1
|
Israel A, Raz I, Green I, Golan-Cohen A, Berkovitch M, Magen E, Vinker S, Merzon E. Health disparities in diabetes treatment: The challenge of G6PD deficiency. Diabetes Res Clin Pract 2025; 219:111965. [PMID: 39710070 DOI: 10.1016/j.diabres.2024.111965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
AIMS To assess the impact of Glucose-6-phosphate dehydrogenase (G6PD) deficiency, an enzymatic deficiency prevalent in individuals of African or Asian descent, on Hemoglobin A1c (HbA1c) levels, diabetes medication purchases, and the cumulative incidence of diabetes related complications. METHODS A large cohort study was conducted within a national health organization, comparing 3,913 G6PD-deficient patients to a matched control group without G6PD deficiency over two decades. The main measures and outcomes were the HbA1c levels, patterns of diabetes medication purchases, and the incidence of severe diabetes-related complications. RESULTS HbA1c levels significantly underestimated blood glucose concentrations in G6PD-deficient individuals. Individuals with diabetes and G6PD deficiency had lower rates of treatment with most diabetes medications, notably GLP-1 receptor agonists and SGLT2 inhibitors. Severe diabetes-related complications were more frequent among G6PD-deficient patients, with adjusted hazards ratios [95% confidence intervals] of 1.44 [1.16-1.81] for severe kidney insufficiency, 1.75 [1.23-2.49] for myocardial infarction, and 1.27 [1.02-1.58] for neuropathy. CONCLUSIONS This research highlights serious gaps in the management of G6PD-deficient patients with diabetes, who suffer from insufficient medication management and higher rates of complications. These findings underscore the need to account for G6PD deficiency in diabetes treatment to ensure equitable and effective healthcare for this vulnerable population.
Collapse
Affiliation(s)
- Ariel Israel
- Leumit Research Institute, Leumit Health Services, Tel-Aviv, Israel; Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medical & Health Sciences, Tel Aviv University, Tel-Aviv, Israel.
| | - Itamar Raz
- Diabetes Unit, Hadassah Medical Center, Jerusalem, Israel
| | - Ilan Green
- Leumit Research Institute, Leumit Health Services, Tel-Aviv, Israel; Department of Family Medicine, Faculty of Medical & Health Sciences, Tel-Aviv University, Israel
| | - Avivit Golan-Cohen
- Leumit Research Institute, Leumit Health Services, Tel-Aviv, Israel; Department of Family Medicine, Faculty of Medical & Health Sciences, Tel-Aviv University, Israel
| | - Matitiahu Berkovitch
- Clinical Pharmacology Unit, Shamir Medical Center, The Andy-Lebach Chair of Clinical Pharmacology and Toxicology, Medical School, Tel-Aviv University, Israel
| | - Eli Magen
- Medicine A Department, Assuta Ashdod University Medical Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Shlomo Vinker
- Leumit Research Institute, Leumit Health Services, Tel-Aviv, Israel; Department of Family Medicine, Faculty of Medical & Health Sciences, Tel-Aviv University, Israel
| | - Eugene Merzon
- Leumit Research Institute, Leumit Health Services, Tel-Aviv, Israel; Adelson School of Medicine, Ariel University, Ariel, Israel
| |
Collapse
|
2
|
Boonpeng K, Shibuta T, Hirooka Y, Kulkeaw K, Palasuwan D, Umemura T. Serum microRNAs as new biomarkers for detecting subclinical hemolysis in the nonacute phase of G6PD deficiency. Sci Rep 2024; 14:16029. [PMID: 38992151 PMCID: PMC11239928 DOI: 10.1038/s41598-024-67108-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the most common enzymopathies worldwide. Patients with G6PD deficiency are usually asymptomatic throughout their life but can develop acute hemolysis after exposure to free radicals or certain medications. Several studies have shown that serum miRNAs can be used as prognostic biomarkers in various types of hemolytic anemias. However, the impact of G6PD deficiency on circulating miRNA profiles is largely unknown. The present study aimed to assess the use of serum miRNAs as biomarkers for detecting hemolysis in the nonacute phase of G6PD deficiency. Patients with severe or moderate G6PD Viangchan (871G > A) deficiency and normal G6PD patients were enrolled in the present study. The biochemical hemolysis indices were normal in the three groups, while the levels of serum miR-451a, miR-16, and miR-155 were significantly increased in patients with severe G6PD deficiency. In addition, 3D analysis of a set of three miRNAs (miR-451a, miR-16, and miR-155) was able to differentiate G6PD-deficient individuals from healthy individuals, suggesting that these three miRNAs may serve as potential biomarkers for patients in the nonhemolytic phase of G6PD deficiency. In conclusion, miRNAs can be utilized as additional biomarkers to detect hemolysis in the nonacute phase of G6PD deficiency.
Collapse
Affiliation(s)
- Kanyarat Boonpeng
- Program in Clinical Hematology Sciences, Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Graduate School, Department of Medical Technology and Sciences, International University of Health and Welfare, 137-1 Enokizu, Okawa, 831-8501, Japan
| | - Tatsuki Shibuta
- Graduate School, Department of Medical Technology and Sciences, International University of Health and Welfare, 137-1 Enokizu, Okawa, 831-8501, Japan
| | - Yoshitaka Hirooka
- Graduate School, Department of Medical Technology and Sciences, International University of Health and Welfare, 137-1 Enokizu, Okawa, 831-8501, Japan
| | - Kasem Kulkeaw
- Siriraj Integrative Center for Neglected Parasitic Diseases, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2, Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand
| | - Duangdao Palasuwan
- Oxidation in Red Cell Disorders Research Unit, Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Tsukuru Umemura
- Graduate School, Department of Medical Technology and Sciences, International University of Health and Welfare, 137-1 Enokizu, Okawa, 831-8501, Japan.
- Clinical Laboratory, Kouhoukai Takagi Hospital, 141-11 Sakemi, Okawa, 831-0016, Japan.
| |
Collapse
|
3
|
Shah SS, Stone EF, Francis RO, Karafin MS. The global role of G6PD in infection and immunity. Front Immunol 2024; 15:1393213. [PMID: 38938571 PMCID: PMC11208698 DOI: 10.3389/fimmu.2024.1393213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy in humans. G6PD is an essential enzyme in the pentose phosphate pathway (PPP), generating NADPH needed for cellular biosynthesis and reactive oxygen species (ROS) homeostasis, the latter especially key in red blood cells (RBCs). Beyond the RBC, there is emerging evidence that G6PD exerts an immunologic role by virtue of its functions in leukocyte oxidative metabolism and anabolic synthesis necessary for immune effector function. We review these here, and consider the global immunometabolic role of G6PD activity and G6PD deficiency in modulating inflammation and immunopathology.
Collapse
Affiliation(s)
- Shivang S. Shah
- Department of Pediatrics, Columbia University, New York, NY, United States
| | - Elizabeth F. Stone
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Richard O. Francis
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Matthew S. Karafin
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
4
|
Zuchelkowski BE, Peñaloza HF, Xiong Z, Wang L, Cifuentes-Pagano E, Rochon E, Yang M, Gingras S, Gladwin MT, Lee JS. Increased Neutrophil H 2O 2 Production and Enhanced Pulmonary Clearance of Klebsiella pneumoniae in G6PD A- Mice. RESEARCH SQUARE 2024:rs.3.rs-3931558. [PMID: 38559268 PMCID: PMC10980108 DOI: 10.21203/rs.3.rs-3931558/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The X-linked A- variant (rs1050828, Val68Met) in G6PDX accounts for glucose-6-phosphate (G6PD) deficiency in approximately 11% of African American males. This common, hypomorphic variant may impact pulmonary host defense and phagocyte function during pneumonia by altering levels of reactive oxygen species produced by host leukocytes. We used CRISPR-Cas9 technology to generate novel mouse strain with "humanized" G6PD A- variant containing non-synonymous Val68Met single nucleotide polymorphism. Male hemizygous or littermate wild-type (WT) controls were inoculated intratracheally with K. pneumoniae (KP2 serotype, ATCC 43816 strain,103 CFU inoculum). We examined leukocyte recruitment, organ bacterial burden, bone marrow neutrophil and macrophage (BMDM) phagocytic capacity, and hydrogen peroxide (H2O2) production. Unexpectedly, G6PD-deficient mice showed decreased lung bacterial burden (p=0.05) compared to controls 24-h post-infection. Extrapulmonary dissemination and bacteremia were significantly reduced in G6PD-deficient mice 48-h post-infection. Bronchoalveolar lavage fluid (BALF) IL-10 levels were elevated in G6PD-deficient mice (p=0.03) compared to controls at 24-h but were lower at 48-h (p=0.03). G6PD A- BMDMs show mildly decreased in vitro phagocytosis of pHrodo-labeled KP2 (p=0.03). Baseline, but not stimulated, H2O2 production by G6PD A- neutrophils was greater compared to WT neutrophils. G6PD A- variant demonstrate higher basal neutrophil H2O2 production and are protected against acute Klebsiella intrapulmonary infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Minying Yang
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute
| | | | | | | |
Collapse
|
5
|
Relationship between Glucose-6-Phosphate Dehydrogenase Deficiency, X-Chromosome Inactivation and Inflammatory Markers. Antioxidants (Basel) 2023; 12:antiox12020334. [PMID: 36829893 PMCID: PMC9952105 DOI: 10.3390/antiox12020334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Recent studies suggest that X-linked glucose-6-phosphate dehydrogenase (G6PD) deficiency entails a proinflammatory state that may increase the risk of several disease conditions. However, it is not clear how this relates to the degree of enzyme insufficiency and, in heterozygous females, to skewed inactivation of the X chromosome. This study aimed to (i) investigate the enzyme activity in a cohort of 232 subjects (54.3% females) from Northern Sardinia, Italy, further stratified into three subgroups (G6PD normal, partial deficiency and total deficiency); (ii) measure the levels of some non-specific inflammatory markers, such as erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and those derived from cell counts, such as neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR) and platelet-to-lymphocyte ratio (PLR), in relation to the underlying molecular defect and X inactivation. G6PD activity was measured in red blood cells according to G6PD/6PGD ratio, and X-chromosome inactivation was assessed by the HUMARA method. Overall, ESR was increased in males with total deficiency compared with normal males (15.0 ± 7.2 vs. 11.9 ± 6.2, p = 0.002, Tukey's test), albeit not in males with partial deficiency. High-sensitivity CRP was slightly increased in males with total deficiency, compared to males with normal G6PD activity (5.96 ± 3.39 vs. 3.95 ± 2.96, p = 0.048). In females, neither marker showed significant differences across the subgroups. MLR was significantly and progressively increased from normal to totally deficient subjects with intermediate values in partially deficient subjects (0.18, 0.31 and 0.37, ANOVA p = 0.008). The NLR and PLR were not different in the three subgroups. Our findings show that G6PD deficiency may be associated with a proinflammatory profile, especially in elderly females, and worsened by the concomitant asymmetric inactivation of the X chromosome.
