1
|
Becerra Calderon A, Shroff UN, Deepak S, Izuhara A, Trogen G, McDonough AA, Gurley SB, Nelson JW, Peti‐Peterdi J, Gyarmati G. Angiotensin II Directly Increases Endothelial Calcium and Nitric Oxide in Kidney and Brain Microvessels In Vivo With Reduced Efficacy in Hypertension. J Am Heart Assoc 2024; 13:e033998. [PMID: 38726925 PMCID: PMC11179802 DOI: 10.1161/jaha.123.033998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND The vasoconstrictor effects of angiotensin II via type 1 angiotensin II receptors in vascular smooth muscle cells are well established, but the direct effects of angiotensin II on vascular endothelial cells (VECs) in vivo and the mechanisms how VECs may mitigate angiotensin II-mediated vasoconstriction are not fully understood. The present study aimed to explore the molecular mechanisms and pathophysiological relevance of the direct actions of angiotensin II on VECs in kidney and brain microvessels in vivo. METHODS AND RESULTS Changes in VEC intracellular calcium ([Ca2+]i) and nitric oxide (NO) production were visualized by intravital multiphoton microscopy of cadherin 5-Salsa6f mice or the endothelial uptake of NO-sensitive dye 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate, respectively. Kidney fibrosis by unilateral ureteral obstruction and Ready-to-use adeno-associated virus expressing Mouse Renin 1 gene (Ren1-AAV) hypertension were used as disease models. Acute systemic angiotensin II injections triggered >4-fold increases in VEC [Ca2+]i in brain and kidney resistance arterioles and capillaries that were blocked by pretreatment with the type 1 angiotensin II receptor inhibitor losartan, but not by the type 2 angiotensin II receptor inhibitor PD123319. VEC responded to acute angiotensin II by increased NO production as indicated by >1.5-fold increase in 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate fluorescence intensity. In mice with kidney fibrosis or hypertension, the angiotensin II-induced VEC [Ca2+]i and NO responses were significantly reduced, which was associated with more robust vasoconstrictions, VEC shedding, and microthrombi formation. CONCLUSIONS The present study directly visualized angiotensin II-induced increases in VEC [Ca2+]i and NO production that serve to counterbalance agonist-induced vasoconstriction and maintain residual organ blood flow. These direct and endothelium-specific angiotensin II effects were blunted in disease conditions and linked to endothelial dysfunction and the development of vascular pathologies.
Collapse
Affiliation(s)
- Alejandra Becerra Calderon
- Department of Physiology and NeuroscienceUniversity of Southern CaliforniaLos AngelesCA
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCA
| | - Urvi Nikhil Shroff
- Department of Physiology and NeuroscienceUniversity of Southern CaliforniaLos AngelesCA
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCA
| | - Sachin Deepak
- Department of Physiology and NeuroscienceUniversity of Southern CaliforniaLos AngelesCA
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCA
| | - Audrey Izuhara
- Department of Physiology and NeuroscienceUniversity of Southern CaliforniaLos AngelesCA
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCA
| | - Greta Trogen
- Department of Physiology and NeuroscienceUniversity of Southern CaliforniaLos AngelesCA
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCA
| | - Alicia A. McDonough
- Department of Physiology and NeuroscienceUniversity of Southern CaliforniaLos AngelesCA
| | - Susan B. Gurley
- Department of MedicineUniversity of Southern CaliforniaLos AngelesCA
| | | | - János Peti‐Peterdi
- Department of Physiology and NeuroscienceUniversity of Southern CaliforniaLos AngelesCA
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCA
- Department of MedicineUniversity of Southern CaliforniaLos AngelesCA
| | - Georgina Gyarmati
- Department of Physiology and NeuroscienceUniversity of Southern CaliforniaLos AngelesCA
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCA
| |
Collapse
|
2
|
Higashihara E, Harada T, Fukuhara H. Juxtaglomerular apparatus-mediated homeostatic mechanisms: therapeutic implication for chronic kidney disease. Expert Opin Pharmacother 2024; 25:819-832. [PMID: 38773961 DOI: 10.1080/14656566.2024.2357188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/15/2024] [Indexed: 05/24/2024]
Abstract
INTRODUCTION Juxtaglomerular apparatus (JGA)-mediated homeostatic mechanism links to how sodium-glucose cotransporter 2 inhibitors (SGLT2is) slow progression of chronic kidney disease (CKD) and may link to how tolvaptan slows renal function decline in autosomal dominant polycystic kidney disease (ADPKD). AREA COVERED JGA-mediated homeostatic mechanism has been hypothesized based on investigations of tubuloglomerular feedback and renin-angiotensin system. We reviewed clinical trials of SGLT2is and tolvaptan to assess the relationship between this mechanism and these drugs. EXPERT OPINION When sodium load to macula densa (MD) increases, MD increases adenosine production, constricting afferent arteriole (Af-art) and protecting glomeruli. Concurrently, MD signaling suppresses renin secretion, increases urinary sodium excretion, and counterbalances reduced sodium filtration. However, when there is marked increase in sodium load per-nephron, as in advanced CKD, MD adenosine production increases, relaxing Af-art and maintaining sodium homeostasis at the expense of glomeruli. The beneficial effects of tolvaptan on renal function in ADPKD may also depend on the JGA-mediated homeostatic mechanisms since tolvaptan inhibits sodium reabsorption in the thick ascending limb.The JGA-mediated homeostatic mechanism regulates Af-arts, constricting to relaxing according to homeostatic needs. Understanding this mechanism may contribute to the development of pharmacotherapeutic compounds and better care for patients with CKD.
Collapse
Affiliation(s)
- Eiji Higashihara
- Department of Urology, Kyorin University School of Medicine, Mitaka, Japan
| | - Takeo Harada
- Department of Renal and Cardiovascular Research, Otsuka Pharmaceutical Co. Ltd, Tokushima, Japan
| | - Hiroshi Fukuhara
- Department of Urology, Kyorin University School of Medicine, Mitaka, Japan
| |
Collapse
|
3
|
Liu R, Juncos LA, Lu Y, Wei J, Zhang J, Wang L, Lai EY, Carlstrom M, Persson AEG. The Role of Macula Densa Nitric Oxide Synthase 1 Beta Splice Variant in Modulating Tubuloglomerular Feedback. Compr Physiol 2023; 13:4215-4229. [PMID: 36715280 PMCID: PMC9990375 DOI: 10.1002/cphy.c210043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Abnormalities in renal electrolyte and water excretion may result in inappropriate salt and water retention, which facilitates the development and maintenance of hypertension, as well as acid-base and electrolyte disorders. A key mechanism by which the kidney regulates renal hemodynamics and electrolyte excretion is via tubuloglomerular feedback (TGF), an intrarenal negative feedback between tubules and arterioles. TGF is initiated by an increase of NaCl delivery at the macula densa cells. The increased NaCl activates luminal Na-K-2Cl cotransporter (NKCC2) of the macula densa cells, which leads to activation of several intracellular processes followed by the production of paracrine signals that ultimately result in a constriction of the afferent arteriole and a tonic inhibition of single nephron glomerular filtration rate. Neuronal nitric oxide (NOS1) is highly expressed in the macula densa. NOS1β is the major splice variant and accounts for most of NO generation by the macula densa, which inhibits TGF response. Macula densa NOS1β-mediated modulation of TGF responses plays an essential role in control of sodium excretion, volume and electrolyte hemostasis, and blood pressure. In this article, we describe the mechanisms that regulate macula densa-derived NO and their effect on TGF response in physiologic and pathologic conditions. © 2023 American Physiological Society. Compr Physiol 13:4215-4229, 2023.
Collapse
Affiliation(s)
- Ruisheng Liu
- Department of Molecular Pharmacology & Physiology
- Hypertension and Kidney Research Center, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Luis A. Juncos
- Department of Internal Medicine, Central Arkansas Veterans Healthcare System, Little Rock, AR
| | - Yan Lu
- Division of Nephrology, University of Alabama at Birmingham, Birmingham AL
| | - Jin Wei
- Department of Molecular Pharmacology & Physiology
| | - Jie Zhang
- Department of Molecular Pharmacology & Physiology
| | - Lei Wang
- Department of Molecular Pharmacology & Physiology
| | - En Yin Lai
- Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Mattias Carlstrom
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - A. Erik G Persson
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Zhang J, Cai J, Cui Y, Jiang S, Wei J, Kim YC, Chan J, Thalakola A, Le T, Xu L, Wang L, Jiang K, Wang X, Wang H, Cheng F, Buggs J, Koepsell H, Vallon V, Liu R. Role of the macula densa sodium glucose cotransporter type 1-neuronal nitric oxide synthase-tubuloglomerular feedback pathway in diabetic hyperfiltration. Kidney Int 2022; 101:541-550. [PMID: 34843754 PMCID: PMC8863629 DOI: 10.1016/j.kint.2021.10.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/09/2021] [Accepted: 10/26/2021] [Indexed: 02/08/2023]
Abstract
An increase of glomerular filtration rate (GFR) is a common observation in early diabetes and is considered a key risk factor for subsequent kidney injury. However, the mechanisms underlying diabetic hyperfiltration have not been fully clarified. Here, we tested the hypothesis that macula densa neuronal nitric oxide synthase (NOS1) is upregulated via sodium glucose cotransporter type 1 (SGLT1) in diabetes, which then inhibits tubuloglomerular feedback (TGF) promoting glomerular hyperfiltration. Therefore, we examined changes in cortical NOS1 expression and phosphorylation, nitric oxide production in the macula densa, TGF response, and GFR during the early stage of insulin-deficient (Akita) diabetes in wild-type and macula densa-specific NOS1 knockout mice. A set of sophisticated techniques including microperfusion of juxtaglomerular apparatus in vitro, micropuncture of kidney tubules in vivo, and clearance kinetics of plasma fluorescent-sinistrin were employed. Complementary studies tested the role of SGLT1 in SGLT1 knockout mice and explored NOS1 expression and phosphorylation in kidney biopsies of cadaveric donors. Diabetic mice had upregulated macula densa NOS1, inhibited TGF and elevated GFR. Macula densa-selective NOS1 knockout attenuated the diabetes-induced TGF inhibition and GFR elevation. Additionally, deletion of SGLT1 prevented the upregulation of macula densa NOS1 and attenuated inhibition of TGF in diabetic mice. Furthermore, the expression and phosphorylation levels of NOS1 were increased in cadaveric kidneys of diabetics and positively correlated with blood glucose as well as estimated GFR in the donors. Thus, our findings demonstrate that the macula densa SGLT1-NOS1-TGF pathway plays a crucial role in the control of GFR in diabetes.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, Florida, USA.
