1
|
Cash E, Beck I, Harbison B, Albert C, Sephton SE. Evening cortisol levels are prognostic for progression-free survival in a prospective pilot study of head and neck cancer patients. Front Oncol 2024; 14:1436996. [PMID: 39634268 PMCID: PMC11614732 DOI: 10.3389/fonc.2024.1436996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/25/2024] [Indexed: 12/07/2024] Open
Abstract
INTRODUCTION Cortisol rhythm disruptions predict early mortality in renal, colorectal, lung, and metastatic breast cancer. In head and neck cancer (HNC), various cortisol indices are known to correlate with adverse psychological and biological (e.g., inflammatory) outcomes, but links to mortality have yet to be demonstrated. We hypothesize that the prognostic value of diurnal cortisol aberrations will hold in HNC. Prior work leads us to predict that flattened or elevated diurnal cortisol profiles will be associated with elevations of serum inflammatory and tumor-promoting cytokines in this population, and that these immune markers would themselves predict poor progression-free survival. METHOD We prospectively recruited a pilot sample of HNC patients (N=40) at a multidisciplinary HNC clinic. Most patients presented with late-stage oral/oropharyngeal cancer, were older than 50, male, and subsequently received combined-modality (surgery and/or radiotherapy with or without chemotherapy) treatment with curative intent. Saliva was collected twice daily for six days to assess diurnal slope, mean, waking, and evening cortisol levels. Serum was assayed for an exploratory panel of inflammatory and tumor-promoting cytokines. Two years post study-entry, disease progression and survivorship status were abstracted from medical records. Bivariate correlations, linear regressions, and Cox Proportional Hazards models tested hypotheses. RESULTS Elevations of evening cortisol and diurnal mean levels were each associated with shorter progression-free survival (evening: Hazard Ratio [HR]=1.848, 95% Confidence Interval [CI]=1.057-3.230, p=.031; diurnal mean: HR=2.662, 95% CI=1.115-6.355, p=.027). Bivariate correlations revealed that higher levels of the serum inflammatory marker interferon (IFN)-γ were linked with elevated evening (r=.405, p=.014) and mean (r=.459, p=.004) cortisol. Higher expression of IFN-γ also predicted poorer progression-free survival (HR=4.671, 95% CI=1.409-15.484, p=.012). DISCUSSION Elevated evening and diurnal mean cortisol were both prognostic; suggesting cortisol secretion is both dysregulated and elevated among patients who subsequently experienced accelerated disease progression. These exploratory data from 40 HNC patients mirror relationships between cortisol and survival identified among patients with numerous other tumor types. This pilot study highlights the need for research on effects of cortisol rhythm disruption among HNC patients. Future research in larger samples should also examine the role of inflammatory and tumor-promoting factors-both systemically and within the tumor microenvironment-as potential mediators of cortisol rhythm disruption.
Collapse
Affiliation(s)
- Elizabeth Cash
- Department of Otolaryngology–Head and Neck Surgery and Communicative Disorders, University of Louisville School of Medicine, Louisville, KY, United States
- University of Louisville Healthcare−Brown Cancer Center, Louisville, KY, United States
| | - Isak Beck
- Department of Otolaryngology–Head and Neck Surgery and Communicative Disorders, University of Louisville School of Medicine, Louisville, KY, United States
| | - Brooks Harbison
- Psychiatry and Behavioral Medicine, Medical College of Wisconsin, Madison, WI, United States
| | - Christy Albert
- Department of Otolaryngology–Head and Neck Surgery and Communicative Disorders, University of Louisville School of Medicine, Louisville, KY, United States
| | - Sandra E. Sephton
- Department of Psychology, Brigham Young University, Provo, UT, United States
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, United States
| |
Collapse
|
2
|
Ozbay MF. Commentary: Sodium levels and immunotherapy efficacy in mRCC patients with bone metastases: sub analysis of Meet-Uro 15 study. Front Immunol 2024; 15:1476215. [PMID: 39575259 PMCID: PMC11578991 DOI: 10.3389/fimmu.2024.1476215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024] Open
Affiliation(s)
- Mehmet Fatih Ozbay
- Department of Oncology, Kırşehir Training and Research Hospital, Kırşehir, Türkiye
| |
Collapse
|
3
|
Garrone O, Paccagnella M, Abbona A, Ruatta F, Vanella P, Denaro N, Tomasello G, Croce N, Barbin F, Rossino MG, La Porta CAM, Sapino A, Torri V, Albini A, Merlano MC. Moderate physical activity during neoadjuvant chemotherapy in breast cancer patients: effect on cancer-related inflammation and pathological complete response-the Neo-Runner study. ESMO Open 2024; 9:103665. [PMID: 39121813 PMCID: PMC11364046 DOI: 10.1016/j.esmoop.2024.103665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Physical activity (PA) reduces the risk of developing breast cancer (BC) and mortality rate in BC patients starting PA after diagnosis. Immunomodulation is considered responsible for these effects. However, limited data exist on the immunomodulation induced by moderate PA (mPA) during neoadjuvant chemotherapy (NACT). We have investigated the longitudinal change of cytokines during NACT alone or combined with mPA. MATERIALS AND METHODS Twenty-three cytokines were analyzed in BC patients at consecutive timepoints: at baseline (T0), before starting mPA (T1), before surgery (T2), and after surgery (T3). mPA consisted of 3-weekly brisk-walking sessions for 9-10 consecutive weeks. RESULTS Ninety-two patients were assessed: 21 patients refused mPA (untrained) and 71 agreed (trained). At T1, NACT induced significant up-regulation of interleukin (IL)-5, IL-6, IL-15, chemokine ligand (CCL)-2, interferon-γ, and C-X-C motif ligand (CXCL)-10 and reduction of expression of IL-13 and CCL-22. At T2, NACT and mPA induced up-regulation of IL-21, CCL-2, and tumor necrosis factor-α and reduction of expression of IL-8, IL-15, vascular endothelial growth factor, and soluble interleukin 6 receptor. Only CXCL-10 increased in untrained patients. A cytokine score (CS) was created to analyze, all together, the changes between T1 and T2. At T2 the CS decreased in trained and increased in untrained patients. We clustered the patients using cytokines and predictive factors and identified two clusters. The cluster A, encompassing 90% of trained patients, showed more pathological complete response (pCR) compared to the cluster B: 78% versus 22%, respectively. CONCLUSIONS mPA interacts with NACT inducing CS reduction in trained patients not observed in untrained patients, suggesting a reduction of inflammation, notwithstanding chemotherapy. This effect may contribute to the higher rate of pCR observed in the cluster A, including most trained patients.
Collapse
Affiliation(s)
- O Garrone
- Department of Medical Oncology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan.
| | - M Paccagnella
- Translational Oncology ARCO Foundation, Cuneo. https://twitter.com/matteo_babeuf
| | - A Abbona
- Translational Oncology ARCO Foundation, Cuneo. https://twitter.com/AbbonaAndr36863
| | - F Ruatta
- Department of Medical Oncology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan. https://twitter.com/fiorella_ruatta
| | - P Vanella
- Department of Medical Oncology, S. Croce e Carle Teaching Hospital, Cuneo
| | - N Denaro
- Department of Medical Oncology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan
| | - G Tomasello
- Medical Oncology, ASST Ospedale Maggiore Crema, Crema. https://twitter.com/glucatom
| | - N Croce
- Department of Medical Oncology, S. Croce e Carle Teaching Hospital, Cuneo
| | - F Barbin
- Department of Medical Oncology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan
| | - M G Rossino
- Department of Medical Oncology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan
| | - C A M La Porta
- Center for Complexity and Biosystems, University of Milan, Milan; Department of Environmental Science and Policy, University of Milan, Milan. https://twitter.com/CAMLaPorta
| | - A Sapino
- Scientific Direction, Candiolo Cancer Institute, FPO-IRCCS Candiolo, Turin; Department of Medical Science, University of Turin, Turin. https://twitter.com/sapino58
| | - V Torri
- Mario Negri Institute for Pharmacological Research, Milan. https://twitter.com/ValterTorri
| | - A Albini
- European Institute of Oncology, Milan, Italy. https://twitter.com/adrianaalbini1
| | - M C Merlano
- Scientific Direction, Candiolo Cancer Institute, FPO-IRCCS Candiolo, Turin
| |
Collapse
|
4
|
Miraki Feriz A, Khosrojerdi A, Erfanian N, Azarkar S, Sajjadi SM, Shojaei MJ, Vaferi MJ, Safarpour H, Racanelli V. Targeting the dynamic transcriptional landscape of Treg subpopulations in pancreatic ductal adenocarcinoma: Insights from single-cell RNA sequencing analysis with a focus on CTLA4 and TIGIT. Immunobiology 2024; 229:152822. [PMID: 38852289 DOI: 10.1016/j.imbio.2024.152822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/12/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy that represents a significant challenge in cancer research and clinical management. In this study, we reanalyzed a published single-cell RNA sequencing (scRNA-seq) dataset from PDAC and adjacent tissues to investigate the heterogeneity of tumor and normal tissue, specifically focusing on the regulatory T cells (Tregs) and their interactions with other cells in the tumor microenvironment (TME). Treg cells were identified and clustered into natural Tregs (nTreg) and induced Tregs (iTreg) based on the expression of specific genes. It was found that the number of iTregs was higher in the tumor than in healthy tissues, while the number of n Tregs was higher in healthy tissues. Differential gene expression analysis was performed, and biological process analysis revealed that the Tregs in PDAC were mostly involved in protein targeting and translation pathways. In addition, ligand-receptor pairs between Tregs and other cell types were identified, and the critical communication pathways between Tregs and endothelial and ductal cells were revealed, which could potentially contribute to the immunosuppressive TME of PDAC. These findings provide insights into the role of Tregs in PDAC and their interactions with other cell types in the TME, highlighting potential targets for immunotherapy, such as the inhibitory immune checkpoint receptors CTLA4 and TIGIT, which are known to be expressed on Tregs and have been shown to play a role in suppressing anti-tumor immune responses.
Collapse
Affiliation(s)
- Adib Miraki Feriz
- Student Research Committee, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | | | - Nafiseh Erfanian
- Student Research Committee, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Setareh Azarkar
- Student Research Committee, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | | | | | - Mohammad Javad Vaferi
- Student Research Committee, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | | | - Vito Racanelli
- Centre for Medical Sciences (CISMed), University of Trento and Internal Medicine Division, Santa Chiara Hospital, Provincial Health Care Agency (APSS), 38122, Trento, Italy.
| |
Collapse
|
5
|
Singh R, Srivastava P, Manna PP. Evaluation of regulatory T-cells in cancer immunotherapy: therapeutic relevance of immune checkpoint inhibition. Med Oncol 2024; 41:59. [PMID: 38238513 DOI: 10.1007/s12032-023-02289-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
The evolution of the complex immune system is equipped to defend against perilous intruders and concurrently negatively regulate the deleterious effect of immune-mediated inflammation caused by self and nonself antigens. Regulatory T-cells (Tregs) are specialized cells that minimize immune-mediated inflammation, but in malignancies, this feature has been exploited toward cancer progression by keeping the antitumor immune response in check. The modulation of Treg cell infiltration and their induction in the TME (tumor microenvironment) alongside associated inhibitory molecules, both soluble or membranes tethered in the TME, have proven clinically beneficial in boosting the tumoricidal activity of the immune system. Moreover, Treg-associated immune checkpoints pose a greater obstruction in cancer immunotherapy. Inhibiting or blocking active immune checkpoint signaling in combination with other therapies has proven clinically beneficial. This review summarizes the ontogeny of Treg cells and their migration, stability, and function in the TME. We also elucidate the Treg-associated checkpoint moieties that impede effective antitumor activity and harness these molecules for effective and targeted immunotherapy against cancer nuisance.
Collapse
Affiliation(s)
- Ranjeet Singh
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Prateek Srivastava
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Partha Pratim Manna
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
6
|
Zhou Y, Farooq MA, Ajmal I, He C, Gao Y, Guo D, Duan Y, Jiang W. Co-expression of IL-4/IL-15-based inverted cytokine receptor in CAR-T cells overcomes IL-4 signaling in immunosuppressive pancreatic tumor microenvironment. Biomed Pharmacother 2023; 168:115740. [PMID: 37865999 DOI: 10.1016/j.biopha.2023.115740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023] Open
Abstract
The efficacy of CAR-T cell therapy has been hindered by several factors that are intrinsic to the tumor microenvironment. Many strategies are being employed to overcome these barriers and improve immunotherapies efficacy. Interleukin (IL)- 4 is a cytokine released by tumor cells inside the tumor microenvironment and it can oppose T cell effector functions via engagement with the IL-4 receptor on the surface of T cells. To overcome IL-4-mediated immunosuppressive signals, we designed a novel inverted cytokine receptor (ICR). Our novel CAR construct (4/15NKG2D-CAR), consisted of an NKG2D-based chimeric antigen receptor, co-expressing IL-4R as an extracellular domain and IL-15R as a transmembrane and intracellular domain. In this way, IL-4R inhibitory signals were converted into IL-15R activation signals downstream. This strategy increased the efficacy of NKG2D-CAR-T cells in the pancreatic tumor microenvironment in vitro and in vivo. 4/15NKG2D-CAR-T cells exhibited increased activation, degranulation, cytokine release, and cytotoxic ability of NKG2D-CAR-T cells against IL-4+ pancreatic cell lines. Furthermore, 4/15NKG2D-CAR-T cells exhibited more expansion, less exhaustion, and an increased percentage of less differentiated T cell phenotypes in vitro when compared with NKG2D-CAR-T cells. That is why IL-4R/IL-15R-modified CAR-T cells eradicated more tumors in vivo and outperformed NKG2D-CAR-T cells. Thus, we report here a novel NKG2D-CAR-T cells that could overcome IL-4-mediated immunosuppression in solid tumors.