Collapse
|
6
|
Strum DS, Ganjavi DH, Vincent DM. Oxidative-stress induced pulmonary toxicity in a 45-year-old male with G6PD deficiency on chemotherapy. CURRENT PROBLEMS IN CANCER: CASE REPORTS 2022. [DOI: 10.1016/j.cpccr.2022.100215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
7
|
Sun B, Li Q, Dong X, Hou J, Wang W, Ying W, Hui X, Zhou Q, Yao H, Sun J, Wang X. Severe G6PD deficiency leads to recurrent infections and defects in ROS production: Case report and literature review. Front Genet 2022; 13:1035673. [PMID: 36353116 PMCID: PMC9638399 DOI: 10.3389/fgene.2022.1035673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: Severe glucose-6-phosphate dehydrogenase (G6PD) deficiency can lead to reduced nicotinamide adenine dinucleotide phosphate oxidase activity in phagocytes, resulting in immunodeficiency, with a limited number of reported cases. Here, we aimed to report a child with severe G6PD deficiency in China and investigate the mechanism of his recurrent infections. Methods: The clinical manifestations and immunological phenotypes of this patient were retrospectively collected. Gene mutation was detected by whole-exome sequencing and confirmed by Sanger sequencing. Dihydrorhodamine (DHR) analysis was performed to measure the respiratory burst of neutrophils. Messenger ribonucleic acid and protein levels were detected in the patient under lipopolysaccharide stimulation by real-time quantitative reverse transcription polymerase chain reaction and Western blot. A review of the literature was performed. Results: A male child with G6PD deficiency presented with recurrent respiratory infections, Epstein‒Barr virus infection and tonsillitis from 8 months of age. Gene testing revealed that the proband had one hemizygous mutation in the G6PD gene (c.496 C>T, p. R166C), inherited from his mother. This mutation might affect hydrophobic binding, and the G6PD enzyme activity of the patient was 0. The stimulation indexes of the neutrophils in the patient and mother were 22 and 37, respectively. Compared with healthy controls, decreased reactive oxygen species (ROS) production was observed in the patient. Activation of nuclear factor kappa-B (NF-κB) signaling was found to be influenced, and the synthesis of tumor necrosis factor alpha (TNF-α) was downregulated in the patient-derived cells. In neutrophils of his mother, 74.71% of the X chromosome carrying the mutated gene was inactivated. By performing a systematic literature review, an additional 15 patients with severe G6PD deficiency and recurrent infections were identified. Four other G6PD gene mutations have been reported, including c.1157T>A, c.180_182del, c.514C>T, and c.953_976del. Conclusion: Severe G6PD deficiency, not only class I but also class II, can contribute to a chronic granulomatous disease-like phenotype. Decreased reactive oxygen species synthesis led to decreased activation of the NF-κB pathway in G6PD-deficient patients. Children with severe G6PD deficiency should be aware of immunodeficiency disease, and the DHR assay is recommended to evaluate neutrophil function for early identification.
Collapse
Affiliation(s)
- Bijun Sun
- Department of Clinical Immunology, Children’s Hospital of Fudan University, Shanghai, China
| | - Qifan Li
- Department of Clinical Immunology, Children’s Hospital of Fudan University, Shanghai, China
| | - Xiaolong Dong
- Department of Clinical Immunology, Children’s Hospital of Fudan University, Shanghai, China
| | - Jia Hou
- Department of Clinical Immunology, Children’s Hospital of Fudan University, Shanghai, China
| | - Wenjie Wang
- Department of Clinical Immunology, Children’s Hospital of Fudan University, Shanghai, China
| | - Wenjing Ying
- Department of Clinical Immunology, Children’s Hospital of Fudan University, Shanghai, China
| | - Xiaoying Hui
- Department of Clinical Immunology, Children’s Hospital of Fudan University, Shanghai, China
| | - Qinhua Zhou
- Department of Clinical Immunology, Children’s Hospital of Fudan University, Shanghai, China
| | - Haili Yao
- Department of Clinical Immunology, Children’s Hospital of Fudan University, Shanghai, China
| | - Jinqiao Sun
- Department of Clinical Immunology, Children’s Hospital of Fudan University, Shanghai, China
- *Correspondence: Jinqiao Sun, ; Xiaochuan Wang,
| | - Xiaochuan Wang
- Department of Clinical Immunology, Children’s Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China
- *Correspondence: Jinqiao Sun, ; Xiaochuan Wang,
| |
Collapse
|
8
|
Zhang Z, Li Q, Shen X, Liao L, Wang X, Song M, Zheng X, Zhu Y, Yang Y. The medication for pneumocystis pneumonia with glucose-6-phosphate dehydrogenase deficiency patients. Front Pharmacol 2022; 13:957376. [PMID: 36160421 PMCID: PMC9490050 DOI: 10.3389/fphar.2022.957376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Pneumocystis pneumonia (PCP) is an opportunity acquired infection, which is usually easy to occur in patients with AIDS, organ transplantation, and immunosuppressive drugs. The prevention and treatment must be necessary for PCP patients with immunocompromise. And the oxidants are currently a typical regimen, including sulfanilamide, dapsone, primaquine, etc. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked gene-disease that affects about 400 million people worldwide. The lack of G6PD in this population results in a decrease in intracellular glutathione synthesis and a weakening of the detoxification ability of the oxidants. As a result, oxidants can directly damage haemoglobin in red blood cells, inducing methemoglobin and hemolysis. When patients with G6PD deficiency have low immunity, they are prone to PCP infection, so choosing drugs that do not induce hemolysis is essential. There are no clear guidelines to recommend the drug choice of this kind of population at home and abroad. This paper aims to demonstrate the drug choice for PCP patients with G6PD deficiency through theoretical research combined with clinical cases.
Collapse
Affiliation(s)
- Ziyu Zhang
- Department of Pharmacy, The First People’s Hospital of Ziyang, Ziyang, China
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qinhui Li
- Department of Medical, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoyan Shen
- Department of Pharmacy, Chengdu Qingbaijiang District People’s Hospital, Chengdu, China
| | - Lankai Liao
- Intensive Care Unit, The Third Hospital of Mianyang, Mianyang, China
| | - Xia Wang
- Department of Pharmacy, The First People’s Hospital of Ziyang, Ziyang, China
| | - Min Song
- Department of Pharmacy, The First People’s Hospital of Ziyang, Ziyang, China
| | - Xi Zheng
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yulian Zhu
- Department of Pharmacy, Ziyang People’s Hospital, Ziyang, China
- *Correspondence: Yulian Zhu, ; Yong Yang,
| | - Yong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Yulian Zhu, ; Yong Yang,
| |
Collapse
|
9
|
Association between Glucose-6-Phosphate Dehydrogenase Deficiency and Asthma. J Clin Med 2021; 10:jcm10235639. [PMID: 34884340 PMCID: PMC8658649 DOI: 10.3390/jcm10235639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Among the determinants contributing to the pathogenesis of asthma, antioxidant genetic factors play a leading role. Glucose-6-phosphate dehydrogenase (G6PD) is an enzyme that is competent to detoxify free radicals. Although a relationship between G6PD deficiency and asthma has been previously reported, the literature is still scanty. In this study, we test this hypothesis in a large cohort of patients from Sardinia, Italy. Methods: A retrospective case–control study was performed using data from 11,829 clinical records of outpatients referred to a teaching hospital for a medical visit. In total, 455 cases (asthma-positive) and 11,374 controls (asthma-negative) were compared for G6PD status using multivariable analysis, adjusting for all covariates. Results: Overall, G6PD deficiency was detected in 11.2% of study participants and was associated with an increased risk of asthma (odds ratio (OR) 1.63; 95% confidence interval (CI) 1.27–2.10). Additional variables significantly associated with asthma were female sex (OR 1.66; 95% CI 1.34–2.06), overweight/obesity (OR 1.56; 95% CI 1.27–1.92), smoking (OR 1.44; 95% CI 1.449–3.963), and high socioeconomic status (OR 1.40; 95% CI 1.16–1.70), whereas age was inversely related with asthma (OR 0.49; 95% CI 0.39–0.61). Conclusions: Our study shows that G6PD deficiency is an independent risk for asthma. These findings suggest that G6PD should be assessed in asthmatic patients for better risk stratification.
Collapse
|
10
|
The Controversial Role of Glucose-6-Phosphate Dehydrogenase Deficiency on Cardiovascular Disease: A Narrative Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5529256. [PMID: 34007401 PMCID: PMC8110402 DOI: 10.1155/2021/5529256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/27/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular disorders (CVD) are highly prevalent and the leading cause of death worldwide. Atherosclerosis is responsible for most cases of CVD. The plaque formation and subsequent thrombosis in atherosclerosis constitute an ongoing process that is influenced by numerous risk factors such as hypertension, diabetes, dyslipidemia, obesity, smoking, inflammation, and sedentary lifestyle. Among the various risk and protective factors, the role of glucose-6-phosphate dehydrogenase (G6PD) deficiency, the most common inborn enzyme disorder across populations, is still debated. For decades, it has been considered a protective factor against the development of CVD. However, in the recent years, growing scientific evidence has suggested that this inherited condition may act as a CVD risk factor. The role of G6PD deficiency in the atherogenic process has been investigated using in vitro or ex vivo cellular models, animal models, and epidemiological studies in human cohorts of variable size and across different ethnic groups, with conflicting results. In this review, the impact of G6PD deficiency on CVD was critically reconsidered, taking into account the most recent acquisitions on molecular and biochemical mechanisms, namely, antioxidative mechanisms, glutathione recycling, and nitric oxide production, as well as their mutual interactions, which may be impaired by the enzyme defect in the context of the pentose phosphate pathway. Overall, current evidence supports the notion that G6PD downregulation may favor the onset and evolution of atheroma in subjects at risk of CVD. Given the relatively high frequency of this enzyme deficiency in several regions of the world, this finding might be of practical importance to tailor surveillance guidelines and facilitate risk stratification.
Collapse
|
11
|
Glucose-6-phosphate dehydrogenase deficiency. Blood 2021; 136:1225-1240. [PMID: 32702756 DOI: 10.1182/blood.2019000944] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/12/2019] [Indexed: 11/20/2022] Open
Abstract
Glucose 6-phosphate dehydrogenase (G6PD) deficiency is 1 of the commonest human enzymopathies, caused by inherited mutations of the X-linked gene G6PD. G6PD deficiency makes red cells highly vulnerable to oxidative damage, and therefore susceptible to hemolysis. Over 200 G6PD mutations are known: approximately one-half are polymorphic and therefore common in various populations. Some 500 million persons with any of these mutations are mostly asymptomatic throughout their lifetime; however, any of them may develop acute and sometimes very severe hemolytic anemia when triggered by ingestion of fava beans, by any of a number of drugs (for example, primaquine, rasburicase), or, more rarely, by infection. Approximately one-half of the G6PD mutations are instead sporadic: rare patients with these mutations present with chronic nonspherocytic hemolytic anemia. Almost all G6PD mutations are missense mutations, causing amino acid replacements that entail deficiency of G6PD enzyme activity: they compromise the stability of the protein, the catalytic activity is decreased, or a combination of both mechanisms occurs. Thus, genotype-phenotype correlations have been reasonably well clarified in many cases. G6PD deficiency correlates remarkably, in its geographic distribution, with past/present malaria endemicity: indeed, it is a unique example of an X-linked human polymorphism balanced through protection of heterozygotes from malaria mortality. Acute hemolytic anemia can be managed effectively provided it is promptly diagnosed. Reliable diagnostic procedures are available, with point-of-care tests becoming increasingly important where primaquine and its recently introduced analog tafenoquine are required for the elimination of malaria.
Collapse
|
12
|
Roper D, Layton M, Rees D, Lambert C, Vulliamy T, De la Salle B, D’Souza C. Laboratory diagnosis of G6PD deficiency. A British Society for Haematology Guideline. Br J Haematol 2020; 189:24-38. [DOI: 10.1111/bjh.16366] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- David Roper
- Department of Haematology Imperial College Healthcare NHS Trust London UK
| | - Mark Layton
- Department of Haematology Imperial College Healthcare NHS Trust London UK
| | - David Rees
- Department of Haematology King's College Hospital NHS Foundation Trust London UK
| | - Chris Lambert
- Department of Haematology and Blood Transfusion King's College Hospital NHS Foundation Trust London UK
| | - Tom Vulliamy
- Queen Mary University of London Blizard Institute London UK
| | | | | | | |
Collapse
|
13
|
Incidence of Glucose-6-Phosphate Dehydrogenase Deficiency among Swedish Newborn Infants. Int J Neonatal Screen 2019; 5:38. [PMID: 33072997 PMCID: PMC7510223 DOI: 10.3390/ijns5040038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/29/2019] [Indexed: 12/31/2022] Open
Abstract
Sweden has 10.2 million inhabitants and more than 2.4 million have a foreign background. A substantial number of immigrants come from countries where glucose-6-phosphate dehydrogenase deficiency (G6PDD) is frequent. The total birth rate annually in Sweden is approximately 117,000 and newborn screening is centralized to one laboratory. We determined glucose-6-phosphate dehydrogenase (G6PD) activity in 10,098 dried blood spot samples (DBS) from the whole country with a fluorometric assay (LabSystems Diagnostics Oy, Finland). The first 5451 samples were anonymised and run as singletons, whilst the following 4647 samples were coded. Enzyme activity ≤40% of the mean of the day was found in 58 samples (1/170) and among these, 29 had activities ≤10% (1/350). Twenty-nine samples with residual activities between 2-39% in the coded cohort were subjected to Sanger sequencing. Disease-causing variants were identified in 26 out of 29 infants, of which six were girls. In three patients, we did not find any disease-causing variants, although two patients were hemizygous for the known polymorphisms c.1311T>C and c.1365-13C>T. The most common disease-causing variant found in 15 of the 29 samples (12 hemizygotes, two heterozygotes, one homozygote) was the Mediterranean mutation, c.563C>T (p.(Ser188Phe)) in exon 6. G6PDD is thus a surprisingly prevalent disorder in Sweden.
