1
|
Li T, Thoen ZE, Applebaum JM, Khalil RA. Menopause-related changes in vascular signaling by sex hormones. J Pharmacol Exp Ther 2025; 392:103526. [PMID: 40184819 DOI: 10.1016/j.jpet.2025.103526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/24/2025] [Indexed: 04/07/2025] Open
Abstract
Cardiovascular disease (CVD), such as hypertension and coronary artery disease, involves pathological changes in vascular signaling, function, and structure. Vascular signaling is regulated by multiple intrinsic and extrinsic factors that influence endothelial cells, vascular smooth muscle, and extracellular matrix. Vascular function is also influenced by environmental factors including diet, exercise, and stress, as well as genetic background, sex differences, and age. CVD is more common in adult men and postmenopausal women than in premenopausal women. Specifically, women during menopausal transition, with declining ovarian function and production of estrogen (E2) and progesterone, show marked increase in the incidence of CVD and associated vascular dysfunction. Mechanistic research suggests that E2 and E2 receptor signaling have beneficial effects on vascular function including vasodilation, decreased blood pressure, and cardiovascular protection. Also, the tangible benefits of E2 supplementation in improving menopausal symptoms have prompted clinical trials of menopausal hormone therapy (MHT) in CVD, but the results have been inconsistent. The inadequate benefits of MHT in CVD could be attributed to the E2 type, dose, formulation, route, timing, and duration as well as menopausal changes in E2/E2 receptor vascular signaling. Other factors that could affect the responsiveness to MHT are the integrated hormonal milieu including gonadotropins, progesterone, and testosterone, vascular health status, preexisting cardiovascular conditions, and menopause-related dysfunction in the renal, gastrointestinal, endocrine, immune, and nervous systems. Further analysis of these factors should enhance our understanding of menopause-related changes in vascular signaling by sex hormones and provide better guidance for management of CVD in postmenopausal women. SIGNIFICANCE STATEMENT: Cardiovascular disease is more common in adult men and postmenopausal women than premenopausal women. Earlier observations of vascular benefits of menopausal hormone therapy did not materialize in randomized clinical trials. Further examination of the cardiovascular effects of sex hormones in different formulations and regimens, and the menopausal changes in vascular signaling would help to adjust the menopausal hormone therapy protocols in order to enhance their effectiveness in reducing the risk and the management of cardiovascular disease in postmenopausal women.
Collapse
Affiliation(s)
- Tao Li
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Zachary E Thoen
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Jessica M Applebaum
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
2
|
Bernstein SR, Kelleher C, Khalil RA. Gender-based research underscores sex differences in biological processes, clinical disorders and pharmacological interventions. Biochem Pharmacol 2023; 215:115737. [PMID: 37549793 PMCID: PMC10587961 DOI: 10.1016/j.bcp.2023.115737] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Earlier research has presumed that the male and female biology is similar in most organs except the reproductive system, leading to major misconceptions in research interpretations and clinical implications, with serious disorders being overlooked or misdiagnosed. Careful research has now identified sex differences in the cardiovascular, renal, endocrine, gastrointestinal, immune, nervous, and musculoskeletal systems. Also, several cardiovascular, immunological, and neurological disorders have shown differences in prevalence and severity between males and females. Genetic variations in the sex chromosomes have been implicated in several disorders at young age and before puberty. The levels of the gonadal hormones estrogen, progesterone and testosterone and their receptors play a role in the sex differences between adult males and premenopausal women. Hormonal deficiencies and cell senescence have been implicated in differences between postmenopausal and premenopausal women. Specifically, cardiovascular disorders are more common in adult men vs premenopausal women, but the trend is reversed with age with the incidence being greater in postmenopausal women than age-matched men. Gender-specific disorders in females such as polycystic ovary syndrome, hypertension-in-pregnancy and gestational diabetes have attained further research recognition. Other gender-related research areas include menopausal hormone therapy, the "Estrogen Paradox" in pulmonary arterial hypertension being more predominant but less severe in young females, and how testosterone may cause deleterious effects in the kidney while having vasodilator effects in the coronary circulation. This has prompted the National Institutes of Health (NIH) initiative to consider sex as a biological variable in research. The NIH and other funding agencies have provided resources to establish state-of-the-art centers for women health and sex differences in biology and disease in several academic institutions. Scientific societies and journals have taken similar steps to organize specialized conferences and publish special issues on gender-based research. These combined efforts should promote research to enhance our understanding of the sex differences in biological systems beyond just the reproductive system, and provide better guidance and pharmacological tools for the management of various clinical disorders in a gender-specific manner.
Collapse
Affiliation(s)
- Sofia R Bernstein
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Caroline Kelleher
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Mishra JS, More AS, Hankins GDV, Kumar S. Hyperandrogenemia reduces endothelium-derived hyperpolarizing factor-mediated relaxation in mesenteric artery of female rats. Biol Reprod 2018; 96:1221-1230. [PMID: 28486649 DOI: 10.1093/biolre/iox043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/08/2017] [Indexed: 01/05/2023] Open
Abstract
Women with polycystic ovary syndrome (PCOS) are often presented with hyperandrogenemia along with vascular dysfunction and elevated blood pressure. In animal models of PCOS, anti-androgen treatment decreased blood pressure, indicating a key role for androgens in the development of hypertension. However, the underlying androgen-mediated mechanism that contributes to increased blood pressure is not known. This study determined whether elevated androgens affect endothelium-derived hyperpolarizing factor (EDHF)-mediated vascular relaxation responses through alteration in function of gap junctional proteins. Female rats were implanted with placebo or dihydrotestosterone (DHT) pellets (7.5 mg, 90-day release). After 12 weeks of DHT exposure, blood pressure was assessed through carotid arterial catheter and endothelium-dependent mesenteric arterial EDHF relaxation using wire myograph. Connexin expression in mesenteric arteries was also examined. Elevated DHT significantly increased mean arterial pressure and decreased endothelium-dependent EDHF-mediated acetylcholine relaxation. Inhibition of Cx40 did not have any effect, while inhibition of Cx37 decreased EDHF relaxation to a similar magnitude in both controls and DHT females. On the other hand, inhibition of Cx43 significantly attenuated EDHF relaxation in mesenteric arteries of controls but not DHT females. Elevated DHT did not alter Cx37 or Cx40, but decreased Cx43 mRNA and protein levels in mesenteric arteries. In vitro exposure of DHT to cultured mesenteric artery smooth muscle cells dose-dependently downregulated Cx43 expression. In conclusion, increased blood pressure in hyperandrogenic females is due, at least in part, to decreased EDHF-mediated vascular relaxation responses. Decreased Cx43 expression and activity may play a role in contributing to androgen-induced decrease in EDHF function.
Collapse
Affiliation(s)
- Jay S Mishra
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Texas, USA
| | - Amar S More
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Texas, USA
| | - Gary D V Hankins
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Texas, USA
| | - Sathish Kumar
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Texas, USA
| |
Collapse
|
4
|
Mouat MA, Coleman JLJ, Smith NJ. GPCRs in context: sexual dimorphism in the cardiovascular system. Br J Pharmacol 2018; 175:4047-4059. [PMID: 29451687 DOI: 10.1111/bph.14160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/31/2018] [Accepted: 02/09/2018] [Indexed: 12/31/2022] Open
Abstract
Cardiovascular disease (CVD) remains the largest cause of mortality worldwide, and there is a clear gender gap in disease occurrence, with men being predisposed to earlier onset of CVD, including atherosclerosis and hypertension, relative to women. Oestrogen may be a driving factor for female-specific cardioprotection, though androgens and sex chromosomes are also likely to contribute to sexual dimorphism in the cardiovascular system (CVS). Many GPCR-mediated processes are involved in cardiovascular homeostasis, and some exhibit clear sex divergence. Here, we focus on the G protein-coupled oestrogen receptor, endothelin receptors ETA and ETB and the eicosanoid G protein-coupled receptors (GPCRs), discussing the evidence and potential mechanisms leading to gender dimorphic responses in the vasculature. The use of animal models and pharmacological tools has been essential to understanding the role of these receptors in the CVS and will be key to further delineating their sex-specific effects. Ultimately, this may illuminate wider sex differences in cardiovascular pathology and physiology. LINKED ARTICLES This article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.21/issuetoc.
