1
|
Li W, Li R, Wang Y, Zhang Y, Tomar MS, Dai S. Calcitonin gene-related peptide is a potential autoantigen for CD4 T cells in type 1 diabetes. Front Immunol 2022; 13:951281. [PMID: 36189304 PMCID: PMC9523785 DOI: 10.3389/fimmu.2022.951281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/04/2022] [Indexed: 12/01/2022] Open
Abstract
The calcitonin gene-related peptide (CGRP) is a 37-amino acid neuropeptide with critical roles in the development of peripheral sensitization and pain. One of the CGRP family peptides, islet amyloid polypeptide (IAPP), is an important autoantigen in type 1 diabetes. Due to the high structural and chemical similarity between CGRP and IAPP, we expected that the CGRP peptide could be recognized by IAPP-specific CD4 T cells. However, there was no cross-reactivity between the CGRP peptide and the diabetogenic IAPP-reactive T cells. A set of CGRP-specific CD4 T cells was isolated from non-obese diabetic (NOD) mice. The T-cell receptor (TCR) variable regions of both α and β chains were highly skewed towards TRAV13 and TRBV13, respectively. The clonal expansion of T cells suggested that the presence of activated T cells responded to CGRP stimulation. None of the CGRP-specific CD4 T cells were able to be activated by the IAPP peptide. This established that CGRP-reactive CD4 T cells are a unique type of autoantigen-specific T cells in NOD mice. Using IAg7-CGRP tetramers, we found that CGRP-specific T cells were present in the pancreas of both prediabetic and diabetic NOD mice. The percentages of CGRP-reactive T cells in the pancreas of NOD mice were correlated to the diabetic progression. We showed that the human CGRP peptide presented by IAg7 elicited strong CGRP-specific T-cell responses. These findings suggested that CGRP is a potential autoantigen for CD4 T cells in NOD mice and probably in humans. The CGRP-specific CD4 T cells could be a unique marker for type 1 diabetes. Given the ubiquity of CGRP in nervous systems, it could potentially play an important role in diabetic neuropathy.
Collapse
Affiliation(s)
- Wei Li
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- National Health Commission (NHC) Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Ronghui Li
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- National Health Commission (NHC) Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yang Wang
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Yan Zhang
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Munendra S. Tomar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Shaodong Dai
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
2
|
Emerald BS, Mohsin S, D’Souza C, John A, El-Hasasna H, Ojha S, Raza H, al-Ramadi B, Adeghate E. Diabetes Mellitus Alters the Immuno-Expression of Neuronal Nitric Oxide Synthase in the Rat Pancreas. Int J Mol Sci 2022; 23:ijms23094974. [PMID: 35563364 PMCID: PMC9105024 DOI: 10.3390/ijms23094974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023] Open
Abstract
Nitric oxide is generated from nitric oxide synthase following hyperglycemia-induced oxidative stress during the course of diabetes mellitus (DM). We examined the temporal immuno-expression of neuronal nitric oxide synthase (nNOS) in the pancreas of diabetic and non-diabetic rats using immunohistochemical, immunofluorescence and western blot techniques 12 h, 24 h, 1 week, 2 weeks, 1, 8 and 15 months after induction of DM. nNOS co-localized with pancreatic beta cells but disappears 12 h after the onset of DM. In contrast, the nNOS content of pancreatic nerves increased significantly (p < 0.001) 24 h after the induction of DM, and decreased sharply thereafter. However, nNOS-positive ganglion cells were observed even 15 months post-diabetes. ROS increased by more than 100% two months after the onset of DM compared to non-diabetic control but was significantly (p < 0.000001) reduced at 9 months after the induction of DM. The pancreatic content of GSH increased significantly (p < 0.02) after 9 months of DM. Although, TBARS content was significantly (p < 0.009; p < 0.002) lower in aged (9 months) non-diabetic and DM rats, TBARS rate was markedly (p < 0.02) higher 9 months after the induction of DM when compared to younger age group. In conclusion, nNOS is present in pancreatic beta cell, but disappears 12 h after the onset of diabetes. In contrast, the tissue level of nNOS of pancreatic nerves increased in the first week of diabetes, followed by a sharp reduction. nNOS may play important roles in the metabolism of pancreatic beta cell.
