1
|
Rroji O, Mucignat C. Factors influencing brain recovery from stroke via possible epigenetic changes. Future Sci OA 2024; 10:2409609. [PMID: 39429231 PMCID: PMC11497982 DOI: 10.1080/20565623.2024.2409609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
Aim: To examine epigenetic changes leading to functional repair after damage to the central motor system.Data sources: A literature search was conducted using medical and health science electronic databases (PubMed, MEDLINE, Scopus) up to July 2023.Study selection: Data were summarized for type of intervention, study design, findings including human and animal studies.Data extraction: Data were extracted and double-checked independently for methodological quality. By means of the influence of environmental (calorie restriction or physical exercise) and other factors, epigenetic instructions were found to increase levels of BDNF and enhance synaptic neurotransmission, possibly leading to larger scale changes in structural and functional assets, which may end up to cognitive and motor repair after stroke.
Collapse
Affiliation(s)
- Orjon Rroji
- Department of Radiology & Imaging techniques, European University of Tirana, Albania
| | - Carla Mucignat
- Department of Molecular Medicine, University of Padova, Italy
- National Institute for Biostructures & Biosystems, Rome, Italy
| |
Collapse
|
2
|
He Q, Wang Y, Zhao F, Wei S, Li X, Zeng G. APE1: A critical focus in neurodegenerative conditions. Biomed Pharmacother 2024; 179:117332. [PMID: 39191031 DOI: 10.1016/j.biopha.2024.117332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/04/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
The global growth of the aging population has resulted in an increased prevalence of neurodegenerative diseases, characterized by the progressive loss of central nervous system (CNS) structure and function. Given the high incidence and debilitating nature of neurodegenerative diseases, there is an urgent need to identify potential biomarkers and novel therapeutic targets thereof. Apurinic/apyrimidinic endonuclease 1 (APE1), has been implicated in several neurodegenerative diseases, as having a significant role. Abnormal APE1 expression has been observed in conditions including Alzheimer's disease, stroke, amyotrophic lateral sclerosis, Parkinson's disease, Huntington's disease, and epilepsy. However, whether this dysregulation is protective or harmful remains unclear. This review aims to comprehensively review the current understanding of the involvement of APE1 in neurodegenerative diseases.
Collapse
Affiliation(s)
- Qianxiong He
- Department of Ophthalmology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Yi Wang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Feng Zhao
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Shigang Wei
- Department of Clinical Laboratory, People's Hospital of Pengzhou city, Pengzhou, Sichuan province 611930, China
| | - Xingfu Li
- Department of Clinical Laboratory, The Honghe Autonomous Prefecture 3rd Hospital, Honghe 661021, China
| | - Guangqun Zeng
- Department of Clinical Laboratory, People's Hospital of Pengzhou city, Pengzhou, Sichuan province 611930, China.
| |
Collapse
|
3
|
Hedlich-Dwyer J, Allard JS, Mulgrave VE, Kisby GE, Raber J, Gassman NR. Novel Techniques for Mapping DNA Damage and Repair in the Brain. Int J Mol Sci 2024; 25:7021. [PMID: 39000135 PMCID: PMC11241736 DOI: 10.3390/ijms25137021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
DNA damage in the brain is influenced by endogenous processes and metabolism along with exogenous exposures. Accumulation of DNA damage in the brain can contribute to various neurological disorders, including neurodegenerative diseases and neuropsychiatric disorders. Traditional methods for assessing DNA damage in the brain, such as immunohistochemistry and mass spectrometry, have provided valuable insights but are limited by their inability to map specific DNA adducts and regional distributions within the brain or genome. Recent advancements in DNA damage detection methods offer new opportunities to address these limitations and further our understanding of DNA damage and repair in the brain. Here, we review emerging techniques offering more precise and sensitive ways to detect and quantify DNA lesions in the brain or neural cells. We highlight the advancements and applications of these techniques and discuss their potential for determining the role of DNA damage in neurological disease.
Collapse
Affiliation(s)
- Jenna Hedlich-Dwyer
- Department of Pharmacology and Toxicology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Joanne S Allard
- Department of Physiology & Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| | - Veronica E Mulgrave
- Department of Physiology & Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| | - Glen E Kisby
- Department of Biomedical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Lebanon, OR 97355, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Neurology, and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR 97239, USA
| | - Natalie R Gassman
- Department of Pharmacology and Toxicology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
4
|
Lautrup S, Myrup Holst C, Yde A, Asmussen S, Thinggaard V, Larsen K, Laursen LS, Richner M, Vægter CB, Prieto GA, Berchtold N, Cotman CW, Stevnsner T. The role of aging and brain-derived neurotrophic factor signaling in expression of base excision repair genes in the human brain. Aging Cell 2023; 22:e13905. [PMID: 37334527 PMCID: PMC10497833 DOI: 10.1111/acel.13905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/20/2023] Open
Abstract
DNA damage is a central contributor to the aging process. In the brain, a major threat to the DNA is the considerable amount of reactive oxygen species produced, which can inflict oxidative DNA damage. This type of damage is removed by the base excision repair (BER) pathway, an essential DNA repair mechanism, which contributes to genome stability in the brain. Despite the crucial role of the BER pathway, insights into how this pathway is affected by aging in the human brain and the underlying regulatory mechanisms are very limited. By microarray analysis of four cortical brain regions from humans aged 20-99 years (n = 57), we show that the expression of core BER genes is largely downregulated during aging across brain regions. Moreover, we find that expression of many BER genes correlates positively with the expression of the neurotrophin brain-derived neurotrophic factor (BDNF) in the human brain. In line with this, we identify binding sites for the BDNF-activated transcription factor, cyclic-AMP response element-binding protein (CREB), in the promoter of most BER genes and confirm the ability of BDNF to regulate several BER genes by BDNF treatment of mouse primary hippocampal neurons. Together, these findings uncover the transcriptional landscape of BER genes during aging of the brain and suggest BDNF as an important regulator of BER in the human brain.
