatesan S, Ola Pour MM, Aquino CI, Remorgida V. Extracellular Vesicles and Pregnancy-Related Hypertensive Disorders: A Descriptive Review on the Possible Implications "From Bench to Bedside". BIOLOGY 2025; 14:240. [PMID: 40136497 PMCID: PMC11939443 DOI: 10.3390/biology14030240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/08/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025]
Abstract
Pregnancy involves extracellular vesicles (EVs) through mechanisms that are poorly understood to date. Furthermore, it is not surprising that EVs may also be involved in the pathophysiology of pre-eclampsia (PE) and gestational hypertension, two clinical conditions with high morbidity and mortality, given their capacity to mediate intracellular communications and regulate inflammation and angiogenesis. We searched major online scientific search engines (PubMed, Google Scholar, Scopus, WES, Embase, etc.) using the terms "Preeclampsia", "Pregnancy", "Hypertension", "Pregnancy-related hypertension", "Extracellular vesicles", "Biomarkers", "Gestation" AND "Obstetrics". Finding potential early biomarkers of risk or illness progression would be essential for the optimum care of expectant mothers with the aforementioned conditions. Nevertheless, none of the various screening assays that have been discovered recently have shown high predictive values. The analysis of EVs in the peripheral blood starting from the first trimester of pregnancy may hold great promise for the possible correlation with gestational hypertension problems and represent a marker of the early stages of the disease. EVs use may be a novel therapeutic approach for the management of various illnesses, as well. In order to define EVs' function in the physiopathology of pregnancy-associated hypertension and PE, as well as their potential as early biomarkers and therapeutic tools, we have compiled the most recent data in this review.
Collapse
Affiliation(s)
- Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (S.V.); (M.M.O.P.)
| | - Daniela Surico
- Gynecology and Obstetrics Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (D.S.); (C.I.A.); (V.R.)
| | - Sakthipriyan Venkatesan
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (S.V.); (M.M.O.P.)
| | - Mohammad Mostafa Ola Pour
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (S.V.); (M.M.O.P.)
| | - Carmen Imma Aquino
- Gynecology and Obstetrics Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (D.S.); (C.I.A.); (V.R.)
| | - Valentino Remorgida
- Gynecology and Obstetrics Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (D.S.); (C.I.A.); (V.R.)
| |
Collapse
|
3
|
Wei Y, Tian H, Peng H, Wubulikasimu A, Wei M, Li H, He Q, Duan T, Huang Y, Wang K. Indole-3-lactic acid derived from tryptophan metabolism alleviates the sFlt-1-induced preeclampsia-like phenotype via the activation of aryl hydrocarbon receptor. Life Sci 2025; 361:123329. [PMID: 39710059 DOI: 10.1016/j.lfs.2024.123329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/10/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
AIMS Preeclampsia (PE) is an unusual multisystem condition that occurs during pregnancy and is characterized by maternal endothelial dysfunction and damage to various organs. The catabolism of L-tryptophan (Trp) is involved in various biological activities, including healthy pregnancy. Our previous work revealed that PE significantly elevated the concentration of indole-3-lactic acid (ILA), a Trp derivative, during the third trimester of pregnancy. However, the effects of ILA on the occurrence of PE and its influence on fetoplacental vascular functionality remain unknown. MATERIALS AND METHODS Twenty-five Trp metabolites were detected in maternal serum. The effects of ILA on the functions of human umbilical vein endothelial cells (HUVECs) were examined. Furthermore, a soluble fms-like tyrosine kinase-1 (sFlt-1) induced PE-like mouse model was established and treated with ILA. KEY FINDINGS We found that the ratio of ILA to Trp gradually increased as pregnancy progressed. PE did not significantly change the concentration of ILA during either the first or second trimester. Moreover, as an aryl hydrocarbon receptor (AhR) ligand, ILA promoted HUVEC proliferation, migration and tube formation through the PI3K/AKT signaling pathway after AhR activation. Importantly, ILA administration alleviated sFlt-1-induced PE-like symptoms in mice. Similarly, our in vitro study demonstrated that ILA significantly relieved sFlt-1-induced HUVEC dysfunction by increasing the VEGFA and PIGF levels. SIGNIFICANCE These data strongly suggest that PE-elevated ILA in the third trimester is a protective mechanism against vascular dysfunction. Therefore, we propose that ILA is a novel and promising therapeutic approach for the treatment of PE that promotes endothelial cell functions.
Collapse
Affiliation(s)
- Yingying Wei
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Haojun Tian
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Hao Peng
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Ayinisa Wubulikasimu
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Mengtian Wei
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Han Li
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Qizhi He
- Department of Pathology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Tao Duan
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yiying Huang
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Kai Wang
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
4
|
Wei Y, Tian H, Wei X, Zhang A, Wei M, Wang R, Zhang L, Qiao P, Wang K. Distinct phenotypes in the preeclamptic-like mouse model induced by adenovirus carrying sFlt1 and recombinant sFlt1 protein. Eur J Med Res 2024; 29:642. [PMID: 39741314 DOI: 10.1186/s40001-024-02223-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/15/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Preeclampsia (PE) is a pregnancy-specific, multisystemic disorder that affects 2-8% pregnancies worldwide and is a leading cause of maternal and perinatal mortality. At present, there is no cure for PE apart from delivery the placenta. Therefore, it is important and urgent to possess a suitable animal model to study the pathology and treatment of PE. When exogenous soluble fms-like tyrosine kinase-1 (sFlt-1) is administered, pregnant animals develop a PE-like phenotype. However, there is no report on the comparison between different methods of constructing PE mouse models using sFlt-1. METHODS In this study, the adenovirus carrying sFlt-1(ADV-Flt-1) and recombinant murine sFlt-1 protein (RM Flt-1) are two different methods were used to induce and compare PE-like mouse models. Pregnancy outcomes were examined on E14.5 and E17.5. RESULTS Our data showed that on E14.5, the adenovirus carrying sFlt-1 induced PE-like phenotype, whereas recombinant murine sFlt-1 protein not. On E17.5, both the two methods induced PE-like phenotype including hypertension, proteinuria, fetal growth restriction, placental and glomerular endotheliosis. Importantly, in the adenoviral-mediated sFlt-1 group, the circulating concentration of sFlt-1 were higher than in the recombinant sFlt-1 group, leading to earlier and more severe symptoms of PE. The ADV-Flt-1 group is easy to operate, quickly effective and efficient. The RM Flt-1 group is safer and more stable, with good repeatability, but slower to take effect. CONCLUSIONS We proposed that the adenoviral-mediated sFlt-1 model can better simulate early-onset and severe PE.
Collapse
Affiliation(s)
- Yingying Wei
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Haojun Tian
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xuancheng Wei
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Ai Zhang
- Fetal Medicine Center, Qingdao Women and Children's Hospital, Qingdao University, Qingdao, 266000, China
| | - Mengtian Wei
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Ruixue Wang
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Lu Zhang
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Ping Qiao
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Kai Wang
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
5
|
Esmaeili A, Noorkhajavi G, Soleimani M, Farsinezhad H, Bagheri-Mohammadi S, Keshel SH. Application of exosomes for the regeneration of skin wounds: Principles, recent applications and limitations. Tissue Cell 2024; 91:102611. [PMID: 39550901 DOI: 10.1016/j.tice.2024.102611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024]
Abstract
In the medical field, wound healing poses significant challenges due to its complexity and time-consuming nature. Cell-free wound repair, notably the utilization of exosomes (EXOs), has made significant progress in recent years. Urine, saliva, umbilical cord, blood, mesenchymal stem cells and breast milk cells can be used to extract and purify EXOs, which are Nano-sized lipid bilayer vesicles. Besides their relatively little toxicity, non-specific immunogenicity and excellent biocompatibility, EXOs also contain bioactive molecules such as proteins, lipids, microRNAs (miRNAs), and messenger RNAs (mRNAs). Their bioactive compounds have anti-inflammatory properties and can speed up wound healing. Various medicinal agents can also be contained within the EXOs. This review briefly provides new information on the different aspects of EXOs and evaluate the application of EXOs as a promising therapy in the regeneration of skin wounds in recent pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Ali Esmaeili
- Student Research Committee, Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Noorkhajavi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hana Farsinezhad
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Zhong C, Cohen K, Lin X, Schiller E, Sharma S, Hanna N. COVID-19 Vaccine mRNA Biodistribution: Maternal and Fetal Exposure Risks. Am J Reprod Immunol 2024; 92:e13934. [PMID: 39392236 DOI: 10.1111/aji.13934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/24/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
SARS-CoV-2 infection during pregnancy has severe consequences on maternal and neonatal health. Presently, vaccination stands as a critical preventive measure for mitigating infection-related risks. Although the initial clinical trials for the COVID-19 vaccines excluded pregnant women, subsequent investigations have indicated mRNA vaccinations' effectiveness and short-term safety during pregnancy. However, there is a lack of information regarding the potential biodistribution of the vaccine mRNA during pregnancy and lactation. Recent findings indicate that COVID-19 vaccine mRNA has been detected in breast milk, suggesting that its presence is not confined to the injection site and raises the possibility of similar distribution to the placenta and the fetus. Furthermore, the potential effects and responses of the placenta and fetus to the vaccine mRNA are still unknown. While potential risks might exist with the exposure of the placenta and fetus to the COVID-19 mRNA vaccine, the application of mRNA therapies for maternal and fetal conditions offers a groundbreaking prospect. Future research should leverage the unique opportunity provided by the first-ever application of mRNA vaccines in humans to understand their biodistribution and impact on the placenta and fetus in pregnant women. Such insights could substantially advance the development of safer and more effective future mRNA-based therapies during pregnancy.
Collapse
Affiliation(s)
- Connie Zhong
- New York University-Grossman Long Island School of Medicine, Mineola, New York, USA
| | - Koral Cohen
- New York University-Grossman Long Island School of Medicine, Mineola, New York, USA
| | - Xinhua Lin
- Women and Children's Research Laboratory, Departments of Foundations of Medicine, New York University-Grossman Long Island School of Medicine, Mineola, New York, USA
| | - Emily Schiller
- New York University-Grossman Long Island School of Medicine, Mineola, New York, USA
| | - Surendra Sharma
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nazeeh Hanna
- Women and Children's Research Laboratory, Departments of Foundations of Medicine, New York University-Grossman Long Island School of Medicine, Mineola, New York, USA
- Department of Pediatrics, Division of Neonatology, New York University Langone Hospital-Long Island, New York University-Grossman Long Island School of Medicine, Mineola, New York, USA
| |
Collapse
|
7
|
Samal S, Barik D, Shyamal S, Jena S, Panda AC, Dash M. Synergistic Interaction between Polysaccharide-Based Extracellular Matrix and Mineralized Osteoblast-Derived EVs Promotes Bone Regeneration via miRNA-mRNA Regulatory Axis. Biomacromolecules 2024; 25:4139-4155. [PMID: 38924768 DOI: 10.1021/acs.biomac.4c00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Extracellular vesicles (EVs) derived from bone progenitor cells are advantageous as cell-free and non-immunogenic cargo delivery vehicles. In this study, EVs are isolated from MC3T3-E1 cells before (GM-EVs) and after mineralization for 7 and 14 days (DM-EVs). It was observed that DM-EVs accelerate the process of differentiation in recipient cells more prominently. The small RNA sequencing of EVs revealed that miR-204-5p, miR-221-3p, and miR-148a-3p are among the highly upregulated miRNAs that have an inhibitory effect on the function of mRNAs, Sox11, Timp3, and Ccna2 in host cells, which is probably responsible for enhancing the activity of osteoblastic genes. To enhance the bioavailability of EVs, they are encapsulated in a chitosan-collagen composite hydrogel that serves as a bioresorbable extracellular matrix (ECM). The EVs-integrated scaffold (DM-EVs + Scaffold) enhances bone regeneration in critical-sized calvarial bone defects in rats within 8 weeks of implantation by providing the ECM cues. The shelf life of DM-EVs + Scaffold indicates that the bioactivity of EVs and their cargo in the polymer matrix remains intact for up to 30 days. Integrating mineralized cell-derived EVs into an ECM represents a bioresorbable matrix with a cell-free method for promoting new bone formation through the miRNA-mRNA regulatory axis.