Collapse
|
14
|
Fitzpatrick SF. Immunometabolism and Sepsis: A Role for HIF? Front Mol Biosci 2019; 6:85. [PMID: 31555665 PMCID: PMC6742688 DOI: 10.3389/fmolb.2019.00085] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022] Open
Abstract
Metabolic reprogramming of innate immune cells occurs during both the hyperinflammatory and immunotolerant phases of sepsis. The hypoxia inducible factor (HIF) signaling pathway plays a vital role in regulating these metabolic changes. This review initially summarizes the HIF-driven changes in metabolic dynamics of innate immune cells in response to sepsis. The hyperinflammatory phase of sepsis is accompanied by a metabolic switch from oxidative phosphorylation to HIF-1α mediated glycolysis. Furthermore, HIF driven alterations in arginine metabolism also occur during this phase. This promotes sepsis pathophysiology and the development of clinical symptoms. These early metabolic changes are followed by a late immunotolerant phase, in which suppressed HIF signaling promotes a switch from aerobic glycolysis to fatty acid oxidation, with a subsequent anti-inflammatory response developing. Recently the molecular mechanisms controlling HIF activation during these early and late phases have begun to be elucidated. In the final part of this review the contribution of toll-like receptors, transcription factors, metabolic intermediates, kinases and reactive oxygen species, in governing the HIF-induced metabolic reprogramming of innate immune cells will be discussed. Importantly, understanding these regulatory mechanisms can lead to the development of novel diagnostic and therapeutic strategies targeting the HIF-dependent metabolic state of innate immune cells.
Collapse
Affiliation(s)
- Susan F Fitzpatrick
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
15
|
Abstract
Sepsis, the 10th leading cause of death, is the most expensive condition in the United States. The immune response in sepsis transitions from hyperinflammatory to a hypoinflammatory and immunosuppressive phase; individual variations regarding timing and overlap between hyper- and hypoinflammation exist in a number of patients. While one third of the sepsis-related deaths occur during hyperinflammation, majority of the sepsis-mortality occurs during the hypoinflammatory phase. Currently, no phase-specific molecular-based therapies exist to treat sepsis. Coordinated epigenetic and metabolic perturbations orchestrate this shift from hyper- to hypoinflammation in innate immune cells during sepsis. These epigenetic and metabolic changes during sepsis progression and therapeutic opportunities they pose are described in this review.
Collapse
Affiliation(s)
- Vidula Vachharajani
- Department of Anesthesiology, Wake Forest School of Medicine,
Winston-Salem, NC, USA,Department of Internal Medicine, Wake Forest School of Medicine,
Winston-Salem, NC, USA,Vidula Vachharajani, Critical Care
Medicine/Respiratory Institute, Inflammation and Immunity/Lerner Research
Institute, Cleveland Lerner College of Medicine, 9500 Euclid Avenue, Cleveland,
OH, USA.
| | - Charles E McCall
- Department of Internal Medicine, Wake Forest School of Medicine,
Winston-Salem, NC, USA
| |
Collapse
|
16
|
Parsanathan R, Jain SK. Glucose-6-phosphate dehydrogenase deficiency increases cell adhesion molecules and activates human monocyte-endothelial cell adhesion: Protective role of l-cysteine. Arch Biochem Biophys 2018; 663:11-21. [PMID: 30582899 DOI: 10.1016/j.abb.2018.12.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 01/06/2023]
Abstract
Glucose-6-phosphate dehydrogenase is a major enzyme that supplies the reducing agent nicotinamide adenine dinucleotide phosphate hydrogen (NADPH), which is required to recycle oxidized/glutathione disulfide (GSSH) to reduced glutathione (GSH). G6PD-deficient cells are susceptible to oxidative stress and a deficiency of GSH. Endothelial dysfunction is characterized by the loss of nitric oxide (NO) bioavailability, which regulates leukocyte adhesion to endothelium. G6PD-deficient endothelial cells (EC) demonstrate reduced expression of endothelial nitric oxide synthase (eNOS) and NO levels along with reduced GSH. Whether G6PD deficiency plays any role in EC dysfunction is unknown. The chronic inflammation commonly seen in those with metabolic syndrome, characterized by elevated levels of tumor necrosis factor (TNF) and monocyte chemoattractant protein 1 (MCP-1), provided an incentive for investigation of these cytokines as well. A GSH/G6PD-deficient model was created using human umbilical vein endothelial cells (HUVEC) treated with either buthionine sulfoximine (BSO), a pharmacological inhibitor of the rate-limiting enzyme of GSH biosynthesis (γ-glutamylcysteine synthetase), or with 6-aminonicotinamide (6-AN), an inhibitor of G6PD or G6PD siRNA. Normal and G6PD-deficient cells were also treated with pro-atherosclerotic stimuli such as high glucose, TNF, and MCP-1. After inhibiting or knocking down G6PD/GSH, the capacity of endothelial cells for monocyte recruitment was assessed by determining the expression of the adhesion molecules intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), which was upregulated by G6PD deficiency and accompanied by the presence of the oxidative stress markers NADPH oxidase 4 (NOX4), inducible nitric oxide synthase (iNOS), and reactive oxygen species (ROS). Treatment with the inhibitors BSO and 6-AN caused increased levels of adhesion molecule mRNA and monocyte-EC adhesion. Following treatment with high glucose, G6PD-deficient cells showed an increase in levels of ICAM-1 and VCAM-1 mRNA, as well as monocyte-EC adherence, compared with results seen in control cells. Treatment with l-cysteine (a precursor of GSH) protected endothelial cells by increasing GSH and attenuating ROS, ICAM-1, VCAM-1, and monocyte-EC adhesion. These results suggest that G6PD/GSH deficiency plays a role in endothelial dysfunction and that supplementation with l-cysteine can restore GSH levels and reduce the EC activation markers in G6PD-deficient conditions.
Collapse
Affiliation(s)
- Rajesh Parsanathan
- Department of Pediatrics and Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA, 71130, USA
| | - Sushil K Jain
- Department of Pediatrics and Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA, 71130, USA.
| |
Collapse
|
17
|
Wang X, Buechler NL, Woodruff AG, Long DL, Zabalawi M, Yoza BK, McCall CE, Vachharajani V. Sirtuins and Immuno-Metabolism of Sepsis. Int J Mol Sci 2018; 19:ijms19092738. [PMID: 30216989 PMCID: PMC6164482 DOI: 10.3390/ijms19092738] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/06/2018] [Accepted: 09/08/2018] [Indexed: 02/01/2023] Open
Abstract
Sepsis and septic shock are the leading causes of death in non-coronary intensive care units worldwide. During sepsis-associated immune dysfunction, the early/hyper-inflammatory phase transitions to a late/hypo-inflammatory phase as sepsis progresses. The majority of sepsis-related deaths occur during the hypo-inflammatory phase. There are no phase-specific therapies currently available for clinical use in sepsis. Metabolic rewiring directs the transition from hyper-inflammatory to hypo-inflammatory immune responses to protect homeostasis during sepsis inflammation, but the mechanisms underlying this immuno-metabolic network are unclear. Here, we review the roles of NAD+ sensing Sirtuin (SIRT) family members in controlling immunometabolic rewiring during the acute systemic inflammatory response associated with sepsis. We discuss individual contributions among family members SIRT 1, 2, 3, 4 and 6 in regulating the metabolic switch between carbohydrate-fueled hyper-inflammation to lipid-fueled hypo-inflammation. We further highlight the role of SIRT1 and SIRT2 as potential "druggable" targets for promoting immunometabolic homeostasis and increasing sepsis survival.
Collapse
Affiliation(s)
- Xianfeng Wang
- Departments of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Nancy L Buechler
- Departments of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Alan G Woodruff
- Departments of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - David L Long
- Departments of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Manal Zabalawi
- Departments of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Barbara K Yoza
- Departments of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
- Departments of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Charles E McCall
- Departments of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
- Departments of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Vidula Vachharajani
- Departments of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
- Departments of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
18
|
L-Cysteine in vitro can restore cellular glutathione and inhibits the expression of cell adhesion molecules in G6PD-deficient monocytes. Amino Acids 2018; 50:909-921. [PMID: 29626298 DOI: 10.1007/s00726-018-2559-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/23/2018] [Indexed: 02/07/2023]
Abstract
L-Cysteine is a precursor of glutathione (GSH), a potent physiological antioxidant. Excess glucose-6-phosphate dehydrogenase (G6PD) deficiency in African Americans and low levels of L-cysteine diet in Hispanics can contributes to GSH deficiency and oxidative stress. Oxidative stress and monocyte adhesion was considered to be an initial event in the progression of vascular dysfunction and atherosclerosis. However, no previous study has investigated the contribution of GSH/G6PD deficiency to the expression of monocyte adhesion molecules. Using human U937 monocytes, this study examined the effect of GSH/G6PD deficiency and L-cysteine supplementation on monocyte adhesion molecules. G6PD/GSH deficiency induced by either siRNA or inhibitors (6AN/BSO, respectively) significantly (p < 0.005) increased the levels of cell adhesion molecules (ICAM-1, VCAM-1, SELL, ITGB1 and 2); NADPH oxidase (NOX), reactive oxygen species (ROS) and MCP-1 were upregulated, and decreases in levels of GSH, and nitric oxide were observed. The expression of ICAM-1 and VCAM-1 mRNA levels increased in high glucose, MCP-1 or TNF-α-treated G6PD-deficient compared to G6PD-normal cells. L-Cysteine treatment significantly (p < 0.005) increased G6PD activity and levels of GSH, and decreased NOX, ROS, and adhesion molecules. Thus, GSH/G6PD deficiency increases susceptibility to monocyte adhesion processes, whereas L-cysteine supplementation can restore cellular GSH/G6PD and attenuates NOX activity and expression of cell adhesion molecules.