Collapse
Affiliation(s)
- Sofie Lautrup
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
- Department of Clinical Molecular BiologyUniversity of Oslo and Akershus University HospitalLørenskogNorway
| | | | - Anne Yde
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Stine Asmussen
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Vibeke Thinggaard
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Knud Larsen
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | | | - Mette Richner
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience – DANDRITE, Nordic EMBL Partnership for Molecular MedicineAarhus UniversityAarhusDenmark
| | - Christian B. Vægter
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience – DANDRITE, Nordic EMBL Partnership for Molecular MedicineAarhus UniversityAarhusDenmark
| | - G. Aleph Prieto
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
- Instituto de NeurobiologíaUNAM‐JuriquillaJuriquillaMexico
| | - Nicole Berchtold
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | - Carl W. Cotman
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | - Tinna Stevnsner
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| |
Collapse
|
5
|
Kaur J, Mojumdar A. A mechanistic overview of spinal cord injury, oxidative DNA damage repair and neuroprotective therapies. Int J Neurosci 2023; 133:307-321. [PMID: 33789065 DOI: 10.1080/00207454.2021.1912040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Despite substantial development in medical treatment strategies scientists are struggling to find a cure against spinal cord injury (SCI) which causes long term disability and paralysis. The prime rationale behind it is the enlargement of primary lesion due to an initial trauma to the spinal cord which spreads to the neighbouring spinal tissues It begins from the time of traumatic event happened and extends to hours and even days. It further causes series of biological and functional alterations such as inflammation, excitotoxicity and ischemia, and promotes secondary lesion to the cord which worsens the life of individuals affected by SCI. Oxidative DNA damage is a stern consequence of oxidative stress linked with secondary injury causes oxidative base alterations and strand breaks, which provokes cell death in neurons. It is implausible to stop primary damage however it is credible to halt the secondary lesion and improve the quality of the patient's life to some extent. Therefore it is crucial to understand the hidden perspectives of cell and molecular biology affecting the pathophysiology of SCI. Thus the focus of the review is to connect the missing links and shed light on the oxidative DNA damages and the functional repair mechanisms, as a consequence of the injury in neurons. The review will also probe the significance of neuroprotective strategies in the present scenario. HIGHLIGHTSSpinal cord injury, a pernicious condition, causes excitotoxicity and ischemia, ultimately leading to cell death.Oxidative DNA damage is a consequence of oxidative stress linked with secondary injury, provoking cell death in neurons.Base excision repair (BER) is one of the major repair pathways that plays a crucial role in repairing oxidative DNA damages.Neuroprotective therapies curbing SCI and boosting BER include the usage of pharmacological drugs and other approaches.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Department of Neuroscience, University of Copenhagen, Copenhagen N, Denmark
| | - Aditya Mojumdar
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
6
|
Cahill T, da Silveira WA, Renaud L, Wang H, Williamson T, Chung D, Chan S, Overton I, Hardiman G. Investigating the effects of chronic low-dose radiation exposure in the liver of a hypothermic zebrafish model. Sci Rep 2023; 13:918. [PMID: 36650199 PMCID: PMC9845366 DOI: 10.1038/s41598-022-26976-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/22/2022] [Indexed: 01/18/2023] Open
Abstract
Mankind's quest for a manned mission to Mars is placing increased emphasis on the development of innovative radio-protective countermeasures for long-term space travel. Hibernation confers radio-protective effects in hibernating animals, and this has led to the investigation of synthetic torpor to mitigate the deleterious effects of chronic low-dose-rate radiation exposure. Here we describe an induced torpor model we developed using the zebrafish. We explored the effects of radiation exposure on this model with a focus on the liver. Transcriptomic and behavioural analyses were performed. Radiation exposure resulted in transcriptomic perturbations in lipid metabolism and absorption, wound healing, immune response, and fibrogenic pathways. Induced torpor reduced metabolism and increased pro-survival, anti-apoptotic, and DNA repair pathways. Coupled with radiation exposure, induced torpor led to a stress response but also revealed maintenance of DNA repair mechanisms, pro-survival and anti-apoptotic signals. To further characterise our model of induced torpor, the zebrafish model was compared with hepatic transcriptomic data from hibernating grizzly bears (Ursus arctos horribilis) and active controls revealing conserved responses in gene expression associated with anti-apoptotic processes, DNA damage repair, cell survival, proliferation, and antioxidant response. Similarly, the radiation group was compared with space-flown mice revealing shared changes in lipid metabolism.
Collapse
Affiliation(s)
- Thomas Cahill
- School of Biological Sciences and Institute for Global Food Security, Queens University Belfast, Belfast, BT9 5DL, UK
| | - Willian Abraham da Silveira
- School of Health, Science and Wellbeing, Department of Biological Sciences, Science Centre, Staffordshire University, Leek Road, Stoke-On-Trent, ST4 2DF, UK
- International Space University, 1 Rue Jean-Dominique Cassini, 67400, Illkirch-Graffenstaden, France
| | - Ludivine Renaud
- Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Hao Wang
- School of Biological Sciences and Institute for Global Food Security, Queens University Belfast, Belfast, BT9 5DL, UK
| | - Tucker Williamson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Dongjun Chung
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | - Sherine Chan
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
- JLABS at the Children's National Research and Innovation Campus, Washington, DC, 20012, USA
| | - Ian Overton
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, UK
| | - Gary Hardiman
- School of Biological Sciences and Institute for Global Food Security, Queens University Belfast, Belfast, BT9 5DL, UK.
- Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
7
|
Wang Q, Yu Q, Wu M. Antioxidant and neuroprotective actions of resveratrol in cerebrovascular diseases. Front Pharmacol 2022; 13:948889. [PMID: 36133823 PMCID: PMC9483202 DOI: 10.3389/fphar.2022.948889] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/01/2022] [Indexed: 11/15/2022] Open
Abstract
Cerebralvascular diseases are the most common high-mortality diseases worldwide. Despite its global prevalence, effective treatments and therapies need to be explored. Given that oxidative stress is an important risk factor involved with cerebral vascular diseases, natural antioxidants and its derivatives can be served as a promising therapeutic strategy. Resveratrol (3, 5, 4′-trihydroxystilbene) is a natural polyphenolic antioxidant found in grape skins, red wine, and berries. As a phytoalexin to protect against oxidative stress, resveratrol has therapeutic value in cerebrovascular diseases mainly by inhibiting excessive reactive oxygen species production, elevating antioxidant enzyme activity, and other antioxidant molecular mechanisms. This review aims to collect novel kinds of literature regarding the protective activities of resveratrol on cerebrovascular diseases, addressing the potential mechanisms underlying the antioxidative activities and mitochondrial protection of resveratrol. We also provide new insights into the chemistry, sources, and bioavailability of resveratrol.
Collapse
Affiliation(s)
- Qing Wang
- Shaanxi Prov Peoples Hospital, Shaanxi Prov Key Lab Infect and Immune Dis, Xian, China
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases and Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Qi Yu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases and Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
- Department of Histology and Embryology, Xi’an Medical University, Xi’an, China
- Department of Pharmacology, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Min Wu
- Shaanxi Prov Peoples Hospital, Shaanxi Prov Key Lab Infect and Immune Dis, Xian, China
- *Correspondence: Min Wu,
| |
Collapse
|
8
|
de Sousa MML, Ye J, Luna L, Hildrestrand G, Bjørås K, Scheffler K, Bjørås M. Impact of Oxidative DNA Damage and the Role of DNA Glycosylases in Neurological Dysfunction. Int J Mol Sci 2021; 22:12924. [PMID: 34884729 PMCID: PMC8657561 DOI: 10.3390/ijms222312924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 11/16/2022] Open
Abstract
The human brain requires a high rate of oxygen consumption to perform intense metabolic activities, accounting for 20% of total body oxygen consumption. This high oxygen uptake results in the generation of free radicals, including reactive oxygen species (ROS), which, at physiological levels, are beneficial to the proper functioning of fundamental cellular processes. At supraphysiological levels, however, ROS and associated lesions cause detrimental effects in brain cells, commonly observed in several neurodegenerative disorders. In this review, we focus on the impact of oxidative DNA base lesions and the role of DNA glycosylase enzymes repairing these lesions on brain function and disease. Furthermore, we discuss the role of DNA base oxidation as an epigenetic mechanism involved in brain diseases, as well as potential roles of DNA glycosylases in different epigenetic contexts. We provide a detailed overview of the impact of DNA glycosylases on brain metabolism, cognition, inflammation, tissue loss and regeneration, and age-related neurodegenerative diseases based on evidence collected from animal and human models lacking these enzymes, as well as post-mortem studies on patients with neurological disorders.
