1
|
Meisen S, Schütte L, Balmayor E, Halbgebauer R, Huber-Lang M. TRAUMA AND THE ENTEROCYTE: DISTURBANCE OF COMMUNICATION AND DELINEATION. Shock 2025; 63:677-687. [PMID: 40239221 DOI: 10.1097/shk.0000000000002564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
ABSTRACT The enterocyte as major building stone of the intestinal barrier plays a central role in maintaining cellular homeostasis and mediating host-environment interactions. Trauma, whether direct or remote, disrupts enterocyte function through complex mechanisms including impaired oxygen delivery, disturbed intercellular communication, and compromised nutrient uptake and metabolite clearance. These changes may lead to barrier dysfunction and altered repair mechanisms, facilitating systemic inflammation and remote organ injury. The failure of communication pathways-both within enterocytes and across epithelial networks-undermines coordinated responses to injury. Understanding these multifaceted perturbations reveals the enterocyte not merely as a passive victim but as an active participant in trauma-induced pathology. Emerging therapeutic strategies focus on enhancing mucosal repair via sealing agents, promoting epithelial proliferation, and restoring metabolic and signaling homeostasis. This review delineates the dynamic response of the enterocyte to trauma, highlighting opportunities for targeted interventions aimed at restoring intestinal integrity and function.
Collapse
Affiliation(s)
- Sophie Meisen
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Lena Schütte
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Elizabeth Balmayor
- Experimental Orthopaedics and Trauma Surgery, Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
2
|
Premadasa LS, McDew-White M, Romero L, Gondo B, Drawec JA, Ling B, Okeoma CM, Mohan M. Epigenetic modulation of the NLRP6 inflammasome sensor as a therapeutic modality to reduce necroptosis-driven gastrointestinal mucosal dysfunction in HIV/SIV infection. Cell Commun Signal 2025; 23:199. [PMID: 40281523 PMCID: PMC12023470 DOI: 10.1186/s12964-025-02193-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Gastrointestinal (GI) disease/dysfunction persists in people living with HIV (PLWH) receiving suppressive combination anti-retroviral therapy (ART) leading to epithelial barrier breakdown, microbial translocation and systemic inflammation that can drive non-AIDS associated comorbidities. Although epigenetic mechanisms are predicted to drive GI dysfunction, they remain unknown and unaddressed in HIV/SIV infection. The present study investigated genome-wide changes in DNA methylation, and gene expression exclusively in colon epithelial cells (CE) in response to simian immunodeficiency virus infection (SIV) and long-term low-dose delta-9-tetrahydrocannabinol (THC). METHODS Using reduced-representation bisulfite sequencing, we characterized DNA methylation changes in colonic epithelium (CE) of uninfected controls (n=5) and SIV-infected rhesus macaques (RMs) administered vehicle (VEH/SIV; n=7) or THC (THC/SIV; n=6). Intact jejunum resection segments (~5cm) were collected from sixteen ART treated SIV-infected RMs [(VEH/SIV/ART; n=8) and (THC/SIV/ART; n=8)] to confirm protein expression data identified in the colon of ART-naïve SIV-infected RMs. Transcriptomics data was used to confirm expression of differentially methylated genes. Protein expression of differentially methylated genes and their downstream targets was assessed using Immunofluorescence followed by HALO quantification. RESULTS SIV infection in ART-naïve RMs induced marked hypomethylation throughout promoter-associated CpG islands (paCGIs) in genes related to inflammatory response (NLRP6, cGAS), cellular adhesion (PCDH17, CDH7) and proliferation (WIF1, SFRP1, TERT, and HAND2) in CEs. Moreover, low-dose THC reduced NLRP6 protein expression in CE by hypermethylating the NLRP6 paCGI and blocked polyI:C induced NLRP6 upregulation in vitro. In ART suppressed SIV-infected RMs, significant NLRP6 protein upregulation during acute infection was unaffected by long-term ART administration during chronic infection despite successful plasma and tissue viral suppression. In this group, NLRP6 protein upregulation was associated with significantly increased expression of necroptosis-driving proteins; phosphorylated-RIPK3(Ser199), phosphorylated-MLKL(Thr357/Ser358), and HMGB1. Most strikingly, adding ART to THC-treated SIV-infected RMs effectively reduced NLRP6 and necroptosis-driving protein expression to pre-infection levels. CONCLUSIONS We conclude that DNA hypomethylation-assisted NLRP6 upregulation can lead to its constitutively high expression resulting in the activation of necroptosis signaling via the RIPK3/p-MLKL pathway that can eventually drive intestinal epithelial loss/death. From a clinical standpoint, low-dose phytocannabinoids in combination with ART could safely and successfully reduce/reverse persistent GI inflammatory responses via modulating DNA methylation.
Collapse
Affiliation(s)
- Lakmini S Premadasa
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Marina McDew-White
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Luis Romero
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Beverly Gondo
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Jade A Drawec
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Binhua Ling
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Chioma M Okeoma
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY, 10595-1524, USA.
- Lovelace Biomedical Institute, Albuquerque, NM, 87108-5127, USA.
| | - Mahesh Mohan
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
3
|
Xie H, Wei C, Xiong C, Huang Z, Chen C, Xiao X, Zhang L, Lin Z, Yao W, Zhao T, Hei Z. pH-responsive cationic polymer-functionalized poly-ε-caprolactone microspheres scavenge cell-free-DNA to alleviate intestinal ischemia/reperfusion injury by inhibiting M1 macrophage polarization. J Nanobiotechnology 2025; 23:153. [PMID: 40016777 PMCID: PMC11869592 DOI: 10.1186/s12951-025-03231-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 02/11/2025] [Indexed: 03/01/2025] Open
Abstract
Intestinal ischemia/reperfusion (I/R) injury is a common life-threatening condition. Inflammatory dysregulation plays a crucial role in the pathological progression of intestinal I/R injury, indicating that controlling excessive inflammatory responses can be an effective strategy for mitigating I/R injury. Herein, after establishing a correlation between cell-free DNA (cfDNA) levels and postoperative inflammatory factors in samples from patients with intestinal I/R, we tested a cfDNA-scavenging approach for the treatment of intestinal I/R injury. Poly-ε-caprolactone (PCL) microspheres (Micro DEA2k) functionalized with a pH-responsive cationic polymer (DEA2k) to efficiently scavenge cfDNA were synthesized and evaluated.These microspheres exhibited enhanced cfDNA adsorption under inflammation-induced acidic conditions, along with low toxicity, reduced non-specific protein binding, and extended peritoneal retention. In a mouse model of intestinal I/R injury, the intraperitoneal injection Micro DEA2k effectively bound cfDNA, regulated the mononuclear phagocytic system, decreased the number of M1 macrophages, suppressed inflammation, and significantly improved the survival rate of the mice. These findings suggest that cfDNA scavenging using cationic microspheres has considerable potential for alleviating intestinal I/R injury.
Collapse
Affiliation(s)
- Hanbin Xie
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510635, China
| | - Cong Wei
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Chang Xiong
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510635, China
| | - Ziyan Huang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Chaojin Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510635, China
| | - Xue Xiao
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510635, China
| | - Linan Zhang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510635, China
| | - Zhenjia Lin
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510635, China
| | - Weifeng Yao
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510635, China.
| | - Tianyu Zhao
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510635, China.
- Zhaoqing Campus of the Third Affiliated Hospital of Sun Yat Sen University, Zhaoqing, Guangdong, 526000, China.
| |
Collapse
|
4
|
Zhong QH, Zhan CH, Xu WX, Cai Y, Chen S, Wang H, Tu PS, Chen XQ, Zhang JR, Hou P. A novel scoring system for better management of small bowel obstruction. Eur J Trauma Emerg Surg 2025; 51:91. [PMID: 39907751 DOI: 10.1007/s00068-024-02715-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/04/2024] [Indexed: 02/06/2025]
Abstract
PURPOSE Due to the lack of a comprehensive evaluation of the prognosis of small bowel obstruction (SBO), recent clinical strategies have remained subjective and controversial. The recognition of pretreatment risk factors and tailored treatment could improve SBO outcomes. METHODS A series of posttreatment laboratory tests were integrated into a two-step clustering (TSC) analysis. The TSC outcome was determined according to different predictor importance (PI). A risk score (RS) system for the TSC outcome model was constructed by multivariable analysis. Receiver operating characteristic (ROC) curves and the area under the curve (AUC) were calculated to assess prediction accuracy. RESULTS Of the 355 patients, 66 (18.6%) were sorted into the better prognosis group (BPG), 149 (42.0%) were sorted into the poor prognosis group (PPG), and 140 (39.4%) were sorted into the severe prognosis group (SPG) by TSC analysis. For the TSC outcome, four variables with higher PI were identified, namely, Ca (PI = 1), albumin (PI = 0.62), WBC count (PI = 0.5) and NE% (PI = 0.45). Compared with the SPG, the BPG presented better outcomes after surgery events. The TSC outcome model was efficient in distinguishing the duration of bowel function recovery and hospital stay by Kaplan‒Meier curves. Via multivariate analysis, a RS consisting of four risk factors, namely, constipation duration (OR = 1.002), APTT (OR = 0.923), PT (OR = 1.449) and PCT (OR = 1.540), was identified. The AUC of the RS on the TSC outcome model was 0.719 (95% CI, 0.635-0.804). CONCLUSION A novel TSC outcome model and RS system was constructed to comprehensively reflect the tailored treatment, surgical events and posttreatment recovery for SBO patients.
Collapse
Affiliation(s)
- Qi-Hong Zhong
- Department of General Surgery (Emergency Surgery), Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
| | - Can-Hong Zhan
- Department of General Surgery (Emergency Surgery), Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
| | - Wei-Xuan Xu
- Department of General Surgery (Emergency Surgery), Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
| | - Yong Cai
- Department of General Surgery (Emergency Surgery), Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
| | - Shuai Chen
- Department of General Surgery (Emergency Surgery), Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
| | - Hui Wang
- Department of General Surgery (Emergency Surgery), Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
| | - Peng-Sheng Tu
- Department of General Surgery (Emergency Surgery), Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
| | - Xian-Qiang Chen
- Department of General Surgery (Emergency Surgery), Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
| | - Jun-Rong Zhang
- Department of General Surgery (Emergency Surgery), Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China.
| | - Ping Hou
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, 350122, Fujian Province, China.
| |
Collapse
|
5
|
Ishikawa K, Murao A, Aziz M, Wang P. Milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 (MOP3) attenuates inflammation and improves survival in hepatic ischemia/reperfusion injury. Surgery 2025; 178:108872. [PMID: 39455391 PMCID: PMC11717596 DOI: 10.1016/j.surg.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/20/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024]
Abstract
INTRODUCTION Hepatic ischemia/reperfusion injury is a severe clinical condition leading to high mortality as the result of excessive inflammation, partially triggered by released damage-associated molecular patterns. Extracellular cold-inducible RNA-binding protein is a new damage-associated molecular pattern. Current clinical management of hepatic ischemia/reperfusion injury is limited to supportive therapy, necessitating the development of novel and effective treatment strategies. Milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 is a newly invented oligopeptide originating from milk fat globule-epidermal growth factor-VIII. This peptide acts as an opsonic compound that specifically binds to extracellular cold-inducible RNA-binding protein to facilitate its clearance by phagocytes, thereby attenuating inflammation. In this study, we hypothesized that milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 attenuated hepatic ischemia/reperfusion injury by inhibiting extracellular cold-inducible RNA-binding protein-induced inflammation in Kupffer cells. METHODS We treated Kupffer cells isolated from male C57BL/6 mice with extracellular cold-inducible RNA-binding protein and various doses of milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 for 4 hours, then measured cytokines in the culture supernatants. In addition, mice underwent 70% hepatic ischemia for 60 minutes immediately followed by the intravenous administration of either vehicle or milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3. Blood and ischemic liver tissues were collected 24 hours later, and inflammatory markers including cytokines, liver enzymes, chemokines, myeloperoxidase activity, and Z-DNA-binding protein 1 were measured. Hepatic tissue damage and cell death were evaluated histologically. Survival rates were monitored for 10 days posthepatic ischemia/reperfusion. RESULTS The release of interleukin-6 and tumor necrosis factor-α from extracellular cold-inducible RNA-binding protein-challenged Kupffer cells was significantly reduced by milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 in a dose-dependent manner. In hepatic ischemia/reperfusion mice, milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 treatment significantly decreased serum levels of extracellular cold-inducible RNA-binding protein, interleukin-6, tumor necrosis factor-α, aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase. Milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 treatment also significantly reduced mRNA levels of interleukin-6, tumor necrosis factor-α, interleukin-1β, Z-DNA-binding protein 1, and chemokine macrophage inflammatory protein-2, as well as myeloperoxidase activity in hepatic tissues. Histologic evaluation demonstrated that treatment with milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 significantly attenuated tissue damage and cell death in the liver of hepatic ischemia/reperfusion mice. Milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 treatment significantly improved the survival rate of hepatic ischemia/reperfusion mice. CONCLUSION Milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 significantly attenuated inflammation and liver tissue damage and improved survival after hepatic ischemia/reperfusion. Thus, milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 holds promise as a potential future therapeutic strategy for hepatic ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Kouhei Ishikawa
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
| | - Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| |
Collapse
|
6
|
Liu ZM, Zhang YN, Zhang HF, Zhang XY. Combined PD-1 and IL-10 blockade reinvigorates mucosal CD8 +T exhaustion and relieves liver damage after intestinal ischemia reperfusion attack. Biochem Biophys Res Commun 2025; 742:151137. [PMID: 39647455 DOI: 10.1016/j.bbrc.2024.151137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Currently, impairments in gut mucosal immunity following intestinal ischemia reperfusion (IR) remain unclear. Mucosal CD8+T cells are critical for host defense against bacterial translocation from the gut lumen, and exhausted T cells lose robust effector functions. The present study was designed to verify the hypothesis that intestinal IR leads to mucosal CD8+T cell exhaustion, and that reinvigoration of exhausted CD8+T cell attenuates IR-induced bacterial translocation and liver damage. The intestinal IR model was performed through clamping the superior mesenteric artery in mice. The percent of exhausted CD8+T cells and the effector function of CD8+T cells were examined to determine the occurrence of intestinal mucosal CD8+T cell exhaustion. Subsequently, PD-1 blockade or combined PD-1 and IL-10 blockade was respectively used to reinvigorate exhausted CD8+T cells. Serum biomarkers, bacterial RNA and colonies, and inflammatory factors were examined to determine bacterial translocation and liver damage. The results indicated that intestinal IR induced CD8+T cell exhaustion in mucosal tissues, as evidenced by increased PD-1+ and PD-1+LAG-3+CD8+T cells and decreased IL-2 and TNF-α expression in CD8+T cells. Combined PD-1 and IL-10 blockade, but not PD-1 blockade alone, reinvigorated CD8+T cell exhaustion, as evidenced by increased generation of exhausted CD8+T cells with cytotoxicity and effector function, and elevated production of IFN-γ. Moreover, combined blockade significantly reduced the translocation of gut bacteria and injury to the liver after IR. In conclusion, intestinal IR leads to mucosal CD8+T cell exhaustion. Combined PD-1 and IL-10 blockade reinvigorates exhausted CD8+T cells, and ameliorates bacterial translocation and liver damage following IR.
