1
|
Lu X, Ma K, Ren J, Peng H, Wang J, Wang X, Nasser MI, Liu C. The immune regulatory role of lymphangiogenesis in kidney disease. J Transl Med 2024; 22:1053. [PMID: 39578812 PMCID: PMC11583545 DOI: 10.1186/s12967-024-05859-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024] Open
Abstract
The renal lymphatic system is critical for maintaining kidney homeostasis and regulating the immune response inside the kidney. In various kidney pathological situations, the renal lymphatic network experiences lymphangiogenesis, which is defined as the creation of new lymphatic vessels. Kidney lymphangiogenesis controls immunological response inside the kidney by controlling lymphatic flow, immune cell trafficking, and immune cell regulation. Ongoing study reveals lymphangiogenesis's different architecture and functions in numerous tissues and organs. New research suggests that lymphangiogenesis in kidney disorders may regulate the renal immune response in various ways. The flexibility of lymphatic endothelial cells (LECs) improves the kidney's immunological regulatory function of lymphangiogenesis. Furthermore, current research has shown disparate findings regarding its impact on distinct renal diseases, resulting in contradictory outcomes even within the same kidney condition. The fundamental causes of the various effects of lymphangiogenesis on renal disorders remain unknown. In this thorough review, we explore the dual impacts of renal lymphangiogenesis on several kidney pathologies, with a particular emphasis on existing empirical data and new developments in understanding its immunological regulatory function in kidney disease. An improved understanding of the immunological regulatory function of lymphangiogenesis in kidney diseases might help design novel medicines targeting lymphatics to treat kidney pathologies.
Collapse
Affiliation(s)
- Xiangheng Lu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Junyi Ren
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Haoyu Peng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jia Wang
- General Practice Center, Sichuan Academy of Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, 610072, China
| | - Xiaoxiao Wang
- Department of Organ Transplantation, School of Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Moussa Ide Nasser
- Department of Cardiac Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular Institute, Southern Medical University, Guangzhou, 510100, Guangdong, China.
| | - Chi Liu
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Centre for Kidney Diseases, Chengdu, China.
| |
Collapse
|
2
|
Ahmed HA, Shaaban AA, Ibrahim TM, Makled MN. G protein-coupled estrogen receptor activation attenuates cisplatin-induced CKD in C57BL/6 mice: An insight into sex-related differences. Food Chem Toxicol 2024; 194:115079. [PMID: 39491767 DOI: 10.1016/j.fct.2024.115079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Gender contributes to differences in incidence and progression of chronic kidney disease (CKD) post-cisplatin therapy. This study aims at investigating the potential effect of G1 compound, a GPER agonist, on attenuating cisplatin-induced CKD. To induce CKD in male, intact female, and ovariectomized (OVX) mice, CKD was induced by injecting two cycles of 2.5 mg/kg cisplatin with a 16-day recovery period between cycles). G1 (50 or 100 μg/kg was administered daily for 6 weeks. Severity of renal damage was more pronounced in males than females. Interestingly, OVX resulted in renal damage that is non-significant compared to males and significantly higher than females. G1 improved renal function and blood flow as evidenced by reduction of serum creatinine and elevation of creatinine clearance, NO production, and reduction of ET1. This renoprotective effect could be attributed to its immunomodulatory effect regulated by TGF-β that shifted the balance to favor anti-inflammatory cytokine production (increased IL-10) rather than pro-inflammatory cytokines (decreased Th17 expression). Reduction of TGF-β activation also inhibited epithelial-to-mesenchymal transition that eventually ameliorated CKD development. Antioxidant potential of G1 has been demonstrated by upregulation of Nrf2 and subsequent antioxidant enzymes. These data suggest that G1 could be a promising therapeutic tool to attenuate CP-induced CKD.
Collapse
Affiliation(s)
- Hala A Ahmed
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, Delta University for Science and Technology, Egypt; Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Egypt
| | - Ahmed A Shaaban
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Egypt
| | - Tarek M Ibrahim
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Egypt
| | - Mirhan N Makled
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Egypt.
| |
Collapse
|
3
|
Wang L, Peng F, Li ZH, Deng YF, Ruan MN, Mao ZG, Li L. Identification of AKI signatures and classification patterns in ccRCC based on machine learning. Front Med (Lausanne) 2023; 10:1195678. [PMID: 37293297 PMCID: PMC10244623 DOI: 10.3389/fmed.2023.1195678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/03/2023] [Indexed: 06/10/2023] Open
Abstract
Background Acute kidney injury can be mitigated if detected early. There are limited biomarkers for predicting acute kidney injury (AKI). In this study, we used public databases with machine learning algorithms to identify novel biomarkers to predict AKI. In addition, the interaction between AKI and clear cell renal cell carcinoma (ccRCC) remain elusive. Methods Four public AKI datasets (GSE126805, GSE139061, GSE30718, and GSE90861) treated as discovery datasets and one (GSE43974) treated as a validation dataset were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between AKI and normal kidney tissues were identified using the R package limma. Four machine learning algorithms were used to identify the novel AKI biomarkers. The correlations between the seven biomarkers and immune cells or their components were calculated using the R package ggcor. Furthermore, two distinct ccRCC subtypes with different prognoses and immune characteristics were identified and verified using seven novel biomarkers. Results Seven robust AKI signatures were identified using the four machine learning methods. The immune infiltration analysis revealed that the numbers of activated CD4 T cells, CD56dim natural killer cells, eosinophils, mast cells, memory B cells, natural killer T cells, neutrophils, T follicular helper cells, and type 1 T helper cells were significantly higher in the AKI cluster. The nomogram for prediction of AKI risk demonstrated satisfactory discrimination with an Area Under the Curve (AUC) of 0.919 in the training set and 0.945 in the testing set. In addition, the calibration plot demonstrated few errors between the predicted and actual values. In a separate analysis, the immune components and cellular differences between the two ccRCC subtypes based on their AKI signatures were compared. Patients in the CS1 had better overall survival, progression-free survival, drug sensitivity, and survival probability. Conclusion Our study identified seven distinct AKI-related biomarkers based on four machine learning methods and proposed a nomogram for stratified AKI risk prediction. We also confirmed that AKI signatures were valuable for predicting ccRCC prognosis. The current work not only sheds light on the early prediction of AKI, but also provides new insights into the correlation between AKI and ccRCC.
Collapse
Affiliation(s)
- Li Wang
- Department of Nephrology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Fei Peng
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Zhen Hua Li
- Department of Cardiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yu Fei Deng
- Department of Nephrology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Meng Na Ruan
- Department of Nephrology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhi Guo Mao
- Department of Nephrology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Lin Li
- Department of Nephrology, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
4
|
Kurzhagen JT, Noel S, Lee K, Sadasivam M, Gharaie S, Ankireddy A, Lee SA, Newman-Rivera A, Gong J, Arend LJ, Hamad AR, Reddy SP, Rabb H. T Cell Nrf2/Keap1 Gene Editing Using CRISPR/Cas9 and Experimental Kidney Ischemia-Reperfusion Injury. Antioxid Redox Signal 2023; 38:959-973. [PMID: 36734409 PMCID: PMC10171956 DOI: 10.1089/ars.2022.0058] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023]
Abstract
Aims: T cells play pathophysiologic roles in kidney ischemia-reperfusion injury (IRI), and the nuclear factor erythroid 2-related factor 2/kelch-like ECH-associated protein 1 (Nrf2/Keap1) pathway regulates T cell responses. We hypothesized that clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated Keap1-knockout (KO) augments Nrf2 antioxidant potential of CD4+ T cells, and that Keap1-KO CD4+ T cell immunotherapy protects from kidney IRI. Results: CD4+ T cell Keap1-KO resulted in significant increase of Nrf2 target genes NAD(P)H quinone dehydrogenase 1, heme oxygenase 1, glutamate-cysteine ligase catalytic subunit, and glutamate-cysteine ligase modifier subunit. Keap1-KO cells displayed no signs of exhaustion, and had significantly lower levels of interleukin 2 (IL2) and IL6 in normoxic conditions, but increased interferon gamma in hypoxic conditions in vitro. In vivo, adoptive transfer of Keap1-KO CD4+ T cells before IRI improved kidney function in T cell-deficient nu/nu mice compared with mice receiving unedited control CD4+ T cells. Keap1-KO CD4+ T cells isolated from recipient kidneys 24 h post IR were less activated compared with unedited CD4+ T cells, isolated from control kidneys. Innovation: Editing Nrf2/Keap1 pathway in murine T cells using CRISPR/Cas9 is an innovative and promising immunotherapy approach for kidney IRI and possibly other solid organ IRI. Conclusion: CRISPR/Cas9-mediated Keap1-KO increased Nrf2-regulated antioxidant gene expression in murine CD4+ T cells, modified responses to in vitro hypoxia and in vivo kidney IRI. Gene editing targeting the Nrf2/Keap1 pathway in T cells is a promising approach for immune-mediated kidney diseases.
Collapse
Affiliation(s)
- Johanna T. Kurzhagen
- Division of Nephrology and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sanjeev Noel
- Division of Nephrology and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kyungho Lee
- Division of Nephrology and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mohanraj Sadasivam
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sepideh Gharaie
- Division of Nephrology and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aparna Ankireddy
- Department of Pediatrics, University of Illinois, Chicago, Illinois, USA
| | - Sul A. Lee
- Division of Nephrology and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrea Newman-Rivera
- Division of Nephrology and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jing Gong
- Division of Nephrology and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lois J. Arend
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Abdel R.A. Hamad
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sekhar P. Reddy
- Department of Pediatrics, University of Illinois, Chicago, Illinois, USA
- Department of Pathology, and University of Illinois, Chicago, Illinois, USA
- University of Illinois Cancer Center, University of Illinois, Chicago, Illinois, USA
| | - Hamid Rabb
- Division of Nephrology and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Nusshag C, Wei C, Hahm E, Hayek SS, Li J, Samelko B, Rupp C, Szudarek R, Speer C, Kälble F, Schaier M, Uhle F, Schmitt FC, Fiedler MO, Krautkrämer E, Cao Y, Rodriguez R, Merle U, Eugen-Olsen J, Zeier M, Weigand MA, Morath C, Brenner T, Reiser J. suPAR links a dysregulated immune response to tissue inflammation and sepsis-induced acute kidney injury. JCI Insight 2023; 8:165740. [PMID: 37036003 PMCID: PMC10132159 DOI: 10.1172/jci.insight.165740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/21/2023] [Indexed: 04/11/2023] Open
Abstract
Acute kidney injury (AKI) secondary to sepsis results in poor outcomes and conventional kidney function indicators lack diagnostic value. Soluble urokinase plasminogen activator receptor (suPAR) is an innate immune-derived molecule implicated in inflammatory organ damage. We characterized the diagnostic ability of longitudinal serum suPAR levels to discriminate severity and course of sepsis-induced AKI (SI-AKI) in 200 critically ill patients meeting Sepsis-3 criteria. The pathophysiologic relevance of varying suPAR levels in SI-AKI was explored in a polymicrobial sepsis model in WT, (s)uPAR-knockout, and transgenic suPAR-overexpressing mice. At all time points studied, suPAR provided a robust classification of SI-AKI disease severity, with improved prediction of renal replacement therapy (RRT) and mortality compared with established kidney biomarkers. Patients with suPAR levels of greater than 12.7 ng/mL were at highest risk for RRT or death, with an adjusted odds ratio of 7.48 (95% CI, 3.00-18.63). suPAR deficiency protected mice against SI-AKI. suPAR-overexpressing mice exhibited greater kidney damage and poorer survival through inflamed kidneys, accompanied by local upregulation of potent chemoattractants and pronounced kidney T cell infiltration. Hence, suPAR allows for an innate immune-derived and kidney function-independent staging of SI-AKI and offers improved longitudinal risk stratification. suPAR promotes T cell-based kidney inflammation, while suPAR deficiency improves SI-AKI.