Collapse
Affiliation(s)
- Mirta Mittelstedt Leal de Sousa
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7028 Trondheim, Norway; (J.Y.); (K.B.)
| | - Jing Ye
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7028 Trondheim, Norway; (J.Y.); (K.B.)
| | - Luisa Luna
- Department of Microbiology, Oslo University Hospital, University of Oslo, Rikshospitalet, 0424 Oslo, Norway; (L.L.); (G.H.)
| | - Gunn Hildrestrand
- Department of Microbiology, Oslo University Hospital, University of Oslo, Rikshospitalet, 0424 Oslo, Norway; (L.L.); (G.H.)
| | - Karine Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7028 Trondheim, Norway; (J.Y.); (K.B.)
| | - Katja Scheffler
- Department of Neurology, St. Olavs Hospital, 7006 Trondheim, Norway;
- Department of Laboratory Medicine, St. Olavs Hospital, 7006 Trondheim, Norway
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7028 Trondheim, Norway; (J.Y.); (K.B.)
- Department of Microbiology, Oslo University Hospital, University of Oslo, Rikshospitalet, 0424 Oslo, Norway; (L.L.); (G.H.)
| |
Collapse
|
9
|
Lattanzi R, Severini C, Maftei D, Saso L, Badiani A. The Role of Prokineticin 2 in Oxidative Stress and in Neuropathological Processes. Front Pharmacol 2021; 12:640441. [PMID: 33732160 PMCID: PMC7956973 DOI: 10.3389/fphar.2021.640441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/28/2021] [Indexed: 01/22/2023] Open
Abstract
The prokineticin (PK) family, prokineticin 1 and Bv8/prokineticin 2 (PROK2), initially discovered as regulators of gastrointestinal motility, interacts with two G protein-coupled receptors, PKR1 and PKR2, regulating important biological functions such as circadian rhythms, metabolism, angiogenesis, neurogenesis, muscle contractility, hematopoiesis, immune response, reproduction and pain perception. PROK2 and PK receptors, in particular PKR2, are widespread distributed in the central nervous system, in both neurons and glial cells. The PROK2 expression levels can be increased by a series of pathological insults, such as hypoxia, reactive oxygen species, beta amyloid and excitotoxic glutamate. This suggests that the PK system, participating in different cellular processes that cause neuronal death, can be a key mediator in neurological/neurodegenerative diseases. While many PROK2/PKRs effects in physiological processes have been documented, their role in neuropathological conditions is not fully clarified, since PROK2 can have a double function in the mechanisms underlying to neurodegeneration or neuroprotection. Here, we briefly outline the latest findings on the modulation of PROK2 and its cognate receptors following different pathological insults, providing information about their opposite neurotoxic and neuroprotective role in different pathological conditions.
Collapse
Affiliation(s)
- Roberta Lattanzi
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Cinzia Severini
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Rome, Italy
| | - Daniela Maftei
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Aldo Badiani
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
10
|
Hartwig A, Arand M, Epe B, Guth S, Jahnke G, Lampen A, Martus HJ, Monien B, Rietjens IMCM, Schmitz-Spanke S, Schriever-Schwemmer G, Steinberg P, Eisenbrand G. Mode of action-based risk assessment of genotoxic carcinogens. Arch Toxicol 2020; 94:1787-1877. [PMID: 32542409 PMCID: PMC7303094 DOI: 10.1007/s00204-020-02733-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022]
Abstract
The risk assessment of chemical carcinogens is one major task in toxicology. Even though exposure has been mitigated effectively during the last decades, low levels of carcinogenic substances in food and at the workplace are still present and often not completely avoidable. The distinction between genotoxic and non-genotoxic carcinogens has traditionally been regarded as particularly relevant for risk assessment, with the assumption of the existence of no-effect concentrations (threshold levels) in case of the latter group. In contrast, genotoxic carcinogens, their metabolic precursors and DNA reactive metabolites are considered to represent risk factors at all concentrations since even one or a few DNA lesions may in principle result in mutations and, thus, increase tumour risk. Within the current document, an updated risk evaluation for genotoxic carcinogens is proposed, based on mechanistic knowledge regarding the substance (group) under investigation, and taking into account recent improvements in analytical techniques used to quantify DNA lesions and mutations as well as "omics" approaches. Furthermore, wherever possible and appropriate, special attention is given to the integration of background levels of the same or comparable DNA lesions. Within part A, fundamental considerations highlight the terms hazard and risk with respect to DNA reactivity of genotoxic agents, as compared to non-genotoxic agents. Also, current methodologies used in genetic toxicology as well as in dosimetry of exposure are described. Special focus is given on the elucidation of modes of action (MOA) and on the relation between DNA damage and cancer risk. Part B addresses specific examples of genotoxic carcinogens, including those humans are exposed to exogenously and endogenously, such as formaldehyde, acetaldehyde and the corresponding alcohols as well as some alkylating agents, ethylene oxide, and acrylamide, but also examples resulting from exogenous sources like aflatoxin B1, allylalkoxybenzenes, 2-amino-3,8-dimethylimidazo[4,5-f] quinoxaline (MeIQx), benzo[a]pyrene and pyrrolizidine alkaloids. Additionally, special attention is given to some carcinogenic metal compounds, which are considered indirect genotoxins, by accelerating mutagenicity via interactions with the cellular response to DNA damage even at low exposure conditions. Part C finally encompasses conclusions and perspectives, suggesting a refined strategy for the assessment of the carcinogenic risk associated with an exposure to genotoxic compounds and addressing research needs.
Collapse
Affiliation(s)
- Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany.
| | - Michael Arand
- Institute of Pharmacology and Toxicology, University of Zurich, 8057, Zurich, Switzerland
| | - Bernd Epe
- Institute of Pharmacy and Biochemistry, University of Mainz, 55099, Mainz, Germany
| | - Sabine Guth
- Department of Toxicology, IfADo-Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Gunnar Jahnke
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Alfonso Lampen
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Hans-Jörg Martus
- Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Bernhard Monien
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Simone Schmitz-Spanke
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg, Henkestr. 9-11, 91054, Erlangen, Germany
| | - Gerlinde Schriever-Schwemmer
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Pablo Steinberg
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131, Karlsruhe, Germany
| | - Gerhard Eisenbrand
- Retired Senior Professor for Food Chemistry and Toxicology, Kühler Grund 48/1, 69126, Heidelberg, Germany.