Collapse
Affiliation(s)
- Zi-Meng Liu
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi-Nan Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hu-Fei Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xu-Yu Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
7
|
Fan X, Lin J, Liu H, Deng Q, Zheng Y, Wang X, Yang L. The role of macrophage-derived exosomes in noncancer liver diseases: From intercellular crosstalk to clinical potential. Int Immunopharmacol 2024; 143:113437. [PMID: 39454408 DOI: 10.1016/j.intimp.2024.113437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Chronic liver disease has a substantial global prevalence and mortality rate. Macrophages, pivotal cells in innate immunity, exhibit remarkable heterogeneity and plasticity and play a considerable role in maintaining organ homeostasis, modulating inflammatory responses, and influencing disease progression in the liver. Exosomes, which can serve as conduits for intercellular communication, biomarkers, and therapeutic targets for a spectrum of diseases, have recently garnered increasing attention recently. Given that the liver is the organ with the highest macrophage content, a thorough understanding of the influence of macrophage-derived exosomes (MDEs) on noncancer liver disease pathogenesis and their potential therapeutic applications is paramount. Interactions among MDEs, hepatocytes, hepatic stellate cells (HSCs), and other nonparenchymal cells constitute a complex network regulates liver immune homeostasis. In this review, we summarize the latest progress in the current understanding of MDE heterogeneity and cellular crosstalk in noncancer liver diseases, as well as their potential clinical applications. Additionally, challenges and future directions are underscored.
Collapse
Affiliation(s)
- Xiaoli Fan
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Lin
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Honglan Liu
- Dazhou Central Hospital, Dazhou 635000, Sichuan Province, China
| | - Qiaoyu Deng
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yanyi Zheng
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoze Wang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| | - Li Yang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Wang Q, Yu ZH, Nie L, Wang FX, Mu G, Lu B. Assessing the impact of gut microbiota and metabolic products on acute lung injury following intestinal ischemia-reperfusion injury: harmful or helpful? Front Cell Infect Microbiol 2024; 14:1491639. [PMID: 39687547 PMCID: PMC11647003 DOI: 10.3389/fcimb.2024.1491639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
Ischemia-reperfusion injury (IRI) is a common and clinically significant form of tissue damage encountered in medical practice. This pathological process has been thoroughly investigated across a variety of clinical settings, including, but not limited to, sepsis, organ transplantation, shock, myocardial infarction, cerebral ischemia, and stroke. Intestinal IRI, in particular, is increasingly recognized as a significant clinical entity due to marked changes in the gut microbiota and their metabolic products, often described as the body's "second genome." These changes in intestinal IRI lead to profound alterations in the gut microbiota and their metabolic outputs, impacting not only the pathology of intestinal IRI itself but also influencing the function of other organs through various mechanisms. Notable among these are brain, liver, and kidney injuries, with acute lung injury being especially significant. This review seeks to explore in depth the roles and mechanisms of the gut microbiota and their metabolic products in the progression of acute lung injury initiated by intestinal IRI, aiming to provide a theoretical basis and directions for future research into the treatment of related conditions.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Anesthesiology, Zigong Fourth People’s Hospital, Zigong, Sichuan, China
| | - Zi-Hang Yu
- Department of Anesthesiology, Fushun County People’s Hospital, Zigong, Sichuan, China
| | - Liang Nie
- Department of Anesthesiology, Fushun County People’s Hospital, Zigong, Sichuan, China
| | - Fei-Xiang Wang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Guo Mu
- Department of Anesthesiology, Zigong Fourth People’s Hospital, Zigong, Sichuan, China
| | - Bin Lu
- Department of Anesthesiology, Zigong Fourth People’s Hospital, Zigong, Sichuan, China
| |
Collapse
|
9
|
Premadasa LS, McDew-White M, Romero L, Gondo B, Drawec JA, Ling B, Okeoma CM, Mohan M. Epigenetic modulation of NLRP6 inflammasome sensor as a therapeutic modality to reduce necroptosis-driven gastrointestinal mucosal dysfunction in HIV/SIV infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623322. [PMID: 39605466 PMCID: PMC11601347 DOI: 10.1101/2024.11.13.623322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The epigenetic mechanisms driving persistent gastrointestinal mucosal dysfunction in HIV/SIV infection is an understudied topic. Using reduced-representation bisulfite sequencing, we identified HIV/SIV infection in combination anti-retroviral therapy (cART)-naive rhesus macaques (RMs) to induce marked hypomethylation throughout promoter-associated CpG islands (paCGIs) in genes related to inflammatory response ( NLRP6, cGAS ), cellular adhesion and proliferation in colonic epithelial cells (CEs). Moreover, low-dose delta-9-tetrahydrocannabinol (THC) administration reduced NLRP6 protein expression in CE by hypermethylating the NLRP6 paCGI and blocked polyI:C induced NLRP6 upregulation in vitro. In cART suppressed SIV-infected RMs, NLRP6 protein upregulation associated with significantly increased expression of necroptosis-driving proteins; phosphorylated-RIPK3(Ser199), phosphorylated-MLKL(Thr357/Ser358), and HMGB1. Most strikingly, supplementing cART with THC effectively reduced NLRP6 and necroptosis-driving protein expression to pre-infection levels. These findings for the first time demonstrate that NLRP6 upregulation and ensuing activation of necroptosis promote HIV/SIV-induced gastrointestinal mucosal dysfunction and that epigenetic modulation using phytocannabinoids represents a feasible therapeutic modality for alleviating HIV/SIV-induced gastrointestinal inflammation and associated comorbidities.
Collapse
|
10
|
Yao Z, Liang Y, Pan C, Zeng K, Qu Z. Lonicerin alleviates intestinal myenteric neuron injury induced by hypoxia/reoxygenation treated macrophages by downregulating EZH2. J Biochem Mol Toxicol 2024; 38:e23810. [PMID: 39163614 DOI: 10.1002/jbt.23810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/01/2024] [Accepted: 08/02/2024] [Indexed: 08/22/2024]
Abstract
Intestinal ischemia-reperfusion (IR) injury is a common gastrointestinal disease that induces severe intestinal dysfunction. Intestinal myenteric neurons participate in maintaining the intestinal function, which will be severely injured by IR. Macrophages are widely reported to be involved in the pathogenesis of organ IR injury, including intestine, which is activated by NLRP3 signaling. Lonicerin (LCR) is a natural extracted monomer with inhibitory efficacy against the NLRP3 pathway in macrophages. The present study aims to explore the potential protective function of LCR in intestinal IR injury. Myenteric neurons were extracted from mice. RAW 264.7 cells were stimulated by H/R with or without 10 μM and 30 μM LCR. Remarkable increased release of IL-6, MCP-1, and TNF-α were observed in H/R treated RAW 264.7 cells, along with an upregulation of NLRP3, cleaved-caspase-1, IL-1β, and EZH2, which were sharply repressed by LCR. Myenteric neurons were cultured with the supernatant collected from each group. Markedly decreased neuron number and shortened length of neuron axon were observed in the H/R group, which were signally reversed by LCR. RAW 264.7 cells were stimulated by H/R, followed by incubated with 30 μM LCR with or without pcDNA3.1-EZH2. The inhibition of LCR on NLRP3 signaling in H/R treated RAW 264.7 cells was abolished by EZH2 overexpression. Furthermore, the impact of LCR on neuron number and neuron axon length in myenteric neurons in the H/R group was abated by EZH2 overexpression. Collectively, LCR alleviated intestinal myenteric neuron injury induced by H/R treated macrophages via downregulating EZH2.
Collapse
Affiliation(s)
- Zhiguang Yao
- Department of Surgical District 2, Eighth People's Hospital of Dongguan City, Dongguan, China
| | - Yuan Liang
- Department of Pediatrics, Eighth People's Hospital of Dongguan City, Dongguan, China
| | - Chunyan Pan
- Department of Health Management, Eighth People's Hospital of Dongguan City, Dongguan, China
| | - Kun Zeng
- Department of Science and Education, Eighth People's Hospital of Dongguan City, Dongguan, China
| | - Zhibo Qu
- Department of Surgical District 2, Eighth People's Hospital of Dongguan City, Dongguan, China
| |
Collapse
|
11
|
Shimizu J, Murao A, Lee Y, Aziz M, Wang P. Extracellular CIRP promotes Kupffer cell inflammatory polarization in sepsis. Front Immunol 2024; 15:1411930. [PMID: 38881891 PMCID: PMC11177612 DOI: 10.3389/fimmu.2024.1411930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
Introduction Sepsis is a life-threatening inflammatory condition caused by dysregulated host responses to infection. Extracellular cold-inducible RNA-binding protein (eCIRP) is a recently discovered damage-associated molecular pattern that causes inflammation and organ injury in sepsis. Kupffer cells can be activated and polarized to the inflammatory M1 phenotype, contributing to tissue damage by producing proinflammatory mediators. We hypothesized that eCIRP promotes Kupffer cell M1 polarization in sepsis. Methods We stimulated Kupffer cells isolated from wild-type (WT) and TLR4-/- mice with recombinant mouse (rm) CIRP (i.e., eCIRP) and assessed supernatant IL-6 and TNFα levels by ELISA. The mRNA expression of iNOS and CD206 for M1 and M2 markers, respectively, was assessed by qPCR. We induced sepsis in WT and CIRP-/- mice by cecal ligation and puncture (CLP) and assessed iNOS and CD206 expression in Kupffer cells by flow cytometry. Results eCIRP dose- and time-dependently increased IL-6 and TNFα release from WT Kupffer cells. In TLR4-/- Kupffer cells, their increase after eCIRP stimulation was prevented. eCIRP significantly increased iNOS gene expression, while it did not alter CD206 expression in WT Kupffer cells. In TLR4-/- Kupffer cells, however, iNOS expression was significantly decreased compared with WT Kupffer cells after eCIRP stimulation. iNOS expression in Kupffer cells was significantly increased at 20 h after CLP in WT mice. In contrast, Kupffer cell iNOS expression in CIRP-/- mice was significantly decreased compared with WT mice after CLP. CD206 expression in Kupffer cells was not different across all groups. Kupffer cell M1/M2 ratio was significantly increased in WT septic mice, while it was significantly decreased in CIRP-/- mice compared to WT mice after CLP. Conclusion Our data have clearly shown that eCIRP induces Kupffer cell M1 polarization via TLR4 pathway in sepsis, resulting in overproduction of inflammatory cytokines. eCIRP could be a promising therapeutic target to attenuate inflammation by preventing Kupffer cell M1 polarization in sepsis.
Collapse
Affiliation(s)
- Junji Shimizu
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Yongchan Lee
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
12
|
Chang NP, DaPrano EM, Lindman M, Estevez I, Chou TW, Evans WR, Nissenbaum M, McCourt M, Alzate D, Atkins C, Kusnecov AW, Huda R, Daniels BP. Neuronal DAMPs exacerbate neurodegeneration via astrocytic RIPK3 signaling. JCI Insight 2024; 9:e177002. [PMID: 38713518 PMCID: PMC11382884 DOI: 10.1172/jci.insight.177002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/01/2024] [Indexed: 05/09/2024] Open
Abstract
Astrocyte activation is a common feature of neurodegenerative diseases. However, the ways in which dying neurons influence the activity of astrocytes is poorly understood. Receptor interacting protein kinase-3 (RIPK3) signaling has recently been described as a key regulator of neuroinflammation, but whether this kinase mediates astrocytic responsiveness to neuronal death has not yet been studied. Here, we used the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine model of Parkinson's disease to show that activation of astrocytic RIPK3 drives dopaminergic cell death and axon damage. Transcriptomic profiling revealed that astrocytic RIPK3 promoted gene expression associated with neuroinflammation and movement disorders, and this coincided with significant engagement of damage-associated molecular pattern signaling. In mechanistic experiments, we showed that factors released from dying neurons signaled through receptor for advanced glycation endproducts to induce astrocytic RIPK3 signaling, which conferred inflammatory and neurotoxic functional activity. These findings highlight a mechanism of neuron-glia crosstalk in which neuronal death perpetuates further neurodegeneration by engaging inflammatory astrocyte activation via RIPK3.
Collapse
Affiliation(s)
| | | | | | | | | | - Wesley R Evans
- Department of Cell Biology and Neuroscience
- W. M. Keck Center for Collaborative Neuroscience, and
| | | | | | | | | | | | - Rafiq Huda
- Department of Cell Biology and Neuroscience
- W. M. Keck Center for Collaborative Neuroscience, and
| | | |
Collapse
|
13
|
Tian X, Wu L, Li X, Zheng W, Zuo H, Song H. Exosomes derived from bone marrow mesenchymal stem cells alleviate biliary ischemia reperfusion injury in fatty liver transplantation by inhibiting ferroptosis. Mol Cell Biochem 2024; 479:881-894. [PMID: 37243945 PMCID: PMC11016128 DOI: 10.1007/s11010-023-04770-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023]
Abstract
Fatty liver grafts are susceptible to ischemia reperfusion injury (IRI), increasing the risk of biliary complications after liver transplantation (LT). Ferroptosis, a newly recognized programmed cell death, is expected to be a novel therapeutic target for IRI. We investigated whether exosomes derived from heme oxygenase 1-modified bone marrow mesenchymal stem cells (HExos) relieve ferroptosis and protect biliary tracts from IRI in a rat fatty liver transplantation model. Rats were fed with a methionine choline deficient (MCD) diet for 2 weeks to induce severe hepatic steatosis. Steatotic grafts were implanted and HExos were administered after liver transplantation. A series of functional assays and pathological analysis were performed to assess ferroptosis and biliary IRI. The HExos attenuated IRI following liver transplantation, as demonstrated by less ferroptosis, improved liver function, less Kupffer and T cell activation, and less long-term biliary fibrosis. MicroRNA (miR)-204-5p delivered by HExos negatively regulated ferroptosis by targeting a key pro-ferroptosis enzyme, ACSL4. Ferroptosis contributes to biliary IRI in fatty liver transplantation. HExos protect steatotic grafts by inhibiting ferroptosis, and may become a promising strategy to prevent biliary IRI and expand the donor pool.