Collapse
Affiliation(s)
- Margaret A Mouat
- Molecular Pharmacology Laboratory, Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, University of New South Wales, NSW, Australia
| | - James L J Coleman
- Molecular Pharmacology Laboratory, Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, University of New South Wales, NSW, Australia
| | - Nicola J Smith
- Molecular Pharmacology Laboratory, Division of Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, University of New South Wales, NSW, Australia
| |
Collapse
|
5
|
Boese AC, Kim SC, Yin KJ, Lee JP, Hamblin MH. Sex differences in vascular physiology and pathophysiology: estrogen and androgen signaling in health and disease. Am J Physiol Heart Circ Physiol 2017. [PMID: 28626075 DOI: 10.1152/ajpheart.00217.2016] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sex differences between women and men are often overlooked and underappreciated when studying the cardiovascular system. It has been long assumed that men and women are physiologically similar, and this notion has resulted in women being clinically evaluated and treated for cardiovascular pathophysiological complications as men. Currently, there is increased recognition of fundamental sex differences in cardiovascular function, anatomy, cell signaling, and pathophysiology. The National Institutes of Health have enacted guidelines expressly to gain knowledge about ways the sexes differ in both normal function and diseases at the various research levels (molecular, cellular, tissue, and organ system). Greater understanding of these sex differences will be used to steer future directions in the biomedical sciences and translational and clinical research. This review describes sex-based differences in the physiology and pathophysiology of the vasculature, with a special emphasis on sex steroid receptor (estrogen and androgen receptor) signaling and their potential impact on vascular function in health and diseases (e.g., atherosclerosis, hypertension, peripheral artery disease, abdominal aortic aneurysms, cerebral aneurysms, and stroke).
Collapse
Affiliation(s)
- Austin C Boese
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Seong C Kim
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Ke-Jie Yin
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jean-Pyo Lee
- Department of Neurology, Tulane University School of Medicine, New Orleans, Louisiana; and.,Center for Stem Cell Research and Regenerative Medicine, New Orleans, Louisiana
| | - Milton H Hamblin
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana;
| |
Collapse
|
6
|
Pharmacologic blockade and genetic deletion of androgen receptor attenuates aortic aneurysm formation. J Vasc Surg 2016; 63:1602-1612.e2. [PMID: 26817611 DOI: 10.1016/j.jvs.2015.11.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 11/05/2015] [Indexed: 11/22/2022]
Abstract
BACKGROUND Testosterone is theorized to play a major role in the pathophysiology of abdominal aortic aneurysms (AAAs) because this disease occurs primarily in men. The role of the androgen receptor (AR) in the formation of AAAs has not been well elucidated, and therefore, it is hypothesized that androgen blockade will attenuate experimental aortic aneurysm formation. METHODS Aortas of 8- to 12-week-old male C57Bl/6 wild-type (WT) mice or male AR knockout (AR(-/-)) mice were perfused with purified porcine pancreatic elastase (0.35 U/mL) to induce AAA formation. Two groups of WT male mice were treated with the AR blockers flutamide (50 mg/kg) or ketoconazole (150 mg/kg) twice daily by intraperitoneal injection. Aortas were harvested on day 14 after video micrometry was used to measure AAA diameter. Cytokine arrays and histologic analysis were performed on aortic tissue. Groups were compared using an analysis of variance and a Tukey post hoc test. RESULTS Flutamide and ketoconazole treatment (mean ± standard error of the mean) attenuated AAA formation in WT mice (84.2% ± 22.8% [P = .009] and 91.5% ± 18.2% [P = .037]) compared with WT elastase (121% ± 5.23%). In addition, AR(-/-) mice showed attenuation of AAA growth (64.4% ± 22.7%; P < .0001) compared with WT elastase. Cytokine arrays of aortic tissue revealed decreased levels of proinflammatory cytokines interleukin (IL)-α, IL-6, and IL-17 in flutamide-treated and AR(-/-) groups compared with controls. CONCLUSIONS Pharmacologic and genetic AR blockade cause attenuation of AAA formation. Therapies for AR blockade used in prostate cancer may provide medical treatment to halt progression of AAAs in humans.
Collapse
|
7
|
Renshall LJ, Dilworth MR, Greenwood SL, Sibley CP, Wareing M. In vitro assessment of mouse fetal abdominal aortic vascular function. Am J Physiol Regul Integr Comp Physiol 2014; 307:R746-54. [PMID: 25056105 PMCID: PMC4166756 DOI: 10.1152/ajpregu.00058.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Fetal growth restriction (FGR) affects 3–8% of human pregnancies. Mouse models have provided important etiological data on FGR; they permit the assessment of treatment strategies on the physiological function of both mother and her developing offspring. Our study aimed to 1) develop a method to assess vascular function in fetal mice and 2) as a proof of principle ascertain whether a high dose of sildenafil citrate (SC; Viagra) administered to the pregnant dam affected fetal vascular reactivity. We developed a wire myography methodology for evaluation of fetal vascular function in vitro using the placenta-specific insulin-like growth factor II (Igf2) knockout mouse (P0; a model of FGR). Vascular function was determined in abdominal aortas isolated from P0 and wild-type (WT) fetuses at embryonic day (E) 18.5 of gestation. A subset of dams received SC 0.8 mg/ml via drinking water from E12.5; data were compared with water-only controls. Using wire myography, we found that fetal aortic rings exhibited significant agonist-induced contraction, and endothelium-dependent and endothelium-independent relaxation. Sex-specific alterations in reactivity were noted in both strains. Maternal treatment with SC significantly attenuated endothelium-dependent and endothelium-independent relaxation of fetal aortic rings. Mouse fetal abdominal aortas reproducibly respond to vasoactive agents. Study of these vessels in mouse genetic models of pregnancy complications may 1) help to delineate early signs of abnormal vascular reactivity and 2) inform whether treatments given to the mother during pregnancy may impact upon fetal vascular function.
Collapse
Affiliation(s)
- Lewis J Renshall
- Maternal and Fetal Health Research Centre, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom; and St. Mary's Hospital, Central Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Mark R Dilworth
- Maternal and Fetal Health Research Centre, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom; and St. Mary's Hospital, Central Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Susan L Greenwood
- Maternal and Fetal Health Research Centre, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom; and St. Mary's Hospital, Central Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Colin P Sibley
- Maternal and Fetal Health Research Centre, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom; and St. Mary's Hospital, Central Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Mark Wareing
- Maternal and Fetal Health Research Centre, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom; and St. Mary's Hospital, Central Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
8
|
Gonzales RJ. Androgens and the cerebrovasculature: modulation of vascular function during normal and pathophysiological conditions. Pflugers Arch 2013; 465:627-42. [DOI: 10.1007/s00424-013-1267-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 03/08/2013] [Indexed: 12/26/2022]
|
9
|
Tantry US, Navarese EP, Gurbel PA. Does Gender have an Influence on Platelet Function and the Efficacy of Oral Antiplatelet Therapy? Interv Cardiol Clin 2012; 1:223-230. [PMID: 28582096 DOI: 10.1016/j.iccl.2012.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The underlying pathophysiology of ischemic complications during acute coronary syndrome involves thrombus generation at sites of plaque rupture and endothelial erosion, in which platelet activation and aggregation play major roles. This review discusses whether there are intrinsic differences in thrombogenicity between genders. In trials of acute coronary syndromes with dual antiplatelet therapy strategies, women tend to experience more ischemic events. Controversy exists surrounding the protective role of estrogens in the premenopausal woman. In vitro studies support the attenuation of platelet function by estrogen. Sufficient data support the presence of gender differences in thrombogenicity to promote further investigation in this area.
Collapse
Affiliation(s)
- Udaya S Tantry
- Cardiac Catheterization Laboratory, Sinai Center for Thrombosis Research, 2401 West Belvedere Avenue, Baltimore, MD 21215, USA
| | - Eliano P Navarese
- Interventional Cardio-Angiology Unit, GVM Care and Research, Cotignola, Ravenna, Italy
| | - Paul A Gurbel
- Cardiac Catheterization Laboratory, Sinai Center for Thrombosis Research, 2401 West Belvedere Avenue, Baltimore, MD 21215, USA.
| |
Collapse
|
10
|
Aversa A, Bruzziches R, Francomano D, Natali M, Lenzi A. Testosterone and phosphodiesterase type-5 inhibitors: new strategy for preventing endothelial damage in internal and sexual medicine? Ther Adv Urol 2011; 1:179-97. [PMID: 21789066 DOI: 10.1177/1756287209344992] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Normal vascular endothelium is essential for the synthesis and release of substances affecting vascular tone (e.g. nitric oxide; NO), cell adhesion (e.g. endothelins, interleukins), and the homeostasis of clotting and fibrinolysis (e.g. plasminogen inhibitors, von Willebrand factor). The degeneration of endothelial integrity promotes adverse events (AEs) leading to increased atherogenesis and to the development of vascular systemic and penile end-organ disease. Testosterone (T) is an important player in the regulation of vascular tone through non-genomic actions exerted via blockade of extracellular-calcium entry or activation of potassium channels; also, adequate T concentrations are paramount for the regulation of phosphodiesterase type-5 (PDE5) expression and finally, for the actions exerted by hydrogen sulphide, a gas involved in the alternative pathway controlling vasodilator responses in penile tissue. It is known that an age-related decline of serum T is reported in approximately 20 to 30% of men whereas T deficiency is reported in up to 50% of men with metabolic syndrome or diabetes. A number of laboratory and human studies have shown the combination of T and other treatments for erectile dysfunction (ED), such as PDE5 inhibitors, to be more beneficial in patients with ED and hypogonadism, who fail monotherapy for sexual disturbances.The aim of this review is to show evidence on the role of T and PDE5 inhibitors, alone or in combination, as potential boosters of endothelial function in internal medicine diseases associated with reduced T or NO bioavailability, i.e. metabolic syndrome, obesity, diabetes, coronary artery disease, hyperhomocysteinemia, that share common risk factors with ED. Furthermore, the possibility of such a strategy to prevent endothelial dysfunction in men at increased cardiovascular risk is discussed.