| | - Jing Cai
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL, Department of Otolarynggology-Head and Neck Surgery, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu Cui
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL
| | - Shan Jiang
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL
| | - Jin Wei
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL
| | - Young Chul Kim
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Jenna Chan
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL
| | - Anish Thalakola
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL
| | - Thanh Le
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL
| | - Lan Xu
- College of Public Health, University of South Florida, Tampa, FL
| | - Lei Wang
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL
| | - Kun Jiang
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Ximing Wang
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL
| | - Haibo Wang
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL, Department of Otolarynggology-Head and Neck Surgery, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Feng Cheng
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL
| | - Jacentha Buggs
- Advanced Organ Disease & Transplantation Institute, Tampa General Hospital, Tampa, FL
| | - Hermann Koepsell
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Ruisheng Liu
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL
| |
Collapse
|
5
|
Zhang J, Wang X, Cui Y, Jiang S, Wei J, Chan J, Thalakola A, Le T, Xu L, Zhao L, Wang L, Jiang K, Cheng F, Patel T, Buggs J, Vallon V, Liu R. Knockout of Macula Densa Neuronal Nitric Oxide Synthase Increases Blood Pressure in db/db Mice. Hypertension 2021; 78:1760-1770. [PMID: 34657443 DOI: 10.1161/hypertensionaha.121.17643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jie Zhang
- Department of Molecular Pharmacology and Physiology (J.Z., X.W., S.J., J.W., J.C., A.T., T.L., L.W., R.L.), University of South Florida, Tampa
| | - Ximing Wang
- Department of Molecular Pharmacology and Physiology (J.Z., X.W., S.J., J.W., J.C., A.T., T.L., L.W., R.L.), University of South Florida, Tampa.,Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China (X.W.)
| | - Yu Cui
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China (Y.C., L.Z.)
| | - Shan Jiang
- Department of Molecular Pharmacology and Physiology (J.Z., X.W., S.J., J.W., J.C., A.T., T.L., L.W., R.L.), University of South Florida, Tampa
| | - Jin Wei
- Department of Molecular Pharmacology and Physiology (J.Z., X.W., S.J., J.W., J.C., A.T., T.L., L.W., R.L.), University of South Florida, Tampa
| | - Jenna Chan
- Department of Molecular Pharmacology and Physiology (J.Z., X.W., S.J., J.W., J.C., A.T., T.L., L.W., R.L.), University of South Florida, Tampa
| | - Anish Thalakola
- Department of Molecular Pharmacology and Physiology (J.Z., X.W., S.J., J.W., J.C., A.T., T.L., L.W., R.L.), University of South Florida, Tampa
| | - Thanh Le
- Department of Molecular Pharmacology and Physiology (J.Z., X.W., S.J., J.W., J.C., A.T., T.L., L.W., R.L.), University of South Florida, Tampa
| | - Lan Xu
- College of Medicine, College of Public Health (L.X.), University of South Florida, Tampa
| | - Liang Zhao
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China (Y.C., L.Z.)
| | - Lei Wang
- Department of Molecular Pharmacology and Physiology (J.Z., X.W., S.J., J.W., J.C., A.T., T.L., L.W., R.L.), University of South Florida, Tampa
| | - Kun Jiang
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center, Research Institute, Tampa, FL (K.J.)
| | - Feng Cheng
- Department of Pharmaceutical Science, College of Pharmacy (F.C.), University of South Florida, Tampa
| | - Trushar Patel
- Department of Urology (T.P.), University of South Florida, Tampa
| | - Jacentha Buggs
- Advanced Organ Disease and Transplantation Institute, Tampa General Hospital, FL (J.B.)
| | - Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA (V.V.)
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology (J.Z., X.W., S.J., J.W., J.C., A.T., T.L., L.W., R.L.), University of South Florida, Tampa
| |
Collapse
|
6
|
Wei J, Zhang J, Jiang S, Xu L, Qu L, Pang B, Jiang K, Wang L, Intapad S, Buggs J, Cheng F, Mohapatra S, Juncos LA, Osborn JL, Granger JP, Liu R. Macula Densa NOS1β Modulates Renal Hemodynamics and Blood Pressure during Pregnancy: Role in Gestational Hypertension. J Am Soc Nephrol 2021; 32:2485-2500. [PMID: 34127535 PMCID: PMC8722793 DOI: 10.1681/asn.2020070969] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 05/08/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Regulation of renal hemodynamics and BP via tubuloglomerular feedback (TGF) may be an important adaptive mechanism during pregnancy. Because the β-splice variant of nitric oxide synthase 1 (NOS1β) in the macula densa is a primary modulator of TGF, we evaluated its role in normal pregnancy and gestational hypertension in a mouse model. We hypothesized that pregnancy upregulates NOS1β in the macula densa, thus blunting TGF, allowing the GFR to increase and BP to decrease. METHODS We used sophisticated techniques, including microperfusion of juxtaglomerular apparatus in vitro, micropuncture of renal tubules in vivo, clearance kinetics of plasma FITC-sinistrin, and radiotelemetry BP monitoring, to determine the effects of normal pregnancy or reduced uterine perfusion pressure (RUPP) on macula densa NOS1β/NO levels, TGF responsiveness, GFR, and BP in wild-type and macula densa-specific NOS1 knockout (MD-NOS1KO) mice. RESULTS Macula densa NOS1β was upregulated during pregnancy, resulting in blunted TGF, increased GFR, and decreased BP. These pregnancy-induced changes in TGF and GFR were largely diminished, with a significant rise in BP, in MD-NOS1KO mice. In addition, RUPP resulted in a downregulation in macula densa NOS1β, enhanced TGF, decreased GFR, and hypertension. The superimposition of RUPP into MD-NOS1KO mice only caused a modest further alteration in TGF and its associated changes in GFR and BP. Finally, in African green monkeys, renal cortical NOS1β expression increased in normotensive pregnancies, but decreased in spontaneous gestational hypertensive pregnancies. CONCLUSIONS Macula densa NOS1β plays a critical role in the control of renal hemodynamics and BP during pregnancy.
Collapse
Affiliation(s)
- Jin Wei
- Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, Florida,Correspondence: Jin Wei, Department of Molecular Pharmacology & Physiology, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Boulevard MDC 8, Tampa, Florida 33612.
| | - Jie Zhang
- Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, Florida
| | - Shan Jiang
- Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, Florida
| | - Lan Xu
- College of Public Health, University of South Florida, Tampa, Florida
| | - Larry Qu
- Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, Florida
| | - Bo Pang
- Department of Internal Medicine, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| | - Kun Jiang
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Lei Wang
- Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, Florida
| | - Suttira Intapad
- Department of Pharmacology, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Jacentha Buggs
- Advanced Organ Disease & Transplantation Institute, Tampa, Florida
| | - Feng Cheng
- Department of Pharmaceutical Science, University of South Florida, Tampa, Florida
| | - Shyam Mohapatra
- Department of Pharmaceutical Science, University of South Florida, Tampa, Florida
| | - Luis A. Juncos
- Department of Internal Medicine, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| | | | - Joey P. Granger
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ruisheng Liu
- Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, Florida
| |
Collapse
|
7
|
Zhang J, Qu L, Wei J, Jiang S, Xu L, Wang L, Cheng F, Jiang K, Buggs J, Liu R. A new mechanism for the sex differences in angiotensin II-induced hypertension: the role of macula densa NOS1β-mediated tubuloglomerular feedback. Am J Physiol Renal Physiol 2020; 319:F908-F919. [PMID: 33044868 DOI: 10.1152/ajprenal.00312.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Females are protected against the development of angiotensin II (ANG II)-induced hypertension compared with males, but the mechanisms have not been completely elucidated. In the present study, we hypothesized that the effect of ANG II on the macula densa nitric oxide (NO) synthase 1β (NOS1β)-mediated tubuloglomerular feedback (TGF) mechanism is different between males and females, thereby contributing to the sexual dimorphism of ANG II-induced hypertension. We used microperfusion, micropuncture, clearance of FITC-inulin, and radio telemetry to examine the sex differences in the changes of macula densa NOS1β expression and activity, TGF response, natriuresis, and blood pressure (BP) after a 2-wk ANG II infusion in wild-type and macula densa-specific NOS1 knockout mice. In wild-type mice, ANG II induced higher expression of macula densa NOS1β, greater NO generation by the macula densa, and a lower TGF response in vitro and in vivo in females than in males; the increases of glomerular filtration rate, urine flow rate, and Na+ excretion in response to an acute volume expansion were significantly greater and the BP responses to ANG II were significantly less in females than in males. In contrast, these sex differences in the effects of ANG II on TGF, natriuretic response, and BP were largely diminished in knockout mice. In addition, tissue culture of human kidney biopsies (renal cortex) with ANG II resulted in a greater increase in NOS1β expression in females than in males. In conclusion, macula densa NOS1β-mediated TGF is a novel and important mechanism for the sex differences in ANG II-induced hypertension.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Larry Qu
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Jin Wei
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Shan Jiang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Lan Xu
- College of Public Health, University of South Florida, Tampa, Florida
| | - Lei Wang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Feng Cheng
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, Florida
| | - Kun Jiang
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jacentha Buggs
- Advanced Organ Disease and Transplantation Institute, Tampa General Hospital, Tampa, Florida
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
8
|
Zhang J, Zhu J, Wei J, Jiang S, Xu L, Qu L, Yang K, Wang L, Buggs J, Cheng F, Tan X, Liu R. New Mechanism for the Sex Differences in Salt-Sensitive Hypertension: The Role of Macula Densa NOS1β-Mediated Tubuloglomerular Feedback. Hypertension 2020; 75:449-457. [PMID: 31865794 PMCID: PMC7015450 DOI: 10.1161/hypertensionaha.119.13822] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/16/2019] [Indexed: 02/05/2023]
Abstract
