1
|
Yang C, Li Q, Lin Y, Wang Y, Shi H, Xiang H, Zhu J. Diacylglycerol acyltransferase 2 promotes the adipogenesis of intramuscular preadipocytes in goat. Anim Biotechnol 2023; 34:2376-2383. [PMID: 35749715 DOI: 10.1080/10495398.2022.2091586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Diacylglycerol acyltransferase 2 (DGAT2) is the key enzyme that catalyzes the last step of triglyceride synthesis. However, its role in intramuscular fat (IMF) deposition in goat remains unclear. The purpose of this study was to explore the role of DGAT2 in regulating goat IMF deposition. In the present study, the expression of DGAT2 was highest in goat triceps brachii, and highest on the first day after oleic acid induction in goat intramuscular preadipocytes. The overexpression of DGAT2 promoted the accumulation of lipid droplets and triglyceride synthesis, accompanied by the expression upregulation of DGAT1, TIP47, ACC and ACOX1 significantly, and expression downregulation of AGPAT6, LPIN1, LPL, HSL, ATGL and ADRP significantly. In contrast, the silencing of DGAT2 decreased the accumulation of lipid droplets, inhibited the expression of DGAT1, GPAM, ADRP, AGPAT6, LPL, HSL, ATGL, ACC, FASN, ACOX1 significantly, and enhanced that of TIP47 significantly. Overall, these data underscore DGAT2 may play a potentially important role in lipid droplets formation and triglyceride accumulation, so as to maintain intramuscular fat deposition, beyond triglyceride synthesis in goat.
Collapse
Affiliation(s)
- Changheng Yang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Qi Li
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Yaqiu Lin
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Yong Wang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Hengbo Shi
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Hua Xiang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Jiangjiang Zhu
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
| |
Collapse
|
2
|
Mahmoudi P, Rashidi A. Strong evidence for association between K232A polymorphism of the DGAT1 gene and milk fat and protein contents: A meta-analysis. J Dairy Sci 2023; 106:2573-2587. [PMID: 36870848 DOI: 10.3168/jds.2022-22315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/03/2022] [Indexed: 03/06/2023]
Abstract
The relationship between K232A polymorphism of the DGAT1 gene and milk yield and composition was evaluated by meta-analysis of pooled data of more than 10,000 genotyped cattle. Four genetic models, including dominant (AA+KA vs. KK), recessive (AA vs. KA+KK), additive (AA vs. KK), and co-dominant (AA+KK vs. KA) were used to analyze the data. The standardized mean difference (SMD) was used to measure the size of the effects of the A and K alleles of K232A polymorphism on milk-related traits. The results showed that additive model was the best model for describing the effects of K232A polymorphism on studied traits. Under additive model, milk fat content was strongly decreased in cows having the AA genotype (SMD = -1.320). Furthermore, the AA genotype reduced the protein content of milk (SMD = -0.400). A significant difference in daily milk yield (SMD = 0.225) and lactation yield (SMD = 0.697) was found between cows carrying AA and KK genotypes, suggesting the positive effects of the K allele on these traits. Cook's distance measurement suggested some studies as outliers and sensitivity analyses by removing influential studies revealed that the results of meta-analyses for daily milk yield, fat content and protein content were not sensitive to outliers. However, the outcome of the meta-analysis for lactation yield was strongly influenced by outlier studies. Egger's test and Begg's funnel plots showed no evidence of publication bias in included studies. In conclusion, the K allele of K232A polymorphism showed a tremendous effect on increasing fat and protein contents in the milk of cattle, especially when 2 copies of this allele are inherited together, whereas the A allele of K232A polymorphism had negative effects on these traits.
Collapse
Affiliation(s)
- Peyman Mahmoudi
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, P.O. Box 416, Sanandaj, Kurdistan, Iran
| | - Amir Rashidi
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, P.O. Box 416, Sanandaj, Kurdistan, Iran.
| |
Collapse
|
3
|
Design and synthesis of novel spirocyclic carboxylic acids as potent and orally bioavailable DGAT1 inhibitors and their biological evaluation. Bioorg Med Chem Lett 2022; 62:128632. [PMID: 35189320 DOI: 10.1016/j.bmcl.2022.128632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/02/2022]
Abstract
A series of novel spirocyclic DGAT1 inhibitors containing the oxadiazole motif were designed and synthesized for biological evaluation. Several compounds exhibited potent diacylglycerol acyltransferase 1 (DGAT1) inhibitory activity. Optimization of the series led to the identification of five lead compounds 8, 9, 10, 11 and 12 that showed excellent in-vitro activity with IC50 values ranging from 7 to 20 nM against human DGAT1. All compounds demonstrated good druggability as well as microsomal stability and safety profiles such as hERG and CYP. Compound 12 significantly reduced plasma triglyceride levels in-vivo in the mouse model of acute lipid challenge. Significant reduction in plasma TG excursion was observed, thus indicating DGAT1 inhibition in-vivo.
Collapse
|
4
|
Abstract
Paraoxonase 2 (PON2) is a ubiquitously expressed intracellular enzyme that is known to have a protective role from oxidative stress. Clinical studies have also demonstrated the significance of PON2 in the manifestation of cardiovascular and several other diseases, and hence, it is considered an important biomarker. Recent findings of its expression in brain tissue suggest its potential protective effect on oxidative stress and neuroinflammation. Polymorphisms of PON2 in humans are a risk factor in many pathological conditions, suggesting a possible mechanism of its anti-oxidative property probably through lactonase activity. However, exogenous factors may also modulate the expression and activity of PON2. Hence, this review aims to report the mechanism by which PON2 expression is regulated and its role in oxidative stress disorders such as neurodegeneration and tumor formation. The role of PON2 owing to its lactonase activity in bacterial infectious diseases and association of PON2 polymorphism with pathological conditions are also highlighted.
Collapse
Affiliation(s)
- Fauzia Parween
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Rinkoo Devi Gupta
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| |
Collapse
|
5
|
Kim JH, Nagappan A, Jung DY, Suh N, Jung MH. Histone Demethylase KDM7A Contributes to the Development of Hepatic Steatosis by Targeting Diacylglycerol Acyltransferase 2. Int J Mol Sci 2021; 22:11085. [PMID: 34681759 PMCID: PMC8539991 DOI: 10.3390/ijms222011085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 11/17/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. While the development of NAFLD is correlated with aberrant histone methylation, modifiers of histone methylation involved in this event remain poorly understood. Here, we studied the functional role of the histone demethylase KDM7A in the development of hepatic steatosis. KDM7A overexpression in AML12 cells upregulated diacylglycerol acyltransferase 2 (DGAT2) expression and resulted in increased intracellular triglyceride (TG) accumulation. Conversely, KDM7A knockdown reduced DGAT2 expression and TG accumulation, and significantly reversed free fatty acids-induced TG accumulation. Additionally, adenovirus-mediated overexpression of KDM7A in mice resulted in hepatic steatosis, which was accompanied by increased expression of hepatic DGAT2. Furthermore, KDM7A overexpression decreased the enrichment of di-methylation of histone H3 lysine 9 (H3K9me2) and H3 lysine 27 (H3K27me2) on the promoter of DGAT2. Taken together, these results indicate that KDM7A overexpression induces hepatic steatosis through upregulation of DGAT2 by erasing H3K9me2 and H3K27me2 on the promoter.
Collapse
Affiliation(s)
- Ji-Hyun Kim
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si, Gyeongnam 50612, Korea; (J.-H.K.); (A.N.); (D.Y.J.)
| | - Arukumar Nagappan
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si, Gyeongnam 50612, Korea; (J.-H.K.); (A.N.); (D.Y.J.)
| | - Dae Young Jung
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si, Gyeongnam 50612, Korea; (J.-H.K.); (A.N.); (D.Y.J.)
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 164 Frelinghuysen Road, Piscataway, NJ 08854, USA;
| | - Myeong Ho Jung
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si, Gyeongnam 50612, Korea; (J.-H.K.); (A.N.); (D.Y.J.)