| |
Collapse
|
11
|
Wu L, Jiang C, Kang Y, Dai Y, Fang W, Huang P. Curcumin exerts protective effects against hypoxia‑reoxygenation injury via the enhancement of apurinic/apyrimidinic endonuclease 1 in SH‑SY5Y cells: Involvement of the PI3K/AKT pathway. Int J Mol Med 2020; 45:993-1004. [PMID: 32124937 PMCID: PMC7053876 DOI: 10.3892/ijmm.2020.4483] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
Curcumin, a polyphenolic compound extracted from the plant Curcuma longa, has been reported to exert neuroprotective effects against cerebral ischemia reperfusion (I/R) injury. However, the mechanisms underlying these effects remain to be fully elucidated. Emerging evidence indicated that apurinic/apyrimidinic endonuclease 1 (APE1), a multifunctional enzyme, participates in neuronal survival against I/R injury. Therefore, the aim of the present study was to investigate whether curcumin alleviates oxygen-glucose deprivation/reper-fusion (OGD/R)-induced SH-SY5Y cell injury, which serves as an in vitro model of cerebral I/R injury, by regulating APE1. The results revealed that curcumin increased cell viability, decreased LDH activity, reduced apoptosis and caspase-3 activity, downregulated the pro-apoptotic protein Bax expression and upregulated the anti-apoptotic protein Bcl-2 expression in SH-SY5Y cells subjected to OGD/R. Simultaneously, curcumin eliminated the OGD/R-induced decreases in APE1 protein and mRNA expression, as well as 8-hydroxy-2′-deoxyguanosine (8-OHdG) level and AP sites in SH-SY5Y cells. However, APE1 knockdown by siRNA transfection markedly abrogated the protective effects of curcumin against OGD/R-induced cytotoxicity, apoptosis and oxidative stress, as illustrated by the decreases in reactive oxygen species production and NADPH oxidase 2 expression, and the increase in superoxide dismutase activity and glutathione levels in SH-SY5Y cells. Furthermore, curcumin mitigated the OGD/R-induced activation of phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway. Treatment with LY294002, an inhibitor of PI3K/AKT pathway activity, attenuated the protective effects of curcumin on cytotoxicity and apoptosis, and reversed the curcumin-induced upregulation of APE1 protein expression in SH-SY5Y cells subjected to OGD/R. Taken together, these results demonstrated that curcumin protects SH-SY5Y cells against OGD/R injury by inhibiting apoptosis and oxidative stress, and via enhancing the APE1 level and activity, promoting PI3K/AKT pathway activation.
Collapse
Affiliation(s)
- Lei Wu
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Cao Jiang
- Department of Neurology, Deqing County People's Hospital, Huzhou, Zhejiang 313200, P.R. China
| | - Ying Kang
- Department of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Yaji Dai
- Department of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Wei Fang
- Department of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Peng Huang
- Department of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230012, P.R. China
| |
Collapse
|
12
|
Feng Z, Zhao RJ, Lu ZH, Jia LP, Ma RN, Zhang W, Shang L, Xue QW, Wang HS. Construction of aptasensors for sensitive detection of 8-OH-dG based on a diffusion mediated electrochemiluminescence quenching effect. Chem Commun (Camb) 2020; 56:11074-11077. [DOI: 10.1039/d0cc04492j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A DNA immobilization-free electrochemiluminescence aptasensor was developed for the detection of 8-hydroxy-2′-deoxygunosine based on the diffusion mediated electrochemiluminescence quenching effect and dual signal amplification strategies.
Collapse
Affiliation(s)
- Zhe Feng
- Department of Chemistry
- Liaocheng University
- Liaocheng 252000
- China
| | - Rui-Juan Zhao
- Department of Chemistry
- Liaocheng University
- Liaocheng 252000
- China
| | - Ze-Hua Lu
- Liaocheng Veterans Hospital
- Liaocheng 252000
- China
| | - Li-ping Jia
- Department of Chemistry
- Liaocheng University
- Liaocheng 252000
- China
| | - Rong-Na Ma
- Department of Chemistry
- Liaocheng University
- Liaocheng 252000
- China
| | - Wei Zhang
- Department of Chemistry
- Liaocheng University
- Liaocheng 252000
- China
| | - Lei Shang
- Department of Chemistry
- Liaocheng University
- Liaocheng 252000
- China
| | - Qing-Wang Xue
- Department of Chemistry
- Liaocheng University
- Liaocheng 252000
- China
| | - Huai-Sheng Wang
- Department of Chemistry
- Liaocheng University
- Liaocheng 252000
- China
| |
Collapse
|
13
|
Scheffler K, Bjørås KØ, Bjørås M. Diverse functions of DNA glycosylases processing oxidative base lesions in brain. DNA Repair (Amst) 2019; 81:102665. [PMID: 31327582 DOI: 10.1016/j.dnarep.2019.102665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Endogenous and exogenous oxidative agents continuously damage genomic DNA, with the brain being particularly vulnerable. Thus, preserving genomic integrity is key for brain health and neuronal function. Accumulation of DNA damage is one of the causative factors of ageing and increases the risk of a wide range of neurological disorders. Base excision repair is the major pathway for removal of oxidized bases in the genome and initiated by DNA glycosylases. Emerging evidence suggest that DNA glycosylases have non-canonical functions important for genome regulation. Understanding canonical and non-canonical functions of DNA glycosylases processing oxidative base lesions modulating brain function will be crucial for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Katja Scheffler
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Norway; Clinic of Laboratory Medicine, St. Olavs Hospital, N-7491 Trondheim, Norway
| | - Karine Øian Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Norway
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Norway; Clinic of Laboratory Medicine, St. Olavs Hospital, N-7491 Trondheim, Norway; Department of Microbiology, Oslo University Hospital and University of Oslo, N-0424 Oslo, Norway.
| |
Collapse
|
14
|
Oxidative stress and DNA damage after cerebral ischemia: Potential therapeutic targets to repair the genome and improve stroke recovery. Neuropharmacology 2017; 134:208-217. [PMID: 29128308 DOI: 10.1016/j.neuropharm.2017.11.011] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/02/2017] [Accepted: 11/05/2017] [Indexed: 12/12/2022]
Abstract
The past two decades have witnessed remarkable advances in oxidative stress research, particularly in the context of ischemic brain injury. Oxidative stress in ischemic tissues compromises the integrity of the genome, resulting in DNA lesions, cell death in neurons, glial cells, and vascular cells, and impairments in neurological recovery after stroke. As DNA is particularly vulnerable to oxidative attack, cells have evolved the ability to induce multiple DNA repair mechanisms, including base excision repair (BER), nucleotide excision repair (NER) and non-homogenous endpoint jointing (NHEJ). Defective DNA repair is tightly correlated with worse neurological outcomes after stroke, whereas upregulation of DNA repair enzymes, such as APE1, OGG1, and XRCC1, improves long-term functional recovery following stroke. Indeed, DNA damage and repair are now known to play critical roles in fundamental aspects of stroke recovery, such as neurogenesis, white matter recovery, and neurovascular unit remodeling. Several DNA repair enzymes are essential for comprehensive neural repair mechanisms after stroke, including Polβ and NEIL3 for neurogenesis, APE1 for white matter repair, Gadd45b for axonal regeneration, and DNA-PKs for neurovascular remodeling. This review discusses the emerging role of DNA damage and repair in functional recovery after stroke and highlights the contribution of DNA repair to regenerative elements after stroke. This article is part of the Special Issue entitled 'Cerebral Ischemia'.