Collapse
Affiliation(s)
- Antonio Aversa
- Dip.to Fisiopatologia Medica, Room 37, Viale Policlinico 155, 00161 Rome Italy
| | | | | | | | | |
Collapse
|
11
|
Chua S, Wang HL, Lin YC, Wu CH, Tsai TH, Chang LT, Kao YH, Yen CH, Yip HK, Sun CK. Enhanced Expression of Plasminogen Activator Inhibitor May Prevent Cardiac Rupture in Female and Castrated Mice After Myocardial Infarction. ACTA ACUST UNITED AC 2011; 8:239-51. [PMID: 21664194 DOI: 10.1016/j.genm.2011.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Revised: 04/27/2011] [Accepted: 05/17/2011] [Indexed: 01/28/2023]
Affiliation(s)
- Sarah Chua
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Vasudevan H, Lau S, Jiang J, McNeill JH. Effects of insulin resistance and testosterone on the participation of cyclooxygenase isoforms in vascular reactivity. J Exp Pharmacol 2010; 2:169-79. [PMID: 27186103 PMCID: PMC4863301 DOI: 10.2147/jep.s14989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Testosterone plays an important role in mediating hypertension and altered vascular reactivity associated with insulin resistance. In addition to other pathways, testosterone-dependent changes in aortic cyclooxygenase (COX-2) mRNA levels affect blood pressure following insulin resistance. However their effects on vascular tone are unclear. We studied the changes in contraction response to phenylephrine (PE) in the aorta and superior mesenteric artery (SMA) from intact and gonadectomized fructose-fed rats. Constriction response to PE was studied in tissues incubated with the COX-1 and COX-2-selective antagonists, SC-560 and NS-398, respectively, and indomethacin, in addition to assessing its role in endothelium-dependent relaxation. Finally changes in COX-2 protein expression and plasma thromboxane A2 (TXA2), a downstream vasoconstrictor metabolite of COX-2, were measured. In fructose-fed rats, castration prevented the increase in blood pressure but not insulin resistance. The involvement of COX-2 in mediating the alpha-adrenergic vasoconstriction was higher in intact rat aorta compared to COX-1, which was prevented by castration. However, in the SMA, COX-2 participation was dependent on testosterone alone. Fructose-induced attenuation of endothelial relaxation was restored by indomethacin, which suggests a pro-vasoconstrictor role for COX. Both diet and testosterone did not alter vascular COX-2 expression thus suggesting the involvement of downstream testosterone-dependent pathways. This is supported by increased plasma TXA2 in the castrated rats compared to intact rats. Isoform-specific actions of COX are tissue-selective in states of insulin resistance and involve potential testosterone-dependent downstream targets. Further studies are needed to investigate the role of androgens and insulin resistance in vascular arachidonic acid metabolism.
Collapse
Affiliation(s)
- Harish Vasudevan
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sally Lau
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jihong Jiang
- Pediatric Oncology, Children and Women's Hospital, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - John H McNeill
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
13
|
Abstract
CVD (cardiovascular disease) is the leading cause of death for women. Considerable progress has been made in both our understanding of the complexities governing menopausal hormone therapy and our understanding of the cellular and molecular mechanisms underlying hormone and hormone receptor function. Understanding the interplay of atherosclerosis and sex steroid hormones and their cognate receptors at the level of the vessel wall has important ramifications for clinical practice. In the present review, we discuss the epidemiology of CVD in men and women, the clinical impact of sex hormones on CVD, and summarize our current understanding of the pathogenesis of atherosclerosis with a focus on gender differences in CVD, its clinical presentation and course, and pathobiology. The critical animal and human data that pertain to the role of oestrogens, androgens and progestins on the vessel wall is also reviewed, with particular attention to the actions of sex hormones on each of the three key cell types involved in atherogenesis: the endothelium, smooth muscle cells and macrophages. Where relevant, the systemic (metabolic) effects of sex hormones that influence atherogenesis, such as those involving vascular reactivity, inflammation and lipoprotein metabolism, are discussed. In addition, four key current concepts in the field are explored: (i) total hormone exposure time and coronary heart disease risk; (ii) the importance of tissue specificity of sex steroid hormones, critical timing and the stage of atherosclerosis in hormone action; (iii) biomarkers for atherosclerosis with regard to hormone therapy; and (iv) the complex role of sex steroids in inflammation. Future studies in this field will contribute to guiding clinical treatment recommendations for women and help define research priorities.
Collapse
|
14
|
Abstract
The vital role of the cardiovascular (CV) system is maintenance of body functions via the matching of exchange to tissue metabolic demand. Sex-specific differences in the regulatory mechanisms of CV function and the metabolic requirements of men and women, respectively, have been identified and appreciated. This review focuses on sex differences of parameters influencing exchange at the point of union between blood and tissue, the microvasculature. Microvascular architecture, blood pressure (hydrostatic and oncotic), and vascular permeability, therefore, are discussed in the specific context of sex in health and disorders. It is notable that when sex differences exist, they are generally subtle but significant. In the aggregate, though, they can give rise to profoundly different phenotypes. The postulated mechanisms responsible for sex differences are attributed to genomics, epigenetics, and sex hormones. Depending on specific circumstances, the effect of the combined factors can range from insignificant to lethal. Identifying and understanding key signalling mechanisms bridging genomics/sex hormones and microvascular exchange properties within the scope of this review holds significant promise for sex-specific prevention and treatment of vascular barrier dysfunction.
Collapse
Affiliation(s)
- Virginia H Huxley
- National Center for Gender Physiology, University of Missouri-Columbia, Columbia, MO 65212, USA.
| | | |
Collapse
|
15
|
Li J, Al-Azzawi F. Mechanism of androgen receptor action. Maturitas 2009; 63:142-8. [DOI: 10.1016/j.maturitas.2009.03.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 03/09/2009] [Accepted: 03/11/2009] [Indexed: 12/27/2022]
|
16
|
Ng MKC. New Perspectives on Mars and Venus: Unravelling the Role of Androgens in Gender Differences in Cardiovascular Biology and Disease. Heart Lung Circ 2007; 16:185-92. [PMID: 17448726 DOI: 10.1016/j.hlc.2007.02.108] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
There are substantial gender differences in the pattern, severity and clinical outcomes of coronary heart disease independent of environmental risk factor exposure. As a consequence, there has been considerable interest in the potential role of sex hormones in atherogenesis, particularly the potential protective effects of oestrogen. However, the failure of the recent clinical randomised trials to show a cardioprotective effect for oestrogen coupled with a growing interest in androgen replacement therapy in elderly men has refocused interest on the role of androgens in cardiovascular biology and disease. Over the last decade, compelling evidence has emerged that sex differences in vascular biology are not only determined by gender-related differences in sex steroid levels but also by gender-specific tissue and cellular characteristics which mediate sex-specific responses to a variety of stimuli. In the vasculature, androgens often act in a gender-specific manner, with differential effects in male and female cells. This gender-dependent regulation may have important implications for understanding the basis of the gender gap in atherosclerosis and may eventually lead to the development of sex-specific treatments for cardiovascular disease. This review will summarise the current data for the role of androgens in gender differences in coronary heart disease and cardiovascular biology.