Collapse
Affiliation(s)
- Ying Zhou
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Muhammad Asad Farooq
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Iqra Ajmal
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Cong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yaoxin Gao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Dandan Guo
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yixin Duan
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Wenzheng Jiang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
7
|
Merlano MC, Paccagnella M, Denaro N, Abbona A, Galizia D, Sangiolo D, Gammaitoni L, Fiorino E, Minei S, Bossi P, Licitra L, Garrone O. Baseline Values of Circulating IL-6 and TGF-β Might Identify Patients with HNSCC Who Do Not Benefit from Nivolumab Treatment. Cancers (Basel) 2023; 15:5257. [PMID: 37958430 PMCID: PMC10649732 DOI: 10.3390/cancers15215257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/20/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND The immunotherapy of head and neck cancer induces a limited rate of long-term survivors at the cost of treating many patients exposed to toxicity without benefit, regardless of PD-L1 expression. The identification of better biomarkers is warranted. We analyzed a panel of cytokines, chemokines and growth factors, hereinafter all referred to as 'cytokines', as potential biomarkers in patients with head and neck cancer treated with nivolumab. MATERIALS AND METHODS A total of 18 circulating cytokines were analyzed. Samples were gathered at baseline (T0) and after 3 courses of nivolumab (T1) in patients with relapsed/metastatic disease. The data extracted at T0 were linked to survival; the comparison of T0-T1 explored the effect of immunotherapy. RESULTS A total of 22 patients were accrued: 64% current heavy smokers, 36% female and 14% had PS = 2. At T0, ROC analysis showed that IL-6, IL-8, IL-10 and TGF-β were higher in patients with poor survival. Cox analysis demonstrated that only patients with the IL-6 and TGF-β discriminate had good or poor survival, respectively. Longitudinal increments of CCL-4, IL-15, IL-2 and CXCL-10 were observed in all patients during nivolumab treatment. CONCLUSION In this small population with poor clinical characteristics, this study highlights the prognostic role of IL-6 and TGF-β. Nivolumab treatment is associated with a positive modulation of some Th1 cytokines, but it does not correlate with the outcome.
Collapse
Affiliation(s)
- Marco Carlo Merlano
- Candiolo Cancer Institute, FPO-IRCCS Candiolo, 10060 Torino, Italy; (M.C.M.); (D.G.); (L.G.)
| | | | - Nerina Denaro
- Medical Oncology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (N.D.); (O.G.)
| | - Andrea Abbona
- Translational Oncology ARCO Foundation, 12100 Cuneo, Italy;
| | - Danilo Galizia
- Candiolo Cancer Institute, FPO-IRCCS Candiolo, 10060 Torino, Italy; (M.C.M.); (D.G.); (L.G.)
| | - Dario Sangiolo
- Department of Oncology, University of Turin, 10060 Torino, Italy; (D.S.); (E.F.)
| | - Loretta Gammaitoni
- Candiolo Cancer Institute, FPO-IRCCS Candiolo, 10060 Torino, Italy; (M.C.M.); (D.G.); (L.G.)
| | - Erika Fiorino
- Department of Oncology, University of Turin, 10060 Torino, Italy; (D.S.); (E.F.)
| | - Silvia Minei
- Post-Graduate School of Specialization Medical Oncology, University of Bari “A. Moro”, 70120 Bari, Italy;
- Medical Oncology, A.U.O. Consorziale Policlinico di Bari, 70120 Bari, Italy
| | - Paolo Bossi
- Medical Oncology, Department of Medical and Surgical Specialties, Radiological Sciences, Public Health, University of Brescia, 25123 Brescia, Italy;
| | - Lisa Licitra
- Fondazione IRCCS Istituto Nazionale dei Tumori, University of Milan, 20133 Milan, Italy;
| | - Ornella Garrone
- Medical Oncology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (N.D.); (O.G.)
| |
Collapse
|
8
|
Sharma S, Sauer T, Omer BA, Shum T, Rollins LA, Rooney CM. Constitutive Interleukin-7 Cytokine Signaling Enhances the Persistence of Epstein-Barr Virus-Specific T-Cells. Int J Mol Sci 2023; 24:15806. [PMID: 37958791 PMCID: PMC10649234 DOI: 10.3390/ijms242115806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
The efficacy of therapeutic T-cells is limited by a lack of positive signals and excess inhibitory signaling in tumor microenvironments. We previously showed that a constitutively active IL7 receptor (C7R) enhanced the persistence, expansion, and anti-tumor activity of T-cells expressing chimeric antigen receptors (CARs), and C7R-modified GD2.CAR T-cells are currently undergoing clinical trials. To determine if the C7R could also enhance the activity of T-cells recognizing tumors via their native T-cell receptors (TCRs), we evaluated its effects in Epstein-Barr virus (EBV)-specific T-cells (EBVSTs) that have produced clinical benefits in patients with EBV-associated malignancies. EBVSTs were generated by stimulation of peripheral blood T-cells with overlapping peptide libraries spanning the EBV lymphoma antigens, LMP1, LMP2, and EBNA 1, followed by retroviral vector transduction to express the C7R. The C7R increased STAT5 signaling in EBVSTs and enhanced their expansion over 30 days of culture in the presence or absence of exogenous cytokines. C7R-EBVSTs maintained EBV antigen specificity but were dependent on TCR stimulation for continued expansion. C7R-EBVSTs produced more rapid lymphoma control in a murine xenograft model than unmodified EBVSTs and persisted for longer. The findings have led to a clinical trial, evaluating C7R-EBVSTs for the treatment of refractory or relapsed EBV-positive lymphoma (NCT04664179).
Collapse
Affiliation(s)
- Sandhya Sharma
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA; (S.S.)
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tim Sauer
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bilal A. Omer
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Thomas Shum
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA; (S.S.)
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lisa A. Rollins
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cliona M. Rooney
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology-Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
9
|
Zhan M, Wang F, Liu Y, Zhou J, Zhao W, Lu L, Li J, He X. Dual-Cascade Activatable Nanopotentiators Reshaping Adenosine Metabolism for Sono-Chemodynamic-Immunotherapy of Deep Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207200. [PMID: 36727824 PMCID: PMC10074132 DOI: 10.1002/advs.202207200] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/07/2023] [Indexed: 06/18/2023]
Abstract
Immunotherapy is an attractive treatment strategy for cancer, while its efficiency and safety need to be improved. A dual-cascade activatable nanopotentiator for sonodynamic therapy (SDT) and chemodynamic therapy (CDT)-cooperated immunotherapy of deep tumors via reshaping adenosine metabolism is herein reported. This nanopotentiator (NPMCA ) is constructed through crosslinking adenosine deaminase (ADA) with chlorin e6 (Ce6)-conjugated manganese dioxide (MnO2 ) nanoparticles via a reactive oxygen species (ROS)-cleavable linker. In the tumor microenvironment with ultrasound (US) irradiation, NPMCA mediates CDT and SDT concurrently in deep tumors covered with 2-cm tissues to produce abundant ROS, which results in dual-cascade scissoring of ROS-cleavable linkers to activate ADA within NCMCA to block adenosine metabolism. Moreover, immunogenic cell death (ICD) of dying tumor cells and upregulation of the stimulator of interferon genes (STING) is triggered by the generated ROS and Mn2+ from NPMCA , respectively, leading to activation of antitumor immune response. The potency of immune response is further reinforced by reducing the accumulation of adenosine in tumor microenvironment by the activated ADA. As a result, NPMCA enables CDT and SDT-cooperated immunotherapy, showing an obviously improved therapeutic efficacy to inhibit the growths of bilateral tumors, in which the primary tumors are covered with 2-cm tissues.
Collapse
Affiliation(s)
- Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University)Jinan UniversityZhuhaiGuangdong519000China
| | - Fengshuo Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| | - Yao Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University)Jinan UniversityZhuhaiGuangdong519000China
| | - Jianhui Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| | - Wei Zhao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University)Jinan UniversityZhuhaiGuangdong519000China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University)Jinan UniversityZhuhaiGuangdong519000China
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| | - Xu He
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University)Jinan UniversityZhuhaiGuangdong519000China
| |
Collapse
|
10
|
IL-2/GM-CSF enhances CXCR3 expression in CAR-T cells via the PI3K/AKT and ERK1/2 pathways. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04509-w. [PMID: 36474002 DOI: 10.1007/s00432-022-04509-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate the effects of cytokines IL-2 and GM-CSF on CXCR3 expression and chemotaxis of CAR-T cells. BACKGROUND High lymphocyte infiltration within the tumor is a basic requirement for good results in tumor immunotherapy; C-X-C motif chemokine receptor 3 (CXCR3) is an important factor for the chemotaxis of lymphocytes to tumor tissues. The tumor microenvironment can exhibit diverse cytokine suppression or promote antitumor immunity. Both interleukin (IL)-2 and granulocyte macrophage colony-stimulating factor (GM-CSF) contribute to the regulation of immunosuppression in the tumor microenvironment. However, the effects of IL-2 and GM-CSF on CXCR3 expression on the T cell surface and its mechanisms are not well understood. Here, we explored the effects of polycytokines on CXCR3 expression in chimeric antigen receptor T cells (CAR-T cells) and on HuH-7 in situ hepatocellular carcinoma. MATERIALS AND METHODS Peripheral blood mononuclear cells (PBMCs) were isolated, followed by purifying using CD3 immunomagnetic beads. Cells were divided into three groups. After 24h of activation using CD3/CD28 antibody, T cells were transfected using lentiviral vector, pGC-SV40-EGFP-GPC3-CAR. Three culture methods were used to amplify the transfected T cells. Method 'A' was to incubate T cells with CD3/CD28 antibody; method 'B' was with CD3/CD28 antibody and IL-2 at a final concentration of 1000 U/ml; method 'C' was with method B in addition of GM-CSF at a final concentration of 1000 U/ml. The phosphorylation of MAPK and PI3K/AKT was determined by western blot. The chemotaxis effect of CAR-T cells on Huh-7 HCCIA in situ was assayed by immunofluorescence and immunohistochemistry. RESULTS The CD3/CD28/IL-2/GM-CSF combination is the most potent for stimulating activated CAR-T cell proliferation and CXCR3 expression in vitro; CD3/CD28/IL-2 induces CAR-T cell expression of CXCR3 through the activation of the PI3K/APK pathway and GM-CSF induces CXCR3 expression in CAR-T cells through the activation of ERK1/2 rather than the p38 MAPK signaling pathway. CAR-GPC3-T cells with high CXCR3 expression showed increased chemotaxis ability to HuH in situ hepatocellular carcinoma, and considerably inhibited the growth of in situ tumors in nude mouse livers. CONCLUSION A multi-factorial amplification protocol can effectively improve CXCR3 expression on the surface of activated CAR-T cells in vitro, as well as enhance the chemotaxis ability of CAR-T cells in vivo, which significantly inhibit the growth of liver cancer.
Collapse
|
11
|
Gu L, Huang T, Qiu S, Hong J, Fu R, Ni C, Dai S, Chen P, He N. Efficacy of PD-1/PD-L1 inhibitors in patients with advanced gastroesophageal cancer: An updated meta-analysis based on randomized controlled trials. Front Pharmacol 2022; 13:1009254. [PMID: 36386140 PMCID: PMC9640921 DOI: 10.3389/fphar.2022.1009254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022] Open
Abstract
Background: This study aimed to investigate the clinical efficacy of programmed death-1 receptor and ligand-1 (PD-1/PD-L1) inhibitors in gastroesophageal cancer patients and the relationship between their clinicopathological features and curative treatment effects. Methods: A systematic search was conducted for articles published before April 2022 from online databases (PubMed, EMBASE, Web of Science and the Cochrane Library). The main outcome was overall survival (OS). Results: This meta-analysis comprised 16 studies involving 9,304 participants. The results indicated that compared with chemotherapy, patients treated with PD-1/PD-L1 inhibitors had significantly improved OS (HR = 0.80; p < 0.001) but no significant improvement in progression-free survival (PFS) (p = 0.185). Subgroup analyses demonstrated that PD-1/PD-L1 inhibitors combined with chemotherapy, esophageal squamous cell carcinoma, male, Asian patients and combined positive score (CPS) ≥1 were significantly associated with better survival outcomes. Further, subgroup analysis of gender revealed that the OS of all subgroups containing male patients was significantly improved compared with chemotherapy, unlike that of female patients. In addition, the line of therapy, Lauren classification, age and eastern cooperative oncology group (ECOG) performance status were not associated with PD-1/PD-L1 inhibitors efficacy. Conclusion: The results indicated that PD-1/PD-L1 inhibitors could prolong the OS of advanced gastroesophageal cancer patients. Clinicopathological features such as therapeutic schedules, tumor types, histological type, gender, geographical region and PD-L1 expression status (CPS) seemed to be associated with survival outcomes.