| |
Collapse
|
6
|
Khan MZ, Ma Y, Ma J, Xiao J, Liu Y, Liu S, Khan A, Khan IM, Cao Z. Association of DGAT1 With Cattle, Buffalo, Goat, and Sheep Milk and Meat Production Traits. Front Vet Sci 2021; 8:712470. [PMID: 34485439 PMCID: PMC8415568 DOI: 10.3389/fvets.2021.712470] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022] Open
Abstract
Milk fatty acids are essential for many dairy product productions, while intramuscular fat (IMF) is associated with the quality of meat. The triacylglycerols (TAGs) are the major components of IMF and milk fat. Therefore, understanding the polymorphisms and genes linked to fat synthesis is important for animal production. Identifying quantitative trait loci (QTLs) and genes associated with milk and meat production traits has been the objective of various mapping studies in the last decade. Consistently, the QTLs on chromosomes 14, 15, and 9 have been found to be associated with milk and meat production traits in cattle, goat, and buffalo and sheep, respectively. Diacylglycerol O-acyltransferase 1 (DGAT1) gene has been reported on chromosomes 14, 15, and 9 in cattle, goat, and buffalo and sheep, respectively. Being a key role in fat metabolism and TAG synthesis, the DGAT1 has obtained considerable attention especially in animal milk production. In addition to milk production, DGAT1 has also been a subject of interest in animal meat production. Several polymorphisms have been documented in DGAT1 in various animal species including cattle, buffalo, goat, and sheep for their association with milk production traits. In addition, the DGAT1 has also been studied for their role in meat production traits in cattle, sheep, and goat. However, very limited studies have been conducted in cattle for association of DGAT1 with meat production traits in cattle. Moreover, not a single study reported the association of DGAT1 with meat production traits in buffalo; thus, further studies are warranted to fulfill this huge gap. Keeping in view the important role of DGAT1 in animal production, the current review article was designed to highlight the major development and new insights on DGAT1 effect on milk and meat production traits in cattle, buffalo, sheep, and goat. Moreover, we have also highlighted the possible future contributions of DGAT1 for the studied species.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Faculty of Veterinary and Animal Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiaying Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yue Liu
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Adnan Khan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ibrar Muhammad Khan
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Glicksberg BS, Amadori L, Akers NK, Sukhavasi K, Franzén O, Li L, Belbin GM, Ayers KL, Shameer K, Badgeley MA, Johnson KW, Readhead B, Darrow BJ, Kenny EE, Betsholtz C, Ermel R, Skogsberg J, Ruusalepp A, Schadt EE, Dudley JT, Ren H, Kovacic JC, Giannarelli C, Li SD, Björkegren JLM, Chen R. Integrative analysis of loss-of-function variants in clinical and genomic data reveals novel genes associated with cardiovascular traits. BMC Med Genomics 2019; 12:108. [PMID: 31345219 PMCID: PMC6657044 DOI: 10.1186/s12920-019-0542-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Genetic loss-of-function variants (LoFs) associated with disease traits are increasingly recognized as critical evidence for the selection of therapeutic targets. We integrated the analysis of genetic and clinical data from 10,511 individuals in the Mount Sinai BioMe Biobank to identify genes with loss-of-function variants (LoFs) significantly associated with cardiovascular disease (CVD) traits, and used RNA-sequence data of seven metabolic and vascular tissues isolated from 600 CVD patients in the Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task (STARNET) study for validation. We also carried out in vitro functional studies of several candidate genes, and in vivo studies of one gene. Results We identified LoFs in 433 genes significantly associated with at least one of 10 major CVD traits. Next, we used RNA-sequence data from the STARNET study to validate 115 of the 433 LoF harboring-genes in that their expression levels were concordantly associated with corresponding CVD traits. Together with the documented hepatic lipid-lowering gene, APOC3, the expression levels of six additional liver LoF-genes were positively associated with levels of plasma lipids in STARNET. Candidate LoF-genes were subjected to gene silencing in HepG2 cells with marked overall effects on cellular LDLR, levels of triglycerides and on secreted APOB100 and PCSK9. In addition, we identified novel LoFs in DGAT2 associated with lower plasma cholesterol and glucose levels in BioMe that were also confirmed in STARNET, and showed a selective DGAT2-inhibitor in C57BL/6 mice not only significantly lowered fasting glucose levels but also affected body weight. Conclusion In sum, by integrating genetic and electronic medical record data, and leveraging one of the world’s largest human RNA-sequence datasets (STARNET), we identified known and novel CVD-trait related genes that may serve as targets for CVD therapeutics and as such merit further investigation. Electronic supplementary material The online version of this article (10.1186/s12920-019-0542-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Benjamin S Glicksberg
- Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,The Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, 94158, CA, USA
| | - Letizia Amadori
- Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Cardiovascular Research Center and Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Nicholas K Akers
- Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Katyayani Sukhavasi
- Department of Pathophysiology, Institute of Biomedicine and Translation Medicine, University of Tartu, Biomeedikum, Ravila 19, 50411, Tartu, Estonia
| | - Oscar Franzén
- Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Clinical Gene Networks AB, Jungfrugatan 10, 114 44, Stockholm, Sweden.,Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Novum, 14157, Huddinge, Sweden
| | - Li Li
- Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,The Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Gillian M Belbin
- Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Kristin L Ayers
- Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT, 06902, USA
| | - Khader Shameer
- Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,The Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Marcus A Badgeley
- Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,The Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Kipp W Johnson
- Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,The Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Ben Readhead
- Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,The Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Bruce J Darrow
- Cardiovascular Research Center and Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Eimear E Kenny
- Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85, Uppsala, Sweden
| | - Raili Ermel
- Department of Cardiac Surgery, Tartu University Hospital, 1a Ludwig Puusepa Street, 50406, Tartu, Estonia
| | - Josefin Skogsberg
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset Huddinge, 141 86, Stockholm, Sweden
| | - Arno Ruusalepp
- Clinical Gene Networks AB, Jungfrugatan 10, 114 44, Stockholm, Sweden.,Department of Immunology, Genetics and Pathology, Uppsala University, 751 85, Uppsala, Sweden
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,The Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Clinical Gene Networks AB, Jungfrugatan 10, 114 44, Stockholm, Sweden.,Sema4, a Mount Sinai venture, Stamford, CT, 06902, USA
| | - Joel T Dudley
- Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,The Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Department of Health Policy and Research, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Hongxia Ren
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Center for Diabetes and Metabolic Diseases, Stark Neurosciences Research Institute, Indiana University, 635 Barnhill Dr., MS2049, Indianapolis, IN, 46202, USA
| | - Jason C Kovacic
- Cardiovascular Research Center and Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Chiara Giannarelli
- Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Cardiovascular Research Center and Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Shuyu D Li
- Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Sema4, a Mount Sinai venture, Stamford, CT, 06902, USA.
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Department of Pathophysiology, Institute of Biomedicine and Translation Medicine, University of Tartu, Biomeedikum, Ravila 19, 50411, Tartu, Estonia. .,Clinical Gene Networks AB, Jungfrugatan 10, 114 44, Stockholm, Sweden. .,Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset Huddinge, 141 86, Stockholm, Sweden.
| | - Rong Chen
- Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Sema4, a Mount Sinai venture, Stamford, CT, 06902, USA.
| |
Collapse
|
8
|
Cao H, Sethumadhavan K. Cottonseed Extracts and Gossypol Regulate Diacylglycerol Acyltransferase Gene Expression in Mouse Macrophages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6022-6030. [PMID: 29807418 DOI: 10.1021/acs.jafc.8b01240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plant bioactive polyphenols have been used for the prevention and treatment of various diseases since ancient history. Cotton ( Gossypium hirsutum L.) seeds are classified as glanded or glandless depending on the presence or absence of pigment glands, which contain polyphenolic gossypol. Diacylglycerol acyltransferases (DGATs) are integral membrane proteins that catalyze the last step of triacylglycerol biosynthesis in eukaryotes. Understanding the regulation of DGATs will provide information for therapeutic intervention for obesity and related diseases. However, little was known if DGAT gene expression was regulated by natural products. The objective of this study was to investigate the effects of cottonseed extracts and gossypol on DGAT gene expression in mouse RAW264.7 macrophages. Mouse cells were treated with different concentrations of cottonseed extracts, gossypol, and lipopolysaccharides (LPS) for various times. Quantitative polymerase chain reaction assay showed that coat extract of glanded seeds had a modest effect on DGAT1 and minimal effect on DGAT2 mRNA levels. Kernel extract of glanded seeds had a minimal effect on DGAT1 but increased DGAT2 mRNA levels more than 20-fold. Coat extract of glandless seeds and LPS had minimal effects on DGAT mRNA levels. Kernel extract of glandless seeds did not have much effect on DGAT1 and slightly increased DGAT2 mRNA levels. Gossypol increased DGAT1 and DGAT2 mRNA levels by up to three-fold and more than 80-fold, respectively. The coefficient correlations ( R2) between DGAT2 mRNA levels and glanded kernel extract and gossypol concentrations were 0.82-0.99. This study suggests that Dgat2 is an inducible gene rapidly responding to stimulators such as polyphenols whose protein product DGAT2 plays an important role in fat biosynthesis. We conclude that gossypol and ethanol extract from glanded cottonseed kernel are strong stimulators of DGAT2 gene expression and that they may be novel agents for intervention of lipid-related dysfunction via increasing DGAT2 gene expression in target tissues.
Collapse
Affiliation(s)
- Heping Cao
- U.S. Department of Agriculture, Agricultural Research Service , Southern Regional Research Center , New Orleans , Louisiana 70124 , United States
| | - Kandan Sethumadhavan
- U.S. Department of Agriculture, Agricultural Research Service , Southern Regional Research Center , New Orleans , Louisiana 70124 , United States
| |
Collapse
|
9
|
Yan J, Wang G, Dang X, Guo B, Chen W, Wang T, Zeng L, Wang H, Hu Y. Discovery of a low-systemic-exposure DGAT-1 inhibitor with a picolinoylpyrrolidine-2-carboxylic acid moiety. Bioorg Med Chem 2017; 25:4701-4714. [DOI: 10.1016/j.bmc.2017.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/01/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
|
10
|
Wang F, Liu JC, Zhou RJ, Zhao X, Liu M, Ye H, Xie ML. Apigenin protects against alcohol-induced liver injury in mice by regulating hepatic CYP2E1-mediated oxidative stress and PPARα-mediated lipogenic gene expression. Chem Biol Interact 2017; 275:171-177. [DOI: 10.1016/j.cbi.2017.08.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 07/29/2017] [Accepted: 08/09/2017] [Indexed: 02/07/2023]
|
11
|
Yang W, Huang L, Gao J, Wen S, Tai Y, Chen M, Huang Z, Liu R, Tang C, Li J. Betaine attenuates chronic alcohol‑induced fatty liver by broadly regulating hepatic lipid metabolism. Mol Med Rep 2017; 16:5225-5234. [PMID: 28849079 PMCID: PMC5647077 DOI: 10.3892/mmr.2017.7295] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 06/13/2017] [Indexed: 02/05/2023] Open
Abstract
Betaine has previously been demonstrated to protect the liver against alcohol‑induced fat accumulation. However, the mechanism through which betaine affects alcohol‑induced hepatic lipid metabolic disorders has not been extensively studied. The present study aimed to investigate the effect of betaine on alcoholic simple fatty liver and hepatic lipid metabolism disorders. A total of 36 rats were randomly divided into control, ethanol and ethanol + betaine groups. Liver function, morphological alterations, lipid content and tumor necrosis factor (TNF)‑α levels were determined. Hepatic expression levels of diacylglycerol acyltransferase (DGAT) 1, DGAT2, sterol regulatory element binding protein (SREBP)‑1c, SREBP‑2, fatty acid synthase (FAS), 3‑hydroxy‑3‑methyl‑glutaryl (HMG)‑CoA reductase, peroxisome proliferator-activated receptor λ coactivator (PGC)‑1α, adiponectin receptor (AdipoR) 1 and AdipoR2 were quantified. Serum and adipose tissue adiponectin levels were assessed using an enzyme‑linked immunoassay. The results demonstrated that alcohol‑induced ultramicrostructural alterations in hepatocytes, including the presence of lipid droplets and swollen mitochondria, were attenuated by betaine. Hepatic triglyceride, free fatty acid, total cholesterol and cholesterol ester contents and the expression of DGAT1, DGAT2, SREBP‑1c, SREBP‑2, FAS and HMG‑CoA reductase were increased following ethanol consumption, however were maintained at control levels following betaine supplementation. Alcohol‑induced decreases in hepatic PGC‑1α mRNA levels and serum and adipose tissue adiponectin concentrations were prevented by betaine. The downregulation of hepatic AdipoR1 which resulted from alcohol exposure was partially attenuated by betaine. No significant differences in liver function, TNF‑α, phospholipid and AdipoR2 levels were observed among the control, ethanol and ethanol + betaine groups. Overall, these results indicated that betaine attenuated the alcoholic simple fatty liver by improving hepatic lipid metabolism via suppression of DGAT1, DGAT2, SREBP‑1c, FAS, SREBP‑2 and HMG‑CoA reductase and upregulation of PGC‑1α.