Collapse
|
15
|
Jia JY, Tan ZG, Liu M, Jiang YG. Apurinic/apyrimidinic endonuclease 1 (APE1) contributes to resveratrol‑induced neuroprotection against oxygen‑glucose deprivation and re‑oxygenation injury in HT22 cells: Involvement in reducing oxidative DNA damage. Mol Med Rep 2017; 16:9786-9794. [PMID: 29039534 DOI: 10.3892/mmr.2017.7799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/19/2017] [Indexed: 11/06/2022] Open
Abstract
Resveratrol, a naturally occurring polyphenolic compound, exhibits a neuroprotective role in models of central nervous system diseases, including cerebral ischemia/reperfusion injury. Apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional enzyme that contributes to base excision repair of oxidative DNA damage and redox activation of transcription factors, associated with neuronal survival against hypoxic‑ischemic injury. It was hypothesized that resveratrol protects HT22 cells against oxygen‑glucose deprivation and re‑oxygenation (OGD/R)‑induced injuries through upregulation of APE1. It was demonstrated that resveratrol pretreatment significantly increased the viability of HT22 cells and decreased the release of lactate dehydrogenase (LDH), accompanied by the upregulation of APE1 mRNA, and protein levels, as well as the activity of APE1 under OGD/R conditions. In addition, resveratrol reversed OGD/R‑induced oxidative DNA damage as evidenced by the decreases in the levels of 8‑hydroxy‑2'‑deoxyguanosine and APE sites. However, APE1 knockdown using short hairpin RNA sequence targeting APE1 abolished resveratrol‑elicited beneficent effects against OGD/R‑induced cytotoxicity and oxidative stress. This was indicated by decreased cell viability, superoxide dismutase activity and glutathione levels, and increased LDH release and reactive oxygen species levels. The results of the present study indicate that APE1 contributes to the protective effects of resveratrol against neonatal hypoxic‑ischemic brain injuries, and suggest that DNA repair enzymes, including APE1, may be a unique strategy for neuroprotection against this disease.
Collapse
Affiliation(s)
- Jiao-Ying Jia
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Zhi-Gang Tan
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Min Liu
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yu-Gang Jiang
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
16
|
Ordway GA, Szebeni A, Hernandez LJ, Crawford JD, Szebeni K, Chandley MJ, Burgess KC, Miller C, Bakkalbasi E, Brown RW. Antidepressant-Like Actions of Inhibitors of Poly(ADP-Ribose) Polymerase in Rodent Models. Int J Neuropsychopharmacol 2017; 20:994-1004. [PMID: 29016792 PMCID: PMC5716178 DOI: 10.1093/ijnp/pyx068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/28/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Many patients suffering from depressive disorders are refractory to treatment with currently available antidepressant medications, while many more exhibit only a partial response. These factors drive research to discover new pharmacological approaches to treat depression. Numerous studies demonstrate evidence of inflammation and elevated oxidative stress in major depression. Recently, major depression has been shown to be associated with elevated levels of DNA oxidation in brain cells, accompanied by increased gene expression of the nuclear base excision repair enzyme, poly(ADP-ribose) polymerase-1. Given these findings and evidence that drugs that inhibit poly(ADP-ribose) polymerase-1 activity have antiinflammatory and neuroprotective properties, the present study was undertaken to examine the potential antidepressant properties of poly(ADP-ribose) polymerase inhibitors. METHODS Two rodent models, the Porsolt swim test and repeated exposure to psychological stressors, were used to test the poly(ADP-ribose) polymerase inhibitor, 3-aminobenzamide, for potential antidepressant activity. Another poly(ADP-ribose) polymerase inhibitor, 5-aminoisoquinolinone, was also tested. RESULTS Poly(ADP-ribose) polymerase inhibitors produced antidepressant-like effects in the Porsolt swim test, decreasing immobility time, and increasing latency to immobility, similar to the effects of fluoxetine. In addition, 3-aminobenzamide treatment increased sucrose preference and social interaction times relative to vehicle-treated control rats following repeated exposure to combined social defeat and unpredictable stress, mediating effects similar to fluoxetine treatment. CONCLUSIONS The poly(ADP-ribose) polymerase inhibitors 3-aminobenzamide and 5-aminoisoquinolinone exhibit antidepressant-like activity in 2 rodent stress models and uncover poly(ADP-ribose) polymerase as a unique molecular target for the potential development of a novel class of antidepressants.
Collapse
Affiliation(s)
- Gregory A Ordway
- Department of Biomedical Sciences (Drs Ordway and Szebeni, Ms Hernandez, Drs Crawford and Szebeni, Ms Burgess, and Dr Brown) and Department of Psychiatry and Behavioral Sciences (Dr Ordway), James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, Tennessee (Dr Chandley); DS Therapeutics, Houston, Texas (Dr Miller and Dr Bakkalbasi),Correspondence: Gregory A. Ordway, PhD, East Tennessee State University, PO Box 70577, Johnson City, 37614 ()
| | - Attila Szebeni
- Department of Biomedical Sciences (Drs Ordway and Szebeni, Ms Hernandez, Drs Crawford and Szebeni, Ms Burgess, and Dr Brown) and Department of Psychiatry and Behavioral Sciences (Dr Ordway), James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, Tennessee (Dr Chandley); DS Therapeutics, Houston, Texas (Dr Miller and Dr Bakkalbasi)
| | - Liza J Hernandez
- Department of Biomedical Sciences (Drs Ordway and Szebeni, Ms Hernandez, Drs Crawford and Szebeni, Ms Burgess, and Dr Brown) and Department of Psychiatry and Behavioral Sciences (Dr Ordway), James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, Tennessee (Dr Chandley); DS Therapeutics, Houston, Texas (Dr Miller and Dr Bakkalbasi)
| | - Jessica D Crawford
- Department of Biomedical Sciences (Drs Ordway and Szebeni, Ms Hernandez, Drs Crawford and Szebeni, Ms Burgess, and Dr Brown) and Department of Psychiatry and Behavioral Sciences (Dr Ordway), James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, Tennessee (Dr Chandley); DS Therapeutics, Houston, Texas (Dr Miller and Dr Bakkalbasi)
| | - Katalin Szebeni
- Department of Biomedical Sciences (Drs Ordway and Szebeni, Ms Hernandez, Drs Crawford and Szebeni, Ms Burgess, and Dr Brown) and Department of Psychiatry and Behavioral Sciences (Dr Ordway), James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, Tennessee (Dr Chandley); DS Therapeutics, Houston, Texas (Dr Miller and Dr Bakkalbasi)
| | - Michelle J Chandley
- Department of Biomedical Sciences (Drs Ordway and Szebeni, Ms Hernandez, Drs Crawford and Szebeni, Ms Burgess, and Dr Brown) and Department of Psychiatry and Behavioral Sciences (Dr Ordway), James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, Tennessee (Dr Chandley); DS Therapeutics, Houston, Texas (Dr Miller and Dr Bakkalbasi)
| | - Katherine C Burgess
- Department of Biomedical Sciences (Drs Ordway and Szebeni, Ms Hernandez, Drs Crawford and Szebeni, Ms Burgess, and Dr Brown) and Department of Psychiatry and Behavioral Sciences (Dr Ordway), James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, Tennessee (Dr Chandley); DS Therapeutics, Houston, Texas (Dr Miller and Dr Bakkalbasi)
| | - Corwin Miller
- Department of Biomedical Sciences (Drs Ordway and Szebeni, Ms Hernandez, Drs Crawford and Szebeni, Ms Burgess, and Dr Brown) and Department of Psychiatry and Behavioral Sciences (Dr Ordway), James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, Tennessee (Dr Chandley); DS Therapeutics, Houston, Texas (Dr Miller and Dr Bakkalbasi)
| | - Erol Bakkalbasi