Collapse
Affiliation(s)
- Martin K C Ng
- Department of Cardiology, Royal Prince Alfred Hospital, Heart Research Institute, Camperdown, NSW 2050, Australia.
| |
Collapse
|
17
|
Harrod CG, Batjer HH, Bendok BR. Deficiencies in estrogen-mediated regulation of cerebrovascular homeostasis may contribute to an increased risk of cerebral aneurysm pathogenesis and rupture in menopausal and postmenopausal women. Med Hypotheses 2006; 66:736-56. [PMID: 16356655 DOI: 10.1016/j.mehy.2005.09.051] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 09/27/2005] [Indexed: 01/22/2023]
Abstract
Despite the catastrophic consequence of ruptured intracranial aneurysms, very little is understood regarding their pathogenesis, and there are no reliable predictive markers for identifying at-risk individuals. Few studies have addressed the molecular pathological basis and mechanisms of intracranial aneurysm formation, growth, and rupture. The pathogenesis and rupture of cerebral aneurysms have been associated with inflammatory processes, and these have been implicated in the digestion and breakdown of vascular wall matrix. Epidemiological data indicate that the risk of cerebral aneurysm pathogenesis and rupture in women rises during and after menopause as compared to premenopausal women, and has been attributed to hormonal factors. Moreover, experimental evidence supports a role for estrogen in the modulation of each phase of the inflammatory response implicated in cerebral aneurysm pathogenesis and rupture. While the risk of aneurysm rupture in men also increases with age, this increased risk has been attributed to other recognized risk factors including cigarette smoking, use of alcohol, and history of hypertension, all of which are more common in men than women. We hypothesize, therefore, that decreases in both circulating estrogen levels and cerebrovascular estrogen receptor density may contribute to an increased risk of cerebral aneurysm pathogenesis and rupture in women during and after menopause. To test our hypothesis, experiments are needed to identify genes regulated by estrogen and to evaluate gene expression and intracellular mechanisms in cells/tissues exposed to varying concentrations and duration of treatment with estrogen, metabolites of estrogen, and selective estrogen receptor modulators (SERMs). Furthermore, it is not likely that the regulation of cerebrovascular homeostasis is due to the actions of estrogen alone, but rather the interplay of estrogen and other hormones and their associated receptor expression. The potential interactions of these hormones in the maintenance of normal cerebrovascular tone need to be elucidated. Additional studies are needed to define the role that estrogen and other sex hormones may play in the cerebrovascular circulation and the pathogenesis and rupture of cerebral aneurysms. Efforts directed at understanding the basic pathophysiological mechanisms of aneurysm pathogenesis and rupture promise to yield dividends that may have important therapeutic and clinical implications. The development of non-invasive tools such as molecular MRI for the detection of specific cells, molecular markers, and tissues may facilitate early diagnosis of initial pathophysiological changes that are undetectable by clinical examination or other diagnostic tools, and can also be used to evaluate the state of activity of cerebral aneurysm pathogenesis before, during, and after treatment.
Collapse
Affiliation(s)
- Christopher G Harrod
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 St. Clair Street, Suite 2210, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
18
|
Maddali KK, Korzick DH, Tharp DL, Bowles DK. PKCδ Mediates Testosterone-induced Increases in Coronary Smooth Muscle Cav1.2. J Biol Chem 2005; 280:43024-9. [PMID: 16243844 DOI: 10.1074/jbc.m509147200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sex hormones have emerged as important modulators of cardiovascular physiology and pathophysiology. Our previous studies demonstrated that testosterone increases expression and activity of L-type, voltage-gated calcium channels (Cav1.2) in coronary arteries of males. The purpose of the present study was to determine whether testosterone (T) alters coronary protein kinase C delta (PKCdelta) expression and whether PKCdelta plays a role in coronary Cav1.2 expression. For in vitro studies, porcine right coronary arteries (RCA) and post-confluent (passages 3-6) 5-day, serum-restricted coronary smooth muscle cell cultures (CSMC) were incubated in the presence and absence of T or dihydrotestosterone (10 and 100 nm) for 18 h at 37 degrees C in a humidified chamber. For sex and endogenous testosterone-dependent effects, RCA were obtained from intact males, castrated males, castrated males with T replacement, and intact females. In vitro T and dihydrotestosterone caused an approximately 2-3-fold increase in PKCdelta protein levels, approximately 1.5-2-fold increase in PKCdelta kinase activity, and localization of PKCdelta toward the plasma membrane and nuclear envelope. PKCdelta protein levels were higher in coronary arteries of intact males compared with intact females. Elimination of endogenous testosterone by castration reduced RCA PKCdelta protein levels, an effect partially (approximately 45%) reversed by exogenous T (castrated males with T replacement). In CSMC, PKC inhibition with either the general PKC inhibitor, cheylerythrine, or the putative PKCdelta inhibitor, rottlerin, completely inhibited the T-mediated increase in coronary Cav1.2 protein levels. Conversely, Go6976, a conventional PKC isoform inhibitor, failed to inhibit T-induced increases in coronary Cav1.2 protein levels. PKCdelta short interference RNA completely blocked T-induced increases in Cav1.2 protein levels in CSMC. These results demonstrate for the first time that 1) endogenous T is a primary modulator of coronary PKCdelta protein and activity in males and 2) T increases Cav1.2 protein expression in a PKCdelta-dependent manner.
Collapse
Affiliation(s)
- Kamala K Maddali
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, National Center for Gender Physiology, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | |
Collapse
|
19
|
Gonzales RJ, Ghaffari AA, Duckles SP, Krause DN. Testosterone treatment increases thromboxane function in rat cerebral arteries. Am J Physiol Heart Circ Physiol 2005; 289:H578-85. [PMID: 15764681 DOI: 10.1152/ajpheart.00958.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously showed that testosterone, administered in vivo, increases the tone of cerebral arteries. A possible underlying mechanism is increased vasoconstriction through the thromboxane A2 (TxA2) pathway. Therefore, we investigated the effect of chronic testosterone treatment (4 wk) on TxA2 synthase levels and the contribution of TxA2 to vascular tone in rat middle cerebral arteries (MCAs). Using immunofluorescence and confocal microscopy, we demonstrated that TxA2 synthase is present in MCA segments in both smooth muscle and endothelial layers. Using Western blot analysis, we found that TxA2 synthase protein levels are higher in cerebral vessel homogenates from testosterone-treated orchiectomized (ORX+T) rats compared with orchiectomized (ORX) control animals. Functional consequences of changes in cerebrovascular TxA2 synthase were determined using cannulated, pressurized MCA segments in vitro. Constrictor responses to the TxA2 mimetic U-46619 were not different between the ORX+T and ORX groups. However, dilator responses to either the selective TxA2 synthase inhibitor furegrelate or the TxA2-endoperoxide receptor (TP) antagonist SQ-29548 were greater in the ORX+T compared with ORX group. In endothelium-denuded arteries, the dilation to furegrelate was attenuated in both the ORX and ORX+T groups, and the difference between the groups was abolished. These data suggest that chronic testosterone treatment enhances TxA2-mediated tone in rat cerebral arteries by increasing endothelial TxA2 synthesis without altering the TP receptors mediating constriction. The effect of in vivo testosterone on cerebrovascular TxA2 synthase, observed here after chronic hormone administration, may contribute to the risk of vasospasm and thrombosis related to cerebrovascular disease.
Collapse
Affiliation(s)
- Rayna J Gonzales
- Department of Pharmacology, College of Medicine, Univ. of California, Irvine, CA 92697-4625, USA
| | | | | | | |
Collapse
|
20
|
Mishra RG, Hermsmeyer RK, Miyagawa K, Sarrel P, Uchida B, Stanczyk FZ, Burry KA, Illingworth DR, Nordt FJ. Medroxyprogesterone acetate and dihydrotestosterone induce coronary hyperreactivity in intact male rhesus monkeys. J Clin Endocrinol Metab 2005; 90:3706-14. [PMID: 15769993 PMCID: PMC1473190 DOI: 10.1210/jc.2004-1557] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Coronary hyperreactivity (CH), characterized by persistent severe vasoconstrictions in response to vasoconstrictor challenge, is oppositely influenced by progesterone (P) and medroxyprogesterone acetate (MPA) treatment in surgically menopausal primates. In this study we tested whether multiweek MPA or dihydrotestosterone (DHT) exposure induced CH in intact male rhesus monkeys. Coronary angiographic experiments with intracoronary serotonin and the thromboxane A(2) analog U46619 stimulated brief vasoconstriction (for 1-3 min) in large epicardial coronaries in untreated male monkeys. In contrast, MPA- and DHT-treated monkeys displayed long-duration constrictions (>5 min), with significantly greater reductions in the minimal diameters of epicardial coronaries. Immunocytochemistry demonstrated androgen receptors (AR) and P receptors in aorta and coronary arteries, and immunocytochemistry and Western blotting showed AR and P receptors in rhesus coronary vascular muscle cells. In vivo, MPA or DHT increased thromboxane prostanoid (TP) receptor expression in the aorta. In vitro, MPA or DHT increased, whereas P did not change, TP receptor expression in primary coronary vascular muscle cell. This MPA- or DHT-mediated increase in TP receptor expression was attenuated by the AR antagonist flutamide. MPA or DHT induction of CH in intact adult male primates, hypothesized to occur via androgenic up-regulation of vascular muscle TP receptor expression, could predispose to CH-mediated myocardial ischemia.