Collapse
Affiliation(s)
- Christian Nusshag
- Department of Internal Medicine, RUSH University Medical Center, Chicago, Illinois, USA
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Changli Wei
- Department of Internal Medicine, RUSH University Medical Center, Chicago, Illinois, USA
| | - Eunsil Hahm
- Department of Internal Medicine, RUSH University Medical Center, Chicago, Illinois, USA
| | - Salim S Hayek
- Department of Medicine, Division of Cardiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jing Li
- Department of Internal Medicine, RUSH University Medical Center, Chicago, Illinois, USA
| | - Beata Samelko
- Department of Internal Medicine, RUSH University Medical Center, Chicago, Illinois, USA
| | | | | | - Claudius Speer
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Florian Kälble
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Matthias Schaier
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | | | | | | | - Ellen Krautkrämer
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Yanxia Cao
- Department of Internal Medicine, RUSH University Medical Center, Chicago, Illinois, USA
| | - Ricardo Rodriguez
- Department of Internal Medicine, RUSH University Medical Center, Chicago, Illinois, USA
| | - Uta Merle
- Department of Gastroenterology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jesper Eugen-Olsen
- Department of Clinical Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Martin Zeier
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Christian Morath
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thorsten Brenner
- Department of Anesthesiology, and
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jochen Reiser
- Department of Internal Medicine, RUSH University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
6
|
Das S, Nasim F, Mishra R, Mishra R. Thymic and Peripheral T-cell Polarization in an Experimental Model of Russell's Viper Venom-induced Acute Kidney Injury. Immunol Invest 2022; 51:1452-1470. [PMID: 34380374 DOI: 10.1080/08820139.2021.1960369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Venom pathology is not restricted to the direct toxic effects of venom. Immunoinflammatory alteration as the etiology of snake venom-induced acute kidney injury (SAKI) is a less trodden path toward the development of alternative therapeutic approach. In the present study, we have associated the crest of renal damage stage to the immunological alteration, as reflected in thymic and peripheral T cell polarization in the murine model of SAKI. Renal injury in mice was confirmed from significant dysuresis and adversely altered biochemical renal markers. Histopathological alterations, as revealed by marked tubular and glomerular damage, reaffirmed kidney injury. SAKI is accompanied by significant inflammatory changes as indicated by neutrophilic leucocytosis, increased neutrophil to lymphocyte ratio and plasma CRP levels. Thymic immunophenotyping revealed significantly increased CD8+ cytotoxic T cell, and CD25+ both single positive population (p = .017-0.010) and CD44-CD25+ double negative population (DN3) (p = .002) accompanied by an insignificantly reduced CD4+ helper T cells (p = .451). Peripheral immunophenotyping revealed similar pattern as indicated by reduced helper T cells (p = .002) associated with significantly elevated cytotoxic T cells (p = .009) and CD25+ subset of both helper (p = .002) and cytotoxic (p = .024) T cells. The IL-10+ subset of both CD25+ and CD25- T cells were also found to be significantly elevated in the SAKI group (p ≤ 0.020) suggesting an immunosuppressive phenotype in SAKI. It can be concluded that T cells responds to venom-induced renal injury particularly through IL-10+ reparative phenotypes which are known for their immunosuppressive and anti-inflammatory activity.
Collapse
Affiliation(s)
- Sreyasi Das
- Department of Physiology, Ananda Mohan College, Kolkata, India
- Department of Physiology, University of Calcutta, Kolkata, India
| | - Farhat Nasim
- Department of Physiology, University of Calcutta, Kolkata, India
| | - Roshnara Mishra
- Department of Physiology, University of Calcutta, Kolkata, India
| | | |
Collapse
|
7
|
A Novel Renoprotective Strategy: Upregulation of PD-L1 Mitigates Cisplatin-Induced Acute Kidney Injury. Int J Mol Sci 2021; 22:ijms222413304. [PMID: 34948109 PMCID: PMC8706395 DOI: 10.3390/ijms222413304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/21/2022] Open
Abstract
The innate and adaptive immunities have been documented to participate in the pathogenesis of nephrotoxic acute kidney injury (AKI); however, the mechanisms controlling these processes have yet to be established. In our cisplatin-induced AKI mouse model, we show pathological damage to the kidneys, with the classical markers elevated, consistent with the response to cisplatin treatment. Through assessments of the components of the immune system, both locally and globally, we demonstrate that the immune microenvironment of injured kidneys was associated with an increased infiltration of CD4+ T cells and macrophages concomitant with decreased Treg cell populations. Our cell-based assays and animal studies further show that cisplatin exposure downregulated the protein levels of programmed death-ligand 1 (PD-L1), an immune checkpoint protein, in primary renal proximal tubular epithelial cells, and that these inhibitions were dose-dependent. After orthotopic delivery of PD-L1 gene into the kidneys, cisplatin-exposed mice displayed lower levels of both serum urea nitrogen and creatinine upon PD-L1 expression. Our data suggest a renoprotective effect of the immune checkpoint protein, and thereby provide a novel therapeutic strategy for cisplatin-induced AKI.
Collapse
|
8
|
Baranwal G, Creed HA, Black LM, Auger A, Quach AM, Vegiraju R, Eckenrode HE, Agarwal A, Rutkowski JM. Expanded renal lymphatics improve recovery following kidney injury. Physiol Rep 2021; 9:e15094. [PMID: 34806312 PMCID: PMC8606868 DOI: 10.14814/phy2.15094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/14/2022] Open
Abstract
Acute kidney injury (AKI) is a major cause of patient mortality and a major risk multiplier for the progression to chronic kidney disease (CKD). The mechanism of the AKI to CKD transition is complex but is likely mediated by the extent and length of the inflammatory response following the initial injury. Lymphatic vessels help to maintain tissue homeostasis through fluid, macromolecule, and immune modulation. Increased lymphatic growth, or lymphangiogenesis, often occurs during inflammation and plays a role in acute and chronic disease processes. What roles renal lymphatics and lymphangiogenesis play in AKI recovery and CKD progression remains largely unknown. To determine if the increased lymphatic density is protective in the response to kidney injury, we utilized a transgenic mouse model with inducible, kidney-specific overexpression of the lymphangiogenic protein vascular endothelial growth factor-D to expand renal lymphatics. "KidVD" mouse kidneys were injured using inducible podocyte apoptosis and proteinuria (POD-ATTAC) or bilateral ischemia reperfusion. In the acute injury phase of both models, KidVD mice demonstrated a similar loss of function measured by serum creatinine and glomerular filtration rate compared to their littermates. While the initial inflammatory response was similar, KidVD mice demonstrated a shift toward more CD4+ and fewer CD8+ T cells in the kidney. Reduced collagen deposition and improved functional recovery over time was also identified in KidVD mice. In KidVD-POD-ATTAC mice, an increased number of podocytes were counted at 28 days post-injury. These data demonstrate that increased lymphatic density prior to injury alters the injury recovery response and affords protection from CKD progression.
Collapse
Affiliation(s)
- Gaurav Baranwal
- Division of Lymphatic BiologyDepartment of Medical PhysiologyTexas A&M University College of MedicineBryanTexasUSA
| | - Heidi A. Creed
- Division of Lymphatic BiologyDepartment of Medical PhysiologyTexas A&M University College of MedicineBryanTexasUSA
| | - Laurence M. Black
- Department of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Nephrology Research and Training CenterUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Alexa Auger
- Division of Lymphatic BiologyDepartment of Medical PhysiologyTexas A&M University College of MedicineBryanTexasUSA
| | - Alexander M. Quach
- Division of Lymphatic BiologyDepartment of Medical PhysiologyTexas A&M University College of MedicineBryanTexasUSA
| | - Rahul Vegiraju
- Division of Lymphatic BiologyDepartment of Medical PhysiologyTexas A&M University College of MedicineBryanTexasUSA
| | - Han E. Eckenrode
- Department of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Nephrology Research and Training CenterUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Anupam Agarwal
- Department of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Nephrology Research and Training CenterUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Department of Veterans AffairsBirmingham Veterans Administration Medical CenterBirminghamAlabamaUSA
| | - Joseph M. Rutkowski
- Division of Lymphatic BiologyDepartment of Medical PhysiologyTexas A&M University College of MedicineBryanTexasUSA
| |
Collapse
|
9
|
Gu YY, Dou JY, Huang XR, Liu XS, Lan HY. Transforming Growth Factor-β and Long Non-coding RNA in Renal Inflammation and Fibrosis. Front Physiol 2021; 12:684236. [PMID: 34054586 PMCID: PMC8155637 DOI: 10.3389/fphys.2021.684236] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
Renal fibrosis is one of the most characterized pathological features in chronic kidney disease (CKD). Progressive fibrosis eventually leads to renal failure, leaving dialysis or allograft transplantation the only clinical option for CKD patients. Transforming growth factor-β (TGF-β) is the key mediator in renal fibrosis and is an essential regulator for renal inflammation. Therefore, the general blockade of the pro-fibrotic TGF-β may reduce fibrosis but may risk promoting renal inflammation and other side effects due to the diverse role of TGF-β in kidney diseases. Long non-coding RNAs (lncRNAs) are RNA transcripts with more than 200 nucleotides and have been regarded as promising therapeutic targets for many diseases. This review focuses on the importance of TGF-β and lncRNAs in renal inflammation, fibrogenesis, and the potential applications of TGF-β and lncRNAs as the therapeutic targets and biomarkers in renal fibrosis and CKD are highlighted.
Collapse
Affiliation(s)
- Yue-Yu Gu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jing-Yun Dou
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Nephrology, Weihai Hospital of Traditional Chinese Medicine, Weihai, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Xu-Sheng Liu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
10
|
Creed HA, Rutkowski JM. Emerging roles for lymphatics in acute kidney injury: Beneficial or maleficent? Exp Biol Med (Maywood) 2021; 246:845-850. [PMID: 33467886 DOI: 10.1177/1535370220983235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Acute kidney injury, a sudden decline in renal filtration, is a surprisingly common pathology resulting from ischemic events, local or systemic infection, or drug-induced toxicity in the kidney. Unchecked, acute kidney injury can progress to renal failure and even recovered acute kidney injury patients are at an increased risk for developing future chronic kidney disease. The initial extent of inflammation, the specific immune response, and how well inflammation resolves are likely determinants in acute kidney injury-to-chronic kidney disease progression. Lymphatic vessels and their roles in fluid, solute, antigen, and immune cell transport make them likely to have a role in the acute kidney injury response. Lymphatics have proven to be an attractive target in regulating inflammation and immunomodulation in other pathologies: might these strategies be employed in acute kidney injury? Acute kidney injury studies have identified elevated levels of lymphangiogenic ligands following acute kidney injury, with an expansion of the lymphatics in several models post-injury. Manipulating the lymphatics in acute kidney injury, by augmenting or inhibiting their growth or through targeting lymphatic-immune interactions, has met with a range of positive, negative, and sometimes inconclusive results. This minireview briefly summarizes the findings of lymphatic changes and lymphatic roles in the inflammatory response in the kidney following acute kidney injury to discuss whether renal lymphatics are a beneficial, maleficent, or a passive contributor to acute kidney injury recovery.
Collapse
Affiliation(s)
- Heidi A Creed
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX 77807, USA
| | - Joseph M Rutkowski
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX 77807, USA
| |
Collapse
|
11
|
Guerrero-Hue M, Rayego-Mateos S, Vázquez-Carballo C, Palomino-Antolín A, García-Caballero C, Opazo-Rios L, Morgado-Pascual JL, Herencia C, Mas S, Ortiz A, Rubio-Navarro A, Egea J, Villalba JM, Egido J, Moreno JA. Protective Role of Nrf2 in Renal Disease. Antioxidants (Basel) 2020; 10:antiox10010039. [PMID: 33396350 PMCID: PMC7824104 DOI: 10.3390/antiox10010039] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is one of the fastest-growing causes of death and is predicted to become by 2040 the fifth global cause of death. CKD is characterized by increased oxidative stress and chronic inflammation. However, therapies to slow or prevent CKD progression remain an unmet need. Nrf2 (nuclear factor erythroid 2-related factor 2) is a transcription factor that plays a key role in protection against oxidative stress and regulation of the inflammatory response. Consequently, the use of compounds targeting Nrf2 has generated growing interest for nephrologists. Pre-clinical and clinical studies have demonstrated that Nrf2-inducing strategies prevent CKD progression and protect from acute kidney injury (AKI). In this article, we review current knowledge on the protective mechanisms mediated by Nrf2 against kidney injury, novel therapeutic strategies to induce Nrf2 activation, and the status of ongoing clinical trials targeting Nrf2 in renal diseases.
Collapse
Affiliation(s)
- Melania Guerrero-Hue
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; (M.G.-H.); (S.R.-M.); (C.G.-C.); (J.L.M.-P.)
| | - Sandra Rayego-Mateos
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; (M.G.-H.); (S.R.-M.); (C.G.-C.); (J.L.M.-P.)
| | - Cristina Vázquez-Carballo
- Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain; (C.V.-C.); (L.O.-R.); (C.H.); (S.M.); (A.O.); (J.E.)
| | - Alejandra Palomino-Antolín
- Research Unit, Hospital Universitario Santa Cristina, IIS-Hospital Universitario de la Princesa, 28006 Madrid, Spain; (A.P.-A.); (J.E.)
- Departament of Pharmacology and Therapeutics, Medicine Faculty, Instituto Teófilo Hernando, Autónoma University, 28029 Madrid, Spain
| | - Cristina García-Caballero
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; (M.G.-H.); (S.R.-M.); (C.G.-C.); (J.L.M.-P.)
| | - Lucas Opazo-Rios
- Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain; (C.V.-C.); (L.O.-R.); (C.H.); (S.M.); (A.O.); (J.E.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
| | - José Luis Morgado-Pascual
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; (M.G.-H.); (S.R.-M.); (C.G.-C.); (J.L.M.-P.)
| | - Carmen Herencia
- Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain; (C.V.-C.); (L.O.-R.); (C.H.); (S.M.); (A.O.); (J.E.)
| | - Sebastián Mas
- Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain; (C.V.-C.); (L.O.-R.); (C.H.); (S.M.); (A.O.); (J.E.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
| | - Alberto Ortiz
- Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain; (C.V.-C.); (L.O.-R.); (C.H.); (S.M.); (A.O.); (J.E.)
- Red Nacional Investigaciones Nefrológicas (REDINREN), 28040 Madrid, Spain
| | - Alfonso Rubio-Navarro
- Weill Center for Metabolic Health and Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Javier Egea
- Research Unit, Hospital Universitario Santa Cristina, IIS-Hospital Universitario de la Princesa, 28006 Madrid, Spain; (A.P.-A.); (J.E.)