Collapse
Affiliation(s)
- Lihu Gu
- Department of General Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No. 2 Hospital, Ningbo, China
| | - Tongmin Huang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shinan Qiu
- Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Jiaze Hong
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Rongrong Fu
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chaoxiong Ni
- Department of Nephrology, QingChun Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Senjie Dai
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ping Chen
- Department of General Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No. 2 Hospital, Ningbo, China
| | - Ning He
- Department of Tumor High-Intensity Focused Ultrasound (HIFU) Therapy, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
- *Correspondence: Ning He,
| |
Collapse
|
12
|
Jin S, Sun Y, Liang X, Gu X, Ning J, Xu Y, Chen S, Pan L. Emerging new therapeutic antibody derivatives for cancer treatment. Signal Transduct Target Ther 2022; 7:39. [PMID: 35132063 PMCID: PMC8821599 DOI: 10.1038/s41392-021-00868-x] [Citation(s) in RCA: 233] [Impact Index Per Article: 77.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022] Open
Abstract
Monoclonal antibodies constitute a promising class of targeted anticancer agents that enhance natural immune system functions to suppress cancer cell activity and eliminate cancer cells. The successful application of IgG monoclonal antibodies has inspired the development of various types of therapeutic antibodies, such as antibody fragments, bispecific antibodies, and antibody derivatives (e.g., antibody-drug conjugates and immunocytokines). The miniaturization and multifunctionalization of antibodies are flexible and viable strategies for diagnosing or treating malignant tumors in a complex tumor environment. In this review, we summarize antibodies of various molecular types, antibody applications in cancer therapy, and details of clinical study advances. We also discuss the rationale and mechanism of action of various antibody formats, including antibody-drug conjugates, antibody-oligonucleotide conjugates, bispecific/multispecific antibodies, immunocytokines, antibody fragments, and scaffold proteins. With advances in modern biotechnology, well-designed novel antibodies are finally paving the way for successful treatments of various cancers, including precise tumor immunotherapy, in the clinic.
Collapse
Affiliation(s)
- Shijie Jin
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Yanping Sun
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xiao Liang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xinyu Gu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Jiangtao Ning
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Yingchun Xu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Shuqing Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
- Department of Precision Medicine on Tumor Therapeutics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, 311200, Hangzhou, China.
| | - Liqiang Pan
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
- The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China.
- Key Laboratory of Pancreatic Disease of Zhejiang Province, 310003, Hangzhou, China.
| |
Collapse
|
13
|
Rickard BP, Conrad C, Sorrin AJ, Ruhi MK, Reader JC, Huang SA, Franco W, Scarcelli G, Polacheck WJ, Roque DM, del Carmen MG, Huang HC, Demirci U, Rizvi I. Malignant Ascites in Ovarian Cancer: Cellular, Acellular, and Biophysical Determinants of Molecular Characteristics and Therapy Response. Cancers (Basel) 2021; 13:4318. [PMID: 34503128 PMCID: PMC8430600 DOI: 10.3390/cancers13174318] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/17/2021] [Accepted: 08/22/2021] [Indexed: 12/27/2022] Open
Abstract
Ascites refers to the abnormal accumulation of fluid in the peritoneum resulting from an underlying pathology, such as metastatic cancer. Among all cancers, advanced-stage epithelial ovarian cancer is most frequently associated with the production of malignant ascites and is the leading cause of death from gynecologic malignancies. Despite decades of evidence showing that the accumulation of peritoneal fluid portends the poorest outcomes for cancer patients, the role of malignant ascites in promoting metastasis and therapy resistance remains poorly understood. This review summarizes the current understanding of malignant ascites, with a focus on ovarian cancer. The first section provides an overview of heterogeneity in ovarian cancer and the pathophysiology of malignant ascites. Next, analytical methods used to characterize the cellular and acellular components of malignant ascites, as well the role of these components in modulating cell biology, are discussed. The review then provides a perspective on the pressures and forces that tumors are subjected to in the presence of malignant ascites and the impact of physical stress on therapy resistance. Treatment options for malignant ascites, including surgical, pharmacological and photochemical interventions are then discussed to highlight challenges and opportunities at the interface of drug discovery, device development and physical sciences in oncology.
Collapse
Affiliation(s)
- Brittany P. Rickard
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, and North Carolina State University, Raleigh, NC 27599, USA; (M.K.R.); (S.A.H.); (W.J.P.)
| | - Christina Conrad
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (C.C.); (A.J.S.); (G.S.); (H.-C.H.)
| | - Aaron J. Sorrin
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (C.C.); (A.J.S.); (G.S.); (H.-C.H.)
| | - Mustafa Kemal Ruhi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, and North Carolina State University, Raleigh, NC 27599, USA; (M.K.R.); (S.A.H.); (W.J.P.)
| | - Jocelyn C. Reader
- Department of Obstetrics, Gynecology and Reproductive Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (J.C.R.); (D.M.R.)
- Marlene and Stewart Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Stephanie A. Huang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, and North Carolina State University, Raleigh, NC 27599, USA; (M.K.R.); (S.A.H.); (W.J.P.)
| | - Walfre Franco
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (C.C.); (A.J.S.); (G.S.); (H.-C.H.)
| | - William J. Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, and North Carolina State University, Raleigh, NC 27599, USA; (M.K.R.); (S.A.H.); (W.J.P.)
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dana M. Roque
- Department of Obstetrics, Gynecology and Reproductive Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (J.C.R.); (D.M.R.)
- Marlene and Stewart Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Marcela G. del Carmen
- Division of Gynecologic Oncology, Vincent Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (C.C.); (A.J.S.); (G.S.); (H.-C.H.)
- Marlene and Stewart Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA;
| | - Imran Rizvi
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, and North Carolina State University, Raleigh, NC 27599, USA; (M.K.R.); (S.A.H.); (W.J.P.)
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
14
|
Chen M, Brackett CM, Burdelya LG, Punnanitinont A, Patnaik SK, Matsuzaki J, Odunsi AO, Gudkov AV, Singh AK, Repasky EA, Gurova KV. Stimulation of an anti-tumor immune response with "chromatin-damaging" therapy. Cancer Immunol Immunother 2021; 70:2073-2086. [PMID: 33439292 PMCID: PMC8726059 DOI: 10.1007/s00262-020-02846-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023]
Abstract
Curaxins are small molecules that bind genomic DNA and interfere with DNA-histone interactions leading to the loss of histones and decondensation of chromatin. We named this phenomenon 'chromatin damage'. Curaxins demonstrated anti-cancer activity in multiple pre-clinical tumor models. Here, we present data which reveals, for the first time, a role for the immune system in the anti-cancer effects of curaxins. Using the lead curaxin, CBL0137, we observed elevated expression of several group of genes in CBL0137-treated tumor cells including interferon sensitive genes, MHC molecules, some embryo-specific antigens suggesting that CBL0137 increases tumor cell immunogenicity and improves recognition of tumor cells by the immune system. In support of this, we found that the anti-tumor activity of CBL0137 was reduced in immune deficient SCID mice when compared to immune competent mice. Anti-tumor activity of CBL0137 was abrogated in CD8+ T cell depleted mice but only partially lost when natural killer or CD4+ T cells were depleted. Further support for a key role for the immune system in the anti-tumor activity of CBL0137 is evidenced by an increased antigen-specific effector CD8+ T cell and NK cell response, and an increased ratio of effector T cells to Tregs in the tumor and spleen. CBL0137 also elevated the number of CXCR3-expressing CTLs in the tumor and the level of interferon-γ-inducible protein 10 (IP-10) in serum, suggesting IP-10/CXCR3 controls CBL0137-elicited recruitment of effector CTLs to tumors. Our collective data underscores a previously unrecognized role for both innate and adaptive immunity in the anti-tumor activity of curaxins.
Collapse
Affiliation(s)
- Minhui Chen
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Sts, Buffalo, NY, 14263, USA
| | - Craig M Brackett
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Sts, Buffalo, NY, 14263, USA
| | - Lyudmila G Burdelya
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Sts, Buffalo, NY, 14263, USA
| | - Achamaporn Punnanitinont
- Cancer for Immunotherapy, Roswell Park Comprehensive Cancer Center, Elm and Carlton Sts, Buffalo, NY, 14263, USA
| | - Santosh K Patnaik
- Cancer for Immunotherapy, Roswell Park Comprehensive Cancer Center, Elm and Carlton Sts, Buffalo, NY, 14263, USA
| | - Junko Matsuzaki
- Cancer for Immunotherapy, Roswell Park Comprehensive Cancer Center, Elm and Carlton Sts, Buffalo, NY, 14263, USA
| | - Adekunle O Odunsi
- Cancer for Immunotherapy, Roswell Park Comprehensive Cancer Center, Elm and Carlton Sts, Buffalo, NY, 14263, USA
| | - Andrei V Gudkov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Sts, Buffalo, NY, 14263, USA
| | - Anurag K Singh
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Elm and Carlton Sts, Buffalo, NY, 14263, USA
| | - Elizabeth A Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Sts, Buffalo, NY, 14263, USA.
| | - Katerina V Gurova
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Sts, Buffalo, NY, 14263, USA.
| |
Collapse
|
15
|
Lu Y, Guan L, Xu M, Wang F. The efficacy and safety of antibodies targeting PD-1 for treatment in advanced esophageal cancer: A systematic review and meta-analysis. Transl Oncol 2021; 14:101083. [PMID: 33784583 PMCID: PMC8042180 DOI: 10.1016/j.tranon.2021.101083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND A novel therapy based on programmed death 1 (PD-1) inhibitors has been proved to be effective in advanced esophageal cancer. This article is a meta-analysis that aims to compare the efficacy and safety of anti-PD-1 therapy with chemotherapy in esophageal cancer. PATIENTS AND METHODS Data were collected from eligible studies searched from PubMed, Web of Science, Cochrane Library, and Embase. Pooled hazard ratio (HR) for overall survival (OS), progression-free survival (PFS), and objective response rate (ORR) was estimated to assess the efficacy of PD-1 inhibitors versus chemotherapy. The subgroup analysis was also performed to evaluate the OS benefits. The OR for the occurrence of treatment-related adverse effects was calculated to assess the safety of anti-PD-1 therapy. RESULTS A total of 4 studies were analyzed. Compared with patients with chemotherapy, patients with anti-PD-1 therapy had a significant improvement in OS (HR = 0.79, 95% CI: 0.71-0.88, and P<0.001), but no significant relationship was observed in PFS (HR = 0.96, 95% CI: 0.76-1.20, and P = 0.69) and ORR (OR = 1.92, 95% CI: 0.98-3.72, and P = 0.06). A similar result was observed in esophageal squamous cell carcinoma. The significant predictor for treatment benefit alone was histology (P = 0.009). The incidence of grade 3 - 5 treatment-related adverse effects in anti-PD-1 therapy was distinctly lower than that in chemotherapy, but there is no statistical difference in all treatment-related adverse effects. CONCLUSION Anti-PD-1 therapy significantly prolonged the OS, simultaneously lowered grade 3 - 5 treatment-related adverse effects versus chemotherapy.
Collapse
Affiliation(s)
- Yao Lu
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P R China
| | - Lulu Guan
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P R China
| | - Mengli Xu
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P R China
| | - Feng Wang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P R China.
| |
Collapse
|
16
|
Ehlers FAI, Mahaweni NM, Olieslagers TI, Bos GMJ, Wieten L. Activated Natural Killer Cells Withstand the Relatively Low Glucose Concentrations Found in the Bone Marrow of Multiple Myeloma Patients. Front Oncol 2021; 11:622896. [PMID: 34094908 PMCID: PMC8174784 DOI: 10.3389/fonc.2021.622896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
Infusion of ex vivo expanded and cytokine-activated natural killer (NK) cells is a promising alternative way to treat multiple myeloma (MM). However, the tumor microenvironment (TME) may suppress their function. While reduced glucose availability is a TME hallmark of many solid tumors, glucose levels within the TME of hematological malignancies residing in the bone marrow (BM) remain unknown. Here, we measured glucose levels in the BM of MM patients and tested the effect of different glucose levels on NK cells. BM glucose levels were measured using a biochemical analyzer. Compared to the normal range of blood glucose, BM glucose levels were lower in 6 of 9 patients (479-1231 mg/L; mean=731.8 mg/L). The effect of different glucose levels on NK cell cytotoxicity was tested in 4-hour cytotoxicity assays with tumor cells. 500 mg/L glucose (representing low range of MM BM) during the 4-hour cytotoxicity assay did not negatively affect cytotoxicity of activated NK cells, while higher glucose concentrations (4000 mg/L) diminished NK cell cytotoxicity. Since clinical application of NK cell therapy might require ex vivo expansion, expanded NK cells were exposed to a range of glucose concentrations from 500-4000 mg/L for a longer period (4 days). This did not reduce cytotoxicity or IFN-γ secretion nor affected their phenotypic profile. In summary, low glucose concentrations, as found in BM of MM patients, by itself did not compromise the anti-tumor potential of IL-2 activated NK cells in vitro. Although follow up studies in models with a more complex TME would be relevant, our data suggest that highly activated NK cells could be used to target tumors with a reduced glucose environment.
Collapse
Affiliation(s)
- Femke A I Ehlers
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center+, Maastricht, Netherlands.,Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center+, Maastricht, Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Niken M Mahaweni
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center+, Maastricht, Netherlands.,Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center+, Maastricht, Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Timo I Olieslagers
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center+, Maastricht, Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Gerard M J Bos
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center+, Maastricht, Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Lotte Wieten
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center+, Maastricht, Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
17
|
Li X, Feng J, Sun Y, Li X. An Exploration of the Tumor Microenvironment Identified a Novel Five-Gene Model for Predicting Outcomes in Bladder Cancer. Front Oncol 2021; 11:642527. [PMID: 34012914 PMCID: PMC8126988 DOI: 10.3389/fonc.2021.642527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
Bladder cancer (BC) is one of the top ten most common cancer types globally, accounting for approximately 7% of all male malignancies. In the last few decades, cancer research has focused on identifying oncogenes and tumor suppressors. Recent studies have revealed that the interplay between tumor cells and the tumor microenvironment (TME) plays an important role in the initiation and development of cancer. However, the current knowledge regarding its effect on BC is scarce. This study aims to explore how the TME influences the development of BC. We focused on immune and stromal components, which represent the major components of TME. We found that the proportion of immune and stromal components within the TME was associated with the prognosis of BC. Furthermore, based on the scores of immune and stromal components, 811 TME-related differentially expressed genes were identified. Three subclasses with distinct biological features were divided based on these TME-genes. Finally, five prognostic genes were identified and used to develop a prognostic prediction model for BC patients based on TME-related genes. Additionally, we validated the prognostic value of the five-gene model using three independent cohorts. By further analyzing features based on the five-gene signature, higher CD8+ T cells, higher tumor mutational burden, and higher chemosensitivity were found in the low-risk group, which presented a better prognosis. In conclusion, our exploration comprehensively analyzed the TME and identified TME-related prognostic genes for BC, providing new insights into potential therapeutic targets.