Collapse
Affiliation(s)
- Xuan Tian
- School of Medicine, Nankai University, Tianjin, People's Republic of China
| | - Longlong Wu
- School of Medicine, Nankai University, Tianjin, People's Republic of China
| | - Xiang Li
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Weiping Zheng
- Department of Organ Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China
- NHC Key Laboratory of Critical Care Medicine, Tianjin, 300192, People's Republic of China
| | - Huaiwen Zuo
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Hongli Song
- Department of Organ Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China.
- Tianjin Key Laboratory of Organ Transplantation, Tianjin, People's Republic of China.
| |
Collapse
|
14
|
Wang F, Zhou F, Peng J, Chen H, Xie J, Liu C, Xiong H, Chen S, Xue G, Zhou X, Xie Y. Macrophage Tim-3 maintains intestinal homeostasis in DSS-induced colitis by suppressing neutrophil necroptosis. Redox Biol 2024; 70:103072. [PMID: 38330550 PMCID: PMC10865407 DOI: 10.1016/j.redox.2024.103072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
T-cell immunoglobulin domain and mucin domain-3 (Tim-3) is a versatile immunomodulator that protects against intestinal inflammation. Necroptosis is a type of cell death that regulates intestinal homeostasis and inflammation. The mechanism(s) underlying the protective role of macrophage Tim-3 in intestinal inflammation is unclear; thus, we investigated whether specific Tim-3 knockdown in macrophages drives intestinal inflammation via necroptosis. Tim-3 protein and mRNA expression were assessed via double immunofluorescence staining and single-cell RNA sequencing (sc-RNA seq), respectively, in the colonic tissues of patients with inflammatory bowel disease (IBD) and healthy controls. Macrophage-specific Tim3-knockout (Tim-3M-KO) mice were generated to explore the function and mechanism of Tim-3 in dextran sodium sulfate (DSS)-induced colitis. Necroptosis was blocked by pharmacological inhibitors of receptor-interacting protein kinase (RIP)1, RIP3, and reactive oxygen species (ROS). Additionally, in vitro experiments were performed to assess the mechanisms of neutrophil necroptosis induced by Tim-3 knockdown macrophages. Although Tim-3 is relatively inactive in macrophages during colon homeostasis, it is highly active during colitis. Compared to those in controls, Tim-3M-KO mice showed increased susceptibility to colitis, higher colitis scores, and increased pro-inflammatory mediator expression. Following the administration of RIP1/RIP3 or ROS inhibitors, a significant reduction in intestinal inflammation symptoms was observed in DSS-treated Tim-3M-KO mice. Further analysis indicated the TLR4/NF-κB pathway in Tim-3 knockdown macrophages mediates the TNF-α-induced necroptosis pathway in neutrophils. Macrophage Tim-3 regulates neutrophil necroptosis via intracellular ROS signaling. Tim-3 knockdown macrophages can recruit neutrophils and induce neutrophil necroptosis, thereby damaging the intestinal mucosal barrier and triggering a vicious cycle in the development of colitis. Our results demonstrate a protective role of macrophage Tim-3 in maintaining gut homeostasis by inhibiting neutrophil necroptosis and provide novel insights into the pathogenesis of IBD.
Collapse
Affiliation(s)
- Fangfei Wang
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China; Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Feng Zhou
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China; Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Jianxiang Peng
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China; Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Hao Chen
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China; Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Jinliang Xie
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China; Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Cong Liu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China; Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Huifang Xiong
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China; Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Sihai Chen
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China; Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Guohui Xue
- Department of Clinical Laboratory, Affiliated Jiujiang Hospital of Nanchang University, Jiujiang, Jiangxi Province, China
| | - Xiaojiang Zhou
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China; Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Yong Xie
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China; Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China.
| |
Collapse
|
15
|
Lei Y, Yu H, Ding S, Liu H, Liu C, Fu R. Molecular mechanism of ATF6 in unfolded protein response and its role in disease. Heliyon 2024; 10:e25937. [PMID: 38434326 PMCID: PMC10907738 DOI: 10.1016/j.heliyon.2024.e25937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Activating transcription factor 6 (ATF6), an important signaling molecule in unfolded protein response (UPR), plays a role in the pathogenesis of several diseases, including diseases such as congenital retinal disease, liver fibrosis and ankylosing spondylitis. After endoplasmic reticulum stress (ERS), ATF6 is activated after separation from binding immunoglobulin protein (GRP78/BiP) in the endoplasmic reticulum (ER) and transported to the Golgi apparatus to be hydrolyzed by site 1 and site 2 proteases into ATF6 fragments, which localize to the nucleus and regulate the transcription and expression of ERS-related genes. In these diseases, ERS leads to the activation of UPR, which ultimately lead to the occurrence and development of diseases by regulating the physiological state of cells through the ATF6 signaling pathway. Here, we discuss the evidence for the pathogenic importance of ATF6 signaling in different diseases and discuss preclinical results.
Collapse
Affiliation(s)
| | | | - Shaoxue Ding
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Hui Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Chunyan Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| |
Collapse
|
16
|
Chu C, Wang X, Chen F, Yang C, Shi L, Xu W, Wang K, Liu B, Wang C, Sun D, Li J, Ding W. Neutrophil extracellular traps aggravate intestinal epithelial necroptosis in ischaemia-reperfusion by regulating TLR4/RIPK3/FUNDC1-required mitophagy. Cell Prolif 2024; 57:e13538. [PMID: 37691112 PMCID: PMC10771116 DOI: 10.1111/cpr.13538] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Neutrophil extracellular trap (NET) has been confirmed to be related to gut barrier injury during intestinal ischaemia-reperfusion (II/R). However, the specific molecular regulatory mechanism of NETs in II/R-induced intestinal barrier damage has yet to be fully elucidated. Here, we reported increased NETs infiltration accompanied by elevated inflammatory cytokines, cellular necroptosis and tight junction disruption in the intestine of human II/R patients. Meanwhile, NETs aggravated Caco-2 intestinal epithelial cell necroptosis, impairing the monolayer barrier in vitro. Moreover, Pad4-deficient mice were used further to validate the role of NETs in II/R-induced intestinal injury. In contrast, NET inhibition via Pad4 deficiency alleviated intestinal inflammation, attenuated cellular necroptosis, improved intestinal permeability, and enhanced tight junction protein expression. Notably, NETs prevented FUN14 domain-containing 1 (FUNDC1)-required mitophagy activation in intestinal epithelial cells, and stimulating mitophagy attenuated NET-associated mitochondrial dysfunction, cellular necroptosis, and intestinal damage. Mechanistically, silencing Toll-like receptor 4 (TLR4) or receptor-interacting protein kinase 3 (RIPK3) via shRNA relieved mitophagy limitation, restored mitochondrial function and reduced NET-induced necroptosis in Caco-2 cells, whereas this protective effect was reversed by TLR4 or RIPK3 overexpression. The regulation of TLR4/RIPK3/FUNDC1-required mitophagy by NETs can potentially induce intestinal epithelium necroptosis.
Collapse
Affiliation(s)
- Chengnan Chu
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsu ProvinceChina
| | - Xinyu Wang
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsu ProvinceChina
| | - Fang Chen
- Division of Trauma and Acute Care Surgery, Jinling Hospital, School of MedicineSoutheast UniversityNanjingJiangsu ProvinceChina
| | - Chao Yang
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsu ProvinceChina
| | - Lin Shi
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjingJiangsu ProvinceChina
| | - Weiqi Xu
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsu ProvinceChina
| | - Kai Wang
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsu ProvinceChina
| | - Baochen Liu
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsu ProvinceChina
| | - Chenyang Wang
- Key Laboratory of Intestinal Injury, Research Institute of General Surgery, Affiliated Jinling HospitalMedical School of Nanjing UniversityNanjingJiangsuChina
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjingJiangsu ProvinceChina
| | - Jieshou Li
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsu ProvinceChina
| | - Weiwei Ding
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsu ProvinceChina
- Division of Trauma and Acute Care Surgery, Jinling Hospital, School of MedicineSoutheast UniversityNanjingJiangsu ProvinceChina
| |
Collapse
|
17
|
Şengel N, Küçük A, Özdemir Ç, Sezen ŞC, Kip G, Er F, Dursun AD, Polat Y, Kavutçu M, Arslan M. The Effect of Sevoflurane and Fullerenol C 60 on the Liver and Kidney in Lower Extremity Ischemia-Reperfusion Injury in Mice with Streptozocin-Induced Diabetes. Int J Nanomedicine 2023; 18:7543-7557. [PMID: 38111848 PMCID: PMC10725837 DOI: 10.2147/ijn.s432924] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023] Open
Abstract
Objective This study aimed to demonstrate whether fullerenol C60, sevoflurane anesthesia, or a combination of both had protective effects on the liver and kidneys in lower extremity ischemia-reperfusion injury (IRI) in mice with streptozocin-induced diabetes. Methods A total of 46 Swiss albino mice were divided into six groups as follows: control group (group C, n=7), diabetes group (group D, n=7), diabetes-ischemia/reperfusion (group DIR, n=8), diabetes-ischemia/reperfusion-fullerenol C60 (group DIR-FC60, n=8), diabetes-ischemia/reperfusion-sevoflurane (group DIR-S, n=8), and the diabetes-ischemia/reperfusion-fullerenol C60-sevoflurane (group DIR-S-FC60, n=8). Fullerenol C60 (100mg/kg) was administered intraperitoneally 30 min before the ischemia-reperfusion procedure to the fullerenol groups (DIR-FC60 and DIR-S-FC60). In the DIR groups, 2 hours (h) ischemia-2h reperfusion periods were performed. In the sevoflurane groups, sevoflurane was applied during the ischemia-reperfusion period with 100% O2. Liver and kidney tissues were removed at the end of the reperfusion procedure for biochemical and histopathological examinations. Results In liver tissue, hydropic degeneration, sinusoidal dilatation, pycnotic nuclei, prenecrotic cells, and mononuclear cell infiltration in parenchyma were significantly more frequent in group DIR than in groups D and group C. In terms of the histopathologic criteria examined, more positive results were seen in group DIR-FC60, and when group DIR-FC60 was compared with group DIR, the difference was significant. The best results in AST, ALT, glucose, TBARS levels, and SOD enzyme activities in liver tissue were in group DIR-FC60 compared with group DIR, followed by groups DIR-S-FC60 and DIR-S, respectively. Regarding TBARS levels and SOD enzyme activities in kidney tissue, the best results were in groups DIR-FC60, DIR-S-FC60, and DIR-S, respectively. Conclusion According to our findings, it is clear that fullerenol C60 administered intraperitoneally 30 min before ischemia, alone or together with sevoflurane, reduces oxidative stress in distant organ damage caused by lower extremity IRI, and reduces liver and kidney tissue damage in histopathologic examinations.
Collapse
Affiliation(s)
- Necmiye Şengel
- Department of Oral and Maxillofacial Surgery, (As a Specialist in Anesthesiology and Reanimation), Gazi University Faculty of Dentistry, Ankara, Turkey
| | - Ayşegül Küçük
- Department of Physiology, Kutahya Health Sciences University Faculty of Medicine, Kutahya, Turkey
| | - Çağrı Özdemir
- Department of Anesthesiology and Reanimation, Mamak State Hospital, Ankara, Turkey
| | - Şaban Cem Sezen
- Department of Histology and Embryology, Kırıkkale University Faculty of Medicine, Kırıkkale, Turkey
| | - Gülay Kip
- Department of Anesthesiology and Reanimation, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Fatma Er
- Department of Medical Biochemistry, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Ali Doğan Dursun
- Department of Physiology, Atılım University Faculty of Medicine, Ankara, Turkey
| | - Yücel Polat
- Cardiovascular Surgery, Tekirdağ Dr. Ismail Fehmi Cumalıoğlu City Hospital, Tekirdağ, Turkey
| | - Mustafa Kavutçu
- Department of Medical Biochemistry, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Mustafa Arslan
- Department of Anesthesiology and Reanimation, Gazi University Faculty of Medicine, Ankara, Turkey
- Life Sciences Application and Research Center, Gazi University, Ankara, Turkey
- Laboratory Animal Breeding and Experimental Researches Center (GÜDAM), Gazi University, Ankara, Turkey
| |
Collapse
|
18
|
Yao L, Cai H, Fang Q, Liu D, Zhan M, Chen L, Du J. Piceatannol alleviates liver ischaemia/reperfusion injury by inhibiting TLR4/NF-κB/NLRP3 in hepatic macrophages. Eur J Pharmacol 2023; 960:176149. [PMID: 37866744 DOI: 10.1016/j.ejphar.2023.176149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/05/2023] [Accepted: 10/20/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Macrophages present strong immunomodulatory ability and are considered to be core immune cells in the process of hepatic ischaemia‒reperfusion (I/R). The NLRP3 inflammasome is a kind of intracellular multimolecular complex that actively participates in innate immune responses and proinflammatory signalling pathways. Piceatannol (PIC) is a derivative of the natural phenolic compound resveratrol and has antioxidant and anti-inflammatory effects. The purpose of this study was to examine whether pretreatment with PIC can alleviate hepatic I/R injury by targeting NLRP3 inflammasome-induced macrophage pyroptosis. METHODS PIC-pretreated primary hepatic macrophages were subjected to hypoxia/reoxygenation, and liver ischaemia/reperfusion was performed in mice. RESULTS PIC pretreatment ameliorated histopathological changes, oxidative stress and inflammation while enhancing antioxidant and anti-inflammasome markers through downregulation of Toll-like receptor 4 (TLR4), p-IκBα (S32), p-NF-κBp65 (S536), NLRP3, caspase-1 (p20), IL-1β, IL-18 and GSDMD-N expression during liver ischaemia‒reperfusion. Moreover, PIC inhibited the translocation of NF-κB p65 after stimulation with hypoxia/reoxygenation in primary hepatic macrophages. CONCLUSIONS The results indicated that PIC protected the liver against hepatic I/R injury, which was mediated by targeting TLR4-NF-κB-NLRP3-mediated hepatic macrophage pyroptosis.