Collapse
|
19
|
Spolarics Z, Peña G, Qin Y, Donnelly RJ, Livingston DH. Inherent X-Linked Genetic Variability and Cellular Mosaicism Unique to Females Contribute to Sex-Related Differences in the Innate Immune Response. Front Immunol 2017; 8:1455. [PMID: 29180997 PMCID: PMC5694032 DOI: 10.3389/fimmu.2017.01455] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/18/2017] [Indexed: 01/21/2023] Open
Abstract
Females have a longer lifespan and better general health than males. Considerable number of studies also demonstrated that, after trauma and sepsis, females present better outcomes as compared to males indicating sex-related differences in the innate immune response. The current notion is that differences in the immuno-modulatory effects of sex hormones are the underlying causative mechanism. However, the field remains controversial and the exclusive role of sex hormones has been challenged. Here, we propose that polymorphic X-linked immune competent genes, which are abundant in the population are important players in sex-based immuno-modulation and play a key role in causing sex-related outcome differences following trauma or sepsis. We describe the differences in X chromosome (ChrX) regulation between males and females and its consequences in the context of common X-linked polymorphisms at the individual as well as population level. We also discuss the potential pathophysiological and immune-modulatory aspects of ChrX cellular mosaicism, which is unique to females and how this may contribute to sex-biased immune-modulation. The potential confounding effects of ChrX skewing of cell progenitors at the bone marrow is also presented together with aspects of acute trauma-induced de novo ChrX skewing at the periphery. In support of the hypothesis, novel observations indicating ChrX skewing in a female trauma cohort as well as case studies depicting the temporal relationship between trauma-induced cellular skewing and the clinical course are also described. Finally, we list and discuss a selected set of polymorphic X-linked genes, which are frequent in the population and have key regulatory or metabolic functions in the innate immune response and, therefore, are primary candidates for mediating sex-biased immune responses. We conclude that sex-related differences in a variety of disease processes including the innate inflammatory response to injury and infection may be related to the abundance of X-linked polymorphic immune-competent genes, differences in ChrX regulation, and inheritance patterns between the sexes and the presence of X-linked cellular mosaicism, which is unique to females.
Collapse
Affiliation(s)
- Zoltan Spolarics
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Geber Peña
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Yong Qin
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Robert J Donnelly
- Department of Pathology and Laboratory Medicine, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - David H Livingston
- Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
20
|
Gafter-Gvili A. G6PD deficiency and fungal infections in patients with acute myeloid leukemia: less enzyme more fungus. Leuk Lymphoma 2017; 58:2519-2520. [DOI: 10.1080/10428194.2017.1330478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Anat Gafter-Gvili
- Institute of Hematology, Davidoff Cancer Center, and Medicine A, Rabin Medical Center, Petah-Tikva, Israel
- Sackler School of Medicine, Tel-Aviv, Israel
| |
Collapse
|
21
|
How We Manage Invasive Fungal Disease in Acute Myeloid Leukemia Patients with Glucose 6 Dehydrogenase Deficiency. Mediterr J Hematol Infect Dis 2017; 9:e2017047. [PMID: 28894556 PMCID: PMC5584773 DOI: 10.4084/mjhid.2017.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/16/2017] [Indexed: 11/08/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) represents a common human enzyme defect, particularly prevalent in the Mediterranean, African e Asian area, where malaria was or is still endemic. Recently, we identified G6PD deficiency as a risk factor for developing invasive fungal disease (IFD) and particularly Candida Sepsis in patients undergoing intensive chemotherapy for acute myeloid leukemia (AML), suggesting that there is an urgent need for strategies to properly manage this kind of patients at high risk of invasive mycoses. Here we propose our algorithm for correct identification, prophylaxis, and treatment of IFD in patients with G6PD deficiency undergoing intensive chemotherapy for AML.
Collapse
|
22
|
Sanna M, Caocci G, Ledda A, Orrù F, Fozza C, Deias P, Tidore G, Dore F, La Nasa G. Glucose-6-phosphate dehydrogenase deficiency and risk of invasive fungal disease in patients with acute myeloid leukemia. Leuk Lymphoma 2017; 58:2558-2564. [PMID: 28402154 DOI: 10.1080/10428194.2017.1312666] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Invasive fungal diseases (IFD) are still a leading cause of morbidity and mortality in patients with acute myeloid leukemia (AML). Glucose-6-phosphate dehydrogenase is an enzyme that leads to the production of NADPH, required to destroy microorganisms in the respiratory burst reaction of white blood cells. We evaluated the role of G6PD deficiency in susceptibility of IFD in 108 AML patients undergoing intensive chemotherapy. In all, 28 patients harbored G6PD deficiency (G6PD-), whereas 80 were normal (G6PD +). Incidence of IFD was significantly higher in G6PD- patients compared to G6PD + patients (35.7% vs. 5%, p = .0002, OR = 10, 95% CI = 2.96-37.5). Higher risk of mold infections (17.9% vs. 5%, p = .048, OR = 4.1, 95% CI = 1.0-16.6) and Candida sepsis (17.9% vs. 0%, p = .0009, OR = 37.68, 95% CI =2.0-707.1) was observed in G6PD - patients. The evaluation of G6PD activity may help to identify AML patients at higher risk of IFD, allowing to design more intensive surveillance and therapeutic strategies.
Collapse
Affiliation(s)
- Marco Sanna
- a Hematology Unit, Department of Medical Sciences and Public Health , Bone Marrow Transplant Center, R. Binaghi Hospital, University of Cagliari , Cagliari , Italy
| | - Giovanni Caocci
- a Hematology Unit, Department of Medical Sciences and Public Health , Bone Marrow Transplant Center, R. Binaghi Hospital, University of Cagliari , Cagliari , Italy
| | - Antonio Ledda
- a Hematology Unit, Department of Medical Sciences and Public Health , Bone Marrow Transplant Center, R. Binaghi Hospital, University of Cagliari , Cagliari , Italy
| | - Federica Orrù
- a Hematology Unit, Department of Medical Sciences and Public Health , Bone Marrow Transplant Center, R. Binaghi Hospital, University of Cagliari , Cagliari , Italy
| | - Claudio Fozza
- b Department of Clinical and Experimental Medicine , University of Sassari , Sassari , Italy
| | - Paola Deias
- a Hematology Unit, Department of Medical Sciences and Public Health , Bone Marrow Transplant Center, R. Binaghi Hospital, University of Cagliari , Cagliari , Italy
| | - Gianni Tidore
- b Department of Clinical and Experimental Medicine , University of Sassari , Sassari , Italy
| | - Fausto Dore
- b Department of Clinical and Experimental Medicine , University of Sassari , Sassari , Italy
| | - Giorgio La Nasa
- a Hematology Unit, Department of Medical Sciences and Public Health , Bone Marrow Transplant Center, R. Binaghi Hospital, University of Cagliari , Cagliari , Italy
| |
Collapse
|
23
|
Abstract
G6PD is a housekeeping gene expressed in all cells. Glucose-6-phosphate dehydrogenase (G6PD) is part of the pentose phosphate pathway, and its main physiologic role is to provide NADPH. G6PD deficiency, one of the commonest inherited enzyme abnormalities in humans, arises through one of many possible mutations, most of which reduce the stability of the enzyme and its level as red cells age. G6PD-deficient persons are mostly asymptomatic, but they can develop severe jaundice during the neonatal period and acute hemolytic anemia when they ingest fava beans or when they are exposed to certain infections or drugs. G6PD deficiency is a global health issue.
Collapse
Affiliation(s)
- Lucio Luzzatto
- Scientific Direction, Istituto Toscano Tumori, Viale Pieraccini 6, Florence 50139, Italy; University of Florence, Florence, Italy.
| | - Caterina Nannelli
- Core Research Laboratory-Istituto Toscano Tumori, Azienda Universitaria-Ospedaliera Careggi, Viale Pieraccini 6, Florence 50139, Italy
| | - Rosario Notaro
- Core Research Laboratory-Istituto Toscano Tumori, Azienda Universitaria-Ospedaliera Careggi, Viale Pieraccini 6, Florence 50139, Italy
| |
Collapse
|
24
|
Siler U, Romao S, Tejera E, Pastukhov O, Kuzmenko E, Valencia RG, Meda Spaccamela V, Belohradsky BH, Speer O, Schmugge M, Kohne E, Hoenig M, Freihorst J, Schulz AS, Reichenbach J. Severe glucose-6-phosphate dehydrogenase deficiency leads to susceptibility to infection and absent NETosis. J Allergy Clin Immunol 2016; 139:212-219.e3. [PMID: 27458052 DOI: 10.1016/j.jaci.2016.04.041] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 03/23/2016] [Accepted: 04/27/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymatic disorder of red blood cells in human subjects, causing hemolytic anemia linked to impaired nicotinamide adenine dinucleotide phosphate (NADPH) production and imbalanced redox homeostasis in erythrocytes. Because G6PD is expressed by a variety of hematologic and nonhematologic cells, a broader clinical phenotype could be postulated in G6PD-deficient patients. We describe 3 brothers with severe G6PD deficiency and susceptibility to bacterial infection. OBJECTIVE We sought to study the molecular pathophysiology leading to susceptibility to infection in 3 siblings with severe G6PD deficiency. METHODS Blood samples of 3 patients with severe G6PD deficiency were analyzed for G6PD enzyme activity, cellular oxidized nicotinamide adenine dinucleotide phosphate/NADPH levels, phagocytic reactive oxygen species production, neutrophil extracellular trap (NET) formation, and neutrophil elastase translocation. RESULTS In these 3 brothers strongly reduced NADPH oxidase function was found in granulocytes, leading to impaired NET formation. Defective NET formation has thus far been only observed in patients with the NADPH oxidase deficiency chronic granulomatous disease, who require antibiotic and antimycotic prophylaxis to prevent life-threatening bacterial and fungal infections. CONCLUSION Because severe G6PD deficiency can be a phenocopy of chronic granulomatous disease with regard to the cellular and clinical phenotype, careful evaluation of neutrophil function seems mandatory in these patients to decide on appropriate anti-infective preventive measures. Determining the level of G6PD enzyme activity should be followed by analysis of reactive oxygen species production and NET formation to decide on required antibiotic and antimycotic prophylaxis.
Collapse
Affiliation(s)
- Ulrich Siler
- Division of Immunology, University Children's Hospital and Children's Research Centre, Zurich, Switzerland
| | - Susana Romao
- Division of Immunology, University Children's Hospital and Children's Research Centre, Zurich, Switzerland
| | - Emilio Tejera
- Division of Immunology, University Children's Hospital and Children's Research Centre, Zurich, Switzerland
| | - Oleksandr Pastukhov
- Division of Immunology, University Children's Hospital and Children's Research Centre, Zurich, Switzerland
| | - Elena Kuzmenko
- Division of Immunology, University Children's Hospital and Children's Research Centre, Zurich, Switzerland
| | - Rocio G Valencia
- Division of Immunology, University Children's Hospital and Children's Research Centre, Zurich, Switzerland
| | - Virginia Meda Spaccamela
- Division of Immunology, University Children's Hospital and Children's Research Centre, Zurich, Switzerland
| | - Bernd H Belohradsky
- Division of Infectious Diseases and Immunology, Dr. von Haunersches Kinderspital, University Childrens Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Oliver Speer
- Division of Hematology, University Children's Hospital and Children's Research Centre, Zurich, Switzerland
| | - Markus Schmugge
- Division of Hematology, University Children's Hospital and Children's Research Centre, Zurich, Switzerland
| | - Elisabeth Kohne
- Department of Pediatrics and Adolescent Medicine, University Medical Centre Ulm, Ulm, Germany
| | - Manfred Hoenig
- Department of Pediatrics and Adolescent Medicine, University Medical Centre Ulm, Ulm, Germany
| | | | - Ansgar S Schulz
- Department of Pediatrics and Adolescent Medicine, University Medical Centre Ulm, Ulm, Germany
| | - Janine Reichenbach
- Division of Immunology, University Children's Hospital and Children's Research Centre, Zurich, Switzerland; Zurich Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; Centre for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland; Swiss Center for Regenerative Medicine, University of Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
25
|
Lin M, Yang LY, Xie DD, Chen JT, Nguba SMM, Ehapo CS, Zhan XF, Eyi JUM, Matesa RA, Obono MMO, Yang H, Yang HT, Cheng JD. G6PD Deficiency and Hemoglobinopathies: Molecular Epidemiological Characteristics and Healthy Effects on Malaria Endemic Bioko Island, Equatorial Guinea. PLoS One 2015; 10:e0123991. [PMID: 25915902 PMCID: PMC4411145 DOI: 10.1371/journal.pone.0123991] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/25/2015] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Glucose-6-phosphate dehydrogenase (G6PD) deficiency and hemoglobinopathies were the inherited conditions found mostly in African. However, few epidemiological data of these disorders was reported in Equatorial Guinea (EQG). This study aimed to assess the prevalence and healthy effects of G6PD deficiency and hemoglobinopathies among the people on malaria endemic Bioko Island, EQG. MATERIALS AND METHODS Blood samples from 4,144 unrelated subjects were analyzed for G6PD deficiency by fluorescence spot test (FST), high-resolution melting assay and PCR-DNA sequencing. In addition, 1,186 samples were randomly selected from the 4,144 subjects for detection of hemoglobin S (HbS), HbC, and α-thalassemia deletion by complete blood count, PCR-DNA sequencing and reverse dot blot (RDB). RESULTS The prevalence of malaria and anemia was 12.6% (522/4,144) and 32.8% (389/1,186), respectively. Overall, 8.7% subjects (359/4,144) were G6PD-deficient by FST, including 9.0% (249/2,758) males and 7.9% (110/1,386) females. Among the 359 G6PD-deficient individuals molecularly studied, the G6PD A- (G202A/A376G) were detected in 356 cases (99.2%), G6PD Betica (T968C/A376G) in 3 cases. Among the 1,186 subjects, 201 cases were HbS heterozygotes, 35 cases were HbC heterozygotes, and 2 cases were HbCS double heterozygotes; 452 cases showed heterozygous α-thalassemia 3.7 kb deletion (-α3.7 kb deletion) and 85 homozygous - α3.7 kb deletion. The overall allele frequencies were HbS 17.1% (203/1186); HbC, 3.1% (37/1186); and -α3.7 kb deletion 52.4% (622/1186), respectively. CONCLUSIONS High G6PD deficiency in this population indicate that diagnosis and management of G6PD deficiency is necessary on Bioko Island. Obligatory newborn screening, prenatal screening and counseling for these genetic disorders, especially HbS, are needed on the island.