Collapse
Affiliation(s)
- Bright Starling Emerald
- Departments of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (B.S.E.); (S.M.); (C.D.)
| | - Sahar Mohsin
- Departments of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (B.S.E.); (S.M.); (C.D.)
| | - Crystal D’Souza
- Departments of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (B.S.E.); (S.M.); (C.D.)
| | - Annie John
- Departments of Biochemistry, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.J.); (H.R.)
| | - Hussain El-Hasasna
- Departments of Medical Microbiology and Immunology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (H.E.-H.); (B.a.-R.)
| | - Shreesh Ojha
- Departments of Pharmacology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates;
| | - Haider Raza
- Departments of Biochemistry, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.J.); (H.R.)
| | - Basel al-Ramadi
- Departments of Medical Microbiology and Immunology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (H.E.-H.); (B.a.-R.)
- Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Ernest Adeghate
- Departments of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (B.S.E.); (S.M.); (C.D.)
- Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Correspondence:
| |
Collapse
|
3
|
Exogenous Ghrelin Increases Plasma Insulin Level in Diabetic Rats. Biomolecules 2020; 10:biom10040633. [PMID: 32325912 PMCID: PMC7226305 DOI: 10.3390/biom10040633] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
Ghrelin, a 28-amino acid peptide, is a strong growth hormone secretagogue and a regulator of food intake. In addition, ghrelin is thought to play a role in insulin secretion and in glucose homeostasis. A lot of contradictory data have been reported in the literature regarding the co-localization of ghrelin with other hormones in the islet of Langerhans, its role in insulin secretion and attenuation of type 2 diabetes mellitus. In this study, we investigate the effect of chronic ghrelin treatment on glucose, body weight and insulin level in normal and streptozotocin-induced diabetic male Wistar rats. We have also examined the distribution pattern and co-localization of ghrelin with insulin in pancreatic islet cells using immunohistochemistry and immune-electron microscopy and the ability of ghrelin to stimulate insulin release from the CRL11065 beta cell line. Control, non-diabetic groups received intraperitoneal injection of normal saline, while treated groups received intraperitoneal injection of 5 µg/kg body weight of ghrelin (amino acid chain 24–51) on a daily basis for a duration of four weeks. Our results show that the administration of ghrelin increases the number of insulin-secreting beta cells and serum insulin level in both normal and diabetic rats. We also demonstrated that ghrelin co-localizes with insulin in pancreatic islet cells and that the pattern of ghrelin distribution is altered after the onset of diabetes. Moreover, ghrelin at a dose of 10−6 M and 10−12 M increased insulin release from the CRL11065 beta cell line. In summary, ghrelin co-localizes with insulin in the secretory granules of pancreatic beta cells and enhances insulin production.
Collapse
|
4
|
Alachkar A, Azimullah S, Lotfy M, Adeghate E, Ojha SK, Beiram R, Łażewska D, Kieć-Kononowicz K, Sadek B. Antagonism of Histamine H3 receptors Alleviates Pentylenetetrazole-Induced Kindling and Associated Memory Deficits by Mitigating Oxidative Stress, Central Neurotransmitters, and c-Fos Protein Expression in Rats. Molecules 2020; 25:molecules25071575. [PMID: 32235506 PMCID: PMC7181068 DOI: 10.3390/molecules25071575] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/19/2022] Open
Abstract
Histamine H3 receptors (H3Rs) are involved in several neuropsychiatric diseases including epilepsy. Therefore, the effects of H3R antagonist E177 (5 and 10 mg/kg, intraperitoneal (i.p.)) were evaluated on the course of kindling development, kindling-induced memory deficit, oxidative stress levels (glutathione (GSH), malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD)), various brain neurotransmitters (histamine (HA), acetylcholine (ACh), γ-aminobutyric acid (GABA)), and glutamate (GLU), acetylcholine esterase (AChE) activity, and c-Fos protein expression in pentylenetetrazole (PTZ, 40 mg/kg) kindled rats. E177 (5 and 10 mg/kg, i.p.) significantly decreased seizure score, increased step-through latency (STL) time in inhibitory avoidance paradigm, and decreased transfer latency time (TLT) in elevated plus maze (all P < 0.05). Moreover, E177 mitigated oxidative stress by significantly increasing GSH, CAT, and SOD, and decreasing the abnormal level of MDA (all P < 0.05). Furthermore, E177 attenuated elevated levels of hippocampal AChE, GLU, and c-Fos protein expression, whereas the decreased hippocampal levels of HA and ACh were modulated in PTZ-kindled animals (all P < 0.05). The findings suggest the potential of H3R antagonist E177 as adjuvant to antiepileptic drugs with an added advantage of preventing cognitive impairment, highlighting the H3Rs as a potential target for the therapeutic management of epilepsy with accompanied memory deficits.