Collapse
Affiliation(s)
- Lei Yao
- Department of Biochemistry and Molecular Biology, Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China; Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, Anhui Medical University, Hefei, 230032, China
| | - Haijian Cai
- Center for Scientific Research of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Qi Fang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Deng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Mengting Zhan
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Lijian Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| | - Jian Du
- Department of Biochemistry and Molecular Biology, Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China; Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
19
|
Liu Q, Gao K, Ding X, Mo D, Guo H, Chen B, Xia B, Ye C, Chen G, Guo C. NAMPT inhibition relieves intestinal inflammation by regulating macrophage activation in experimental necrotizing enterocolitis. Biomed Pharmacother 2023; 165:115012. [PMID: 37329710 DOI: 10.1016/j.biopha.2023.115012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023] Open
Abstract
Nicotinamide phosphoribosyl transferase (NAMPT) is associated with various NAD+ -consuming enzymatic reactions. The precise role in intestinal mucosal immunity in necrotizing enterocolitis (NEC) is not well defined. Here, we examined whether NAMPT inhibition by the highly specific inhibitor FK866 could alleviate intestinal inflammation during the pathogenesis of NEC. In the present study, we showed that NAMPT expression was upregulated in the human terminal ileum of human infants with NEC. FK866 administration attenuated M1 macrophage polarization and relieved the symptoms of experimental NEC pups. FK866 inhibited intercellular NAD+ levels, macrophage M1 polarization, and the expression of NAD+ -dependent enzymes, such as poly (ADP ribose) polymerase 1 (PARP1) and Sirt6. Consistently, the capacity of macrophages to phagocytose zymosan particles, as well as antibacterial activity, were impaired by FK866, whereas NMN supplementation to restore NAD+ levels reversed the changes in phagocytosis and antibacterial activity. In conclusion, FK866 reduced intestinal macrophage infiltration and skewed macrophage polarization, which is implicated in intestinal mucosal immunity, thereby promoting the survival of NEC pups.
Collapse
Affiliation(s)
- Qianyang Liu
- Department of Pediatrics, Chongqing Health Center for Women and Children, Chongqing, China; Department of Pediatric Surgery, Chongqing Health Center for Women and Children, Chongqing Medical University, Chongqing 400054, China; Department of Obstetrics and Gynecology, Women and Chidren's Hospital, Chongqing Medical University, Chongqing, China
| | - Kai Gao
- Department of Pediatrics, Chongqing Health Center for Women and Children, Chongqing, China; Department of Pediatric Surgery, Chongqing Health Center for Women and Children, Chongqing Medical University, Chongqing 400054, China
| | - Xionghui Ding
- Department of Burn, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Dandan Mo
- Department of Pediatric Surgery, Chongqing Health Center for Women and Children, Chongqing Medical University, Chongqing 400054, China
| | - Hongjie Guo
- Department of anesthesiology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bailin Chen
- Department of General Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bingshan Xia
- Department of Pediatrics, Chongqing Health Center for Women and Children, Chongqing, China; Department of Pediatric Surgery, Chongqing Health Center for Women and Children, Chongqing Medical University, Chongqing 400054, China; Department of Obstetrics and Gynecology, Women and Chidren's Hospital, Chongqing Medical University, Chongqing, China
| | - Cuilian Ye
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Gongli Chen
- Department of Pediatrics, Chongqing Health Center for Women and Children, Chongqing, China; Department of Pediatric Surgery, Chongqing Health Center for Women and Children, Chongqing Medical University, Chongqing 400054, China; Department of Obstetrics and Gynecology, Women and Chidren's Hospital, Chongqing Medical University, Chongqing, China.
| | - Chunbao Guo
- Department of Pediatrics, Chongqing Health Center for Women and Children, Chongqing, China; Department of Pediatric Surgery, Chongqing Health Center for Women and Children, Chongqing Medical University, Chongqing 400054, China; Department of Obstetrics and Gynecology, Women and Chidren's Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
20
|
Chang NP, DaPrano EM, Evans WR, Nissenbaum M, McCourt M, Alzate D, Lindman M, Chou TW, Atkins C, Kusnecov AW, Huda R, Daniels BP. Neuronal DAMPs exacerbate neurodegeneration via astrocytic RIPK3 signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.550097. [PMID: 37546744 PMCID: PMC10401942 DOI: 10.1101/2023.07.21.550097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Astrocyte activation is a common feature of neurodegenerative diseases. However, the ways in which dying neurons influence the activity of astrocytes is poorly understood. RIPK3 signaling has recently been described as a key regulator of neuroinflammation, but whether this kinase mediates astrocytic responsiveness to neuronal death has not yet been studied. Here, we used the MPTP model of Parkinson's disease to show that activation of astrocytic RIPK3 drives dopaminergic cell death and axon damage. Transcriptomic profiling revealed that astrocytic RIPK3 promoted gene expression associated with neuroinflammation and movement disorders, and this coincided with significant engagement of DAMP signaling. Using human cell culture systems, we show that factors released from dying neurons signal through RAGE to induce RIPK3-dependent astrocyte activation. These findings highlight a mechanism of neuron-glia crosstalk in which neuronal death perpetuates further neurodegeneration by engaging inflammatory astrocyte activation via RIPK3.
Collapse
Affiliation(s)
- Nydia P. Chang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Evan M. DaPrano
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Wesley R. Evans
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | | | - Micheal McCourt
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Diego Alzate
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Marissa Lindman
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Tsui-Wen Chou
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Colm Atkins
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | | | - Rafiq Huda
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Brian P. Daniels
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
21
|
Lei YQ, Wan YT, Liang GT, Huang YH, Dong P, Luo SD, Zhang WJ, Liu WF, Liu KX, Zhang XY. Extracellular RNAs/TLR3 signaling contributes to acute intestinal injury induced by intestinal ischemia reperfusion in mice. Biochim Biophys Acta Mol Basis Dis 2023:166790. [PMID: 37336369 DOI: 10.1016/j.bbadis.2023.166790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/29/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
Toll-like receptor 3 (TLR3), one pattern recognition receptor activated by viral and endogenous RNA, has been recently reported to regulate ischemia/reperfusion (I/R) injury in various organs. However, the role of TLR3 in the development of intestinal I/R injury remains unclear. The aim of this study is to evaluate the effects of extracellular RNAs/TLR3 signaling in intestinal I/R injury. An intestinal I/R injury model was established with superior mesenteric artery occlusion both in wild-type and TLR3 knockout (KO, -/-) mice, and MODE-K cells were subjected to hypoxia/reoxygenation (H/R) to mimic the I/R model in vivo. Extracellular RNAs (exRNAs), especially double-stranded RNAs (dsRNAs) co-localized with TLR3, were significantly increased both in vitro and in vivo. Compared with wild-type mice, TLR3 knockout obviously attenuated intestinal I/R injury. Both TLR3/dsRNA complex inhibitor and TLR3 siRNA administration reduced TLR3 expressions and subsequently inhibited intestinal inflammatory cytokine production and apoptosis. In conclusion, exRNAs/TLR3 signaling is a key mechanism that regulates intestinal I/R injury in adult mice, and the TLR3/dsRNA complex inhibitor can be an effective approach for attenuating intestinal I/R-induced inflammatory response and apoptosis.
Collapse
Affiliation(s)
- Yu-Qiong Lei
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan-Tong Wan
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, China
| | - Guang-Tao Liang
- College of Anesthesiology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu-Hao Huang
- College of Anesthesiology, Southern Medical University, Guangzhou, Guangdong, China
| | - Peng Dong
- College of Anesthesiology, Southern Medical University, Guangzhou, Guangdong, China
| | - Si-Dan Luo
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wen-Juan Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei-Feng Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ke-Xuan Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Xi-Yang Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
22
|
Liu L, Ma Z, Han Q, Meng W, Ye H, Zhang T, Xia Y, Xiang Z, Ke Y, Guan X, Shi Q, Ataullakhanov FI, Panteleev M. Phenylboronic Ester-Bridged Chitosan/Myricetin Nanomicelle for Penetrating the Endothelial Barrier and Regulating Macrophage Polarization and Inflammation against Ischemic Diseases. ACS Biomater Sci Eng 2023. [PMID: 37327139 DOI: 10.1021/acsbiomaterials.3c00414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The brain and liver are more susceptible to ischemia and reperfusion (IR) injury (IRI), which triggers the reactive oxygen species (ROS) burst and inflammatory cascade and results in severe neuronal damage or hepatic injury. Moreover, the damaged endothelial barrier contributes to proinflammatory activity and limits the delivery of therapeutic agents such as some macromolecules and nanomedicine despite the integrity being disrupted after IRI. Herein, we constructed a phenylboronic-decorated chitosan-based nanoplatform to deliver myricetin, a multifunctional polyphenol molecule for the treatment of cerebral and hepatic ischemia. The chitosan-based nanostructures are widely studied cationic carriers for endothelium penetration such as the blood-brain barrier (BBB) and sinusoidal endothelial barrier (SEB). The phenylboronic ester was chosen as the ROS-responsive bridging segment for conjugation and selective release of myricetin molecules, which meanwhile scavenged the overexpressed ROS in the inflammatory environment. The released myricetin molecules fulfill a variety of roles including antioxidation through multiple phenolic hydroxyl groups, inhibition of the inflammatory cascade by regulation of the macrophage polarization from M1 to M2, and endothelial injury repairment. Taken together, our present study provides valuable insight into the development of efficient antioxidant and anti-inflammatory platforms for potential application against ischemic disease.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhifang Ma
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Qiaoyi Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wei Meng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hongbo Ye
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Tianci Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yu Xia
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zehong Xiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yue Ke
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xinghua Guan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, Suzhou, Jiangsu 215123, China
| | - Fazly I Ataullakhanov
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1, build. 2, GSP-1, Moscow 119991, Russia
| | - Mikhail Panteleev
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia
| |
Collapse
|
23
|
Liu M, Wen H, Zuo L, Song X, Geng Z, Ge S, Ge Y, Wu R, Chen S, Yu C, Gao Y. Bryostatin-1 attenuates intestinal ischemia/reperfusion-induced intestinal barrier dysfunction, inflammation, and oxidative stress via activation of Nrf2/HO-1 signaling. FASEB J 2023; 37:e22948. [PMID: 37130016 DOI: 10.1096/fj.202201540r] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/27/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Bryostatin-1 (Bryo-1) exerts antioxidative stress effects in multiple diseases, and we confirmed that it improves intestinal barrier dysfunction in experimental colitis. Nevertheless, there are few reports on its action on intestinal ischemia/reperfusion (I/R). In this study, we mainly explored the effect of Bryo-1 on intestinal I/R injury and determined the mechanism. C57BL/6J mice underwent temporary superior mesenteric artery (SMA) obturation to induce I/R, on the contrary, Caco-2 cells suffered to oxygen and glucose deprivation/reperfusion (OGD/R) to establish the in vitro model. RAW264.7 cells were stimulated with LPS to induce macrophage inflammation. The drug gradient experiment was used to demonstrate in vivo and in vitro models. Bryo-1 ameliorated the intestinal I/R-induced injury of multiple organs and epithelial cells. It also alleviated intestinal I/R-induced barrier disruption of intestines according to the histology, intestinal permeability, intestinal bacterial translocation rates, and tight junction protein expression results. Bryo-1 significantly inhibited oxidative stress damages and inflammation, which may contribute to the restoration of intestinal barrier function. Further, Bryo-1 significantly activated Nrf2/HO-1 signaling in vivo. However, the deletion of Nrf2 in Caco-2 and RAW264.7 cells attenuated the protective functions of Bryo-1 and significantly abolished the anti-inflammatory effect of Bryo-1 on LPS-induced macrophage inflammation. Bryo-1 protects intestines against I/R-induced injury. It is associated with intestinal barrier protection, as well as inhibition of inflammation and oxidative stress partly through Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Mulin Liu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Hexin Wen
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Lugen Zuo
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Xue Song
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhijun Geng
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Sitang Ge
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Yuanyuan Ge
- Department of Colorectal Surgery, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Rong Wu
- Department of General Surgery, Zhongda Hospital, Southeast University, Nanjing, China
| | - Shiyuan Chen
- Department of Vascular Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Chaowen Yu
- Department of Vascular Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yong Gao
- Department of Vascular Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
24
|
Jiang J, Kao TC, Hu S, Li Y, Feng W, Guo X, Zeng J, Ma X. Protective role of baicalin in the dynamic progression of lung injury to idiopathic pulmonary fibrosis: A meta-analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154777. [PMID: 37018850 DOI: 10.1016/j.phymed.2023.154777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND AND PURPOSE The pathological progression of lung injury (LI) to idiopathic pulmonary fibrosis (IPF) is a common feature of the development of lung disease. At present, effective strategies for preventing this progression are unavailable. Baicalin has been reported to specifically inhibit the progression of LI to IPF. Therefore, this meta-analysis aimed to assess its clinical application and its potential as a therapeutic drug for lung disease based on integrative analysis. METHODS We systematically searched preclinical articles in eight databases and reviewed them subjectively. The CAMARADES scoring system was used to assess the degree of bias and quality of evidence, whereas the STATA software (version 16.0 software) was used for statistical analysis, including a 3D analysis of the effects of dosage frequency of baicalin in LI and IPF. The protocol of this meta-analysis is documented in the PROSPERO database (CRD42022356152). RESULTS A total of 23 studies and 412 rodents were included after several rounds of screening. Baicalin was found to reduce the levels of TNF-α, IL-1β, IL-6, HYP, TGF-β and MDA and the W/D ratio and increase the levels of SOD. Histopathological analysis of lung tissue validated the regulatory effects of baicalin, and the 3D analysis of dosage frequency revealed that the effective dose of baicalin is 10-200 mg/kg. Mechanistically, baicalin can prevent the progression of LI to IPF by modulating p-Akt, p-NF-κB-p65 and Bcl-2-Bax-caspase-3 signalling. Additionally, baicalin is involved in signalling pathways closely related to anti-apoptotic activity and regulation of lung tissue and immune cells. CONCLUSION Baicalin at the dose of 10-200 mg/kg exerts protective effects against the progression of LI to IPF through anti-inflammatory and anti-apoptotic pathways.