Collapse
Affiliation(s)
- Sasmita Samal
- BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar 751023 Odisha, India
- School of Biotechnology, KIIT University, Bhubaneswar 751024 Odisha, India
| | - Debyashreeta Barik
- BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar 751023 Odisha, India
- School of Biotechnology, KIIT University, Bhubaneswar 751024 Odisha, India
| | - Sharmishtha Shyamal
- BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar 751023 Odisha, India
- ICMR-National Institute for Reproduction Biology and Child Health, Mumbai 400012, India
| | - Sarita Jena
- BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar 751023 Odisha, India
| | - Amaresh C Panda
- BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar 751023 Odisha, India
| | - Mamoni Dash
- BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar 751023 Odisha, India
| |
Collapse
|
8
|
Guo Q, Chen J, Bu Q, Zhang J, Ruan M, Chen X, Zhao M, Tu X, Zhao C. Establishing stable and highly osteogenic hiPSC-derived MSCs for 3D-printed bone graft through microenvironment modulation by CHIR99021-treated osteocytes. Mater Today Bio 2024; 26:101111. [PMID: 38933413 PMCID: PMC11201125 DOI: 10.1016/j.mtbio.2024.101111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/17/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Human induced pluripotent stem cell (hiPSC)-derived mesenchymal stem cells (iMSCs) are ideal candidates for the production of standardised and scalable bioengineered bone grafts. However, stable induction and osteogenic differentiation of iMSCs pose challenges in the industry. We developed a precise differentiation method to produce homogeneous and fully differentiated iMSCs. In this study, we established a standardised system to prepare iMSCs with increased osteogenic potential and improved bioactivity by introducing a CHIR99021 (C91)-treated osteogenic microenvironment (COOME). COOME enhances the osteogenic differentiation and mineralisation of iMSCs via canonical Wnt signalling. Global transcriptome analysis and co-culturing experiments indicated that COOME increased the pro-angiogenesis/neurogenesis activity of iMSCs. The superior osteogenic differentiation and mineralisation abilities of COOME-treated iMSCs were also confirmed in a Bio3D module generated using a polycaprolactone (PCL) and cell-integrated 3D printing (PCI3D) system, which is the closest model to in vivo research. This COOME-treated iMSCs differentiation system offers a new perspective for generating highly osteogenic, bioactive, and anatomically matched grafts for clinical applications. Statement of significance Although human induced pluripotent stem cell-derived MSCs (iMSCs) are ideal seed cells for synthetic bone implants, the challenges of stable induction and osteogenic differentiation hinder their clinical application. This study established a standardised system for the scalable preparation of iMSCs with improved osteogenic potential by combining our precise iMSC differentiation method with the CHIR99021 (C91)-treated osteocyte osteogenic microenvironment (COOME) through the activation of canonical Wnt signalling. Moreover, COOME upregulated the pro-angiogenic and pro-neurogenic capacities of iMSCs, which are crucial for the integration of implanted bone grafts. The superior osteogenic ability of COOME-treated iMSCs was confirmed in Bio3D modules generated using PCL and cell-integrated 3D printing systems, highlighting their functional potential in vivo. This study contributes to tissue engineering by providing insights into the functional differentiation of iMSCs for bone regeneration.
Collapse
Affiliation(s)
- Qiuling Guo
- Laboratory of Skeletal Development and Regeneration, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jingjing Chen
- Laboratory of Skeletal Development and Regeneration, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Qiqi Bu
- Laboratory of Skeletal Development and Regeneration, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jinling Zhang
- Laboratory of Skeletal Development and Regeneration, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Minjie Ruan
- Laboratory of Skeletal Development and Regeneration, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoyu Chen
- Center for Medical Epigenetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Mingming Zhao
- Center for Medical Epigenetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Xiaolin Tu
- Laboratory of Skeletal Development and Regeneration, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Chengzhu Zhao
- Laboratory of Skeletal Development and Regeneration, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
9
|
Nishi K, Modi D. Placental exosomes in pregnancy and preeclampsia. Am J Reprod Immunol 2024; 91:e13857. [PMID: 38716824 DOI: 10.1111/aji.13857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/30/2024] [Accepted: 04/15/2024] [Indexed: 05/24/2024] Open
Abstract
Preeclampsia, poses significant risks to both maternal and fetal well-being. Exosomes released by the placenta play a crucial role in intercellular communication and are recognized as potential carriers of essential information for placental development. These exosomes transport a payload of proteins, nucleic acids, and lipids that mirror the placental microenvironment. This review delves into the functional roles of placental exosomes and its contents shedding light on their involvement in vascular regulation and immune modulation in normal pregnancy. Discernible changes are reported in the composition and quantity of placental exosome contents in pregnancies affected by preeclampsia. The exosomes from preeclamptic mothers affect vascularization and fetal kidney development. The discussion also explores the implications of utilizing placental exosomes as biomarkers and the prospects of translating these findings into clinical applications. In conclusion, placental exosomes hold promise as a valuable avenue for deciphering the complexities of preeclampsia, providing crucial diagnostic and prognostic insights. As the field progresses, a more profound comprehension of the distinct molecular signatures carried by placental exosomes may open doors to innovative strategies for managing and offering personalized care to pregnancies affected by preeclampsia.
Collapse
Affiliation(s)
- Kumari Nishi
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra, India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra, India
| |
Collapse
|
10
|
Shan Y, Hou B, Wang J, Chen A, Liu S. Exploring the role of exosomal MicroRNAs as potential biomarkers in preeclampsia. Front Immunol 2024; 15:1385950. [PMID: 38566996 PMCID: PMC10985148 DOI: 10.3389/fimmu.2024.1385950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
The complex pathogenesis of preeclampsia (PE), a significant contributor to maternal and neonatal mortality globally, is poorly understood despite substantial research. This review explores the involvement of exosomal microRNAs (exomiRs) in PE, focusing on their impact on the protein kinase B (AKT)/hypoxia-inducible factor 1-α (HIF1α)/vascular endothelial growth factor (VEGF) signaling pathway as well as endothelial cell proliferation and migration. Specifically, this article amalgamates existing evidence to reveal the pivotal role of exomiRs in regulating mesenchymal stem cell and trophoblast function, placental angiogenesis, the renin-angiotensin system, and nitric oxide production, which may contribute to PE etiology. This review emphasizes the limited knowledge regarding the role of exomiRs in PE while underscoring the potential of exomiRs as non-invasive biomarkers for PE diagnosis, prediction, and treatment. Further, it provides valuable insights into the mechanisms of PE, highlighting exomiRs as key players with clinical implications, warranting further exploration to enhance the current understanding and the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Yuping Shan
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bo Hou
- Department of Cardiovascular Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingli Wang
- Department of Medical Genetics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Aiping Chen
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shiguo Liu
- Department of Medical Genetics, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Gu Y, Zhang X, Wang R, Wei Y, Peng H, Wang K, Li H, Ji Y. Metabolomic profiling of exosomes reveals age-related changes in ovarian follicular fluid. Eur J Med Res 2024; 29:4. [PMID: 38173013 PMCID: PMC10762974 DOI: 10.1186/s40001-023-01586-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Female fertility declines with increased maternal age, and this decline is even more rapid after the age of 35 years. Follicular fluid (FF) is a crucial microenvironment that plays a significant role in the development of oocytes, permits intercellular communication, and provides the oocytes with nutrition. Exosomes have emerged as being important cell communication mediators that are linked to age-related physiological and pathological conditions. However, the metabolomic profiling of FF derived exosomes from advanced age females are still lacking. METHODS The individuals who were involved in this study were separated into two different groups: young age with a normal ovarian reserve and advanced age. The samples were analysed by using gas chromatography-time of flight mass spectrometry (GC-TOFMS) analysis. The altered metabolites were analysed by using Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis to identify the functions and pathways that were involved. RESULTS Our data showed that metabolites in exosomes from FF were different between women of young age and women of advanced age. The set of 17 FF exosomal metabolites (P ≤ 0.05) may be biomarkers to differentiate between the two groups. Most of these differentially expressed metabolites in FF were closely involved in the regulation of oocyte number and hormone levels. CONCLUSIONS In this study, we identified differences in the metabolites of exosomes from FF between women of young age and women of advanced age. These different metabolites were tightly related to oocyte count and hormone levels. Importantly, these findings elucidate the metabolites of the FF exosomes and provide a better understanding of the nutritional profiles of the follicles with age.
Collapse
Affiliation(s)
- Yanqiong Gu
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, No. 2699, West Gaoke Road, Shanghai, 201204, China
| | - Xunyi Zhang
- Reproductive Medicine Center, Tongji Hospital Affiliated to Tongji University, Shanghai, , No. 389 Xincun Road, Shanghai, 200065, China
| | - Ruixue Wang
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, No. 2699, West Gaoke Road, Shanghai, 201204, China
| | - Yingying Wei
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, No. 2699, West Gaoke Road, Shanghai, 201204, China
| | - Hao Peng
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, No. 2699, West Gaoke Road, Shanghai, 201204, China
| | - Kai Wang
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, No. 2699, West Gaoke Road, Shanghai, 201204, China
| | - Han Li
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, No. 2699, West Gaoke Road, Shanghai, 201204, China.
| | - Yazhong Ji
- Reproductive Medicine Center, Tongji Hospital Affiliated to Tongji University, Shanghai, , No. 389 Xincun Road, Shanghai, 200065, China.
| |
Collapse
|
12
|
Margiana R. Mesenchymal stem cell-derived exosomes in preeclampsia: A next-generation therapeutic tool. Cell Biochem Funct 2024; 42:e3908. [PMID: 38269498 DOI: 10.1002/cbf.3908] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/29/2023] [Accepted: 12/10/2023] [Indexed: 01/26/2024]
Abstract
Preeclampsia (PE) is a major gestational disorder that causes both long- and short-term damage to both the mother and the fetus. Endometrium decidualization and the formation of the placenta are orchestrated by mesenchymal stem cells (MSCs). MSCs obtained from patients with PE exhibit an elevated rate of aging and apoptosis, which impairs the interplay between MSCs and endothelium, trophoblast, and immune cells in the placenta, accelerating the onset of PE. Preclinical and clinical evidence imply that the MSC-based therapy approach for PE is prospective. Importantly, as a novel cell-free approach, MSC-derived exosomes can improve symptoms and maternal-fetal survival in PE models by raising cell metabolism, encouraging angiogenesis balance, and regulating immune responses. Even following allogeneic administration, the likelihood of immune rejection is very limited as a result of the small quantity of exosome membrane-bound proteins. Furthermore, because exosomes do not expand, developing tumors is not probable. As a result, MSC-derived exosomes show superiority over MSCs in terms of safety. For the first time, we outline the properties of MSC-exosomes and highlight their functions and potential as a new paradigm for PE therapy in this review.
Collapse
Affiliation(s)
- Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| |
Collapse
|
13
|
Farrelly R, Kennedy MG, Spencer R, Forbes K. Extracellular vesicles as markers and mediators of pregnancy complications: gestational diabetes, pre-eclampsia, preterm birth and fetal growth restriction. J Physiol 2023; 601:4973-4988. [PMID: 37070801 PMCID: PMC11497252 DOI: 10.1113/jp282849] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/13/2023] [Indexed: 04/19/2023] Open
Abstract
In high income countries, approximately 10% of pregnancies are complicated by pre-eclampsia (PE), preterm birth (PTB), fetal growth restriction (FGR) and/or macrosomia resulting from gestational diabetes (GDM). Despite the burden of disease this places on pregnant people and their newborns, there are still few, if any, effective ways of preventing or treating these conditions. There are also gaps in our understanding of the underlying pathophysiologies and our ability to predict which mothers will be affected. The placenta plays a crucial role in pregnancy, and alterations in placental structure and function have been implicated in all of these conditions. As extracellular vesicles (EVs) have emerged as important molecules in cell-to-cell communication in health and disease, recent research involving maternal- and placental-derived EV has demonstrated their potential as predictive and diagnostic biomarkers of obstetric disorders. This review will consider how placental and maternal EVs have been investigated in pregnancies complicated by PE, PTB, FGR and GDM and aims to highlight areas where further research is required to enhance the management and eventual treatment of these pathologies.