Collapse
Key Words
- ach, acetylcholine
- ar, androgen receptor
- cad, coronary artery disease
- cee, conjugated equine estrogen
- ch, coronary hyperreactivity
- dht, dihydrotestosterone
- e, estrogen
- icc, immunocytochemistry
- mpa, medroxyprogesterone acetate
- ovx, ovariectomized
- p, progesterone
- φ, minimal diameter
- pr, p receptor
- rm, rhesus monkey
- s, serotonin
- t, testosterone
- tp, thromboxane prostanoid
- txa2, thromboxane a2
- u, u46619
- vmc, vascular muscle cell
Collapse
Affiliation(s)
| | - R. Kent Hermsmeyer
- Address all correspondence and requests for reprints to: Dr. R. Kent Hermsmeyer, Dimera, Inc., 2525 NW Lovejoy, Suite 311, Portland, Oregon 97210. E-mail:
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
BACKGROUND Exogenously administered testosterone upregulates platelet thromboxane A2 (TXA2) receptors and increases aggregation response to thromboxane mimetics in healthy male volunteers. However, the biological impact of endogenous testosterone on platelet TXA2 receptor expression, especially in older men at risk of coronary artery disease, is unclear. AIM To investigate the impact of reduction in circulating testosterone on platelet TXA2 receptor expression in older men. DESIGN Cross-sectional case-control study. METHODS We studied surgically and/or medically castrated men with prostate cancer (group A, n = 8, aged 71 +/- 8 years) and age-matched, uncastrated urology patients (group B, n = 7, aged 67 +/- 9 years). Plasma testosterone was measured by radioimmunoassay. Platelet TXA2 receptor expression was assessed by radioligand binding studies using radioactive 125I-BOP. Platelet aggregation responses to TXA2-mimetic I-BOP, and to thrombin, were also studied. RESULTS Group A had significantly lower plasma testosterone than group B (16 +/- 5 ng/dl vs. 308 +/- 47 ng/dl, p<0.001). Platelet TXA2 receptor density (B(max)) but not affinity (K(d)) was lower in group A (0.50 +/- 0.12 vs. 1.01 +/- 0.17 pmol/mg protein, p = 0.03). Maximum platelet aggregation response to I-BOP (E(max)), but not sensitivity (EC50) was lower in group A (53 +/- 2% vs. 63 +/- 2%, p = 0.003 ANOVA). In vitro, high concentrations of hydroxyflutamide (100 microM) competitively inhibited U46619-induced platelet aggregation in washed platelets, without affecting the binding of 125I-BOP to platelet TXA2 receptors. DISCUSSION Endogenous testosterone regulates platelet TXA2 receptor B(max) and the E(max) aggregation response to thromboxane mimetic I-BOP. Blockade of androgen receptors or inhibition of testosterone production may reduce platelet aggregation responses. Preliminary evidence suggests the presence of functional androgen receptors on human platelets, which may regulate TXA2 receptor expression.
Collapse
Affiliation(s)
- A A L Ajayi
- Department of Pharmacology, Division of Clinical Pharmacology, Medical University of South Carolina, Charleston, USA.
| | | |
Collapse
|
22
|
A Rationale for the Use of Testosterone “Salvage” in Treatment of Men With Erectile Dysfunction Failing Phosphodiesterase Inhibitors. ACTA ACUST UNITED AC 2005. [DOI: 10.1097/01.ten.0000157887.08246.5a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Sullivan JC, Sasser JM, Pollock DM, Pollock JS. Sexual dimorphism in renal production of prostanoids in spontaneously hypertensive rats. Hypertension 2005; 45:406-11. [PMID: 15699443 DOI: 10.1161/01.hyp.0000156879.83448.93] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Male spontaneously hypertensive rats (SHR) have higher blood pressure, blunted pressure-natriuresis relationship, and accelerated progression of renal injury compared with female SHR. Renal medullary prostanoids mediate vascular tone, salt and water balance, and renin release and, as a result, are involved in the maintenance of renal blood flow and the pathogenesis of hypertension. The aim of this study was to determine whether a gender difference exists in prostanoid production in SHR and whether sex steroids influence prostaglandin (PG) production. Thirteen-week-old intact and gonadectomized male and female SHR rats were placed in metabolic cages for 24-hour urine collection. Prostanoid excretion was determined using enzyme immunoassay. Kidneys were isolated and separated into outer and inner medulla for Western blot analysis. Female SHR had enhanced urinary excretion of PG E2 (PGE2) metabolites and thromboxane B2, an indicator of renal thromboxane production, compared with male SHR. There were no gender differences in excretion of systemic thromboxane or prostacyclin. Correspondingly, female SHR had enhanced microsomal PGE2 synthase protein expression in the renal inner medulla and greater cyclooxygenase-2 (COX-2) expression in the outer medulla. Orchidectomy was associated with increased PGE2 metabolite excretion and microsomal PGE synthase protein expression. Thromboxane B2 excretion was not affected by gonadectomy in either male or female SHR. Protein expressions of COX and cytoplasmic PGE2 synthase in the renal medulla were unchanged by gonadectomy in both sexes. These results demonstrate a sexual dimorphism in renal production of prostanoids in SHR and that PGE production is testosterone sensitive and estrogen insensitive.
Collapse
Affiliation(s)
- Jennifer C Sullivan
- Vascular Biology Center, Medical College of Georgia, Vascular Biology Center, 1459 Laney-Walker Blvd, Augusta, GA 30912, USA.
| | | | | | | |
Collapse
|
24
|
Ma R, Wu S, Lin Q. Homologous up-regulation of androgen receptor expression by androgen in vascular smooth muscle cells. HORMONE RESEARCH 2004; 63:6-14. [PMID: 15564783 DOI: 10.1159/000082339] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Accepted: 09/16/2004] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Androgens play an important role in the arterial vascular system, and androgen receptors (AR) have been identified in vascular smooth muscle cells (VSMCs). This study examined the effects of testosterone exposure on AR gene expression in cultured rat aortic smooth muscle cells. METHODS Changes in AR protein and messenger RNA (mRNA) levels after androgen exposure were determined using immunoblotting and Northern blotting analysis respectively. RESULTS Treatment of synchronized VSMCs with testosterone increased both cytoplasmic and nuclear AR protein expression in a dose- and time-dependent fashion, whereas exposure of VSMCs to androgen for 10 min induced a transient down-regulation of AR protein. Meanwhile, AR mRNA level was also up-regulated, but to a much smaller extent. Pretreatment with transcription inhibitor and translation inhibitor repressed cytoplasmic AR protein levels to 46 and 12% (means) of the androgen treatment control level respectively. Furthermore, androgen up-regulation of intracellular AR protein was partially inhibited by androgen antagonist. CONCLUSIONS Androgen increases AR expression in VSMCs at the level of both transcription and non-transcription.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Hormonal/pharmacology
- Blotting, Northern
- Blotting, Western
- Cell Count
- Cell Nucleus/metabolism
- Cells, Cultured
- Cytoplasm/metabolism
- Flutamide/pharmacology
- Gene Expression/drug effects
- Male
- Muscle, Smooth, Vascular/metabolism
- Protein Biosynthesis/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Receptors, Androgen/biosynthesis
- Receptors, Androgen/genetics
- Testosterone/pharmacology
- Thymidine/metabolism
- Transcription, Genetic/genetics
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Rui Ma
- Department of Cardiology, Nanfang Hospital, Guangzhou, China
| | | | | |
Collapse
|
25
|
Bowles DK, Maddali KK, Ganjam VK, Rubin LJ, Tharp DL, Turk JR, Heaps CL. Endogenous testosterone increases L-type Ca2+ channel expression in porcine coronary smooth muscle. Am J Physiol Heart Circ Physiol 2004; 287:H2091-8. [PMID: 15242831 DOI: 10.1152/ajpheart.00258.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Evidence indicates that gender and sex hormonal status influence cardiovascular physiology and pathophysiology. We recently demonstrated increased L-type voltage-gated Ca2+ current (ICa,L) in coronary arterial smooth muscle (CASM) of male compared with female swine. The promoter region of the L-type voltage-gated Ca2+ channel (VGCC) (Cav1.2) gene contains a hormone response element that is activated by testosterone. Thus the purpose of the present study was to determine whether endogenous testosterone regulates CASM ICa,L through regulation of VGCC expression and activity. Sexually mature male and female Yucatan swine (7-8 mo; 35-45 kg) were obtained from the breeder. Males were left intact (IM, n=8), castrated (CM, n=8), or castrated with testosterone replacement (CMT, n=8; 10 mg/day Androgel). Females remained gonad intact (n=8). In right coronary arteries, both Cav1.2 mRNA and protein were greater in IM compared with intact females. Cav1.2 mRNA and protein were reduced in CM compared with IM and restored in CMT. In isolated CASM, both peak and steady-state ICa were reduced in CM compared with IM and restored in CMT. In males, a linear relationship was found between serum testosterone levels and ICa. In vitro, both testosterone and the nonaromatizable androgen, dihydrotestosterone, increased Cav1.2 expression. Furthermore, this effect was blocked by the androgen receptor antagonist cyproterone. We conclude that endogenous testosterone is a primary regulator of Cav1.2 expression and activity in coronary arteries of males.