Collapse
Affiliation(s)
- Alaa Alachkar
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, UAE; (A.A.); (S.A.); (S.K.O.); (R.B.)
| | - Sheikh Azimullah
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, UAE; (A.A.); (S.A.); (S.K.O.); (R.B.)
| | - Mohamed Lotfy
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 17666, UAE;
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, UAE;
| | - Shreesh K. Ojha
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, UAE; (A.A.); (S.A.); (S.K.O.); (R.B.)
| | - Rami Beiram
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, UAE; (A.A.); (S.A.); (S.K.O.); (R.B.)
| | - Dorota Łażewska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9 St., 30-688 Kraków, Poland; (D.Ł.); (K.K.-K.)
| | - Katarzyna Kieć-Kononowicz
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9 St., 30-688 Kraków, Poland; (D.Ł.); (K.K.-K.)
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, UAE; (A.A.); (S.A.); (S.K.O.); (R.B.)
- Correspondence: ; Tel.: +971-3-7137-512; Fax: +971-3-7672-033
| |
Collapse
|
5
|
Adeghate E, Saeed Z, D'Souza C, Tariq S, Kalász H, Tekes K, Adeghate EA. Effect of nociceptin on insulin release in normal and diabetic rat pancreas. Cell Tissue Res 2018; 374:517-529. [PMID: 30112574 DOI: 10.1007/s00441-018-2903-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 07/25/2018] [Indexed: 01/08/2023]
Abstract
Nociceptin (NC), also known as Orphanin FQ, is a brain peptide involved in the regulation of pain, but its role in the endocrine pancreas is poorly understood. The present study examines the pattern of distribution of NC and its effect on insulin and glucagon secretion after the onset of diabetes mellitus (DM). Male Wistar rats weighing 150-200 g were made diabetic with streptozotocin (60 mg/kg body weight, intraperitoneally). Four weeks after the induction of DM, pancreatic tissues were retrieved and processed for immunofluorescence, immunoelectron microscopy, and insulin and glucagon secretion. Isolated islets from non-diabetic and diabetic rats were used to determine the effect of NC on insulin release. NC was discerned in islet cells of non-diabetic control and diabetic rat pancreata. NC co-localized only with insulin in pancreatic beta cells. NC did not co-localize with either glucagon or somatostatin or pancreatic polypeptide. The number of NC-positive cells was markedly (p < 0.001) reduced after the onset of DM. Electron microscopy study showed that NC is located with insulin in the same secretory granules of the beta cells of both non-diabetic and diabetic rat pancreas. NC inhibits insulin release markedly (p < 0.05) from pancreatic tissue fragments of non-diabetic and diabetic rats. In contrast, NC at 10-12 M stimulates insulin release in isolated islets of DM rats. In conclusion, NC co-localizes with insulin only in the islet of Langerhans. The co-localization of NC with insulin suggests a role for NC in the regulation of pancreatic beta cell function.