Collapse
Affiliation(s)
- Wenjuan Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Luming Huang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jinhang Gao
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, Chengdu, Sichuan 610000, P.R. China
| | - Shilei Wen
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, Chengdu, Sichuan 610000, P.R. China
| | - Yang Tai
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Meng Chen
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhiyin Huang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Rui Liu
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, Chengdu, Sichuan 610000, P.R. China
| | - Chengwei Tang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jing Li
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
12
|
Nakajima K, Chatelain R, Clairmont KB, Commerford R, Coppola GM, Daniels T, Forster CJ, Gilmore TA, Gong Y, Jain M, Kanter A, Kwak Y, Li J, Meyers CD, Neubert AD, Szklennik P, Tedesco V, Thompson J, Truong D, Yang Q, Hubbard BK, Serrano-Wu MH. Discovery of an Orally Bioavailable Benzimidazole Diacylglycerol Acyltransferase 1 (DGAT1) Inhibitor That Suppresses Body Weight Gain in Diet-Induced Obese Dogs and Postprandial Triglycerides in Humans. J Med Chem 2017; 60:4657-4664. [DOI: 10.1021/acs.jmedchem.7b00173] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Katsumasa Nakajima
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - Ricardo Chatelain
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - Kevin B. Clairmont
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - Renee Commerford
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - Gary M. Coppola
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - Thomas Daniels
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - Cornelia J. Forster
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - Thomas A. Gilmore
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - Yongjin Gong
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - Monish Jain
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - Aaron Kanter
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - Youngshin Kwak
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - Jingzhou Li
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - Charles D. Meyers
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - Alan D. Neubert
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - Paul Szklennik
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - Vivienne Tedesco
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - James Thompson
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - David Truong
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - Qing Yang
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - Brian K. Hubbard
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - Michael H. Serrano-Wu
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
Yang Y, Lin Y, Duan X, Lv H, Xing W, Li Q, Gao X, Hou X. The effects of cell death-inducing DNA fragmentation factor-α-like effector C (CIDEC) on milk lipid synthesis in mammary glands of dairy cows. J Dairy Sci 2017; 100:4014-4024. [DOI: 10.3168/jds.2016-11549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 12/19/2016] [Indexed: 01/14/2023]
|
14
|
PPARα/γ antagonists reverse the ameliorative effects of osthole on hepatic lipid metabolism and inflammatory response in steatohepatitic rats. Inflammopharmacology 2017; 26:425-433. [PMID: 28236037 DOI: 10.1007/s10787-017-0327-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/11/2017] [Indexed: 01/22/2023]
Abstract
Our previous studies have indicated that osthole may ameliorate the hepatic lipid metabolism and inflammatory response in nonalcoholic steatohepatitic rats, but the underlying mechanisms remain unclear. This study aimed to determine whether the effects of osthole were mediated by the activation of hepatic peroxisome proliferator-activated receptor α/γ (PPARα/γ). A rat model with steatohepatitis was induced by orally feeding high-fat and high-sucrose emulsion for 6 weeks. These experimental rats were then treated with osthole (20 mg/kg), PPARα antagonist MK886 (1 mg/kg) plus osthole (20 mg/kg), PPARγ antagonist GW9662 (1 mg/kg) plus osthole (20 mg/kg) and MK886 (1 mg/kg) plus GW9662 (1 mg/kg) plus osthole (20 mg/kg) for 4 weeks. The results showed that after osthole treatment, the hepatic triglycerides, free fatty acids, tumor necrosis factor-α, monocyte chemotactic protein-1, interleukin-6 (IL-6), IL-8 and liver index decreased by 52.3, 31.0, 32.4, 28.9, 36.3, 29.3 and 29.9%, respectively, and the score of steatohepatitis also decreased by 70.0%, indicating that osthole improved the hepatic steatosis and inflammation. However, these effects of osthole were reduced or abrogated after simultaneous addition of the specific PPARα antagonist MK886 or/and the PPARγ antagonist GW9662, especially in the co-PPARα/γ antagonists-treated group. Importantly, the osthole-induced hepatic expressions of PPARα/γ proteins were decreased, and the osthole-regulated hepatic expressions of lipogenic and inflammatory gene proteins were also reversed by PPARα/γ antagonist treatment. These findings demonstrated that the ameliorative effect of osthole on nonalcoholic steatohepatitis was mediated by PPARα/γ activation, and osthole might be a natural dual PPARα/γ activator.
Collapse
|
15
|
Viecili PRN, da Silva B, Hirsch GE, Porto FG, Parisi MM, Castanho AR, Wender M, Klafke JZ. Triglycerides Revisited to the Serial. Adv Clin Chem 2017; 80:1-44. [PMID: 28431638 DOI: 10.1016/bs.acc.2016.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review discusses the role of triglycerides (TGs) in the normal cardiovascular system as well as in the development and clinical manifestation of cardiovascular diseases. Regulation of TGs at the enzymatic and genetic level, in addition to their possible relevance as preclinical and clinical biomarkers, is discussed, culminating with a description of available and emerging treatments. Due to the high complexity of the subject and the vast amount of material in the literature, the objective of this review was not to exhaust the subject, but rather to compile the information to facilitate and improve the understanding of those interested in this topic. The main publications on the topic were sought out, especially those from the last 5 years. The data in the literature still give reason to believe that there is room for doubt regarding the use of TG as disease biomarkers; however, there is increasing evidence for the role of hypertriglyceridemia on the atherosclerotic inflammatory process, cardiovascular outcomes, and mortality.
Collapse
|
16
|
Diacylglycerol acyltransferase-2 and monoacylglycerol acyltransferase-2 are ubiquitinated proteins that are degraded by the 26S proteasome. Biochem J 2016; 473:3621-3637. [DOI: 10.1042/bcj20160418] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/16/2016] [Indexed: 01/20/2023]
Abstract
Acyl-CoA:1,2-diacylglycerol acyltransferase (DGAT)-2 is one of the two DGAT enzymes that catalyzes the synthesis of triacylglycerol, which is an important form of stored energy for eukaryotic organisms. There is currently limited information available regarding how DGAT2 and triacylglycerol synthesis are regulated. Recent studies have indicated that DGAT2 can be regulated by changes in gene expression. How DGAT2 is regulated post-transcriptionally remains less clear. In this study, we demonstrated that DGAT2 is a very unstable protein and is rapidly degraded in an ubiquitin-dependent manner via the proteasome. Many of the 25 lysines present in DGAT2 appeared to be involved in promoting its degradation. However, the six C-terminal lysines were the most important in regulating stability. We also demonstrated that acyl-CoA:monoacylglycerol acyltransferase (MGAT)-2, an enzyme with extensive sequence homology to DGAT2 that catalyzes the synthesis of diacylglycerol, was also ubiquitinated. However, MGAT2 was found to be much more stable than DGAT2. Interestingly, when co-expressed, MGAT2 appeared to stabilize DGAT2. Finally, we found that both DGAT2 and MGAT2 are substrates of the endoplasmic reticulum-associated degradation pathway.
Collapse
|
17
|
Aqueous or lipid components of atherosclerotic lesion increase macrophage oxidation and lipid accumulation. Life Sci 2016; 154:1-14. [PMID: 27114099 DOI: 10.1016/j.lfs.2016.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/12/2016] [Accepted: 04/14/2016] [Indexed: 11/24/2022]
Abstract
INTRODUCTION AND OBJECTIVE Understanding the interactions among atherosclerotic plaque components and arterial macrophages, is essential for elucidating the mechanisms involved in the development of atherosclerosis. We assessed the effects of lesion extracts on macrophages. METHODS Mouse peritoneal macrophages from atherosclerotic normoglycemic or hyperglycemic apoE(-/-) mice were incubated with aortic aqueous or with aortic lipidic extracts (mAAE or mALE) derived from these mice. In parallel, J774A.1 cultured macrophages were incubated with increasing concentrations of extracts prepared from human carotid lesions: polar lesion aqueous extract (hLAE), nonpolar lesion lipid extract (hLLE), or with their combination. In all the above systems we performed analyses of macrophage oxidative status, cholesterol, and triglyceride metabolism. RESULTS Aqueous or lipid extracts from either mice aorta or from human carotid lesions significantly increased macrophage oxidative stress as determined by reactive oxygen species (ROS) analysis. In parallel, a compensatory increase in the cellular antioxidant paraoxonase2 (PON2) activity and in macrophage glutathione content were observed following incubation with all extracts. Macrophage triglyceride mass and triglyceride biosynthesis rate were both significantly increased following treatment with the lipid extracts, secondary to upregulation of DGAT1. All extracts decreased cholesterol biosynthesis rate, through downregulation of HMGCR, the rate limiting enzyme in cholesterol biosynthesis. The combination of the human lesion extracts had the most significant effects. CONCLUSION The present study demonstrates that atherosclerotic plaque constituents enhance macrophage cellular oxidative stress, and accumulation of cholesterol and triglycerides, as shown in both in vivo and in vitro model systems.