Collapse
Affiliation(s)
- Min Lin
- Department of Internal Medicine, First Hospital Affiliated to Medical College of Shantou University, Shantou, Guangdong Province, People’s Republic of China
- Central Laboratory, Chaozhou Central Hospital Affiliated to Southern Medical University, Chaozhou, Guangdong Province, People’s Republic of China
| | - Li Ye Yang
- Central Laboratory, Chaozhou Central Hospital Affiliated to Southern Medical University, Chaozhou, Guangdong Province, People’s Republic of China
| | - Dong De Xie
- The Chinese Medical Aid Team to the Republic of Equatorial Guinea, Guangzhou, Guangdong Province, People’s Republic of China
| | - Jiang Tao Chen
- The Chinese Medical Aid Team to the Republic of Equatorial Guinea, Guangzhou, Guangdong Province, People’s Republic of China
| | | | - Carlos Sala Ehapo
- Central Blood Transfusion Service, Malabo Regional Hospital, Malabo, Equatorial Guinea
| | - Xiao Fen Zhan
- Central Laboratory, Chaozhou Central Hospital Affiliated to Southern Medical University, Chaozhou, Guangdong Province, People’s Republic of China
| | | | - Rocio Apicante Matesa
- Central Blood Transfusion Service, Malabo Regional Hospital, Malabo, Equatorial Guinea
| | | | - Hui Yang
- Central Laboratory, Chaozhou Central Hospital Affiliated to Southern Medical University, Chaozhou, Guangdong Province, People’s Republic of China
| | - Hui Tian Yang
- Central Laboratory, Chaozhou Central Hospital Affiliated to Southern Medical University, Chaozhou, Guangdong Province, People’s Republic of China
| | - Ji Dong Cheng
- Department of Internal Medicine, First Hospital Affiliated to Medical College of Shantou University, Shantou, Guangdong Province, People’s Republic of China
| |
Collapse
|
26
|
Yang HC, Cheng ML, Hua YS, Wu YH, Lin HR, Liu HY, Ho HY, Chiu DTY. Glucose 6-phosphate dehydrogenase knockdown enhances IL-8 expression in HepG2 cells via oxidative stress and NF-κB signaling pathway. JOURNAL OF INFLAMMATION-LONDON 2015; 12:34. [PMID: 25945076 PMCID: PMC4419400 DOI: 10.1186/s12950-015-0078-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 04/09/2015] [Indexed: 12/11/2022]
Abstract
Background This study was designed to investigate the effect of glucose 6-phosphate dehydrogenase (G6PD) deficiency on pro-inflammatory cytokine secretion using a palmitate-induced inflammation HepG2 in vitro model. The modulation of cellular pro-inflammatory cytokine expression under G6PD deficiency during chronic hepatic inflammation has never been investigated before. Methods The culture medium of untreated and palmitate-treated G6PD-scramble (Sc) and G6PD-knockdown (Gi) HepG2 cells were subjected to cytokine array analysis, followed by validation with ELISA and qRT-PCR of the target cytokine. The mechanism of altered cytokine secretion in palmitate-treated Sc and Gi HepG2 cells was examined in the presence of anti-oxidative enzyme (glutathione peroxidase, GPX), anti-inflammatory agent (curcumin), NF-κB inhibitor (BAY11-7085) and specific SiRNA against NF-κB subunit p65. Results Cytokine array analysis indicated that IL-8 is most significantly increased in G6PD-knockdown HepG2 cells. The up-regulation of IL-8 caused by G6PD deficiency in HepG2 cells was confirmed in other G6PD-deficient cells by qRT-PCR. The partial reduction of G6PD deficiency-derived IL-8 due to GPX and NF-κB blockers indicated that G6PD deficiency up-regulates pro-inflammatory cytokine IL-8 through oxidative stress and NF-κB pathway. Conclusions G6PD deficiency predisposes cells to enhanced production of pro-inflammatory cytokine IL-8. Mechanistically, G6PD deficiency up-regulates IL-8 through oxidative stress and NF-κB pathway. The palmitate-induced inflammation in G6PD-deficient HepG2 cells could serve as an in vitro model to study the role of altered redox homeostasis in chronic hepatic inflammation. Electronic supplementary material The online version of this article (doi:10.1186/s12950-015-0078-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hung-Chi Yang
- Healthy Aging Research Center, Chang Gung University, Kwei-Shan, Tao-Yuan 333 Taiwan.,Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333 Taiwan
| | - Mei-Ling Cheng
- Healthy Aging Research Center, Chang Gung University, Kwei-Shan, Tao-Yuan 333 Taiwan.,Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333 Taiwan.,Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333 Taiwan
| | - Yi-Syuan Hua
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333 Taiwan
| | - Yi-Hsuan Wu
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333 Taiwan
| | - Hsin-Ru Lin
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333 Taiwan
| | - Hui-Ya Liu
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333 Taiwan
| | - Hung-Yao Ho
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333 Taiwan
| | - Daniel Tsun-Yee Chiu
- Healthy Aging Research Center, Chang Gung University, Kwei-Shan, Tao-Yuan 333 Taiwan.,Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333 Taiwan.,Department of Clinical Pathology, Chang Gung Memorial Hospital, Kwei-Shan, Tao-Yuan 333 Taiwan
| |
Collapse
|
27
|
Liao SL, Lai SH, Tsai MH, Weng YH. Cytokine responses of TNF-α, IL-6, and IL-10 in G6PD-deficient infants. Pediatr Hematol Oncol 2014; 31:87-94. [PMID: 24383988 DOI: 10.3109/08880018.2013.865821] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
G6PD-deficient adults are reported to be susceptible to severe infection, and decreased cytokine responses have been postulated as the underlying mechanism. However, investigating the association of G6PD deficiency and cytokine responses during infancy is lacking. The current study aims to determine whether cytokine responses of tumor necrosis factor ()-α, interleukins (IL)-6, and IL-10 are impaired in the G6PD-deficient infants. Upon agreements with informed consents, peripheral blood mononuclear cells (PBMCs) of enrolled infants were collected twice at 1 month and 1 year of age. PBMCs were then stimulated with toll-like receptor (TLR) agonists-including PAM3csk4 for TLR1-2, poly (I:C) for TLR3, and lipopolysaccharide for TLR4-to analyze the expression of TNF-α, IL-6, and IL-10. Males (P = .004) and phototherapy during neonatal period (P = .008) were more common among G6PD-deficient infants than G6PD-normal subjects. After the stimulation of TLR agonists, there was no significant difference in the expression of TNF-α, IL-6, and IL-10 between PBMCs of G6PD-deficient and -normal infants at both 1 month and 1 year of age. In conclusion, the clinical characteristics of G6PD-deficient infants are different from those of G6PD-normal subjects. The data suggest that the innate immune responses to TLR agonists in G6PD-deficient infants are not different from those of G6PD-normal infants.
Collapse
Affiliation(s)
- Sui-Ling Liao
- 1Department of Pediatrics, Chang Gung Memorial Hospital at Keelung, Chang Gung University College of Medicine , Taoyuan , Taiwan
| | | | | | | |
Collapse
|
28
|
Trop S, Marshall JC, Mazer CD, Gupta M, Dumont DJ, Bourdeau A, Verma S. Perioperative cardiovascular system failure in South Asians undergoing cardiopulmonary bypass is associated with prolonged inflammation and increased Toll-like receptor signaling in inflammatory monocytes. J Surg Res 2013; 187:43-52. [PMID: 24176205 DOI: 10.1016/j.jss.2013.09.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 09/05/2013] [Accepted: 09/25/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND South Asian ethnicity is an independent risk factor for mortality after coronary artery bypass. We tested the hypothesis that this risk results from a greater inflammatory response to cardiopulmonary bypass (CPB). METHODS This was a single-site prospective cohort study. We compared the inflammatory response to CPB in 20 Caucasians and 17 South Asians undergoing isolated coronary artery bypass grafting surgery. RESULTS Plasma levels of proinflammatory cytokines (interleukin [IL]-6, IL-8, IL-12, interferon gamma, and tumor necrosis factor) and anti-inflammatory mediators (IL-10 and soluble TNF receptor I) were measured. The Toll-like receptor (TLR) signaling pathway was examined in peripheral blood monocytes by flow cytometry, measuring surface expression of TLR2, TLR4, and coreceptor CD14 and activation of downstream messenger molecules (interleukin-1 receptor-associated kinase 4, nuclear factor kappa from B cells (NF-κB), c-Jun amino-terminal kinase, p38 mitogen-activated protein kinase, and Protein Kinase B). South Asians had persistently higher plasma levels of IL-6 and exhibited increased TLR signaling through the p38 mitogen-activated protein kinase and Protein Kinase B pathways in inflammatory monocytes after CPB. This increased inflammatory response was paralleled clinically by a higher sequential organ failure assessment score (5.1 ± 1.4 versus 1.5 ± 1.6, P = 0.027) and prolonged cardiovascular system failure (23.5% versus 0%) 48 h after CPB. CONCLUSIONS South Asians develop an exacerbated systemic inflammatory response after CPB, which may contribute to the higher morbidity and mortality associated with coronary artery bypass in this population. These patients may benefit from targeted anti-inflammatory therapies designed to mitigate the adverse consequences resulting from this response.