- Departament of Pharmacology and Therapeutics, Medicine Faculty, Instituto Teófilo Hernando, Autónoma University, 28029 Madrid, Spain
| | - José Manuel Villalba
- Department of Cell Biology, Physiology, and Immunology, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, 14014 Cordoba, Spain;
| | - Jesús Egido
- Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain; (C.V.-C.); (L.O.-R.); (C.H.); (S.M.); (A.O.); (J.E.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
| | - Juan Antonio Moreno
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; (M.G.-H.); (S.R.-M.); (C.G.-C.); (J.L.M.-P.)
- Department of Cell Biology, Physiology, and Immunology, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, 14014 Cordoba, Spain;
- Hospital Universitario Reina Sofia, 14004 Cordoba, Spain
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-957-218-039
| |
Collapse
|
12
|
Han SJ, Williams RM, Kim M, Heller DA, D'Agati V, Schmidt-Supprian M, Lee HT. Renal proximal tubular NEMO plays a critical role in ischemic acute kidney injury. JCI Insight 2020; 5:139246. [PMID: 32941183 PMCID: PMC7566738 DOI: 10.1172/jci.insight.139246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
We determined that renal proximal tubular (PT) NF-κB essential modulator (NEMO) plays a direct and critical role in ischemic acute kidney injury (AKI) using mice lacking renal PT NEMO and by targeted renal PT NEMO inhibition with mesoscale nanoparticle-encapsulated NEMO binding peptide (NBP MNP). We subjected renal PT NEMO-deficient mice, WT mice, and C57BL/6 mice to sham surgery or 30 minutes of renal ischemia and reperfusion (IR). C57BL/6 mice received NBP MNP or empty MNP before renal IR injury. Mice treated with NBP MNP and mice deficient in renal PT NEMO were protected against ischemic AKI, having decreased renal tubular necrosis, inflammation, and apoptosis compared with control MNP-treated or WT mice, respectively. Recombinant peptidylarginine deiminase type 4 (rPAD4) targeted kidney PT NEMO to exacerbate ischemic AKI in that exogenous rPAD4 exacerbated renal IR injury in WT mice but not in renal PT NEMO-deficient mice. Furthermore, rPAD4 upregulated proinflammatory cytokine mRNA and NF-κB activation in freshly isolated renal proximal tubules from WT mice but not from PT NEMO-deficient mice. Taken together, our studies suggest that renal PT NEMO plays a critical role in ischemic AKI by promoting renal tubular inflammation, apoptosis, and necrosis.
Collapse
Affiliation(s)
- Sang Jun Han
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | - Ryan M Williams
- Department of Biomedical Engineering, City College of New York, New York, New York, USA
| | - Mihwa Kim
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | - Daniel A Heller
- Department of Molecular Pharmacology & Chemistry, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Vivette D'Agati
- Department of Pathology, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | - Marc Schmidt-Supprian
- Institute of Experimental Hematology, School of Medicine, Technical University Munich, Munich, Germany
| | - H Thomas Lee
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| |
Collapse
|
13
|
Wang RR, He M, Ou XF, Xie XQ, Kang Y. The predictive value of RDW in AKI and mortality in patients with traumatic brain injury. J Clin Lab Anal 2020; 34:e23373. [PMID: 32844458 PMCID: PMC7521248 DOI: 10.1002/jcla.23373] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Background Red blood cell distribution width (RDW) has been validated valuable in predicting outcome and acute kidney injury (AKI) in several clinical settings. The aim of this study was to explore whether RDW is associated with outcome and AKI in patients with traumatic brain injury (TBI). Methods Patients admitted to our hospital for TBI from January 2015 to August 2018 were included in this study. Multivariate logistic regression analysis was performed to identify risk factors of AKI and outcome in patients with TBI. The value of RDW in predicting AKI and outcome was evaluated by receiver operating characteristic (ROC) curve. Results Three hundred and eighteen patients were included in this study. The median of RDW was 14.25%. We divided subjects into two groups based on the median and compared difference of variables between two groups. The incidence of AKI and mortality was higher in high RDW (RDW > 14.25) group (31.45% vs 9.43%, P < .001; 69.81% vs 29.56%, P < .001). Spearman's method showed RDW was moderately associated with 90‐day Glasgow Outcome Scale (GOS) (P < .001). In multivariate logistic regression analysis, RDW, lymphocyte, chlorine, and serum creatinine were risk factors of AKI. And Glasgow Coma Scale (GCS), glucose, chlorine, AKI, and RDW were risk factors of mortality. The area under the ROC curve (AUC) of RDW for predicting AKI and mortality was 0.724 (0.662‐0.786) and 0.754 (0.701‐0.807), respectively. Patients with higher RDW were likely to have shorter median survival time (58 vs 70, P < .001). Conclusions Red blood cell distribution width is an independent risk factor of AKI and mortality in patients with TBI.
Collapse
Affiliation(s)
- Ruo Ran Wang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Min He
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao Feng Ou
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao Qi Xie
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Kang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Zilberman-Itskovich S, Efrati S. Mesenchymal Stromal Cell Uses for Acute Kidney Injury-Current Available Data and Future Perspectives: A Mini-Review. Front Immunol 2020; 11:1369. [PMID: 32793191 PMCID: PMC7385060 DOI: 10.3389/fimmu.2020.01369] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022] Open
Abstract
There is growing evidence concerning the potential use of mesenchymal stromal cells (MSCs) for different tissue injuries. Initially, the intended physiological use of MSCs was due to their ability to differentiate and replace damaged cells. However, MSCs have multiple effects, including being able to significantly modulate immunological responses. MSCs are currently being tested for neurodegenerative diseases, graft vs. host disease, kidney injury, and other chronic unremitting tissue damage. Using MSCs in acute tissue damage is only now being studied. Acute kidney injury (AKI) is a common cause of morbidity and mortality. After the primary insult, overactivation of the immune system culminates in additional secondary potentially permanent kidney damage. MSCs have the potential to ameliorate the secondary damage, and recent studies have shed important light on their mechanisms of action. This article summarizes the basics of MSCs therapy, the newly discovered mechanisms of action, and their potential application in the setting of AKI.
Collapse
Affiliation(s)
- Shani Zilberman-Itskovich
- Nephrology Division, Assaf-Harofeh (Shamir) Medical Center, Be'er Ya'akov, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shai Efrati
- Nephrology Division, Assaf-Harofeh (Shamir) Medical Center, Be'er Ya'akov, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
15
|
Abstract
Recent studies have clarified the interaction between nervous systems and immunity regarding the manner in which local inflammation is regulated and systemic homeostasis is maintained. The cholinergic anti-inflammatory pathway (CAP) is a neuroimmune pathway activated by vagus nerve stimulation. Following afferent vagus nerve stimulation, signals are transmitted to immune cells in the spleen, including β2-adrenergic receptor-positive CD4-positive T cells and α7 nicotinic acetylcholine receptor-expressing macrophages. These immune cells release the neurotransmitters norepinephrine and acetylcholine, inducing a series of reactions that reduce proinflammatory cytokines, relieving inflammation. CAP contributes to various inflammatory diseases such as endotoxemia, rheumatoid arthritis, and inflammatory bowel disease. Moreover, emerging studies have revealed that vagus nerve stimulation ameliorates kidney damage in an animal model of acute kidney injury. These studies suggest that the link between the nervous system and kidneys is associated with the pathophysiology of kidney injury. Here, we review the current knowledge of the neuroimmune circuit and kidney disease, as well as potential for therapeutic strategies based on this knowledge for treating kidney disease in clinical settings.
Collapse
Affiliation(s)
- Yasuna Nakamura
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tsuyoshi Inoue
- Division of CKD Pathophysiology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Yang XY, Song J, Hou SK, Fan HJ, Lv Q, Liu ZQ, Ding H, Zhang YZ, Liu JY, Dong WL, Wang X. Ulinastatin ameliorates acute kidney injury induced by crush syndrome inflammation by modulating Th17/Treg cells. Int Immunopharmacol 2020; 81:106265. [PMID: 32044661 DOI: 10.1016/j.intimp.2020.106265] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Acute kidney injury (AKI) is the main complication of crush syndrome (CS), and it is also a cause of lethality in CS. However, effective treatments for AKI are still lacking. Ulinastatin (UTI) is a broad-spectrum serine protease inhibitor extracted from human urine that reportedly modulates innate immunity and pro-inflammatory responses in sepsis. Here, we explored the effect and the potential mechanism of ulinastatin on crush syndrome-induced acute kidney injury (CSAKI). METHODS A CSAKI rat model was established by using a digital crush injury device platform. Forty-six male Wistar rats were randomly divided into five groups: the normal control (n = 6), CSAKI model (n = 10), CSAKI plus UTI1 (50,000 U/kg) (n = 10), CSAKI plus UTI2 (100,000 U/kg) (n = 10) and CSAKI plus UTI3 (200,000 U/kg) (n = 10) groups. Hematoxylin-eosin (HE) staining was used to investigate the reliability of the CSAKI model. The percentage of Th17/Treg lymphocytes in peripheral blood was measured by flow cytometry, and the expression of transcription factors associated with Th17/Treg cells was evaluated by quantitative real-time polymerase chain reaction (PCR). In addition, specific cytokines released by Th17/Treg cells in serum and kidney tissues were detected by enzyme-linked immunosorbent assay (ELISA). RESULTS Treatment with ulinastatin could significantly decrease serum BUN, CK, Scr, Mb and K+ levels compared with CSAKI group. HE staining results showed that ulinastatin could inhibit inflammatory cells infiltration, decrease sarcomere rupture in muscle tissues induced by extrusion, and alleviate the glomerular congestion and edema, as well as decrease myoglobin cast in kidney tissues. The proportion of CD4+CD25+Foxp3+ regulatory T (Treg) cells and Foxp3 expression levels were decreased in the CSAKI animals, while IL-17 expression levels were significantly increased, compared with those of the normal control group. Treatment with ulinastatin upregulated the proportion of Treg cells in CD4+ T cells and downregulated the expression of IL-17 compared with those of the CSAKI group. CONCLUSION The findings of our study indicate that UTI attenuates CS-induced AKI and alleviate the inflammatory response during the early stage. The mechanism of UTI may be due to regulating the balance between Th17/Treg cells. Our study provides a new mechanism for the beneficial effect of ulinastatin on CSAKI.
Collapse
Affiliation(s)
| | - Jie Song
- Department of Nephrology, Characteristic Medical Center of Chinese People's Armed Police Forces, Tianjin, China
| | - Shi-Ke Hou
- Institute of Disaster Medicine, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China.
| | - Hao-Jun Fan
- Institute of Disaster Medicine, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Qi Lv
- Institute of Disaster Medicine, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China.
| | - Zi-Quan Liu
- Institute of Disaster Medicine, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Hui Ding
- Institute of Disaster Medicine, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Yong-Zhong Zhang
- Institute of Disaster Medicine, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Jin-Yang Liu
- Institute of Disaster Medicine and Public Health, Characteristic Medical Center of the Chinese People's Armed Police Force (PAP), Tianjin, China
| | - Wen-Long Dong
- Institute of Disaster Medicine, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Xue Wang
- Institute of Disaster Medicine and Public Health, Characteristic Medical Center of the Chinese People's Armed Police Force (PAP), Tianjin, China
| |
Collapse
|
17
|
Han SJ, Williams RM, D'Agati V, Jaimes EA, Heller DA, Lee HT. Selective nanoparticle-mediated targeting of renal tubular Toll-like receptor 9 attenuates ischemic acute kidney injury. Kidney Int 2020; 98:76-87. [PMID: 32386967 DOI: 10.1016/j.kint.2020.01.036] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/24/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022]
Abstract
We developed an innovative therapy for ischemic acute kidney injury with discerning kidney-targeted delivery of a selective Toll-like receptor 9 (TLR9) antagonist in mice subjected to renal ischemia reperfusion injury. Our previous studies showed that mice deficient in renal proximal tubular TLR9 were protected against renal ischemia reperfusion injury demonstrating a critical role for renal proximal tubular TLR9 in generating ischemic acute kidney injury. Herein, we used 300-400 nm polymer-based mesoscale nanoparticles that localize to the renal tubules after intravenous injection. Mice were subjected to sham surgery or 30 minutes renal ischemia and reperfusion injury after receiving mesoscale nanoparticles encapsulated with a selective TLR9 antagonist (unmethylated CpG oligonucleotide ODN2088) or mesoscale nanoparticles encapsulating a negative control oligonucleotide. Mice treated with the encapsulated TLR9 antagonist either six hours before renal ischemia, at the time of reperfusion or 1.5 hours after reperfusion were protected against ischemic acute kidney injury. The ODN2088-encapsulated nanoparticles attenuated renal tubular necrosis, inflammation, decreased proinflammatory cytokine synthesis. neutrophil and macrophage infiltration and apoptosis, decreased DNA fragmentation and caspase 3/8 activation when compared to the negative control nanoparticle treated mice. Taken together, our studies further suggest that renal proximal tubular TLR9 activation exacerbates ischemic acute kidney injury by promoting renal tubular inflammation, apoptosis and necrosis after ischemia reperfusion. Thus, our studies suggest a potential promising therapy for ischemic acute kidney injury with selective kidney tubular targeting of TLR9 using mesoscale nanoparticle-based drug delivery.