Collapse
|
18
|
Nakajima K, April M, Brewer JT, Daniels T, Forster CJ, Gilmore TA, Jain M, Kanter A, Kwak Y, Li J, McQuire L, Serrano-Wu MH, Streeper R, Szklennik P, Thompson J, Wang B. Discovery of diamide compounds as diacylglycerol acyltransferase 1 (DGAT1) inhibitors. Bioorg Med Chem Lett 2016; 26:1245-8. [PMID: 26804232 DOI: 10.1016/j.bmcl.2016.01.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 10/22/2022]
Abstract
Diamide compounds were identified as potent DGAT1 inhibitors in vitro, but their poor molecular properties resulted in low oral bioavailability, both systemically and to DGAT1 in the enterocytes of the small intestine, resulting in a lack of efficacy in vivo. Replacing an N-alkyl group on the diamide with an N-aryl group was found to be an effective strategy to confer oral bioavailability and oral efficacy in this lipophilic diamide class of inhibitors.
Collapse
Affiliation(s)
- Katsumasa Nakajima
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 100 Technology Square, Cambridge, MA 02139, USA
| | - Myriam April
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 100 Technology Square, Cambridge, MA 02139, USA
| | - Jason T Brewer
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 100 Technology Square, Cambridge, MA 02139, USA
| | - Thomas Daniels
- Cardiovascular and Metabolism, Novartis Institutes for Biomedical Research, 100 Technology Square, Cambridge, MA 02139, USA
| | - Cornelia J Forster
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 100 Technology Square, Cambridge, MA 02139, USA
| | - Thomas A Gilmore
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 100 Technology Square, Cambridge, MA 02139, USA
| | - Monish Jain
- Metabolism and Pharmacokinetics, Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Aaron Kanter
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 100 Technology Square, Cambridge, MA 02139, USA
| | - Youngshin Kwak
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 100 Technology Square, Cambridge, MA 02139, USA
| | - Jingzhou Li
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 100 Technology Square, Cambridge, MA 02139, USA
| | - Les McQuire
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 100 Technology Square, Cambridge, MA 02139, USA
| | - Michael H Serrano-Wu
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 100 Technology Square, Cambridge, MA 02139, USA
| | - Ryan Streeper
- Cardiovascular and Metabolism, Novartis Institutes for Biomedical Research, 100 Technology Square, Cambridge, MA 02139, USA
| | - Paul Szklennik
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 100 Technology Square, Cambridge, MA 02139, USA
| | - James Thompson
- Cardiovascular and Metabolism, Novartis Institutes for Biomedical Research, 100 Technology Square, Cambridge, MA 02139, USA
| | - Bing Wang
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 100 Technology Square, Cambridge, MA 02139, USA
| |
Collapse
|
19
|
Wu T, Shu Q, Yang K, Xie X, Wang X, Wang Y, Guo A, Yuan N, Zhao B, Chi B, Wu Q, Fu Z. Ameliorating effects of Inonotus obliquus on high fat diet-induced obese rats. Acta Biochim Biophys Sin (Shanghai) 2015; 47:755-7. [PMID: 26243028 DOI: 10.1093/abbs/gmv073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Tao Wu
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China Ocean College, Zhejiang University of Technology, Hangzhou 310032, China
| | - Qingyu Shu
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Kai Yang
- Ocean College, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiaoxian Xie
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xia Wang
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yangling Wang
- Ocean College, Zhejiang University of Technology, Hangzhou 310032, China
| | - Anqi Guo
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Nate Yuan
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Binggong Zhao
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Binbin Chi
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Qiaobei Wu
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
20
|
PPARα/γ agonists and antagonists differently affect hepatic lipid metabolism, oxidative stress and inflammatory cytokine production in steatohepatitic rats. Cytokine 2015; 75:127-35. [DOI: 10.1016/j.cyto.2015.05.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 04/22/2015] [Accepted: 05/26/2015] [Indexed: 12/12/2022]
|
21
|
Cardoso D, de Souza G, Aspilcueta-Borquis R, Araujo Neto F, de Camargo G, Hurtado-Lugo N, Scalez D, de Freitas A, Albuquerque L, Tonhati H. Short communication: Variable number of tandem repeat polymorphisms in DGAT1 gene of buffaloes (Bubalus bubalis) is associated with milk constituents. J Dairy Sci 2015; 98:3492-5. [DOI: 10.3168/jds.2014-8729] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 01/14/2015] [Indexed: 11/19/2022]
|
22
|
Gross DA, Silver DL. Cytosolic lipid droplets: from mechanisms of fat storage to disease. Crit Rev Biochem Mol Biol 2015; 49:304-26. [PMID: 25039762 DOI: 10.3109/10409238.2014.931337] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The lipid droplet (LD) is a phylogenetically conserved organelle. In eukaryotes, it is born from the endoplasmic reticulum, but unlike its parent organelle, LDs are the only known cytosolic organelles that are micellar in structure. LDs are implicated in numerous physiological and pathophysiological functions. Many aspects of the LD has captured the attention of diverse scientists alike and has recently led to an explosion in information on the LD biogenesis, expansion and fusion, identification of LD proteomes and diseases associated with LD biology. This review will provide a brief history of this fascinating organelle and provide some contemporary views of unanswered questions in LD biogenesis.
Collapse
Affiliation(s)
- David A Gross
- Program in Cardiovascular & Metabolic Disorders, Duke-NUS Graduate Medical School Singapore , Singapore , and
| | | |
Collapse
|
23
|
Mo X, Yang C, Wang X, Burkhardt BR, Li Y, Xia H, Cao X. F3MB(PANDER) decreases mice hepatic triglyceride and is associated with decreased DGAT1 expression. PLoS One 2015; 10:e0117156. [PMID: 25679806 PMCID: PMC4334525 DOI: 10.1371/journal.pone.0117156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 12/18/2014] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Pancreatic-derived factor (PANDER, also named as FAM3B) is secreted by pancreatic α and β cells. Increasing evidence suggests that it may serve a hormonal function related to glycemic and lipid metabolism. In this study, we investigated the effects of PANDER overexpression on hepatic and adipose triglyceride metabolism in high-fat diet-fed male C57BL/6 mice. METHODS PANDER overexpression was achieved by tail-vein injection of recombinant Ad-PANDER and Ad-GFP injected mice served as a control. The TG metabolism in both groups were compared. RESULTS Adenoviral-mediated overexpression of PANDER did not affect body weight, food consumption, or liver enzymes. The triglyceride (TG) content of both liver and adipose tissue was significantly decreased in Ad-PANDER mice (liver: 6.16±1.89 mg/g vs. control 14.95±2.27 mg/g, P<0.05; adipose: 39.31±1.99 mg/100mg vs. 47.22±2.21 mg/100mg, P<0.05). The free fatty acid (FFA) content of adipose tissue in Ad-PANDER mice was also decreased (1.38±0.18 mg/g vs. 2.77±0.31 mg/g, P<0.01). The investigation of key enzymes of triglyceride hydrolysis and FFA oxidation in liver and adipose tissue showed that p-HSL/HSL was significantly increased and that DGAT1 gene and protein expression were significantly reduced in the liver of PANDER-overexpressing mice. PKA phosphorylation was also significantly increased in the livers of Ad-PANDER mice. No differences in ATGL, CPT1, ACOX1, or DGAT2 expression were observed. CONCLUSION Overexpression of PANDER is associated with observable decreases in TG, increases in PKA phosphorylation, and decreased DGAT1 expression, suggesting a possible interrelationship. The mechanisms by which this occurs remain to be elucidated.
Collapse
Affiliation(s)
- Xiaoqing Mo
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan 2nd Road, Guangzhou 510080, PR.China
| | - Chijiao Yang
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan 2nd Road, Guangzhou 510080, PR.China
| | - Xuelan Wang
- Department of Pharmacology, School of Medicine, Sun Yat-sen University, No.74 Zhongshan 2nd Road, Guangzhou 510080, PR.China
| | - Brant R. Burkhardt
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Avenue, BSF 206, Tampa, FL33620-5550, United States of America
| | - Yangbin Li
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan 2nd Road, Guangzhou 510080, PR.China
| | - Haipeng Xia
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan 2nd Road, Guangzhou 510080, PR.China
| | - Xiaopei Cao
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan 2nd Road, Guangzhou 510080, PR.China
- * E-mail:
| |
Collapse
|
24
|
Tăbăran A, Balteanu VA, Gal E, Pusta D, Mihaiu R, Dan SD, Tăbăran AF, Mihaiu M. Influence of DGAT1 K232A Polymorphism on Milk Fat Percentage and Fatty Acid Profiles in Romanian Holstein Cattle. Anim Biotechnol 2014; 26:105-11. [DOI: 10.1080/10495398.2014.933740] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Zhao X, Xue J, Wang XL, Zhang Y, Deng M, Xie ML. Involvement of hepatic peroxisome proliferator-activated receptor α/γ in the therapeutic effect of osthole on high-fat and high-sucrose-induced steatohepatitis in rats. Int Immunopharmacol 2014; 22:176-81. [DOI: 10.1016/j.intimp.2014.06.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/31/2014] [Accepted: 06/17/2014] [Indexed: 12/11/2022]
|
26
|
Szyda J, Komisarek J, Antkowiak I. Modelling effects of candidate genes on complex traits as variables over time. Anim Genet 2014; 45:322-8. [DOI: 10.1111/age.12144] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2014] [Indexed: 01/29/2023]
Affiliation(s)
- J. Szyda
- Department of Animal Genetics; Wrocław University of Environmental and Life Sciences; Kożuchowska 7 Wrocław 51-631 Poland
- Institute of Natural Sciences; Wrocław University of Life Sciences; Norwida 25 Wrocław 50-375 Poland
| | - J. Komisarek
- Department of Cattle Breeding and Milk Production; Poznań University of Life Sciences; Wojska Polskiego 71A Poznań 60-625 Poland
| | - I. Antkowiak
- Department of Cattle Breeding and Milk Production; Poznań University of Life Sciences; Wojska Polskiego 71A Poznań 60-625 Poland
| |
Collapse
|
27
|
Cao H, Shockey JM, Klasson KT, Chapital DC, Mason CB, Scheffler BE. Developmental regulation of diacylglycerol acyltransferase family gene expression in tung tree tissues. PLoS One 2013; 8:e76946. [PMID: 24146944 PMCID: PMC3795650 DOI: 10.1371/journal.pone.0076946] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/26/2013] [Indexed: 11/29/2022] Open
Abstract
Diacylglycerol acyltransferases (DGAT) catalyze the final and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. DGAT genes have been identified in numerous organisms. Multiple isoforms of DGAT are present in eukaryotes. We previously cloned DGAT1 and DGAT2 genes of tung tree (Vernicia fordii), whose novel seed TAGs are useful in a wide range of industrial applications. The objective of this study was to understand the developmental regulation of DGAT family gene expression in tung tree. To this end, we first cloned a tung tree gene encoding DGAT3, a putatively soluble form of DGAT that possesses 11 completely conserved amino acid residues shared among 27 DGAT3s from 19 plant species. Unlike DGAT1 and DGAT2 subfamilies, DGAT3 is absent from animals. We then used TaqMan and SYBR Green quantitative real-time PCR, along with northern and western blotting, to study the expression patterns of the three DGAT genes in tung tree tissues. Expression results demonstrate that 1) all three isoforms of DGAT genes are expressed in developing seeds, leaves and flowers; 2) DGAT2 is the major DGAT mRNA in tung seeds, whose expression profile is well-coordinated with the oil profile in developing tung seeds; and 3) DGAT3 is the major form of DGAT mRNA in tung leaves, flowers and immature seeds prior to active tung oil biosynthesis. These results suggest that DGAT2 is probably the major TAG biosynthetic isoform in tung seeds and that DGAT3 gene likely plays a significant role in TAG metabolism in other tissues. Therefore, DGAT2 should be a primary target for tung oil engineering in transgenic organisms.