Collapse
Affiliation(s)
- Xinjie Li
- School of Medicine, Sun Yat-Sen University, Shenzhen, China
| | - Jiahao Feng
- School of Medicine, Sun Yat-Sen University, Shenzhen, China
| | - Yazhou Sun
- School of Medicine, Sun Yat-Sen University, Shenzhen, China
| | - Xin Li
- School of Medicine, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
18
|
Abolfathi H, Sheikhpour M, Shahraeini SS, Khatami S, Nojoumi SA. Studies in lung cancer cytokine proteomics: a review. Expert Rev Proteomics 2021; 18:49-64. [PMID: 33612047 DOI: 10.1080/14789450.2021.1892491] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Proteins are molecules that have role in the progression of the diseases. Proteomics is a tool that can play an effective role in identifying diagnostic and therapeutic biomarkers for lung cancer. Cytokines are proteins that play a decisive role in activating body's immune system in lung cancer. They can increase the growth of the tumor (oncogenic cytokines) or limit tumor growth (anti-tumor cytokines) by regulating related signaling pathways such as proliferation, growth, metastasis, and apoptosis. AREAS COVERED In the present study, a total of 223 papers including 196 research papers and 27 review papers, extracted from PubMed and Scopus and published from 1997 to present, are reviewed. The most important involved-cytokines in lung cancer including TNF-α, IFN- γ, TGF-β, VEGF and interleukins such as IL-6, IL-17, IL-8, IL-10, IL-22, IL-1β and IL-18 are introduced. Also, the pathological and biological role of such cytokines in cancer signaling pathways is explained. EXPERT OPINION In lung cancer, the cytokine expression changes under the physiological conditions of the immune system, and inflammatory cytokines are associated with the progression of lung cancer. Therefore, the cytokine expression profile can be used in the diagnosis, prognosis, prediction of therapeutic responses, and survival of patients with lung cancer.
Collapse
Affiliation(s)
- Hanie Abolfathi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Sadegh Shahraeini
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Shohreh Khatami
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Ali Nojoumi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
19
|
Wu L, Wei Q, Brzostek J, Gascoigne NRJ. Signaling from T cell receptors (TCRs) and chimeric antigen receptors (CARs) on T cells. Cell Mol Immunol 2020; 17:600-612. [PMID: 32451454 DOI: 10.1038/s41423-020-0470-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
T cells react to foreign or self-antigens through T cell receptor (TCR) signaling. Several decades of research have delineated the mechanism of TCR signal transduction and its impact on T cell performance. This knowledge provides the foundation for chimeric antigen receptor T cell (CAR-T cell) technology, by which T cells are redirected in a major histocompatibility complex-unrestricted manner. TCR and CAR signaling plays a critical role in determining the T cell state, including exhaustion and memory. Given its artificial nature, CARs might affect or rewire signaling differently than TCRs. A better understanding of CAR signal transduction would greatly facilitate improvements to CAR-T cell technology and advance its usefulness in clinical practice. Herein, we systematically review the knowns and unknowns of TCR and CAR signaling, from the contact of receptors and antigens, proximal signaling, immunological synapse formation, and late signaling outcomes. Signaling through different T cell subtypes and how signaling is translated into practice are also discussed.
Collapse
Affiliation(s)
- Ling Wu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Qianru Wei
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Joanna Brzostek
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Nicholas R J Gascoigne
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore. .,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
20
|
Paluskievicz CM, Cao X, Abdi R, Zheng P, Liu Y, Bromberg JS. T Regulatory Cells and Priming the Suppressive Tumor Microenvironment. Front Immunol 2019; 10:2453. [PMID: 31681327 PMCID: PMC6803384 DOI: 10.3389/fimmu.2019.02453] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022] Open
Abstract
Treg play a central role in maintenance of self tolerance and homeostasis through suppression of self-reactive T cell populations. In addition to that role, Treg also survey cancers and suppress anti-tumor immune responses. Thus, understanding the unique attributes of Treg-tumor interactions may permit control of this pathologic suppression without interfering with homeostatic self-tolerance. This review will define the unique role of Treg in cancer growth, and the ways by which Treg inhibit a robust anti-tumor immune response. There will be specific focus placed on Treg homing to the tumor microenvironment (TME), TME formation of induced Treg (iTreg), mechanisms of suppression that underpin cancer immune escape, and trophic nonimmunologic effects of Treg on tumor cells.
Collapse
Affiliation(s)
| | - Xuefang Cao
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Reza Abdi
- Division of Renal Medicine, Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Pan Zheng
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Yang Liu
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jonathan S. Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
21
|
Kim KS, Youn YS, Bae YH. Immune-triggered cancer treatment by intestinal lymphatic delivery of docetaxel-loaded nanoparticle. J Control Release 2019; 311-312:85-95. [PMID: 31461664 DOI: 10.1016/j.jconrel.2019.08.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/20/2019] [Accepted: 08/25/2019] [Indexed: 12/24/2022]
Abstract
The maximally tolerated dose (MTD) approach in conventional chemotherapy accompanies adverse effects, primarily due to high drug concentrations in the blood after intravenous administration and non-specific damages to highly proliferating cells, including immune cells. This causes the immune system to dysfunction. To rather boost intrinsic tumor-fighting immune capacity, we demonstrate a new oral route treatment regimen of docetaxel (DTX) without apparent toxicity. The DTX-loaded cationic solid lipid nanoparticles (DSLN-CSG) were coated with an anionic polymer conjugated with glycocholic acid. The resulting nanoparticles (DSLN-CSG, ~120 nm in diameter) were actively absorbed in the distal ileum mediated by interactions with the apical sodium bile acid transporter. The plasma DTX profile was sustained up to 24 h after a single oral dose and did not impair the functions of the immune system. In mouse models, daily oral DSLN-CSG administration inhibited the growth of existing tumors and tumor formation by medication prior to cancer cell inoculation. The extent of effects depended on the cancer cell lines of melanoma, colorectal adenocarcinoma, and breast carcinoma. It was most effective for melanoma in growth inhibition and in preventing tumor formation in mice. During the medication, the cytotoxic T cell population increased while the populations of tumor-associated macrophage and regulatory T cell declined. The low dose daily oral treatment may help patients with intermittent maintenance therapy between MTD cycles and prevent tumor recurrence after completing remission for certain tumors.
Collapse
Affiliation(s)
- Kyoung Sub Kim
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Yu Seok Youn
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA; School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - You Han Bae
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
22
|
Crispo F, Condelli V, Lepore S, Notarangelo T, Sgambato A, Esposito F, Maddalena F, Landriscina M. Metabolic Dysregulations and Epigenetics: A Bidirectional Interplay that Drives Tumor Progression. Cells 2019; 8:E798. [PMID: 31366176 PMCID: PMC6721562 DOI: 10.3390/cells8080798] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer has been considered, for a long time, a genetic disease where mutations in keyregulatory genes drive tumor initiation, growth, metastasis, and drug resistance. Instead, theadvent of high-throughput technologies has revolutionized cancer research, allowing to investigatemolecular alterations at multiple levels, including genome, epigenome, transcriptome, proteome,and metabolome and showing the multifaceted aspects of this disease. The multi-omics approachesrevealed an intricate molecular landscape where different cellular functions are interconnected andcooperatively contribute to shaping the malignant phenotype. Recent evidence has brought to lighthow metabolism and epigenetics are highly intertwined, and their aberrant crosstalk can contributeto tumorigenesis. The oncogene-driven metabolic plasticity of tumor cells supports the energeticand anabolic demands of proliferative tumor programs and secondary can alter the epigeneticlandscape via modulating the production and/or the activity of epigenetic metabolites. Conversely,epigenetic mechanisms can regulate the expression of metabolic genes, thereby altering themetabolome, eliciting adaptive responses to rapidly changing environmental conditions, andsustaining malignant cell survival and progression in hostile niches. Thus, cancer cells takeadvantage of the epigenetics-metabolism crosstalk to acquire aggressive traits, promote cellproliferation, metastasis, and pluripotency, and shape tumor microenvironment. Understandingthis bidirectional relationship is crucial to identify potential novel molecular targets for theimplementation of robust anti-cancer therapeutic strategies.
Collapse
Affiliation(s)
- Fabiana Crispo
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata,85028 Rionero in Vulture, PZ, Italy.
| | - Valentina Condelli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata,85028 Rionero in Vulture, PZ, Italy.
| | - Silvia Lepore
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata,85028 Rionero in Vulture, PZ, Italy.
| | - Tiziana Notarangelo
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata,85028 Rionero in Vulture, PZ, Italy.
| | - Alessandro Sgambato
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata,85028 Rionero in Vulture, PZ, Italy.
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II,80131 Naples, Italy.
| | - Francesca Maddalena
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata,85028 Rionero in Vulture, PZ, Italy.
| | - Matteo Landriscina
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata,85028 Rionero in Vulture, PZ, Italy.
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia,71100 Foggia, Italy.
| |
Collapse
|
23
|
Role of cell surface proteoglycans in cancer immunotherapy. Semin Cancer Biol 2019; 62:48-67. [PMID: 31336150 DOI: 10.1016/j.semcancer.2019.07.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/05/2019] [Accepted: 07/17/2019] [Indexed: 12/23/2022]
Abstract
Over the past few decades, understanding how tumor cells evade the immune system and their communication with their tumor microenvironment, has been the subject of intense investigation, with the aim of developing new cancer immunotherapies. The current therapies against cancer such as monoclonal antibodies against checkpoint inhibitors, adoptive T-cell transfer, cytokines, vaccines, and oncolytic viruses have managed to improve the clinical outcome of the patients. However, in some tumor entities, the response is limited and could benefit from the identification of novel therapeutic targets. It is known that tumor-extracellular matrix interplay and matrix remodeling are necessary for anti-tumor and pro-tumoral immune responses. Proteoglycans are dominant components of the extracellular matrix and are a highly heterogeneous group of proteins characterized by the covalent attachment of a specific linear carbohydrate chain of the glycosaminoglycan type. At cell surfaces, these molecules modulate the expression and activity of cytokines, chemokines, growth factors, adhesion molecules, and function as signaling co-receptors. By these mechanisms, proteoglycans influence the behavior of cancer cells and their microenvironment during the progression of solid tumors and hematopoietic malignancies. In this review, we discuss why cell surface proteoglycans are attractive pharmacological targets in cancer, and we present current and recent developments in cancer immunology and immunotherapy utilizing proteoglycan-targeted strategies.
Collapse
|
24
|
Wang D, Zhang Y, Chi Q, Hu X, Li S, Li S. Ammonia exposure induced abnormal expression of cytokines and heat shock proteins via glucose metabolism disorders in chicken neutrophils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:10529-10536. [PMID: 30767103 DOI: 10.1007/s11356-019-04516-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Ammonia (NH3) is a highly irritant, alkaline gas. Atmospheric emission of NH3 was recognized as an environmental challenge. As a global issue, the NH3 emission survey with spatially detailed information demonstrated that the sources of atmospheric NH3 include agriculture (livestock wastes, fertilizers) and some industrial activities. As an environmental pollution, excessive NH3 exposure can induce many bird dysfunction. Neutrophils respond to multiple invading pathogens through different mechanisms. In order to investigate the effect of NH3 exposure on broilers' neutrophil, 1-day-old broilers were treated with/without NH3 for 28 days. We extracted neutrophils from peripheral blood of chicken with/without NH3 exposure and subsequently stimulated with PMA. Changes of cytokines and inflammatory bodies, heat shock proteins (HSPs), and glucose metabolism of neutrophil were examined in both cases. We not only explored that the index associated with inflammation changed due to NH3 exposure but also observed the status of neutrophils which was treated with PMA stimulation. After NH3 exposure, IL-1β and IL-6 were significantly increased on broilers neutrophil. Inflammatory-related factors (NLRP3, ASC, and caspase-1) were significantly elevated. The mRNA expression of HSP70 and HSP90 was increased significantly. All glucose metabolism indicators were reduced. In summary, we concluded that NH3 enhanced inflammation and disrupted glucose metabolism, and increased the expression of HSPs and inflammatory factors. In addition, the sensitivity of neutrophils to exogenous stimuli was diminished. This information can not only be used to evaluate the damage of NH3-spiked neutrophils to chickens, but also provide clues for human health pathophysiology caused by excess NH3, providing valuable information for NH3 risk management.