Collapse
Affiliation(s)
- Sang Jun Han
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | - Ryan M Williams
- Department of Molecular Pharmacology & Chemistry, Memorial Sloan Kettering Cancer Center, New York, New York, USA; Department of Biomedical Engineering, City College of New York, New York, New York, USA
| | - Vivette D'Agati
- Department of Pathology, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | - Edgar A Jaimes
- Renal Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Daniel A Heller
- Department of Molecular Pharmacology & Chemistry, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - H Thomas Lee
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York, USA.
| |
Collapse
|
18
|
Zhu C, Liang Q, Liu Y, Kong D, Zhang J, Wang H, Wang K, Guo Z. Kidney injury in response to crystallization of calcium oxalate leads to rearrangement of the intrarenal T cell receptor delta immune repertoire. J Transl Med 2019; 17:278. [PMID: 31438987 PMCID: PMC6704580 DOI: 10.1186/s12967-019-2022-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023] Open
Abstract
Background Calcium oxalate (CaOx), the major constituent of most kidney stones, induces inflammatory infiltration and injures renal tubular cells. However, the role of γδT cells in CaOx-mediated kidney injury remains unclear. Therefore, this study investigated the distribution of intrarenal γδT cells and T cell receptor δ (TCRδ) immune repertoires in response to interactions with CaOx crystals. Methods CaOx crystal mouse model was established by glyoxylate injection. Flow cytometer was used to analyze the expression of CD69 and IL-17 from intrarenal γδT cells. Furthermore, TCR immune repertoire sequencing (IR-Seq) was used to monitor the profile of the TCRδ immune repertoire. Results Our results indicated that CaOx crystals lead to obvious increases in the expression and activation of intrarenal γδT cells. In TCRδ immune repertoire, the majority of V/J gene and V–J/V–D–J combination segments, barring individual exceptions, were similar between kidneys with CaOx formation and control kidneys. Impressively, high complementarity determining region 3 (CDR3) diversity was observed in response to CaOx crystal formation along with distinct CDR3 distribution and abundance. Conclusion Our work suggests the presence of aberrant γδT cell activation and reconstitution of the TCRδ immune repertoire in response to CaOx crystal deposition.
Collapse
Affiliation(s)
- Chao Zhu
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Qing Liang
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yaqun Liu
- Department of Rheumatology and Immunology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Deliang Kong
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Jie Zhang
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Hu Wang
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Kejia Wang
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Zhiyong Guo
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
19
|
Han SJ, Kim M, D'Agati VD, Lee HT. 6-Shogaol protects against ischemic acute kidney injury by modulating NF-κB and heme oxygenase-1 pathways. Am J Physiol Renal Physiol 2019; 317:F743-F756. [PMID: 31313953 DOI: 10.1152/ajprenal.00182.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute kidney injury (AKI) due to renal ischemia-reperfusion (I/R) is a major clinical problem without effective therapy. Ginger is one of the most widely consumed spices in the world, and 6-shogaol, a major ginger metabolite, has anti-inflammatory effects in neuronal and epithelial cells. Here, we demonstrate our novel findings that 6-shogaol treatment protected against renal I/R injury with decreased plasma creatinine, blood urea nitrogen, and kidney neutrophil gelatinase-associated lipocalin mRNA synthesis compared with vehicle-treated mice subjected to renal I/R. Additionally, 6-shogaol treatment reduced kidney inflammation (decreased proinflammatory cytokine and chemokine synthesis as well as neutrophil infiltration) and apoptosis (decreased TUNEL-positive renal tubular cells) compared with vehicle-treated mice subjected to renal I/R. In cultured human and mouse kidney proximal tubule cells, 6-shogaol significantly attenuated TNF-α-induced inflammatory cytokine and chemokine mRNA synthesis. Mechanistically, 6-shogaol significantly attenuated TNF-α-induced NF-κB activation in human renal proximal tubule cells by reducing IKKαβ/IκBα phosphorylation. Furthermore, 6-shogaol induced a cytoprotective chaperone heme oxygenase (HO)-1 via p38 MAPK activation in vitro and in vivo. Consistent with these findings, pretreatment with the HO-1 inhibitor zinc protoporphyrin IX completely prevented 6-shogaol-mediated protection against ischemic AKI in mice. Taken together, our study showed that 6-shogaol protects against ischemic AKI by attenuating NF-κB activation and inducing HO-1 expression. 6-Shogaol may provide a potential therapy for ischemic AKI during the perioperative period.
Collapse
Affiliation(s)
- Sang Jun Han
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York
| | - Mihwa Kim
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York
| | - Vivette D D'Agati
- Department of Pathology, College of Physicians and Surgeons of Columbia University, New York, New York
| | - H Thomas Lee
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York
| |
Collapse
|
20
|
Inoue T, Tanaka S, Rosin DL, Okusa MD. Bioelectronic Approaches to Control Neuroimmune Interactions in Acute Kidney Injury. Cold Spring Harb Perspect Med 2019; 9:a034231. [PMID: 30126836 PMCID: PMC6546041 DOI: 10.1101/cshperspect.a034231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent studies have shown renal protective effects of bioelectric approaches, including ultrasound treatment, electrical vagus nerve stimulation, and optogenetic brainstem C1 neuron stimulation. The renal protection acquired by all three modalities was lost in splenectomized mice and/or α7 subunit of the nicotinic acetylcholine receptor-deficient mice. C1 neuron-mediated renal protection was blocked by β2-adrenergic receptor antagonist. These findings indicate that all three methods commonly, at least partially, activate the cholinergic anti-inflammatory pathway, a well-studied neuroimmune pathway. In this article, we summarize the current understanding of neuroimmune axis-mediated kidney protection in preclinical models of acute kidney injury by these three modalities. Examination of the differences among these three modalities might lead to a further elucidation of the neuroimmune axis involved in renal protection and is of interest for developing new therapeutic approaches.
Collapse
Affiliation(s)
- Tsuyoshi Inoue
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Shinji Tanaka
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Diane L Rosin
- Department of Pharmacology, University of Virginia Health System Charlottesville, Virginia 22908
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia Health System, Charlottesville, Virginia 22908
| |
Collapse
|
21
|
Situmorang GR, Sheerin NS. Ischaemia reperfusion injury: mechanisms of progression to chronic graft dysfunction. Pediatr Nephrol 2019; 34:951-963. [PMID: 29603016 PMCID: PMC6477994 DOI: 10.1007/s00467-018-3940-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/18/2018] [Accepted: 03/02/2018] [Indexed: 12/18/2022]
Abstract
The increasing use of extended criteria organs to meet the demand for kidney transplantation raises an important question of how the severity of early ischaemic injury influences long-term outcomes. Significant acute ischaemic kidney injury is associated with delayed graft function, increased immune-associated events and, ultimately, earlier deterioration of graft function. A comprehensive understanding of immediate molecular events that ensue post-ischaemia and their potential long-term consequences are key to the discovery of novel therapeutic targets. Acute ischaemic injury primarily affects tubular structure and function. Depending on the severity and persistence of the insult, this may resolve completely, leading to restoration of normal function, or be sustained, resulting in persistent renal impairment and progressive functional loss. Long-term effects of acute renal ischaemia are mediated by several mechanisms including hypoxia, HIF-1 activation, endothelial dysfunction leading to vascular rarefaction, sustained pro-inflammatory stimuli involving innate and adaptive immune responses, failure of tubular cells to recover and epigenetic changes. This review describes the biological relevance and interaction of these mechanisms based on currently available evidence.
Collapse
Affiliation(s)
- Gerhard R Situmorang
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Urology Department, Faculty of Medicine Universitas Indonesia - Cipto Mangunkusumo Hospital, Jakarta, 10430, Indonesia
| | - Neil S Sheerin
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
22
|
Rabadi MM, Han SJ, Kim M, D'Agati V, Lee HT. Peptidyl arginine deiminase-4 exacerbates ischemic AKI by finding NEMO. Am J Physiol Renal Physiol 2019; 316:F1180-F1190. [PMID: 30943066 DOI: 10.1152/ajprenal.00089.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peptidyl arginine deiminase-4 (PAD4) catalyzes the conversion of peptidylarginine residues to peptidylcitrulline. We have previously shown that kidney ischemia-reperfusion (I/R) injury increases renal proximal tubular PAD4 expression and activity. Furthermore, kidney PAD4 plays a critical role in ischemic acute kidney injury (AKI) by promoting renal tubular inflammation, neutrophil infiltration, and NF-κB activation. However, the mechanisms of PAD4-mediated renal tubular inflammation and NF-κB activation after I/R remain unclear. Here, we show that recombinant PAD4 preferentially citrullinates recombinant IKKγ [also called NF-κB essential modulator (NEMO)] over recombinant IKKα or IKKβ. Consistent with this finding, PAD4 citrullinated renal proximal tubular cell IKKγ and promoted NF-κB activation via IκBα phosphorylation in vitro. NEMO inhibition with a selective NEMO-binding peptide attenuated PAD4-mediated proinflammatory cytokine mRNA induction in HK-2 cells. Moreover, NEMO inhibition did not affect proximal tubular cell survival, proliferation, or apoptosis, unlike global NF-κB inhibition. In vivo, NEMO-binding peptide treatment protected against ischemic AKI. Finally, NEMO-binding peptide attenuated recombinant PAD4-mediated exacerbation of ischemic AKI, renal tubular inflammation, and apoptosis. Taken together, our results show that PAD4 exacerbates ischemic AKI and inflammation by promoting renal tubular NF-κB activity and inflammation via NEMO citrullination. Targeting NEMO activation may serve as a potential therapy for this devastating clinical problem.
Collapse
Affiliation(s)
- May M Rabadi
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - Sang Jun Han
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - Mihwa Kim
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - Vivette D'Agati
- Department of Pathology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - H Thomas Lee
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| |
Collapse
|
23
|
Sabapathy V, Cheru NT, Corey R, Mohammad S, Sharma R. A Novel Hybrid Cytokine IL233 Mediates regeneration following Doxorubicin-Induced Nephrotoxic Injury. Sci Rep 2019; 9:3215. [PMID: 30824764 PMCID: PMC6397151 DOI: 10.1038/s41598-019-39886-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/04/2019] [Indexed: 12/15/2022] Open
Abstract
Kidney injury, whether due to ischemic insults or chemotherapeutic agents, is exacerbated by inflammation, whereas Tregs are protective. We recently showed that IL-2 and IL-33, especially as a hybrid cytokine (IL233 - bearing IL-2 and IL-33 activities in one molecule), potentiated Tregs and group 2 innate lymphoid cells (ILC2) to prevent renal injury. Recent studies have indicated a reparative function for Tregs and ILC2. Here, using doxorubicin-induced nephrotoxic renal injury model, we investigated whether IL233 administration either before, late or very late after renal injury can restore kidney structure and function. We found that IL233 treatment even 2-weeks post-doxorubicin completely restored kidney function accompanied with an increase Treg and ILC2 in lymphoid and renal compartments, augmented anti-inflammatory cytokines and attenuated proinflammatory cytokine levels. IL233 treated mice had reduced inflammation, kidney injury (Score values - saline: 3.34 ± 0.334; IL233 pre: 0.42 ± 0.162; IL233 24 hrs: 1.34 ± 0.43; IL233 1 week: 1.2 ± 0.41; IL233 2 week: 0.47 ± 0.37; IL233 24 hrs + PC61: 3.5 ± 0.74) and fibrosis in all treatment regimen as compared to saline controls. Importantly, mice treated with IL233 displayed a reparative program in the kidneys, as evidenced by increased expression of genes for renal progenitor-cells and nephron segments. Our findings present the first evidence of an immunoregulatory cytokine, IL233, which could be a potent therapeutic strategy that augments Treg and ILC2 to not only inhibit renal injury, but also promote regeneration.
Collapse
Affiliation(s)
- Vikram Sabapathy
- Center for Immunity, Inflammation and Regenerative Medicine (CIIR), Division of Nephrology, Department of Medicine, University of Virginia, PO Box 800133, Charlottesville, VA, 22903, USA
| | - Nardos Tesfaye Cheru
- Center for Immunity, Inflammation and Regenerative Medicine (CIIR), Division of Nephrology, Department of Medicine, University of Virginia, PO Box 800133, Charlottesville, VA, 22903, USA
| | - Rebecca Corey
- Center for Immunity, Inflammation and Regenerative Medicine (CIIR), Division of Nephrology, Department of Medicine, University of Virginia, PO Box 800133, Charlottesville, VA, 22903, USA
| | - Saleh Mohammad
- Center for Immunity, Inflammation and Regenerative Medicine (CIIR), Division of Nephrology, Department of Medicine, University of Virginia, PO Box 800133, Charlottesville, VA, 22903, USA
| | - Rahul Sharma
- Center for Immunity, Inflammation and Regenerative Medicine (CIIR), Division of Nephrology, Department of Medicine, University of Virginia, PO Box 800133, Charlottesville, VA, 22903, USA.
| |
Collapse
|
24
|
A review of the role of immune cells in acute kidney injury. Pediatr Nephrol 2018; 33:1629-1639. [PMID: 28801723 DOI: 10.1007/s00467-017-3774-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/30/2017] [Accepted: 07/20/2017] [Indexed: 01/08/2023]
Abstract
Acute kidney injury (AKI) is a systemic disease occurring commonly in patients who are critically ill. Etiologies of AKI can be septic or aseptic (nephrotoxic, or ischemia-reperfusion injury). Recent evidence reveals that innate and adaptive immune responses are involved in mediating damage to renal tubular cells and in recovery from AKI. Dendritic cells, monocytes/macrophages, neutrophils, T lymphocytes, and B lymphocytes all contribute to kidney injury. Conversely, M2 macrophages and regulatory T cells are essential in suppressing inflammation, tissue remodeling and repair following kidney injury. AKI itself confers an increased risk for developing infection owing to increased production and decreased clearance of cytokines, in addition to dysfunction of immune cells themselves. Neutrophils are the predominant cell type rendered dysfunctional by AKI. In this review, we describe the bi-directional interplay between the immune system and AKI and summarize recent developments in this field of research.