Collapse
Affiliation(s)
- Sébastien Trop
- Clinician Investigator Program, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, Keenan Research Centre in the Li Ka Shing Knowledge Institute at St. Michael's Hospital, Toronto, Ontario, Canada; Platform of Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - John C Marshall
- Department of Surgery, Keenan Research Centre in the Li Ka Shing Knowledge Institute at St. Michael's Hospital, Toronto, Ontario, Canada; Interdivisional Department of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - C David Mazer
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Anesthesia, Keenan Research Centre in the Li Ka Shing Knowledge Institute at St. Michael's Hospital, Toronto, Ontario, Canada
| | - Milan Gupta
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Canadian Cardiovascular Research Network, Brampton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Daniel J Dumont
- Platform of Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Annie Bourdeau
- Platform of Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| | - Subodh Verma
- Department of Surgery, Keenan Research Centre in the Li Ka Shing Knowledge Institute at St. Michael's Hospital, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
29
|
Zhang P, Gao X, Ishida H, Amnuaysirikul J, Weina PJ, Grogl M, O'Neil MT, Li Q, Caridha D, Ohrt C, Hickman M, Magill AJ, Ray P. An in vivo drug screening model using glucose-6-phosphate dehydrogenase deficient mice to predict the hemolytic toxicity of 8-aminoquinolines. Am J Trop Med Hyg 2013; 88:1138-45. [PMID: 23530079 DOI: 10.4269/ajtmh.12-0682] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Anti-malarial 8-aminoquinolines drugs cause acute hemolytic anemia in individuals with glucose-6-phosphate dehydrogenase deficiency (G6PDD). Efforts to develop non-hemolytic 8-aminoquinolines have been severely limited caused by the lack of a predictive in vivo animal model of hemolytic potential that would allow screening of candidate compounds. This report describes a G6PDD mouse model with a phenotype closely resembling the G6PDD phenotype found in the African A-type G6PDD human. These G6PDD mice, given different doses of primaquine, which used as a reference hemolytic drug, display a full array of hemolytic anemia parameters, consistently and reproducibly. The hemolytic and therapeutic indexes were generated for evaluation of hemotoxicity of drugs. This model demonstrated a complete hemolytic toxicity response to another known hemolytic antimalarial drug, pamaquine, but no response to non-hemolytic drugs, chloroquine and mefloquine. These results suggest that this model is suitable for evaluation of selected 8-AQ type candidate antimalarial drugs for their hemolytic potential.
Collapse
Affiliation(s)
- Peng Zhang
- Division of Experimental Therapeutics and Division of Pathology, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Thangarajh M, Yang G, Fuchs D, Ponisio MR, McKinstry RC, Jaju A, Noetzel MJ, Casella JF, Barron-Casella E, Hooper WC, Boulet SL, Bean CJ, Pyle ME, Payne AB, Driggers J, Trau HA, Vendt BA, Rodeghier M, DeBaun MR. Magnetic resonance angiography-defined intracranial vasculopathy is associated with silent cerebral infarcts and glucose-6-phosphate dehydrogenase mutation in children with sickle cell anaemia. Br J Haematol 2012; 159:352-9. [PMID: 22958163 DOI: 10.1111/bjh.12034] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/16/2012] [Indexed: 01/02/2023]
Abstract
Silent cerebral infarct (SCI) is the most commonly recognized cause of neurological injury in sickle cell anaemia (SCA). We tested the hypothesis that magnetic resonance angiography (MRA)-defined vasculopathy is associated with SCI. Furthermore, we examined genetic variations in glucose-6-phosphate dehydrogenase (G6PD) and HBA (α-globin) genes to determine their association with intracranial vasculopathy in children with SCA. Magnetic resonance imaging (MRI) of the brain and MRA of the cerebral vasculature were available in 516 paediatric patients with SCA, enrolled in the Silent Infarct Transfusion (SIT) Trial. All patients were screened for G6PD mutations and HBA deletions. SCI were present in 41·5% (214 of 516) of SIT Trial children. The frequency of intracranial vasculopathy with and without SCI was 15·9% and 6·3%, respectively (P < 0·001). Using a multivariable logistic regression model, only the presence of a SCI was associated with increased odds of vasculopathy (P = 0·0007, odds ratio (OR) 2·84; 95% Confidence Interval (CI) = 1·55-5·21). Among male children with SCA, G6PD status was associated with vasculopathy (P = 0·04, OR 2·78; 95% CI = 1·04-7·42), while no significant association was noted for HBA deletions. Intracranial vasculopathy was observed in a minority of children with SCA, and when present, was associated with G6PD status in males and SCI.
Collapse
Affiliation(s)
- Mathula Thangarajh
- Department of Neurology and Pediatrics, Washington University School of Medicine, Saint Louis, MO, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
A new experimental polytrauma model in rats: molecular characterization of the early inflammatory response. Mediators Inflamm 2012; 2012:890816. [PMID: 22481866 PMCID: PMC3317068 DOI: 10.1155/2012/890816] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/21/2011] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The molecular mechanisms of the immune response after polytrauma are highly complex and far from fully understood. In this paper, we characterize a new standardized polytrauma model in rats based on the early molecular inflammatory and apoptotic response. METHODS Male Wistar rats (250 g, 6-10/group) were anesthetized and exposed to chest trauma (ChT), closed head injury (CHI), or Tib/Fib fracture including a soft tissue trauma (Fx + STT) or to the following combination of injuries: (1) ChT; (2) ChT + Fx + STT; (3) ChT + CHI; (4) CHI; (5) polytrauma (PT = ChT + CHI + Fx + STT). Sham-operated rats served as negative controls. The inflammatory response was quantified at 2 hours and 4 hours after trauma by analysis of "key" inflammatory mediators, including selected cytokines and complement components, in serum and bronchoalveolar (BAL) fluid samples. RESULTS Polytraumatized (PT) rats showed a significant systemic and intrapulmonary release of cytokines, chemokines, and complement anaphylatoxins, compared to rats with isolated injuries or selected combinations of injuries. CONCLUSION This new rat model appears to closely mimic the early immunological response of polytrauma observed in humans and may provide a valid basis for evaluation of the complex pathophysiology and future therapeutic immune modulatory approaches in experimental polytrauma.
Collapse
|
32
|
de Oliveira-Junior EB, Bustamante J, Newburger PE, Condino-Neto A. The human NADPH oxidase: primary and secondary defects impairing the respiratory burst function and the microbicidal ability of phagocytes. Scand J Immunol 2011; 73:420-7. [PMID: 21204900 DOI: 10.1111/j.1365-3083.2010.02501.x] [Citation(s) in RCA: 239] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phagocytes, such as granulocytes and monocytes/macrophages, contain a membrane-associated NADPH oxidase that produces superoxide leading to other reactive oxygen species with microbicidal, tumoricidal and inflammatory activities. Primary defects in oxidase activity in chronic granulomatous disease (CGD) lead to severe, life-threatening infections that demonstrate the importance of the oxygen-dependent microbicidal system in host defence. Other immunological disturbances may secondarily affect the NADPH oxidase system, impair the microbicidal activity of phagocytes and predispose the host to recurrent infections. This article reviews the primary defects of the human NADPH oxidase leading to classical CGD, and more recently discovered immunological defects secondarily affecting phagocyte respiratory burst function and resulting in primary immunodeficiencies with varied phenotypes, including susceptibilities to pyogenic or mycobacterial infections.
Collapse
Affiliation(s)
- E B de Oliveira-Junior
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | | | | | | |
Collapse
|
33
|
Freeman BD, Kennedy CR, Frankel HL, Clarridge B, Bolcic-Jankovic D, Iverson E, Shehane E, Celious A, Zehnbauer BA, Buchman TG. Ethical considerations in the collection of genetic data from critically ill patients: what do published studies reveal about potential directions for empirical ethics research? THE PHARMACOGENOMICS JOURNAL 2010; 10:77-85. [PMID: 19997084 PMCID: PMC2860600 DOI: 10.1038/tpj.2009.61] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 09/30/2009] [Accepted: 11/04/2009] [Indexed: 01/07/2023]
Abstract
Critical illness trials involving genetic data collection are increasingly commonplace and pose challenges not encountered in less acute settings, related in part to the precipitous, severe and incapacitating nature of the diseases involved. We performed a systematic literature review to understand the nature of such studies conducted to date, and to consider, from an ethical perspective, potential barriers to future investigations. We identified 79 trials enrolling 24 499 subjects. Median (interquartile range) number of participants per study was 263 (116.75-430.75). Of these individuals, 16 269 (66.4%) were Caucasian, 1327 (5.4%) were African American, 1707 (7.0%) were Asian Pacific Islanders and 139 (0.6%) were Latino. For 5020 participants (20.5%), ethnicity was not reported. Forty-eight studies (60.8%) recruited subjects from single centers and all studies examined a relatively small number of genetic markers. Technological advances have rendered it feasible to conduct clinical studies using high-density genome-wide scanning. It will be necessary for future critical illness trials using these approaches to be of greater scope and complexity than those so far reported. Empirical research into issues related to greater ethnic inclusivity, accuracy of substituted judgment and specimen stewardship may be essential for enabling the conduct of such trials.
Collapse
Affiliation(s)
- B D Freeman
- Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Erythropoiesis and iron metabolism biorhythms in children with chronic pyelonephritis. Bull Exp Biol Med 2008; 146:297-300. [DOI: 10.1007/s10517-008-0274-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Chandra R, Villanueva E, Feketova E, Machiedo GW, Haskó G, Deitch EA, Spolarics Z. Endotoxemia down-regulates bone marrow lymphopoiesis but stimulates myelopoiesis: the effect of G6PD deficiency. J Leukoc Biol 2008; 83:1541-50. [PMID: 18353927 DOI: 10.1189/jlb.1207838] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bone marrow (BM) dysfunction is an important component of immunomodulation. This study investigated alterations in cell content, apoptotic responses, and cell proliferation in BM, blood, and spleen in endotoxemic mice (LPS from Escherichia coli). As the decreased antioxidant status associated with glucose-6-phosphate dehydrogenase (G6PD) deficiency has been shown to modulate the innate immune response, we also tested whether a G6PD mutation (80% decrease in cellular enzyme activity) alters BM responses during endotoxemia. LPS decreased BM myeloid (CD45(+)CD11b(+)) and B lymphoid (CD45(+)CD19(+)CD11b(-)) cell content compared with controls. In contrast, LPS increased CD11b(+) myeloid but decreased T and B cell counts in the circulation. Endotoxemia inhibited spontaneous, heat shock, and H(2)O(2)-induced apoptosis as well as proliferative activity in BM lymphoid cells. In contrast, BM myeloid cell apoptosis was not altered, and their proliferative activity was increased during endotoxemia. Following LPS, splenic myeloid cell content was increased, and T and B cell content was unchanged; furthermore, splenocytes showed increased apoptosis compared with controls. BM cell content, including lymphoid and myeloid cells, was greater in G6PD mutant than wild-type (WT) mice, and LPS decreased BM cell counts to a greater degree in mutant than WT mice. Endotoxemia caused widespread inhibition of BM cytokine and chemokine production; however, IL-6 production was increased compared with controls. LPS-induced IL-6 production was decreased in G6PD mutant animals compared with WT. This study indicates that endotoxin inversely affects BM myeloid and lymphoid cell production. LPS-induced down-regulation of B cell production contributes to the generalized lymphopenia and lymphocyte dysfunction observed following nonspecific immune challenges.
Collapse
Affiliation(s)
- Rachna Chandra
- Department of Surgery, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ 07103, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Schutzman DL, Porat R. Glucose-6-phosphate dehydrogenase deficiency: another risk factor for necrotizing enterocolitis? J Pediatr 2007; 151:435-7. [PMID: 17889084 DOI: 10.1016/j.jpeds.2007.06.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 05/30/2007] [Accepted: 06/28/2007] [Indexed: 10/22/2022]
Abstract
We recently observed several babies in our neonatal intensive care unit (NICU) with necrotizing enterocolitis (NEC) who were subsequently found to have glucose-6-phosphate dehydrogenase (G6PD) deficiency. The aim of this study was to explore the association of NEC and G6PD deficiency. G6PD deficiency was significantly higher (27.8%) in infants with NEC compared with the 5.3% prevalence among NICU admissions (odds ratio = 6.9; 95% confidence interval = 2 to 23.5). G6PD deficiency also was found to be a marker for more severe NEC. G6PD deficiency should be considered a risk factor for NEC.