Collapse
Affiliation(s)
- Dongxu Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yiming Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Qianru Chi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xueyuan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Shiping Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
25
|
Kroll AV, Jiang Y, Zhou J, Holay M, Fang RH, Zhang L. Biomimetic Nanoparticle Vaccines for Cancer Therapy. ADVANCED BIOSYSTEMS 2019; 3:e1800219. [PMID: 31728404 PMCID: PMC6855307 DOI: 10.1002/adbi.201800219] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Indexed: 12/25/2022]
Abstract
It is currently understood that, in order for a tumor to successfully grow, it must evolve means of evading immune surveillance. In the past several decades, researchers have leveraged increases in our knowledge of tumor immunology to develop therapies capable of augmenting endogenous immunity and eliciting strong antitumor responses. In particular, the goal of anticancer vaccination is to train the immune system to properly utilize its own resources in the fight against cancer. Although attractive in principle, there are currently only limited examples of anticancer vaccines that have been successfully translated to the clinic. Recently, there has been a significant push towards the use of nanotechnology for designing vaccine candidates that exhibit enhanced potency and specificity. In this progress report, we discuss recent developments in the field of anticancer nanovaccines. By taking advantage of the flexibility offered by nanomedicine to purposefully program immune responses, this new generation of vaccines has the potential to address many of the hurdles facing traditional platforms. A specific emphasis is placed on the emergence of cell membrane-coated nanoparticles, a novel biomimetic platform that can be used to generate personalized nanovaccines that elicit strong, multi-antigenic antitumor responses.
Collapse
Affiliation(s)
- Ashley V Kroll
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yao Jiang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jiarong Zhou
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Maya Holay
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
26
|
Wu X, Hsu DK, Wang KH, Huang Y, Mendoza L, Zhou Y, Hwang ST. IL-10 is overexpressed in human cutaneous T-cell lymphoma and is required for maximal tumor growth in a mouse model. Leuk Lymphoma 2018; 60:1244-1252. [PMID: 30277131 DOI: 10.1080/10428194.2018.1516037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A crucial question pertains to a role of IL-10 as a tumorigenic factor, or just a marker of advanced disease in cutaneous T-cell lymphoma (CTCL). Herein, we measured significantly elevated IL-10 mRNA in a cohort of skin samples of patients with CTCL. Increased IL-10 was also detected in the tumor microenvironment of an established inflammation-dependent murine model of using MBL2 T lymphoma cells. Conditioned media from MBL2 cells was able to stimulate IL-10 production in bone marrow-derived macrophages in an IL-4-dependent manner. Implanted MBL2 T-cell lymphomas in IL-10KO mice were 50% smaller, accompanied by decreased numbers of infiltrating macrophages and reduced efficiency of M2-polarization compared with wild-type mice. With anti-IL-10R mAb treatment, both wild-type tumor-bearing mice and IL-10KO mice exhibited a further growth inhibition. Our data indicate that targeting IL-10 signaling with neutralizing antibodies to IL-10 or its receptor may have a great potential for advanced CTCL therapy.
Collapse
Affiliation(s)
- Xuesong Wu
- a Department of Dermatology, School of Medicine , University of California Davis , Sacramento , CA , USA
| | - Daniel K Hsu
- a Department of Dermatology, School of Medicine , University of California Davis , Sacramento , CA , USA
| | - Kang-Hsin Wang
- a Department of Dermatology, School of Medicine , University of California Davis , Sacramento , CA , USA
| | - Yuanshen Huang
- b Molecular Medicine Laboratory, Department of Dermatology and Skin Science , University of British Columbia , Vancouver , Canada
| | - Lindsay Mendoza
- a Department of Dermatology, School of Medicine , University of California Davis , Sacramento , CA , USA
| | - Youwen Zhou
- b Molecular Medicine Laboratory, Department of Dermatology and Skin Science , University of British Columbia , Vancouver , Canada
| | - Sam T Hwang
- a Department of Dermatology, School of Medicine , University of California Davis , Sacramento , CA , USA
| |
Collapse
|
27
|
Mocellin S, Panelli M, Wang E, Rossi CR, Marincola FM. Tumor Microenvironment: What have we Learned Studying the Immune Response in this Puzzling Battlefield? TUMORI JOURNAL 2018; 88:437-44. [PMID: 12597134 DOI: 10.1177/030089160208800601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recent developments hallmark the progress in the understanding of tumor immunology and related therapeutic strategies. The administration of interleukin-2 (IL-2) to patients with cancer has shown that immune manipulation can mediate the regression of established cancers. The identification of the genes encoding cancer antigens and the development of means for effectively immunizing against these antigens has opened new avenues for the development of active immunization of patients with cancer. However, an efficient immune response against tumor comprises an intricate molecular network still poorly understood. Only when the code governing immune responsiveness of cancer will be deciphered, new therapeutic strategies could be designed to fit biologically defined mechanisms of immune rejection of cancer. In this review, we propose that the mechanisms regulating tumor rejection in response to vaccination will be more efficiently identified by following the evolution of treatment induced events within the tumor microenvironment taking advantage of recently developed technological tools. As a model, we will discuss the observed immune response to tumor antigen -specific immunization and its relationship with the systemic administration of IL-2.
Collapse
Affiliation(s)
- Simone Mocellin
- Immunnogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
28
|
Halim L, Romano M, McGregor R, Correa I, Pavlidis P, Grageda N, Hoong SJ, Yuksel M, Jassem W, Hannen RF, Ong M, Mckinney O, Hayee B, Karagiannis SN, Powell N, Lechler RI, Nova-Lamperti E, Lombardi G. An Atlas of Human Regulatory T Helper-like Cells Reveals Features of Th2-like Tregs that Support a Tumorigenic Environment. Cell Rep 2018; 20:757-770. [PMID: 28723576 PMCID: PMC5529316 DOI: 10.1016/j.celrep.2017.06.079] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/16/2017] [Accepted: 06/26/2017] [Indexed: 02/07/2023] Open
Abstract
Regulatory T cells (Tregs) play a pivotal role in maintaining immunological tolerance, but they can also play a detrimental role by preventing antitumor responses. Here, we characterized T helper (Th)-like Treg subsets to further delineate their biological function and tissue distribution, focusing on their possible contribution to disease states. RNA sequencing and functional assays revealed that Th2-like Tregs displayed higher viability and autocrine interleukin-2 (IL-2)-mediated activation than other subsets. Th2-like Tregs were preferentially found in tissues rather than circulation and exhibited the highest migratory capacity toward chemokines enriched at tumor sites. These cellular responses led us to hypothesize that this subset could play a role in maintaining a tumorigenic environment. Concurrently, Th2-like Tregs were enriched specifically in malignant tissues from patients with melanoma and colorectal cancer compared to healthy tissue. Overall, our results suggest that Th2-like Tregs may contribute to a tumorigenic environment due to their increased cell survival, higher migratory capacity, and selective T-effector suppressive ability. Memory Tregs can be classified as T helper-like Tregs (Th2, Th17, Th1, and Th1/17) Human Th2-like Tregs exhibit the highest viability and IL-2-mediated activation Th2-like Tregs are the subset with the highest chemotaxis toward CCL17/22 Th2-like Tregs are enriched at tumor sites in melanoma and colorectal cancer
Collapse
Affiliation(s)
- Leena Halim
- MRC Centre for Transplantation, King's College London, Guy's Hospital, SE1 9RT London, UK
| | - Marco Romano
- MRC Centre for Transplantation, King's College London, Guy's Hospital, SE1 9RT London, UK
| | - Reuben McGregor
- MRC Centre for Transplantation, King's College London, Guy's Hospital, SE1 9RT London, UK
| | - Isabel Correa
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, SE1 9RT London, UK
| | - Polychronis Pavlidis
- MRC Centre for Transplantation, King's College London, Guy's Hospital, SE1 9RT London, UK
| | - Nathali Grageda
- MRC Centre for Transplantation, King's College London, Guy's Hospital, SE1 9RT London, UK
| | - Sec-Julie Hoong
- MRC Centre for Transplantation, King's College London, Guy's Hospital, SE1 9RT London, UK
| | - Muhammed Yuksel
- Institute of Liver Studies and Transplantation, King's College London, King's College Hospital, SE5 9RS London, UK
| | - Wayel Jassem
- Institute of Liver Studies and Transplantation, King's College London, King's College Hospital, SE5 9RS London, UK
| | - Rosalind F Hannen
- Centre for Cell Biology and Cutaneous Research, The Blizard Institute, Barts and the London School of Medicine and Dentistry, E1 2AT London, UK
| | - Mark Ong
- Histology/Histopathology Laboratory, King's College Hospital, SE5 9RS London, UK
| | - Olivia Mckinney
- Histology/Histopathology Laboratory, King's College Hospital, SE5 9RS London, UK
| | - Bu'Hussain Hayee
- Department of Gastroenterology, King's College Hospital, SE5 9RS London, UK
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, SE1 9RT London, UK
| | - Nicholas Powell
- MRC Centre for Transplantation, King's College London, Guy's Hospital, SE1 9RT London, UK
| | - Robert I Lechler
- MRC Centre for Transplantation, King's College London, Guy's Hospital, SE1 9RT London, UK; King's Health Partners, SE1 9RT London, UK
| | | | - Giovanna Lombardi
- MRC Centre for Transplantation, King's College London, Guy's Hospital, SE1 9RT London, UK.
| |
Collapse
|
29
|
Morrot A, da Fonseca LM, Salustiano EJ, Gentile LB, Conde L, Filardy AA, Franklim TN, da Costa KM, Freire-de-Lima CG, Freire-de-Lima L. Metabolic Symbiosis and Immunomodulation: How Tumor Cell-Derived Lactate May Disturb Innate and Adaptive Immune Responses. Front Oncol 2018; 8:81. [PMID: 29629338 PMCID: PMC5876249 DOI: 10.3389/fonc.2018.00081] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/09/2018] [Indexed: 12/14/2022] Open
Abstract
The tumor microenvironment (TME) is composed by cellular and non-cellular components. Examples include the following: (i) bone marrow-derived inflammatory cells, (ii) fibroblasts, (iii) blood vessels, (iv) immune cells, and (v) extracellular matrix components. In most cases, this combination of components may result in an inhospitable environment, in which a significant retrenchment in nutrients and oxygen considerably disturbs cell metabolism. Cancer cells are characterized by an enhanced uptake and utilization of glucose, a phenomenon described by Otto Warburg over 90 years ago. One of the main products of this reprogrammed cell metabolism is lactate. "Lactagenic" or lactate-producing cancer cells are characterized by their immunomodulatory properties, since lactate, the end product of the aerobic glycolysis, besides acting as an inducer of cellular signaling phenomena to influence cellular fate, might also play a role as an immunosuppressive metabolite. Over the last 10 years, it has been well accepted that in the TME, the lactate secreted by transformed cells is able to compromise the function and/or assembly of an effective immune response against tumors. Herein, we will discuss recent advances regarding the deleterious effect of high concentrations of lactate on the tumor-infiltrating immune cells, which might characterize an innovative way of understanding the tumor-immune privilege.
Collapse
Affiliation(s)
- Alexandre Morrot
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | | | - Eduardo J. Salustiano
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Boffoni Gentile
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Conde
- Instituto de Microbiologia, Departamento de Imunologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandra Almeida Filardy
- Instituto de Microbiologia, Departamento de Imunologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiany Nunes Franklim
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kelli Monteiro da Costa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Leonardo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Zhang B, Hu Y, Pang Z. Modulating the Tumor Microenvironment to Enhance Tumor Nanomedicine Delivery. Front Pharmacol 2017; 8:952. [PMID: 29311946 PMCID: PMC5744178 DOI: 10.3389/fphar.2017.00952] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/15/2017] [Indexed: 12/18/2022] Open
Abstract
Nanomedicines including liposomes, micelles, and nanoparticles based on the enhanced permeability and retention (EPR) effect have become the mainstream for tumor treatment owing to their superiority over conventional anticancer agents. Advanced design of nanomedicine including active targeting nanomedicine, tumor-responsive nanomedicine, and optimization of physicochemical properties to enable highly effective delivery of nanomedicine to tumors has further improved their therapeutic benefits. However, these strategies still could not conquer the delivery barriers of a tumor microenvironment such as heterogeneous blood flow, dense extracellular matrix, abundant stroma cells, and high interstitial fluid pressure, which severely impaired vascular transport of nanomedicines, hindered their effective extravasation, and impeded their interstitial transport to realize uniform distribution inside tumors. Therefore, modulation of tumor microenvironment has now emerged as an important strategy to improve nanomedicine delivery to tumors. Here, we review the existing strategies and approaches for tumor microenvironment modulation to improve tumor perfusion for helping more nanomedicines to reach the tumor site, to facilitate nanomedicine extravasation for enhancing transvascular transport, and to improve interstitial transport for optimizing the distribution of nanomedicines. These strategies may provide an avenue for the development of new combination chemotherapeutic regimens and reassessment of previously suboptimal agents.
Collapse
Affiliation(s)
- Bo Zhang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, China
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqing Pang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, China
| |
Collapse
|
31
|
Chuang MH, Chang JT, Hsu LJ, Jan MS, Lu FJ. Antitumor Activity of the Chinese Medicine JC-001 Is Mediated by Immunomodulation in a Murine Model of Hepatocellular Carcinoma. Integr Cancer Ther 2017; 16:516-525. [PMID: 27698264 PMCID: PMC5739137 DOI: 10.1177/1534735416664173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 06/29/2016] [Accepted: 07/11/2016] [Indexed: 01/01/2023] Open
Abstract
JC-001 is a Chinese medicine that has been used to treat liver disease; however, its significance in cancer treatment has not been characterized. In this study, we used an immunocompetent tumor model to characterize the antitumor activity of JC-001. A total of 48 Hepa 1-6 tumor-bearing C57BL/6 mice were randomly grouped into 4 groups and treated with H2O or JC-001 via oral administration. After hepatoma cell lines, including HepG2, Hep3B, SK-Hep-1, and Hepa 1-6, underwent 96 hours of JC-001 treatment, a low cytotoxic effect was observed. In contrast, no direct cytotoxic effect of JC-001 on a normal human liver cell line, THLE-3, was observed under the same incubation conditions. Using a murine tumor model, we found that tumor growth could be inhibited by JC-001 in C57BL/6 mice but not in immunodeficient mice. Histopathological analysis of tumors from C57BL/6 mice revealed immune cell infiltration in tumors from the JC-001-treated group, as observed by hematoxylin and eosin staining; in addition, Ki67, hypoxia-inducible factor-1-α, and high mobility group box 1 expression levels were suppressed in the tumors. Both the coculture assay and murine spleen mRNA quantitative PCR analyses demonstrated that JC-001 could suppress Th17 immunity. Our data suggest that JC-001 is a Chinese medicine with low cytotoxicity that can significantly suppress tumor growth by immune regulation. This herbal remedy has great potential for future clinical application in hepatoma therapy.