Collapse
Affiliation(s)
- Rachel Farrelly
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | | | - Rebecca Spencer
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Karen Forbes
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| |
Collapse
|
14
|
Yao J, Chang X, He Q, Li H, Duan T, Wang K. Exosome enriched leucine-rich alpha-2-glycoprotein-1 and extracellular matrix protein 1 proteins induce abnormal placental angiogenesis in pregnant mice. Placenta 2023; 143:45-53. [PMID: 37804693 DOI: 10.1016/j.placenta.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/25/2023] [Accepted: 09/18/2023] [Indexed: 10/09/2023]
Abstract
INTRODUCTION Gestational Diabetes Mellitus (GDM) is characterized by a high risk of fetal macrosomia and placenta hypervascularization. Exosomes has been known participating in various physiological and pathological processes, including pro-angiogenic function. However, the effects of umbilical cord blood derived exosomes from cases of GDM (GDM-exo) on placental vascular network formation remain unclear. METHODS In the current study, we isolated and identified exosomes in umbilical cord blood from both normal (N-exo) and GDM pregnancies. Meanwhile, we investigated the effects of umbilical cord blood derived exosomes on placental angiogenesis both in vitro and in vivo. RESULTS Our data indicated that in a mouse model, the placenta and fetus weight were significantly higher in the ones administrated with GDM-exo when compared with N-exo. Meanwhile, GDM-exo significantly enhanced placental endothelial cells functions in both HUVEC and HPMEC endothelial cell models. Importantly, we explored two up-regulated proteins in GDM-exo, namely leucine-rich alpha-2-glycoprotein-1 (LRG1) and extracellular matrix protein 1 (ECM1) by proteome analysis, which performed largely pro-angiogenic function and probably resulted in hypervascularization in GDM placenta. DISCUSSION Thus, we proposed that abundant LRG1 and ECM1 enriched GDM-exo may take important roles in regulating pathological placental angiogenesis.
Collapse
Affiliation(s)
- Julei Yao
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, PR China
| | - Xinwen Chang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, PR China
| | - Qizhi He
- Department of Pathology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, PR China
| | - Hua Li
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, PR China
| | - Tao Duan
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, PR China.
| | - Kai Wang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, PR China.
| |
Collapse
|
15
|
Barnes MVC, Pantazi P, Holder B. Circulating extracellular vesicles in healthy and pathological pregnancies: A scoping review of methodology, rigour and results. J Extracell Vesicles 2023; 12:e12377. [PMID: 37974377 PMCID: PMC10654380 DOI: 10.1002/jev2.12377] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/27/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023] Open
Abstract
Extracellular vesicles (EVs) play a crucial role in pregnancy, revealed by the presence of placental-derived EVs in maternal blood, their in vitro functionality, and their altered cargo in pregnancy pathologies. These EVs are thought to be involved in the development of pregnancy pathologies, such as pre-eclampsia, pre-term birth, and fetal growth restriction, and have been suggested as a source of biomarkers for gestational diseases. However, to accurately interpret their function and biomarker potential, it is necessary to critically evaluate the EV isolation and characterization methodologies used in pregnant cohorts. In this systematic scoping review, we collated the results from 152 studies that have investigated EVs in the blood of pregnant women, and provide a detailed analysis of the EV isolation and characterization methodologies used. Our findings indicate an overall increase in EV concentrations in pregnant compared to non-pregnant individuals, an increased EV count as gestation progresses, and an increased EV count in some pregnancy pathologies. We highlight the need for improved standardization of methodology, greater focus on gestational changes in EV concentrations, and further investigations into the functionality of EVs. Our review suggests that EVs hold great promise as diagnostic and translational tools for gestational diseases. However, to fully realize their potential, it is crucial to improve the standardization and reliability of EV isolation and characterization methodologies, and to gain a better understanding of their functional roles in pregnancy pathologies.
Collapse
Affiliation(s)
- Megan V. C. Barnes
- Institute of Reproductive and Developmental Biology, Department of MetabolismDigestion and Reproduction, Imperial College LondonLondonUK
| | - Paschalia Pantazi
- Institute of Reproductive and Developmental Biology, Department of MetabolismDigestion and Reproduction, Imperial College LondonLondonUK
| | - Beth Holder
- Institute of Reproductive and Developmental Biology, Department of MetabolismDigestion and Reproduction, Imperial College LondonLondonUK
| |
Collapse
|
16
|
Rao A, Shinde U, Das DK, Balasinor N, Madan T. Early prediction of pre-eclampsia using circulating placental exosomes: Newer insights. Indian J Med Res 2023; 158:385-396. [PMID: 37987999 DOI: 10.4103/ijmr.ijmr_2143_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Indexed: 11/22/2023] Open
Abstract
Pre-eclampsia (PE), a multifactorial de novo hypertensive pregnancy disorder, is one of the leading causes of foeto-maternal morbidity and mortality. Currently, antihypertensive drugs are the first-line therapy for PE and evidence suggests that low-dose aspirin initiated early in high risk pregnancies may reduce the risk of development or severity of PE. However, an early prediction of this disorder remains an unmet clinical challenge. Several potential serum biomarkers associated with maternal immunoregulation and placental angiogenesis have been evaluated but are ineffective and inconsistent for early prediction. Although placental biomarkers would be more specific and sensitive in predicting the risk of PE, accessing the placenta during pregnancy is not feasible. Circulating placental exosomes (pEXO), originating from foeto-maternal interface, are being evaluated as the placenta's surrogate and the best source of non-invasive placental biomarkers. pEXO appear in the maternal circulation starting from six weeks of gestation and its dynamic biological cargo across pregnancy is associated with successful pregnancy outcomes. Therefore, monitoring changes in pEXO expression profiles could provide new insights into the prediction, diagnosis and treatment of PE. This narrative review comprehensively summarizes the available literature on the candidate predictive circulating biomarkers evaluated for PE to date. In particular, the review elucidates the current knowledge of distinct molecular signatures emanating from pEXO in pre-eclamptic women to support the discovery of novel early predictive biomarkers for effective intervention and management of the disease.
Collapse
Affiliation(s)
- Aishwarya Rao
- Department of Innate Immunity, ICMR-National Institute for Research in Reproductive & Child Health, Mumbai, Maharashtra, India
| | - Uma Shinde
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive & Child Health, Mumbai, Maharashtra, India
| | - Dhanjit Kumar Das
- Department of Stem Cell Biology, ICMR-National Institute for Research in Reproductive & Child Health, Mumbai, Maharashtra, India
| | - Nafisa Balasinor
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive & Child Health, Mumbai, Maharashtra, India
| | - Taruna Madan
- Department of Innate Immunity, ICMR-National Institute for Research in Reproductive & Child Health, Mumbai, Maharashtra, India
| |
Collapse
|
17
|
Jia L, Huang X, Peng H, Jia Y, Zhang R, Wei Y, Wei M, Wang R, Li H, He Q, Wang K. Pregnancy-specific beta-1-glycoprotein 1-enriched exosomes are involved in the regulation of vascular endothelial cell function during pregnancy. Placenta 2023; 139:138-147. [PMID: 37392715 DOI: 10.1016/j.placenta.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/29/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
INTRODUCTION Pregnancy is a dynamic time period associated with significant physiological changes in the cardiovascular system. It is well known that during pregnancy, the placenta secretes a variety of molecular signals, including exosomes, into the maternal circulation to adapt to increased blood volume and maintain blood pressure at normotensive levels. METHODS In the present study, we compared the effects of exosomes derived from the peripheral blood serum of nonpregnant women (NP-Exo) and pregnant women with uncomplicated pregnancy (P-Exo) on endothelial cell function. We also analyzed the proteomic profiles of these two groups of exosomes and the molecular mechanisms underlying the effect of exosome cargoes on vascular endothelial cell function. RESULTS We found that P-Exo were positively involved in regulating the function of human umbilical vein endothelial cell (HUVEC) and promoting the release of nitric oxide (NO). Furthermore, we revealed that trophoblast-derived pregnancy-specific beta-1-glycoprotein 1 (PSG1)-enriched exosomes treatment induced the promotion of HUVEC proliferation and migration as well as the release of NO. In addition, we found that P-Exo maintained blood pressure at normal levels in mice. DISCUSSION These results suggested that PSG1-enriched exosomes derived from maternal peripheral blood regulate the function of vascular endothelial cells and play an important role in maintaining maternal blood pressure during pregnancy.
Collapse
Affiliation(s)
- Linyan Jia
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China; Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaojie Huang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China; Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao Peng
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanhui Jia
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ruonan Zhang
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yingying Wei
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mengtian Wei
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ruixue Wang
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Han Li
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qizhi He
- Department of Pathology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Kai Wang
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
18
|
Contreras S, Escalona R, Cantin C, Valdivia P, Zapata D, Carvajal L, Brito R, Cerda Á, Illanes S, Gutiérrez J, Leiva A. Small extracellular vesicles from pregnant women with maternal supraphysiological hypercholesterolemia impair endothelial cell function in vitro. Vascul Pharmacol 2023; 150:107174. [PMID: 37105374 DOI: 10.1016/j.vph.2023.107174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/06/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023]
Abstract
Maternal physiological hypercholesterolemia (MPH, maternal total cholesterol (TC) levels at term of pregnancy ≤280 mg/dl) occurs to assure fetal development. Maternal supraphysiological hypercholesterolemia (MSPH, TC levels >280 mg/dl) is a pathological condition associated with maternal, placental, and fetal endothelial dysfunction and early neonatal atherosclerosis development. Small extracellular vesicles (sEVs) are delivered to the extracellular space by different cells, where they modulate cell functions by transporting active signaling molecules, including proteins and miRNA. AIM To determine whether sEVs from MSPH women could alter the function of endothelial cells (angiogenesis, endothelial activation and nitric oxide synthesis capacity). METHODS This study included 24 Chilean women (12 MPH and 12 MSPH). sEVs were isolated from maternal plasma and characterized by sEV markers (CD9, Alix and HSP70), nanoparticle tracking analysis, transmission electron microscopy, and protein and cholesterol content. The endothelial cell line HMEC-1 was used to determine the uptake of labeled sEVs and the effects of sEVs on cell viability, endothelial tube formation, endothelial cell activation, and endothelial nitric oxide expression and function. RESULTS In MSPH women, the plasma concentration of sEVs was increased compared to that in MPH women. MSPH-sEVs were highly taken up by HMEC-1 cells and reduced angiogenic capacity and the expression and activity of eNOS without changing cell viability or endothelial activation. CONCLUSION sEVs from MSPH women impair angiogenesis and nitric oxide synthesis in endothelial cells, which could contribute to MSPH-associated endothelial dysfunction.
Collapse
Affiliation(s)
- Susana Contreras
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Santiago, Chile
| | - Rodrigo Escalona
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Claudette Cantin
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Pascuala Valdivia
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - David Zapata
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Lorena Carvajal
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roberto Brito
- Center of Excellence in Translational Medicine, CEMT-BIOREN, Universidad de La Frontera, Temuco, Chile
| | - Álvaro Cerda
- Center of Excellence in Translational Medicine, CEMT-BIOREN, Universidad de La Frontera, Temuco, Chile; Departamento de Ciencias Básicas, Universidad de La Frontera, Temuco, Chile
| | | | - Jaime Gutiérrez
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
| | - Andrea Leiva
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
| |
Collapse
|
19
|
Chen R, Yang H, Dai J, Zhang M, Lu G, Zhang M, Yu H, Zheng M, He Q. The biological functions of maternal-derived extracellular vesicles during pregnancy and lactation and its impact on offspring health. Clin Nutr 2023; 42:493-504. [PMID: 36857958 DOI: 10.1016/j.clnu.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/25/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
During pregnancy and lactation, mothers provide not only nutrients, but also many bioactive components for their offspring through placenta and breast milk, which are essential for offspring development. Extracellular vesicles (EVs) are nanovesicles containing a variety of biologically active molecules and participate in the intercellular communication. In the past decade, an increasing number of studies have reported that maternal-derived EVs play a crucial role in offspring growth, development, and immune system establishment. Hereby, we summarized the characteristics of EVs; biological functions of maternal-derived EVs during pregnancy, including implantation, decidualization, placentation, embryo development and birth of offspring; biological function of breast milk-derived EVs (BMEs) on infant oral and intestinal diseases, immune system, neurodevelopment, and metabolism. In summary, emerging studies have revealed that maternal-derived EVs play a pivotal role in offspring health. As such, maternal-derived EVs may be used as promising biomarkers in offspring disease diagnosis and treatment. However, existing research on maternal-derived EVs and offspring health is largely limited to animal and cellular studies. Evidence from human studies is needed.