Collapse
|
25
|
Physical exercise contributes to cisplatin-induced nephrotoxicity protection with decreased CD4+ T cells activation. Mol Immunol 2018; 101:507-513. [PMID: 30144701 DOI: 10.1016/j.molimm.2018.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/28/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022]
|
26
|
Han SJ, Li H, Kim M, Shlomchik MJ, Lee HT. Kidney Proximal Tubular TLR9 Exacerbates Ischemic Acute Kidney Injury. THE JOURNAL OF IMMUNOLOGY 2018; 201:1073-1085. [PMID: 29898963 DOI: 10.4049/jimmunol.1800211] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/22/2018] [Indexed: 12/19/2022]
Abstract
The role for kidney TLR9 in ischemic acute kidney injury (AKI) remains unclear. In this study, we tested the hypothesis that renal proximal tubular TLR9 activation exacerbates ischemic AKI by promoting renal tubular epithelial apoptosis and inflammation. To test this hypothesis, we generated mice lacking TLR9 in renal proximal tubules (TLR9fl/fl PEPCK Cre mice). Contrasting previous studies in global TLR9 knockout mice, mice lacking renal proximal tubular TLR9 were protected against renal ischemia/reperfusion (IR) injury, with reduced renal tubular necrosis, inflammation (decreased proinflammatory cytokine synthesis and neutrophil infiltration), and apoptosis (decreased DNA fragmentation and caspase activation) when compared with wild-type (TLR9fl/fl) mice. Consistent with this, a selective TLR9 agonist oligonucleotide 1668 exacerbated renal IR injury in TLR9fl/fl mice but not in renal proximal tubular TLR9-null mice. Furthermore, in cultured human and mouse proximal tubule cells, TLR9-selective ligands induced NF-κB activation, proinflammatory cytokine mRNA synthesis, as well as caspase activation. We further confirm in the present study that global TLR9 deficiency had no impact on murine ischemic AKI. Taken together, our studies show that renal proximal tubular TLR9 activation exacerbates ischemic AKI by promoting renal tubular inflammation, apoptosis as well as necrosis, after IR via NF-κB and caspase activation. Our studies further suggest the complex nature of TLR9 activation, as renal tubular epithelial TLR9 promotes cell injury and death whereas TLR9 signaling in other cell types may promote cytoprotective effects.
Collapse
Affiliation(s)
- Sang Jun Han
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032; and
| | - Hongmei Li
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032; and
| | - Mihwa Kim
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032; and
| | - Mark J Shlomchik
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - H Thomas Lee
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032; and
| |
Collapse
|
27
|
Kishore BK, Robson SC, Dwyer KM. CD39-adenosinergic axis in renal pathophysiology and therapeutics. Purinergic Signal 2018; 14:109-120. [PMID: 29332180 PMCID: PMC5940625 DOI: 10.1007/s11302-017-9596-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 11/28/2017] [Indexed: 12/12/2022] Open
Abstract
Extracellular ATP interacts with purinergic type 2 (P2) receptors and elicits many crucial biological functions. Extracellular ATP is sequentially hydrolyzed to ADP and AMP by the actions of defined nucleotidases, such as CD39, and AMP is converted to adenosine, largely by CD73, an ecto-5'-nucleotidase. Extracellular adenosine interacts with P1 receptors and often opposes the effects of P2 receptor activation. The balance between extracellular ATP and adenosine in the blood and extracellular fluid is regulated chiefly by the activities of CD39 and CD73, which constitute the CD39-adenosinergic axis. In recent years, several studies have shown this axis to play critical roles in transport of water/sodium, tubuloglomerular feedback, renin secretion, ischemia reperfusion injury, renal fibrosis, hypertension, diabetic nephropathy, transplantation, inflammation, and macrophage transformation. Important developments include global and targeted gene knockout and/or transgenic mouse models of CD39 or CD73, biological or small molecule inhibitors, and soluble engineered ectonucleotidases to directly impact the CD39-adenosinergic axis. This review presents a comprehensive picture of the multiple roles of CD39-adenosinergic axis in renal physiology, pathophysiology, and therapeutics. Scientific advances and greater understanding of the role of this axis in the kidney, in both health and illness, will direct development of innovative therapies for renal diseases.
Collapse
Affiliation(s)
- Bellamkonda K. Kishore
- Departments of Internal Medicine and Nutrition & Integrative Physiology, and Center on Aging, University of Utah Health, Salt Lake City, UT USA
- Nephrology Research, VA Salt Lake City Health Care System, 500 Foothill Drive (151M), Salt Lake City, UT 84148 USA
| | - Simon C. Robson
- Division of Gastroenterology/Hepatology and Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 USA
| | - Karen M. Dwyer
- School of Medicine, Faculty of Health, Deakin University, Geelong, VIC 3220 Australia
| |
Collapse
|
28
|
Aghakhani Chegeni S, Rahimzadeh M, Montazerghaem H, Khayatian M, Dasturian F, Naderi N. Preliminary Report on the Association Between STAT3 Polymorphisms and Susceptibility to Acute Kidney Injury After Cardiopulmonary Bypass. Biochem Genet 2018; 56:627-638. [PMID: 29846833 DOI: 10.1007/s10528-018-9865-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/18/2018] [Indexed: 01/01/2023]
Abstract
Cardiopulmonary bypass-associated acute kidney injury (CPB-AKI) is a well-recognized complication which is clearly linked to increased morbidity and mortality. Due to important role of inflammation in CPB-AKI pathogenesis, we explored the association between polymorphisms in STAT3, an inflammation-associated transcription factor, and the risk of CPB-AKI. In this study, STAT3 rs1053004 and rs744166 polymorphisms were analyzed in 129 patients undergoing coronary artery bypass grafting in Jorjani heart center, Bandar Abbas, Iran. The genotypes were determined using sequence-specific primers (PCR-SSP). Sixty-three patients met the criteria for AKI after cardiac surgery (AKI group). The remaining 66 patients did not develop AKI (non-AKI group). Rs1053004 GG genotype was significantly associated with a decreased risk (OR 0.4, 95% CI 0.17-0.9, P = 0.03) of CPB-AKI. Subgroup analyses revealed that GG genotype has also a protective effect in older patients (Age ≥ 60) (OR 0.19, 95% CI 0.04-0.8, P = 0.01). However, rs744166 did not show any difference between AKI and non-AKI groups. The result of our study for the first time provides evidence that rs1053004 polymorphism is significantly associated with a decreased risk of CPB-AKI in Iranian population, especially in older subjects.
Collapse
Affiliation(s)
- Sara Aghakhani Chegeni
- Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.,Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahsa Rahimzadeh
- Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hossein Montazerghaem
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahmood Khayatian
- Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Farzaneh Dasturian
- Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Nadereh Naderi
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran. .,Department of Immunology, Faculty of Medicine, Hormozgan University of Medical Sciences, EmamHossein Boulevard, P.O. Box: 7919693116, Bandar Abbas, Iran.
| |
Collapse
|
29
|
Short chain fatty acid, acetate ameliorates sepsis-induced acute kidney injury by inhibition of NADPH oxidase signaling in T cells. Int Immunopharmacol 2018; 58:24-31. [DOI: 10.1016/j.intimp.2018.02.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/07/2018] [Accepted: 02/28/2018] [Indexed: 12/29/2022]
|
30
|
Li H, Han SJ, Kim M, Cho A, Choi Y, D'Agati V, Lee HT. Divergent roles for kidney proximal tubule and granulocyte PAD4 in ischemic AKI. Am J Physiol Renal Physiol 2018; 314:F809-F819. [PMID: 29357426 PMCID: PMC6031910 DOI: 10.1152/ajprenal.00569.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 02/06/2023] Open
Abstract
We previously demonstrated that kidney peptidylarginine deiminase-4 (PAD4) plays a critical role in ischemic acute kidney injury (AKI) in mice by promoting renal tubular inflammation and neutrophil infiltration (Ham A, Rabadi M, Kim M, Brown KM, Ma Z, D'Agati V, Lee HT. Am J Physiol Renal Physiol 307: F1052-F1062, 2014). Although the role of PAD4 in granulocytes including neutrophils is well known, we surprisingly observed profound renal proximal tubular PAD4 induction after renal ischemia-reperfusion (I/R) injury. Here we tested the hypothesis that renal proximal tubular PAD4 rather than myeloid-cell lineage PAD4 plays a critical role in exacerbating ischemic AKI by utilizing mice lacking PAD4 in renal proximal tubules (PAD4ff PEPCK Cre mice) or in granulocytes (PAD4ff LysM Cre mice). Mice lacking renal proximal tubular PAD4 were significantly protected against ischemic AKI compared with wild-type (PAD4ff) mice. Surprisingly, mice lacking PAD4 in myeloid cells were also protected against renal I/R injury although this protection was less compared with renal proximal tubular PAD4-deficient mice. Renal proximal tubular PAD4-deficient mice had profoundly reduced renal tubular apoptosis, whereas myeloid-cell PAD4-deficient mice showed markedly reduced renal neutrophil infiltration. Taken together, our studies suggest that both renal proximal tubular PAD4 as well as myeloid-cell lineage PAD4 play a critical role in exacerbating ischemic AKI. Renal proximal tubular PAD4 appears to contribute to ischemic AKI by promoting renal tubular apoptosis, whereas myeloid-cell PAD4 is preferentially involved in promoting neutrophil infiltration to the kidney and inflammation after renal I/R.
Collapse
Affiliation(s)
- Hongmei Li
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - Sang Jun Han
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - Mihwa Kim
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - Ahyeon Cho
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - Yewoon Choi
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - Vivette D'Agati
- Department of Pathology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - H Thomas Lee
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| |
Collapse
|
31
|
The Costimulatory Pathways and T Regulatory Cells in Ischemia-Reperfusion Injury: A Strong Arm in the Inflammatory Response? Int J Mol Sci 2018; 19:ijms19051283. [PMID: 29693595 PMCID: PMC5983665 DOI: 10.3390/ijms19051283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/14/2018] [Accepted: 04/19/2018] [Indexed: 02/08/2023] Open
Abstract
Costimulatory molecules have been identified as crucial regulators in the inflammatory response in various immunologic disease models. These molecules are classified into four different families depending on their structure. Here, we will focus on various ischemia studies that use costimulatory molecules as a target to reduce the inherent inflammatory status. Furthermore, we will discuss the relevant role of T regulatory cells in these inflammatory mechanisms and the costimulatory pathways in which they are involved.
Collapse
|
32
|
Alikhan MA, Huynh M, Kitching AR, Ooi JD. Regulatory T cells in renal disease. Clin Transl Immunology 2018; 7:e1004. [PMID: 29484182 PMCID: PMC5822411 DOI: 10.1002/cti2.1004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/10/2017] [Accepted: 12/13/2017] [Indexed: 12/13/2022] Open
Abstract
The kidney is vulnerable to injury, both acute and chronic from a variety of immune and metabolic insults, all of which at least to some degree involve inflammation. Regulatory T cells modulate systemic autoimmune and allogenic responses in glomerulonephritis and transplantation. Intrarenal regulatory T cells (Tregs), including those recruited to the kidney, have suppressive effects on both adaptive and innate immune cells, and probably also intrinsic kidney cells. Evidence from autoimmune glomerulonephritis implicates antigen-specific Tregs in HLA-mediated dominant protection, while in several human renal diseases Tregs are abnormal in number or phenotype. Experimentally, Tregs can protect the kidney from injury in a variety of renal diseases. Mechanisms of Treg recruitment to the kidney include via the chemokine receptors CCR6 and CXCR3 and potentially, at least in innate injury TLR9. The effects of Tregs may be context dependent, with evidence for roles for immunoregulatory roles both for endogenous Tbet-expressing Tregs and STAT-3-expressing Tregs in experimental glomerulonephritis. Most experimental work and some of the ongoing human trials in renal transplantation have focussed on unfractionated thymically derived Tregs (tTregs). However, induced Tregs (iTregs), type 1 regulatory T (Tr1) cells and in particular antigen-specific Tregs also have therapeutic potential not only in renal transplantation, but also in other kidney diseases.