Collapse
Affiliation(s)
- Heping Cao
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, Commodity Utilization Research Unit, New Orleans, Louisiana, United States of America
- * E-mail:
| | - Jay M. Shockey
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, Commodity Utilization Research Unit, New Orleans, Louisiana, United States of America
| | - K. Thomas Klasson
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, Commodity Utilization Research Unit, New Orleans, Louisiana, United States of America
| | - Dorselyn C. Chapital
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, Commodity Utilization Research Unit, New Orleans, Louisiana, United States of America
| | - Catherine B. Mason
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, Commodity Utilization Research Unit, New Orleans, Louisiana, United States of America
| | - Brian E. Scheffler
- U.S. Department of Agriculture, Agricultural Research Service, Genomics and Bioinformatics Research Unit, Stoneville, Mississippi, United States of America
| |
Collapse
|
28
|
Purification of integral membrane proteins and lipid-binding assays. Methods Cell Biol 2013. [PMID: 24099294 DOI: 10.1016/b978-0-12-408051-5.00010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The lipid droplet (LD) is an evolutionarily conserved organelle composed primarily of triglycerides (TAG) and cholesteryl esters. Recently, Fat storage-Inducing Transmembrane proteins 1 & 2 (FITM1/FIT1 and FITM2/FIT2) were discovered as a conserved family of proteins involved in fat storage. FIT1 and FIT2 are both localized to the endoplasmic reticulum, but have distinct tissue distributions. FIT proteins mediate TAG LD accumulation when overexpressed, but do not synthesize TAG. FIT proteins function by partitioning newly synthesized TAG into LDs. In order to understand the mechanism by which this occurs, a method was developed to purify FIT proteins from insect cells in detergent micelles. The ability of purified FIT proteins to bind TAG and other neutral lipids was tested in detergent micelles, demonstrating lipid specificity and saturation binding. These techniques can be applied to a variety of proteins in lipid biology in an effort to try to reconstitute a mechanism of action or protein activity. The methods that will be discussed here can also be scaled to either screen a library of mutant proteins for binding to a particular compound or utilized to delineate structural requirements of ligands that are important for protein-ligand interactions. Here, we present a detailed description of the purification protocol and micellar protein-ligand binding experiments and their possible applications.
Collapse
|
29
|
Abstract
INTRODUCTION The oxadiazoles represent a class of five-membered heterocyclic compounds which are of considerable interest in different areas of medicinal chemistry and drug discovery. Oxadiazoles can exist in different regioisomeric forms and employ in various agents with a broad range of biological activities. This review covers the work reported on various biological activities of oxadiazole derivatives from 2010 to 2012. AREAS COVERED Oxadiazole derivatives attract great attention due to their different kinds of pharmaceutical activities including antiviral, antimicrobial, anticancer, anticonvulsant, antidiabetic and anti-inflammatory activity. This paper provides a general review of oxadiazole derivatives published in international journals and patented between 2010 and 2012. EXPERT OPINION Oxadiazoles have been used frequently in drug-like molecules as bioisosteres for ester and amide functionalities and displayed numerous prominent pharmacological effects. The broad pharmacological profile of oxadiazole derivatives has attracted the attention of many researchers to explore this scaffold to its multiple potential against several activities. Therefore, oxadiazole motif is likely to be present in other therapeutic molecules in the future.
Collapse
Affiliation(s)
- Afshin Zarghi
- Shahid Beheshti University of Medical Sciences, School of Pharmacy, Department of Medicinal Chemistry, P.O. Box: 14155-6153, Tehran, Iran.
| | | |
Collapse
|
30
|
Schober G, Arnold M, Birtles S, Buckett LK, Pacheco-López G, Turnbull AV, Langhans W, Mansouri A. Diacylglycerol acyltransferase-1 inhibition enhances intestinal fatty acid oxidation and reduces energy intake in rats. J Lipid Res 2013; 54:1369-84. [PMID: 23449193 DOI: 10.1194/jlr.m035154] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Acyl CoA:diacylglycerol acyltransferase-1 (DGAT-1) catalyzes the final step in triacylglycerol (TAG) synthesis and is highly expressed in the small intestine. Because DGAT-1 knockout mice are resistant to diet-induced obesity, we investigated the acute effects of intragastric (IG) infusion of a small molecule diacylglycerol acyltransferase-1 inhibitor (DGAT-1i) on eating, circulating fat metabolites, indirect calorimetry, and hepatic and intestinal expression of key fat catabolism enzymes in male rats adapted to an 8 h feeding-16 h deprivation schedule. Also, the DGAT-1i effect on fatty acid oxidation (FAO) was investigated in enterocyte cell culture models. IG DGAT-1i infusions reduced energy intake compared with vehicle in high-fat diet (HFD)-fed rats, but scarcely in chow-fed rats. IG DGAT-1i also blunted the postprandial increase in serum TAG and increased β-hydroxybutyrate levels only in HFD-fed rats, in which it lowered the respiratory quotient and increased intestinal, but not hepatic, protein levels of Complex III of the mitochondrial respiratory chain and of mitochondrial hydroxymethylglutaryl-CoA synthase. Finally, the DGAT-1i enhanced FAO in CaCo2 (EC50 = 0.3494) and HuTu80 (EC50 = 0.00762) cells. Thus, pharmacological DGAT-1 inhibition leads to an increase in intestinal FAO and ketogenesis when dietary fat is available. This may contribute to the observed eating-inhibitory effect.
Collapse
Affiliation(s)
- Gudrun Schober
- Physiology and Behavior Laboratory, Institute of Food, Nutrition, and Health, Swiss Federal Institute of Technology, Zurich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Wang X, Xue J, Yang J, Xie M. Timed high-fat diet in the evening affects the hepatic circadian clock and PPARα-mediated lipogenic gene expressions in mice. GENES AND NUTRITION 2013; 8:457-63. [PMID: 23417480 DOI: 10.1007/s12263-013-0333-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 02/05/2013] [Indexed: 11/28/2022]
Abstract
A long-term high-fat diet may result in a fatty liver. However, whether or not high-fat diets affect the hepatic circadian clock is controversial. The objective of this study is to investigate the effects of timed high-fat diet on the hepatic circadian clock and clock-controlled peroxisome proliferator-activated receptor (PPAR) α-mediated lipogenic gene expressions. Mice were orally administered high-fat milk in the evening for 4 weeks. The results showed that some hepatic clock genes, such as Clock, brain-muscle-Arnt-like 1 (Bmal1), Period 2 (Per2), and Cryptochrome 2 (Cry2) exhibited obvious changes in rhythms and/or amplitudes. Alterations in the expression of clock genes, in turn, further altered the circadian rhythm of PPARα expression. Among the PPARα target genes, cholesterol 7α-hydroxylase (CYP7A1), 3-hydroxy-3-methylglutaryl-coenzyme A reductase, low-density lipoprotein receptor, lipoprotein lipase, and diacylglycerol acyltransferase (DGAT) showed marked changes in rhythms and/or amplitudes. In particular, significant changes in the expressions of DGAT and CYP7A1 were observed. The effects of a high-fat diet on the expression of lipogenic genes in the liver were accompanied by increased hepatic cholesterol and triglyceride levels. These results suggest that timed high-fat diets at night could change the hepatic circadian expressions of clock genes Clock, Bmal1, Per2, and Cry2 and subsequently alter the circadian expression of PPARα-mediated lipogenic genes, resulting in hepatic lipid accumulation.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu Province, China
| | | | | | | |
Collapse
|
32
|
Cao H, Chapital DC, Howard OD, Deterding LJ, Mason CB, Shockey JM, Klasson KT. Expression and purification of recombinant tung tree diacylglycerol acyltransferase 2. Appl Microbiol Biotechnol 2012; 96:711-27. [PMID: 22270236 PMCID: PMC11338361 DOI: 10.1007/s00253-012-3869-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 12/19/2011] [Accepted: 12/23/2011] [Indexed: 12/11/2022]
Abstract
Diacylglycerol acyltransferases (DGATs) esterify sn-1,2-diacylglycerol with a long-chain fatty acyl-CoA, the last and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. At least 74 DGAT2 sequences from 61 organisms have been identified, but the expression of any DGAT2 as a partial or full-length protein in Escherichia coli had not been reported. The main objective of this study was to express and purify recombinant DGAT2 (rDGAT2) from E. coli for antigen production with a minor objective to compare rDGAT2 expression in yeast. A plasmid was engineered to express tung tree DGAT2 fused to maltose binding protein and poly-histidine (His) affinity tags. Immunoblotting showed that rDGAT2 was detected in the soluble, insoluble, and membrane fractions. The rDGAT2 in the soluble fraction was partially purified by amylose resin, nickel-nitrilotriacetic agarose (Ni-NTA) beads, and tandem affinity chromatography. Multiple proteins co-purified with rDGAT2. Size exclusion chromatography estimated the size of the rDGAT2-enriched fraction to be approximately eight times the monomer size. Affinity-purified rDGAT2 fractions had a yellow tint and contained fatty acids. The rDGAT2 in the insoluble fraction was partially solubilized by seven detergents with SDS being the most effective. Recombinant DGAT2 was purified to near homogeneity by SDS solubilization and Ni-NTA affinity chromatography. Mass spectrometry identified rDGAT2 as a component in the bands corresponding to the monomer and dimer forms as observed by SDS-PAGE. Protein bands with monomer and dimer sizes were also observed in the microsomal membranes of Saccharomyces cerevisiae expressing hemagglutinin-tagged DGAT2. Nonradioactive assay showed TAG synthesis activity of DGAT2 from yeast but not E. coli. The results suggest that rDGAT2 is present as monomer and dimer forms on SDS-PAGE, associated with other proteins, lipids, and membranes, and that post-translational modification of rDGAT2 may be required for its enzymatic activity and/or the E. coli protein is misfolded.