Collapse
Affiliation(s)
- Rui Chen
- School of Public Health, Wuhan University, Wuhan, China
| | | | - Jie Dai
- School of Public Health, Wuhan University, Wuhan, China
| | - Minzhe Zhang
- School of Public Health, Wuhan University, Wuhan, China
| | - Gaolei Lu
- School of Public Health, Wuhan University, Wuhan, China
| | - Minjie Zhang
- School of Public Health, Wuhan University, Wuhan, China
| | - Hongjie Yu
- School of Public Health, Wuhan University, Wuhan, China
| | - Miaobing Zheng
- School of Nutrition and Exercise, Deakin University, Melbourne, Australia
| | - Qiqiang He
- School of Public Health, Wuhan University, Wuhan, China; Wuhan University Shenzhen Research Institute, Shenzhen, China; Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, China.
| |
Collapse
|
20
|
Luo Y, Liu Y, Wang B, Tu X. CHIR99021-Treated Osteocytes with Wnt Activation in 3D-Printed Module Form an Osteogenic Microenvironment for Enhanced Osteogenesis and Vasculogenesis. Int J Mol Sci 2023; 24:ijms24066008. [PMID: 36983081 PMCID: PMC10052982 DOI: 10.3390/ijms24066008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Finding a bone implant that has high bioactivity that can safely drive stem cell differentiation and simulate a real in vivo microenvironment is a challenge for bone tissue engineering. Osteocytes significantly regulate bone cell fate, and Wnt-activated osteocytes can reversely regulate bone formation by regulating bone anabolism, which may improve the biological activity of bone implants. To achieve a safe application, we used the Wnt agonist CHIR99021 (C91) to treat MLO-Y4 for 24 h, in a co-culture with ST2 for 3 days after withdrawal. We found that the expression of Runx2 and Osx increased, promoted osteogenic differentiation, and inhibited adipogenic differentiation in the ST2 cells, and these effects were eliminated by the triptonide. Therefore, we hypothesized that C91-treated osteocytes form an osteogenic microenvironment (COOME). Subsequently, we constructed a bio-instructive 3D printing system to verify the function of COOME in 3D modules that mimic the in vivo environment. Within PCI3D, COOME increased the survival and proliferation rates to as high as 92% after 7 days and promoted ST2 cell differentiation and mineralization. Simultaneously, we found that the COOME-conditioned medium also had the same effects. Therefore, COOME promotes ST2 cell osteogenic differentiation both directly and indirectly. It also promotes HUVEC migration and tube formation, which can be explained by the high expression of Vegf. Altogether, these results indicate that COOME, combined with our independently developed 3D printing system, can overcome the poor cell survival and bioactivity of orthopedic implants and provide a new method for clinical bone defect repair.
Collapse
Affiliation(s)
- Yisheng Luo
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yangxi Liu
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Bo Wang
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Xiaolin Tu
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
21
|
Chen C, Zhang Z, Gu X, Sheng X, Xiao L, Wang X. Exosomes: New regulators of reproductive development. Mater Today Bio 2023; 19:100608. [PMID: 36969697 PMCID: PMC10034510 DOI: 10.1016/j.mtbio.2023.100608] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/12/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023] Open
Abstract
Exosomes are a subtype of extracellular vesicles (EVs) with a size range between 30 and 150 nm, which can be released by the majority of cell types and circulate in body fluid. They function as a long-distance cell-to-cell communication mechanism that modulates the gene expression profile and fate of target cells. Increasing evidence has indicated exosomes' central role in regulating various complex reproductive processes. However, to our knowledge, a review that focally and vividly describes the role of exosomes in reproductive development is still lacking. This review highlights our knowledge about the contribution of exosomes to early mammalian reproduction, such as gametogenesis, fertilization, early embryonic development, implantation, placentation and pregnancy. The discussion is primarily drawn from literature pertaining to the mammalian lineage with emphasis on the roles of exosomes in human reproduction and laboratory and livestock models.
Collapse
|
22
|
Yang Y, Lang P, Zhang X, Wu X, Cao S, Zhao C, Shen R, Ling X, Yang Y, Zhang J. Molecular characterization of extracellular vesicles derived from follicular fluid of women with and without PCOS: integrating analysis of differential miRNAs and proteins reveals vital molecules involving in PCOS. J Assist Reprod Genet 2023; 40:537-552. [PMID: 36695944 PMCID: PMC10033803 DOI: 10.1007/s10815-023-02724-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
PURPOSE To elucidate the characterization of extracellular vesicles (EVs) in the follicular fluid-derived extracellular vesicles (FF-EVs) and discover critical molecules and signaling pathways associating with the etiology and pathobiology of PCOS, the differentially expressed miRNAs (DEmiRNAs) and differentially expressed proteins profiles (DEPs) were initially explored and combinedly analyzed. METHODS First, the miRNA and protein expression profiles of FF-EVs in PCOS patients and control patients were compared by RNA-sequencing and tandem mass tagging (TMT) proteomic methods. Subsequently, Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes were used to analyze the biological function of target genes of DEmiRNAs and DEPs. Finally, to discover the functional miRNA-target gene-protein interaction pairs involved in PCOS, DEmiRs target gene datasets and DEPs datasets were used integratedly. RESULTS A total of 6 DEmiRNAs and 32 DEPs were identified in FF-EVs in patients with PCOS. Bioinformatics analysis revealed that DEmiRNAs target genes are mainly involved in thiamine metabolism, insulin secretion, GnRH, and Apelin signaling pathway, which are closely related to the occurrence of PCOS. DEPs also closely related to hormone metabolism processes such as steroid hormone biosynthesis. In the analysis integrating DEmiRNAs target genes and DEPs, two molecules, GRAMD1B and STPLC2, attracted our attention that are closely associated with cholesterol transport and ceramide biosynthesis, respectively. CONCLUSION Dysregulated miRNAs and proteins in FF-EVs, mainly involving in hormone metabolism, insulin secretion, neurotransmitters regulation, adipokine expression, and secretion, may be closely related to PCOS. The effects of GRAMD1B and STPLC2 on PCOS deserve further study.
Collapse
Affiliation(s)
- Yuqin Yang
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Peng Lang
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xiaolan Zhang
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xun Wu
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Shanren Cao
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Chun Zhao
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Rong Shen
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xiufeng Ling
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Ye Yang
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| | - Junqiang Zhang
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| |
Collapse
|
23
|
Uterine Flushing Fluid-Derived Let-7b Targets CXCL10 to Regulate Uterine Receptivity in Goats during Embryo Implantation. Int J Mol Sci 2023; 24:ijms24032799. [PMID: 36769111 PMCID: PMC9917504 DOI: 10.3390/ijms24032799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Exosomes have the ability to carry a wide range of chemicals, convey them to target cells or target regions, and act as "messengers." For the purpose of investigating embryo attachment, it is helpful to comprehend the range of exosomal mRNAs and miRNAs derived from the uterine flushing fluid before and after embryo attachment. In this study, we recovered exosomes from goat uterine rinsing fluid at 5, 15, and 18 days of gestation and used RNA-Seq to identify the mRNA and miRNA profiles of exosomes obtained from uterine rinsing fluid before and after embryo implantation. In total, 91 differently expressed miRNAs and 27,487 differentially expressed mRNAs were found. The target genes predicted by the differentially expressed miRNAs and the differentially expressed mRNAs were mainly membrane-related organelles with catalytic activity, binding activity, transcriptional regulation activity, and involved in metabolism, biological regulation, development, and other processes. This was revealed by GO analysis. Furthermore, KEGG analysis revealed that they were abundant in signaling pathways associated with embryo implantation, including the "PI3K-Akt signaling pathway," "Toll-like receptor signaling pathway," "TGF-beta signaling route," "Notch signaling pathway," and others. Moreover, our research has demonstrated, for the first time, that chi-let-7b-5p specifically targets the 3'UTR of CXCL10. Our research offers a fresh viewpoint on the mechanics of embryo attachment.
Collapse
|
24
|
Extracellular vesicles-encapsulated microRNA in mammalian reproduction: A review. Theriogenology 2023; 196:174-185. [PMID: 36423512 DOI: 10.1016/j.theriogenology.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022]
Abstract
Extracellular vesicles (EVs) are nanoscale cell-derived lipid vesicles that participate in cell-cell communication by delivering cargo, including mRNAs, proteins and non-coding RNAs, to recipient cells. MicroRNA (miRNA), a non-coding RNA typically 22 nucleotides long, is crucial for nearly all developmental and pathophysiological processes in mammals by regulating recipient cells gene expression. Infertility is a worldwide health issue that affects 10-15% of couples during their reproductive years. Although assisted reproductive technology (ART) gives infertility couples hope, the failure of ART is mainly unknown. It is well accepted that EVs-encapsulated miRNAs have a role in different reproductive processes, implying that these EVs-encapsulated miRNAs could optimize ART, improve reproductive rate, and treat infertility. As a result, in this review, we describe the present understanding of EVs-encapsulated miRNAs in reproduction regulation.
Collapse
|
25
|
Cord Blood Plasma and Placental Mesenchymal Stem Cells-Derived Exosomes Increase Ex Vivo Expansion of Human Cord Blood Hematopoietic Stem Cells While Maintaining Their Stemness. Cells 2023; 12:cells12020250. [PMID: 36672185 PMCID: PMC9857343 DOI: 10.3390/cells12020250] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have been used for ex vivo expansion of umbilical cord blood (UCB) hematopoietic stem cells (HSCs) to maintain their primitive characters and long-term reconstitution abilities during transplantation. Therapeutic effects of MSCs mainly rely on paracrine mechanisms, including secretion of exosomes (Exos). The objective of this study was to examine the effect of cord blood plasma (CBP)-derived Exos (CBP Exos) and Placental MSCs-derived Exos (MSCs Exos) on the expansion of UCB HSCs to increase their numbers and keep their primitive characteristics. METHODS CD34+ cells were isolated from UCB, cultured for 10 days, and the expanded HSCs were sub-cultured in semisolid methylcellulose media for primitive colony forming units (CFUs) assay. MSCs were cultured from placental chorionic plates. RESULTS CBP Exos and MSCs Exos compared with the control group significantly increased the number of total nucleated cells (TNCs), invitro expansion of CD34+ cells, primitive subpopulations of CD34+38+ and CD34+38-Lin- cells (p < 0.001). The expanded cells showed a significantly higher number of total CFUs in the Exos groups (p < 0.01). CONCLUSION CBP- and placental-derived exosomes are associated with significant ex vivo expansion of UCB HSCs, while maintaining their primitive characters and may eliminate the need for transplantation of an additional unit of UCB.
Collapse
|
26
|
Liu J, Sun W, Liu C, Na Q. Umbilical Cord Blood-Derived Exosomes in Maternal-Fetal Disease: a Review. Reprod Sci 2023; 30:54-61. [PMID: 35157260 DOI: 10.1007/s43032-022-00879-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/07/2022] [Indexed: 01/06/2023]
Abstract
The nutrients and other factors transported by umbilical cord blood, which is vital for fetal survival, play crucial roles in fetal development. There are various communication modes between the fetal-placental system and the maternal-placental system, and these communication modes are all mediated by umbilical cord blood. During the process of umbilical cord blood transportation, the changes of some nutrients and factors may play a key role in fetal development. Exosomes, which are members of the extracellular vesicle family, are present in the umbilical cord blood and play roles in information transmission as a result of their efficient cellular communication activity. The study of umbilical cord blood-derived exosomes provides a new approach for research on the etiology of maternal-fetal diseases and they may be useful for the development of intrauterine treatments. This review summarizes specific functions and research directions regarding umbilical cord blood-derived exosomes, and their potential associations with pregnancy complications.