Collapse
Affiliation(s)
- Ernest Adeghate
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | | | - Crystal D'Souza
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Saeed Tariq
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Huba Kalász
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Kornélia Tekes
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
| | - Ernest A Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| |
Collapse
|
6
|
Tariq S, Nurulain SM, Rashed H, Lotfy M, Emerald SB, Koturan S, Tekes K, Adeghate E. Diabetes-induced changes in the morphology and nociceptinergic innervation of the rat uterus. J Mol Histol 2016; 47:21-33. [PMID: 26589323 DOI: 10.1007/s10735-015-9643-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/08/2015] [Indexed: 10/22/2022]
Abstract
The prevalence of diabetes mellitus (DM) is about 6% across the globe. This prevalence has been reported to increase in the near future. This means that the number of women with DM who would like to get pregnant and have children will also increase. The present study is aimed at investigating the morphological changes observed in the uterus after the onset of DM. The study also examined the pattern of distribution of nociceptin (NC), a neuropeptide involved in the regulation of pain, a major physiological factor during parturition. The study shows a severe atrophy of uteri as early as 15 days post DM and continued until the termination of the eight-week study. This atrophy was confirmed by light microscopy. Electron microscopy study showed atrophy of the columnar cells of the endometrium, reduced myofibril number and destruction of smooth muscle cells in the myometrium of diabetic rats compared to control. Immunofluorescence and immunoelectron microscopy studies clearly demonstrated the presence of NC in the endometrium, myometrium and on the myofibrils of the smooth muscles of both control and diabetic rat uteri. In addition, NC-positive neurons and varicose fibres were observed in the myometrium of both normal and diabetic rats. However, the expression of NC decreased after the onset of DM. Morphometric analysis showed that the number of NC-labeled cells was significantly (p < 0.05) lower in diabetic rat uteri compared to those of control. In conclusion, DM-induced uterine atrophy is associated with a decrease in the expression of NC in cells, neurons and myofibrils of the rat uterus.
Collapse
Affiliation(s)
- Saeed Tariq
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Syed M Nurulain
- Department of Pharmacology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hameed Rashed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Mohamed Lotfy
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Starling Bright Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Surya Koturan
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Kornélia Tekes
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| |
Collapse
|
7
|
Tariq S, Rashed H, Nurulain SM, Emerald BS, Koturan S, Tekes K, Adeghate E. Distribution of nociceptin in pancreatic islet cells of normal and diabetic rats. Pancreas 2015; 44:602-7. [PMID: 25875798 DOI: 10.1097/mpa.0000000000000306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Nociceptin has been reported to play an important role in the regulation of pancreatic exocrine secretion. Most of the studies performed on nociceptin are mainly physiological rather than morphological in nature. The present study investigated the pattern of distribution of nociceptin in the endocrine pancreas of normal and diabetic rats. METHODS Immunohistochemistry, immunofluorescence, Western blot, and double-labeled immunoelectron microscopy were used in this study. Diabetes was induced using streptozotocin (60 mg/kg body weight). RESULTS Nociceptin-immunoreactive cells were observed in the central and peripheral regions of the islets of both normal and diabetic rat pancreas. The number of nociceptin-positive cells was significantly (P < 0.05) lower in the islet of diabetic rats compared with the control. Immunofluorescence study showed that nociceptin colocalizes with insulin in pancreatic β-cells. The degree of colocalization of nociceptin with insulin was severely deranged after the onset of diabetes. Moreover, immunogold particles conjugated with either nociceptin or insulin were observed on the granules of pancreatic β-cell. The number of nociceptin-labeled colloidal gold particles was significantly lower after the onset of diabetes. CONCLUSIONS Nociceptin is present in pancreatic islets cells and colocalizes with insulin. Nociceptin may have a physiological role in the metabolism of insulin.
Collapse
Affiliation(s)
- Saeed Tariq
- From the Departments of *Anatomy, and †Pharmacology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; and ‡Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
8
|
Lotfy M, Singh J, Rashed H, Tariq S, Zilahi E, Adeghate E. The effect of glucagon-like peptide-1 in the management of diabetes mellitus: cellular and molecular mechanisms. Cell Tissue Res 2014; 358:343-58. [PMID: 25115772 DOI: 10.1007/s00441-014-1959-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 07/03/2014] [Indexed: 12/20/2022]
Abstract
Incretins, such as glucagon-like peptide-1 (GLP)-1, have been shown to elevate plasma insulin concentration. The purpose of this study is to investigate the cellular and molecular basis of the beneficial effects of GLP-1. Normal and diabetic male Wistar rats were treated with GLP-1 (50 ng/kg body weight) for 10 weeks. At the end of the experiment, pancreatic tissues were taken for immunohistochemistry, immunoelectron microscopy and real-time polymerase chain reaction studies. Samples of blood were retrieved from the animals for the measurement of enzymes and insulin. The results show that treatment of diabetic rats with GLP-1 caused significant (P < 0.05) reduction in body weight gain and blood glucose level. GLP-1 (10(-12)-10(-6) M) induced significant (P < 0.01) dose-dependent increases in insulin release from the pancreas of normal and diabetic rats compared to basal. Diabetes-induced abnormal liver (aspartate aminotransferase and alanine aminotransferase) and kidney (blood urea nitrogen and uric acid) parameters were corrected in GLP-1-treated rats compared to controls. GLP-1 treatment induced significant (P < 0.05) elevation in the expression of pancreatic duodenal homeobox-1, heat shock protein-70, glutathione peroxidase, insulin receptor and GLP-1-receptor genes in diabetic animals compared to controls. GLP-1 is present in pancreatic beta cells and significantly (P < 0.05) increased the number of insulin-, glutathione reductase- and catalase-immunoreactive islet cells. The results of this study show that GLP-1 is co-localized with insulin and seems to exert its beneficial effects by increasing cellular concentrations of endogenous antioxidant genes and other genes involved in the maintenance of pancreatic beta cell structure and function.