Collapse
Affiliation(s)
- Heping Cao
- Commodity Utilization Research Unit, Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Kaplan M, Aviram M, Hayek T. Oxidative stress and macrophage foam cell formation during diabetes mellitus‐induced atherogenesis: Role of insulin therapy. Pharmacol Ther 2012; 136:175-85. [DOI: 10.1016/j.pharmthera.2012.08.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 07/10/2012] [Indexed: 01/04/2023]
|
34
|
Liu Q, Siloto RMP, Lehner R, Stone SJ, Weselake RJ. Acyl-CoA:diacylglycerol acyltransferase: molecular biology, biochemistry and biotechnology. Prog Lipid Res 2012; 51:350-77. [PMID: 22705711 DOI: 10.1016/j.plipres.2012.06.001] [Citation(s) in RCA: 236] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Triacylglycerol (TG) is a storage lipid which serves as an energy reservoir and a source of signalling molecules and substrates for membrane biogenesis. TG is essential for many physiological processes and its metabolism is widely conserved in nature. Acyl-CoA:diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the final step in the sn-glycerol-3-phosphate pathway leading to TG. DGAT activity resides mainly in two distinct membrane bound polypeptides, known as DGAT1 and DGAT2 which have been identified in numerous organisms. In addition, a few other enzymes also hold DGAT activity, including the DGAT-related acyl-CoA:monoacylglycerol acyltransferases (MGAT). Progress on understanding structure/function in DGATs has been limited by the lack of detailed three-dimensional structural information due to the hydrophobic properties of theses enzymes and difficulties associated with purification. This review examines several aspects of DGAT and MGAT genes and enzymes, including current knowledge on their gene structure, expression pattern, biochemical properties, membrane topology, functional motifs and subcellular localization. Recent progress in probing structural and functional aspects of DGAT1 and DGAT2, using a combination of molecular and biochemical techniques, is emphasized. Biotechnological applications involving DGAT enzymes ranging from obesity therapeutics to oilseed engineering are also discussed.
Collapse
Affiliation(s)
- Qin Liu
- Agricultural Lipid Biotechnology Program, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6H 2P5.
| | | | | | | | | |
Collapse
|
35
|
McFie PJ, Banman SL, Kary S, Stone SJ. Murine diacylglycerol acyltransferase-2 (DGAT2) can catalyze triacylglycerol synthesis and promote lipid droplet formation independent of its localization to the endoplasmic reticulum. J Biol Chem 2011; 286:28235-46. [PMID: 21680734 DOI: 10.1074/jbc.m111.256008] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Triacylglycerol (TG) is the major form of stored energy in eukaryotic organisms and is synthesized by two distinct acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes, DGAT1 and DGAT2. Both DGAT enzymes reside in the endoplasmic reticulum (ER), but DGAT2 also co-localizes with mitochondria and lipid droplets. In this report, we demonstrate that murine DGAT2 is part of a multimeric complex consisting of several DGAT2 subunits. We also identified the region of DGAT2 responsible for its localization to the ER. A DGAT2 mutant lacking both its transmembrane domains, although still associated with membranes, was absent from the ER and instead localized to mitochondria. Unexpectedly, this mutant was still active and capable of interacting with lipid droplets to promote TG storage. Additional experiments indicated that the ER targeting signal was present in the first transmembrane domain (TMD1) of DGAT2. When fused to a fluorescent reporter, TMD1, but not TMD2, was sufficient to target mCherry to the ER. Finally, the interaction of DGAT2 with lipid droplets was dependent on the C terminus of DGAT2. DGAT2 mutants, in which regions of the C terminus were either truncated or specific regions were deleted, failed to co-localize with lipid droplets when cells were oleate loaded to stimulate TG synthesis. Our findings demonstrate that DGAT2 is capable of catalyzing TG synthesis and promote its storage in cytosolic lipid droplets independent of its localization in the ER.
Collapse
Affiliation(s)
- Pamela J McFie
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | | | | |
Collapse
|
36
|
Fang X, Zhang J, Xu H, Zhang C, Du Y, Shi X, Chen D, Sun J, Jin Q, Lan X, Chen H. Polymorphisms of diacylglycerol acyltransferase 2 gene and their relationship with growth traits in goats. Mol Biol Rep 2011; 39:1801-7. [DOI: 10.1007/s11033-011-0921-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Accepted: 05/21/2011] [Indexed: 01/04/2023]
|
37
|
Meilin E, Aviram M, Hayek T. Insulin increases macrophage triglyceride accumulation under diabetic conditions through the down regulation of hormone sensitive lipase and adipose triglyceride lipase. Biofactors 2011; 37:95-103. [PMID: 21344529 DOI: 10.1002/biof.144] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 12/19/2010] [Indexed: 12/17/2022]
Abstract
Diabetes mellitus (DM) is a major risk factor for the development of atherosclerosis, and high-serum levels of insulin are strongly associated with type 2 DM. Atherosclerosis is characterized by lipid-laden macrophage foam cell formations, which contain substantial amount of cholesterol and triglycerides (TG). This study analyzed for the first time, the effects of insulin on TG metabolism in macrophages under normal and diabetic conditions. Mouse peritoneal macrophages from C57BL6 mice were cultured under normal (5 mM) or high (diabetic condition, 25 mM) glucose concentration, with or without insulin, followed by the assessment of TGs metabolism in these cells. Under diabetic condition, insulin increased TG accumulation in macrophages by 100%, decreased cellular TG degradation by 21%, and increased C-reactive protein levels in macrophages by 83%. Insulin decreased hormone-sensitive lipase mRNA and protein expression by 28 and 60%, respectively, and adipose TG lipase (ATGL) protein expression by 36%, with no significant reduction in ATGL mRNA levels. The inhibition of insulin-mediated phosphorylation, and the addition of cyclic adenosine 3'5'-monoposphate, abolished the insulin-mediated inhibition of TGs degradation in cells. Insulin increases macrophage TGs accumulation only under diabetic conditions, suggesting that impaired glycemic control in diabetic patients treated with insulin may contribute to foam cell formations and enhanced inflammation in macrophages.
Collapse
Affiliation(s)
- Edna Meilin
- The Lipid Research Laboratory, Technion, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Science, Rambam Medical Center, Haifa, Israel
| | | | | |
Collapse
|
38
|
Langhans W, Leitner C, Arnold M. Dietary fat sensing via fatty acid oxidation in enterocytes: possible role in the control of eating. Am J Physiol Regul Integr Comp Physiol 2011; 300:R554-65. [DOI: 10.1152/ajpregu.00610.2010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Various mechanisms detect the presence of dietary triacylglycerols (TAG) in the digestive tract and link TAG ingestion to the regulation of energy homeostasis. We here propose a novel sensing mechanism with the potential to encode dietary TAG-derived energy by translating enterocyte fatty acid oxidation (FAO) into vagal afferent signals controlling eating. Peripheral FAO has long been implicated in the control of eating ( 141 ). The prevailing view was that mercaptoacetate (MA) and other FAO inhibitors stimulate eating by modulating vagal afferent signaling from the liver. This concept has been challenged because hepatic parenchymal vagal afferent innervation is scarce and because experimentally induced changes in hepatic FAO often fail to affect eating. Nevertheless, intraperitoneally administered MA acts in the abdomen to stimulate eating because this effect was blocked by subdiaphragmatic vagal deafferentation ( 21 ), a surgical technique that eliminates all vagal afferents from the upper gut. These and other data support a role of the small intestine rather than the liver as a FAO sensor that can influence eating. After intrajejunal infusions, MA also stimulated eating in rats through vagal afferent signaling, and after infusion into the superior mesenteric artery, MA increased the activity of celiac vagal afferent fibers originating in the proximal small intestine. Also, pharmacological interference with TAG synthesis targeting the small intestine induced a metabolic profile indicative of increased FAO and inhibited eating in rats on a high-fat diet but not on chow. Finally, cell culture studies indicate that enterocytes oxidize fatty acids, which can be modified pharmacologically. Thus enterocytes may sense dietary TAG-derived fatty acids via FAO and influence eating through changes in intestinal vagal afferent activity. Further studies are necessary to identify the link between enterocyte FAO and vagal afferents and to examine the specificity and potential physiological relevance of such a mechanism.