Collapse
Affiliation(s)
- Jiajie Jiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Te-Chan Kao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Sihan Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yubing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Weiyi Feng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xiaochuan Guo
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
25
|
Wu X, Guo LZ, Liu YH, Liu YC, Yang PL, Leung YS, Tai HC, Wang TD, Lin JCW, Lai CL, Chuang YH, Lin CH, Chou PT, Lai IR, Liu TM. Plasma riboflavin fluorescence as a diagnostic marker of mesenteric ischemia-reperfusion injury in rats. Thromb Res 2023; 223:146-154. [PMID: 36753876 DOI: 10.1016/j.thromres.2023.01.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Due to the delayed and vague symptoms, it is difficult to early diagnose mesenteric ischemia injuries in the dynamics of acute illness, leading to a 60-80 % mortality rate. Here, we found plasma fluorescence spectra can rapidly assess the severity of mesenteric ischemia injury in animal models. Ischemia-reperfusion damage of the intestine leads to multiple times increase in NADH, flavins, and porphyrin auto-fluorescence of blood. The fluorescence intensity ratio between blue-fluorophores and flavins can reflect the occurrence of shock. Using liquid chromatography and mass spectroscopy, we confirm that riboflavin is primarily responsible for the increased flavin fluorescence. Since humans absorb riboflavin from the intestine, its increase in plasma may indicate intestinal mucosa injury. Our work suggests a self-calibrated and reagent-free approach to identifying the emergence of fatal mesenteric ischemia in emergency departments or intensive care units.
Collapse
Affiliation(s)
- Xueqin Wu
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
| | - Lun-Zhang Guo
- Department of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Hung Liu
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Yu-Cheng Liu
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
| | - Po-Lun Yang
- Department of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yun-Shiuan Leung
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Hwan-Ching Tai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, P. R. China.
| | - Tzung-Dau Wang
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei 10002, Taiwan
| | - Jesse Chih-Wei Lin
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chao-Lun Lai
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan; Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.
| | - Yueh-Hsun Chuang
- Department of Anesthesiology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Chih-Hsueh Lin
- Department of Nutrition, College of Medical and Health Care, Hungkuang University, Taichung City 433304, Taiwan
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - I-Rue Lai
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan; Department of Surgery, National Taiwan University Hospital, Taipei 100229, Taiwan.
| | - Tzu-Ming Liu
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China.
| |
Collapse
|
26
|
Mann JP, Lenz D, Stamataki Z, Kelly D. Common mechanisms in pediatric acute liver failure. Trends Mol Med 2023; 29:228-240. [PMID: 36496278 DOI: 10.1016/j.molmed.2022.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Acute liver failure (ALF) is a rare but potentially fatal disease in children. The etiology is multifactorial, including infection, autoimmune, and genetic disorders, as well as indeterminate hepatitis, which has a higher requirement for liver transplantation. Activation of the innate and adaptive immune systems leads to hepatocyte-specific injury which is mitigated by T regulatory cell activation. Recovery of the native liver depends on activation of apoptotic and regenerative pathways, including the integrated stress response (ISR; e.g., PERK), p53, and HNF4α. Loss-of-function mutations in these pathways cause recurrent ALF in response to non-hepatotropic viruses. Deeper understanding of these mechanisms will lead to improved diagnosis, management, and outcomes for pediatric ALF.
Collapse
Affiliation(s)
- Jake P Mann
- Liver Unit, Birmingham Women's and Children's Hospital, and University of Birmingham, Birmingham, UK
| | - Dominic Lenz
- Division of Neuropediatrics and Pediatric Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Zania Stamataki
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Deirdre Kelly
- Liver Unit, Birmingham Women's and Children's Hospital, and University of Birmingham, Birmingham, UK; Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.
| |
Collapse
|
27
|
Peng C, Tu G, Wang J, Wang Y, Wu P, Yu L, Li Z, Yu X. MLKL signaling regulates macrophage polarization in acute pancreatitis through CXCL10. Cell Death Dis 2023; 14:155. [PMID: 36828808 PMCID: PMC9958014 DOI: 10.1038/s41419-023-05655-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/26/2023]
Abstract
Acute pancreatitis (AP) is a disease characterized by local and systemic inflammation with an increasing incidence worldwide. Receptor-interacting serine/threonine protein kinase 3 (RIPK3), mixed-lineage kinase domain-like protein (MLKL), and innate immune cell macrophages have been reported to be involved in the pathogenesis of AP. However, the mechanisms by which RIPK3 and MLKL regulate pancreatic injury, as well as the interactions between injured pancreatic acinar cells and infiltrating macrophages in AP, remain poorly defined. In the present study, experimental pancreatitis was induced in C57BL/6J, Ripk3-/- and Mlkl-/- mice by cerulein plus lipopolysaccharide in vivo, and primary pancreatic acinar cells were also isolated to uncover cellular mechanisms during cerulein stimulation in vitro. The results showed that MLKL and its phosphorylated protein p-MLKL were upregulated in the pancreas of the mouse AP model and cerulein-treated pancreatic acinar cells, independent of its canonical upstream molecule Ripk3, and appeared to function in a cell death-independent manner. Knockout of Mlkl attenuated AP in mice by reducing the polarization of pancreatic macrophages toward the M1 phenotype, and this protective effect was partly achieved by reducing the secretion of CXCL10 from pancreatic acinar cells, whereas knockout of Ripk3 did not. In vitro neutralization of CXCL10 impaired the pro-M1 ability of the conditioned medium of cerulein-treated pancreatic acinar cells, whereas in vivo neutralization of CXCL10 reduced the polarization of pancreatic macrophages toward M1 and the severity of AP in mice. These findings suggested that targeting the MLKL-CXCL10-macrophage axis might be a promising strategy for the treatment of AP.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Guangping Tu
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Jiale Wang
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Yilin Wang
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Peng Wu
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Li Yu
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Zhiqiang Li
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Xiao Yu
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
28
|
Sun L, Li W, Zhao Z, Zuo Y, Han Z. Identification of a Necroptosis-Related Prognostic Signature and Associated Regulatory Axis in Lung Adenocarcinoma. Int J Genomics 2023; 2023:8766311. [PMID: 37965055 PMCID: PMC10643042 DOI: 10.1155/2023/8766311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/20/2022] [Accepted: 02/03/2023] [Indexed: 11/16/2023] Open
Abstract
Background Lung cancer is considered to be the second most aggressive and rapidly fatal cancer after breast cancer. Necroptosis, a novel discovered pattern of cell death, is mediated by Receptor-interacting serine/threonine-protein kinase 1 (RIPK1), Receptor-interacting serine/threonine-protein kinase 3 (RIPK3), and Mixed Lineage Kinase Domain Like Pseudokinase (MLKL). Methods For the purpose of developing a prognostic model, Least absolute shrinkage and selection operator (LASSO) Cox regression analysis was conducted. Using Pearson's correlation analysis, we evaluated the correlation between necroptosis-related markers and tumor immune infiltration. A bioinformatics analysis was conducted to construct a necroptosis-related regulatory axis. Results There was a downregulation of most of necroptosis-related genes in lung adenocarcinoma (LUAD) versus lung tissues but an increase in PGAM5, HMGB1, TRAF2, EZH2 levels. We also summarized the Single Nucleotide Variant (SNV) and copy number variation (CNV) of necroptosis-related genes in LUAD. Consensus clustering identified two clusters in LUAD with distinct immune cell infiltration and ESTIMATEScore. Genes related to necroptosis were associated with necroptosis, Tumor necrosis factor (TNF) signaling pathway, and apoptosis according to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Four prognostic genes (ALDH2, HMGB1, NDRG2, TLR2) were combined to develop a prognostic gene signature for LUAD patients, which was highly accurate in predicting prognosis. Univariate and multivariate analysis identified HMGB1, pT stage, and pN stage as independent factors impacting on LUAD patients' prognosis. A significant correlation was found between the level of TLR2 and NDRG2 and clinical stage, immunity infiltration, and drug resistance. Additionally, the progression of LUAD might be regulated by lncRNA C5orf64/miR-582-5p/NDRG2/TLR2. Conclusion The current bioinformatics analysis identified a necroptosis-related prognostic signature for LUAD and their relation to immunity infiltration. This result requires further investigation.
Collapse
Affiliation(s)
- Libo Sun
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenwen Li
- Department of Hematology, Qingdao Women and children's Hospital, Qingdao, China
| | - Zhenhuan Zhao
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanhua Zuo
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhiwu Han
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
29
|
Amin SN, Sakr HI, El Gazzar WB, Shaltout SA, Ghaith HS, Elberry DA. Combined saline and vildagliptin induced M2 macrophage polarization in hepatic injury induced by acute kidney injury. PeerJ 2023; 11:e14724. [PMID: 36815993 PMCID: PMC9933746 DOI: 10.7717/peerj.14724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/19/2022] [Indexed: 02/15/2023] Open
Abstract
Acute kidney injury (AKI) is a prevalent medical condition accompanied by mutual affection of other organs, including the liver resulting in complicated multiorgan malfunction. Macrophages play a vital role during tissue injury and healing; they are categorized into "classically activated macrophages" (M1) and "alternatively activated macrophages" (M2). The present study investigated and compared the conventional fluid therapy vs Dipeptidyl peptidase 4 inhibitor (DPP-4i) vildagliptin on the liver injury induced by AKI and evaluated the possible molecular mechanisms. Thirty rats comprised five groups (n = 6 rats/group): control, AKI, AKI+saline (received 1.5 mL of normal saline subcutaneous injection), AKI+vildagliptin (treated with oral vildagliptin 10 mg/kg), AKI+saline+vildagliptin. AKI was induced by intramuscular (i.m) injection of 50% glycerol (5 ml/kg). At the end of the work, we collected serum and liver samples for measurements of serum creatinine, blood urea nitrogen (BUN), alanine aminotransferase (ALT), aspartate aminotransferase (AST), tumor necrotic factor-α (TNF-α), and interleukin-10 (IL-10). Liver samples were processed for assessment of inducible nitric oxide synthase (iNOS) as a marker for M1, arginase 1 (Arg-1) as an M2 marker, c-fos, c-Jun, mitogen-activated protein kinase (MAPK), activator protein 1 (AP-1), and high-mobility-group-box1 (HMGB1) protein. The difference was insignificant regarding the relative expression of AP-1, c-Jun, c-fos, MAPK, and HMGB between the AKI+saline group and the AKI+Vildagliptin group. The difference between the same two groups concerning the hepatic content of the M1 marker (iNOS) and the M2 marker Arg-1 was insignificant. However, combined therapy produced more pronounced changes in these markers, as the difference in their relative expression between the AKI+saline+Vildagliptin group and both the AKI+saline group and the AKI+Vildagliptin group was significant. Accordingly, we suggest that the combined saline and vildagliptin hepatoprotective effect involves the downregulation of the MAPK/AP-1 signaling pathway.
Collapse
Affiliation(s)
- Shaimaa N. Amin
- Department of Anatomy, Physiology, and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa, Jordan,Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hader I. Sakr
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt,Department of Medical Physiology, Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Walaa B. El Gazzar
- Department of Anatomy, Physiology, and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa, Jordan,Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Sherif A. Shaltout
- Department of Pharmacology, Public health, and Clinical Skills, Faculty of Medicine, The Hashemite University, Zarqa, Jordan,Department of Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | | | - Dalia A. Elberry
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
30
|
Li Z, Huang Z, Luo Y, Yang H, Yang M. DUSP9 alleviates hepatic ischemia/reperfusion injury by restraining both mitogen-activated protein kinase and IKK in an apoptosis signal-regulating kinase 1-dependent manner. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1811-1821. [PMID: 36789693 PMCID: PMC10157530 DOI: 10.3724/abbs.2022183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/06/2022] [Indexed: 12/03/2022] Open
Abstract
Hepatic ischemia/reperfusion (I/R) injury occurs frequently in various liver operations and diseases, but its effective treatment remains inadequate because the key switch that leads to hepatic explosive inflammation has not been well disclosed. Dual specificity phosphatase 9 (DUSP9) is widely involved in the innate immune response of solid organs and is sometimes regulated by ubiquitin. In the present study, we find that DUSP9 is reduced in mouse hepatic I/R injury. DUSP9 enrichment attenuates hepatic inflammation both in vivo and in vitro as revealed by western blot analysis and qRT-PCR. In contrast, DUSP9 depletion leads to more severe I/R injury. Mechanistically, DUSP9 inhibits the phosphorylation of apoptosis signal-regulating kinase 1 (ASK1) by directly binding to ASK1, thereby decreasing tumor necrosis factor receptor-associated factor 6 (TRAF6), K63 ubiquitin and the phosphorylation of p38/JNK1 instead of ERK1. The present study documents a novel role of DUSP9 in hepatic I/R injury and implies the potential of targeting the DUSP9/ASK1 axis towards mitogen-activated protein kinase and TRAF6/inhibitor of κB kinase pathways.
Collapse
Affiliation(s)
- Zhongtang Li
- College of Basic MedicineChongqing Medical UniversityChongqing400016China
| | - Zuotian Huang
- Department of Hepatobiliary Pancreatic Tumor CenterChongqing University Cancer HospitalChongqing400030China
| | - Yunhai Luo
- The First Affiliated Hospital of Chongqing Medical UniversityChongqing400016
| | - Hang Yang
- The First Affiliated Hospital of Chongqing Medical UniversityChongqing400016
| | - Mei Yang
- College of Basic MedicineChongqing Medical UniversityChongqing400016China
| |
Collapse
|
31
|
Zhao Y, Zhang J, Lu H, Mao Y, Qin J, Wang Y, Wang X, Dai Z, Wang X, Yang Z, Hou L. CARDIOPULMONARY BYPASS-DERIVED PLASMA EXOSOMAL HMGB1 CONTRIBUTES TO ALVEOLAR EPITHELIAL CELL NECROPTOSIS VIA mtDNA/CGAS/STING PATHWAY. Shock 2022; 58:534-541. [PMID: 36516451 DOI: 10.1097/shk.0000000000002006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ABSTRACT Our previous study confirmed that cardiopulmonary bypass (CPB) leads to acute lung injury (ALI) via inducing high-mobility group box 1 (HMGB1) release. Recent research showed that HMGB1 promotes pulmonary injury mainly via exosomes transport. Currently, alveolar epithelial cell (AEC) necroptosis has been demonstrated to be involved in ALI. However, it is unknown whether exosomal inflammatory cytokine HMGB1 promotes ALI by inducing AEC necroptosis, and its underlying mechanisms remain elusive. Here, a prospective cohort study was carried out, in which plasma samples from 21 CPB patients were isolated at four specific time points: pre-CPB, 2, 12, and 24 h after initiation of CPB. Plasma exosomes were extracted via ultra-high-speed centrifugation and cocultured with AEC cell line-A549 cells at increasing concentrations of 50, 100, and 150 μg/mL. Then, HMGB1 antagonist-Box A and mtDNA deficiency ethidium bromide (EtBr) were applied to explore the underlying role of exosomal HMGB1 and cytoplasm mitochondrial DNA in AEC. Western blot analysis showed that plasma exosomal HMGB1 expression gradually increased and peaked at 24 h after CPB. Twenty-four-hour treatment of CPB-derived exosomes at 150 μg/mL for 24 h could induce necroptosis by promoting mitochondrial fission and further elevating cytoplasm mtDNA levels in A549 cells, which was successfully blocked by Box A or EtBr. Most importantly, EtBr significantly inhibited cytoplasm mtDNA downstream guanosine monophosphate (GMP)-AMP synthase (cGAS)/stimulator of interferon gene (STING) signal pathway. Collectively, these data demonstrate that CPB-derived plasma exosomal HMGB1 contributes to AEC necroptosis through the mtDNA/cGAS/STING pathway.