Collapse
Affiliation(s)
- Maliha A Alikhan
- Centre for Inflammatory Diseases Department of Medicine Monash University Monash Medical Centre Clayton Victoria Australia
| | - Megan Huynh
- Centre for Inflammatory Diseases Department of Medicine Monash University Monash Medical Centre Clayton Victoria Australia
| | - A Richard Kitching
- Centre for Inflammatory Diseases Department of Medicine Monash University Monash Medical Centre Clayton Victoria Australia.,Department of Nephrology Monash Health Clayton VIC Australia.,Department of Paediatric Nephrology Monash Health Clayton VIC Australia
| | - Joshua D Ooi
- Centre for Inflammatory Diseases Department of Medicine Monash University Monash Medical Centre Clayton Victoria Australia
| |
Collapse
|
33
|
Jin P, Chen H, Xie J, Zhou C, Zhu X. Essential role of microRNA-650 in the regulation of B-cell CLL/lymphoma 11B gene expression following transplantation: A novel mechanism behind the acute rejection of renal allografts. Int J Mol Med 2017; 40:1840-1850. [PMID: 29039465 PMCID: PMC5716404 DOI: 10.3892/ijmm.2017.3194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 10/06/2017] [Indexed: 12/14/2022] Open
Abstract
Kidney transplantation is an effective final therapeutic procedure for patients with end-stage kidney failure. Although advanced immunosuppressive therapy is administered following transplantation, certain patients still suffer from acute allograft rejection. MicroRNAs (miRs) have a potential diagnostic and therapeutic value for acute renal allograft rejection; however, their underlying mechanism of action is largely unknown. In the present study, an increased level of miR-650 was identified to be associated with the downregulation of B-cell CLL/lymphoma 11B (BCL11B) expression in acute renal allograft rejection. Furthermore, in vitro study using human renal glomerular endothelial cells (HRGECs) transfected with a miR-650 mimic revealed that key characteristics of acute renal allograft rejection were observed, including apoptosis, the release of cytokines and the chemotaxis of macrophages, while the effects were reduced in HRGECs transfected with a miR-650 inhibitor. The existence of a conserved miR-650 binding site on the 3'-untranslated region of BCL11B mRNA was predicted by computational algorithms and confirmed by a luciferase reporter assay. Knockdown of BCL11B with small interfering RNA (siRNA) significantly increased the apoptotic rate and significantly decreased the proliferation ability of HRGECs compared with the negative control group. HRGECs transfected with a combination of BCL11B siRNA and the miR-650 mimic demonstrated a significant increase in the rate of apoptosis compared with the control. These results suggest that the upregulation of miR-650 contributes to the development of acute renal allograft rejection by suppression of BCL11B, which leads to apoptosis and inflammatory responses. Thus, miR-650 and BCL11B may represent potential therapeutic targets for the prevention of acute renal allograft rejection.
Collapse
Affiliation(s)
- Peng Jin
- Centre of Organ Transplantation, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hongxi Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jinliang Xie
- Centre of Organ Transplantation, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Cheng Zhou
- Centre of Organ Transplantation, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiangrong Zhu
- Centre of Organ Transplantation, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
34
|
Rabadi M, Kim M, Li H, Han SJ, Choi Y, D'Agati V, Lee HT. ATP induces PAD4 in renal proximal tubule cells via P2X7 receptor activation to exacerbate ischemic AKI. Am J Physiol Renal Physiol 2017; 314:F293-F305. [PMID: 29021225 DOI: 10.1152/ajprenal.00364.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We previously demonstrated that renal tubular peptidylarginine deiminase-4 (PAD4) is induced after ischemia-reperfusion (IR) injury and this induction of PAD4 exacerbates ischemic acute kidney injury (AKI) by promoting renal tubular inflammation and neutrophil infiltration. However, the mechanisms of renal tubular PAD4 induction after IR remain unknown. Here, we tested the hypothesis that ATP, a proinflammatory danger-associated molecular pattern (DAMP) ligand released from necrotic cells after IR injury, induces renal tubular PAD4 and exacerbates ischemic AKI via P2 purinergic receptor activation. ATP as well as ATPγS (a nonmetabolizable ATP analog) induced PAD4 mRNA, protein, and activity in human and mouse renal proximal tubule cells. Supporting the hypothesis that ATP induces renal tubular PAD4 via P2X7 receptor activation, A804598 (a selective P2X7 receptor antagonist) blocked the ATP-mediated induction of renal tubular PAD4 whereas BzATP (a selective P2X7 receptor agonist) mimicked the effects of ATP by inducing renal tubular PAD4 expression and activity. Moreover, ATP-mediated calcium influx in renal proximal tubule cells was blocked by A804598 and was mimicked by BzATP. P2X7 activation by BzATP also induced PAD4 expression and activity in mouse kidney in vivo. Finally, supporting a critical role for PAD4 in P2X7-mediated exacerbation of renal injury, BzATP exacerbated ischemic AKI in PAD4 wild-type mice but not in PAD4-deficient mice. Taken together, our studies show that ATP induces renal tubular PAD4 via P2X7 receptor activation to exacerbate renal tubular inflammation and injury after IR.
Collapse
Affiliation(s)
- May Rabadi
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - Mihwa Kim
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - Hongmei Li
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - Sang Jun Han
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - Yewoon Choi
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - Vivette D'Agati
- Department of Pathology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - H Thomas Lee
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| |
Collapse
|
35
|
Low level of ochratoxin A affects genome-wide expression in kidney of pig. Toxicon 2017; 136:67-77. [DOI: 10.1016/j.toxicon.2017.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 01/18/2023]
|
36
|
Inoue T, Tanaka S, Okusa MD. Neuroimmune Interactions in Inflammation and Acute Kidney Injury. Front Immunol 2017; 8:945. [PMID: 28848551 PMCID: PMC5552660 DOI: 10.3389/fimmu.2017.00945] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/24/2017] [Indexed: 01/17/2023] Open
Abstract
Inflammation contributes to the pathogenesis of a wide variety of disorders including kidney diseases. Recent advances have shown that neural pathways are able to regulate immunity and inflammation. The cholinergic anti-inflammatory pathway (CAP) is a well-studied neural circuit involving the vagus nerve that is thought to contribute to the response to inflammatory disorders. Expression of receptors for neurotransmitters is found in some immune cells, including β2 adrenergic receptors on CD4 T cells and alpha 7 subunit of the nicotinic acetylcholine (ACh) receptor on macrophages. Once nerves are activated, neurotransmitters such as norepinephrine and ACh are released at nerve terminals, and the neurotransmitters can activate immune cells located in close proximity to the nerve terminals. Thus, vagus nerve stimulation induces activation of immune cells, leading to an anti-inflammatory response. Recent studies demonstrate a non-pharmacological organ protective effect of electrical nerve stimulation, pulsed ultrasound treatment, or optogenetic C1 neuron activation. These modalities are thought to activate the CAP and attenuate inflammation. In this review, we will focus on the current understanding of the mechanisms regarding neuroimmune interactions with a particular focus on inflammation associated with kidney disease.
Collapse
Affiliation(s)
- Tsuyoshi Inoue
- Division of Nephrology, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| | - Shinji Tanaka
- Division of Nephrology, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| | - Mark D Okusa
- Division of Nephrology, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
37
|
Nasim F, Das S, Mishra R, Mishra R. Hematological alterations and splenic T lymphocyte polarization at the crest of snake venom induced acute kidney injury in adult male mice. Toxicon 2017; 134:57-63. [DOI: 10.1016/j.toxicon.2017.05.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 05/26/2017] [Accepted: 05/28/2017] [Indexed: 12/13/2022]
|
38
|
Collett JA, Traktuev DO, Mehrotra P, Crone A, Merfeld-Clauss S, March KL, Basile DP. Human adipose stromal cell therapy improves survival and reduces renal inflammation and capillary rarefaction in acute kidney injury. J Cell Mol Med 2017; 21:1420-1430. [PMID: 28455887 PMCID: PMC5487924 DOI: 10.1111/jcmm.13071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/26/2016] [Indexed: 12/16/2022] Open
Abstract
Damage to endothelial cells contributes to acute kidney injury (AKI) by causing impaired perfusion, while the permanent loss of the capillary network following AKI has been suggested to promote chronic kidney disease. Therefore, strategies to protect renal vasculature may impact both short‐term recovery and long‐term functional preservation post‐AKI. Human adipose stromal cells (hASCs) possess pro‐angiogenic and anti‐inflammatory properties and therefore have been tested as a therapeutic agent to treat ischaemic conditions. This study evaluated hASC potential to facilitate recovery from AKI with specific attention to capillary preservation and inflammation. Male Sprague Dawley rats were subjected to bilateral ischaemia/reperfusion and allowed to recover for either two or seven days. At the time of reperfusion, hASCs or vehicle was injected into the suprarenal abdominal aorta. hASC‐treated rats had significantly greater survival compared to vehicle‐treated rats (88.7% versus 69.3%). hASC treatment showed hastened recovery as demonstrated by lower creatinine levels at 48 hrs, while tubular damage was significantly reduced at 48 hrs. hASC treatment resulted in a significant decrease in total T cell and Th17 cell infiltration into injured kidneys at 2 days post‐AKI, but an increase in accumulation of regulatory T cells. By day 7, hASC‐treated rats showed significantly attenuated capillary rarefaction in the cortex (15% versus 5%) and outer medulla (36% versus 18%) compared to vehicle‐treated rats as well as reduced accumulation of interstitial alpha‐smooth muscle actin‐positive myofibroblasts. These results suggest for the first time that hASCs improve recovery from I/R‐induced injury by mechanisms that contribute to decrease in inflammation and preservation of peritubular capillaries.
Collapse
Affiliation(s)
- Jason A Collett
- Department of Cellular and Integrative Physiology, Krannert Institute of Cardiology, Indiana University School of Medicine, Indiana Center for Vascular Biology and Medicine, Indianapolis, IN, USA
| | - Dmitry O Traktuev
- VA Center for Regenerative Medicine Indianapolis, Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA.,Department of Medicine, Krannert Institute of Cardiology, Indiana University School of Medicine, Indiana Center for Vascular Biology and Medicine, Indianapolis, IN, USA
| | - Purvi Mehrotra
- Department of Cellular and Integrative Physiology, Krannert Institute of Cardiology, Indiana University School of Medicine, Indiana Center for Vascular Biology and Medicine, Indianapolis, IN, USA
| | - Allison Crone
- Department of Cellular and Integrative Physiology, Krannert Institute of Cardiology, Indiana University School of Medicine, Indiana Center for Vascular Biology and Medicine, Indianapolis, IN, USA
| | - Stephanie Merfeld-Clauss
- VA Center for Regenerative Medicine Indianapolis, Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA.,Department of Medicine, Krannert Institute of Cardiology, Indiana University School of Medicine, Indiana Center for Vascular Biology and Medicine, Indianapolis, IN, USA
| | - Keith L March
- VA Center for Regenerative Medicine Indianapolis, Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA.,Department of Medicine, Krannert Institute of Cardiology, Indiana University School of Medicine, Indiana Center for Vascular Biology and Medicine, Indianapolis, IN, USA
| | - David P Basile
- Department of Cellular and Integrative Physiology, Krannert Institute of Cardiology, Indiana University School of Medicine, Indiana Center for Vascular Biology and Medicine, Indianapolis, IN, USA
| |
Collapse
|
39
|
Kumar G, Solanki MH, Xue X, Mintz R, Madankumar S, Chatterjee PK, Metz CN. Magnesium improves cisplatin-mediated tumor killing while protecting against cisplatin-induced nephrotoxicity. Am J Physiol Renal Physiol 2017; 313:F339-F350. [PMID: 28424213 DOI: 10.1152/ajprenal.00688.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/06/2017] [Accepted: 04/17/2017] [Indexed: 11/22/2022] Open
Abstract
Approximately 30% of all cancer patients treated with cisplatin, a widely used broad-spectrum chemotherapeutic agent, experience acute kidney injury (AKI). Almost all patients receiving cisplatin have magnesium (Mg) losses, which are proposed to aggravate AKI. Currently, there are no methods to successfully treat or prevent cisplatin-AKI. Whereas Mg supplementation has been shown to reduce AKI in experimental models and several small clinical trials, the effects of Mg status on tumor outcomes in immunocompetent tumor-bearing mice and humans have not been investigated. The purpose of this study was to further examine the effects of Mg deficiency (±Mg supplementation) on cisplatin-mediated AKI and tumor killing in immunocompetent mice bearing CT26 colon tumors. Using a model where cisplatin alone (20 mg/kg cumulative dose) produced minimal kidney injury, Mg deficiency significantly worsened cisplatin-mediated AKI, as determined by biochemical markers (blood urea nitrogen and plasma creatinine) and histological renal changes, as well as markers of renal oxidative stress, inflammation, and apoptosis. By contrast, Mg supplementation blocked cisplatin-induced kidney injury. Using LLC-PK1 renal epithelial cells, we observed that Mg deficiency or inhibition of Mg uptake significantly enhanced cisplatin-induced cytotoxicity, whereas Mg supplementation protected against cytotoxicity. However, neither Mg deficiency nor inhibition of Mg uptake impaired cisplatin-mediated killing of CT26 tumor cells in vitro. Mg deficiency was associated with significantly larger CT26 tumors in BALB/c mice when compared with normal-fed control mice, and Mg deficiency significantly reduced cisplatin-mediated tumor killing in vivo. Finally, Mg supplementation did not compromise cisplatin's anti-tumor efficacy in vivo.