Collapse
Affiliation(s)
- Mohamed Lotfy
- Department of Biology, College of Science, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | | | | | | | | | | |
Collapse
|
9
|
Lotfy M, Singh J, Rashed H, Tariq S, Zilahi E, Adeghate E. Mechanism of the beneficial and protective effects of exenatide in diabetic rats. J Endocrinol 2014; 220:291-304. [PMID: 24353307 DOI: 10.1530/joe-13-0426] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glucagon-like peptide 1 (GLP1) agonists are promising therapeutic agents in the treatment of diabetes mellitus. This study examines the mechanism of the protective effects of exenatide in experimental diabetes, employing four groups of ten rats each, in which two groups were streptozotocin-induced diabetic and two were control groups. One control and one diabetic group were treated with exenatide (1 μg/kg body weight (BW)) for 10 weeks. Blood plasma was taken for biochemical analyses while pancreatic tissue was taken for immunofluorescence and immunoelectron microscopy studies and real-time PCR to examine the expression of genes. The results show that exenatide improved BW gain and reduced blood glucose in diabetic rats compared with controls. Similarly, exenatide enhanced insulin release from the pancreatic fragments and improved liver and kidney functions and lipid profile in diabetic rats compared with controls. Exenatide not only induced significant increases in serum insulin level but also elevated the number of insulin-, GLP1- and exenatide-positive cells compared with untreated controls. Exenatide also elevated the number of catalase- and glutathione reductase-positive cells in diabetic rat pancreas compared with controls. Exenatide caused significant elevation in the expressions of pancreatic duodenal homeobox-1, heat shock protein-70, glutathione peroxidase, insulin receptor and GLP1 receptor genes in the pancreas of both control and diabetic rats compared with untreated animals. The results have demonstrated that exenatide can exert its beneficial and protective effects by elevating the levels of endogenous antioxidants and genes responsible for the survival, regeneration and proliferation of pancreatic β-cell.
Collapse
Affiliation(s)
- Mohamed Lotfy
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates School of Forensic and Investigative Sciences, University of Central Lancashire, Preston, England PR1 2HE, UK Hormones Department, National Research Centre, Cairo, Egypt School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, England PR1 2HE, UK Departments of Anatomy Medical Microbiology, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, United Arab Emirates
| | | | | | | | | | | |
Collapse
|
10
|
Amisten S, Salehi A, Rorsman P, Jones PM, Persaud SJ. An atlas and functional analysis of G-protein coupled receptors in human islets of Langerhans. Pharmacol Ther 2013; 139:359-91. [PMID: 23694765 DOI: 10.1016/j.pharmthera.2013.05.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/03/2013] [Indexed: 12/17/2022]
Abstract
G-protein coupled receptors (GPCRs) regulate hormone secretion from islets of Langerhans, and recently developed therapies for type-2 diabetes target islet GLP-1 receptors. However, the total number of GPCRs expressed by human islets, as well as their function and interactions with drugs, is poorly understood. In this review we have constructed an atlas of all GPCRs expressed by human islets: the 'islet GPCRome'. We have used this atlas to describe how islet GPCRs interact with their endogenous ligands, regulate islet hormone secretion, and interact with drugs known to target GPCRs, with a focus on drug/receptor interactions that may affect insulin secretion. The islet GPCRome consists of 293 GPCRs, a majority of which have unknown effects on insulin, glucagon and somatostatin secretion. The islet GPCRs are activated by 271 different endogenous ligands, at least 131 of which are present in islet cells. A large signalling redundancy was also found, with 119 ligands activating more than one islet receptor. Islet GPCRs are also the targets of a large number of clinically used drugs, and based on their coupling characteristics and effects on receptor signalling we identified 107 drugs predicted to stimulate and 184 drugs predicted to inhibit insulin secretion. The islet GPCRome highlights knowledge gaps in the current understanding of islet GPCR function, and identifies GPCR/ligand/drug interactions that might affect insulin secretion, which are important for understanding the metabolic side effects of drugs. This approach may aid in the design of new safer therapeutic agents with fewer detrimental effects on islet hormone secretion.