Collapse
Affiliation(s)
- Meng-Hsien Chuang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jinghua Tsai Chang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Chest Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Li-Jin Hsu
- Department of Medical Laboratory Science and Technology, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Shiou Jan
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Immunology Research Center, Chung Shan Medical University, Taichung,Taiwan
- Division of Allergy, Immunology and Rheumatology, Department ofInternal Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Fung-Jou Lu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
32
|
Valedkarimi Z, Nasiri H, Aghebati-Maleki L, Majidi J. Antibody-cytokine fusion proteins for improving efficacy and safety of cancer therapy. Biomed Pharmacother 2017; 95:731-742. [PMID: 28888210 DOI: 10.1016/j.biopha.2017.07.160] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/25/2017] [Accepted: 07/30/2017] [Indexed: 12/23/2022] Open
|
33
|
Prasad R, Singh T, Katiyar SK. Honokiol inhibits ultraviolet radiation-induced immunosuppression through inhibition of ultraviolet-induced inflammation and DNA hypermethylation in mouse skin. Sci Rep 2017; 7:1657. [PMID: 28490739 PMCID: PMC5431968 DOI: 10.1038/s41598-017-01774-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/30/2017] [Indexed: 01/10/2023] Open
Abstract
Ultraviolet (UV) radiation exposure induces immunosuppression, which contributes to the development of cutaneous malignancies. We investigated the effects of honokiol, a phytochemical found in plants of the genus Magnolia, on UVB-induced immunosuppression using contact hypersensitivity (CHS) as a model in C3H/HeN mice. Topical application of honokiol (0.5 and 1.0 mg/cm2 skin area) had a significant preventive effect on UVB-induced suppression of the CHS response. The inflammatory mediators, COX-2 and PGE2, played a key role in this effect, as indicated by honokiol inhibition of cyclooxygenase-2 (COX-2) expression and PGE2 production in the UVB-exposed skin. Honokiol application also inhibited UVB-induced DNA hypermethylation and its elevation of the levels of TET enzyme, which is responsible for DNA demethylation in UVB-exposed skin. This was consistent with the restoration of the CHS response in mice treated with the DNA demethylating agent, 5-aza-2'-deoxycytidine, after UVB exposure. There was no significant difference in the levels of inhibition of UVB-induced immunosuppression amongst mice that were treated topically with available anti-cancer drugs (imiquimod and 5-fluorouracil). This study is the first to show that honokiol has the ability to inhibit UVB-induced immunosuppression in preclinical model and, thus, has potential for use as a chemopreventive strategy for UVB radiation-induced malignancies.
Collapse
Affiliation(s)
- Ram Prasad
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA
| | - Tripti Singh
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Santosh K Katiyar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA.
- Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
34
|
Cho HJ, Kim SS, Nam JS, Oh MJ, Kang DR, Kim JK, Lee JH, Kim B, Yang MJ, Hwang JC, Lim SG, Shin SJ, Lee KM, Yoo BM, Lee KJ, Cho SW, Cheong JY. Higher serum interleukin-17A levels as a potential biomarker for predicting early disease progression in patients with hepatitis B virus-associated advanced hepatocellular carcinoma treated with sorafenib. Cytokine 2017; 95:118-125. [PMID: 28260649 DOI: 10.1016/j.cyto.2017.02.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/14/2017] [Accepted: 02/20/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Although sorafenib is the only available drug with proven efficacy for patients with advanced hepatocellular carcinoma (HCC), the clinical efficacy of sorafenib is variable and unpredictable. The aim of the current study was to identify potential serum biomarkers predicting cancer progression and overall survival (OS) in patients with hepatitis B virus (HBV)-related advanced HCC treated with sorafenib. METHODS Thirty-four patients with HBV-related advanced HCC (modified Union for International Cancer Control [UICC] stage IVa or IVb) treated with sorafenib for more than 4weeks were retrospectively enrolled. Using a Luminex 200 system, 11 cytokines including interleukin-17A (IL-17A) were measured in baseline serum samples prior to sorafenib administration. Several clinical factors and the serum concentrations of the 11 cytokines were analyzed using Cox regression analysis. RESULTS In the analysis of progression-free survival (PFS), older age (year; hazard ratio [HR]=1.07; 95% confidence interval [CI]=1.00-1.15; P=0.046) and higher baseline serum IL-17A level (>1.94pg/mL; HR=19.96; 95% CI=3.32-119.86; P=0.001) were identified as significant risk factors for early progression with good predictive power (Harrell's C=0.817, standard error estimates (se)=0.085). In the analysis of OS, higher Child-Pugh score (>5; HR=2.35, 95% CI=1.09-5.10, P=0.030) and lower serum baseline fibroblast growth factor-2 level (≤20.57pg/mL; HR=3.24, 95% CI=1.22-8.60, P=0.018) were identified as negative predictive factors for OS, even though the model did not have significant predictive power (Harrell's C=0.634, se=0.062). CONCLUSION A higher serum IL-17A level is a potential biomarker for predicting poor PFS in patients with HBV-related advanced HCC treated with sorafenib.
Collapse
Affiliation(s)
- Hyo Jung Cho
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Soon Sun Kim
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Ji Sun Nam
- Human Genome Research & Bio-resource Center, Ajou University Medical Center, Suwon, Republic of Korea
| | - Min Jung Oh
- Office of Biostatistics, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Dae Ryong Kang
- Office of Biostatistics, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jai Keun Kim
- Department of Radiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jei Hee Lee
- Department of Radiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Bohyun Kim
- Department of Radiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Min Jae Yang
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jae Chul Hwang
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sun Gyo Lim
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sung Jae Shin
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Kee Myung Lee
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Byung Moo Yoo
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Kwang Jae Lee
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sung Won Cho
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jae Youn Cheong
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
35
|
Hypermethylation of IFN-γ in oral cancer tissues. Clin Oral Investig 2017; 21:2535-2542. [PMID: 28091876 DOI: 10.1007/s00784-017-2052-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 01/05/2017] [Indexed: 01/01/2023]
Abstract
OBJECTIVES The study aimed to evaluate the methylation pattern of the interferon-gamma (IFN-γ) gene in oral cancer tissues compared with normal and benign oral disease tissues. MATERIALS AND METHODS The oral tissues were gained from the patients of 85 cases of oral squamous cell carcinoma (OSCC), 47 cases of oral dysplastic lesions, and 53 normal biopsies. IFN -γ methylation in oral tissues was verified through methylation-specific polymerase chain reaction (PCR) and DNA sequencing analyses, and the expression levels of IFN-γ messenger RNA (mRNA) and protein were detected using real-time reverse transcription (RT)-PCR and enzyme-linked immunosorbent assays, respectively. IFN-γ was localized in macrophages from oral tissues and detected via immunostaining. RESULTS IFN-γ mRNA and protein expression levels were evidently decreased in oral cancer tissues, whereas the IFN-γ methylation rate was significantly higher in malignant tumors than in benign and normal tissues (normal, 22.6%; benign, 38.3%; and cancer, 55.3%; P < 0.05). Furthermore, the expression of IFN-γ mRNA was significantly downregulated in oral tumors with methylation compared with tumors without methylation, as determined by real-time RT-PCR (4.76-fold difference; P < 0.05). Likewise, mRNA expression was downregulated by 6.79-fold in oral epithelial dysplasia tissues with methylation compared with those without methylation (P < 0.01). Co-immunostaining to detect MAC2 and IFN-γ demonstrated that macrophages comprised the main source of IFN-γ in oral tissues. IFN-γ methylation demonstrated a significant association with the clinical stage, histopathology grade, and primary tumor. CONCLUSIONS Aberrant IFN-γ promoter methylation may be involved in the process of tumorigenesis of oral cancer. CLINICAL RELEVANCE IFN-γ hypermethylation during the process of oral carcinogenesis could be useful for the clinical diagnosis and treatment for OSCC.
Collapse
|
36
|
Alexander ET, Minton AR, Peters MC, van Ryn J, Gilmour SK. Thrombin inhibition and cisplatin block tumor progression in ovarian cancer by alleviating the immunosuppressive microenvironment. Oncotarget 2016; 7:85291-85305. [PMID: 27852034 PMCID: PMC5356737 DOI: 10.18632/oncotarget.13300] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/26/2016] [Indexed: 12/11/2022] Open
Abstract
Cancer is often associated with an increased risk of thrombotic complications which can be aggravated by treatment with chemotherapeutics such as cisplatin. Multiple lines of evidence suggest that thrombin activity promotes tumor growth and metastasis. We examined the effect of co-treatment with dabigatran etexilate, a direct thrombin inhibitor, and cisplatin using the murine ID8 ovarian cancer model. Mice receiving co-treatment with both dabigatran etexilate and low dose cisplatin had significantly smaller tumors, developed less ascites and had lower levels of circulating activated platelets and tissue factor (TF) positive microparticles than those treated with dabigatran etexilate or cisplatin alone. Co-treatment with dabigatran etexilate and cisplatin significantly decreased the number of Gr1+/CD11b+ myeloid derived suppresser cells and CD11b+/CD11c+ dendritic cells in the ascites of ID8 tumor-bearing mice. Co-treatment also significantly reduced levels of pro-tumorigenic cytokines including TGF-β, VEGF, IL-6, IL-10, and MCP-1 in the ascites while increasing IFN-γ production by CD8+ effector T cells in the tumor ascites. These results demonstrate that co-treatment with dabigatran etexilate significantly augments the anti-tumor activity of cisplatin in ovarian tumor progression by alleviating the immunosuppressive microenvironment, suggesting that thrombin may be a potential therapeutic target for treatment of ovarian cancer.
Collapse
Affiliation(s)
| | | | - Molly C. Peters
- Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA
| | - Joanne van Ryn
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Susan K. Gilmour
- Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA
| |
Collapse
|
37
|
Jiang C, Yuan F, Wang J, Wu L. Oral squamous cell carcinoma suppressed antitumor immunity through induction of PD-L1 expression on tumor-associated macrophages. Immunobiology 2016; 222:651-657. [PMID: 28017495 DOI: 10.1016/j.imbio.2016.12.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 11/03/2016] [Accepted: 12/13/2016] [Indexed: 12/22/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common solid tumor in the oral cavity. Development and progression of OSCC is associated with the elevated presence of inhibitory M2 type tumor-associated macrophages (TAMs). However, the underlying mechanism leading to the enrichment of M2 TAMs and the pathway through which TAMs foster tumor progression are still unclear. In this study, we harvested TAMs and tumor cells from primary OSCC resections of stage II and stage III patients. We showed that compared to peritumoral macrophages, TAMs presented upregulated expression of PD-L1 and elevated capacity in inducing T cell apoptosis. The level of PD-L1 expression directly correlated with the level of T cell apoptosis. Interestingly, peripheral blood monocytes with low initial PD-L1 level had upregulated PD-L1 expression and acquired the ability to induce T cell apoptosis, after incubation with primary tumor cells from OSCC patients. The PD-L1 expression by monocytes depended on interleukin 10 (IL-10), since blockade of IL-10 in the tumor-monocyte coculture abrogated PD-L1 upregulation. IL-10 mRNA expression in tumor cells and monocytes also preceded PD-L1 mRNA expression in monocytes. Furthermore, the IL-10 concentration in the tumor microenvironment directly correlated with the PD-L1 level on TAMs. Together, these results suggest that OSCC could directly suppress antitumor T cell immunity through conditioning TAMs.
Collapse
Affiliation(s)
- Canhua Jiang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Fulai Yuan
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Jie Wang
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, 410078, China.
| | - Limeng Wu
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China
| |
Collapse
|
38
|
Mirzaei HR, Mirzaei H, Lee SY, Hadjati J, Till BG. Prospects for chimeric antigen receptor (CAR) γδ T cells: A potential game changer for adoptive T cell cancer immunotherapy. Cancer Lett 2016; 380:413-423. [PMID: 27392648 PMCID: PMC5003697 DOI: 10.1016/j.canlet.2016.07.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 06/29/2016] [Accepted: 07/01/2016] [Indexed: 12/20/2022]
Abstract
Excitement is growing for therapies that harness the power of patients' immune systems to combat their diseases. One approach to immunotherapy involves engineering patients' own T cells to express a chimeric antigen receptor (CAR) to treat advanced cancers, particularly those refractory to conventional therapeutic agents. Although these engineered immune cells have made remarkable strides in the treatment of patients with certain hematologic malignancies, success with solid tumors has been limited, probably due to immunosuppressive mechanisms in the tumor niche. In nearly all studies to date, T cells bearing αβ receptors have been used to generate CAR T cells. In this review, we highlight biological characteristics of γδ T cells that are distinct from those of αβ T cells, including homing to epithelial and mucosal tissues and unique functions such as direct antigen recognition, lack of alloreactivity, and ability to present antigens. We offer our perspective that these features make γδ T cells promising for use in cellular therapy against several types of solid tumors, including melanoma and gastrointestinal cancers. Engineered γδ T cells should be considered as a new platform for adoptive T cell cancer therapy for mucosal tumors.