Collapse
Affiliation(s)
- D K Bowles
- E102 Veterinary Medicine, Univ. of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Beyond regulation of sexual function, male steroids play an important role in many physiological homeostasis systems, including the cardiovascular system. Via a specific androgen receptor, testosterone mediates cardiomyocyte trophicity both in physiological situations and in hypertrophy-related cardiac diseases. Androgens also regulate pathological levels of inflammatory cytokines such as Il-6 or TNF in advanced heart failure. They also mediate vascular resistance since coronary vasodilatation has been proven both in vitro and in vivo. Reduced free testosterone serum levels (age-mediated or premature coronary artery disease) promote a pro-atherogenic lipid profile expressed as lower serum HDL-cholesterol and up-regulation of triglyceride levels. This observation has relevant clinical implications for the evaluation and treatment of coronary artery disease. As most of normal and diseased cardiovascular system functions are influenced by androgens, further evaluation of their physiological implications should be undertaken as well as large-scale rigorous studies of the therapeutic implications in two disabling diseases, coronary heart disease and heart failure.
Collapse
Affiliation(s)
- L Smeets
- Service universitaire d'Endocrinologie, CHU Sart-Tilman, 4000 Liège 1, Belgique
| | | |
Collapse
|
27
|
Abstract
The greater incidence of hypertension and coronary artery disease in men and postmenopausal women compared with premenopausal women has been related, in part, to gender differences in vascular tone and possible vascular protective effects of the female sex hormones estrogen and progesterone. However, vascular effects of the male sex hormone testosterone have also been suggested. Estrogen, progesterone, and testosterone receptors have been identified in blood vessels of human and other mammals and have been localized in the plasmalemma, cytosol, and nuclear compartments of various vascular cells, including the endothelium and the smooth muscle. The interaction of sex hormones with cytosolic/nuclear receptors triggers long-term genomic effects that could stimulate endothelial cell growth while inhibiting smooth muscle proliferation. Activation of plasmalemmal sex hormone receptors may trigger acute nongenomic responses that could stimulate endothelium-dependent mechanisms of vascular relaxation such as the nitric oxide-cGMP, prostacyclin-cAMP, and hyperpolarization pathways. Additional endothelium-independent effects of sex hormones may involve inhibition of the signaling mechanisms of vascular smooth muscle contraction such as intracellular Ca2+ concentration and protein kinase C. The sex hormone-induced stimulation of the endothelium-dependent mechanisms of vascular relaxation and inhibition of the mechanisms of vascular smooth muscle contraction may contribute to the gender differences in vascular tone and may represent potential beneficial vascular effects of hormone replacement therapy during natural and surgically induced deficiencies of gonadal hormones.
Collapse
Affiliation(s)
- Julia M Orshal
- Harvard Medical School, VA Boston Healthcare-Research, 1400 VFW Parkway 3/2B123, Boston, MA 02132, USA
| | | |
Collapse
|
28
|
Ahimastos AA, Formosa M, Dart AM, Kingwell BA. Gender differences in large artery stiffness pre- and post puberty. J Clin Endocrinol Metab 2003; 88:5375-80. [PMID: 14602776 DOI: 10.1210/jc.2003-030722] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Age-related large artery stiffening is more pronounced in women compared with men and is an important cause of isolated systolic hypertension. This study aimed to investigate whether such gender differences are inherent or the result of sex steroid influences. Healthy children prepuberty [26 female (10.3 +/- 0.1 yr), 32 male (10.3 +/- 0.1 yr), mean age +/- SD] and post puberty [30 female (15.9 +/- 0.2 yr), 22 male (15.9 +/- 0.4 yr)] were studied. Large artery stiffness was assessed globally via systemic arterial compliance and regionally via pulse wave velocity. Prepubertal males and females did not differ in body size, cardiac output, or heart rate. Prepubertal females had stiffer large arteries and higher pulse pressure than age-matched males (P < 0.05). Postpubertal males were taller and heavier and had a greater cardiac output and lower heart rate compared with similarly aged females. In relation to pubertal status, females developed more distensible large arteries post puberty whereas males developed stiffer large vessels (P < 0.05). These changes where such that central large artery stiffness was similar between genders in the postpubertal group. Together these data suggest that large artery stiffness varies intrinsically between genders but is also modulated by both male and female sex steroids.
Collapse
Affiliation(s)
- Anna A Ahimastos
- Alfred and Baker Medical Unit, Baker Heart Research Institute, Melbourne, Victoria, 8008 Australia
| | | | | | | |
Collapse
|
29
|
Ng MKC, Quinn CM, McCrohon JA, Nakhla S, Jessup W, Handelsman DJ, Celermajer DS, Death AK. Androgens up-regulate atherosclerosis-related genes in macrophages from males but not females: molecular insights into gender differences in atherosclerosis. J Am Coll Cardiol 2003; 42:1306-13. [PMID: 14522500 DOI: 10.1016/j.jacc.2003.07.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVES This study investigated the effects of androgens on gene expression in male- and female-donor macrophages. BACKGROUND Men have more severe coronary disease than women. Androgen exposure increases foam cell formation in male but not female macrophages, and male macrophages express >4-fold more androgen receptor messenger ribonucleic acid than female macrophages. Therefore, androgen exposure may have gender-specific and potentially pro-atherogenic effects in macrophages. METHODS Utilizing complementary deoxyribonucleic acid arrays, we studied the effects of a pure androgen (dihydrotestosterone, 40 nmol/l) on human monocyte-derived macrophages from healthy male and female donors (n = 4 hybridizations; 2 men, 2 women). Differential expression of atherosclerosis-related genes was confirmed by real-time reverse transcription-polymerase chain reaction (RT-PCR) in five male and five female donors. Functional corroboration of foam cell formation-related findings was undertaken by experiments using (125)I-acetylated low-density lipoprotein (AcLDL). RESULTS In male macrophages, androgen treatment produced differential up-regulation of 27 genes concentrated in five functional classes: 1) lipoprotein processing; 2) cell-surface adhesion; 3) extracellular signaling; 4) coagulation and fibrinolysis; and 5) transport protein genes. By contrast, none of 588 genes were up-regulated in female macrophages. By RT-PCR, we confirmed the gender-specific up-regulation of six of these atherosclerosis-related genes: acyl coenzyme A:cholesterol acyl transferase I, lysosomal acid lipase (LAL), caveolin-2, CD40, vascular endothelial growth factor-165 receptor, and tissue factor pathway inhibitor. Functionally, androgen-treated male macrophages showed increased rates of lysosomal AcLDL degradation, by 45% to 75% after 15 to 20 h of (125)I-AcLDL incubation (p = 0.001), consistent with increased LAL activity. CONCLUSIONS Androgens increase expression of atherosclerosis-related genes in male but not female macrophages, with functional consequences. These findings may contribute to the male predisposition to atherosclerosis.