Collapse
Affiliation(s)
- Gopal Kumar
- Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, New York
| | - Malvika H Solanki
- Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Xiangying Xue
- The Center for Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York; and
| | - Rachel Mintz
- The Center for Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York; and
| | - Swati Madankumar
- The Center for Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York; and
| | - Prodyot K Chatterjee
- The Center for Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York; and
| | - Christine N Metz
- Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, New York; .,The Center for Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York; and.,Hofstra-Northwell School of Medicine, Hempstead, New York
| |
Collapse
|
40
|
Alonezi S, Tusiimire J, Wallace J, Dufton MJ, Parkinson JA, Young LC, Clements CJ, Park JK, Jeon JW, Ferro VA, Watson DG. Metabolomic Profiling of the Synergistic Effects of Melittin in Combination with Cisplatin on Ovarian Cancer Cells. Metabolites 2017; 7:metabo7020014. [PMID: 28420117 PMCID: PMC5487985 DOI: 10.3390/metabo7020014] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 12/13/2022] Open
Abstract
Melittin, the main peptide present in bee venom, has been proposed as having potential for anticancer therapy; the addition of melittin to cisplatin, a first line treatment for ovarian cancer, may increase the therapeutic response in cancer treatment via synergy, resulting in improved tolerability, reduced relapse, and decreased drug resistance. Thus, this study was designed to compare the metabolomic effects of melittin in combination with cisplatin in cisplatin-sensitive (A2780) and resistant (A2780CR) ovarian cancer cells. Liquid chromatography (LC) coupled with mass spectrometry (MS) was applied to identify metabolic changes in A2780 (combination treatment 5 μg/mL melittin + 2 μg/mL cisplatin) and A2780CR (combination treatment 2 μg/mL melittin + 10 μg/mL cisplatin) cells. Principal components analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) multivariate data analysis models were produced using SIMCA-P software. All models displayed good separation between experimental groups and high-quality goodness of fit (R2) and goodness of prediction (Q2), respectively. The combination treatment induced significant changes in both cell lines involving reduction in the levels of metabolites in the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, purine and pyrimidine metabolism, and the arginine/proline pathway. The combination of melittin with cisplatin that targets these pathways had a synergistic effect. The melittin-cisplatin combination had a stronger effect on the A2780 cell line in comparison with the A2780CR cell line. The metabolic effects of melittin and cisplatin in combination were very different from those of each agent alone.
Collapse
Affiliation(s)
- Sanad Alonezi
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| | - Jonans Tusiimire
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, P.O. Box 1410 Mbarara, Uganda.
| | - Jennifer Wallace
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, UK.
| | - Mark J Dufton
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, UK.
| | - John A Parkinson
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, UK.
| | - Louise C Young
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| | - Carol J Clements
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| | - Jin-Kyu Park
- #204, Beesen Co. Ltd., Bio Venture Town, Yuseong Daero 1662, Dae Jeon 34054, Korea.
| | - Jong-Woon Jeon
- #204, Beesen Co. Ltd., Bio Venture Town, Yuseong Daero 1662, Dae Jeon 34054, Korea.
| | - Valerie A Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| | - David G Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| |
Collapse
|
41
|
Collett JA, Corridon PR, Mehrotra P, Kolb AL, Rhodes GJ, Miller CA, Molitoris BA, Pennington JG, Sandoval RM, Atkinson SJ, Campos-Bilderback SB, Basile DP, Bacallao RL. Hydrodynamic Isotonic Fluid Delivery Ameliorates Moderate-to-Severe Ischemia-Reperfusion Injury in Rat Kidneys. J Am Soc Nephrol 2017; 28:2081-2092. [PMID: 28122967 DOI: 10.1681/asn.2016040404] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 12/17/2016] [Indexed: 01/03/2023] Open
Abstract
Highly aerobic organs like the kidney are innately susceptible to ischemia-reperfusion (I/R) injury, which can originate from sources including myocardial infarction, renal trauma, and transplant. Therapy is mainly supportive and depends on the cause(s) of damage. In the absence of hypervolemia, intravenous fluid delivery is frequently the first course of treatment but does not reverse established AKI. Evidence suggests that disrupting leukocyte adhesion may prevent the impairment of renal microvascular perfusion and the heightened inflammatory response that exacerbate ischemic renal injury. We investigated the therapeutic potential of hydrodynamic isotonic fluid delivery (HIFD) to the left renal vein 24 hours after inducing moderate-to-severe unilateral IRI in rats. HIFD significantly increased hydrostatic pressure within the renal vein. When conducted after established AKI, 24 hours after I/R injury, HIFD produced substantial and statistically significant decreases in serum creatinine levels compared with levels in animals given an equivalent volume of saline via peripheral infusion (P<0.05). Intravital confocal microscopy performed immediately after HIFD showed improved microvascular perfusion. Notably, HIFD also resulted in immediate enhancement of parenchymal labeling with the fluorescent dye Hoechst 33342. HIFD also associated with a significant reduction in the accumulation of renal leukocytes, including proinflammatory T cells. Additionally, HIFD significantly reduced peritubular capillary erythrocyte congestion and improved histologic scores of tubular injury 4 days after IRI. Taken together, these results indicate that HIFD performed after establishment of AKI rapidly restores microvascular perfusion and small molecule accessibility, with improvement in overall renal function.
Collapse
Affiliation(s)
| | - Peter R Corridon
- Department of Craniofacial Biology, University of Colorado Denver, Anschutz Campus, Aurora, Colorado
| | | | - Alexander L Kolb
- Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana; and
| | | | | | - Bruce A Molitoris
- Division of Nephrology, Department of Medicine.,Indiana Center for Biological Microscopy, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | - Simon J Atkinson
- Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana; and
| | | | - David P Basile
- Department of Cellular and Integrative Physiology.,Division of Nephrology, Department of Medicine
| | - Robert L Bacallao
- Division of Nephrology, Department of Medicine, .,Department of Medicine, Division of Nephrology, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| |
Collapse
|
42
|
Guo L, Lee HH, Noriega MDLM, Paust HJ, Zahner G, Thaiss F. Lymphocyte-specific deletion of IKK2 or NEMO mediates an increase in intrarenal Th17 cells and accelerates renal damage in an ischemia-reperfusion injury mouse model. Am J Physiol Renal Physiol 2016; 311:F1005-F1014. [PMID: 27582100 DOI: 10.1152/ajprenal.00242.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/29/2016] [Indexed: 12/22/2022] Open
Abstract
Acute kidney injury (AKI) is associated with poor patient outcome and a global burden for end-stage renal disease. Ischemia-reperfusion injury (IRI) is one of the major causes of AKI, and experimental work has revealed many details of the inflammatory response in the kidney, such as activation of the NF-κB pathway. Here, we investigated whether deletion of the NF-κB kinases IKK2 or NEMO in lymphocytes or systemic inhibition of IKK2 would cause different kidney inflammatory responses after IRI induction. Serum creatinine, blood urea nitrogen (BUN) level, and renal tubular injury score were significantly increased in CD4creIKK2f/f (CD4xIKK2Δ) and CD4creNEMOf/f (CD4xNEMOΔ) mice compared with CD4cre mice after IRI induction. The frequency of Th17 cells infiltrating the kidneys of CD4xIKK2Δ or CD4xNEMOΔ mice was also significantly increased at all time points. CCL20, an important chemokine in Th17 cell recruitment, was significantly increased at early time points after the induction of IRI. IL-1β, TNF-α, and CCL2 were also significantly increased in different patterns. A specific IKK2 inhibitor, KINK-1, reduced BUN and serum creatinine compared with nontreated mice after IRI induction, but the frequency of kidney Th17 cells was also significantly increased. In conclusion, although systemic IKK2 inhibition improved kidney function, lymphocyte-specific deletion of IKK2 or NEMO aggravated kidney injury after IRI, and, in both conditions, the percentage of Th17 cells was increased. Our findings demonstrate the critical role of the NF-κB pathway in Th17 activation, which advises caution when using systemic IKK2 inhibitors in patients with kidney injury, since they might impair the T cell response and aggravate renal disease.
Collapse
Affiliation(s)
- Linlin Guo
- III Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Hannah Heejung Lee
- III Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | | | - Hans J Paust
- III Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Gunther Zahner
- III Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Thaiss
- III Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
43
|
Circulating (CD3(-)CD19(+)CD20(-)IgD(-)CD27(high)CD38(high)) Plasmablasts: A Promising Cellular Biomarker for Immune Activity for Anti-PLA2R1 Related Membranous Nephropathy? Mediators Inflamm 2016; 2016:7651024. [PMID: 27493452 PMCID: PMC4963584 DOI: 10.1155/2016/7651024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/25/2016] [Accepted: 05/08/2016] [Indexed: 01/11/2023] Open
Abstract
Membranous nephropathy (MN) is a kidney specific autoimmune disease mainly mediated by anti-phospholipase A2 receptor 1 autoantibody (PLA2R1 Ab). The adequate assessment of chimeric anti-CD20 monoclonal antibody, rituximab (RTX), efficacy is still needed to improve clinical outcome of patient with MN. We evaluated the modification of plasmablasts (CD3−CD19+CD20−IgD−CD27highCD38high), a useful biomarker of RTX response in other autoimmune diseases, and memory (CD3−CD19+CD20+IgD−CD27+CD38−) and naive (CD3−CD19+CD20+IgD+CD27−CD38low) B cells by fluorescence-activated cell sorter analysis in PLA2R1 related MN in one patient during the 4 years of follow-up after RTX. RTX induced complete disappearance of CD19+ B cells, plasmablasts, and memory B cells as soon as day 15. Despite severe CD19+ lymphopenia, plasmablasts and memory B cells reemerged early before naive B cells (days 45, 90, and 120, resp.). During the follow-up, plasmablasts decreased more rapidly than memory B cells but still remained elevated as compared to day 0 of RTX. Concomitantly, anti-PLA2R1 Ab increased progressively. Our single case report suggests that, besides monitoring of serum anti-PLA2R1 Ab level, enumeration of circulating plasmablasts and memory B cells represents an attractive and complementary tool to assess immunological activity and efficacy of RTX induced B cells depletion in anti-PLA2R1 Ab related MN.
Collapse
|
44
|
Swaminathan S, Rosner MH, Okusa MD. Emerging therapeutic targets of sepsis-associated acute kidney injury. Semin Nephrol 2015; 35:38-54. [PMID: 25795498 DOI: 10.1016/j.semnephrol.2015.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sepsis-associated acute kidney injury (SA-AKI) is linked to high morbidity and mortality. To date, singular approaches to target specific pathways known to contribute to the pathogenesis of SA-AKI have failed. Because of the complexity of the pathogenesis of SA-AKI, a reassessment necessitates integrative approaches to therapeutics of SA-AKI that include general supportive therapies such as the use of vasopressors, fluids, antimicrobials, and target-specific and time-dependent therapeutics. There has been recent progress in our understanding of the pathogenesis and treatment of SA-AKI including the temporal nature of proinflammatory and anti-inflammatory processes. In this review, we discuss the clinical and experimental basis of emerging therapeutic approaches that focus on targeting early proinflammatory and late anti-inflammatory processes, as well as therapeutics that may enhance cellular survival and recovery. Finally, we include ongoing clinical trials in sepsis.
Collapse
Affiliation(s)
- Sundararaman Swaminathan
- Division of Nephrology, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia Health System, Charlottesville, VA
| | - Mitchell H Rosner
- Division of Nephrology, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia Health System, Charlottesville, VA
| | - Mark D Okusa
- Division of Nephrology, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia Health System, Charlottesville, VA.
| |
Collapse
|
45
|
Niendorf T, Pohlmann A, Reimann HM, Waiczies H, Peper E, Huelnhagen T, Seeliger E, Schreiber A, Kettritz R, Strobel K, Ku MC, Waiczies S. Advancing Cardiovascular, Neurovascular, and Renal Magnetic Resonance Imaging in Small Rodents Using Cryogenic Radiofrequency Coil Technology. Front Pharmacol 2015; 6:255. [PMID: 26617515 PMCID: PMC4642111 DOI: 10.3389/fphar.2015.00255] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/19/2015] [Indexed: 12/11/2022] Open
Abstract
Research in pathologies of the brain, heart and kidney have gained immensely from the plethora of studies that have helped shape new methods in magnetic resonance (MR) for characterizing preclinical disease models. Methodical probing into preclinical animal models by MR is invaluable since it allows a careful interpretation and extrapolation of data derived from these models to human disease. In this review we will focus on the applications of cryogenic radiofrequency (RF) coils in small animal MR as a means of boosting image quality (e.g., by supporting MR microscopy) and making data acquisition more efficient (e.g., by reducing measuring time); both being important constituents for thorough investigational studies on animal models of disease. This review attempts to make the (bio)medical imaging, molecular medicine, and pharmaceutical communities aware of this productive ferment and its outstanding significance for anatomical and functional MR in small rodents. The goal is to inspire a more intense interdisciplinary collaboration across the fields to further advance and progress non-invasive MR methods that ultimately support thorough (patho)physiological characterization of animal disease models. In this review, current and potential future applications for the RF coil technology in cardiovascular, neurovascular, and renal disease will be discussed.