Collapse
Affiliation(s)
- Stefan Amisten
- Diabetes Research Group, Division of Diabetes & Nutritional Sciences, King's College London School of Medicine, London, UK.
| | | | | | | | | |
Collapse
|
11
|
Abstract
OBJECTIVES To examine the pattern of distribution and effect of orexin B in the islets of normal and diabetic rats. METHODS Pancreatic tissue fragments collected from normal and diabetic (4 weeks after the onset of diabetes) rats were either processed for immunohistochemistry or treated with different concentrations (10 to 10 mol/L) of orexin B. RESULTS Orexin B-positive nerves were observed in the wall of blood vessels of both normal and diabetic rat pancreas. Orexin B is abundant in the islets of normal rats and colocalized with insulin in β cells. The number of orexin B-positive cells decreased after the onset of diabetes. Orexin B evoked significant (P<0.05) increases in insulin release from the pancreas of normal and diabetic rats. Propranolol, a β-adrenergic receptor antagonist, significantly (P<0.04) reduced the stimulatory effect of orexin B on insulin secretion. Orexin B also induced significant (P<0.05) increases in glucagon release from the pancreas of normal rats but failed to stimulate glucagon secretion from the pancreas of diabetic rats. CONCLUSIONS Orexin B stimulated insulin secretion in normal and diabetic rat pancreas through the β-adrenergic pathway. Orexin B may have an important role in the regulation of islet function.
Collapse
|
12
|
Bayrakdar A, Yaman M, Atalar O, Gencer Tarakci B, Ceribasi S. Distribution of neuropeptides in endocrine and exocrine pancreas of long-legged buzzard (Buteo rufinus): An immunohistochemical study. ACTA ACUST UNITED AC 2011; 166:121-7. [DOI: 10.1016/j.regpep.2010.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 10/02/2010] [Accepted: 10/13/2010] [Indexed: 11/28/2022]
|
13
|
Adeghate E, Fernandez-Cabezudo M, Hameed R, El-Hasasna H, El Wasila M, Abbas T, Al-Ramadi B. Orexin-1 receptor co-localizes with pancreatic hormones in islet cells and modulates the outcome of streptozotocin-induced diabetes mellitus. PLoS One 2010; 5:e8587. [PMID: 20062799 PMCID: PMC2799220 DOI: 10.1371/journal.pone.0008587] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 12/04/2009] [Indexed: 02/07/2023] Open
Abstract
Recent studies have shown that orexins play a critical role in the regulation of sleep/wake states, feeding behaviour, and reward processes. The exocrine and endocrine pancreas are involved in the regulation of food metabolism and energy balance. This function is deranged in diabetes mellitus. This study examined the pattern of distribution of orexin-1 receptor (OX1R) in the endocrine cells of the pancreas of normal and diabetic Wistar (a model of type 1 diabetes), Goto-Kakizaki (GK, a model of type 2 diabetes) rats and in orexin-deficient (OX−/−) and wild type mice. Diabetes mellitus (DM) was induced in Wistar rats and mice by streptozotocin (STZ). At different time points (12 h, 24 h, 4 weeks, 8 months and 15 months) after the induction of DM, pancreatic fragments of normal and diabetic rats were processed for immunohistochemistry and Western blotting. OX1R-immunoreactive nerves were observed in the pancreas of normal and diabetic Wistar rats. OX1R was also discernible in the pancreatic islets of normal and diabetic Wistar and GK rats, and wild type mice. OX1R co-localized with insulin (INS) and glucagon (GLU) in the pancreas of Wistar and GK rats. The number of OX1R-positive cells in the islets increased markedly (p<0.0001) after the onset of DM. The increase in the number of OX1R-positive cells is associated with a high degree of co-localization with GLU. The number of GLU- positive cells expressing OX1R was significantly (p<0.0001) higher after the onset of DM. The tissue level of OX1R protein increased with the duration of DM especially in type 1 diabetes where it co-localized with cleaved caspase 3 in islet cells. In comparison to STZ-treated wild type mice, STZ-treated OX−/− animals exhibited reduced hyperglycemia and handled glucose more efficiently in glucose tolerance test. The findings suggest an important role for the OX-OX1R pathway in STZ-induced experimental diabetes.