Collapse
Affiliation(s)
- Martin K C Ng
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- M Zitzmann
- Institute of Reproductive Medicine, University of Münster, Münster, Germany
| | | |
Collapse
|
31
|
Abstract
Globally, cardiovascular disease will continue causing most human deaths for the foreseeable future. The consistent gender gap in life span of approximately 5.6 yr in all advanced economies must derive from gender differences in age-specific cardiovascular death rates, which rise steeply in parallel for both genders but 5-10 yr earlier in men. The lack of inflection point at modal age of menopause, contrasting with unequivocally estrogen-dependent biological markers like breast cancer or bone density, makes estrogen protection of premenopausal women an unlikely explanation. Limited human data suggest that testosterone exposure does not shorten life span in either gender, and oral estrogen treatment increases risk of cardiovascular death in men as it does in women. Alternatively, androgen exposure in early life (perinatal androgen imprinting) may predispose males to earlier onset of atherosclerosis. Following the recent reevaluation of the estrogen-protection orthodoxy, empirical research has flourished into the role of androgens in the progression of cardiovascular disease, highlighting the need to better understand androgen receptor (AR) coregulators, nongenomic androgen effects, tissue-specific metabolic activation of androgens, and androgen sensitivity. Novel therapeutic targets may arise from understanding how androgens enhance early plaque formation and cause vasodilatation via nongenomic androgen effects on vascular smooth muscle, and how tissue-specific variations in androgen effects are modulated by AR coregulators as well as metabolic activation of testosterone to amplify (via 5alpha-reductase to form dihydrotestosterone acting on AR) or diversify (via aromatization to estradiol acting upon estrogen receptor alpha/beta) the biological effects of testosterone on the vasculature. Observational studies show that blood testosterone concentrations are consistently lower among men with cardiovascular disease, suggesting a possible preventive role for testosterone therapy, which requires critical evaluation by further prospective studies. Short-term interventional studies show that testosterone produces a modest but consistent improvement in cardiac ischemia over placebo, comparable to the effects of existing antianginal drugs. By contrast, testosterone therapy has no beneficial effects in peripheral arterial disease but has not been evaluated in cerebrovascular disease. Erectile dysfunction is most frequently caused by pelvic arterial insufficiency due to atherosclerosis, and its sentinel relationship to generalized atherosclerosis is insufficiently appreciated. The commonality of risk factor patterns and mechanisms (including endothelial dysfunction) suggests that the efficacy of antiatherogenic therapy is an important challenge with the potential to enhance men's motivation for prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Peter Y Liu
- ANZAC Research Institute, Concord Hospital and Department of Medicine, University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|
32
|
Abstract
The greater incidence of coronary artery disease in men compared to women has often suggested possible harmful effects of male sex steroids that could promote coronary atherogenesis and vasoconstriction. However, antiatherogenic and coronary vasodilator effects of testosterone have also been suggested. The interaction of testosterone (T) with its specific receptors may trigger not only long-term genomic effects, but also acute non-genomic vasodilator responses. Testosterone may activate the endothelium and stimulate the nitric oxide-cGMP and/or the hyperpolarization-mediated vascular relaxation pathway. T may also inhibit the signaling mechanisms of smooth muscle contraction such as [Ca2+]i and protein kinases. The T-induced stimulation of endothelium-dependent mechanisms of vascular relaxation and inhibition of the mechanisms of coronary smooth muscle contraction represent potential beneficial effects of T against coronary artery disease.
Collapse
Affiliation(s)
- F L Wynne
- Research and Development, Department of Veterans Affairs Medical center, Harvard Medical School West Roxbury, Massachusetts 02132, USA
| | | |
Collapse
|
33
|
Abstract
1. The greater incidence of hypertension and coronary artery disease in men and post-menopausal women compared with premenopausal women has suggested vascular protective effects of the female sex hormone oestrogen. However, vascular effects of the female sex hormone progesterone and the male sex hormone testosterone have also been suggested. 2. Oestrogen, progesterone and testosterone receptors have been identified in the plasmalemma, cytosol and nuclear compartments of vascular cells. The interaction of sex hormones with their specific receptors triggers not only long-term genomic vascular effects, but also acute non-genomic vascular responses. 3. Sex hormones may activate endothelium-dependent vascular relaxation pathways, including the nitric oxide-cGMP and prostacyclin-cAMP pathways and a hyperpolarizing factor pathway. 4. Sex hormones may also inhibit the mechanisms of vascular smooth muscle contraction, such as [Ca2+]i, protein kinase C and other protein kinases. 5. The sex hormone-induced stimulation of endothelium-dependent vascular relaxation and inhibition of vascular smooth muscle contraction may contribute to the gender differences in vascular tone and may represent potential beneficial vascular effects of hormone-replacement therapy during natural and surgically induced deficiencies of gonadal hormones.
Collapse
Affiliation(s)
- Janell Thompson
- Department of Medicine, Harvard Medical School, West Roxbury, Massachusetts 02132, USA
| | | |
Collapse
|
34
|
Ajayi AA, Hercule H, Cory J, Hayes BE, Oyekan AO. Gender difference in vascular and platelet reactivity to thromboxane A(2)-mimetic U46619 and to endothelial dependent vasodilation in Zucker fatty (hypertensive, hyperinsulinemic) diabetic rats. Diabetes Res Clin Pract 2003; 59:11-24. [PMID: 12482637 DOI: 10.1016/s0168-8227(02)00180-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We examined the hypothesis that gender differences exist in platelet and vascular reactivity in type-2 diabetes mellitus, using Zucker fatty diabetic rats of both sexes and their lean littermates. Type-2 diabetes is characterized by excessive platelet production of TXA(2), which is thrombogenic. Testosterone up-regulates platelet TXA(2) receptors and the aggregation response to thromboxane mimetics. Conversely, estrogen increases vascular nitric oxide (NO) production and inhibits platelet aggregation. Hemodynamic studies were undertaken with the determination of dose-response curve for MAP and renal cortical blood flow (RCF) in response to U46619, angiotensin-II, phenylephrine and endothelin-1, as well as the systemic hemodynamic response to acetylcholine and L-NG nitro-arginine methylester (L-NAME). Platelet aggregation response was evaluated using whole blood impedance aggregometry. There were significant gender differences in the systemic blood pressure and RCF response to TXA(2)-mimetic U46619 and angiotensin-II (P<0.02, ANOVA) but not to phenylephrine or endothelin-1. Male rats exhibited a paradoxical hypotensive response to U46619 (-18+/-11 mmHg) compared with a peak pressor response of +6+/-1 mmHg in female rats (P<0.01, ANOVA). The male rats exhibited an attenuated systemic vasodilator response (P<0.001, ANOVA) to acetylcholine (fall in MAP in male diabetic rats being -24+/-8 mmHg, compared with a fall of -50+/-8 mmHg in females), but a greater rise in the renal cortical resistance in response to NO inhibition by L-NAME (P<0.03) compared with the female rats. Both the slope (46+/-2) and the peak magnitude of the U46619-induced whole blood platelet aggregation (13+/-1) ohms were significantly higher (P<0.01, ANOVA) in male (n=10) compared with female diabetic rats (n=8) (29+/-0.8 slope, 10.0+/-0.8 ohms, respectively). Thus, the male diabetic Zucker rats exhibited an impaired response to vasoconstrictors (U46619 and angiotensin-II) and to endothelial (NO)-mediated vasodilation. The male gender may therefore be associated with the greater prothrombotic activity and a worse impairment of endothelial reactivity in the type-2 diabetic state.
Collapse
Affiliation(s)
- A A Ajayi
- Center for Cardiovascular Diseases, Texas Southern University, 3100 Cleburne Avenue, Houston, TX 77004, USA.
| | | | | | | | | |
Collapse
|
35
|
Abstract
In the process of atherosclerosis sex steroids play a complex role in the vascular vessel wall system. Although a number of experimental studies have clearly documented an atheroprotective effect of estrogens, in recent clinical studies, estrogen replacement therapy has failed to reduce cardiovascular mortality. The effects of androgens on the cardiovascular system and cardiovascular diseases are even more controversial. Whereas in the past, androgens were mainly believed to exert adverse effects on the cardiovascular system, recent studies in men have documented a number of beneficial actions of testosterone in the arterial vascular system. Androgens affect lipid metabolism (e.g., LDL and HDL cholesterol, Lp(a)) and hemostasis (e.g., platelet aggregation and fibrinolytic activity). In addition, several other physiological and pathophysiological processes in the arterial vessel wall are influenced by androgens. Acute hemodynamic effects of testosterone on coronary vasomotion and stress-test-induced ischemia were reported. Additionally, recent animal and in vitro studies have further documented an inhibitory effect of androgens on neointimal plaque formation. This review discusses different and, in part, contradictory effects of androgens on the cardiovascular system including potential signal transduction pathways in androgen target cells.
Collapse
Affiliation(s)
- Wolfgang Weidemann
- Department of General Zoology and Endocrinology, University of Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany.
| | | |
Collapse
|
36
|
Zitzmann M, Brune M, Nieschlag E. Vascular reactivity in hypogonadal men is reduced by androgen substitution. J Clin Endocrinol Metab 2002; 87:5030-7. [PMID: 12414868 DOI: 10.1210/jc.2002-020504] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The effect of testosterone (T) substitution therapy on blood vessel functions in relation to cardiovascular disease has not been fully elucidated. In 36 newly diagnosed nonsmoking hypogonadal men (37.5 +/- 12.7 yr) endothelium-dependent flow-mediated vasodilatation (FMD; decreased in atherosclerosis) of the brachial artery was assessed before treatment and after 3 months of T substitution therapy (250 mg testosterone enanthate im every 2 wk in 19 men, human chorionic gonadotropin sc twice per week in 17 men). Twenty nonsmoking controls matched for age, low-density lipoprotein cholesterol (LDL-C), body height, and baseline diameter of the artery were selected for repeated measurements from a larger eugonadal control group (n = 113). In hypogonadal men, basal FMD (17.9 +/- 4.5%) was significantly higher than in the large (11.9 +/- 6.4%) and matched control (11.8 +/- 7.1%, both P < 0.001) groups. Grouped multiple linear regression analysis revealed a significant negative association of T levels with FMD within the hypogonadal range, but no significant association was seen within the eugonadal range. During substitution therapy, T levels increased from 5.8 +/- 2.3 to 17.2 +/- 5.1 nmol/liter and FMD decreased significantly to 8.6 +/- 3.1% (P < 0.001, analysis for covariance for repeated measurements including matched controls). LDL-C and advanced age contributed significantly to decrease FMD (P = 0.01, P = 0.04, respectively). Because T substitution adversely affects this important predictor of atherosclerosis, other contributing factors (such as smoking, high blood glucose, and LDL-C) should be eliminated or strictly controlled during treatment of hypogonadal men.