Collapse
Affiliation(s)
- Jingyi Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Sun
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China
| | - Caixia Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Quan Na
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
27
|
Murrieta-Coxca JM, Barth E, Fuentes-Zacarias P, Gutiérrez-Samudio RN, Groten T, Gellhaus A, Köninger A, Marz M, Markert UR, Morales-Prieto DM. Identification of altered miRNAs and their targets in placenta accreta. Front Endocrinol (Lausanne) 2023; 14:1021640. [PMID: 36936174 PMCID: PMC10022468 DOI: 10.3389/fendo.2023.1021640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/07/2023] [Indexed: 03/06/2023] Open
Abstract
Placenta accreta spectrum (PAS) is one of the major causes of maternal morbidity and mortality worldwide with increasing incidence. PAS refers to a group of pathological conditions ranging from the abnormal attachment of the placenta to the uterus wall to its perforation and, in extreme cases, invasion into surrounding organs. Among them, placenta accreta is characterized by a direct adhesion of the villi to the myometrium without invasion and remains the most common diagnosis of PAS. Here, we identify the potential regulatory miRNA and target networks contributing to placenta accreta development. Using small RNA-Seq followed by RT-PCR confirmation, altered miRNA expression, including that of members of placenta-specific miRNA clusters (e.g., C19MC and C14MC), was identified in placenta accreta samples compared to normal placental tissues. In situ hybridization (ISH) revealed expression of altered miRNAs mostly in trophoblast but also in endothelial cells and this profile was similar among all evaluated degrees of PAS. Kyoto encyclopedia of genes and genomes (KEGG) analyses showed enriched pathways dysregulated in PAS associated with cell cycle regulation, inflammation, and invasion. mRNAs of genes associated with cell cycle and inflammation were downregulated in PAS. At the protein level, NF-κB was upregulated while PTEN was downregulated in placenta accreta tissue. The identified miRNAs and their targets are associated with signaling pathways relevant to controlling trophoblast function. Therefore, this study provides miRNA:mRNA associations that could be useful for understanding PAS onset and progression.
Collapse
Affiliation(s)
| | - Emanuel Barth
- Friedrich Schiller University Jena, Faculty of Mathematics and Computer Science, RNA Bioinformatics and High Throughput Analysis, Jena, Germany
- Faculty of Mathematics and Computer Science, Bioinformatics Core Facility, Friedrich Schiller University Jena, Jena, Germany
| | | | | | - Tanja Groten
- Department of Obstetrics, Placenta Lab, Jena University Hospital, Jena, Germany
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
| | - Angela Köninger
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
- University Department of Gynecology and Obstetrics, Hospital St. Hedwig of the Order of St. John, University Medical Center Regensburg, Regensburg, Germany
| | - Manja Marz
- Friedrich Schiller University Jena, Faculty of Mathematics and Computer Science, RNA Bioinformatics and High Throughput Analysis, Jena, Germany
- Fritz Lipman Institute (FLI), Leibniz Institute for Age Research, Jena, Germany
| | - Udo R. Markert
- Department of Obstetrics, Placenta Lab, Jena University Hospital, Jena, Germany
- *Correspondence: Udo R. Markert, ; Diana M. Morales-Prieto,
| | - Diana M. Morales-Prieto
- Department of Obstetrics, Placenta Lab, Jena University Hospital, Jena, Germany
- *Correspondence: Udo R. Markert, ; Diana M. Morales-Prieto,
| |
Collapse
|
28
|
Cheng L, Liu Z, Xia J. New insights into circRNA and its mechanisms in angiogenesis regulation in ischemic stroke: a biomarker and therapeutic target. Mol Biol Rep 2023; 50:829-840. [PMID: 36331748 DOI: 10.1007/s11033-022-07949-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022]
Abstract
Ischemic stroke accounts for about 71% of strokes worldwide. Due to limited recommended therapeutics for ischemic stroke, more attention is focused on angiogenesis in ischemic stroke. Not long after ischemic stroke, angiogenesis arises and is vital for the prognosis. Various pro-angiogenic, anti-angiogenic factors and their downstream pathways engage in angiogenesis regulation. CircRNAs are differentially expressed after ischemic stroke. Up to now, circRNAs have been found to exert many functions in regulating apoptosis, autophagy, proliferation, and differentiation of neurons and neural stem cells mainly as miRNAs sponges or proteins decoy. Thus, many circRNAs are considered promising biomarkers or therapeutic targets for ischemic stroke. Besides, circRNAs participate in the modulation of endothelial-mesenchymal transition and blood-brain barrier maintenance. Moreover, circRNAs play significant roles in endothelial dysfunction concerning inflammation responses, apoptosis, proliferation, and migration. They correlate with many angiogenesis-related signaling pathways and genes via the circRNA/miRNA/mRNA network. Novel insights into circRNAs significance in angiogenesis regulation in ischemic stroke could be provided for further researches on the clinical application of circRNAs in ischemic stroke.
Collapse
Affiliation(s)
- Liuyang Cheng
- Department of Neurology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, P.R. China
| | - Zeyu Liu
- Department of Neurology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, P.R. China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, P.R. China.
- Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
29
|
Ge Y, Wei M, Chang X, Huang Y, Duan T, Wang K, Li H, He Q. Alterations in maternal plasma exosomal miRNAs revealed selective material exchange between maternal circulation and placenta. J Obstet Gynaecol Res 2023; 49:109-121. [PMID: 36216398 DOI: 10.1111/jog.15452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 01/19/2023]
Abstract
AIM Exosomes have emerged as important regulators in the communication between maternal peripheral blood and placenta. We aimed to compare maternal plasma exosomal miRNAs profile between healthy pregnant and nonpregnant women, screen for differential expressed miRNAs and their potential regulatory role during pregnancy. METHODS We isolated exosomes from plasma of mid-trimester, last trimester, and nonpregnant women (n = 6 each group), analyzed the miRNA profile using next-generation sequencing. RESULTS Several miRNA clusters were expressed in plasma exosomes, such as C19MC, C14MC, and let-7 family, miRNAs in each cluster may have synergistic effect during pregnancy. We assumed maternal circulating exosomal miRNA could be transported into placenta or selectively uptook by placenta, which was consistent with the fact that many pregnancy-associated or placenta highly expressed miRNAs reduced in exosomes during pregnancy. Some exosomal miRNAs were mainly secreted by the placenta, which could act as markers that reflect changes in the function and microenvironment of the placenta. CONCLUSIONS Exosomal miRNAs are associated with placenta development and have potential as molecular markers.
Collapse
Affiliation(s)
- Yuchun Ge
- Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Mengtian Wei
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Xinwen Chang
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Yiying Huang
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Tao Duan
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Kai Wang
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Han Li
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Qizhi He
- Department of Pathology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, PR China
| |
Collapse
|
30
|
Gu M, Zhang F, Jiang X, Chen P, Wan S, Lv Q, Lu Y, Zhou Q, Wang Y, Li L. Influence of placental exosomes from early onset preeclampsia women umbilical cord plasma on human umbilical vein endothelial cells. Front Cardiovasc Med 2022; 9:1061340. [PMID: 36620649 PMCID: PMC9816142 DOI: 10.3389/fcvm.2022.1061340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background Early onset preeclampsia (EOSP, PE) is characterized by hypertension, proteinuria, and endothelial dysfunction. Oxidative stress-induced trophoblast dysfunction is a major pathology in PE. Placental exosomes are extracellular vesicles that are involved in "mother-placenta-foetal communication" and can regulate the biological functions of endothelial cells. Our study was designed to evaluate placental exosomes effects on endothelial cells. Methods Umbilical cord blood from normal pregnant women and patients with PE were collected. A hypoxia/reoxygenation (H/R) model in human first trimester extravillous trophoblast cell (HTR8/SVneo) line to simulate the PE model of oxidative stress in vitro. Then, placental exosomes (i.e., NO-exo, H/R-exo, N-exo, and PE-exo) were extracted and identified. Finally, the effects of placental exosomes on the biological functions of human umbilical vein endothelial cells (HUVECs) were further evaluated by performing a series of experiments. Results Placental exosomes had a double-membrane cup structure with diameters of 30-150 nm, and there was no obvious difference in placental exosomes. Compared with NO-exo and N-exo, H/R-exo and PE-exo inhibited HUVECs proliferation, tube formation and migration, increased permeability and apoptosis in vitro. Conclusion We hypothesize that H/R-exo and PE-exo impair vessel development by disrupted biological functions in endothelial cells, which may result in vascular disorders in offspring.
Collapse
Affiliation(s)
- Mengqi Gu
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Fengyuan Zhang
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaotong Jiang
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Pengzheng Chen
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Shuting Wan
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Qingfeng Lv
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yuan Lu
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Qian Zhou
- Key Laboratory of Birth Regulation and Control Technology of National Health and Family Planning Commission of China, Maternal and Child Health Hospital of Shandong Province, Jinan, China
| | - Yanyun Wang
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China,Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China,The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan, China,Yanyun Wang,
| | - Lei Li
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China,Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China,The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan, China,*Correspondence: Lei Li,
| |
Collapse
|
31
|
Zhang Q, Wang X, Tan L, Hou Y, Lei D, Huang Y, He B, Wang G. Research trends and hotspot topics of exosomes based on citespace bibliometric analysis. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
32
|
Baek SW, Kim DS, Song DH, Lee S, Lee JK, Park SY, Kim JH, Kim TH, Park CG, Han DK. PLLA Composites Combined with Delivery System of Bioactive Agents for Anti-Inflammation and Re-Endothelialization. Pharmaceutics 2022; 14:pharmaceutics14122661. [PMID: 36559156 PMCID: PMC9782680 DOI: 10.3390/pharmaceutics14122661] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
The development of a biodegradable vascular scaffold (BVS) for the treatment of cardiovascular diseases (CVDs) still requires some improvement. Among them, re-endothelialization and anti-inflammation are clinically important to restore vascular function. In this study, we proposed a coating system to deliver hydrophilic bioactive agents to BVS using nanoemulsion and drop-casting methods. The poly(L-lactide) (PLLA) scaffold containing magnesium hydroxide (MH) was coated on the surface with bioactive molecules such as polydeoxyribonucleotide (PDRN), L-arginine (Arg, R), and mesenchymal stem cell-derived extracellular vesicles (EVs). PDRN upregulates the expression of VEGF as one of the A2A receptor agonists; and Arg, synthesized into nitric oxide by intracellular eNOS, induces endothelialization. In particular, EVs, which are composed of a lipid bilayer and transfer bioactive materials such as protein and nucleic acid, regulate homeostasis in blood vessels. Such a bioactive agent coating system and its PLLA composite suggest a new platform for the treatment of cardiovascular dysfunction.
Collapse
Affiliation(s)
- Seung-Woon Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| | - Da-Seul Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Duck Hyun Song
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea
| | - Semi Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea
| | - Jun-Kyu Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea
| | - So-Yeon Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jun Hyuk Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Republic of Korea
- Correspondence:
| |
Collapse
|
33
|
Pu Q, Chai J, Chen L, Liu C, Yang C, Huang Y, Luo J. Exosome miRNA Expression in Umbilical Cord Blood of High-Parity Sows Regulates Their Reproductive Potential. Animals (Basel) 2022; 12:2456. [PMID: 36139316 PMCID: PMC9495064 DOI: 10.3390/ani12182456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
The objective of modern pig breeding is to improve the genetic reproduction performance potential of sows, including the litter size and weight of piglets. During the gestation period, the umbilical cord facilitates placenta−fetal communication; thus, it plays an indispensable role in intrauterine embryonic development and fitness. Herein, we analyzed the molecular mechanism in declining reproductive potential in high-parity sows by assessing the changes in the umbilical cord blood. Firstly, we analyzed the reproductive characteristics data of sows, followed by histological analysis of the umbilical cord phenotype. Next, we evaluated the effect of umbilical cord blood exosomes (UCB-EXO) on angiogenesis. Finally, the miRNA expression in UCB-EXO from high-parity sows with poor reproductive performance (OS) and multiparous sows with excellent reproductive performance (MS) was assessed. Overall, the best reproductive performance was at parity 3−7, gradually decreasing after parity 8 and angiogenesis was repressed in OS. However, exosomes derived from MS (Exo-MS) exhibited pro-angiogenesis properties but were diminished in exosomes derived from OS (Exo-OS). Additionally, the angiogenesis of sows was significantly decreased, increasing the risk of disease with the increase in parity, greatly limiting the reproductive potential of the sows. At the same time, miR-188-5p expression in Exo-OS was significantly higher than in Exo-MS (p < 0.01), implying that it may play an important role in regulating the lifespan and reproductive potential of sows. These findings demonstrated that miRNAs in UCB-EXO play a central role in intrauterine development. Further, the findings suggest novel insights on reproductive potential, which provide a reference for increasing the sow reproductive efficiency.