- Department of Biomedical Sciences (Drs Ordway and Szebeni, Ms Hernandez, Drs Crawford and Szebeni, Ms Burgess, and Dr Brown) and Department of Psychiatry and Behavioral Sciences (Dr Ordway), James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, Tennessee (Dr Chandley); DS Therapeutics, Houston, Texas (Dr Miller and Dr Bakkalbasi)
| | - Russell W Brown
- Department of Biomedical Sciences (Drs Ordway and Szebeni, Ms Hernandez, Drs Crawford and Szebeni, Ms Burgess, and Dr Brown) and Department of Psychiatry and Behavioral Sciences (Dr Ordway), James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, Tennessee (Dr Chandley); DS Therapeutics, Houston, Texas (Dr Miller and Dr Bakkalbasi)
| |
Collapse
|
17
|
Szebeni A, Szebeni K, DiPeri TP, Johnson LA, Stockmeier CA, Crawford JD, Chandley MJ, Hernandez LJ, Burgess KC, Brown RW, Ordway GA. Elevated DNA Oxidation and DNA Repair Enzyme Expression in Brain White Matter in Major Depressive Disorder. Int J Neuropsychopharmacol 2016; 20:363-373. [PMID: 28034960 PMCID: PMC5412018 DOI: 10.1093/ijnp/pyw114] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/20/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Pathology of white matter in brains of patients with major depressive disorder (MDD) is well-documented, but the cellular and molecular basis of this pathology are poorly understood. METHODS Levels of DNA oxidation and gene expression of DNA damage repair enzymes were measured in Brodmann area 10 (BA10) and/or amygdala (uncinate fasciculus) white matter tissue from brains of MDD (n=10) and psychiatrically normal control donors (n=13). DNA oxidation was also measured in BA10 white matter of schizophrenia donors (n=10) and in prefrontal cortical white matter from control rats (n=8) and rats with repeated stress-induced anhedonia (n=8). RESULTS DNA oxidation in BA10 white matter was robustly elevated in MDD as compared to control donors, with a smaller elevation occurring in schizophrenia donors. DNA oxidation levels in psychiatrically affected donors that died by suicide did not significantly differ from DNA oxidation levels in psychiatrically affected donors dying by other causes (non-suicide). Gene expression levels of two base excision repair enzymes, PARP1 and OGG1, were robustly elevated in oligodendrocytes laser captured from BA10 and amygdala white matter of MDD donors, with smaller but significant elevations of these gene expressions in astrocytes. In rats, repeated stress-induced anhedonia, as measured by a reduction in sucrose preference, was associated with increased DNA oxidation in white, but not gray, matter. CONCLUSIONS Cellular residents of brain white matter demonstrate markers of oxidative damage in MDD. Medications that interfere with oxidative damage or pathways activated by oxidative damage have potential to improve treatment for MDD.
Collapse
Affiliation(s)
- Attila Szebeni
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee (Drs A. Szebeni and K. Szebeni, Mr DiPeri, Mr Johnson, Dr Crawford, Ms Hernandez, Dr Brown, and Ms Burgess); Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (Dr Stockmeier); Department of Psychiatry, Case Western Reserve University, Cleveland, Ohio (Dr Stockmeier); Departments of Health Sciences & Biomedical Sciences (Dr Chandley), and Departments of Biomedical Sciences & Psychiatry and Behavioral Sciences (Dr Ordway), East Tennessee State University, Johnson City, Tennessee
| | - Katalin Szebeni
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee (Drs A. Szebeni and K. Szebeni, Mr DiPeri, Mr Johnson, Dr Crawford, Ms Hernandez, Dr Brown, and Ms Burgess); Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (Dr Stockmeier); Department of Psychiatry, Case Western Reserve University, Cleveland, Ohio (Dr Stockmeier); Departments of Health Sciences & Biomedical Sciences (Dr Chandley), and Departments of Biomedical Sciences & Psychiatry and Behavioral Sciences (Dr Ordway), East Tennessee State University, Johnson City, Tennessee
| | - Timothy P. DiPeri
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee (Drs A. Szebeni and K. Szebeni, Mr DiPeri, Mr Johnson, Dr Crawford, Ms Hernandez, Dr Brown, and Ms Burgess); Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (Dr Stockmeier); Department of Psychiatry, Case Western Reserve University, Cleveland, Ohio (Dr Stockmeier); Departments of Health Sciences & Biomedical Sciences (Dr Chandley), and Departments of Biomedical Sciences & Psychiatry and Behavioral Sciences (Dr Ordway), East Tennessee State University, Johnson City, Tennessee
| | - Luke A. Johnson
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee (Drs A. Szebeni and K. Szebeni, Mr DiPeri, Mr Johnson, Dr Crawford, Ms Hernandez, Dr Brown, and Ms Burgess); Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (Dr Stockmeier); Department of Psychiatry, Case Western Reserve University, Cleveland, Ohio (Dr Stockmeier); Departments of Health Sciences & Biomedical Sciences (Dr Chandley), and Departments of Biomedical Sciences & Psychiatry and Behavioral Sciences (Dr Ordway), East Tennessee State University, Johnson City, Tennessee
| | - Craig A. Stockmeier
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee (Drs A. Szebeni and K. Szebeni, Mr DiPeri, Mr Johnson, Dr Crawford, Ms Hernandez, Dr Brown, and Ms Burgess); Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (Dr Stockmeier); Department of Psychiatry, Case Western Reserve University, Cleveland, Ohio (Dr Stockmeier); Departments of Health Sciences & Biomedical Sciences (Dr Chandley), and Departments of Biomedical Sciences & Psychiatry and Behavioral Sciences (Dr Ordway), East Tennessee State University, Johnson City, Tennessee
| | - Jessica D. Crawford
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee (Drs A. Szebeni and K. Szebeni, Mr DiPeri, Mr Johnson, Dr Crawford, Ms Hernandez, Dr Brown, and Ms Burgess); Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (Dr Stockmeier); Department of Psychiatry, Case Western Reserve University, Cleveland, Ohio (Dr Stockmeier); Departments of Health Sciences & Biomedical Sciences (Dr Chandley), and Departments of Biomedical Sciences & Psychiatry and Behavioral Sciences (Dr Ordway), East Tennessee State University, Johnson City, Tennessee
| | - Michelle J. Chandley
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee (Drs A. Szebeni and K. Szebeni, Mr DiPeri, Mr Johnson, Dr Crawford, Ms Hernandez, Dr Brown, and Ms Burgess); Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (Dr Stockmeier); Department of Psychiatry, Case Western Reserve University, Cleveland, Ohio (Dr Stockmeier); Departments of Health Sciences & Biomedical Sciences (Dr Chandley), and Departments of Biomedical Sciences & Psychiatry and Behavioral Sciences (Dr Ordway), East Tennessee State University, Johnson City, Tennessee
| | - Liza J. Hernandez
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee (Drs A. Szebeni and K. Szebeni, Mr DiPeri, Mr Johnson, Dr Crawford, Ms Hernandez, Dr Brown, and Ms Burgess); Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (Dr Stockmeier); Department of Psychiatry, Case Western Reserve University, Cleveland, Ohio (Dr Stockmeier); Departments of Health Sciences & Biomedical Sciences (Dr Chandley), and Departments of Biomedical Sciences & Psychiatry and Behavioral Sciences (Dr Ordway), East Tennessee State University, Johnson City, Tennessee
| | - Katherine C. Burgess
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee (Drs A. Szebeni and K. Szebeni, Mr DiPeri, Mr Johnson, Dr Crawford, Ms Hernandez, Dr Brown, and Ms Burgess); Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (Dr Stockmeier); Department of Psychiatry, Case Western Reserve University, Cleveland, Ohio (Dr Stockmeier); Departments of Health Sciences & Biomedical Sciences (Dr Chandley), and Departments of Biomedical Sciences & Psychiatry and Behavioral Sciences (Dr Ordway), East Tennessee State University, Johnson City, Tennessee
| | - Russell W. Brown