Collapse
Affiliation(s)
- Michael Zitzmann
- Institute of Reproductive Medicine, University of Münster, Domagkstrasse 11, D-48129 Münster, Germany
| | | | | |
Collapse
|
37
|
Stallone JN, Salisbury RL, Fulton CT. Androgen-receptor defect abolishes sex differences in nitric oxide and reactivity to vasopressin in rat aorta. J Appl Physiol (1985) 2001; 91:2602-10. [PMID: 11717225 DOI: 10.1152/jappl.2001.91.6.2602] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Contractions of rat thoracic aorta to vasopressin (VP) are threefold higher in females (F) than in males (M), primarily because nitric oxide (NO) attenuation of contraction is greater in M. To determine the role of the androgen receptor (AR) in this mechanism, vascular reactivity to VP was examined in thoracic aorta of the testicular-feminized male (Tfm) rat, which has an X-linked, recessive defect in AR function in affected M. Maximal contraction of normal aortas to VP was fourfold higher in F (4,128 +/- 291 mg/mg ring wt) than in M (971 +/- 133 mg); maximal response of Tfm (3,967 +/- 253 mg) was similar to that of normal F. N(G)-nitro-L-arginine methyl ester increased maximal response to VP threefold in M but had no effect in F or Tfm. In contrast, maximal contraction of normal aortas to phenylephrine was 43% higher in M (4,011 +/- 179 mg) than in F (2,809 +/- 78 mg); maximal response of Tfm (2,716 +/- 126 mg) was similar to that of normal F. N(G)-nitro-L-arginine methyl ester increased maximal response to phenylephrine by >50% in F and Tfm but had no effect in M. Maximal contractile response to 80 mM KCl did not differ among M, F, or Tfm. Thus androgens and normal vascular AR function are important in the greater NO-mediated attenuation of reactivity to VP in M than in F rat aorta, which may involve specific modulation of endothelial VP signal transduction pathways and NO release by androgens. These data also establish the importance of the Tfm rat as a model to study the effects of androgens on cardiovascular function.
Collapse
Affiliation(s)
- J N Stallone
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Michael E. DeBakey Institute for Comparative Cardiovascular Sciences, Texas A&M University, College Station, TX 77843, USA.
| | | | | |
Collapse
|
38
|
Abstract
Men have an earlier onset and higher incidence of coronary heart disease than women, independent of environmental risk factor exposure. As a consequence, there has been considerable interest in the potential role of sex hormones in atherogenesis. An emerging body of evidence suggests that sex-specific tissue and cellular characteristics may mediate sex-specific responses to a variety of stimuli. Recent studies have shown that oestrogen, progesterone and androgens all regulate processes integral to human macrophage foam cell formation, a key event in atherogenesis, in a sex-specific manner; findings that may have important implications for understanding the sex gap in atherosclerosis. Physiological levels of 17beta-estradiol and progesterone are both associated with a female-specific reduction in cholesteryl ester accumulation in human macrophages. By contrast, androgens increase cholesteryl ester formation in male but not in female donor human macrophages. This review summarizes current data concerning the sex-specific effects of sex hormones on processes important to macrophage foam cell formation and the basic mechanisms responsible for the sex specificity of such effects. Future research in this promising field may eventually lead to the novel concept of 'sex-specific' treatments directed at inhibiting atherogenesis.
Collapse
Affiliation(s)
- M K Ng
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | | | | |
Collapse
|
39
|
McCrohon JA, Death AK, Nakhla S, Jessup W, Handelsman DJ, Stanley KK, Celermajer DS. Androgen receptor expression is greater in macrophages from male than from female donors. A sex difference with implications for atherogenesis. Circulation 2000; 101:224-6. [PMID: 10645914 DOI: 10.1161/01.cir.101.3.224] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Male sex is an independent risk factor for the extent and severity of atherosclerosis. The influence of androgens on foam cell formation, a key event in atherogenesis, has not yet been investigated. METHODS AND RESULTS Primary human monocytes were allowed to differentiate into macrophages. RNA was then extracted from healthy male-donor (n=8) and premenopausal female-donor (n=8) macrophages, and message for the androgen receptor (AR) was examined by RT-PCR. There was a significantly higher level of AR mRNA in macrophages isolated from men than in those from women (0.64+/-0.06 versus 0.15+/-0.02 amol/microgram total RNA; P<0.001). AR mRNA levels were similar in macrophages from postmenopausal and premenopausal women (P=0.16). The functional consequence of this sex difference was then explored. Lipid-loading studies were performed on male (n=9) macrophages treated with the androgen dihydrotestosterone (DHT) and/or the AR antagonist hydroxyflutamide. These showed that DHT caused a dose-dependent and receptor-mediated increase in macrophage cholesteryl ester content (109+/-10%, 117+/-3%, and 120+/-4% for 4, 40, and 400 nmol/L DHT, respectively, as a percentage of control, P=0.002; 95+/-8% for DHT with hydroxyflutamide, P=0.58 versus controls). By contrast, there was no significant effect of androgen on lipid loading in female-donor macrophages (P>0.2 versus controls). CONCLUSIONS Sex differences in androgen-mediated macrophage lipid loading may contribute to the greater prevalence and severity of atherosclerosis in men.
Collapse
Affiliation(s)
- J A McCrohon
- Heart Research Institute, Department of Cardiology, Royal Prince Alfred Hospital in Missenden Road, University of Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
40
|
Webb CM, McNeill JG, Hayward CS, de Zeigler D, Collins P. Effects of testosterone on coronary vasomotor regulation in men with coronary heart disease. Circulation 1999; 100:1690-6. [PMID: 10525487 DOI: 10.1161/01.cir.100.16.1690] [Citation(s) in RCA: 294] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The increased incidence of coronary artery disease in men compared with premenopausal women suggests a detrimental role of male hormones on the cardiovascular system. However, testosterone has direct relaxing effects on coronary arteries in animals, as shown both in vitro and in vivo. The effect of testosterone on the human coronary circulation remains unknown. METHODS AND RESULTS We studied 13 men (aged 61+/-11 years) with coronary artery disease. They underwent measurement of coronary artery diameter and blood flow after a 3-minute intracoronary infusion of vehicle control (ethanol) followed by 2-minute intracoronary infusions of acetylcholine (10(-7) to 10(-5) mol/L) until peak velocity response. A dose-response curve to 3-minute infusions of testosterone (10(-10) to 10(-7) mol/L) was then determined, and the acetylcholine infusions were repeated. Finally, an intracoronary bolus of isosorbide dinitrate (1000 microgram) was given. Coronary blood flow was calculated from measurements of blood flow velocity using intracoronary Doppler and coronary artery diameter using quantitative coronary angiography. Testosterone significantly increased coronary artery diameter compared with baseline (2.78+/-0. 74 mm versus 2.86+/-0.72 mm [P=0.05], 2.87+/-0.71 mm [P=0.038], and 2.90+/-0.75 mm [P=0.005] for baseline versus testosterone 10(-9) to 10(-7) mol/L, respectively). A significant increase in coronary blood flow occurred at all concentrations of testosterone compared with baseline (geometric mean [95% CI]: 32 [25, 42] versus 36.3 [27, 48] (P=0.006), 35.3 [26, 47] (P=0.029), 36.8 [28, 49] (P=0.002), and 37 [28, 48] (P=0.002), mL/min for baseline versus testosterone 10(-10) to 10(-7) mol/L, respectively). No differences existed in coronary diameter or blood flow responses to acetylcholine before versus after testosterone. CONCLUSIONS Short-term intracoronary administration of testosterone, at physiological concentrations, induces coronary artery dilatation and increases coronary blood flow in men with established coronary artery disease.
Collapse
Affiliation(s)
- C M Webb
- Cardiac Medicine, National Heart and Lung Institute, Imperial College School of Medicine, and Royal Brompton Hospital, London, UK
| | | | | | | | | |
Collapse
|