Collapse
Affiliation(s)
- Qiang Pu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Chongqing Liujiu Animal Husbandry Technology Co., Ltd., Chongqing 409099, China
| | - Jie Chai
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Li Chen
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Changbao Liu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Changfeng Yang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yongfu Huang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Jia Luo
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| |
Collapse
|
34
|
Wang Y, Wang X, Xu Q, Yin J, Wang H, Zhang L. CircRNA, lncRNA, and mRNA profiles of umbilical cord blood exosomes from preterm newborns showing bronchopulmonary dysplasia. Eur J Pediatr 2022; 181:3345-3365. [PMID: 35790551 PMCID: PMC9395505 DOI: 10.1007/s00431-022-04544-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023]
Abstract
Bronchopulmonary dysplasia (BPD) represents a multifactorial chronic pulmonary pathology and a major factor causing premature illness and death. The therapeutic role of exosomes in BPD has been feverishly investigated. Meanwhile, the potential roles of exosomal circRNAs, lncRNAs, and mRNAs in umbilical cord blood (UCB) serum have not been studied. This study aimed to detect the expression profiles of circRNAs, lncRNAs, and mRNAs in UCB-derived exosomes of infants with BPD. Microarray analysis was performed to compare the RNA profiles of UCB-derived exosomes of a preterm newborn with (BPD group) and without (non-BPD, NBPD group) BPD. Then, circRNA/lncRNA-miRNA-mRNA co-expression networks were built to determine their association with BPD. In addition, cell counting kit-8 (CCK-8) assay was used to evaluate the proliferation of lipopolysaccharide (LPS)-induced human bronchial epithelial cells (BEAS-2B cells) and human umbilical vein endothelial cells (HUVECs). The levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1β in LPS-induced BEAS-2B cells and HUVECs were assessed through Western blot analysis. Then, quantitative reverse transcription-polymerase chain reaction assay was used to evaluate the expression levels of four differentially expressed circRNAs (hsa_circ_0086913, hsa_circ_0049170, hsa_circ_0087059, and hsa_circ_0065188) and two lncRNAs (small nucleolar RNA host gene 20 (SNHG20) and LINC00582) detected in LPS-induced BEAS-2B cells or HUVECs. A total of 317 circRNAs, 104 lncRNAs, and 135 mRNAs showed significant differential expression in UCB-derived exosomes of preterm infants with BPD compared with those with NBPD. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted to examine differentially expressed exosomal circRNAs, lncRNAs, and mRNAs. The results showed that the GO terms and KEGG pathways mostly involving differentially expressed exosomal RNAs were closely associated with endothelial or epithelial cell development. In vitro, CCK-8 and Western blot assays revealed that LPS remarkably inhibited the viability and promoted inflammatory responses (TNF-α and IL-1β) of BEAS-2B cells or HUVECs. The expression levels of circRNAs hsa_circ_0049170 and hsa_circ_0087059 were upregulated in LPS-induced BEAS-2B cells; the expression level of hsa_circ_0086913 was upregulated and that of hsa_circ_0065188 was downregulated in LPS-induced HUVECs. Moreover, the expression level of lncRNA SNHG20 was upregulated and that of LINC00582 was downregulated in LPS-induced BEAS-2B cells. Further, 455 circRNA/lncRNA-miRNA-mRNA interaction networks were predicted, including hsa_circ_0086913/hsa-miR-103a-3p/transmembrane 4 L six family member 1 (TM4SF1) and lncRNA-SNHG20/hsa-miR-6720-5p/spermine synthase (SMS) networks, which may take part in BPD. CONCLUSION This study provided a systematic perspective on UCB-derived exosomal circRNAs and lncRNAs and laid an important foundation for further investigating the potential biological functions of exosomal circRNAs and lncRNAs in BPD. WHAT IS KNOWN • BPD represents a multifactorial chronic pulmonary pathology and a major factor causing premature illness and death. • The therapeutic role of exosomes in BPD has been feverishly investigated, and exosomal RNAs were ignored. WHAT IS NEW • The profiles of UCB-derived exosomal circRNAs, lncRNAs, and mRNAs were performed. • Several differentially expressed circRNAs and lncRNAs were identified in LPS-induced BEAS-2B cells and HUVECs.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neonatology, Changzhou Maternal and Child Health Care Hospital, Changzhou, China
| | - Xuan Wang
- Department of Neonatology, Changzhou Maternal and Child Health Care Hospital, Changzhou, China
| | - Qiushi Xu
- Department of Neonatology, Changzhou Maternal and Child Health Care Hospital, Changzhou, China
| | - Jiao Yin
- Department of Neonatology, Changzhou Maternal and Child Health Care Hospital, Changzhou, China
| | - Huaiyan Wang
- Department of Neonatology, Changzhou Maternal and Child Health Care Hospital, Changzhou, China
| | - Lin Zhang
- Department of Neonatology, Changzhou Maternal and Child Health Care Hospital, Changzhou, China
| |
Collapse
|
35
|
Maligianni I, Yapijakis C, Nousia K, Bacopoulou F, Chrousos G. Exosomes and exosomal non‑coding RNAs throughout human gestation (Review). Exp Ther Med 2022; 24:582. [PMID: 35949320 PMCID: PMC9353550 DOI: 10.3892/etm.2022.11518] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/31/2022] [Indexed: 11/06/2022] Open
Abstract
In recent years, research on exosomes and their content has been intensive, which has revealed their important role in cell-to-cell communication, and has implicated exosomal biomolecules in a broad spectrum of physiological processes, as well as in the pathogenesis of various diseases. Pregnancy and its normal progression rely highly on the efficient communication between the mother and the fetus, mainly mediated by the placenta. Recent studies have established the placenta as an important source of circulating exosomes and have demonstrated that exosome release into the maternal circulation gradually increases during pregnancy, starting from six weeks of gestation. This orchestrates maternal-fetal crosstalk, including maternal immune tolerance and pregnancy-associated metabolic adaptations. Furthermore, an increased number of secreted exosomes, along with altered patterns of exosomal non-coding RNAs (ncRNAs), especially microRNAs and long non-coding RNAs (lncRNAs), have been observed in a number of pregnancy complications, such as gestational diabetes mellitus and preeclampsia. The early detection of exosomes and specific exosomal ncRNAs in various biological fluids during pregnancy highlights them as promising candidate biomarkers for the diagnosis, prognosis and treatment of numerous pregnancy disorders in adolescents and adults. The present review aimed to provide insight into the current knowledge regarding the potential, only partially elucidated, role of exosomes and exosomal cargo in the regulation and progression of normal pregnancy, as well as their potential dysregulation and contribution to pathological pregnancy situations.
Collapse
Affiliation(s)
- Ioanna Maligianni
- First Department of Pediatrics, Unit of Orofacial Genetics, ‘Aghia Sophia’ Children's Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Yapijakis
- First Department of Pediatrics, Unit of Orofacial Genetics, ‘Aghia Sophia’ Children's Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Konstantina Nousia
- First Department of Pediatrics, Unit of Orofacial Genetics, ‘Aghia Sophia’ Children's Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Flora Bacopoulou
- University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
36
|
Chen Z, Wu H, Fan W, Zhang J, Yao Y, Su W, Wang Y, Li P. Naringenin suppresses BEAS-2B-derived extracellular vesicular cargoes disorder caused by cigarette smoke extract thereby inhibiting M1 macrophage polarization. Front Immunol 2022; 13:930476. [PMID: 35924248 PMCID: PMC9342665 DOI: 10.3389/fimmu.2022.930476] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Extracellular vesicles (EVs)-mediated epithelium-macrophage crosstalk has been proved to maintain lung homeostasis in cigarette smoke-induced lung diseases such as chronic obstructive pulmonary disease (COPD). In our previous study, we found that EVs derived from cigarette smoke extract (CSE) treated BEAS-2B promoted M1 macrophage polarization, which probably accelerated the development of inflammatory responses. Naringenin has been proved to suppress M1 macrophage polarization, but whether naringenin regulates macrophage polarization mediated by EVs has not been reported. In this study, we firstly found that EVs derived from naringenin and CSE co-treated BEAS-2B significantly inhibited the expression of CD86 and CD80 and the secretion of tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β, inducible nitric oxide synthase (iNOS), and IL-12 in macrophage induced by EVs derived from CSE-treated BEAS-2B. Further research revealed that naringenin downregulated BEAS-2B-derived EVs miR-21-3p which targeted phosphatase and tensin homolog deleted on chromosome ten/protein kinase B (PTEN/AKT) cascade in macrophages and then suppressed M1 macrophage polarization. Subsequent proteomics suggested that naringenin decreased BEAS-2B-derived EVs poly ADP-ribose polymerase (PARP)1 expression thereby suppressing M1 macrophage polarization probably. Our study provides novel pharmacological references for the mechanism of naringenin in the treatment of cigarette smoke-induced lung inflammatory diseases.
Collapse
|
37
|
Ghafourian M, Mahdavi R, Akbari Jonoush Z, Sadeghi M, Ghadiri N, Farzaneh M, Mousavi Salehi A. The implications of exosomes in pregnancy: emerging as new diagnostic markers and therapeutics targets. Cell Commun Signal 2022; 20:51. [PMID: 35414084 PMCID: PMC9004059 DOI: 10.1186/s12964-022-00853-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vehicles (EVs) are a heterogeneous group of cell and membranous particles originating from different cell compartments. EVs participate in many essential physiological functions and mediate fetal-maternal communications. Exosomes are the smallest unit of EVs, which are delivered to the extracellular space. Exosomes can be released by the umbilical cord, placenta, amniotic fluid, and amniotic membranes and are involved in angiogenesis, endothelial cell migration, and embryo implantation. Also, various diseases such as gestational hypertension, gestational diabetes mellitus (GDM), preterm birth, and fetal growth restriction can be related to the content of placental exosomes during pregnancy. Due to exosomes' ability to transport signaling molecules and their effect on sperm function, they can also play a role in male and female infertility. In the new insight, exosomal miRNA can diagnose and treat infertilities disorders. In this review, we focused on the functions of exosomes during pregnancy. Video abstract.