Collapse
Affiliation(s)
- Wolfgang Langhans
- Physiology and Behavior Laboratory, Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology, Zurich, Schwerzenbach, Switzerland
| | - Claudia Leitner
- Physiology and Behavior Laboratory, Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology, Zurich, Schwerzenbach, Switzerland
| | - Myrtha Arnold
- Physiology and Behavior Laboratory, Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology, Zurich, Schwerzenbach, Switzerland
| |
Collapse
|
39
|
Rani SH, Krishna THA, Saha S, Negi AS, Rajasekharan R. Defective in cuticular ridges (DCR) of Arabidopsis thaliana, a gene associated with surface cutin formation, encodes a soluble diacylglycerol acyltransferase. J Biol Chem 2010; 285:38337-47. [PMID: 20921218 PMCID: PMC2992267 DOI: 10.1074/jbc.m110.133116] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 10/01/2010] [Indexed: 11/06/2022] Open
Abstract
A key step in the triacylglycerol (TAG) biosynthetic pathway is the final acylation of diacylglycerol (DAG) by DAG acyltransferase. In silico analysis has revealed that the DCR (defective in cuticular ridges) (At5g23940) gene has a typical HX(4)D acyltransferase motif at the N-terminal end and a lipid binding motif VX(2)GF at the middle of the sequence. To understand the biochemical function, the gene was overexpressed in Escherichia coli, and the purified recombinant protein was found to acylate DAG specifically in an acyl-CoA-dependent manner. Overexpression of At5g23940 in a Saccharomyces cerevisiae quadruple mutant deficient in DAG acyltransferases resulted in TAG accumulation. At5g23940 rescued the growth of this quadruple mutant in the oleate-containing medium, whereas empty vector control did not. Lipid particles were localized in the cytosol of At5g23940-transformed quadruple mutant cells, as observed by oil red O staining. There was an incorporation of 16-hydroxyhexadecanoic acid into TAG in At5g23940-transformed cells of quadruple mutant. Here we report a soluble acyl-CoA-dependent DAG acyltransferase from Arabidopsis thaliana. Taken together, these data suggest that a broad specific DAG acyltransferase may be involved in the cutin as well as in the TAG biosynthesis by supplying hydroxy fatty acid.
Collapse
Affiliation(s)
- Sapa Hima Rani
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India and
| | - T. H. Anantha Krishna
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India and
| | - Saikat Saha
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India and
| | - Arvind Singh Negi
- the Central Institute of Medicinal and Aromatic Plants, Council of Scientific and Industrial Research, Lucknow 220015, India
| | - Ram Rajasekharan
- the Central Institute of Medicinal and Aromatic Plants, Council of Scientific and Industrial Research, Lucknow 220015, India
| |
Collapse
|
40
|
Zhang XD, Yan JW, Yan GR, Sun XY, Ji J, Li YM, Hu YH, Wang HY. Pharmacological inhibition of diacylglycerol acyltransferase 1 reduces body weight gain, hyperlipidemia, and hepatic steatosis in db/db mice. Acta Pharmacol Sin 2010; 31:1470-7. [PMID: 21052084 DOI: 10.1038/aps.2010.104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AIM To test whether pharmacological inhibition of Diacylglycerol acyltransferase 1 (DGAT1) by a small-molecule inhibitor H128 can improve metabolism disorders in leptin receptor-deficient db/db mice. METHODS To investigate the effect of H128 on intestinal fat absorption,db/db mice were acutely given a bolus of corn oil by gavage. The mice were further orally administered H128 (3 and 10 mg/kg) for 5 weeks. Blood glucose, lipids, insulin, ALT, and AST as well as hepatic triglycerides were measured. The insulin tolerance test was performed to evaluate insulin sensitivity. The expression of genes involved in fatty acid oxidation was detected by RT-PCR. RESULTS Oral administration of H128 (10 mg/kg) acutely inhibited intestinal fat absorption following a lipid challenge in db/db mice. Chronic treatment with H128 significantly inhibited body weight gain, decreased food intake, and induced a pronounced reduction of serum triglycerides. In addition, H128 treatment markedly ameliorated hepatic steatosis, characterized by decreased liver weight, lipid droplets, and triglyceride content as well as serum ALT and AST levels. Furthermore, H128 treatment increased the expression of the CPT1 and PPARα genes in liver, suggesting that H128 enhanced fatty acid oxidation in db/db mice. However, neither blood glucose nor insulin tolerance was affected by H128 treatment throughout the 5-week experimental period. CONCLUSION DGAT1 may be an effective therapeutic target for the treatment of obesity, hyperlipidemia and hepatic steatosis.
Collapse
|
41
|
Zhang J, Xue J, Wang H, Zhang Y, Xie M. Osthole improves alcohol-induced fatty liver in mice by reduction of hepatic oxidative stress. Phytother Res 2010; 25:638-43. [PMID: 20981870 DOI: 10.1002/ptr.3315] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 04/14/2010] [Accepted: 09/07/2010] [Indexed: 12/11/2022]
Abstract
The aim of our study was to examine the therapeutic effect of osthole, an active constituent isolated from the fruit of Cnidium monnieri (L.) Cusson, on alcohol-induced fatty liver in mice and investigate its potential mechanisms of treatment. A mouse alcoholic fatty liver model was established by feeding 52% alcohol for 4 weeks. These experimental mice were then treated with osthole 10, 20 and 40 mg/kg for 6 weeks. The levels of serum total cholesterol (TC), triglyceride (TG), low density lipoprotein-cholesterol (LDL-C) and hepatic tissue contents of TC, TG and malondialdehyde (MDA) in osthole-treated groups were significantly decreased, while the level of superoxide dismutase (SOD) was significantly increased compared with the model group. Moreover, the cytochrome P450 (CYP) 2E1 and diacylglycerol acyltransferase (DGAT) mRNA expressions in mouse liver were significantly decreased, and the carnitine palmitoyltransferase (CPT) 1A mRNA expression was increased by osthole treatment. Importantly, the histological evaluation of liver demonstrated that osthole dramatically decreased lipid accumulation. It was concluded that osthole was effective in treating mouse alcoholic fatty liver, and its main mechanisms might be related to reduction of hepatic oxidative stress, including the inhibition of reactive oxygen species (ROS) production, enhancement of antioxidative enzyme activity, and reduction of lipid accumulation and peroxidation.
Collapse
Affiliation(s)
- Jianjun Zhang
- Department of Pharmacology, Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | | | | | | | | |
Collapse
|
42
|
Fox BM, Iio K, Li K, Choi R, Inaba T, Jackson S, Sagawa S, Shan B, Tanaka M, Yoshida A, Kayser F. Discovery of pyrrolopyridazines as novel DGAT1 inhibitors. Bioorg Med Chem Lett 2010; 20:6030-3. [DOI: 10.1016/j.bmcl.2010.08.066] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/12/2010] [Accepted: 08/12/2010] [Indexed: 11/27/2022]
|
43
|
McFie PJ, Stone SL, Banman SL, Stone SJ. Topological orientation of acyl-CoA:diacylglycerol acyltransferase-1 (DGAT1) and identification of a putative active site histidine and the role of the n terminus in dimer/tetramer formation. J Biol Chem 2010; 285:37377-87. [PMID: 20876538 DOI: 10.1074/jbc.m110.163691] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acyl CoA:diacylglycerol acyltransferase (DGAT) is an integral membrane protein of the endoplasmic reticulum that catalyzes the synthesis of triacylglycerols. Two DGAT enzymes have been identified (DGAT1 and DGAT2) with unique roles in lipid metabolism. DGAT1 is a multifunctional acyltransferase capable of synthesizing diacylglycerol, retinyl, and wax esters in addition to triacylglycerol. Here, we report the membrane topology for murine DGAT1 using protease protections assays and indirect immunofluorescence in conjunction with selective permeabilization of cellular membranes. Topology models based on prediction algorithms suggested that DGAT1 had eight transmembrane domains. In contrast, our data indicate that DGAT1 has three transmembrane domains with the N terminus oriented toward the cytosol. The C-terminal region of DGAT1, which accounts for ∼50% of the protein, is present in the endoplasmic reticulum lumen and contains a highly conserved histidine residue (His-426) that may be part of the active site. Mutagenesis of His-426 to alanine impaired the ability of DGAT1 to synthesize triacylglycerols as well as retinyl and wax esters in an in vitro acyltransferase assay. Finally, we show that the N-terminal domain of DGAT1 is not required for the catalytic activity of DGAT1 but, instead, may be involved in regulating enzyme activity and dimer/tetramer formation.
Collapse
Affiliation(s)
- Pamela J McFie
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | | | | |
Collapse
|
44
|
Wang Z, Yao T, Song Z. Involvement and mechanism of DGAT2 upregulation in the pathogenesis of alcoholic fatty liver disease. J Lipid Res 2010; 51:3158-65. [PMID: 20739640 DOI: 10.1194/jlr.m007948] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mechanisms involved in the development of alcoholic liver disease (ALD) are not well established. We investigated the involvement of acyl-CoA: diacylglycerol acyltransferase 2 (DGAT2) upregulation in mediating hepatic fat accumulation induced by chronic alcohol consumption. Chronic alcohol feeding caused fatty liver and increased hepatic DGAT2 gene and protein expression, concomitant with a significant suppression of hepatic MAPK/ERK kinase/extracellular regulated kinase 1/2 (MEK/ERK1/2) activation. In vitro studies demonstrated that specific inhibitors of the MEK/ERK1/2 pathway increased DGAT2 gene expression and triglyceride (TG) contents in HepG2 cells, whereas epidermal growth factor, a strong ERK1/2 activator, had the opposite effect. Moreover, chronic alcohol feeding decreased hepatic S-adenosylmethionine (SAM): S-adenosylhomocysteine (SAH) ratio, an indicator of disrupted transmethylation reactions. Mechanistic investigations revealed that N-acetyl-S-farnesyl-L-cysteine, a potent inhibitor of isoprenylcysteine carboxyl methyltransferase, suppressed ERK1/2 activation, followed by an enhanced DGAT2 expression and an elevated TG content in HepG2 cells. Lastly, we demonstrated that the beneficial effects of betaine supplementation in ALD were associated with improved SAM/SAH ratio, alleviated ERK1/2 inhibition, and attenuated DGAT2 upregulation. In conclusion, our data suggest that upregulation of DGAT2 plays an important role in the pathogenesis of ALD, and that abnormal methionine metabolism contributes, at least partially, to DGAT2 upregulation via suppression of MEK/ERK1/2 activation.