Collapse
Affiliation(s)
- David L Schutzman
- Division of Neonatology, Department of Pediatrics, Albert Einstein Medical Center, Philadelphia, PA, USA.
| | | |
Collapse
|
37
|
Spolarics Z. The X-files of inflammation: cellular mosaicism of X-linked polymorphic genes and the female advantage in the host response to injury and infection. Shock 2007; 27:597-604. [PMID: 17505297 DOI: 10.1097/shk.0b013e31802e40bd] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Females as compared with males display better general health status, longevity, and improved clinical course after injury and infection. It is generally believed that the female advantage is associated with the effects of sex hormones. This review argues that the sex benefit of females during the host response is associated with polymorphism of X-linked genes and cellular mosaicism for X-linked parental alleles. Cells from females carry both parental X chromosomes (maternal, Xm; or paternal, Xp), whereas males carry only one (Xm). Because of dosage compensation and random X inactivation, half of the cells from females express either Xm or Xp. Therefore, females are cellular mosaics for their X-linked polymorphic genes. This cellular mosaicism in females represents a more adaptive and balanced cellular machinery that is advantageous during the innate immune response. Several genes encoding key metabolic and regulatory proteins reside on the X chromosome, including members of the apoptotic cascade, hormone homeostasis, glucose metabolic enzymes, superoxide-producing machinery, and the toll-like receptor/nuclear factor kappaB/c-Jun N-terminal kinase signaling pathway. Polymorphic forms of these X-linked proteins are likely to manifest in phenotypic differences in the mosaic cell populations in females and may contribute to sex-related differences in the host response to injury and infection. The unique inheritance pattern of X-linked polymorphisms and their potential confounding effects in clinical trials are also discussed; furthermore, we present potential biomarkers for studying mosaic cell populations of innate immunity.
Collapse
Affiliation(s)
- Zoltán Spolarics
- Department of Surgery, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07103, USA.
| |
Collapse
|
38
|
Abstract
Deficiency of glucose-6-phosphate dehydrogenase is a very common X-linked genetic disorder though most deficient people are asymptomatic. A number of different G6PD variants have reached polymorphic frequencies in different parts of the world due to the relative protection they confer against malaria infection. People, usually males, with deficient alleles are susceptible to neonatal jaundice, and acute hemolytic anemia, usually during infection, after treatment with certain drugs or after eating fava beans. Very rarely de novo mutations can arise causing the more severe condition of chronic nonspherocytic hemolytic anemia. Altogether 160 different mutations have been described. The majority of mutations cause red cell enzyme deficiency by decreasing enzyme stability. The polymorphic mutations affect amino acid residues throughout the enzyme and decrease the stability of the enzyme in the red cell, possibly by disturbing protein folding. The severe mutations mostly affect residues at the dimer interface or those that interact with a structural NADP molecule that stabilizes the enzyme.
Collapse
Affiliation(s)
- Philip J Mason
- Division of Hematology, Department of Internal Medicine, Washington University School of Medicine, Campus Box 8125, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
39
|
Condon MR, Feketova E, Machiedo GW, Deitch EA, Spolarics Z. Augmented erythrocyte band-3 phosphorylation in septic mice. Biochim Biophys Acta Mol Basis Dis 2007; 1772:580-6. [PMID: 17382523 PMCID: PMC1892314 DOI: 10.1016/j.bbadis.2007.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 01/29/2007] [Accepted: 02/12/2007] [Indexed: 11/16/2022]
Abstract
Infection-induced RBC dysfunction has been shown to play a role in the modulation of host response to injury and infection. The underlying biochemical mechanisms are not known. This study investigated alterations in RBC band-3 phosphorylation status and its relationship to anion exchange activity in vitro as well as under in vivo septic conditions induced by cecal ligation and puncture (CLP) in mice. Pervanadate treatment in vitro increased band-3 tyrosine phosphorylation that was accompanied by decreased RBC deformability and anion exchange activity. Following sepsis, band-3 tyrosine phosphorylation in whole RBC ghosts as well as in cytoskeleton-bound or soluble RBC protein fractions were elevated as compared to controls. Although anion exchange activity was similar in RBCs from septic and control animals, band-3 interaction with eosin-5-maleimide (EMA), which binds to band-3 lysine moieties, was increased in cells from septic animals as compared to controls, indicating that sepsis altered band 3 organization within the RBC membrane. Since glucose-6-phosphate dehydrogenase is a major antioxidant enzyme in RBC, in order to assess the potential role of oxidative stress in band-3 tyrosine phosphorylation, sepsis-induced RBC responses were also compared between WT and (G6PD) mutant animals (20% of normal G6PD activity). Band-3 membrane content and EMA staining were elevated in G6PD mutant mice compared to WT under control non-septic conditions. Following sepsis, G6PD mutant animals showed lessened responses in band-3 tyrosine phosphorylation and EMA staining compared to WT. RBC anion exchange activity was similar between mutant and WT animals under all tested conditions. In summary, these studies indicate that sepsis results in elevated band-3 tyrosine phosphorylation and alters band-3 membrane organization without grossly affecting RBC anion exchange activity. The observations also suggest that factors other than oxidative stress are responsible for the sepsis-induced increase in RBC band-3 tyrosine phosphorylation.
Collapse
Affiliation(s)
- Michael R Condon
- Surgical Services, VA New Jersey Health Care System, East Orange, NJ 07018, USA
| | | | | | | | | |
Collapse
|
40
|
|
41
|
Wilmanski J, Villanueva E, Deitch EA, Spolarics Z. Glucose-6-phosphate dehydrogenase deficiency and the inflammatory response to endotoxin and polymicrobial sepsis*. Crit Care Med 2007; 35:510-8. [PMID: 17205013 DOI: 10.1097/01.ccm.0000254337.50361.2e] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common human genetic polymorphism. The deficiency protects against malaria but was shown to worsen the clinical course after severe trauma. This study tested whether the deficiency is associated with altered cytokine responses in vitro and in vivo and affects survival after endotoxemia or polymicrobial sepsis (cecal ligation and puncture). DESIGN Genotyping of animals was carried out using a novel and improved allele-specific polymerase chain reaction assay. Macrophage and splenocyte responses in vitro and ex vivo were compared using gene array analyses and enzyme-linked immunosorbent assays and flow cytometry under both baseline and lipopolysaccharide-stimulated conditions. Endotoxemia- or sepsis-induced mortality was compared under a variety of treatment and resuscitation protocols. SETTINGS Medical school research laboratories. SUBJECTS Litter mates of wild-type and G6PD-mutant mice that display a degree of G6PD deficiency similar to that observed in the African-type human deficiency (20% of normal). MEASUREMENTS AND MAIN RESULTS Lipopolysaccharide in vivo (lipopolysaccharide from Escherichia coli, 10-35 mg/kg body weight intraperitoneally) resulted in greater interleukin-1beta, interleukin-6, and interleukin-10 levels in serum and peritoneal lavage in G6PD-deficient mice compared with wild type. Prevailing doses of lipopolysaccharide in vivo increased mortality in G6PD-deficient animals (40-70%) as compared with wild type (5-40%). In contrast, mortality after cecal ligation and puncture-induced sepsis was similar in G6PD-deficient and wild-type animals either in saline-resuscitated or antibiotic-treated animals. Splenic and blood phagocytes from septic G6PD-deficient and wild-type animals displayed attenuated ex vivo lipopolysaccharide responsiveness. CONCLUSIONS This study demonstrates that G6PD deficiency augments cytokine responses after inflammatory challenges. The deficiency is disadvantageous as reflected in increased mortality after hyperinflammation caused by acute endotoxemia. However, the deficiency may not manifest worsened survival after the immunosuppressed condition associated with severe sepsis.
Collapse
Affiliation(s)
- Jeanette Wilmanski
- Graduate School of Biomedical Sciences and the Department of Surgery, UMDNJ-New Jersey Medical School, Newark, NJ, USA
| | | | | | | |
Collapse
|
42
|
Rahav G, Volach V, Shapiro M, Rund D, Rachmilewitz EA, Goldfarb A. Severe infections in thalassaemic patients: prevalence and predisposing factors. Br J Haematol 2006; 133:667-74. [PMID: 16704445 DOI: 10.1111/j.1365-2141.2006.06082.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The incidence of infections among patients with thalassaemia and the role of risk factors for infection are uncertain. We studied the occurrence of infections necessitating hospitalisation in 92 homozygous beta-thalassaemia patients who had been followed longitudinally for decades, and investigated the role of potential risk factors for these infections. Pneumonia accounted for 26% of the infections and fever of unknown origin for 14%. Staphylococcus aureus was the major pathogen possibly related to injections associated with intensive chelation with deferoxamine. There was a significant increase in the rate of infection over time, notably after 15 years. Splenectomy correlated with the incidence of infection (P < 0.001) without being confounded by other variables and with highest frequencies of infections present after 10 years. A direct correlation between iron overload and infection was evident only before the initiation of iron-chelating treatment (P < 0.01). Following initiation of deferoxamine, paradoxically, the infection rate increased (P = 0.046). The combination of splenectomy and deferoxamine treatment was associated with the highest adjusted infection rate. Parathyroid dysfunction and glucose-6-phosphate dehydrogenase deficiency were significantly associated with infection (P = 0.02 and P = 0.04 respectively). The infection rate in thalassaemia is affected mainly by the duration of the disease and is increased by splenectomy and, in the long term, by treatment with deferoxamine.
Collapse
Affiliation(s)
- Galia Rahav
- Department of Clinical Microbiology and Infectious Diseases, Hadassah Medical Centre and School of Medicine, The Hebrew University, Ein-Kerem, Jerusalem, Israel.
| | | | | | | | | | | |
Collapse
|
43
|
Schulpis KH, Reclos GJ, Parthimos T, Parthimos N, Gavriilidis A, Tsakiris S. L-cysteine supplementation protects the erythrocyte glucose-6-phosphate dehydrogenase activity from reduction induced by forced training. Clin Biochem 2006; 39:1002-6. [PMID: 16959232 DOI: 10.1016/j.clinbiochem.2006.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 06/08/2006] [Accepted: 06/21/2006] [Indexed: 11/23/2022]
Abstract
BACKGROUND L-cysteine (L-cys) is implicated in the reduction of free radical production. AIM To investigate the effect of training and L-cys supplementation on the erythrocyte glucose-6-phosphate dehydrogenase (G6PD) activity. METHODS Blood was obtained from 10 basketball players pre-game (group A), post-game (group B) and after 1 week on L-cys (0.5 g/24 h orally) supplementation pre- (group C) and post-training (group D). Total antioxidant status (TAS) and G6PD activity were evaluated with commercial kits. RESULTS TAS increased in the groups with l-cys addition (group C and group D). Post-exercise, TAS and G6PD activity were remarkably higher (1.48+/-0.12 mmol/L, 8.9+/-1.7 U/g Hb, respectively) in group D than those in group B (0.92+/-0.10 mmol/L, 4.8+/-1.6 U/g Hb, p<0.01). G6PD activity positively correlated with TAS (r=0.70, p<0.001 pre- and r=0.61, p<0.001 post-training) in all the studied groups. CONCLUSIONS G6PD activity is lowered by training probably due to free radical action. L-cys supplementation may protect G6PD activity from reduction by increasing total antioxidant capacity and glutathione production. G6PD activity should be evaluated in the blood of athletes of Mediterranean origin and female G6PD-deficient heterozygotes.
Collapse
Affiliation(s)
- Kleopatra H Schulpis
- Institute of Child Health, Research Center, Aghia Sophia Children's Hospital, GR-11527 Athens, Greece
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Occasionally, patients present with clinical episodes of infectious disease that seem to fall beyond the scope of normal immunocompetence. Examples include infections that are unusually persistent, recurrent or resistant to treatment, or those involving unexpected dissemination of disease or atypical pathogens. Recent cellular and molecular advances in immunology help to inform the investigation and management of these cases and provide opportunities for family surveillance and disease prevention. More than 100 separate primary (inherited) immunodeficiency disease (PID) states have now been defined, each with a range of syndromic manifestations. Many of these are rare diseases of childhood, but some, either in atypical or attenuated forms, emerge for the first time in adulthood. We outline a diagnostic approach to five groups of PID presenting in adulthood and describe the recently launched web-based PID Register of Australia and New Zealand--a new mechanism for improving knowledge and service delivery to Australasian patients and their clinical carers.