Females are relatively resistant to salt-sensitive hypertension than males, but the mechanisms are not completely elucidated. We recently demonstrated a decisive role of macula densa neuronal NOS1β (nitric oxide synthase β)-mediated tubuloglomerular feedback (TGF) in the long-term control of glomerular filtration rate, sodium excretion, and blood pressure. In the present study, we hypothesized that the macula densa NOS1β-mediated TGF mechanism is different between male and female, thereby contributing to the sexual dimorphism of salt-sensitive hypertension. We used microperfusion, micropuncture, clearance of fluorescein isothiocyanate-inulin, and radio telemetry to examine the sex differences in the changes of macula densa NOS1β expression and activity, TGF response, natriuresis, and blood pressure after salt loading in wild-type and macula densa-specific NOS1 knockout mice. In wild-type mice, a high-salt diet induced greater increases in macula densa NOS1β expression and phosphorylation at Ser 1417, greater nitric oxide generation by the macula densa, and more inhibition in TGF response in vitro and in vivo in females than in males. Additionally, the increases of glomerular filtration rate, urine flow rate, and sodium excretion in response to an acute volume expansion were significantly greater in females than in males. The blood pressure responses to angiotensin II plus a high-salt diet were significantly less in females than in males. In contrast, these sex differences in TGF, natriuretic response, and blood pressure were largely diminished in knockout mice. In conclusion, macula densa NOS1β-mediated TGF is a novel and important mechanism for the sex differences in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Jinxiu Zhu
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jin Wei
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Shan Jiang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Lan Xu
- College of Public Health, University of South Florida, Tampa, FL
| | - Larry Qu
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Kun Yang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Lei Wang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Jacentha Buggs
- Advanced Organ Disease & Transplantation Institute, Tampa General Hospital, Tampa, FL
| | - Feng Cheng
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL
| | - Xuerui Tan
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Ruisheng Liu
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| |
Collapse
|
9
|
Wei J, Zhang J, Jiang S, Wang L, Persson AEG, Liu R. High-Protein Diet-Induced Glomerular Hyperfiltration Is Dependent on Neuronal Nitric Oxide Synthase β in the Macula Densa via Tubuloglomerular Feedback Response. Hypertension 2019; 74:864-871. [PMID: 31422689 DOI: 10.1161/hypertensionaha.119.13077] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
It is well known that high protein intake increases glomerular filtration rate. Evidence from several studies indicated that NO and tubuloglomerular feedback (TGF) mediate the effect. However, a recent study with a neuronal NO synthase-α knockout model refuted this mechanism and concluded that neither neuronal NO synthase nor TGF response is involved in the protein-induced hyperfiltration. To examine the discrepancy, this study tested a hypothesis that neuronal NO synthase-β in the macula densa mediates the high-protein diet-induced glomerular hyperfiltration via TGF mechanism. We examined the effects of high protein intake on NO generation at the macula densa, TGF response, and glomerular filtration rate in wild-type and macula densa-specific neuronal NO synthase KO mice. In wild-type mice, high-protein diet increased kidney weight, glomerular filtration rate, and renal blood flow, while reduced renal vascular resistance. TGF response in vivo and in vitro was blunted, and NO generation in the macula densa was increased following high-protein diet, associated with upregulations of neuronal NO synthase-β expression and phosphorylation at Ser1417. In contrast, these high-protein diet-induced changes in NO generation at the macula densa, TGF response, renal blood flow, and glomerular filtration rate in wild-type mice were largely attenuated in macula densa-specific neuronal NO synthase KO mice. In conclusion, we demonstrated that high-protein diet-induced glomerular hyperfiltration is dependent on neuronal NO synthase β in the macula densa via TGF response.
Collapse
Affiliation(s)
- Jin Wei
- From the Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa (J.W., J.Z., S.J., L.W., R.L.)
| | - Jie Zhang
- From the Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa (J.W., J.Z., S.J., L.W., R.L.)
| | - Shan Jiang
- From the Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa (J.W., J.Z., S.J., L.W., R.L.)
| | - Lei Wang
- From the Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa (J.W., J.Z., S.J., L.W., R.L.)
| | - A Erik G Persson
- Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Sweden (A.E.G.P.)
| | - Ruisheng Liu
- From the Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa (J.W., J.Z., S.J., L.W., R.L.)
| |
Collapse
|
10
|
Kidokoro K, Cherney DZ, Bozovic A, Nagasu H, Satoh M, Kanda E, Sasaki T, Kashihara N. Evaluation of Glomerular Hemodynamic Function by Empagliflozin in Diabetic Mice Using In Vivo Imaging. Circulation 2019; 140:303-315. [DOI: 10.1161/circulationaha.118.037418] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kengo Kidokoro
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan (K.K., H.N., M.S., E.K., T.S., N.K.)
| | - David Z.I. Cherney
- Division of Nephrology, Department of Medicine (D.Z.I.C.), University Health Network, University of Toronto, Canada
| | - Andrea Bozovic
- Department of Laboratory Medicine and Pathology (A.B.), University Health Network, University of Toronto, Canada
| | - Hajime Nagasu
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan (K.K., H.N., M.S., E.K., T.S., N.K.)
| | - Minoru Satoh
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan (K.K., H.N., M.S., E.K., T.S., N.K.)
| | - Eiichiro Kanda
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan (K.K., H.N., M.S., E.K., T.S., N.K.)
| | - Tamaki Sasaki
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan (K.K., H.N., M.S., E.K., T.S., N.K.)
| | - Naoki Kashihara
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan (K.K., H.N., M.S., E.K., T.S., N.K.)
| |
Collapse
|
11
|
Rein JL, Coca SG. "I don't get no respect": the role of chloride in acute kidney injury. Am J Physiol Renal Physiol 2018; 316:F587-F605. [PMID: 30539650 DOI: 10.1152/ajprenal.00130.2018] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acute kidney injury (AKI) is a major public health problem that complicates 10-40% of hospital admissions. Importantly, AKI is independently associated with increased risk of progression to chronic kidney disease, end-stage renal disease, cardiovascular events, and increased risk of in-hospital and long-term mortality. The chloride content of intravenous fluid has garnered much attention over the last decade, as well as its association with excess use and adverse outcomes, including AKI. Numerous studies show that changes in serum chloride concentration, independent of serum sodium and bicarbonate, are associated with increased risk of AKI, morbidity, and mortality. This comprehensive review details the complex renal physiology regarding the role of chloride in regulating renal blood flow, glomerular filtration rate, tubuloglomerular feedback, and tubular injury, as well as the findings of clinical research related to the chloride content of intravenous fluids, changes in serum chloride concentration, and AKI. Chloride is underappreciated in both physiology and pathophysiology. Although the exact mechanism is debated, avoidance of excessive chloride administration is a reasonable treatment option for all patients and especially in those at risk for AKI. Therefore, high-risk patients and those with "incipient" AKI should receive balanced solutions rather than normal saline to minimize the risk of AKI.
Collapse
Affiliation(s)
- Joshua L Rein
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai , New York, New York
| | - Steven G Coca
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai , New York, New York
| |
Collapse
|
12
|
Schnermann J. Concurrent activation of multiple vasoactive signaling pathways in vasoconstriction caused by tubuloglomerular feedback: a quantitative assessment. Annu Rev Physiol 2015; 77:301-22. [PMID: 25668021 DOI: 10.1146/annurev-physiol-021014-071829] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tubuloglomerular feedback (TGF) describes the negative relationship between (a) NaCl concentration at the macula densa and (b) glomerular filtration rate or glomerular capillary pressure. TGF-induced vasoconstriction of the afferent arteriole results from the enhanced effect of several vasoconstrictors with an effect size sequence of adenosine = 20-HETE > angiotensin II > thromboxane = superoxide > renal nerves > ATP. TGF-mediated vasoconstriction is limited by the simultaneous release of several vasodilators with an effect size sequence of nitric oxide > carbon monoxide = kinins > adenosine. The sum of the constrictor effects exceeds that of the dilator effects by the magnitude of the TGF response. The validity of the additive model used in this analysis can be tested by determining the effect of combined inhibition of some or all agents contributing to TGF. Multiple independent contributors to TGF are consistent with the variability of TGF and of the factors contributing to TGF resetting.
Collapse
Affiliation(s)
- Jurgen Schnermann
- Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892;
| |
Collapse
|
13
|
Wang L, Shen C, Liu H, Wang S, Chen X, Roman RJ, Juncos LA, Lu Y, Wei J, Zhang J, Yip KP, Liu R. Shear stress blunts tubuloglomerular feedback partially mediated by primary cilia and nitric oxide at the macula densa. Am J Physiol Regul Integr Comp Physiol 2015; 309:R757-66. [PMID: 26269519 PMCID: PMC4666931 DOI: 10.1152/ajpregu.00173.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/05/2015] [Indexed: 02/04/2023]
Abstract
The present study tested whether primary cilia on macula densa serve as a flow sensor to enhance nitric oxide synthase 1 (NOS1) activity and inhibit tubuloglomerular feedback (TGF). Isolated perfused macula densa was loaded with calcein red and 4,5-diaminofluorescein diacetate to monitor cell volume and nitric oxide (NO) generation. An increase in tubular flow rate from 0 to 40 nl/min enhanced NO production by 40.0 ± 1.2%. The flow-induced NO generation was blocked by an inhibitor of NOS1 but not by inhibition of the Na/K/2Cl cotransporter or the removal of electrolytes from the perfusate. NO generation increased from 174.8 ± 21 to 276.1 ± 24 units/min in cultured MMDD1 cells when shear stress was increased from 0.5 to 5.0 dynes/cm(2). The shear stress-induced NO generation was abolished in MMDD1 cells in which the cilia were disrupted using a siRNA to ift88. Increasing the NaCl concentration of the tubular perfusate from 10 to 80 mM NaCl in the isolated perfused juxtaglomerular preparation reduced the diameter of the afferent arteriole by 3.8 ± 0.1 μm. This response was significantly blunted to 2.5 ± 0.2 μm when dextran was added to the perfusate to increase the viscosity and shear stress. Inhibition of NOS1 blocked the effect of dextran on TGF response. In vitro, the effects of raising perfusate viscosity with dextran on tubular hydraulic pressure were minimized by reducing the outflow resistance to avoid stretching of tubular cells. These results suggest that shear stress stimulates primary cilia on the macula densa to enhance NO generation and inhibit TGF responsiveness.