Collapse
Affiliation(s)
- Mehri Ghafourian
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Roya Mahdavi
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Akbari Jonoush
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahvash Sadeghi
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nooshin Ghadiri
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Cellular and Molecular Research Center, Medical Basic Science Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Abdolah Mousavi Salehi
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
38
|
Liu Y, Ruan X, Li J, Wang B, Chen J, Wang X, Wang P, Tu X. The Osteocyte Stimulated by Wnt Agonist SKL2001 Is a Safe Osteogenic Niche Improving Bioactivities in a Polycaprolactone and Cell Integrated 3D Module. Cells 2022; 11:cells11050831. [PMID: 35269452 PMCID: PMC8909416 DOI: 10.3390/cells11050831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
Finding and constructing an osteogenic microenvironment similar to natural bone tissue has always been a frontier topic in orthopedics. We found that osteocytes are targeting cells controlling bone anabolism produced by PTH (JBMR 2017, PMID: 27704638), and osteocytes with activated Wnt signaling orchestrate bone formation and resorption (PNAS 2015, PMID: 25605937). However, methods for taking advantage of the leading role of osteocytes in bone regeneration remain unexplored. Herein, we found that the osteocytes with SKL2001-activated Wnt signaling could be an osteogenic microenvironment (SOOME) which upregulates the expression of bone transcription factor Runx2 and Bglap and promotes the differentiation of bone marrow stromal cell ST2 into osteoblasts. Interestingly, 60 μM SKL2001 treatment of osteocytic MLO-Y4 for 24 h maintained Wnt signaling activation for three days after removal, which was sufficient to induce osteoblast differentiation. Triptonide, a Wnt inhibitor, could eliminate this differentiation. Moreover, on day 5, the Wnt signaling naturally decreased to the level of the control group, indicating that this method of Wnt-signaling induction is safe to use. We quickly verified in vivo function of SOOME to a good proximation in 3D bioprinted modules composed of reciprocally printed polycaprolactone bundles (for support) and cell bundles (for bioactivity). In the cell bundles, SOOME stably supported the growth and development of ST2 cells, the 7-day survival rate was as high as 91.6%, and proliferation ability increased linearly. Similarly, SOOME greatly promoted ST2 differentiation and mineralization for 28 days. In addition, SOOME upregulated the expression of angiopoietin 1, promoted endothelial cell migration and angiogenesis, and increased node number and total length of tubes and branches. Finally, we found that the function of SOOME could be realized through the paracrine pathway. This study reveals that osteocytes with Wnt signaling activated by SKL2001 are a safe osteogenic microenvironment. Both SOOME itself and its cell-free culture supernatant can improve bioactivity for osteoblast differentiation, with composite scaffolds especially bearing application value.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaolin Tu
- Correspondence: ; Tel.: +86-185-2382-0685
| |
Collapse
|
39
|
Li QC, Li C, Zhang W, Pi W, Han N. Potential Effects of Exosomes and Their MicroRNA Carrier on Osteoporosis. Curr Pharm Des 2022; 28:899-909. [PMID: 35088659 DOI: 10.2174/1381612828666220128104206] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
Osteoporosis is a typical localized or systemic skeletal disease in the clinic, mainly characterized by the weakness of bone formation and the increase of bone resorption, resulting in the decrease of bone mineral density (BMD), and frequently occurs in postmenopausal women. With the growth of the aging population, the risk of osteoporosis or even osteoporotic fracture brings great economic pressure on society and families. Although anti-osteoporosis drugs have been developed, there are still some side effects in the treatment group. Hence, that is a compelling need for more reasonable therapeutic strategies. Exosomes are nanosized extracellular vesicles (EVs), secreted by virtually all types of cells in vivo, which play an important role in intercellular communication. Compared with conventional drugs and stem cells transplantation therapy, exosomes have apparent advantages of lower toxicity and immunogenicity. Exosomes contain many functional molecules, such as proteins, lipids, mRNAs, microRNAs (miRNAs), which can be transferred into recipient cells to regulate a series of signaling pathways and influence physiological and pathological behavior. In this review, we briefly summarize the current knowledge of exosomes and the therapeutic potential of exosomal miRNAs derived from mesenchymal stem cells (MSCs), osteoblasts, osteoclasts, and macrophages in osteoporosis. Finally, a prospect of new treatment strategies for osteoporosis using new biomaterial scaffolds combined with exosomes is also given.
Collapse
Affiliation(s)
- Qi-Cheng Li
- Department of Orthopedics and Trauma, Key Laboratory of Trauma and Neural Regeneration, Peking University People's Hospital, Beijing, People's Republic of China
| | - Ci Li
- Department of Orthopedics and Trauma, Key Laboratory of Trauma and Neural Regeneration, Peking University People's Hospital, Beijing, People's Republic of China
| | - Wei Zhang
- Department of Orthopedics and Trauma, Key Laboratory of Trauma and Neural Regeneration, Peking University People's Hospital, Beijing, People's Republic of China
| | - Wei Pi
- Department of Orthopedics and Trauma, Key Laboratory of Trauma and Neural Regeneration, Peking University People's Hospital, Beijing, People's Republic of China
| | - Na Han
- Department of Orthopedics and Trauma, Key Laboratory of Trauma and Neural Regeneration, Peking University People's Hospital, Beijing, People's Republic of China
| |
Collapse
|
40
|
Zhu D, Li W, Fang C, Yin R, Jiang M, Lv X, Chen Y. Proteomic analysis of human umbilical cord serum exosomes using mass spectrometry and preliminary study of their biological activities in liver cancer cell lines. Exp Ther Med 2021; 23:44. [PMID: 34917178 PMCID: PMC8630440 DOI: 10.3892/etm.2021.10966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 07/01/2021] [Indexed: 11/05/2022] Open
Abstract
Exosomes are membranous extracellular vesicles 50-100 nm in size, which are involved in cellular communication via the delivery of proteins, lipids and RNA. Emerging evidence shows that exosomes play a critical role in cancer. It has recently been revealed that maternal and umbilical cord serum (UCS)-derived exosomes may enhance endothelial cell proliferation and migration. However, the role of exosomes isolated from the human umbilical cord in cancer development has not been investigated. To explore the potential differences in the composition and function of proteins from umbilical serum exosomes (UEs) and maternal serum exosomes, a proteomic analysis of exosomes was conducted using mass spectrometry and bioinformatics. Moreover, Cell Counting Kit-8 assays and flow cytometry were used to study the biological effects of UEs on liver cancer cell lines. The present study demonstrated that UCS was enriched with proteins involved in extracellular matrix-receptor interactions, which may be closely related to cell metastasis and proliferation. The findings further indicated that exosomes derived from human umbilical serum could inhibit the viability and induce apoptosis of liver cancer cells. This suggests that UCS-derived exosomes may represent potential leads for the development of biotherapy for liver cancer.
Collapse
Affiliation(s)
- Donglie Zhu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China.,Department of General Surgery, The Air Force Hospital of Northern Theater of People's Liberation Army of China, Shenyang, Liaoning 110042, P.R. China
| | - Wenhui Li
- Department of Gynecology and Obstetrics, Changhai Hospital, Shanghai 200438, P.R. China
| | - Cheng Fang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Ruozhe Yin
- Department of Emergency, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Mingzuo Jiang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Xing Lv
- Department of Respiratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yong Chen
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
41
|
Transient Hyperglycemia and Hypoxia Induce Memory Effects in AngiomiR Expression Profiles of Feto-Placental Endothelial Cells. Int J Mol Sci 2021; 22:ijms222413378. [PMID: 34948175 PMCID: PMC8705946 DOI: 10.3390/ijms222413378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 12/15/2022] Open
Abstract
Gestational diabetes (GDM) and preeclampsia (PE) are associated with fetal hyperglycemia, fetal hypoxia, or both. These adverse conditions may compromise fetal and placental endothelial cells. In fact, GDM and PE affect feto-placental endothelial function and also program endothelial function and cardiovascular disease risk of the offspring in the long-term. MicroRNAs are short, non-coding RNAs that regulate protein translation and fine tune biological processes. A group of microRNAs termed angiomiRs is particularly involved in the regulation of endothelial function. We hypothesized that transient hyperglycemia and hypoxia may alter angiomiR expression in feto-placental endothelial cells (fpEC). Thus, we isolated primary fpEC after normal, uncomplicated pregnancy, and induced hyperglycemia (25 mM) and hypoxia (6.5%) for 72 h, followed by reversal to normal conditions for another 72 h. Current vs. transient effects on angiomiR profiles were analyzed by RT-qPCR and subjected to miRNA pathway analyses using DIANA miRPath, MIENTURNET and miRPathDB. Both current and transient hypoxia affected angiomiR profile stronger than current and transient hyperglycemia. Both stimuli altered more angiomiRs transiently, i.e., followed by 72 h culture at control conditions. Pathway analysis revealed that hypoxia significantly altered the pathway ‘Proteoglycans in cancer’. Transient hypoxia specifically affected miRNAs related to ‘adherens junction’. Our data reveal that hyperglycemia and hypoxia induce memory effects on angiomiR expression in fpEC. Such memory effects may contribute to long-term adaption and maladaption to hyperglycemia and hypoxia.
Collapse
|
42
|
Jiang L, Fei H, Jin X, Liu X, Yang C, Li C, Chen J, Yang A, Zhu J, Wang H, Fei X, Zhang S. Extracellular Vesicle-Mediated Secretion of HLA-E by Trophoblasts Maintains Pregnancy by Regulating the Metabolism of Decidual NK Cells. Int J Biol Sci 2021; 17:4377-4395. [PMID: 34803505 PMCID: PMC8579460 DOI: 10.7150/ijbs.63390] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/24/2021] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles derived from trophoblasts (T-EVs) play an important role in pregnancy, but the mechanism is not entirely clear. In this study, we found that HLA-E, which is mostly confined to the cytoplasm of trophoblast cells, was secreted by T-EVs. The level of HLA-E in T-EVs from unexplained recurrent spontaneous abortion (URSA) patients was lower than that in normal pregnancy (NP) and RSA patients who had an abnormal embryo karyotype (AK-RSA). T-EVs promoted secretion of IFN-γ and VEGFα by decidual NK (dNK) cells from URSA patients via HLA-E, VEGFα was necessary for angiogenesis and trophoblast growth, and IFN-γ inhibited Th17 induction. Glycolysis and oxidative phosphorylation (OxPhos) were involved in this process. Glycolysis but not OxPhos of dNK cells facilitated by T-EVs was dependent on mTORC1 activation. Inhibition of T-EV production in vivo increased the susceptibility of mice to embryo absorption, which was reversed by transferring exogenous T-EVs. T-EVs promoted secretion of IFN-γ and VEGFα by dNK cells to maintain pregnancy via Qa-1 in abortion-prone mouse models. This study reveals a new mechanism of pregnancy maintenance mediated by HLA-E via T-EVs.
Collapse
Affiliation(s)
- Lingling Jiang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, 310016, Hangzhou, China
| | - Haiyi Fei
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, 310016, Hangzhou, China
| | - Xiaoying Jin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, 310016, Hangzhou, China
| | - Xiu Liu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, 310016, Hangzhou, China
| | - Cuiyu Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, 310016, Hangzhou, China
| | - Chao Li
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, 310016, Hangzhou, China
| | - Jianmin Chen
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, 310016, Hangzhou, China
| | - Anran Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, 310016, Hangzhou, China
| | - Jiajuan Zhu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
- Department of Medical, Jiaxing University Affiliated Women and Children Hospital, 314051, Jiaxing, China
| | - Huihong Wang
- Department of Obstetrics and Gynecology, Hangzhou Women's Hospital, 310008, Hangzhou, China
| | - Xiaoyang Fei
- Department of Obstetrics and Gynecology, Hangzhou Women's Hospital, 310008, Hangzhou, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, 310016, Hangzhou, China
| |
Collapse
|
43
|
Differential Distribution of Tryptophan-Metabolites in Fetal and Maternal Circulations During Normotensive and Preeclamptic Pregnancies. Reprod Sci 2021; 29:1278-1286. [PMID: 34622427 DOI: 10.1007/s43032-021-00759-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/29/2021] [Indexed: 02/02/2023]
Abstract
Preeclampsia (PE) is a hypertensive pregnancy, which is a leading cause of maternal and fetal morbidity and mortality during pregnancy. L-Tryptophan (Trp) is an essential amino acid, which can be metabolized into various biologically active metabolites. However, the levels of many circulating Trp-metabolites in human normotensive pregnancies (NT) and PE are undetermined. This study quantified the levels of Trp-metabolites in maternal and umbilical vein sera from women with NT and PE. Paired maternal and umbilical blood samples were collected from singleton pregnant patients. Twenty-five Trp-metabolites were measured in serum samples using liquid chromatography with tandem mass spectrometry. The effects of L-kynurenine (Kyn) and indole-3-lactic acid (ILA), on function of human umbilical vein endothelial cells (HUVECs), were also determined. Twenty Trp-metabolites were detected. The levels of 9 Trp-metabolites including Kyn and ILA were higher (P < 0.05) in umbilical vein than maternal serum, whereas 2 (5-hydroxy-L-tryptophan and serotonin) were lower (P < 0.05) in umbilical vein compared to maternal serum. PE significantly (P < 0.05) elevated ILA levels in maternal and umbilical vein sera. Kyn dose-dependently decreased (P < 0.05) cell viability. Kyn and ILA dose- and time-dependently (P < 0.05) increased monolayer integrity in HUVECs. These data suggest that these Trp-metabolites are important in regulating endothelial function during pregnancy, and the elevated ILA in PE may antagonize increased endothelial permeability occurring in PE.