Collapse
Affiliation(s)
- Yupeng Zhao
- Department of Anesthesiology and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinyuan Zhang
- Department of Anesthesiology and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huihong Lu
- Department of Anesthesiology and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yiliang Mao
- Department of Anesthesiology and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiawen Qin
- Department of Anesthesiology and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yinglin Wang
- Department of Anesthesiology and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuebin Wang
- Department of Anesthesiology and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhiguang Dai
- Department of Anesthesiology, Shanghai East Hospital Ji'an Hospital, Ji'an City, Jiangxi Province, China
| | - Xiangrui Wang
- Department of Anesthesiology and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongwei Yang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | | |
Collapse
|
32
|
Zhao J, Chen XD, Yan ZZ, Huang WF, Liu KX, Li C. Gut-Derived Exosomes Induce Liver Injury After Intestinal Ischemia/Reperfusion by Promoting Hepatic Macrophage Polarization. Inflammation 2022; 45:2325-2338. [PMID: 35701685 DOI: 10.1007/s10753-022-01695-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/22/2022] [Accepted: 05/31/2022] [Indexed: 12/17/2022]
Abstract
Liver injury induced by intestinal ischemia/reperfusion (I/R) is accompanied by the polarization of Kupffer cells, which are specialized macrophages located in the liver. However, the causes of hepatic macrophage polarization after intestinal I/R remain unknown. This study investigated whether gut-derived exosomes contribute to the pathogenesis of liver injury triggered by intestinal I/R in a murine model and explored the underlying mechanisms. Intestinal I/R models were established by temporally clamping the superior mesenteric arteries of mice. Exosomes were isolated from the intestinal tissue of mice that underwent intestinal I/R or sham surgery according to a centrifugation-based protocol. Exosomes were co-cultured with RAW 264.7 macrophages or injected intravenously in mice. Liposomal clodronate was administered intraperitoneally to deplete the macrophages. Macrophage polarization was determined by flow cytometry, immunohistochemistry, and quantitative polymerase chain reaction. Liver injury was assessed by histological morphology and increased serum aspartate aminotransferase and alanine aminotransferase levels. Exosomes from mice intestines subjected to I/R (IR-Exo) promoted macrophage activation in vitro. Intravenous injection of IR-Exo caused hepatic M1 macrophage polarization and led to liver injury in mice. Depleting macrophages ameliorated liver injury caused by intestinal I/R or the injection of IR-Exo. Furthermore, inhibiting exosome release improved intestinal injury, liver function, and survival rates of mice subjected to intestinal I/R. Our study provides evidence that gut-derived exosomes induce liver injury after intestinal I/R by promoting hepatic M1 macrophage polarization. Inhibition of exosome secretion could be a therapeutic target for preventing hepatic impairment after intestinal I/R.
Collapse
Affiliation(s)
- Jin Zhao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Ave N, Guangzhou, 510515, China
| | - Xiao-Dong Chen
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Ave N, Guangzhou, 510515, China
| | - Zheng-Zheng Yan
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Ave N, Guangzhou, 510515, China
| | - Wen-Fang Huang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Ave N, Guangzhou, 510515, China
| | - Ke-Xuan Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Ave N, Guangzhou, 510515, China.
| | - Cai Li
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Ave N, Guangzhou, 510515, China.
| |
Collapse
|
33
|
Song Y, Zhang J, Fang L, Liu W. Prognostic necroptosis-related gene signature aids immunotherapy in lung adenocarcinoma. Front Genet 2022; 13:1027741. [PMID: 36506314 PMCID: PMC9732465 DOI: 10.3389/fgene.2022.1027741] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022] Open
Abstract
Background: Necroptosis is a phenomenon of cellular necrosis resulting from cell membrane rupture by the corresponding activation of Receptor Interacting Protein Kinase 3 (RIPK3) and Mixed Lineage Kinase domain-Like protein (MLKL) under programmed regulation. It is reported that necroptosis is closely related to the development of tumors, but the prognostic role and biological function of necroptosis in lung adenocarcinoma (LUAD), the most important cause of cancer-related deaths, is still obscure. Methods: In this study, we constructed a prognostic Necroptosis-related gene signature based on the RNA transcription data of LUAD patients from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases as well as the corresponding clinical information. Kaplan-Meier analysis, receiver operating characteristic (ROC), and Cox regression were made to validate and evaluate the model. We analyzed the immune landscape in LUAD and the relationship between the signature and immunotherapy regimens. Results: Five genes (RIPK3, MLKL, TLR2, TNFRSF1A, and ALDH2) were used to construct the prognostic signature, and patients were divided into high and low-risk groups in line with the risk score. Cox regression showed that risk score was an independent prognostic factor. Nomogram was created for predicting the survival rate of LUAD patients. Patients in high and low-risk groups have different tumor purity, tumor immunogenicity, and different sensitivity to common antitumor drugs. Conclusion: Our results highlight the association of necroptosis with LUAD and its potential use in guiding immunotherapy.
Collapse
Affiliation(s)
- Yuqi Song
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, China
| | - Jinming Zhang
- First Hospital of Jilin University, Changchun, China
| | - Linan Fang
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, China,*Correspondence: Linan Fang, ; Wei Liu,
| | - Wei Liu
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, China,*Correspondence: Linan Fang, ; Wei Liu,
| |
Collapse
|
34
|
Zhou Z, Pan X, Li L. Crosstalk between liver macrophages and gut microbiota: An important component of inflammation-associated liver diseases. Front Cell Dev Biol 2022; 10:1070208. [PMID: 36483677 PMCID: PMC9723159 DOI: 10.3389/fcell.2022.1070208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/10/2022] [Indexed: 08/30/2023] Open
Abstract
Hepatic macrophages have been recognized as primary sensors and responders in liver inflammation. By processing host or exogenous biochemical signals, including microbial components and metabolites, through the gut-liver axis, hepatic macrophages can both trigger or regulate inflammatory responses. Crosstalk between hepatic macrophages and gut microbiota is an important component of liver inflammation and related liver diseases, such as acute liver injury (ALI), alcoholic liver disease (ALD), and nonalcoholic fatty liver disease (NAFLD). This review summarizes recent advances in knowledge related to the crosstalk between hepatic macrophages and gut microbiota, including the therapeutic potential of targeting hepatic macrophages as a component of gut microecology in inflammation-associated liver diseases.
Collapse
Affiliation(s)
| | | | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
35
|
Yoon JS, Lee CW. Protein phosphatases regulate the liver microenvironment in the development of hepatocellular carcinoma. Exp Mol Med 2022; 54:1799-1813. [PMID: 36380016 PMCID: PMC9722691 DOI: 10.1038/s12276-022-00883-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The liver is a complicated heterogeneous organ composed of different cells. Parenchymal cells called hepatocytes and various nonparenchymal cells, including immune cells and stromal cells, are distributed in liver lobules with hepatic architecture. They interact with each other to compose the liver microenvironment and determine its characteristics. Although the liver microenvironment maintains liver homeostasis and function under healthy conditions, it also shows proinflammatory and profibrogenic characteristics that can induce the progression of hepatitis and hepatic fibrosis, eventually changing to a protumoral microenvironment that contributes to the development of hepatocellular carcinoma (HCC). According to recent studies, phosphatases are involved in liver diseases and HCC development by regulating protein phosphorylation in intracellular signaling pathways and changing the activities and characteristics of liver cells. Therefore, this review aims to highlight the importance of protein phosphatases in HCC development and in the regulation of the cellular components in the liver microenvironment and to show their significance as therapeutic targets.
Collapse
Affiliation(s)
- Joon-Sup Yoon
- grid.264381.a0000 0001 2181 989XDepartment of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419 Republic of Korea
| | - Chang-Woo Lee
- grid.264381.a0000 0001 2181 989XDepartment of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419 Republic of Korea ,grid.264381.a0000 0001 2181 989XDepartment of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351 Republic of Korea
| |
Collapse
|
36
|
Luo Y, Mo D, Guo H, Ye C, Chen B, Zhu H, Deng C, Deng Q, Guo C, Qiu L. NF-κB inactivation attenuates the M1 macrophage polarization in experimental necrotizing enterocolitis by glutaredoxin-1 deficiency. Cell Biol Int 2022; 46:1886-1899. [PMID: 35870170 DOI: 10.1002/cbin.11861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/28/2022] [Accepted: 07/10/2022] [Indexed: 01/20/2023]
Abstract
The pathogenesis of necrotizing enterocolitis (NEC) is severe inflammatory injury in preterm infants, which resulted from macrophage polarization. Nuclear factor-κB (NF-κB) is implicated to be involved in macrophage polarization. We here evaluated the essential role of NF-κB in macrophage polarization in NEC in human samples from neonates with NEC and the mouse experimental NEC model. Enhanced intestinal macrophage (IM) infiltration was presented in human neonates with NEC, the majority of which were M1 macrophages. Meanwhile, NF-κB was activated in the IMs in human NEC samples. NF-κB inhibition by BAY promoted the M1 to M2 macrophage polarization. Furthermore, glutaredoxin-1 (Grx1) deficiency promoted M2 polarization via NF-κB inactivation from the lipopolysaccharide-induced proinflammatory macrophages. The IMs isolated from Grx1- / - mice presented with decreases in total numbers and less macrophage differentiation. Grx1- / - derived IM were effective in the increased survival in experimental NEC through inflammation blocking. Our study provides evidence that NF-κB inactivation by Grx1 depletion contributed to the alleviation of NEC via inhibiting M1 macrophage polarization. The modulation to alternative macrophages in the intestines may provide a promising benefits for NEC treatment.
Collapse
Affiliation(s)
- Yang Luo
- Department of General and Neonatal Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of General and Neonatal Surgery, Women's and Children's Hospital of Chongqing Medical University, Chongqing, China.,Division of gastrointestinal diseases, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Medical University, Chongqing, China
| | - Dan Mo
- Division of gastrointestinal diseases, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Medical University, Chongqing, China.,Department of Pediatrics, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Hongjie Guo
- Department of General and Neonatal Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China.,Division of gastrointestinal diseases, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Medical University, Chongqing, China
| | - Cuilian Ye
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Bailin Chen
- Department of General and Neonatal Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China.,Division of gastrointestinal diseases, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Medical University, Chongqing, China
| | - Hai Zhu
- Department of General and Neonatal Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China.,Division of gastrointestinal diseases, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Medical University, Chongqing, China
| | - Chun Deng
- Division of gastrointestinal diseases, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Medical University, Chongqing, China.,Department of Pediatrics, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Qin Deng
- Department of General and Neonatal Surgery, Women's and Children's Hospital of Chongqing Medical University, Chongqing, China.,Division of gastrointestinal diseases, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Medical University, Chongqing, China
| | - Chunbao Guo
- Department of General and Neonatal Surgery, Women's and Children's Hospital of Chongqing Medical University, Chongqing, China.,Division of gastrointestinal diseases, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Medical University, Chongqing, China
| | - Lin Qiu
- Department of General and Neonatal Surgery, Women's and Children's Hospital of Chongqing Medical University, Chongqing, China.,Division of gastrointestinal diseases, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Medical University, Chongqing, China.,Department of Burn, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
37
|
Chang Z, Zhang Y, Lin M, Wen S, Lai H, Zhan Y, Zhu X, Huang Z, Zhang X, Liu Z. Improvement of gut-vascular barrier by terlipressin reduces bacterial translocation and remote organ injuries in gut-derived sepsis. Front Pharmacol 2022; 13:1019109. [PMID: 36278213 PMCID: PMC9585222 DOI: 10.3389/fphar.2022.1019109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/22/2022] [Indexed: 11/21/2022] Open
Abstract
Gut-vascular barrier (GVB) serves as the last barrier to limit the migration of intestinal toxins into the blood circulation. The efficacy of terlipressin (a vasopressin V1 receptor agonist) in reducing GVB and multiple organ damage in gut-derived sepsis is unknown. In this study, we hypothesized that, besides other intestinal barriers, GVB play a key role in gut-derived sepsis and terlipressin improve GVB damage and then reduce bacterial translocation and organ injuries. In vivo, a cecal ligation and puncture mouse model was established. The mice were subjected to examine the damage of GVB determined by intestinal plasmalemma vesicle-associated protein-1(PV-1) and vascular endothelial-cadherin. And the intestinal permeability was assessed by translocation of intestinal bacteria and macromolecules. In vitro, transendothelial electrical resistance (TER) during interleukin (IL)-1β stimulation was measured on endothelial cells with or without small interfering RNA targeting β-catenin (si β-catenin). Terlipressin significantly improved GVB damage and reduced translocation of intestinal macromolecules and bacteria by activating PI3K signaling. Of note, intestinal PV-1 expression was significantly correlated with translocation of macromolecules, and dramatic increase of macromolecules was observed in intestinal tissues whereas fewer macromolecules and bacteria were observed in blood, liver and lung following terlipressin treatment. In vitro, terlipressin restored TER during IL-1β stimulation and si β-catenin transfection blocked the changes delivered by terlipressin. Collectively, terlipressin alleviated GVB damage and subsequent bacterial translocation via blood vessels after sepsis challenge, resulting in reduced distant organ injuries and the responsible mechanisms may involve the activation of PI3K/β-catenin pathway.