Collapse
Affiliation(s)
- Lei Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Chunyu Shen
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida; Department of Forensic Pathology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Haifeng Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Shaohui Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Xinshan Chen
- Department of Forensic Pathology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Richard J Roman
- Department of Physiology/Pharmacology, University of Mississippi Medical Center, Jackson Mississippi
| | - Luis A Juncos
- Department of Physiology/Pharmacology, University of Mississippi Medical Center, Jackson Mississippi
| | - Yan Lu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida; Department of Physiology/Pharmacology, University of Mississippi Medical Center, Jackson Mississippi
| | - Jin Wei
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Jie Zhang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Kay-Pong Yip
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida;
| |
Collapse
|
14
|
Burke M, Pabbidi MR, Farley J, Roman RJ. Molecular mechanisms of renal blood flow autoregulation. Curr Vasc Pharmacol 2015; 12:845-58. [PMID: 24066938 PMCID: PMC4416696 DOI: 10.2174/15701611113116660149] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 12/18/2011] [Accepted: 07/02/2013] [Indexed: 01/10/2023]
Abstract
Diabetes and hypertension are the leading causes of chronic kidney disease and their incidence is increasing at
an alarming rate. Both are associated with impairments in the autoregulation of renal blood flow (RBF) and greater transmission
of fluctuations in arterial pressure to the glomerular capillaries. The ability of the kidney to maintain relatively
constant blood flow, glomerular filtration rate (GFR) and glomerular capillary pressure is mediated by the myogenic response
of afferent arterioles working in concert with tubuloglomerular feedback that adjusts the tone of the afferent arteriole
in response to changes in the delivery of sodium chloride to the macula densa. Despite intensive investigation, the factors
initiating the myogenic response and the signaling pathways involved in the myogenic response and tubuloglomerular
feedback remain uncertain. This review focuses on current thought regarding the molecular mechanisms underlying myogenic
control of renal vascular tone, the interrelationships between the myogenic response and tubuloglomerular feedback,
the evidence that alterations in autoregulation of RBF contributes to hypertension and diabetes-induced nephropathy and
the identification of vascular therapeutic targets for improved renoprotection in hypertensive and diabetic patients.
Collapse
Affiliation(s)
| | | | | | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.
| |
Collapse
|
15
|
Abstract
Intrarenal autoregulatory mechanisms maintain renal blood flow (RBF) and glomerular filtration rate (GFR) independent of renal perfusion pressure (RPP) over a defined range (80-180 mmHg). Such autoregulation is mediated largely by the myogenic and the macula densa-tubuloglomerular feedback (MD-TGF) responses that regulate preglomerular vasomotor tone primarily of the afferent arteriole. Differences in response times allow separation of these mechanisms in the time and frequency domains. Mechanotransduction initiating the myogenic response requires a sensing mechanism activated by stretch of vascular smooth muscle cells (VSMCs) and coupled to intracellular signaling pathways eliciting plasma membrane depolarization and a rise in cytosolic free calcium concentration ([Ca(2+)]i). Proposed mechanosensors include epithelial sodium channels (ENaC), integrins, and/or transient receptor potential (TRP) channels. Increased [Ca(2+)]i occurs predominantly by Ca(2+) influx through L-type voltage-operated Ca(2+) channels (VOCC). Increased [Ca(2+)]i activates inositol trisphosphate receptors (IP3R) and ryanodine receptors (RyR) to mobilize Ca(2+) from sarcoplasmic reticular stores. Myogenic vasoconstriction is sustained by increased Ca(2+) sensitivity, mediated by protein kinase C and Rho/Rho-kinase that favors a positive balance between myosin light-chain kinase and phosphatase. Increased RPP activates MD-TGF by transducing a signal of epithelial MD salt reabsorption to adjust afferent arteriolar vasoconstriction. A combination of vascular and tubular mechanisms, novel to the kidney, provides for high autoregulatory efficiency that maintains RBF and GFR, stabilizes sodium excretion, and buffers transmission of RPP to sensitive glomerular capillaries, thereby protecting against hypertensive barotrauma. A unique aspect of the myogenic response in the renal vasculature is modulation of its strength and speed by the MD-TGF and by a connecting tubule glomerular feedback (CT-GF) mechanism. Reactive oxygen species and nitric oxide are modulators of myogenic and MD-TGF mechanisms. Attenuated renal autoregulation contributes to renal damage in many, but not all, models of renal, diabetic, and hypertensive diseases. This review provides a summary of our current knowledge regarding underlying mechanisms enabling renal autoregulation in health and disease and methods used for its study.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christopher S Wilcox
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William J Arendshorst
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
16
|
Song J, Lu Y, Lai EY, Wei J, Wang L, Chandrashekar K, Wang S, Shen C, Juncos LA, Liu R. Oxidative status in the macula densa modulates tubuloglomerular feedback responsiveness in angiotensin II-induced hypertension. Acta Physiol (Oxf) 2015; 213:249-58. [PMID: 25089004 DOI: 10.1111/apha.12358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 06/27/2014] [Accepted: 07/28/2014] [Indexed: 12/20/2022]
Abstract
AIM Tubuloglomerular feedback (TGF) is an important mechanism in control of signal nephron glomerular filtration rate. The oxidative stress in the macula densa, primarily determined by the interactions between nitric oxide (NO) and superoxide (O2-), is essential in maintaining the TGF responsiveness. However, few studies examining the interactions between and amount of NO and O2- generated by the macula densa during normal and hypertensive states. METHODS In this study, we used isolated perfused juxtaglomerular apparatus to directly measure the amount and also studied the interactions between NO and O2- in macula densa in both physiological and slow pressor Angiotensin II (Ang II)-induced hypertensive mice. RESULTS We found that slow pressor Ang II at a dose of 600 ng kg(-1) min(-1) for two weeks increased mean arterial pressure by 26.1 ± 5.7 mmHg. TGF response increased from 3.4 ± 0.2 μm in control to 5.2 ± 0.2 μm in hypertensive mice. We first measured O2- generation by the macula densa and found it was undetectable in control mice. However, O2- generation by the macula densa increased to 21.4 ± 2.5 unit min(-1) in Ang II-induced hypertensive mice. We then measured NO generation and found that NO generation by the macula densa was 138.5 ± 9.3 unit min(-1) in control mice. The NO was undetectable in the macula densa in hypertensive mice infused with Ang II. CONCLUSIONS Under physiological conditions, TGF response is mainly controlled by the NO generated in the macula densa; in Ang II induced hypertension, the TGF response is mainly controlled by the O2- generated by the macula densa.
Collapse
Affiliation(s)
- J. Song
- State Key Laboratory of Cardiovascular Disease; Fuwai Hospital; National Center for Cardiovascular Diseases; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
| | - Y. Lu
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
- Division of Nephrology; Department of Medicine; University of Mississippi Medical Center; Jackson MS USA
| | - E. Y. Lai
- Department of Physiology; Zhejiang University; Hanzhou China
| | - J. Wei
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
| | - L. Wang
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
| | - K. Chandrashekar
- Division of Nephrology; Department of Medicine; University of Mississippi Medical Center; Jackson MS USA
| | - S. Wang
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
| | - C. Shen
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
| | - L. A. Juncos
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
- Division of Nephrology; Department of Medicine; University of Mississippi Medical Center; Jackson MS USA
| | - R. Liu
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
- Division of Nephrology; Department of Medicine; University of Mississippi Medical Center; Jackson MS USA
| |
Collapse
|
17
|
Ren Y, D'Ambrosio MA, Garvin JL, Wang H, Carretero OA. Mechanism of inhibition of tubuloglomerular feedback by CO and cGMP. Hypertension 2013; 62:99-104. [PMID: 23648700 DOI: 10.1161/hypertensionaha.113.01164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tubuloglomerular feedback (TGF) is a mechanism that senses NaCl in the macula densa (MD) and causes constriction of the afferent arteriole. CO, either endogenous or exogenous, inhibits TGF at least in part via cGMP. We hypothesize that CO in the MD, acting via both cGMP-dependent and -independent mechanisms, attenuates TGF by acting downstream from depolarization and calcium entry into the MD cells. In vitro, microdissected rabbit afferent arterioles and their MD were simultaneously perfused and TGF was measured as the decrease in afferent arteriole diameter. MD depolarization was induced with ionophores, while adding the CO-releasing molecule-3 to the MD perfusate at nontoxic concentrations. CO-releasing molecule-3 blunted depolarization-induced TGF at 50 μmol/L, from 3.6±0.4 to 2.5±0.4 µm (P<0.01), and abolished it at 100 μmol/L, to 0.1±0.1 μm (P<0.001; n=6). When cGMP generation was blocked by guanylyl cyclase inhibitor LY83583 added to the MD, CO-releasing molecule-3 no longer affected depolarization-induced TGF at 50 μmol/L (2.9±0.4 versus 3.0±0.4 µm) but partially inhibited TGF at 100 μmol/L (to 1.3±0.2 μm; P<0.05; n=9). Experiments using eicosatetraynoic acid and indomethacin suggest arachidonic acid metabolites do not mediate the cGMP-independent effect of CO. We then added the calcium ionophore A23187 to the MD, which caused TGF (4.1±0.6 μmol/L); A23187-induced TGF was inhibited by CO-releasing molecule-3 at 50 μmol/L (1.9±0.6 μmol/L; P<0.01) and 100 μmol/L (0.2±0.5 μmol/L; P<0.001; n=6). We conclude that CO inhibits TGF acting downstream from depolarization and calcium entry, acting via cGMP at low concentrations, but additional mechanisms of action may be involved at higher concentrations.