Collapse
Affiliation(s)
- Zhigang Wang
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | |
Collapse
|
45
|
Sun F, Xie ML, Xue J, Wang HB. Osthol regulates hepatic PPAR alpha-mediated lipogenic gene expression in alcoholic fatty liver murine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010; 17:669-673. [PMID: 20042322 DOI: 10.1016/j.phymed.2009.10.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 07/21/2009] [Accepted: 10/19/2009] [Indexed: 05/28/2023]
Abstract
Our previous studies found that osthol, an active constituent isolated from Cnidium monnieri (L.) Cusson (Apiaceae), could ameliorate the accumulation of lipids and decrease the lipid levels in serum and hepatic tissue in alcohol-induced fatty liver mice and rats. The objective of this study was to investigate its possible mechanism of the lipid-lowering effect. A mouse model with alcoholic fatty liver was induced by orally feeding 52% erguotou wine by gavage when they were simultaneously treated with osthol 10, 20, 40 mg/kg for 4 weeks. The BRL cells (rat hepatocyte line) were cultured and treated with osthol at 25, 50, 100, 200 microg/ml for 24h. The mRNA expressions of peroxisome proliferator-activated receptor (PPAR) alpha, diacylglycerol acyltransferase (DGAT), 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase and cholesterol 7 alpha-hydroxylase (CYP7A) in mouse hepatic tissue or cultured hepatocytes were determined by reverse transcription polymerase chain reaction (RT-PCR). After treatment with osthol, the PPAR alpha mRNA expression in mouse liver and cultured hepatocytes was increased in dose dependent manner, while its related target genes for mRNA expression, e.g., DGAT and HMG-CoA reductase, were decreased, the CYP7A was inversely increased. And osthol-regulated mRNA expressions of DGAT, HMG-CoA reductase and CYP7A in the cultured hepatocytes were abrogated after pretreatment with specific inhibitor of PPAR alpha, MK886. It was concluded that osthol might regulate the gene expressions of DGAT, HMG-CoA reductase and CYP7A via increasing the PPAR alpha mRNA expression.
Collapse
Affiliation(s)
- Fan Sun
- Department of Pharmacology, Medical College of Soochow University, Suzhou 215123, Jiangsu Province, China
| | | | | | | |
Collapse
|
46
|
Rosenblat M, Volkova N, Aviram M. Pomegranate juice (PJ) consumption antioxidative properties on mouse macrophages, but not PJ beneficial effects on macrophage cholesterol and triglyceride metabolism, are mediated via PJ-induced stimulation of macrophage PON2. Atherosclerosis 2010; 212:86-92. [PMID: 20537330 DOI: 10.1016/j.atherosclerosis.2010.04.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 04/14/2010] [Accepted: 04/29/2010] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To examine whether the beneficial effects of PJ consumption by mice on their macrophages are mediated via PJ-induced increment in serum paraoxonase 1 (PON1) activity and/or in macrophage PON2 expression. METHODS AND RESULTS We performed studies in peritoneal macrophages (MPM) from C57BL/6 control mice, or from PON1KO mice, or from PON2KO mice that consumed PJ (200 microg of gallic acid equivalents/mouse/day, for 1 month period). PJ consumption by C57BL/6 mice resulted in a significant increment, by 36% in serum PON1 catalytic activities, and upregulated MPM PON2 expression. In MPM from C57BL/6 or from PON1KO mice that consumed PJ, the extent of cell-mediated LDL oxidation was decreased by 22%, and that of cellular superoxide release by 20-26%. In contrast, PJ consumption by PON2KO mice resulted in a minimal inhibitory effect on macrophage oxidative stress by only 4-9%. Unlike PJ antioxidative effects in MPM, PJ anti-atherogenic effects on MPM cholesterol and triglyceride metabolism were similar in all mice groups that consumed PJ. After PJ consumption, cellular cholesterol content was decreased by 14-19%, and this could be attributed to a significant inhibition in MPM cholesterol biosynthesis rate by 20-32%, and/or to stimulation of HDL-mediated cholesterol efflux from the cells by 22-37%. Similarly, MPM triglyceride content and triglyceride biosynthesis rate were both significantly decreased after PJ consumption, by 16-27% and by 22-28%, respectively. CONCLUSION PJ consumption antioxidative properties on mouse macrophages, but not PJ beneficial effects on macrophage cholesterol and triglyceride metabolism, are mediated via PJ-induced stimulation of macrophage PON2 expression. Serum PON1 stimulation by PJ consumption, however, was not involved in PJ-induced effects on macrophages.
Collapse
Affiliation(s)
- Mira Rosenblat
- The Lipid Research Laboratory, Technion Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Rambam Medical Center, Haifa 31096, Israel
| | | | | |
Collapse
|
47
|
Siloto RMP, Truksa M, He X, McKeon T, Weselake RJ. Simple Methods to Detect Triacylglycerol Biosynthesis in a Yeast-Based Recombinant System. Lipids 2009; 44:963-73. [DOI: 10.1007/s11745-009-3336-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 08/07/2009] [Indexed: 10/20/2022]
|
48
|
Meilin E, Aviram M, Hayek T. Paraoxonase 2 (PON2) decreases high glucose-induced macrophage triglycerides (TG) accumulation, via inhibition of NADPH-oxidase and DGAT1 activity: studies in PON2-deficient mice. Atherosclerosis 2009; 208:390-5. [PMID: 19748094 DOI: 10.1016/j.atherosclerosis.2009.07.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Revised: 06/29/2009] [Accepted: 07/30/2009] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The present study investigates the role of paraoxonase 2 (PON2) in the attenuation of macrophage triglycerides (TG) biosynthesis, and oxidative stress, under diabetic conditions. METHODS Peritoneal macrophages (MPM) from PON2-deficient and from C57BL/6 control mice were harvested and cultured under normal (5mM) or high glucose concentration (30mM), and evaluated for cellular TG metabolism as well as for their oxidative stress. RESULTS In PON2-deficient MPM vs. control MPM, under diabetic conditions (high glucose concentration), we observed substantial increment in TG accumulation (3 fold), TG biosynthesis (2.6 fold) and microsomal diacylglycerol acyltransferase1 (DGAT1) activity (+60%). Furthermore, in these cells we have demonstrated increased oxidative stress, as expressed by significant increment in cellular oxidative stress (+25%), macrophage-mediated LDL oxidation (+41%) and expression of the receptor for advanced glycation end products - RAGE (+18%). Apocynin, an NADPH-oxidase inhibitor, abolished the increment in MPM TG accumulation, MPM TG biosynthesis, and microsomal DGAT1 activity, as a result of PON2-deficiency, under diabetic conditions. CONCLUSION We conclude that PON2 has a significant protective role against macrophage triglyceride accumulation, macrophage TG biosynthesis, microsomal DGAT1 activity and macrophage oxidative stress, under high glucose concentrations. We suggest that this protective effect may be mediated by PON2 through the attenuation of NADPH-oxidase activity. The use of appropriate means to increase macrophage PON2 expression can lead to attenuation in macrophage TG accumulation and in cellular oxidative stress, under diabetic conditions, and thus may contribute to the decrement in macrophage atherogenicity and foam cell formation, attenuating the development of vascular complications in diabetes mellitus.
Collapse
Affiliation(s)
- Edna Meilin
- The Lipid Research Laboratory, Technion, The Rappaport Family Institute for Research in the Medical Science, Rambam Medical Center, Haifa, Israel
| | | | | |
Collapse
|
49
|
Villanueva CJ, Monetti M, Shih M, Zhou P, Watkins SM, Bhanot S, Farese RV. Specific role for acyl CoA:Diacylglycerol acyltransferase 1 (Dgat1) in hepatic steatosis due to exogenous fatty acids. Hepatology 2009; 50:434-42. [PMID: 19472314 PMCID: PMC3097135 DOI: 10.1002/hep.22980] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
UNLABELLED Nonalcoholic fatty liver disease, characterized by the accumulation of triacylglycerols (TGs) and other lipids in the liver, often accompanies obesity and is a risk factor for nonalcoholic steatohepatitis and fibrosis. To treat or prevent fatty liver, a thorough understanding of hepatic fatty acid and TG metabolism is crucial. To investigate the role of acyl CoA:diacylglycerol acyltransferase 1 (DGAT1), a key enzyme of TG synthesis, in fatty liver development, we studied mice with global and liver-specific knockout of Dgat1. DGAT1 was required for hepatic steatosis induced by a high-fat diet and prolonged fasting, which are both characterized by delivery of exogenous fatty acids to the liver. Studies in primary hepatocytes showed that DGAT1 deficiency protected against hepatic steatosis by reducing synthesis and increasing the oxidation of fatty acids. In contrast, lipodystrophy (aP2-SREBP-1c436) and liver X receptor activation (T0901317), which increase de novo fatty acid synthesis in liver, caused steatosis independently of DGAT1. Pharmacologic inhibition of Dgat1 with antisense oligonucleotides protected against fatty liver induced by a high-fat diet. CONCLUSION Our findings identify a specific role for hepatic DGAT1 in esterification of exogenous fatty acids and indicate that DGAT1 contributes to hepatic steatosis induced by this mechanism.
Collapse
Affiliation(s)
- Claudio J. Villanueva
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, California 94158, Biomedical Sciences Graduate Program, University of California, San Francisco, California 94158
| | - Mara Monetti
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, California 94158
| | - Michelle Shih
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, California 94158, Biomedical Sciences Graduate Program, University of California, San Francisco, California 94158
| | - Ping Zhou
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, California 94158
| | | | - Sanjay Bhanot
- Isis Pharmaceuticals, Inc., Carlsbad, California 92008
| | - Robert V. Farese
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, California 94158, Department of Medicine and of Biochemistry & Biophysics, University of California, San Francisco, California 94158, Diabetes Center, University of California, San Francisco, California 94158, Biomedical Sciences Graduate Program, University of California, San Francisco, California 94158
| |
Collapse
|
50
|
Venkatachalapathy RT, Sharma A, Sukla S, Bhattacharya TK. Cloning and characterization of DGAT1 gene of Riverine buffalo. ACTA ACUST UNITED AC 2009; 19:177-84. [DOI: 10.1080/10425170701461748] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|