Collapse
MESH Headings
- Animals
- Genes, T-Cell Receptor delta
- Genes, T-Cell Receptor gamma
- Genetic Therapy/methods
- Humans
- Immunotherapy, Adoptive/methods
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/transplantation
- Neoplasms/genetics
- Neoplasms/metabolism
- Neoplasms/pathology
- Neoplasms/therapy
- Phenotype
- Receptors, Antigen, T-Cell, gamma-delta/biosynthesis
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
- Tumor Microenvironment
Collapse
Affiliation(s)
- Hamid Reza Mirzaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Hamed Mirzaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sang Yun Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jamshid Hadjati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Brian G Till
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
39
|
Jammal MP, Martins-Filho A, Silveira TP, Murta EFC, Nomelini RS. Cytokines and Prognostic Factors in Epithelial Ovarian Cancer. Clin Med Insights Oncol 2016; 10:71-6. [PMID: 27512342 PMCID: PMC4973765 DOI: 10.4137/cmo.s38333] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 07/07/2016] [Accepted: 07/09/2016] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Ovarian cancer has a high mortality and delayed diagnosis. Inflammation is a risk factor for ovarian cancer, and the inflammatory response is involved in almost all stages of tumor development. Immunohistochemical staining in stroma and epithelium of a panel of cytokines in benign and malignant ovarian neoplasm was evaluated. In addition, immunostaining was related to prognostic factors in malignant tumors. METHOD The study group comprised 28 ovarian benign neoplasias and 28 ovarian malignant neoplasms. A panel of cytokines was evaluated by immunohistochemistry (Th1: IL-2 and IL-8; Th2: IL-5, IL-6, and IL-10; and TNFR1). Chi-square test with Yates' correction was used, which was considered significant if less than 0.05. RESULTS TNFR1, IL-5, and IL-10 had more frequent immunostaining 2/3 in benign neoplasms compared with malignant tumors. Malignant tumors had more frequent immunostaining 2/3 for IL-2 in relation to benign tumors. The immunostaining 0/1 of IL 8 was more frequent in the stroma of benign neoplasms compared with malignant neoplasms. Evaluation of the ovarian cancer stroma showed that histological grade 3 was significantly correlated with staining 2/3 for IL-2 (P = 0.004). Women whose disease-free survival was less than 2.5 years had TNFR1 stromal staining 2/3 (P = 0.03) more frequently. CONCLUSION IL-2 and TNFR1 stromal immunostaining are related prognostic factors in ovarian cancer and can be the target of new therapeutic strategies.
Collapse
Affiliation(s)
- Millena Prata Jammal
- Research Institute of Oncology (IPON)/Discipline of Gynecology and Obstetrics, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Agrimaldo Martins-Filho
- Research Institute of Oncology (IPON)/Discipline of Gynecology and Obstetrics, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Thales Parenti Silveira
- Discipline of Special Pathology, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Eddie Fernando Candido Murta
- Research Institute of Oncology (IPON)/Discipline of Gynecology and Obstetrics, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Rosekeila Simões Nomelini
- Research Institute of Oncology (IPON)/Discipline of Gynecology and Obstetrics, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| |
Collapse
|
40
|
Cardillo MR, Ippoliti F. Interleukin-6, Interleukin-10 and Heat Shock Protein-90 Expression in Renal Epithelial Neoplasias and Surrounding Normal-Appearing Renal Parenchyma. Int J Immunopathol Pharmacol 2016; 20:37-46. [PMID: 17346426 DOI: 10.1177/039463200702000105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Cytokines, notably the interleukins IL-6 and IL-10, have an important role in the development and progression of renal-cell carcinomas, acting in the host-tumor interaction and in tumor bulk. Heat shock proteins (HSP), in particular HSP-90, may have a regulatory role in cytokine biosynthesis and prognostic implication in some tumors. To define the roles of the cytokines IL-6 and IL-10 and HSP-90 in the progression of renal-cell carcinoma we analyzed immunohistochemical expression of these proteins in human renal-cell carcinomas from 95 total nephrectomies. IL-6, IL-10 and HSP-90 proteins were more strongly expressed in epithelium and stroma of the renal tumoral compartment than in adjacent normal peritumoral tissue. But the difference reached significance only for HSP-90 protein. The percentage of cells expressing IL-6, IL-10 and HSP-90 immunoreactivity was higher in benign epithelial tumors, than in normal peritumoral tissue, but lower than in renal-cell carcinomas. Whereas HSP-90 immunoreactivity seemed higher in more aggressive histological phenotypes (collecting-duct carcinoma) of renal-cell carcinomas, IL-10 protein levels were higher in more advanced TNM stage (pT3) tumors. Our observation suggests that IL-6 and IL-10 and HSP-90 may be useful markers associated with the development and progression of renal-cell carcinomas and have independent functional roles in this malignant condition.
Collapse
Affiliation(s)
- M R Cardillo
- Department of Experimental Medicine and Pathology, Section of Pathologic Anatomy-Uropathology Unit, University of Rome La Sapienza, Rome, Italy.
| | | |
Collapse
|
41
|
Rainone V, Martelli C, Ottobrini L, Biasin M, Borelli M, Lucignani G, Trabattoni D, Clerici M. Immunological Characterization of Whole Tumour Lysate-Loaded Dendritic Cells for Cancer Immunotherapy. PLoS One 2016; 11:e0146622. [PMID: 26795765 PMCID: PMC4721657 DOI: 10.1371/journal.pone.0146622] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/18/2015] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Dendritic cells play a key role as initiators of T-cell responses, and even if tumour antigen-loaded dendritic cells can induce anti-tumour responses, their efficacy has been questioned, suggesting a need to enhance immunization strategies. MATHERIALS & METHODS We focused on the characterization of bone marrow-derived dendritic cells pulsed with whole tumour lysate (TAA-DC), as a source of known and unknown antigens, in a mouse model of breast cancer (MMTV-Ras). Dendritic cells were evaluated for antigen uptake and for the expression of MHC class I/II and costimulatory molecules and markers associated with maturation. RESULTS Results showed that antigen-loaded dendritic cells are characterized by a phenotypically semi-mature/mature profile and by the upregulation of genes involved in antigen presentation and T-cell priming. Activated dendritic cells stimulated T-cell proliferation and induced the production of high concentrations of IL-12p70 and IFN-γ but only low levels of IL-10, indicating their ability to elicit a TH1-immune response. Furthermore, administration of Antigen loaded-Dendritic Cells in MMTV-Ras mice evoked a strong anti-tumour response in vivo as demonstrated by a general activation of immunocompetent cells and the release of TH1 cytokines. CONCLUSION Data herein could be useful in the design of antitumoral DC-based therapies, showing a specific activation of immune system against breast cancer.
Collapse
Affiliation(s)
- Veronica Rainone
- Department of Biomedical and Clinical Sciences “L. Sacco”, Chair of Immunology, University of Milan, Milan, Italy
| | - Cristina Martelli
- Department of Pathophysiology and Transplantation, University of Milan, Segrate, Milan, Italy
- Centre of Molecular and Cellular Imaging—IMAGO, University of Milan, Milan, Italy
| | - Luisa Ottobrini
- Department of Pathophysiology and Transplantation, University of Milan, Segrate, Milan, Italy
- Centre of Molecular and Cellular Imaging—IMAGO, University of Milan, Milan, Italy
- Institute for Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences “L. Sacco”, Chair of Immunology, University of Milan, Milan, Italy
| | - Manuela Borelli
- Department of Biomedical and Clinical Sciences “L. Sacco”, Chair of Immunology, University of Milan, Milan, Italy
| | - Giovanni Lucignani
- Centre of Molecular and Cellular Imaging—IMAGO, University of Milan, Milan, Italy
- Departments of Health Sciences, University of Milan, Milan, Italy
- Department of Diagnostic Services, Unit of Nuclear Medicine, San Paolo Hospital, Milan, Italy
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences “L. Sacco”, Chair of Immunology, University of Milan, Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Segrate, Milan, Italy
- Don C. Gnocchi Foundation IRCCS, Milan, Italy
| |
Collapse
|
42
|
Miao L, Lin CM, Huang L. Stromal barriers and strategies for the delivery of nanomedicine to desmoplastic tumors. J Control Release 2015; 219:192-204. [PMID: 26277065 PMCID: PMC4656082 DOI: 10.1016/j.jconrel.2015.08.017] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/06/2015] [Accepted: 08/06/2015] [Indexed: 01/09/2023]
Abstract
Nanoparticle based delivery formulations have become a leading delivery strategy for cancer imaging and therapy. The success of nanoparticle-based therapy relies heavily on their ability to utilize the enhanced permeability and retention (EPR) effect and active targeting moieties to their advantage. However, these methods often fail to enable a uniform NP distribution across the tumor, and lead to insufficient local concentrations of drug. Oftentimes, this heterogeneous drug distribution is one of the primary reasons for suboptimal treatment efficacy in NP delivery platforms. Herein, we seek to examine the biophysical causes of heterogeneous NP distribution in stroma-rich desmoplastic tumors; namely the abnormal tumor vasculature, deregulated extracellular matrix and high interstitial hypertension associated with these tumors. It is suggested that these factors help explain the discrepancy between promising outlooks for many NP formulations in preclinical studies, but suboptimal clinical outcomes for most FDA approved nanoformulations. Furthermore, examination into the role of the physicochemical properties of NPs on successful drug delivery was conducted in this review. In light of the many formidable barriers against successful NP drug delivery, we provided possible approaches to mitigate delivery issues from the perspective of stromal remodeling and NP design. In all, this review seeks to provide guidelines for optimizing nanoparticle-based cancer drug delivery through both modified nanoparticle design and alleviation of biological barriers to successful therapy.
Collapse
Affiliation(s)
- Lei Miao
- Division of Molecular Pharmaceutics and Center of Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - C Michael Lin
- Division of Molecular Pharmaceutics and Center of Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leaf Huang
- Division of Molecular Pharmaceutics and Center of Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
43
|
Tran Janco JM, Lamichhane P, Karyampudi L, Knutson KL. Tumor-infiltrating dendritic cells in cancer pathogenesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:2985-91. [PMID: 25795789 PMCID: PMC4369768 DOI: 10.4049/jimmunol.1403134] [Citation(s) in RCA: 336] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) play a pivotal role in the tumor microenvironment, which is known to affect disease progression in many human malignancies. Infiltration by mature, active DCs into the tumors confers an increase in immune activation and recruitment of disease-fighting immune effector cells and pathways. DCs are the preferential target of infiltrating T cells. However, tumor cells have means of suppressing DC function or of altering the tumor microenvironment in such a way that immune-suppressive DCs are recruited. Advances in understanding these changes have led to promising developments in cancer-therapeutic strategies targeting tumor-infiltrating DCs to subdue their immunosuppressive functions and enhance their immune-stimulatory capacity.
Collapse
Affiliation(s)
| | - Purushottam Lamichhane
- Department of Immunology, Mayo Clinic, Rochester, MN 55906; and Cancer Vaccines and Immune Therapies Program, Vaccine and Gene Therapy Institute, Port St. Lucie, FL 34987
| | - Lavakumar Karyampudi
- Cancer Vaccines and Immune Therapies Program, Vaccine and Gene Therapy Institute, Port St. Lucie, FL 34987
| | - Keith L Knutson
- Department of Immunology, Mayo Clinic, Rochester, MN 55906; and Cancer Vaccines and Immune Therapies Program, Vaccine and Gene Therapy Institute, Port St. Lucie, FL 34987
| |
Collapse
|
44
|
Epigenetic regulation of inflammatory cytokines and associated genes in human malignancies. Mediators Inflamm 2015; 2015:201703. [PMID: 25814785 PMCID: PMC4359879 DOI: 10.1155/2015/201703] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/18/2015] [Indexed: 12/12/2022] Open
Abstract
Inflammation is a multifaceted defense response of immune system against infection. Chronic inflammation has been implicated as an imminent threat for major human malignancies and is directly linked to various steps involved in tumorigenesis. Inflammatory cytokines, interleukins, interferons, transforming growth factors, chemokines, and adhesion molecules have been associated with chronic inflammation. Numerous cytokines are reported to be aberrantly regulated by different epigenetic mechanisms like DNA methylation and histone modifications in tumor tissues, contributing to pathogenesis of tumor in multiple ways. Some of these cytokines also work as epigenetic regulators of other crucial genes in tumor biology, either directly or indirectly. Such regulations are reported in lung, breast, cervical, gastric, colorectal, pancreatic, prostate, and head and neck cancers. Epigenetics of inflammatory mediators in cancer is currently subject of extensive research. These investigations may help in understanding cancer biology and to develop effective therapeutic strategies. The purpose of this paper is to have a brief view of the aberrant regulation of inflammatory cytokines in human malignancies.
Collapse
|
45
|
Rusek AM, Abba M, Eljaszewicz A, Moniuszko M, Niklinski J, Allgayer H. MicroRNA modulators of epigenetic regulation, the tumor microenvironment and the immune system in lung cancer. Mol Cancer 2015; 14:34. [PMID: 25743773 PMCID: PMC4333888 DOI: 10.1186/s12943-015-0302-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/21/2015] [Indexed: 12/11/2022] Open
Abstract
Cancer is an exceedingly complex disease that is orchestrated and driven by a combination of multiple aberrantly regulated processes. The nature and depth of involvement of individual events vary between cancer types, and in lung cancer, the deregulation of the epigenetic machinery, the tumor microenvironment and the immune system appear to be especially relevant. The contribution of microRNAs to carcinogenesis and cancer progression is well established with many reports and investigations describing the involvement of microRNAs in lung cancer, however most of these studies have concentrated on single microRNA-target relations and have not adequately addressed the complexity of their interactions. In this review, we focus, in part, on the role of microRNAs in the epigenetic regulation of lung cancer where they act as active molecules modulating enzymes that take part in methylation-mediated silencing and chromatin remodeling. Additionally, we highlight their contribution in controlling and modulating the tumor microenvironment and finally, we describe their role in the critical alteration of essential molecules that influence the immune system in lung cancer development and progression.