Collapse
Affiliation(s)
- Yilin Ren
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | | | | | | |
Collapse
|
18
|
Schnermann J, Briggs JP. Tubular control of renin synthesis and secretion. Pflugers Arch 2012; 465:39-51. [PMID: 22665048 DOI: 10.1007/s00424-012-1115-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/04/2012] [Accepted: 05/07/2012] [Indexed: 01/11/2023]
Abstract
The intratubular composition of fluid at the tubulovascular contact site of the juxtaglomerular apparatus serves as regulatory input for secretion and synthesis of renin. Experimental evidence, mostly from in vitro perfused preparations, indicates an inverse relation between luminal NaCl concentration and renin secretion. The cellular transduction mechanism is initiated by concentration-dependent NaCl uptake through the Na-K-2Cl cotransporter (NKCC2) with activation of NKCC2 causing inhibition and deactivation of NKCC2 causing stimulation of renin release. Changes in NKCC2 activity are coupled to alterations in the generation of paracrine factors that interact with granular cells. Among these factors, generation of PGE2 in a COX-2-dependent fashion appears to play a dominant role in the stimulatory arm of tubular control of renin release. [NaCl] is a determinant of local PG release over an appropriate concentration range, and blockade of COX-2 activity interferes with the NaCl dependency of renin secretion. The complex array of local paracrine controls also includes nNOS-mediated synthesis of nitric oxide, with NO playing the role of a modifier of the intracellular signaling pathway. A role of adenosine may be particularly important when [NaCl] is increased, and at least some of the available evidence is consistent with an important suppressive effect of adenosine at higher salt concentrations.
Collapse
Affiliation(s)
- Jurgen Schnermann
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 10, Rm 4D50, NIDDK, NIH, 10 Center Drive MSC 1370, Bethesda, MD 20892, USA.
| | | |
Collapse
|
19
|
Different role of Schisandrin B on mercury-induced renal damage in vivo and in vitro. Toxicology 2011; 286:48-57. [DOI: 10.1016/j.tox.2011.05.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/18/2011] [Accepted: 05/09/2011] [Indexed: 11/23/2022]
|
20
|
Peti-Peterdi J, Harris RC. Macula densa sensing and signaling mechanisms of renin release. J Am Soc Nephrol 2010; 21:1093-6. [PMID: 20360309 DOI: 10.1681/asn.2009070759] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Macula densa cells in the distal nephron, according to the classic paradigm, are salt sensors that generate paracrine chemical signals in the juxtaglomerular apparatus to control vital kidney functions, including renal blood flow, glomerular filtration, and renin release. Renin is the rate-limiting step in the activation of the renin-angiotensin system, a key modulator of body fluid homeostasis. Here, we discuss recent advances in understanding macula densa sensing and suggest these cells, in addition to salt, also sense various chemical and metabolic signals in the tubular environment that directly trigger renin release.
Collapse
Affiliation(s)
- János Peti-Peterdi
- Departments of Physiology and Biophysics and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA.
| | | |
Collapse
|
21
|
Bell PD, Komlosi P, Zhang ZR. ATP as a mediator of macula densa cell signalling. Purinergic Signal 2009; 5:461-71. [PMID: 19330465 PMCID: PMC2776136 DOI: 10.1007/s11302-009-9148-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 10/09/2008] [Indexed: 10/21/2022] Open
Abstract
Within each nephro-vascular unit, the tubule returns to the vicinity of its own glomerulus. At this site, there are specialised tubular cells, the macula densa cells, which sense changes in tubular fluid composition and transmit information to the glomerular arterioles resulting in alterations in glomerular filtration rate and blood flow. Work over the last few years has characterised the mechanisms that lead to the detection of changes in luminal sodium chloride and osmolality by the macula densa cells. These cells are true "sensor cells" since intracellular ion concentrations and membrane potential reflect the level of luminal sodium chloride concentration. An unresolved question has been the nature of the signalling molecule(s) released by the macula densa cells. Currently, there is evidence that macula densa cells produce nitric oxide via neuronal nitric oxide synthase (nNOS) and prostaglandin E(2) (PGE(2)) through cyclooxygenase 2 (COX 2)-microsomal prostaglandin E synthase (mPGES). However, both of these signalling molecules play a role in modulating or regulating the macula-tubuloglomerular feedback system. Direct macula densa signalling appears to involve the release of ATP across the basolateral membrane through a maxi-anion channel in response to an increase in luminal sodium chloride concentration. ATP that is released by macula densa cells may directly activate P2 receptors on adjacent mesangial cells and afferent arteriolar smooth muscle cells, or the ATP may be converted to adenosine. However, the critical step in signalling would appear to be the regulated release of ATP across the basolateral membrane of macula densa cells.
Collapse
Affiliation(s)
- P Darwin Bell
- Department of Medicine, Division of Nephrology, Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA,
| | | | | |
Collapse
|
22
|
Peti-Peterdi J, Navar LG, Darwin Bell P, Casellas D, Carmines PK, Inscho EW, Oparil S. A true champion of Hungarian kidney research and nephrology education--tribute to László Rosivall. ACTA PHYSIOLOGICA HUNGARICA 2009; 96:375-382. [PMID: 19706379 DOI: 10.1556/aphysiol.96.2009.3.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This article pays tribute to the tremendous achievements of Dr. László Rosivall in renal (patho)physiology research and nephrology education in Hungary on the occasion of his 60th birthday. For the past several decades Dr. Rosivall has been a charismatic leader of academic institutions, national and international societies, foundations in physiology, nephrology and hypertension, but the most important of his many contributions, is his role as a scientist. He earned his MD with Summa cum Laude at Semmelweis University (1973) and was invited immediately after that to join the laboratory of Hársing. He studied the distribution of intra-renal blood flow employing then state-of-the-art methods as well as developed his own technique at Semmelweis University and at the University of Bergen with Knut Aukland. This led to his PhD thesis and degree in 1980. An important determinant of his early basic scientific training and development was his postdoctoral research fellowship and later many visiting professorships in the Nephrology Research and Training Center (NRTC) at the University of Alabama at Birmingham, Birmingham, AL, USA between 1981 and 1983. Actually, this research fellowship not only impacted his own future career, but it also cleared the path for many other young Hungarian scientists who later trained with Dr. Rosivall and then at UAB. The early 1980s were the years of significant scientific discoveries and the NRTC team at UAB made important contributions by their studies on renal and glomerular hemodynamics, the renin-angiotensin system (12, 19, 22) and by the development of classic experimental techniques like renal micropuncture, microperfusion, and the juxtamedullary nephron preparation (3) that are still being used worldwide. When Dr. Rosivall joined UAB in the 1980s, the team at the NRTC included Drs. Navar, Bell, Inscho, Carmines, Casellas, and Oparil, among many others, who share their fond memories of working with Dr. Rosivall in this article.
Collapse
Affiliation(s)
- János Peti-Peterdi
- Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Komlosi P, Bell PD, Zhang ZR. Tubuloglomerular feedback mechanisms in nephron segments beyond the macula densa. Curr Opin Nephrol Hypertens 2009; 18:57-62. [PMID: 19077690 DOI: 10.1097/mnh.0b013e32831daf54] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW To summarize recent evidence regarding the role of distal nephron segments other than the macula densa in sensing the tubular environment and transmitting this signal to the adjacent vasculature. RECENT FINDINGS In addition to the classical contact site between the macula densa plaque and the afferent arteriole, there is accumulating evidence suggesting a functional association between the distal nephron and the vasculature at three distinct additional sites: at the terminal cortical thick ascending limb, at the early distal tubule and also at the connecting tubule segment. The epithelial cells around the macula densa also sense and respond to changes in tubular flow and salt content and may transmit this signal to the adjacent afferent arteriole. SUMMARY There are multiple sites of anatomical and functional contact between the distal nephron and the vasculature supplying the glomerulus, and these may contribute to the regulation of glomerular filtration rate and renal hemodynamics.
Collapse
Affiliation(s)
- Peter Komlosi
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA.
| | | | | |
Collapse
|
24
|
Araujo M, Welch WJ. Cyclooxygenase 2 inhibition suppresses tubuloglomerular feedback: roles of thromboxane receptors and nitric oxide. Am J Physiol Renal Physiol 2009; 296:F790-4. [PMID: 19144694 DOI: 10.1152/ajprenal.90446.2008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Thromboxane (TxA(2)) and nitric oxide (NO) are potent vasoactive autocoids that modulate tubuloglomerular feedback (TGF). Each is produced in the macula densa (MD) by cyclooxygenase-2 (COX-2) and neuronal nitric oxide synthase (nNOS), respectively. Both enzymes are similarly regulated in the MD and their interaction may be an important factor in the regulation of TGF and glomerular filtration rate. We tested the hypothesis that TGF is modified by the balance between MD nNOS-dependent NO and MD COX-2-dependent TxA(2). We measured maximal TGF during perfusion of the loop of Henle (LH) by continuous recording of the proximal tubule stopped flow pressure response to LH perfusion of artificial tubular fluid (ATF) at 0 and 40 nl/min. The response to inhibitors of COX-1 (SC-560), COX-2 [parecoxib (Pxb)], and nNOS (l-NPA) added to the ATF solution was measured in separate nephrons. COX-2 inhibition with Pxb reduced TGF by 46% (ATF + vehicle vs. ATF + Pxb), whereas COX-1 inhibition with SC-560 reduced TGF by only 23%. Pretreatment with intravenous infusion of SQ-29,548, a selective thromboxone/PGH(2) receptor (TPR) antagonist, blocked all of the SC-560 effect on TGF, suggesting that this effect was due to activation of TPR. However, SQ-29,548 only partially diminished the effect of Pxb (-66%). Specific inhibition of nNOS with l-NPA increased TGF, as expected. However, the ability of Pxb to reduce TGF was significantly impaired with comicroperfusion of l-NPA. These data suggest that COX-2 modulates TGF by two proconstrictive actions: generation of TxA(2) acting on TPR and by simultaneous reduction of NO.