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee (Drs A. Szebeni and K. Szebeni, Mr DiPeri, Mr Johnson, Dr Crawford, Ms Hernandez, Dr Brown, and Ms Burgess); Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (Dr Stockmeier); Department of Psychiatry, Case Western Reserve University, Cleveland, Ohio (Dr Stockmeier); Departments of Health Sciences & Biomedical Sciences (Dr Chandley), and Departments of Biomedical Sciences & Psychiatry and Behavioral Sciences (Dr Ordway), East Tennessee State University, Johnson City, Tennessee
| | - Gregory A. Ordway
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee (Drs A. Szebeni and K. Szebeni, Mr DiPeri, Mr Johnson, Dr Crawford, Ms Hernandez, Dr Brown, and Ms Burgess); Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi (Dr Stockmeier); Department of Psychiatry, Case Western Reserve University, Cleveland, Ohio (Dr Stockmeier); Departments of Health Sciences & Biomedical Sciences (Dr Chandley), and Departments of Biomedical Sciences & Psychiatry and Behavioral Sciences (Dr Ordway), East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
18
|
APE1/Ref-1 facilitates recovery of gray and white matter and neurological function after mild stroke injury. Proc Natl Acad Sci U S A 2016; 113:E3558-67. [PMID: 27274063 DOI: 10.1073/pnas.1606226113] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A major hallmark of oxidative DNA damage after stroke is the induction of apurinic/apyrimidinic (AP) sites and strand breaks. To mitigate cell loss after oxidative DNA damage, ischemic cells rapidly engage the base excision-repair proteins, such as the AP site-repairing enzyme AP endonuclease-1 (APE1), also named redox effector factor-1 (Ref-1). Although forced overexpression of APE1 is known to protect against oxidative stress-induced neurodegeneration, there is no concrete evidence demonstrating a role for endogenous APE1 in the long-term recovery of gray and white matter following ischemic injury. To address this gap, we generated, to our knowledge, the first APE1 conditional knockout (cKO) mouse line under control of tamoxifen-dependent Cre recombinase. Using a well-established model of transient focal cerebral ischemia (tFCI), we show that induced deletion of APE1 dramatically enlarged infarct volume and impaired the recovery of sensorimotor and cognitive deficits. APE1 cKO markedly increased postischemic neuronal and oligodendrocyte degeneration, demonstrating that endogenous APE1 preserves both gray and white matter after tFCI. Because white matter repair is instrumental in behavioral recovery after stroke, we also examined the impact of APE1 cKO on demyelination and axonal conduction and discovered that APE1 cKO aggravated myelin loss and impaired neuronal communication following tFCI. Furthermore, APE1 cKO increased AP sites and activated the prodeath signaling proteins, PUMA and PARP1, after tFCI in topographically distinct manners. Our findings provide evidence that endogenous APE1 protects against ischemic infarction in both gray and white matter and facilitates the functional recovery of the central nervous system after mild stroke injury.
Collapse
|
19
|
Oxidative DNA Damage Mediated by Intranuclear MMP Activity Is Associated with Neuronal Apoptosis in Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6927328. [PMID: 26925194 PMCID: PMC4748094 DOI: 10.1155/2016/6927328] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/26/2015] [Accepted: 12/31/2015] [Indexed: 11/18/2022]
Abstract
Evidence of the pathological roles of matrix metalloproteinases (MMPs) in various neurological disorders has made them attractive therapeutic targets. MMPs disrupt the blood-brain barrier and cause neuronal death and neuroinflammation in acute cerebral ischemia and are critical for angiogenesis during recovery. However, some challenges have to be overcome before MMPs can be further validated as drug targets in stroke injury. Identifying in vivo substrates of MMPs should greatly improve our understanding of the mechanisms of ischemic injury and is critical for providing more precise drug targets. Recent works have uncovered nontraditional roles for MMPs in the cytosol and nucleus. These have shed light on intracellular targets and biological actions of MMPs, adding additional layers of complexity for therapeutic MMP inhibition. In this review, we discussed the recent advances made in understanding nuclear location of MMPs, their regulation of intranuclear sorting, and their intranuclear proteolytic activity and substrates. In particular, we highlighted the roles of intranuclear MMPs in oxidative DNA damage, neuronal apoptosis, and neuroinflammation at an early stage of stroke insult. These novel data point to new putative MMP-mediated intranuclear actions in stroke-induced pathological processes and may lead to novel approaches to treatment of stroke and other neurological diseases.
Collapse
|
20
|
Abstract
Chemical modification and spontaneous loss of nucleotide bases from DNA are estimated to occur at the rate of thousands per human cell per day. DNA base excision repair (BER) is a critical mechanism for repairing such lesions in nuclear and mitochondrial DNA. Defective expression or function of proteins required for BER or proteins that regulate BER have been consistently associated with neurological dysfunction and disease in humans. Recent studies suggest that DNA lesions in the nuclear and mitochondrial compartments and the cellular response to those lesions have a profound effect on cellular energy homeostasis, mitochondrial function and cellular bioenergetics, with especially strong influence on neurological function. Further studies in this area could lead to novel approaches to prevent and treat human neurodegenerative disease.
Collapse
|
21
|
Leak RK, Li P, Zhang F, Sulaiman HH, Weng Z, Wang G, Stetler RA, Shi Y, Cao G, Gao Y, Chen J. Apurinic/apyrimidinic endonuclease 1 upregulation reduces oxidative DNA damage and protects hippocampal neurons from ischemic injury. Antioxid Redox Signal 2015; 22:135-48. [PMID: 24180454 PMCID: PMC4281843 DOI: 10.1089/ars.2013.5511] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIMS Apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional enzyme that participates in base-excision repair of oxidative DNA damage and in the redox activation of transcription factors. We tested the hypothesis that APE1 upregulation protects neuronal structure and function against transient global cerebral ischemia (tGCI). RESULTS Upregulation of APE1 by low-dose proton irradiation (PI) or by transgene overexpression protected hippocampal CA1 neurons against tGCI-induced cell loss and reduced apurinic/apyrimidinic sites and DNA fragmentation. Conversely, APE1 knockdown attenuated the protection afforded by PI and ischemic preconditioning. APE1 overexpression inhibited the DNA damage response, as evidenced by lower phospho-histone H2A and p53-upregulated modulator of apoptosis levels. APE1 overexpression also partially rescued dendritic spines and attenuated the decrease in field excitatory postsynaptic potentials in hippocampal CA1. Presynaptic and postsynaptic markers were reduced after tGCI, and this effect was blunted in APE1 transgenics. The Morris water maze test revealed that APE1 protected against learning and memory deficits for at least 27 days post-injury. Animals expressing DNA repair-disabled mutant APE1 (D210A) exhibited more DNA damage than wild-type controls and were not protected against tGCI-induced cell loss. INNOVATION This is the first study that thoroughly characterizes structural and functional protection against ischemia after APE1 upregulation by measuring synaptic markers, electrophysiological function, and long-term neurological deficits in vivo. Furthermore, disabling the DNA repair activity of APE1 was found to abrogate its protective impact. CONCLUSION APE1 upregulation, either endogenously or through transgene overexpression, protects DNA, neuronal structures, synaptic function, and behavioral output from ischemic injury.