Collapse
Affiliation(s)
- Zenan Chang
- Guangdong Clinical Research Center for Critical Care Medicine, Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Yinan Zhang
- Department of Anaesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming Lin
- Department of Anaesthesiology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shihong Wen
- Department of Anaesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanjin Lai
- Department of Anaesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yaqing Zhan
- Department of Anaesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiufen Zhu
- Guangdong Clinical Research Center for Critical Care Medicine, Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhikun Huang
- Guangdong Clinical Research Center for Critical Care Medicine, Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuyu Zhang
- Department of Anaesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xuyu Zhang, ; Zimeng Liu,
| | - Zimeng Liu
- Guangdong Clinical Research Center for Critical Care Medicine, Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xuyu Zhang, ; Zimeng Liu,
| |
Collapse
|
38
|
Chen L, Zhang X, Ou Y, Liu M, Yu D, Song Z, Niu L, Zhang L, Shi J. Advances in RIPK1 kinase inhibitors. Front Pharmacol 2022; 13:976435. [PMID: 36249746 PMCID: PMC9554302 DOI: 10.3389/fphar.2022.976435] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 01/27/2023] Open
Abstract
Programmed necrosis is a new modulated cell death mode with necrotizing morphological characteristics. Receptor interacting protein 1 (RIPK1) is a critical mediator of the programmed necrosis pathway that is involved in stroke, myocardial infarction, fatal systemic inflammatory response syndrome, Alzheimer's disease, and malignancy. At present, the reported inhibitors are divided into four categories. The first category is the type I ATP-competitive kinase inhibitors that targets the area occupied by the ATP adenylate ring; The second category is type Ⅱ ATP competitive kinase inhibitors targeting the DLG-out conformation of RIPK1; The third category is type Ⅲ kinase inhibitors that compete for binding to allosteric sites near ATP pockets; The last category is others. This paper reviews the structure, biological function, and recent research progress of receptor interaction protein-1 kinase inhibitors.
Collapse
Affiliation(s)
- Lu Chen
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoqin Zhang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yaqing Ou
- Department of Pharmacy, The Affiliated Chengdu 363 Hospital of Southwest Medical University, Chengdu, Sichuan, China
| | - Maoyu Liu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dongke Yu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhiheng Song
- Suzhou University of Science and Technology, Suzhou, Jiangsu, China
| | - Lihong Niu
- Institute of Laboratory Animal Sciences, Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China,*Correspondence: Lihong Niu, ; Lijuan Zhang, ; Jianyou Shi,
| | - Lijuan Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,*Correspondence: Lihong Niu, ; Lijuan Zhang, ; Jianyou Shi,
| | - Jianyou Shi
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,*Correspondence: Lihong Niu, ; Lijuan Zhang, ; Jianyou Shi,
| |
Collapse
|
39
|
Afolabi OA, Akhigbe TM, Akhigbe RE, Alabi BA, Gbolagun OT, Taiwo ME, Fakeye OO, Yusuf EO. Methanolic Moringa oleifera leaf extract protects against epithelial barrier damage and enteric bacterial translocation in intestinal I/R: Possible role of caspase 3. Front Pharmacol 2022; 13:989023. [PMID: 36210817 PMCID: PMC9546449 DOI: 10.3389/fphar.2022.989023] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Activation of caspase 3 has been implicated in the pathogenesis of I/R injury in various organs, but there is a paucity of data on its role in IIRI. Also, no reports were found on the beneficial role of methanolic Moringa oleifera leaf extract (MMOLE) in IIRI. This study investigated the involvement of caspase 3 in IIRI, and the impact of MMOLE in IIRI. Methods: Male Wistar rats were randomized into five groups; the sham-operated group that was sham-operated and received 0.5 ml of distilled water for 7 days prior to sham surgery, and the IIRI, febuxostat (FEB) +IIRI, low dose MMOLE (LDMO)+IIRI, and high dose MMOLE (HDMO)+IIRI groups that underwent I/R and also received 0.5 ml of distilled water, 10 mg/kg of febuxostat, 200 mg/kg of MMOLE, and 400 mg/kg of MMOLE respectively for 7 days prior to I/R. Markers of hepatic function, oxidative stress, and inflammation as well as enteric bacterial translocation and histoarchitecture integrity of intestinal and hepatic tissues were evaluated. The bioactive components of MMOLE were also determined by GC-MS. Results: As revealed by GC-MS, the active bioactive components of MMOLE were thiosemicarbazone, hydrazine, 1,3-dioxolane, octanoic acid, 1,3-benzenediamine, 9-octadecenoic acid, oleic acid, nonadecanoic acid, 3-undecanone, phosphonic acid, and cyclopentanecarboxylic acid. MMOLE alleviated IIRI-induced rise in intestinal and hepatic injury markers, malondialdehyde, TNF-α, IL-6, and myeloperoxidase activities. MMOLE improved IIRI-induced suppression of reduced glutathione, thiol and non-thiol proteins, and superoxide dismutase, catalase and glutathione peroxidase activities. These were associated with suppression of IIRI-induced caspase 3 activity and bacterial translocation. Histopathological evaluation revealed that MMOLE attenuated IIRI-induced alterations in intestinal and hepatic histoarchitecture integrity. MMOLE also militated against increased absolute and relative intestinal and hepatic weight, intestinal and hepatic injuries, epithelial mucosal barrier dysfunction, and enteric bacterial translocation associated with IIRI by downregulating oxidative stress-mediated activation of caspase 3. Conclusion: IIRI is associated with a rise in caspase 3 activity. Also, MMOLE confers protection against IIRI, possibly due to its constituent bioactive molecules, especially hydrazine, 9-octadecenoic acid, 1,3-dioxolane, oleic acid, and nonadecanoic acid.
Collapse
Affiliation(s)
- O A. Afolabi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - T M. Akhigbe
- Department of Agronomy, Osun State University, Osogbo, Osun, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
| | - R E. Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
| | - B A. Alabi
- Department of Pharmacology, Bowen University, Ogbomoso, Nigeria
| | - O T. Gbolagun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - M E. Taiwo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - O O. Fakeye
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - E O. Yusuf
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| |
Collapse
|
40
|
Dai D, Dai F, Chen J, Jin M, Li M, Hu D, Liu Z, Zhang Z, Xu F, Chen WH. Integrated multi-omics reveal important roles of gut contents in intestinal ischemia–reperfusion induced injuries in rats. Commun Biol 2022; 5:938. [PMID: 36085351 PMCID: PMC9463172 DOI: 10.1038/s42003-022-03887-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/08/2022] [Indexed: 12/13/2022] Open
Abstract
Intestinal ischemia–reperfusion (IIR) is a life-threatening clinical event with damaging signals whose origin and contents are unclear. Here we observe that IIR significantly affect the metabolic profiles of most organs by unbiased organ-wide metabolic analysis of gut contents, blood, and fifteen organs in rats (n = 29). Remarkably, correlations between gut content metabolic profiles and those of other organs are the most significant. Gut contents are also the only ones to show dynamic correlations during IIR. Additionally, according to targeted metabolomics analysis, several neurotransmitters are considerably altered in the gut during IIR, and displayed noteworthy correlations with remote organs. Likewise, metagenomics analysis (n = 35) confirm the effects of IIR on gut microbiota, and identify key species fundamental to the changes in gut metabolites, particularly neurotransmitters. Our multi-omics results establish key roles of gut contents in IIR induced remote injury and provide clues for future exploration. Die Dai et al. evaluate changes in the metabolomic and gut microbiome in response to experimental intestinal ischemia reperfusion (IIR) injury in rats. Their results provide further insight into how gut contents contribute to widespread injury in IIR patients.
Collapse
|
41
|
Liu X, Lu F, Chen X. Examination of the role of necroptotic damage-associated molecular patterns in tissue fibrosis. Front Immunol 2022; 13:886374. [PMID: 36110858 PMCID: PMC9468929 DOI: 10.3389/fimmu.2022.886374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022] Open
Abstract
Fibrosis is defined as the abnormal and excessive deposition of extracellular matrix (ECM) components, which leads to tissue or organ dysfunction and failure. However, the pathological mechanisms underlying fibrosis remain unclear. The inflammatory response induced by tissue injury is closely associated with tissue fibrosis. Recently, an increasing number of studies have linked necroptosis to inflammation and fibrosis. Necroptosis is a type of preprogrammed death caused by death receptors, interferons, Toll-like receptors, intracellular RNA and DNA sensors, and other mediators. These activate receptor-interacting protein kinase (RIPK) 1, which recruits and phosphorylates RIPK3. RIPK3 then phosphorylates a mixed lineage kinase domain-like protein and causes its oligomerization, leading to rapid plasma membrane permeabilization, the release of cellular contents, and exposure of damage-associated molecular patterns (DAMPs). DAMPs, as inflammatory mediators, are involved in the loss of balance between extensive inflammation and tissue regeneration, leading to remodeling, the hallmark of fibrosis. In this review, we discuss the role of necroptotic DAMPs in tissue fibrosis and highlight the inflammatory responses induced by DAMPs in tissue ECM remodeling. By summarizing the existing literature on this topic, we underscore the gaps in the current research, providing a framework for future investigations into the relationship among necroptosis, DAMPs, and fibrosis, as well as a reference for later transformation into clinical treatment.
Collapse
Affiliation(s)
| | - Feng Lu
- *Correspondence: Feng Lu, ; Xihang Chen,
| | | |
Collapse
|
42
|
Phenolic Acids from Fructus Chebulae Immaturus Alleviate Intestinal Ischemia-Reperfusion Injury in Mice through the PPARα/NF-κB Pathway. Molecules 2022; 27:molecules27165227. [PMID: 36014464 PMCID: PMC9415796 DOI: 10.3390/molecules27165227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 12/13/2022] Open
Abstract
Intestinal ischemia/reperfusion (II/R) injury is a common life-threatening complication with high morbidity and mortality. Chebulae Fructus Immaturus, the unripe fruit of Terminalia chebula Retz., also known as “Xiqingguo” or “Tibet Olive” in China, has been widely used in traditional Tibetan medicine throughout history. The phenolic acids’ extract of Chebulae Fructus Immaturus (XQG for short) has exhibited strong antioxidative, anti-inflammation, anti-apoptosis, and antibacterial activities. However, whether XQG can effectively ameliorate II/R injuries remains to be clarified. Our results showed that XQG could effectively alleviate II/R-induced intestinal morphological damage and intestinal barrier injury by decreasing the oxidative stress, inflammatory response, and cell death. Transcriptomic analysis further revealed that the main action mechanism of XQG protecting against II/R injury was involved in activating PPARα and inhibiting the NF-κB-signaling pathway. Our study suggests the potential usage of XQG as a new candidate to alleviate II/R injury.
Collapse
|
43
|
Wan Y, Dong P, Zhu X, Lei Y, Shen J, Liu W, Liu K, Zhang X. Bibliometric and visual analysis of intestinal ischemia reperfusion from 2004 to 2022. Front Med (Lausanne) 2022; 9:963104. [PMID: 36052333 PMCID: PMC9426633 DOI: 10.3389/fmed.2022.963104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background Intestinal ischemia/reperfusion (I/R) injury is a common tissue-organ damage occurring in surgical practice. This study aims to comprehensively review the collaboration and impact of countries, institutions, authors, subject areas, journals, keywords, and critical literature on intestinal I/R injury from a bibliometric perspective, and to assess the evolution of clustering of knowledge structures and identify hot trends and emerging topics. Methods Articles and reviews related to intestinal I/R were retrieved through subject search from Web of Science Core Collection. Bibliometric analyses were conducted on Excel 365, CiteSpace, VOSviewer, and Bibliometrix (R-Tool of R-Studio). Results A total of 1069 articles and reviews were included from 2004 to 2022. The number of articles on intestinal I/R injury gradually plateaued, but the number of citations increased. These publications were mainly from 985 institutions in 46 countries, led by China and the United States. Liu Kx published the most papers, while Chiu Cj had the largest number of co-citations. Analysis of the journals with the most outputs showed that most journals focused on surgical sciences, cell biology, and immunology. Macroscopic sketch and microscopic characterization of the entire knowledge domain were achieved through co-citation analysis. The roles of cell death, exosomes, intestinal flora, and anesthetics in intestinal I/R injury are the current and developing research focuses. The keywords "dexmedetomidine", "proliferation", and "ferroptosis" may also become new trends and focus of future research. Conclusion This study comprehensively reviews the research on intestinal I/R injury using bibliometric and visualization methods, and will help scholars better understand the dynamic evolution of intestinal I/R injury and provide directions for future research.
Collapse
Affiliation(s)
- Yantong Wan
- College of Anesthesiology, Southern Medical University, Guangzhou, China
| | - Peng Dong
- College of Anesthesiology, Southern Medical University, Guangzhou, China
| | - Xiaobing Zhu
- Department of Anesthesiology, Hospital of Traditional Chinese Medicine of Zhongshan City, Zhongshan, China
| | - Yuqiong Lei
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Junyi Shen
- The Second Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Weifeng Liu
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Kexuan Liu
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Xiyang Zhang
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
44
|
Dai J, Fu Y. Identification of necroptosis‐related gene signature and characterization of tumour microenvironment infiltration in non‐small‐cell lung cancer. J Cell Mol Med 2022; 26:4698-4709. [PMID: 35871768 PMCID: PMC9443942 DOI: 10.1111/jcmm.17494] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/26/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022] Open
Abstract
Necroptosis is a programmed necrosis in a caspase‐independent fashion. The role of necroptosis‐related genes (NRGs) in lung cancer remains unknow. Herein, we classified TCGA‐LUAD cohort into two necroptosis‐related subtypes (C1 and C2) by consensus clustering analysis. The result showed that subtype C1 had a favourable prognosis and higher infiltration levels of immune cells. Moreover, subtype C1 was more activated in immune‐associated pathways. Then, we established an NRG prognosis model (NRG score) composed of six NRGs (RIPK3, MLKL, TLR2, TLR4, TNFRSF1A, NDRG2) and divided the cohort into low‐ and high‐risk group. We found that the NRG score was associated with prognosis, tumour immune microenvironment and tumour mutation burden. We also constructed an accurate nomogram model to improve the clinical applicability of NRG score. The result indicated that NRG score may be an independent prognostic marker for lung cancer patients. Taken together, we established a prognosis model that may deepen the understanding of NRGs in lung cancer and provide a basis for developing more effective immunotherapy strategies.