Collapse
Affiliation(s)
- Ernest Adeghate
- Department of Anatomy, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | | | | | | | | | | | | |
Collapse
|
14
|
Bolkent S, Yanardag R, Bolkent S, Mutlu O. The influence of zinc supplementation on the pancreas of streptozotocin-diabetic rats. Dig Dis Sci 2009; 54:2583-7. [PMID: 19117123 DOI: 10.1007/s10620-008-0675-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 12/08/2008] [Indexed: 12/09/2022]
Abstract
The aim of this study was to investigate the effects of zinc supplementation on somatostatin and insulin peptide expressions and biochemical parameters. Six- to 6.5-month-old female Swiss albino rats weighing 150-200 g were used. The animals were divided into four groups: group I: control (intact) animals; group II: control animals given zinc sulfate; group III: streptozotocin (STZ)- induced diabetic animals; group IV: STZ-induced diabetic animals given zinc sulfate. Fasting blood glucose and glutathione levels were measured at 0, 1, 30 and 60 days. On day 60, the pancreas tissue and blood samples were taken from the animals. Zinc supplementation caused a decrease in hyperglycemia, as well as weight increase. Zinc sulfate treatment did not affect the number of somatostatin-immunoreactive cells in the pancreas. More insulin-immunoreactive cells were observed in the pancreatic islets of the diabetic+zinc sulfate group than in the diabetic group, although it was not statistically significant. The results show that zinc supplementation may prevent diabetes in experimental animals.
Collapse
Affiliation(s)
- Sema Bolkent
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University, 34098, Cerrahpasa, Istanbul, Turkey.
| | | | | | | |
Collapse
|
15
|
Adeghate E, Hameed RS. Immunohistochemical localization of orexin-B, orexin-1 receptor, ghrelin, GHS-R in the lacrimal gland of normal and diabetic rats. Peptides 2005; 26:2585-9. [PMID: 16043264 DOI: 10.1016/j.peptides.2005.05.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2005] [Revised: 05/27/2005] [Accepted: 05/27/2005] [Indexed: 12/13/2022]
Abstract
Orexin-B, ghrelin and their receptors play an important role in the regulation of feeding in mammals. The pattern of distribution of orexin-B, orexin-1-receptor (OX1R), ghrelin and growth hormone secretagogue receptor (GHS-R) in the lacrimal gland of normal and diabetic rats has not been reported. Diabetes was induced by a single intraperitoneal injection of streptozotocin (STZ) at 60 mg kg(-1). Forty weeks after the induction of STZ-induced diabetes, normal, age-matched controls and diabetic rats were anesthetized with chloral hydrate (intraperitoneally) and their lacrimal glands removed and processed for immunofluorescence. Orexin-B was observed in the cells localized to the interacinar regions while OX1R was discerned in the nerves innervating the wall of small blood vessels. Ghrelin was also present in a group of cells located in the periacinar regions of the lacrimal glands of normal and diabetic rats. In contrast, GHS-R was observed in the apical region of the ductal cells of the lacrimal glands of both normal and diabetic rats. The pattern of distribution of these orexigenic peptides and their receptors did not significantly change after the onset of diabetes. In conclusion, orexin-B, ghrelin and their receptors are present in the lacrimal glands of both normal and diabetic rats and may play a role in the regulation of lacrimal gland function.
Collapse
Affiliation(s)
- E Adeghate
- Department of Anatomy, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | | |
Collapse
|