Collapse
Affiliation(s)
- Magali Araujo
- Dept. of Medicine, Georgetown Univ., 4000 Reservoir Rd., Bldg. D-395, Washington, DC 20057, USA
| | | |
Collapse
|
25
|
Kang JJ, Toma I, Sipos A, Peti-Peterdi J. From in vitro to in vivo: imaging from the single cell to the whole organism. ACTA ACUST UNITED AC 2008; Chapter 12:Unit 12.12. [PMID: 18770644 DOI: 10.1002/0471142956.cy1212s44] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This unit addresses the applications of fluorescence microscopy and quantitative imaging to study multiple physiological variables of living tissue. Protocols are presented for fluorescence-based investigations ranging from in vitro cell and tissue approaches to in vivo imaging of intact organs. These include the measurement of cytosolic parameters both in vitro and in vivo (such as calcium, pH, and nitric oxide), dynamic cellular processes (renin granule exocytosis), FRET-based real-time assays of enzymatic activity (renin), physiological processes (vascular contraction, membrane depolarization), and whole organ functional parameters (blood flow, glomerular filtration). Multi-photon microscopy is ideal for minimally invasive and undisruptive deep optical sectioning of the living tissue, which translates into ultra-sensitive real-time measurement of these parameters with high spatial and temporal resolution. With the combination of cell and tissue cultures, microperfusion techniques, and whole organ or animal models, fluorescence imaging provides unmatched versatility for biological and medical studies of the living organism.
Collapse
Affiliation(s)
- Jung Julie Kang
- University of Southern California, Los Angeles, California, USA
| | | | | | | |
Collapse
|
26
|
Navar LG, Arendshorst WJ, Pallone TL, Inscho EW, Imig JD, Bell PD. The Renal Microcirculation. Compr Physiol 2008. [DOI: 10.1002/cphy.cp020413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Toma I, Kang JJ, Sipos A, Vargas S, Bansal E, Hanner F, Meer E, Peti-Peterdi J. Succinate receptor GPR91 provides a direct link between high glucose levels and renin release in murine and rabbit kidney. J Clin Invest 2008; 118:2526-34. [PMID: 18535668 DOI: 10.1172/jci33293] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 04/23/2008] [Indexed: 11/17/2022] Open
Abstract
Diabetes mellitus is the most common and rapidly growing cause of end-stage renal disease in developed countries. A classic hallmark of early diabetes mellitus includes activation of the renin-angiotensin system (RAS), which may lead to hypertension and renal tissue injury, but the mechanism of RAS activation is elusive. Here we identified a paracrine signaling pathway in the kidney in which high levels of glucose directly triggered the release of the prohypertensive hormone renin. The signaling cascade involved the local accumulation of succinate and activation of the kidney-specific G protein-coupled metabolic receptor, GPR91, in the glomerular endothelium as observed in rat, mouse, and rabbit kidney sections. Elements of signal transduction included endothelial Ca2+, the production of NO and prostaglandin (PGE2), and their paracrine actions on adjacent renin-producing cells. This GPR91 signaling cascade may serve to modulate kidney function and help remove metabolic waste products through renal hyperfiltration, and it could also link metabolic diseases, such as diabetes, or metabolic syndrome with RAS overactivation, systemic hypertension, and organ injury.
Collapse
Affiliation(s)
- Ildikó Toma
- Department of Physiology and Biophysics, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Brands MW, Labazi H. Role of glomerular filtration rate in controlling blood pressure early in diabetes. Hypertension 2008; 52:188-94. [PMID: 18606911 DOI: 10.1161/hypertensionaha.107.090647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Michael W Brands
- Department of Physiology, CA-3098, Medical College of Georgia, Augusta, GA 30912-3000, USA.
| | | |
Collapse
|
29
|
Can rodent models of diabetic kidney disease clarify the significance of early hyperfiltration?: recognizing clinical and experimental uncertainties. Clin Sci (Lond) 2008; 114:109-18. [PMID: 18062776 DOI: 10.1042/cs20070088] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the past, hyperfiltration and increased glomerular capillary pressure have been identified as important determinants of the development of DN (diabetic nephropathy). Recently, some basic research and clinical reviews on DN have omitted identifying hyperfiltration as an important risk factor. At the same time, different rodent models of DN have been described without and with documented hyperfiltration. In the present review, the importance of hyperfiltration is reassessed, reviewing key clinical and research studies, including the first single nephron studies in a mouse model of DN. From clinical studies of Type 1 and Type 2 diabetes mellitus, it is clear that many patients do not have early hyperfiltration and, even when present, its contribution to subsequent DN remains uncertain. Key mechanisms underlying hyperfiltration in rodent models are reviewed. Findings on intrarenal NO metabolism and the control of single-nephron GFR (glomerular filtration rate) in rodent models of DN are also presented. Characterization of valid experimental models of DN should include a careful delineation of the absence or presence of early hyperfiltration, with special efforts made to establish the specific role hyperfiltration may play in the emergence of DN.
Collapse
|
30
|
Navar LG, Arendshorst WJ, Pallone TL, Inscho EW, Imig JD, Bell PD. The Renal Microcirculation. Microcirculation 2008. [DOI: 10.1016/b978-0-12-374530-9.00015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
31
|
Stegbauer J, Kuczka Y, Vonend O, Quack I, Sellin L, Patzak A, Steege A, Langnaese K, Rump LC. Endothelial nitric oxide synthase is predominantly involved in angiotensin II modulation of renal vascular resistance and norepinephrine release. Am J Physiol Regul Integr Comp Physiol 2007; 294:R421-8. [PMID: 18046021 DOI: 10.1152/ajpregu.00481.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) is mainly generated by endothelial NO synthase (eNOS) or neuronal NOS (nNOS). Recent studies indicate that angiotensin II generates NO release, which modulates renal vascular resistance and sympathetic neurotransmission. Experiments in wild-type [eNOS(+/+) and nNOS(+/+)], eNOS-deficient [eNOS(-/-)], and nNOS-deficient [nNOS(-/-)] mice were performed to determine which NOS isoform is involved. Isolated mice kidneys were perfused with Krebs-Henseleit solution. Endogenous norepinephrine release was measured by HPLC. Angiotensin II dose dependently increased renal vascular resistance in all mice species. EC(50) and maximal pressor responses to angiotensin II were greater in eNOS(-/-) than in nNOS(-/-) and smaller in wild-type mice. The nonselective NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME; 0.3 mM) enhanced angiotensin II-induced pressor responses in nNOS(-/-) and wild-type mice but not in eNOS(-/-) mice. In nNOS(+/+) mice, 7-nitroindazole monosodium salt (7-NINA; 0.3 mM), a selective nNOS inhibitor, enhanced angiotensin II-induced pressor responses slightly. Angiotensin II-enhanced renal nerve stimulation induced norepinephrine release in all species. L-NAME (0.3 mM) reduced angiotensin II-mediated facilitation of norepinephrine release in nNOS(-/-) and wild-type mice but not in eNOS(-/-) mice. 7-NINA failed to modulate norepinephrine release in nNOS(+/+) mice. (4-Chlorophrnylthio)guanosine-3', 5'-cyclic monophosphate (0.1 nM) increased norepinephrine release. mRNA expression of eNOS, nNOS, and inducible NOS did not differ between mice strains. In conclusion, angiotensin II-mediated effects on renal vascular resistance and sympathetic neurotransmission are modulated by NO in mice. These effects are mediated by eNOS and nNOS, but NO derived from eNOS dominates. Only NO derived from eNOS seems to modulate angiotensin II-mediated renal norepinephrine release.
Collapse
Affiliation(s)
- Johannes Stegbauer
- Klinik für Nephrologie der Universitätsklinik Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Castrop H. Mediators of tubuloglomerular feedback regulation of glomerular filtration: ATP and adenosine. Acta Physiol (Oxf) 2007; 189:3-14. [PMID: 17280552 DOI: 10.1111/j.1748-1716.2006.01610.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the juxtaglomerular apparatus of the kidney the loop of Henle gets into close contact to its parent glomerulus. This anatomical link between the tubular system and the vasculature of the afferent and efferent arteriole enables specialized tubular cells, the macula densa (MD) cells, to establish an intra-nephron feedback loop designed to control preglomerular resistance and thereby single nephron glomerular filtration rate. This review focuses on the signalling mechanisms which link salt-sensing MD cells and the regulation of preglomerular resistance, a feedback loop known as tubuloglomerular feedback (TGF). Two purinergic molecules, ATP and adenosine, have emerged over the years as most likely candidates to serve as mediators of TGF. Data will be reviewed supporting a role of either ATP or adenosine as mediators of TGF. In addition, a concept will be discussed that integrates both ATP and adenosine into one signalling cascade that includes (i) release of ATP from MD cells upon increases in tubular salt concentration, (ii) extracellular degradation of ATP to form adenosine, and (iii) adenosine-mediated vasoconstriction of the afferent arteriole.
Collapse
Affiliation(s)
- H Castrop
- Institute of Physiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
33
|
Ortiz PA, Garvin JL. Nitric oxide (NO) modulation of Cl-dependent transporters in the kidney. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 559:147-56. [PMID: 18727236 DOI: 10.1007/0-387-23752-6_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Pablo A Ortiz
- Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202, USA.
| | | |
Collapse
|
34
|
Abstract
Early diabetes is often accompanied by an increased glomerular filtration rate (GFR). This hyperfiltration, which is significantly dependent upon increased nitric oxide activity, is believed to contribute to progression of diabetic nephropathy. In this article, a technique for the measurement of tubular fluid nitric oxide in vivo, in real time, is reviewed, and findings in three commonly used rodent models of diabetes are described. The mechanisms of altered tubuloglomerular feedback (TGF) in diabetes are also reviewed, with emphasis on hyperfiltration and the role of nitric oxide. New findings on the modulation of hyperfiltration in the classic type 2 diabetes db/db mouse are presented, showing suppression of the TGF mechanism and modulation of single-nephron GFR by a specific nitric oxide synthase inhibitor.