Collapse
Affiliation(s)
- D S Riminton
- Immunology Clinic, Department of Immunology, Concord Hospital, Sydney, New South Wales, Australia.
| | | |
Collapse
|
45
|
Spolarics Z, Condon MR, Siddiqi M, Machiedo GW, Deitch EA. Red blood cell dysfunction in septic glucose-6-phosphate dehydrogenase-deficient mice. Am J Physiol Heart Circ Physiol 2004; 286:H2118-26. [PMID: 14751857 DOI: 10.1152/ajpheart.01085.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucose-6-phosphate dehydrogenase (G-6-PDH) deficiency is the most common known human genetic polymorphism. This study tested the hypothesis that G-6-PDH deficiency worsens sepsis-induced erythrocyte dysfunction. Sepsis (24 h) was induced by cecal ligation and puncture in wild-type (WT) and G-6-PDH-deficient (G-6-PDH activity 15% of WT) mice. Erythrocyte responses were tested in whole blood as well as in subpopulations of circulating erythrocytes. Whereas erythrocyte deformability was similar in unchallenged deficient and WT animals, sepsis decreased erythrocyte deformability that was more pronounced in deficient than WT animals. Sepsis also resulted in anemia and hemolysis in deficient compared with WT animals. Mean corpuscular hemoglobin content and erythrocyte deformability decreased in younger erythrocyte subpopulations from septic deficient compared with WT animals. Sepsis decreased the reduced-to-oxidized glutathione ratio in erythrocytes from both deficient and WT animals; however, plasma glutathione increased more in deficient than in WT animals. Erythrocyte content of band 3 associated with the cytoskeleton was elevated in deficient compared with WT erythrocytes. The antioxidant N-acetyl-l-cysteine in vivo alleviated the sepsis-induced decrease in erythrocyte deformability in deficient animals compared with sham-operated control animals. This study demonstrates that a mild degree of G-6-PDH deficiency (comparable to the human class III G-6-PDH deficiencies) worsens erythrocyte dysfunction during sepsis. Increased erythrocyte rigidity and tendency for hemolysis together with alterations in band 3-spectrin interactions may contribute to the immunomodulatory effects of G-6-PDH deficiency observed after major trauma and infections in humans.
Collapse
Affiliation(s)
- Zoltán Spolarics
- Dept. of Surgery, UMDNJ-New Jersey Medical School, 185 South Orange Ave., MSB G-626, Newark, NJ 07103, USA.
| | | | | | | | | |
Collapse
|
46
|
Salvador A, Savageau MA. Quantitative evolutionary design of glucose 6-phosphate dehydrogenase expression in human erythrocytes. Proc Natl Acad Sci U S A 2003; 100:14463-8. [PMID: 14614139 PMCID: PMC283614 DOI: 10.1073/pnas.2335687100] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2002] [Indexed: 11/18/2022] Open
Abstract
Why do the activities of some enzymes greatly exceed the flux capacity of the embedding pathways? This is a puzzling open problem in quantitative evolutionary design. In this work we investigate reasons for high expression of a thoroughly characterized enzyme: glucose 6-phosphate dehydrogenase (G6PD) in human erythrocytes. G6PD catalyses the first step of the pathway that supplies NADPH for antioxidant defense mechanisms. Normal G6PD activity far exceeds the capacity of human erythrocytes for a steady NADPH supply, which is limited upstream of G6PD. However, the distribution of erythrocyte G6PD activity in human populations reveals a selective pressure for maintaining high activity. To clarify the nature of this selective pressure, we studied how G6PD activity and other parameters in a model of the NADPH redox cycle affect metabolic performance. Our analysis indicates that normal G6PD activity is sufficient but not superfluous to avoid NADPH depletion and ensure timely adaptation of the NADPH supply during pulses of oxidative load such as those that occur during adherence of erythrocytes to phagocytes. These results suggest that large excess capacities found in some biochemical and physiological systems, rather than representing large safety factors, may reflect a close match of system design to unscrutinized performance requirements. Understanding quantitative evolutionary design thus calls for careful consideration of the various performance specifications that biological components/processes must meet in order for the organism to be fit. The biochemical systems framework used in this paper is generally applicable for such a detailed examination of the quantitative evolutionary design of gene expression levels in other systems.
Collapse
Affiliation(s)
- Armindo Salvador
- Department of Microbiology and Immunology, University of Michigan Medical School, 5641 Medical Sciences Building II, Ann Arbor, MI 48109-0620, USA
| | | |
Collapse
|
47
|
Leverve XM, Guigas B, Detaille D, Batandier C, Koceir EA, Chauvin C, Fontaine E, Wiernsperger NF. Mitochondrial metabolism and type-2 diabetes: a specific target of metformin. DIABETES & METABOLISM 2003; 29:6S88-94. [PMID: 14502105 DOI: 10.1016/s1262-3636(03)72792-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several links relate mitochondrial metabolism and type 2 diabetes or chronic hyperglycaemia. Among them, ATP synthesis by oxidative phosphorylation and cellular energy metabolism (ATP/ADP ratio), redox status and reactive oxygen species (ROS) production, membrane potential and substrate transport across the mitochondrial membrane are involved at various steps of the very complex network of glucose metabolism. Recently, the following findings (1) mitochondrial ROS production is central in the signalling pathway of harmful effects of hyperglycaemia, (2) AMPK activation is a major regulator of both glucose and lipid metabolism connected with cellular energy status, (3) hyperglycaemia by inhibiting glucose-6-phosphate dehydrogenase (G6PDH) by a cAMP mechanism plays a crucial role in NADPH/NADP ratio and thus in the pro-oxidant/anti-oxidant cellular status, have deeply changed our view of diabetes and related complications. It has been reported that metformin has many different cellular effects according to the experimental models and/or conditions. However, recent important findings may explain its unique efficacy in the treatment of hyperglycaemia- or insulin-resistance related complications. Metformin is a mild inhibitor of respiratory chain complex 1; it activates AMPK in several models, apparently independently of changes in the AMP-to-ATP ratio; it activates G6PDH in a model of high-fat related insulin resistance; and it has antioxidant properties by a mechanism (s), which is (are) not completely elucidated as yet. Although it is clear that metformin has non-mitochondrial effects, since it affects erythrocyte metabolism, the mitochondrial effects of metformin are probably crucial in explaining the various properties of this drug.
Collapse
Affiliation(s)
- X M Leverve
- INSERM E-0221 Bioénergétique Fondamentale et Appliquée, Université Joseph-Fourier, Grenoble, France.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Condon MR, Kim JE, Deitch EA, Machiedo GW, Spolarics Z. Appearance of an erythrocyte population with decreased deformability and hemoglobin content following sepsis. Am J Physiol Heart Circ Physiol 2003; 284:H2177-84. [PMID: 12742829 DOI: 10.1152/ajpheart.01069.2002] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
With the use of the cecal ligation and puncture model in mice, this study tested whether sepsis-induced decreased erythrocyte deformability is restricted to a subpopulation of cells. Erythrocyte subpopulations were isolated by centrifugal elutriation. Lineweaver-Burk conversion of deformability-response curves to shear stress was used to determine the shear stress at half-maximal cell elongation (K(EI)) and maximal cell elongation (EI(max)). Sepsis decreased erythrocyte deformability in whole blood. K(EI) values were elevated (2.7 vs. 2.1 Pa) and EI(max) values decreased (0.56 vs. 0.50) in sepsis compared with sham mice. K(EI) values for cells eluted at 7 ml/min (smallest and oldest cells) were similar; however, K(EI) values for cells eluted at 8 ml/min were greater in septic than sham animals (2.50 vs. 2.10). Younger and larger subpopulations of erythrocytes (eluted at 9, 10, and 11 ml/min) also showed a tendency of decreased deformability in sepsis. Mean corpuscular hemoglobin content was decreased in cells eluted at 7 and 8 ml/min in sepsis (4.5 and 10.2 pg) compared to sham (7.4 and 11.4 pg) mice. This study indicates that an erythrocyte subpopulation that represents 20% of circulating cells shows the most pronounced decrease in cell deformability during sepsis. Increased rigidity together with decreased corpuscular hemoglobin content in these cells may contribute to microcirculatory dysfunction and immune modulation during sepsis.
Collapse
Affiliation(s)
- Michael R Condon
- Department of Surgery, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark 07103, USA
| | | | | | | | | |
Collapse
|
49
|
Spolarics Z, Siddiqi M, Siegel JH, Garcia ZC, Stein DS, Denny T, Deitch EA. Depressed interleukin-12-producing activity by monocytes correlates with adverse clinical course and a shift toward Th2-type lymphocyte pattern in severely injured male trauma patients. Crit Care Med 2003; 31:1722-9. [PMID: 12794411 DOI: 10.1097/01.ccm.0000063579.43470.aa] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To determine the effect of major trauma on the cytokine-producing activity of monocytes and CD4+ T cells in a homogeneous cohort of patients as well as to determine the relationship between monocyte and T-lymphocyte responses and clinical outcome. SETTINGS Surgical intensive care units of a trauma center and flow cytometry and experimental laboratories at a teaching hospital. DESIGN Prospective cohort clinical study with measurements of white cell cytokine-producing activity on days 2, 5, and 10 postinjury. The number of cytokine-producing CD14+ monocytes, CD4+, and CD8+ T cells were determined in whole blood using flow cytometry combined with the intracellular cytokine staining method. Basal and lipopolysaccharide-stimulated interleukin (IL)-12, tumor necrosis factor-alpha, IL-6, and IL-1alpha production by monocytes as well as basal and phorbol 12-myristate 13-acetate plus ionomycin-stimulated interferon-gamma, IL-4, and tumor necrosis factor-alpha production by T cells were determined on days 2, 5, and 10 postinjury and compared with similar measurements made in healthy control subjects. PATIENTS Twelve randomly selected black, male patients were enrolled in the study: mean injury severity score, 26; mean age, 35 yrs; mean Glasgow Coma Scale score, 13; systemic inflammatory response syndrome, 92%; sepsis, 42%; bronchial infection, 42%; and adult respiratory distress syndrome 25%. MAIN RESULTS After lipopolysaccharide stimulation, the number of IL-12-, tumor necrosis factor-alpha-, IL-1alpha-, and IL-6-producing CD14+ monocytes was 40% to 70% lower in trauma patients on postinjury days 2, 5, and 10 than in healthy control subjects. After phorbol 12-myristate 13-acetate stimulation, the number of IL-4-producing CD4+ cells increased three-fold in the trauma patients compared with healthy control subjects. In contrast, the number of interferon-gamma- or tumor necrosis factor-alpha-producing CD4+ and CD8+ T cells was not different between the patients and control subjects. The Th1/Th2 ratio was significantly lower in patients on all postinjury days than in the control subjects. A statistically significant inverse correlation was found between the number of IL-12-producing monocytes and IL-4-producing CD4+ T cells in trauma patients (p =.007, r2 =.47). This correlation was absent in control subjects. The degree of depressed capacity of monocyte IL-12 production on day 2 postinjury showed a statistically significant correlation with the development of adult respiratory distress syndrome, sepsis, or infections and also with the duration of systemic inflammatory response syndrome and sepsis. CONCLUSIONS Major trauma results in an early and marked decrease in monocyte cytokine-producing activity. The trauma-induced depression in IL-12 production by the mononuclear phagocyte system may promote T-cell commitment toward a Th2 pattern early after trauma. The appearance of the Th2 pattern is the result of elevated numbers of IL-4-producing cells without major alterations in T-cell interferon-gamma-producing capacity. The degree of alterations in monocyte and T-cell responses on day 2 postinjury correlates with the development of adverse clinical outcomes and the subsequent duration of the inflammatory response.
Collapse
Affiliation(s)
- Zoltán Spolarics
- Department of Surgery, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Leverve X. Hyperglycemia and oxidative stress: complex relationships with attractive prospects. Intensive Care Med 2003; 29:511-4. [PMID: 12800829 DOI: 10.1007/s00134-002-1629-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|