Collapse
Affiliation(s)
- Anna Maria Rusek
- Department of Clinical Molecular Biology, Medical University of Bialystok, Waszyngtona 13, Białystok, 15-269, Poland.
- Department of Experimental Surgery, Medical Faculty Mannheim, Heidelberg University, Theodor Kutzer Ufer 1-3, 68135, Mannheim, Germany.
- Molecular Oncology of Solid Tumors, DKFZ (German Cancer Research Centre), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Mohammed Abba
- Department of Experimental Surgery, Medical Faculty Mannheim, Heidelberg University, Theodor Kutzer Ufer 1-3, 68135, Mannheim, Germany.
- Molecular Oncology of Solid Tumors, DKFZ (German Cancer Research Centre), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Waszyngtona 13, Białystok, 15-269, Poland.
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Waszyngtona 13, Białystok, 15-269, Poland.
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Bialystok, Waszyngtona 13, Białystok, 15-269, Poland.
| | - Heike Allgayer
- Department of Experimental Surgery, Medical Faculty Mannheim, Heidelberg University, Theodor Kutzer Ufer 1-3, 68135, Mannheim, Germany.
- Molecular Oncology of Solid Tumors, DKFZ (German Cancer Research Centre), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
46
|
Baxevanis CN, Anastasopoulou EA, Voutsas IF, Papamichail M, Perez SA. Immune biomarkers: how well do they serve prognosis in human cancers? Expert Rev Mol Diagn 2014; 15:49-59. [PMID: 25345403 DOI: 10.1586/14737159.2015.965684] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In order to be optimally efficacious, therapeutic cancer vaccines must induce robust tumor-specific CD8(+) cytotoxic T cells, which are responsible for tumor cell lysis. Unlike cytotoxic drugs, which act directly on the tumor, cancer vaccines demonstrate new kinetics involving the generation of specific cellular immune responses, which need to be translated into antitumor responses to delay tumor progression and improve survival. These delayed kinetics of action establish a new concept of benefit in the long term, which implies a slow down in tumor growth rates, than a marked reduction in tumor size. Therefore, there is a significant need to identify intermediate biomarkers so that clinical responses can be evaluated in a timely manner. Therapeutic vaccination as a modality for cancer treatment has received significant attention with multiple clinical trials demonstrating improvements in overall survival. Significant challenges to this modality remain, including increasing vaccine potency and minimizing treatment-related toxicities and identifying prognostic and predictive biomarkers of clinical benefit that may guide to select and optimize the therapeutic strategies for patients most likely to gain benefit.
Collapse
Affiliation(s)
- Constantin N Baxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras avenue, Athens 11522, Greece
| | | | | | | | | |
Collapse
|
47
|
Roselli M, Cereda V, di Bari MG, Formica V, Spila A, Jochems C, Farsaci B, Donahue R, Gulley JL, Schlom J, Guadagni F. Effects of conventional therapeutic interventions on the number and function of regulatory T cells. Oncoimmunology 2014; 2:e27025. [PMID: 24353914 PMCID: PMC3862634 DOI: 10.4161/onci.27025] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Several lines of investigation have revealed the apparent interplay between the immune system of the host and many conventional, “standard-of-care” anticancer therapies, including chemotherapy and small molecule targeted therapeutics. In particular, preclinical and clinical studies have demonstrated the important role of regulatory T cells (Tregs) in inhibiting immune responses elicited by immunotherapeutic regimens such as those based on anticancer vaccines or checkpoint inhibitors. However, how the number and immunosuppressive function of Tregs change in cancer patients undergoing treatment with non-immune anticancer therapies remains to be precisely elucidated. To determine whether immunostimulatory therapies can be employed successfully in combination with conventional anticancer regimens, we have investigated both the number and function of Tregs obtained from the peripheral blood of carcinoma patients before the initiation and during the course of chemotherapeutic and targeted agent regimens. Our studies show that the treatment of breast cancer patients with tamoxifen plus leuprolide, a gonadotropin releasing hormone agonist, has minimal effects on Tregs, while sunitinib appears to exert differential effects on Tregs among patients with metastatic renal carcinoma. However, the administration of docetaxel to patients with metastatic prostate or breast cancer, as well as that of cisplatin plus vinorelbine to non-small cell lung cancer patients, appears to significantly increase the ratio between effector T cells and Tregs and to reduce the immunosuppressive activity of the latter in the majority of patients. These studies provide the rationale for the selective use of active immunotherapy regimens in combination with specific standard-of-care therapies to achieve the most beneficial clinical outcome among carcinoma patients.
Collapse
Affiliation(s)
- Mario Roselli
- Medical Oncology; Department of Internal Medicine; Tor Vergata University Clinical Center; University of Rome Tor Vergata; Rome, Italy
| | - Vittore Cereda
- Medical Oncology; Department of Internal Medicine; Tor Vergata University Clinical Center; University of Rome Tor Vergata; Rome, Italy
| | - Maria Giovanna di Bari
- Interinstitutional Multidisciplinary Biobank (BioBIM); Department of Laboratory Medicine and Advanced Biotechnologies; IRCCS San Raffaele Pisana; Rome, Italy
| | - Vincenzo Formica
- Medical Oncology; Department of Internal Medicine; Tor Vergata University Clinical Center; University of Rome Tor Vergata; Rome, Italy
| | - Antonella Spila
- Interinstitutional Multidisciplinary Biobank (BioBIM); Department of Laboratory Medicine and Advanced Biotechnologies; IRCCS San Raffaele Pisana; Rome, Italy
| | - Caroline Jochems
- Laboratory of Tumor Immunology and Biology; Center for Cancer Research; National Cancer Institute; National Institutes of Health; Bethesda, MD USA
| | - Benedetto Farsaci
- Laboratory of Tumor Immunology and Biology; Center for Cancer Research; National Cancer Institute; National Institutes of Health; Bethesda, MD USA
| | - Renee Donahue
- Laboratory of Tumor Immunology and Biology; Center for Cancer Research; National Cancer Institute; National Institutes of Health; Bethesda, MD USA
| | - James L Gulley
- Laboratory of Tumor Immunology and Biology; Center for Cancer Research; National Cancer Institute; National Institutes of Health; Bethesda, MD USA ; Medical Oncology Branch; Center for Cancer Research; National Cancer Institute; National Institutes of Health; Bethesda, MD USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology; Center for Cancer Research; National Cancer Institute; National Institutes of Health; Bethesda, MD USA
| | - Fiorella Guadagni
- Interinstitutional Multidisciplinary Biobank (BioBIM); Department of Laboratory Medicine and Advanced Biotechnologies; IRCCS San Raffaele Pisana; Rome, Italy
| |
Collapse
|
48
|
Ma D, Jiang C, Hu X, Li Q, Li T, Yang Y, Li O. Methylation patterns of the IFN-γ gene in cervical cancer tissues. Sci Rep 2014; 4:6331. [PMID: 25208560 PMCID: PMC4160705 DOI: 10.1038/srep06331] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 08/20/2014] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To explore the relationship between methylation of interferon gamma (IFN-γ) gene and tumorigenesis in cervical cancer tissues, the biopsy specimens of cervical cancer and cervical intraepithelial neoplasia (CIN) (I-III) patients as well as normal controls were collected and analyzed. METHODS The methylation of the IFN-γ gene was verified by using methylation-specific PCR and DNA sequencing analysis, and the expression levels of IFN-γ mRNA were detected using quantitative real-time reverse transcriptase-polymerase chain reaction (qRT-PCR). RESULTS The methylation rates of the IFN-γ gene were significantly higher in cervical cancer tissues (15/43, 34.9%) than those in CIN (3/23, 13.0% of CIN I; 6/39, 15.4% of CIN II/III) and normal cervical tissues (2/43, 4.7%) (P < 0.01). Furthermore, the mRNA expression of IFN-γ in cervical tumors with methylation (0.71 ± 0.13, n = 8) was lower than that in those without methylation (1.58 ± 0.32, n = 27) (P < 0.05). Likewise, the IFN-γ expression levels in CIN II/III tissues with methylation (0.87 ± 0.16, n = 5) were significantly (P < 0.01) lower compared to those without methylation (2.12 ± 0.27, n = 32). CONCLUSION The hypermethylation of IFN-γ gene may be related with tumorigenesis of cervical cancer.
Collapse
Affiliation(s)
- Dong Ma
- School of Public Health, Hebei United University, Jianshe Road 57, Tangshan 063000, Hebei, People's Republic of China
- These authors contributed equally to this work
| | - Chunyang Jiang
- Department of Thoracic Surgery, Tianjin Union Medicine Centre, 190 Jieyuan Road, Hongqiao District, Tianjin 300121, Tianjin, People's Republic of China
- These authors contributed equally to this work
| | - Xiaoli Hu
- Department of Respiratory Medicine, People's Hospital of Qitaihe City, 37 Shanhu Road, Qitaihe 154600, Heilongjiang, People's Republic of China
- These authors contributed equally to this work
| | - Qingzhao Li
- School of Public Health, Hebei United University, Jianshe Road 57, Tangshan 063000, Hebei, People's Republic of China
| | - Tingting Li
- School of Public Health, Hebei United University, Jianshe Road 57, Tangshan 063000, Hebei, People's Republic of China
| | - Yanyan Yang
- Department of Obstetrics and Gynecology, Workers' Hospital of Tangshan, Wenhua road 27, Tangshan 063000, Hebei, People's Republic of China
| | - Ou Li
- Department of Obstetrics and Gynecology, Workers' Hospital of Tangshan, Wenhua road 27, Tangshan 063000, Hebei, People's Republic of China
| |
Collapse
|
49
|
Miteva LD, Stanilov NS, Deliysky TS, Stanilova SA. Significance of -1082A/G polymorphism of IL10 gene for progression of colorectal cancer and IL-10 expression. Tumour Biol 2014; 35:12655-64. [PMID: 25209180 DOI: 10.1007/s13277-014-2589-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/03/2014] [Indexed: 11/26/2022] Open
Abstract
The role of functional polymorphism within IL10 (rs1800896) in colorectal cancer (CRC) still remains elusive. The aim of present study was to investigate the significance of -1082A/G polymorphism in IL10 on CRC risk, progression, and overall survival in a cohort of Bulgarian patients. Also, a functional role of this polymorphism on systemic and local level of IL10 mRNA quantity and serum IL-10 level was explored. A group of 119 patients with sporadic CRC and 154 age-sex-matched controls were genotyped by allele-specific PCR. The quantification of mRNA and serum IL-10 levels was performed by real-time PCR and ELISA assays, respectively. The genotype and allelic frequency among cases and controls was similar. However, we observed significant elevation of G-allele and GG-genotype frequencies among advanced CRC. G-allele was overrepresented in advanced CRC patients (49 %) compared to early CRC (35 %) with OR = 1.77; 95%CI 1.018 ÷ 3.083; P = 0.031. A significant upregulated expression of IL10 mRNA was observed among AG/GG-genotypes in tumor tissue compared to homozygous AA-genotype (RQ value 68.3 vs. 6.68; P = 0.0062). Also, GG-genotype of -1082A/G polymorphism in IL10 was positively associated with higher serum IL-10 among early CRC patients and controls, in contrast to advanced cases. Although, investigated polymorphism in IL10 has no significant impact of overall survival among Bulgarian CRC patients, we found a significant relationship of high pre-operative serum level of IL-10 with poor survival of CRC (P = 0.023). Our findings indicate a significant impact of -1082A/G polymorphism of IL10 on CRC progression, rather than genetic predisposition and prognosis of CRC.
Collapse
Affiliation(s)
- Lyuba D Miteva
- Department of Molecular Biology, Immunology and Medical Genetics, Medical Faculty, Trakia University, Armeiska 11 St., 6000, Stara Zagora, Bulgaria
| | | | | | | |
Collapse
|
50
|
Young PA, Morrison SL, Timmerman JM. Antibody-cytokine fusion proteins for treatment of cancer: engineering cytokines for improved efficacy and safety. Semin Oncol 2014; 41:623-36. [PMID: 25440607 DOI: 10.1053/j.seminoncol.2014.08.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The true potential of cytokine therapies in cancer treatment is limited by the inability to deliver optimal concentrations into tumor sites due to dose-limiting systemic toxicities. To maximize the efficacy of cytokine therapy, recombinant antibody-cytokine fusion proteins have been constructed by a number of groups to harness the tumor-targeting ability of monoclonal antibodies. The aim is to guide cytokines specifically to tumor sites where they might stimulate more optimal anti-tumor immune responses while avoiding the systemic toxicities of free cytokine therapy. Antibody-cytokine fusion proteins containing interleukin (IL)-2, IL-12, IL-21, tumor necrosis factor (TNF)α, and interferons (IFNs) α, β, and γ have been constructed and have shown anti-tumor activity in preclinical and early-phase clinical studies. Future priorities for development of this technology include optimization of tumor targeting, bioactivity of the fused cytokine, and choice of appropriate agents for combination therapies. This review is intended to serve as a framework for engineering an ideal antibody-cytokine fusion protein, focusing on previously developed constructs and their clinical trial results.
Collapse
Affiliation(s)
- Patricia A Young
- Division of Hematology & Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Sherie L Morrison
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA
| | - John M Timmerman
- Division of Hematology & Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA.
| |
Collapse
|