Collapse
Affiliation(s)
- Thoralf Niendorf
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
- German Centre for Cardiovascular ResearchBerlin, Germany
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
| | - Henning M. Reimann
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
| | | | - Eva Peper
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
| | - Till Huelnhagen
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
| | - Erdmann Seeliger
- Center for Cardiovascular Research, Institute of Physiology, Charité—Universitätsmedizin BerlinBerlin, Germany
| | - Adrian Schreiber
- Clinic for Nephrology and Intensive Care Medicine, Charité Medical Faculty and Experimental and Clinical Research CenterBerlin, Germany
| | - Ralph Kettritz
- Clinic for Nephrology and Intensive Care Medicine, Charité Medical Faculty and Experimental and Clinical Research CenterBerlin, Germany
| | | | - Min-Chi Ku
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
| | - Sonia Waiczies
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
| |
Collapse
|
46
|
Alhasson F, Dattaroy D, Das S, Chandrashekaran V, Seth RK, Schnellmann RG, Chatterjee S. NKT cell modulates NAFLD potentiation of metabolic oxidative stress-induced mesangial cell activation and proximal tubular toxicity. Am J Physiol Renal Physiol 2015; 310:F85-F101. [PMID: 26447219 DOI: 10.1152/ajprenal.00243.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/06/2015] [Indexed: 12/21/2022] Open
Abstract
Obesity and nonalcoholic fatty liver disease (NAFLD) are associated with the development and progression of chronic kidney disease. We recently showed that NAFLD induces liver-specific cytochrome P-450 (CYP)2E1-mediated metabolic oxidative stress after administration of the CYP2E1 substrate bromodichloromethane (BDCM) (Seth RK, Das S, Kumar A, Chanda A, Kadiiska MB, Michelotti G, Manautou J, Diehl AM, Chatterjee S. Toxicol Appl Pharmacol 274: 42-54, 2014; Seth RK, Kumar A, Das S, Kadiiska MB, Michelotti G, Diehl AM, Chatterjee S. Toxicol Sci 134:291-303, 2013). The present study examined the effects of CYP2E1-mediated oxidative stress in NAFLD leading to kidney toxicity. Mice were fed a high-fat diet for 12 wk to induce NAFLD. NAFLD mice were exposed to BDCM, a CYP2E1 substrate, for 4 wk. NAFLD + BDCM increased CYP2E1-mediated lipid peroxidation in proximal tubular cells compared with mice with NAFLD alone or BDCM-treated lean mice, thus ruling out the exclusive role of BDCM. Lipid peroxidation increased IL-1β, TNF-α, and interferon-γ. In parallel, mesangial cell activation was observed by increased α-smooth muscle actin and transforming growth factor-β, which was blocked by the CYP2E1 inhibitor diallyl sulphide both in vivo and in vitro. Mice lacking natural killer T cells (CD1d knockout mice) showed elevated (>4-fold) proinflammatory mediator release, increased Toll-like receptor (TLR)4 and PDGF2 mRNA, and mesangial cell activation in the kidney. Finally, NAFLD CD1D knockout mice treated with BDCM exhibited increased high mobility group box 1 and Fas ligand levels and TUNEL-positive nuclei, indicating that higher cell death was attenuated in TLR4 knockout mice. Tubular cells showed increased cell death and cytokine release when incubated with activated mesangial cells. In summary, an underlying condition of progressive NAFLD causes renal immunotoxicity and aberrant glomerular function possibly through high mobility group box 1-dependent TLR4 signaling and mesangial cell activation, which, in turn, is modulated by intrinsic CD1D-dependent natural killer T cells.
Collapse
Affiliation(s)
- Firas Alhasson
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina; and
| | - Diptadip Dattaroy
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina; and
| | - Suvarthi Das
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina; and
| | - Varun Chandrashekaran
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina; and
| | - Ratanesh Kumar Seth
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina; and
| | - Rick G Schnellmann
- Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina; and
| |
Collapse
|
47
|
Noel S, Martina MN, Bandapalle S, Racusen LC, Potteti HR, Hamad ARA, Reddy SP, Rabb H. T Lymphocyte-Specific Activation of Nrf2 Protects from AKI. J Am Soc Nephrol 2015; 26:2989-3000. [PMID: 26293820 DOI: 10.1681/asn.2014100978] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/02/2015] [Indexed: 12/26/2022] Open
Abstract
T lymphocytes are established mediators of ischemia reperfusion (IR)-induced AKI, but traditional immune principles do not explain their mechanism of early action in the absence of alloantigen. Nrf2 is a transcription factor that is crucial for cytoprotective gene expression and is generally thought to have a key role in dampening IR-induced AKI through protective effects on epithelial cells. We proposed an alternative hypothesis that augmentation of Nrf2 in T cells is essential to mitigate oxidative stress during IR-induced AKI. We therefore generated mice with genetically amplified levels of Nrf2 specifically in T cells and examined the effect on antioxidant gene expression, T cell activation, cytokine production, and IR-induced AKI. T cell-specific augmentation of Nrf2 significantly increased baseline antioxidant gene expression. These mice had a high frequency of intrarenal CD25(+)Foxp3(+) regulatory T cells and decreased frequencies of CD11b(+)CD11c(+) and F4/80(+) cells. Intracellular levels of TNF-α, IFN-γ, and IL-17 were significantly lower in CD4(+) T cells with high Nrf2 expression. Mice with increased T cell expression of Nrf2 were significantly protected from functional and histologic consequences of AKI. Furthermore, adoptive transfer of high-Nrf2 T cells protected wild-type mice from IR injury and significantly improved their survival. These data demonstrate that T cell-specific activation of Nrf2 protects from IR-induced AKI, revealing a novel mechanism of tissue protection during acute injury responses.
Collapse
Affiliation(s)
- Sanjeev Noel
- Division of Nephrology, Department of Medicine and
| | - Maria N Martina
- Division of Immunopathology, Department of Pathology, Johns Hopkins University, Baltimore, Maryland; and
| | | | - Lorraine C Racusen
- Division of Immunopathology, Department of Pathology, Johns Hopkins University, Baltimore, Maryland; and
| | - Haranatha R Potteti
- Department of Pediatrics, College of Medicine, University of Illinois, Chicago, Illinois
| | - Abdel R A Hamad
- Division of Immunopathology, Department of Pathology, Johns Hopkins University, Baltimore, Maryland; and
| | - Sekhar P Reddy
- Department of Pediatrics, College of Medicine, University of Illinois, Chicago, Illinois
| | - Hamid Rabb
- Division of Nephrology, Department of Medicine and
| |
Collapse
|
48
|
Tumlin JA, Galphin CM, Tolwani AJ, Chan MR, Vijayan A, Finkel K, Szamosfalvi B, Dev D, DaSilva JR, Astor BC, Yevzlin AS, Humes HD. A Multi-Center, Randomized, Controlled, Pivotal Study to Assess the Safety and Efficacy of a Selective Cytopheretic Device in Patients with Acute Kidney Injury. PLoS One 2015; 10:e0132482. [PMID: 26244978 PMCID: PMC4526678 DOI: 10.1371/journal.pone.0132482] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/14/2015] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE Acute kidney injury (AKI) is a highly morbid condition in critically ill patients that is associated with high mortality. Previous clinical studies have demonstrated the safety and efficacy of the Selective Cytopheretic Device (SCD) in the treatment of AKI requiring continuous renal replacement therapy in the intensive care unit (ICU). DESIGN, SETTING, PATIENTS A randomized, controlled trial of 134 ICU patients with AKI, 69 received continuous renal replacement therapy (CRRT) alone and 65 received SCD therapy. RESULTS No significant difference in 60-day mortality was observed between the treated (27/69; 39%) and control patients (21/59; 36%, with six patients lost to follow up) in the intention to treat (ITT) analysis. Of the 19 SCD subjects (CRRT+SCD) and 31 control subjects (CRRT alone) who maintained a post-filter ionized calcium (iCa) level in the protocol's recommended range (≤ 0.4 mmol/L) for greater or equal to 90% of the therapy time, 60-day mortality was 16% (3/19) in the SCD group compared to 41% (11/27) in the CRRT alone group (p = 0.11). Dialysis dependency showed a borderline statistically significant difference between the SCD treated versus control CRRT alone patients maintained for ≥ 90% of the treatment in the protocol's recommended (r) iCa target range of ≤ 0.4 mmol/L with values of, 0% (0/16) and 25% (4/16), respectively (P = 0.10). When the riCa treated and control subgroups were compared for a composite index of 60 day mortality and dialysis dependency, the percentage of SCD treated subjects was 16% versus 58% in the control subjects (p<0.01). The incidence of serious adverse events did not differ between the treated (45/69; 65%) and control groups (40/65; 63%; p = 0·86). CONCLUSION SCD therapy may improve mortality and reduce dialysis dependency in a tightly controlled regional hypocalcaemic environment in the perfusion circuit. TRIAL REGISTRATION ClinicalTrials.gov NCT01400893 http://clinicaltrials.gov/ct2/show/NCT01400893.
Collapse
Affiliation(s)
- James A. Tumlin
- Department of Medicine, UT College of Medicine, University of Tennessee, 960 East Third Street, Suite 100, Chattanooga, TN, 37403, United States of America
| | - Claude M. Galphin
- Department of Medicine, UT College of Medicine, University of Tennessee, 960 East Third Street, Suite 100, Chattanooga, TN, 37403, United States of America
| | - Ashita J. Tolwani
- Department of Medicine, UAB School of Medicine, University of Alabama, 1720 2nd Ave. S. FOT 1203, Birmingham, AL, 35294–3412, United States of America
| | - Micah R. Chan
- Department of Medicine, University of Wisconsin, UW Med Fndtn. Centennial Bldg. 5148 MFCB, 1685 Highland Ave., Madison, WI, 53705–2281, United States of America
| | - Anitha Vijayan
- Washington University School of Medicine, 660 S Euclid Ave., St Louis, MO, 63110, United States of America
| | - Kevin Finkel
- UT Health Science Center, University of Texas, 6410 Fannin St., Ste. 606, Houston, TX, 77030, United States of America
| | - Balazs Szamosfalvi
- Henry Ford Health System, Henry Ford Hospital, CFP-509, 2799 West Grand Blvd., Detroit, MI, 48202–2608, United States of America
| | - Devasmita Dev
- Dallas VA Medical Center, 4500 S. Lancaster Rd., Dallas, TX, 75216, United States of America
| | - J. Ricardo DaSilva
- CytoPherx, Inc., 401 W. Morgan Rd., Ann Arbor, MI, 48108, United States of America
| | - Brad C. Astor
- Department of Medicine, University of Wisconsin, UW Med Fndtn. Centennial Bldg. 5148 MFCB, 1685 Highland Ave., Madison, WI, 53705–2281, United States of America
- Department of Population Health Sciences, University of Wisconsin, Health Sciences Learning Center, 750 Highland Ave., Madison, WI, 53705, United States of America
| | - Alexander S. Yevzlin
- Department of Medicine, University of Wisconsin, UW Med Fndtn. Centennial Bldg. 5148 MFCB, 1685 Highland Ave., Madison, WI, 53705–2281, United States of America
- CytoPherx, Inc., 401 W. Morgan Rd., Ann Arbor, MI, 48108, United States of America
| | - H. David Humes
- CytoPherx, Inc., 401 W. Morgan Rd., Ann Arbor, MI, 48108, United States of America
- Department of Medicine, University of Michigan, 4520 MSRB I, Box 0651, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109, United States of America
- * E-mail:
| | | |
Collapse
|
49
|
Research Progress on Regulatory T Cells in Acute Kidney Injury. J Immunol Res 2015; 2015:174164. [PMID: 26273681 PMCID: PMC4529954 DOI: 10.1155/2015/174164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/02/2015] [Indexed: 02/06/2023] Open
Abstract
Immune inflammation is crucial in mediating acute kidney injury (AKI). Immune cells of both the innate and adaptive immune systems substantially contribute to overall renal damage in AKI. Regulatory T cells (Tregs) are key regulator of immunological function and have been demonstrated to ameliorate injury in several murine experimental models of renal inflammation. Recent studies have illuminated the renal-protective function of Tregs in AKI. Tregs appear to exert beneficial effects in both the acute injury phase and the recovery phase of AKI. Additionally, Tregs-based immunotherapy may represent a promising approach to ameliorate AKI and promote recovery from AKI. This review will highlight the recent insights into the role of Tregs and their therapeutic potential in AKI.
Collapse
|
50
|
Liu SB, Liu J, Liu DW, Wang XT, Yang RL. Inhibition of Poly-(ADP-Ribose) Polymerase Protects the Kidney in a Canine Model of Endotoxic Shock. Nephron Clin Pract 2015; 130:281-92. [PMID: 26184635 DOI: 10.1159/000435815] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 06/08/2015] [Indexed: 11/19/2022] Open
Abstract
Poly-(ADP-ribose) polymerases (PARPs), a super family of enzymes, play important roles in preserving genomic integrity, regulating transcriptions, protecting telomeres and determining cell fate. PARP overactivation leads to metabolic disorder and cell injury via depletion of energy substance. However, it is still unclear whether PARP overactivation happens during acute kidney injury (AKI) caused by endotoxic shock (ES). Here, we built a canine model of lipopolysaccharide-induced ES to explore the role of PARP during the development AKI. We also used an intravenous injection of 3-aminobenzamide (3-AB) to further explore whether PARP inhibition rescues the kidney from injury. Cell fate and energy metabolism were detected to explore the underlying mechanisms. As a result, Western blot and immunohistochemistry assays showed PARP overactivation in the very early phase of ES. Through PARP inhibition by 3-AB, we observed significant improvement of systemic hemodynamics, renal hemodynamics, renal oxygen metabolism and renal tubular cell apoptosis. These findings indicated that overactivation of PARP plays an important role in septic AKI. Inhibition of PARP overactivation may protect renal function against hemodynamic disorder, renal metabolism disturbance and renal cell apoptosis during endotoxic AKI.
Collapse
Affiliation(s)
- Si-bo Liu
- Surgical Intensive Care Unit, Dalian Municipal Central Hospital, Dalian City, China
| | | | | | | | | |
Collapse
|