Collapse
Affiliation(s)
- David Z Levine
- The Kidney Research Centre, Ottawa Health Research Institute and University of Ottawa, 451 Smyth Road, Room 1333, Ottawa, Ontario, K1H 8M5 Canada.
| |
Collapse
|
35
|
Just A. Mechanisms of renal blood flow autoregulation: dynamics and contributions. Am J Physiol Regul Integr Comp Physiol 2006; 292:R1-17. [PMID: 16990493 DOI: 10.1152/ajpregu.00332.2006] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Autoregulation of renal blood flow (RBF) is caused by the myogenic response (MR), tubuloglomerular feedback (TGF), and a third regulatory mechanism that is independent of TGF but slower than MR. The underlying cause of the third regulatory mechanism remains unclear; possibilities include ATP, ANG II, or a slow component of MR. Other mechanisms, which, however, exert their action through modulation of MR and TGF are pressure-dependent change of proximal tubular reabsorption, resetting of RBF and TGF, as well as modulating influences of ANG II and nitric oxide (NO). MR requires < 10 s for completion in the kidney and normally follows first-order kinetics without rate-sensitive components. TGF takes 30-60 s and shows spontaneous oscillations at 0.025-0.033 Hz. The third regulatory component requires 30-60 s; changes in proximal tubular reabsorption develop over 5 min and more slowly for up to 30 min, while RBF and TGF resetting stretch out over 20-60 min. Due to these kinetic differences, the relative contribution of the autoregulatory mechanisms determines the amount and spectrum of pressure fluctuations reaching glomerular and postglomerular capillaries and thereby potentially impinge on filtration, reabsorption, medullary perfusion, and hypertensive renal damage. Under resting conditions, MR contributes approximately 50% to overall RBF autoregulation, TGF 35-50%, and the third mechanism < 15%. NO attenuates the strength, speed, and contribution of MR, whereas ANG II does not modify the balance of the autoregulatory mechanisms.
Collapse
Affiliation(s)
- Armin Just
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7545, USA.
| |
Collapse
|
36
|
Komlosi P, Fintha A, Bell PD. Unraveling the relationship between macula densa cell volume and luminal solute concentration/osmolality. Kidney Int 2006; 70:865-71. [PMID: 16820788 DOI: 10.1038/sj.ki.5001633] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
At the macula densa, flow-dependent changes in luminal composition lead to tubuloglomerular feedback and renin release. Apical entry of sodium chloride in both macula densa and cortical thick ascending limb (cTAL) cells occurs via furosemide-sensitive sodium-chloride-potassium cotransport. In macula densa, apical entry of sodium chloride leads to changes in cell volume, although there are conflicting data regarding the directional change in macula densa cell volume with increases in luminal sodium chloride concentration. To further assess volume changes in macula densa cells, cTAL-glomerular preparations were isolated and perfused from rabbits, and macula densa cells were loaded with fluorescent dyes calcein and 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene p-toluenesulfonate. Cell volume was determined with wide-field and multiphoton fluorescence microscopy. Increases in luminal sodium chloride concentration from 0 to 80 mmol/l at constant osmolality led to cell swelling in macula densa and cTAL cells, an effect that was blocked by luminal application of furosemide. However, increases in luminal sodium chloride concentration from 0 to 80 mmol/l with concomitant increases in osmolality caused sustained decreases in macula densa cell volume but transient increases in cTAL cell volume. Increases in luminal osmolality with urea also resulted in macula densa cell shrinkage. These studies suggest that, under physiologically relevant conditions of concurrent increases in luminal sodium chloride concentration and osmolality, there is macula densa cell shrinkage, which may play a role in the macula densa cell signaling process.
Collapse
Affiliation(s)
- P Komlosi
- Department of Medicine, Division of Nephrology, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | | | |
Collapse
|
37
|
Levine DZ, Iacovitti M. Real-time measurement of kidney tubule fluid nitric oxide concentrations in early diabetes: Disparate changes in different rodent models. Nitric Oxide 2006; 15:87-92. [PMID: 16510300 DOI: 10.1016/j.niox.2005.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 11/02/2005] [Accepted: 11/02/2005] [Indexed: 11/24/2022]
Abstract
There are several reports indicating that nitric oxide (NO) plays a role in the kidney hyperfiltration seen in the early stages of diabetes mellitus (DM). Whole kidney GFR and single nephron GFR (SNGFR) have been reported to decrease after nitric oxide synthase (NOS) inhibition. To date, no direct, in vivo, quantitative NO measurements have been made within the kidney in any models of early diabetes. To assess the possible association of changes in tubular fluid nitric oxide concentrations (TF [NO]) with early diabetes, a specially modified NO electrode with a tip diameter of about 7 microm was used to measure NO in single tubules in seven rodent groups. In the Sprague-Dawley (SD) rat model, TF [NO] increased by 50% after streptozotocin (STZ) induced DM1. In the B6129G2/J mouse, control TF [NO] was more than twice the rat control value and fell by 50% after STZ treatment. In three other groups of mice-db/db (B6.Cg-m+/+Lepr(db)/J) Type II diabetic (DM2) mouse, db/m (its heterozygote), and the corresponding wild type (WT)-TF [NO] was also much higher than in the rat, and unlike the B6129G2/J STZ diabetic mouse, did not change after the onset of diabetes. Blood glucose concentrations were similar in the three diabetic groups. Accordingly, in different rodent models of diabetes, in vivo TF [NO], measured in real time, varies significantly in control animals and directionally in different models of DM1 and DM2.
Collapse
Affiliation(s)
- David Z Levine
- Division of Nephrology, The Kidney Research Centre, Ottawa Health Research Institute and University of Ottawa, Ottawa, Ont., Canada.
| | | |
Collapse
|
38
|
Wang T, Takabatake T. Effects of vasopeptidase inhibition on renal function and tubuloglomerular feedback in spontaneously hypertensive rats. Hypertens Res 2006; 28:611-8. [PMID: 16335890 DOI: 10.1291/hypres.28.611] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Vasopeptidase inhibitors are a novel class of antihypertensive agents that concomitantly inhibit angiotensin converting enzyme and neutral endopeptidase. Our purpose was to investigate the effects of omapatrilat, a vasopeptidase inhibitor, on renal function and tubuloglomerular feedback (TGF) response in anesthetized 9-10-week-old spontaneously hypertensive rats (SHR). Intravenous injection of omapatrilat at 10 micromol/kg decreased systemic blood pressure and renal vascular resistance. Renal plasma flow was unchanged, whereas glomerular filtration rate (GFR) and filtration fraction (FF) were reduced. Increased urinary sodium excretion of tubular origin was observed. These parameters remained unaltered with vehicle treatment. Micropuncture study revealed that the maximal reduction of early proximal flow rate (EPFR) induced by orthograde perfusion of Henle's loop with artificial tubular fluid (ATF) was significantly reduced by omapatrilat treatment (28.5+/-3.1% vs. 72.0+/-2.8% of control) and was not significantly changed in the vehicle-treated group (vehicle 70.8+/-1.7% vs. control 71.0+/-2.1%). EPFR at zero perfusion was comparable between omapatrilat and vehicle treatment (29.7+/-2.2 vs. 31.3+/-2.1 nl/min, respectively). Luminal perfusion of 10(-4) mol/l 7-nitroindazole in ATF abrogated the blunting of TGF response by omapatrilat but elicited no change in the vehicle-treated group. The suppression of the TGF mechanism and the reduction in FF suggest that omapatrilat respectively dilates the afferent and efferent arterioles. Under such conditions, reduction of GFR may indicate a fall in intraglomerular pressure. The restoration of nitric oxide signaling in the juxtaglomerular apparatus of SHR seems to participate in the inhibition of TGF by omapatrilat. These findings suggest that omapatrilat may provide a novel approach to the treatment of systemic and glomerular hypertension.
Collapse
Affiliation(s)
- Tao Wang
- Fourth Department of Internal Medicine, Shimane University School of Medicine, Izumo, Japan.
| | | |
Collapse
|
39
|
Liu R, Carretero OA, Ren Y, Garvin JL. Increased intracellular pH at the macula densa activates nNOS during tubuloglomerular feedback. Kidney Int 2005; 67:1837-43. [PMID: 15840031 DOI: 10.1111/j.1523-1755.2005.00282.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The macula densa senses increasing NaCl concentrations in tubular fluid and increases afferent arteriole tone by a process known as tubuloglomerular feedback (TGF). Nitric oxide (NO) production by macula densa neuronal nitric oxide synthase (nNOS) is enhanced by increasing NaCl in the macula densa lumen, and the NO thus formed inhibits TGF. Blocking apical Na(+)/H(+) exchange with amiloride augments TGF and mimics the effect of nNOS inhibition. We hypothesized that increasing NaCl in the macula densa lumen raises macula densa intracellular pH (pH(i)) and activates nNOS. METHODS The thick ascending limb and a portion of the distal tubule with intact macula densa plaque adherent to the glomerulus were microdissected and perfused. Macula densa perfusate was changed from a low (10 mmol/L) to high NaCl solution (80 mmol/L) to mimic the conditions that induce TGF. Osmolality of both solutions was 180 mOsm, so that changing the solutions did not alter cell volume. RESULTS Macula densa pH(i) increased significantly from 7.0 +/- 0.5 to 7.8 +/- 0.6 when the perfusate was changed from low to high (P < 0.05; N= 5). When amiloride was added to inhibit Na(+)/H(+) exchange, the increase in pH(i) during TGF was blocked (N= 5). Fluorescence intensity of DAF-2, an NO-sensitive dye, increased by 28.8 +/- 4.1% after increasing luminal NaCl (N= 5), indicating an increase in NO production. In the presence of the Na(+)/H(+) exchanger inhibitor amiloride or the nNOS inhibitor 7-NI, the increase in NO induced by switching the macula densa perfusate from low to high was blunted. To study whether changes in pH(i) can directly alter NO production, we used nigericin, a K(+)/H(+) ionophore, to equilibrate luminal and intracellular pH. When macula densa pH was raised from 7.3 to 7.8 in the presence of 10(-5) mol/L nigericin in the low NaCl solution, fluorescence of DAF-2 in the macula densa increased by 17.9 +/- 1.3% (P < 0.01; N= 5). In the presence of 7-NI, the increase in NO induced by raising pH(i) was blocked (N= 5). CONCLUSION We concluded that macula densa pH(i) increases during TGF, and this increase in pH(i) activates nNos.