Collapse
|
44
|
Maharajan N, Cho GW, Choi JH, Jang CH. Regenerative Therapy Using Umbilical Cord Serum. In Vivo 2021; 35:699-705. [PMID: 33622862 DOI: 10.21873/invivo.12310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/21/2022]
Abstract
Regenerative medicine is a branch of medicine that incorporates tissue-engineering, biomaterials, and cell therapy approaches to replace or repair damaged cells and tissues. Umbilical cord serum (UCS) is an important liquid component of cord blood, which has a reliable source of innumerable growth factors and biologically active molecules. Usually, serum can be prepared from different sources of blood. In therapeutic application, cord serum can be prepared and used in the form of eye drops for the treatment of severe dry eye diseases, ocular burns, glaucoma, persistent corneal epithelial defects and neurotrophic keratitis. In addition, cord serum combined with synthetic bio scaffold materials is used to regenerate different types of tissues including tympanic membrane regeneration, bone regeneration and nerve regeneration. Absence of animal origin viruses and bacteria, lack of xenoproteins and cost-effective features make cord serum a feasible choice as replacement of fetal bovine serum in cell culture techniques. Thus, this review emphasizes the role of cord serum in regenerative therapy and clinical uses.
Collapse
Affiliation(s)
- Nagarajan Maharajan
- Department of Biology, College of Natural Science, Chosun University, Gwangju, Republic of Korea.,Department of Life Science, BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Gwangju, Republic of Korea
| | - Gwang-Won Cho
- Department of Biology, College of Natural Science, Chosun University, Gwangju, Republic of Korea.,Department of Life Science, BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Gwangju, Republic of Korea
| | - Ji Hyun Choi
- Department of Obstetrics and Gynecology, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Chul Ho Jang
- Department of Otolaryngology, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
45
|
Expression Characteristics of microRNA in Pig Umbilical Venous Blood and Umbilical Arterial Blood. Animals (Basel) 2021; 11:ani11061563. [PMID: 34071966 PMCID: PMC8228062 DOI: 10.3390/ani11061563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
As the medium of material exchange between mother and fetus, umbilical cord blood is closely connected with fetal development. microRNA (miRNA) has a wide range of biological functions and has high flow characteristics. Small RNA sequencing of pig umbilical venous blood (UVB) and umbilical arterial blood (UAB) revealed that a total of 302 miRNAs were identified, and 106 and 22 miRNAs were specifically expressed in the UVB and UAB, respectively. Using the two methods of differential expression multiple and differential expression percentage, it is found that only 35% of the highly expressed miRNAs in the UVB by the two analysis modes overlap, but 56.25% of the enriched signal pathways are the same. Only 20% of the highly expressed miRNAs in the UAB overlap, but 62.07% of the signal pathways are the same. Further analysis revealed that miR-423 can be used as a characteristic miRNA of UVB and has the potential to treat muscle-related diseases. miR-122-5p can be used as a characteristic miRNA of UAB and may help to improve liver- and brain-related diseases. In summary, these results enrich understanding of miRNA in mother-fetal communication and provide a reference for the development and application of porcine cord blood products.
Collapse
|
46
|
Gebara N, Correia Y, Wang K, Bussolati B. Angiogenic Properties of Placenta-Derived Extracellular Vesicles in Normal Pregnancy and in Preeclampsia. Int J Mol Sci 2021; 22:5402. [PMID: 34065595 PMCID: PMC8160914 DOI: 10.3390/ijms22105402] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis is one of the main processes that coordinate the biological events leading to a successful pregnancy, and its imbalance characterizes several pregnancy-related diseases, including preeclampsia. Intracellular interactions via extracellular vesicles (EVs) contribute to pregnancy's physiology and pathophysiology, and to the fetal-maternal interaction. The present review outlines the implications of EV-mediated crosstalk in the angiogenic process in healthy pregnancy and its dysregulation in preeclampsia. In particular, the effect of EVs derived from gestational tissues in pro and anti-angiogenic processes in the physiological and pathological setting is described. Moreover, the application of EVs from placental stem cells in the clinical setting is reported.
Collapse
Affiliation(s)
- Natalia Gebara
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10124 Torino, Italy;
| | - Yolanda Correia
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham B4 7ET, UK; (Y.C.); (K.W.)
| | - Keqing Wang
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham B4 7ET, UK; (Y.C.); (K.W.)
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10124 Torino, Italy;
| |
Collapse
|
47
|
Pregnancy-Related Extracellular Vesicles Revisited. Int J Mol Sci 2021; 22:ijms22083904. [PMID: 33918880 PMCID: PMC8068855 DOI: 10.3390/ijms22083904] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/20/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are small vesicles ranging from 20–200 nm to 10 μm in diameter that are discharged and taken in by many different types of cells. Depending on the nature and quantity of their content—which generally includes proteins, lipids as well as microRNAs (miRNAs), messenger-RNA (mRNA), and DNA—these particles can bring about functional modifications in the receiving cells. During pregnancy, placenta and/or fetal-derived EVs have recently been isolated, eliciting interest in discovering their clinical significance. To date, various studies have associated variations in the circulating levels of maternal and fetal EVs and their contents, with complications including gestational diabetes and preeclampsia, ultimately leading to adverse pregnancy outcomes. Furthermore, EVs have also been identified as messengers and important players in viral infections during pregnancy, as well as in various congenital malformations. Their presence can be detected in the maternal blood from the first trimester and their level increases towards term, thus acting as liquid biopsies that give invaluable insight into the status of the feto-placental unit. However, their exact roles in the metabolic and vascular adaptations associated with physiological and pathological pregnancy is still under investigation. Analyzing peer-reviewed journal articles available in online databases, the purpose of this review is to synthesize current knowledge regarding the utility of quantification of pregnancy related EVs in general and placental EVs in particular as non-invasive evidence of placental dysfunction and adverse pregnancy outcomes, and to develop the current understanding of these particles and their applicability in clinical practice.
Collapse
|
48
|
Zhong XQ, Yan Q, Chen ZG, Jia CH, Li XH, Liang ZY, Gu J, Wei HL, Lian CY, Zheng J, Cui QL. Umbilical Cord Blood-Derived Exosomes From Very Preterm Infants With Bronchopulmonary Dysplasia Impaired Endothelial Angiogenesis: Roles of Exosomal MicroRNAs. Front Cell Dev Biol 2021; 9:637248. [PMID: 33842462 PMCID: PMC8027316 DOI: 10.3389/fcell.2021.637248] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Premature infants have a high risk of bronchopulmonary dysplasia (BPD), which is characterized by abnormal development of alveoli and pulmonary vessels. Exosomes and exosomal miRNAs (EXO-miRNAs) from bronchoalveolar lavage fluid are involved in the development of BPD and might serve as predictive biomarkers for BPD. However, the roles of exosomes and EXO-miRNAs from umbilical cord blood of BPD infants in regulating angiogenesis are yet to be elucidated. In this study, we showed that umbilical cord blood-derived exosomes from BPD infants impaired angiogenesis in vitro. Next-generation sequencing of EXO-miRNAs from preterm infants without (NBPD group) or with BPD (BPD group) uncovered a total of 418 differentially expressed (DE) EXO-miRNAs. These DE EXO-miRNAs were primarily enriched in cellular function-associated pathways including the PI3K/Akt and angiogenesis-related signaling pathways. Among those EXO-miRNAs which are associated with PI3K/Akt and angiogenesis-related signaling pathways, BPD reduced the expression of hsa-miR-103a-3p and hsa-miR-185-5p exhibiting the most significant reduction (14.3% and 23.1% of NBPD group, respectively); BPD increased hsa-miR-200a-3p expression by 2.64 folds of the NBPD group. Furthermore, overexpression of hsa-miR-103a-3p and hsa-miR-185-5p in normal human umbilical vein endothelial cells (HUVECs) significantly enhanced endothelial cell proliferation, tube formation, and cell migration, whereas overexpressing hsa-miR-200a-3p inhibited these cellular responses. This study demonstrates that exosomes derived from umbilical cord blood of BPD infants impair angiogenesis, possibly via DE EXO-miRNAs, which might contribute to the development of BPD.
Collapse
Affiliation(s)
- Xin-Qi Zhong
- Department of Neonatology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, China
| | - Qin Yan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhuang-Gui Chen
- Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chun-Hong Jia
- Department of Neonatology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiu-Hong Li
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zi-Yan Liang
- Department of Neonatology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jian Gu
- Department of Neonatology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hui-Ling Wei
- Department of Neonatology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chang-Yu Lian
- Department of Neonatology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Zheng
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
| | - Qi-Liang Cui
- Department of Neonatology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, China
| |
Collapse
|
49
|
Xu P, Ma Y, Wu H, Wang YL. Placenta-Derived MicroRNAs in the Pathophysiology of Human Pregnancy. Front Cell Dev Biol 2021; 9:646326. [PMID: 33777951 PMCID: PMC7991791 DOI: 10.3389/fcell.2021.646326] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
In placental mammals, reproductive success, and maternal-fetal health substantially depend on a well-being placenta, the interface between the fetus and the mother. Disorders in placental cells are tightly associated with adverse pregnancy outcomes including preeclampsia (PE), fetal growth restriction, etc. MicroRNAs (miRNAs) represent small non-coding RNAs that regulate post-transcriptional gene expression and are integral to a wide range of healthy or diseased cellular proceedings. Numerous miRNAs have been detected in human placenta and increasing evidence is revealing their important roles in regulating placental cell behaviors. Recent studies indicate that placenta-derived miRNAs can be released to the maternal circulation via encapsulating into the exosomes, and they potentially target various maternal cells to provide a hormone-like means of intercellular communication between the mother and the fetus. These placental exosome miRNAs are attracting more and more attention due to their differential expression in pregnant complications, which may provide novel biomarkers for prediction of the diseases. In this review, we briefly summarize the current knowledge and the perspectives of the placenta-derived miRNAs, especially the exosomal transfer of placental miRNAs and their pathophysiological relevance to PE. The possible exosomal-miRNA-targeted strategies for diagnosis, prognosis or therapy of PE are highlighted.
Collapse
Affiliation(s)
- Peng Xu
- School of Life Science, Shanxi University, Taiyuan, China
| | - Yeling Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Hongyu Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
50
|
Burkova EE, Sedykh SE, Nevinsky GA. Human Placenta Exosomes: Biogenesis, Isolation, Composition, and Prospects for Use in Diagnostics. Int J Mol Sci 2021; 22:ijms22042158. [PMID: 33671527 PMCID: PMC7926398 DOI: 10.3390/ijms22042158] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Exosomes are 40–100 nm nanovesicles participating in intercellular communication and transferring various bioactive proteins, mRNAs, miRNAs, and lipids. During pregnancy, the placenta releases exosomes into the maternal circulation. Placental exosomes are detected in the maternal blood even in the first trimester of pregnancy and their numbers increase significantly by the end of pregnancy. Exosomes are necessary for the normal functioning of the placenta and fetal development. Effects of exosomes on target cells depend not only on their concentration but also on their intrinsic components. The biochemical composition of the placental exosomes may cause various complications of pregnancy. Some studies relate the changes in the composition of nanovesicles to placental dysfunction. Isolation of placental exosomes from the blood of pregnant women and the study of protein, lipid, and nucleic composition can lead to the development of methods for early diagnosis of pregnancy pathologies. This review describes the biogenesis of exosomes, methods of their isolation, analyzes their biochemical composition, and considers the prospects for using exosomes to diagnose pregnancy pathologies.
Collapse
Affiliation(s)
- Evgeniya E. Burkova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (S.E.S.); (G.A.N.)
- Correspondence: ; Tel.: +7-(383)-363-51-27
| | - Sergey E. Sedykh
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (S.E.S.); (G.A.N.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Georgy A. Nevinsky
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (S.E.S.); (G.A.N.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|