Collapse
Affiliation(s)
- Juji Dai
- Department of Colorectal and Anal Surgery the First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Yangyang Fu
- Division of Pulmonary Medicine The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung Wenzhou China
| |
Collapse
|
45
|
Identification of a Necroptosis-Related Prognostic Signature and Associated Regulatory Axis in Liver Hepatocellular Carcinoma. DISEASE MARKERS 2022; 2022:3968303. [PMID: 35855852 PMCID: PMC9288334 DOI: 10.1155/2022/3968303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/09/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022]
Abstract
Background Liver hepatocellular carcinoma (LIHC) ranks the sixth in global cancer incidence with poor prognosis. Necroptosis is a kind of regulated cell death and has been proved to be of significance in cancer occurrence and progression. However, few studies comprehensively discuss the potential applications of necroptosis-related genes (NRGs) in the prognostic evaluation and immunotherapy of LIHC. Methods The prognostic signature in the present study was built up using LASSO Cox regression analysis. Integrated bioinformatics tools were utilized to explore the potential mRNA-miRNA-lncRNA regulatory axis in LIHC. Furthermore, qRT-PCR method was used to verify the EZH2 expression in LIHC tissues. Furthermore, prognostic performance of EZH2 in LIHC was assessed by Kaplan-Meier method. Results A total of 14 NRGs were differentially expressed in LIHC tissues. The overall genetic mutation status of these NRGs in LIHC was also shown. NRGs were significantly correlated with programmed necrotic cell death, as well as Toll-like receptor signaling pathway in GO and KEGG pathway analysis. Kaplan-Meier analysis revealed that ALDH2, EZH2, NDRG2, PGAM5, RIPK1, and TRAF2 were related to the prognosis. A prognostic signature was constructed by these six genes and showed medium to high accuracy in the prediction of LIHC patients' prognosis. Further analysis revealed that NRGs were correlated with pathological stage, immune infiltration, and drug resistance in LIHC. Moreover, we identified a potential lncRNA TUG1/miR-26b-5p/EZH2 regulatory axis in LIHC, which might affect the progression of LIHC. qRT-PCR suggested a higher mRNA level of EZH2 in LIHC tissues. And a poor overall survival rate was detected in LIHC patients with high EZH2 expression. Moreover, EZH2 expression and cancer stage were identified as the independent risk factors affecting LIHC patients' prognosis. Conclusion In the present study, we conducted comprehensive bioinformatic analyses and built up a necroptosis-related prognostic signature containing four genes (ALDH2, EZH2, NDRG2, and PGAM5) for patients with LIHC, and this prognostic signature showed a medium to high predictive accuracy. And our study also identified a lncRNA TUG1/miR-26b-5p/EZH2 regulatory axis, which might be of great significance in LIHC progression. In addition, based on the data from our center, the result of qRT-PCR and survival analysis showed a higher mRNA level of EZH2 in LIHC tissues and an unfavorable prognosis in high EZH2 expression group, respectively.
Collapse
|
46
|
Jin X, Wang J. A Novel Prognostic Signature Associated with Immunotherapeutic Response for Hepatocellular Carcinoma. Front Surg 2022; 9:905897. [PMID: 35865037 PMCID: PMC9294469 DOI: 10.3389/fsurg.2022.905897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background Although accumulating literature has validated that necroptosis plays a prominent role in the tumorigenesis and progression of various malignant cancer, its mechanism in hepatocellular carcinoma (HCC) is poorly understood. Therefore, in the present study, we want to study the impact of necroptosis-related genes on the prognosis and microenvironment-infiltrating immunocytes and the effect of immunotherapy on patients with HCC. Methods The necroptosis-related genes were obtained by reviewing the available published literature; we then evaluated the effects of the prognostic genes on the relative abundance of microenvironment infiltrated immunocytes. After construction of the Risk Score Signature, we evaluated the prognostic value and the effects on immune cells infiltrating the tumor microenvironment (TME). Combining the available data on immunotherapy, we also investigated the impact on anti-PD-L1-based immunotherapy. Results A comprehensive study of the published literature confirmed that 22 genes are related to necroptosis. Among them, 10 genes were related to the prognosis of the HCC cohort in The Cancer Genome Atlas (TCGA) and had a multifaceted influence on TME. We obtained the Risk Score Signature by Lasso regression. Furthermore, we also corroborated the correlation between the Risk Score Signature and tumor-infiltrating immune cells in the TME. Next, in the study of the correlation between the Signature and immunotherapy, we found that the Signature was significantly correlated with the reactivity of anti-PD-L1 immunotherapy. We also confirmed that the Risk Score Signature is a reliable and efficient independent prognostic marker of HCC. Conclusion We established a novel and effective prognostic model for patients with HCC, which is markedly related to the TME and immune infiltration in HCC and can also predict immunotherapeutic response and prognosis.
Collapse
Affiliation(s)
- Xinmin Jin
- Department of Clinical Medical, Qingdao University Medical College, QingdaoChina
| | - Jinhuan Wang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, QingdaoChina
| |
Collapse
|
47
|
Wang Y, Fan Z, Yang M, Wang Y, Cao J, Khan A, Liu Y, Cheng G. Protective effects of E Se tea extracts against alcoholic fatty liver disease induced by high fat/alcohol diet: In vivo biological evaluation and molecular docking study. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154113. [PMID: 35490493 DOI: 10.1016/j.phymed.2022.154113] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/26/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND With the development of economy and increased workload, chronic a high-fat/alcohol diet intake may lead to alcoholic fatty liver disease (AFLD), which is considered as a crucial health problem worldwide. E Se tea is produced of the leaves and leaf buds of Malus toringoides (Rehd.) Hughes in Tibet and has human health benefits with anti-hyperglycemia, hypertension, and hyperlipidemia effects. PURPOSE The objective of this work was to investigate the protective effect of aqueous-ethanol and hot-water extracts of E Se tea against chronic high-fat/alcohol diet induced AFLD rats. METHODS Firstly, to determine the chemical profiling of E Se tea extracts, UHPLC-ESI-HRMS analysis was conducted. Secondly, Sprague-Dawley male rats were used to establish the AFLD animal model by feeding with high-fat/alcohol diet. The animals were treated with E Se tea extracts for 12 weeks. Serum parameters were determined, histologic sections were prepared, and activities of enzymes related to inflammatory response and lipid metabolism imbalance were analyzed. The underlying mechanisms of E Se tea extracts alleviating AFLD were analyzed by immunofluorescence staining and Western blotting analysis. Lastly, key targets of 11-MT against AFLD were verified through molecular docking. RESULTS In this study, seven main compounds were confirmed or tentatively identified in E Se tea extracts by UHPLC-ESI-HRMS. The results revealed that both the extracts could reverse histopathological steatotic alternation of the liver and reduced the activity of liver damage markers (ALT, AST). E Se tea extracts mitigated oxidative stress by inhibiting CYP2E1 protein and lipid peroxidation parameters (MDA), but enhancing the endogenous antioxidants (CAT, GSH, SOD). Moreover, E Se tea extracts ameliorated inflammation by restraining the activation of NF-κB, consequently releasing the expression of proinflammatory cytokines (TNF-α, IL-6, IL-1β, COX-2 and iNOS). Subsequently, E Se tea extracts reduced hepatocyte apoptosis by increasing capase-9, caspase-3 and Bax protein expression but decreasing Bcl-2 protein expression. Furthermore, E Se tea extracts improved metabolism imbalance by stimulating AMPK/SREBP1/FAS and PPAR-α/CPT1 signaling pathway by regulating lipid metabolism parameters (TC, TG, HDL-C, LHD-C). Furthermore, molecular docking results indicated that 7 chemical constituents of E Se tea extracts had strong docking affinity with 4 key target proteins (AMPK, PPAR-α, NF-кB and Caspase-9). CONCLUSION E Se tea ameliorated AFLD through ameliorating inflammatory response, apoptosis, and lipid metabolism imbalance.
Collapse
Affiliation(s)
- Yongpeng Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhifeng Fan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; College of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Meilian Yang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yudan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; College of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China; National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650500, China
| | - Jianxin Cao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Afsar Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
| | - Yaping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
48
|
Wang Z, Long R, Yang Z, Feng C. lncRNA HOTAIR Inhibition by Regulating HMGB1/ROS/NF- κB Signal Pathway Promotes the Recovery of Spinal Cord Function. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4955982. [PMID: 35799628 PMCID: PMC9256348 DOI: 10.1155/2022/4955982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/24/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022]
Abstract
Spinal cord ischemia-reperfusion injury (SCII) is one of the most serious complications of clinical aortic aneurysm and vascular malformation surgery. Long noncoding RNA (lncRNA) is involved in the progression of SCII, whereas long noncoding RNA HOX transcript antisense RNA (lncRNA HOTAIR) is unclear in SCII. This study is aimed at confirming the role and related mechanism of HOTAIR in SCII. Later on, a model of SCII was established by clamping the aortic arch for 14 minutes. RNA expression of HOTAIR was detected via qRT-PCR at 12 h, 24 h, 36 h, and 48 h after SCII. The Tarlov scoring system and TUNEL assay were used to evaluate neurological function and neuronal apoptosis. Oxidative stress factor levels were assessed according to the instructions of the kit. Inflammatory cytokines were assessed by ELISA. Western blot was used to detect levels of p65, p-p65, I-κBα, and p-I-κBα. We found HOTAIR was raised in SCII rats. si-HOTAIR was able to reverse SCII-induced oxidative stress in SCII rats. The HMGB1 expression was upregulated in SCII tissues and negatively correlated with HOTAIR. HMGB1 was able to partially reverse si-HOTAIR inhibition of oxidative stress, inflammatory injury, and neuronal cell apoptosis in SCII. In addition, the ROS/NF-κB signaling pathway is involved in HOTAIR/HMGB1 regulation of SCII. In a word, HOTAIR inhibition is able to inhibit oxidative stress, inflammatory injury, and neuronal apoptosis in SCII through downregulation of the high mobility group protein B1(HMGB1), which is achieved by inhibiting the ROS/NF-κB signaling pathway. The HOTAIR/HMGB1/ROS/NF-κB molecular pathway may be a new mechanism for the treatment of SCII.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Orthopaedics, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Zhejiang Hangzhou 311200, China
| | - Ruchao Long
- Department of Orthopaedics, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Zhejiang Hangzhou 311200, China
| | - Zhihua Yang
- Department of Orthopaedics, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Zhejiang Hangzhou 311200, China
| | - Chunzhi Feng
- Department of Orthopaedics, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Zhejiang Hangzhou 311200, China
| |
Collapse
|
49
|
Jin B, Li G, Zhou L, Fan Z. Mechanism Involved in Acute Liver Injury Induced by Intestinal Ischemia-Reperfusion. Front Pharmacol 2022; 13:924695. [PMID: 35694264 PMCID: PMC9185410 DOI: 10.3389/fphar.2022.924695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 12/28/2022] Open
Abstract
Intestinal ischemia-reperfusion (I/R) is a common pathophysiological process, which can occur in many conditions such as acute enteric ischemia, severe burns, small intestinal transplantation, etc,. Ischemia-reperfusion of the intestine is often accompanied by distal organ injury, especially liver injury. This paper outlined the signal pathways and cytokines involved in acute liver injury induced by intestinal I/R: the NF-κB Signaling Pathway, the P66shc Signaling Pathway, the HMGB1 Signaling Pathway, the Nrf2-ARE Signaling Pathway, the AMPK-SIRT-1 Signaling Pathway and other cytokines, providing new ideas for the prevention and treatment of liver injury caused by reperfusion after intestinal I/R.
Collapse
Affiliation(s)
- Binghui Jin
- Department of General Surgery, The Third People’s Hospital of Dalian, Dalian Medical University, Dalian, China
- Department of Central Laboratory, The Third People’s Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Guangyao Li
- Department of General Surgery, The Third People’s Hospital of Dalian, Dalian Medical University, Dalian, China
- Department of Central Laboratory, The Third People’s Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Lin Zhou
- Department of Outpatient, the NO. 967 Hospital of PLA Joint Logistics Support Force, Dalian Medical University, Dalian, China
| | - Zhe Fan
- Department of General Surgery, The Third People’s Hospital of Dalian, Dalian Medical University, Dalian, China
- Department of Central Laboratory, The Third People’s Hospital of Dalian, Dalian Medical University, Dalian, China
| |
Collapse
|
50
|
Jarabicová I, Horváth C, Veľasová E, Bies Piváčková L, Vetešková J, Klimas J, Křenek P, Adameová A. Analysis of necroptosis and its association with pyroptosis in organ damage in experimental pulmonary arterial hypertension. J Cell Mol Med 2022; 26:2633-2645. [PMID: 35393789 PMCID: PMC9077306 DOI: 10.1111/jcmm.17272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/11/2022] Open
Abstract
In this study, a role of cell loss due to necroptosis and its linkage with pyroptosis in organ damage under the conditions of pulmonary arterial hypertension (PAH) was examined. Monocrotaline (MCT) was used to induce PAH in Wistar rats, and depending on the severity of the disease progression, they were further divided into two subgroups: MCT group-sacrificed 4 weeks after MCT administration and ptMCT group-prematurely sacrificed due to rapid deterioration in vital functions (on Day 24,11 ± 0,7). The elevation of respiratory rate and right ventricular (RV) hypertrophy were more evident in ptMCT group, while the heart rate and cardiac haemodynamic stress markers were comparably higher in both diseased groups. Detailed immunoblotting analysis revealed that the upregulation of pThr231 /Ser232 -RIP3 proceeded into necroptosis execution in the RVs, unlike in the lungs of both PAH stages. The elevated pulmonary pThr231 /Ser232 -RIP3 levels in both PAH subgroups were associated rather with GSDMD-mediated pyroptosis. On the contrary, other inflammasome forms, such as AIM2 and NLRC4, were higher in the RV, unlike in the lungs, of diseased groups. The PAH-induced increase in the plasma RIP3 levels was more pronounced in ptMCT group, and positively correlated with RV hypertrophy, but not with haemodynamic stress. Taken together, we indicated for the first time that pThr231 /Ser232 -RIP3 upregulation resulting in two different necrosis-like cell death modes might underlie the pathomechanisms of PAH and that the plasma RIP3 might serve as an additional diagnostic and prognostic marker of cardiac injury under these conditions.
Collapse
Affiliation(s)
- Izabela Jarabicová
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Csaba Horváth
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Eva Veľasová
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Lenka Bies Piváčková
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Jana Vetešková
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Ján Klimas
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Peter Křenek
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Adriana Adameová
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|