Collapse
Affiliation(s)
- Ruisheng Liu
- Hypertension & Vascular Research Division, Henry Ford Hospital, Detroit, Michigan 48202, USA.
| | | | | | | |
Collapse
|
40
|
Yip KP. Flash photolysis of caged nitric oxide inhibits proximal tubular fluid reabsorption in free-flow nephron. Am J Physiol Regul Integr Comp Physiol 2005; 289:R620-R626. [PMID: 15790750 DOI: 10.1152/ajpregu.00610.2004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A nonobstructing optical method was developed to measure proximal tubular fluid reabsorption in rat nephron at 0.25 Hz. The effects of uncaging luminal nitric oxide (NO) on proximal tubular reabsorption were investigated with this method. Proximal fluid reabsorption rate was calculated as the difference of tubular flow measured simultaneously at two locations (0.8-1.8 mm apart) along a convoluted proximal tubule. Tubular flow was estimated on the basis of the propagating velocity of fluorescent dextran pulses in the lumen. Changes in local tubular flow induced by intratubular perfusion were detected simultaneously along the proximal tubule, indicating that local tubular flow can be monitored in multiple sites along a tubule. The estimated tubular reabsorption rate was 5.52 +/- 0.38 nl.min(-1).mm(-1) (n = 20). Flash photolysis of luminal caged NO (potassium nitrosylpentachlororuthenate) was induced with a 30-Hz UV nitrogen-pulsed laser. Release of NO from caged NO into the proximal tubule was confirmed by monitoring intracellular NO concentration using a cell-permeant NO-sensitive fluorescent dye (DAF-FM). Emission of DAF-FM was proportional to the number of laser pulses used for uncaging. Photolysis of luminal caged NO induced a dose-dependent inhibition of proximal tubular reabsorption without activating tubuloglomerular feedback, whereas uncaging of intracellular cGMP in the proximal tubule decreased tubular flow. Coupling of this novel method to measure reabsorption with photolysis of caged signaling molecules provides a new paradigm to study tubular reabsorption with ambient tubular flow.
Collapse
Affiliation(s)
- Kay-Pong Yip
- Dept. of Physiology and Biophysics, College of Medicine, University of South Florida, MDC 8, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| |
Collapse
|
41
|
Abstract
The Nephrology Research and Training Center, established in 1977 at the University of Alabama at Birmingham by Thomas E. Andreoli, served as a catalyst to stimulate multiple areas of investigations in renal physiology and nephrology. Individuals with backgrounds in biophysics, membrane transport, renal hemodynamics, structural biology, and nephrology interacted with each other, thus providing an exciting and collegial environment. The laboratory of renal hemodynamics focused on the control of renal blood flow, glomerular filtration rate in normal and hypertensive models, and on the important role of the macula densa in providing communication from the tubules to the vascular elements. Studies initially focused on the role of the macula densa feedback mechanism in mediating renal autoregulatory behavior. Subsequent experiments examined various aspects of the feedback system, including the identification and characterization of membrane transport events that sense changes in tubular fluid concentration and transfer information to intracellular signaling mechanisms. More recent investigations have focused on the capability of the macula densa cells to synthesize and release various vasoactive mediators that can influence vascular tone of the glomerular arterioles. In particular, the ability of the macula densa cells to secrete ATP has stimulated continued interest in the hypothesis that ATP may serve an important role in mediating signals to afferent arteriolar vascular smooth muscle cells.
Collapse
Affiliation(s)
- L Gabriel Navar
- Department of Physiology SL39, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA.
| | | |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Monitoring interactions between dissimilar cells is a key to understanding the function of the juxtaglomerular apparatus. This review will summarize new findings on tubuloglomerular feedback-mediated reductions in the glomerular filtration rate and renin release signals to elucidate how current research can benefit from visual approaches. RECENT FINDINGS Macula densa cells are capable of producing significant changes in cell volume depending on the rate of entry of salt through their apical membrane. Tubuloglomerular feedback activation by increased tubular salt content is associated with macula densa cell swelling and the simultaneous contraction of the terminal, intraglomerular, renin-positive segment of the afferent arteriole and the intraglomerular mesangium. Macula densa cells release adenosine triphosphate, which causes tubuloglomerular feedback-mediated vasoconstriction either directly through purinergic signaling or indirectly through its hydrolysis to adenosine. During conditions of low extracellular fluid volume, reduced tubular salt delivery causes macula densa cells to synthesize and release prostaglandin E2, which in turn stimulates the proliferation of juxtaglomerular cells, the synthesis and release of renin, and activation of the renin-angiotensin system. Renin release from juxtaglomerular cells represents a unique form of exocytosis: even large granules can release their content very rapidly without any significant movement relative to the juxtaglomerular cell membrane. SUMMARY A trend in biomedical research is to re-visit earlier studies using state-of-the-art experimental techniques. Imaging methods including the newest innovations in confocal fluorescence microscopy provide direct, visual information on juxtaglomerular apparatus function, with exceptional time and spatial resolution at the level of individual cells and organelles.
Collapse
Affiliation(s)
- János Peti-Peterdi
- Department of Physiology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
43
|
Komlosi P, Frische S, Fuson AL, Fintha A, Zsembery A, Peti-Peterdi J, Bell PD. Characterization of basolateral chloride/bicarbonate exchange in macula densa cells. Am J Physiol Renal Physiol 2004; 288:F380-6. [PMID: 15479854 DOI: 10.1152/ajprenal.00285.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Functional and immunohistological studies were performed to identify basolateral chloride/bicarbonate exchange in macula densa cells. Using the isolated, perfused thick ascending limb with attached glomerulus preparation dissected from rabbit kidney, macula densa intracellular pH (pH(i)) was measured with fluorescence microscopy and BCECF. For these experiments, basolateral chloride was reduced, resulting in reversible macula densa cell alkalinization. Anion exchange activity was assessed by measuring the maximal net base efflux on readdition of bath chloride. Anion exchange activity required the presence of bicarbonate, was independent of changes in membrane potential, did not require the presence of sodium, and was inhibited by high concentrations of DIDS. Inhibition of macula densa anion exchange activity by basolateral DIDS increased luminal NaCl concentration-induced elevations in pH(i). Immunohistochemical studies using antibodies against AE2 demonstrated expression of AE2 along the basolateral membrane of macula densa cells of rabbit kidney. These results suggest that macula densa cells functionally and immunologically express a chloride/bicarbonate exchanger at the basolateral membrane. This transporter likely participates in the regulation of pH(i) and might be involved in macula densa signaling.
Collapse
Affiliation(s)
- Peter Komlosi
- Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Macula densa cells couple renal haemodynamics, glomerular filtration and renin release with tubular fluid salt and water reabsorption. These cells detect changes in tubular fluid composition through a complex of intracellular signalling events that are mediated by membrane transport pathways. Increases in luminal fluid sodium chloride concentration result in alterations in cell sodium chloride concentration, cytosolic calcium, cell pH, basolateral membrane depolarization and cell volume. Macula densa signalling then involves the production and release of specific paracrine signalling molecules at their basolateral membrane. Upon moderate increases in luminal sodium chloride concentration macula densa cells release increasing amounts of ATP and decreasing amounts of prostaglandin E(2), thereby increasing afferent arteriolar tone and decreasing the release of renin from granular cells. On the other hand, further increases in luminal concentration stimulate the release of nitric oxide, which serve to prevent excessive tubuloglomerular feedback vasoconstriction. Paracrine signalling by the macula densa cells therefore controls juxtaglomerular function, renal vascular resistance and participates in the regulation of renin release.
Collapse
Affiliation(s)
- P Komlosi
- Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, USA
| | | | | |
Collapse
|
45
|
Paliege A, Mizel D, Medina C, Pasumarthy A, Huang YG, Bachmann S, Briggs JP, Schnermann JB, Yang T. Inhibition of nNOS expression in the macula densa by COX-2-derived prostaglandin E2. Am J Physiol Renal Physiol 2004; 287:F152-9. [PMID: 15010356 DOI: 10.1152/ajprenal.00287.2003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
It is well established that cyclooxygenase-2 (COX-2) and the neuronal form of nitric oxide synthase (nNOS) are coexpressed in macula densa cells and that the expression of both enzymes is stimulated in a number of high-renin states. To further explore the role of nNOS and COX-2 in renin secretion, we determined plasma renin activity in mice deficient in nNOS or COX-2. Plasma renin activity was significantly reduced in nNOS −/− mice on a mixed genetic background and in COX-2 −/− mice on either BALB/c or C57/BL6 congenic backgrounds. In additional studies, we accumulated evidence to show an inhibitory influence of PGE2on nNOS expression. In a cultured macula densa cell line, PGE2significantly reduced nNOS mRNA expression, as quantified by real-time RT-PCR. In COX-2 −/− mice, nNOS mRNA expression in the kidney, determined by real-time RT-PCR, was upregulated throughout the postnatal periods, ranging from postnatal day ( PND) 3 to PND 60. The induction of nNOS protein expression and NOS activity in COX-2 −/− mice was localized to macula densa cells using immunohistochemistry and NADPH-diaphorase staining methods, respectively. Therefore, these findings reveal that the absence of either COX-2 or nNOS is associated with suppressed renin secretion. Furthermore, the inhibitory effect of PGE2on nNOS mRNA expression indicates a novel interaction between NO and prostaglandin-mediated pathways of renin regulation.
Collapse
Affiliation(s)
- Alex Paliege
- National Institute of Diabetes and Kidney Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Thomson S. Commentary on...neuronal nitric oxide synthase: its role and regulation in macula densa cells. J Am Soc Nephrol 2003; 14:2688-9. [PMID: 14514751 DOI: 10.1097/01.asn.0000091809.15383.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|