Collapse
Affiliation(s)
- Rehana K Leak
- 1 State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University , Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wang Y, Arun P, Wei Y, Oguntayo S, Gharavi R, Valiyaveettil M, Nambiar MP, Long JB. Repeated blast exposures cause brain DNA fragmentation in mice. J Neurotrauma 2014; 31:498-504. [PMID: 24074345 DOI: 10.1089/neu.2013.3074] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The pathophysiology of blast-induced traumatic brain injury (TBI) and subsequent behavioral deficits are not well understood. Unraveling the mechanisms of injury is critical to derive effective countermeasures against this form of neurotrauma. Preservation of the integrity of cellular DNA is crucial for the function and survival of cells. We evaluated the effect of repeated blast exposures on the integrity of brain DNA and tested the utility of cell-free DNA (CFD) in plasma as a biomarker for the diagnosis and prognosis of blast-induced polytrauma. The results revealed time-dependent breakdown in cellular DNA in different brain regions, with the maximum damage at 24 h post-blast exposures. CFD levels in plasma showed a significant transient increase, which was largely independent of the timing and severity of brain DNA damage; maximum levels were recorded at 2 h after repeated blast exposure and returned to baseline at 24 h. A positive correlation was observed between the righting reflex time and CFD level in plasma at 2 h after blast exposure. Brain DNA damage subsequent to repeated blast was associated with decreased mitochondrial membrane potential, increased release of cytochrome C, and up-regulation of caspase-3, all of which are indicative of cellular apoptosis. Shock-wave-induced DNA damage and initiation of mitochondrial-driven cellular apoptosis in the brain after repeated blast exposures indicate that therapeutic strategies directed toward inhibition of DNA damage or instigation of DNA repair may be effective countermeasures.
Collapse
Affiliation(s)
- Ying Wang
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Dietrich AK, Humphreys GI, Nardulli AM. 17β-estradiol increases expression of the oxidative stress response and DNA repair protein apurinic endonuclease (Ape1) in the cerebral cortex of female mice following hypoxia. J Steroid Biochem Mol Biol 2013; 138:410-20. [PMID: 23907014 PMCID: PMC3825811 DOI: 10.1016/j.jsbmb.2013.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/18/2013] [Accepted: 07/22/2013] [Indexed: 01/07/2023]
Abstract
While it is well established that 17β-estradiol (E2) protects the rodent brain from ischemia-induced damage, it has been unclear how this neuroprotective effect is mediated. Interestingly, convincing evidence has also demonstrated that maintaining or increasing the expression of the oxidative stress response and DNA repair protein apurinic endonuclease 1 (Ape1) is instrumental in reducing ischemia-induced damage in the brain. Since E2 increases expression of the oxidative stress response proteins Cu/Zn superoxide dismutase and thioredoxin in the brain, we hypothesized that E2 may also increase Ape1 expression and that this E2-induced expression of Ape1 may help to mediate the neuroprotective effects of E2 in the brain. To test this hypothesis, we utilized three model systems including primary cortical neurons, brain slice cultures, and whole animals. Although estrogen receptor α and Ape1 were expressed in primary cortical neurons, E2 did not alter Ape1 expression in these cells. However, immunofluorescent staining and quantitative Western blot analysis demonstrated that estrogen receptor α and Ape1 were expressed in the nuclei of cortical neurons in brain slice cultures and that E2 increased Ape1 expression in the cerebral cortex of these cultures. Furthermore, Ape1 expression was increased and oxidative DNA damage was decreased in the cerebral cortices of ovariectomized female C57Bl/6J mice that had been treated with E2 and exposed to hypoxia. Taken together, our studies demonstrate that the neuronal microenvironment may be required for increased Ape1 expression and that E2 enhances expression of Ape1 and reduces oxidative DNA damage, which may in turn help to reduce ischemia-induced damage in the cerebral cortex and mediate the neuroprotective effects of E2.
Collapse
Affiliation(s)
- Alicia K Dietrich
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | | | | |
Collapse
|
24
|
F. El-Orab N, H. Abd-Elk O, D. Schwart D. Differential Expression of Hippocampal Genes under Heat Stress. INT J PHARMACOL 2013. [DOI: 10.3923/ijp.2013.430.441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Bosshard M, Markkanen E, van Loon B. Base excision repair in physiology and pathology of the central nervous system. Int J Mol Sci 2012. [PMID: 23203191 PMCID: PMC3546685 DOI: 10.3390/ijms131216172] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Relatively low levels of antioxidant enzymes and high oxygen metabolism result in formation of numerous oxidized DNA lesions in the tissues of the central nervous system. Accumulation of damage in the DNA, due to continuous genotoxic stress, has been linked to both aging and the development of various neurodegenerative disorders. Different DNA repair pathways have evolved to successfully act on damaged DNA and prevent genomic instability. The predominant and essential DNA repair pathway for the removal of small DNA base lesions is base excision repair (BER). In this review we will discuss the current knowledge on the involvement of BER proteins in the maintenance of genetic stability in different brain regions and how changes in the levels of these proteins contribute to aging and the onset of neurodegenerative disorders.
Collapse
Affiliation(s)
- Matthias Bosshard
- Institute for Veterinary Biochemistry and Molecular Biology, University of Zürich-Irchel, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | | | | |
Collapse
|
26
|
Nakajima H, Unoda KI, Ito T, Kitaoka H, Kimura F, Hanafusa T. The Relation of Urinary 8-OHdG, A Marker of Oxidative Stress to DNA, and Clinical Outcomes for Ischemic Stroke. Open Neurol J 2012; 6:51-7. [PMID: 22754596 PMCID: PMC3386501 DOI: 10.2174/1874205x01206010051] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 03/28/2012] [Accepted: 04/10/2012] [Indexed: 01/09/2023] Open
Abstract
Background: Oxidative stress/free radical generation after ischemic stroke contributes to neuronal cell injury. We evaluated the utility of an oxidative stress marker, urinary 8-hydroxy-2-deoxyguanosine (8-OHdG), to demonstrate an association between the changes of 8-OHdG and outcomes after acute ischemic stroke. Methods: We enrolled 44 patients (26 males and 18 females) who visited our hospital due to acute ischemic stroke. Urine was collected on admission and on Days 7, and 8-OHdG was measured by ELISA. The relationships between 8-OHdG levels, stroke subtypes, and clinical outcomes based on the NIHSS and modified Rankin Scale (mRS) upon discharge was evaluated. Results: In the overall cohort, the mean urinary level of 8-OHdG on Day 7 was increased than that on Day 0. The 8-OHdG levels on Day 0 were not different between patients with poor and good outcomes. However, an increasing rate from Day 0 to 7 (Δ 8-OHdG) in stroke patients with a poor outcome(mRS ≥3) was significantly higher than those with a good outcome (mRS ≤2) (2.54 vs 39.44, p = 0.004). Conclusions: The biochemical changes related to 8-OHdG and oxidative stress may be considered a marker of ischemic brain injury and clinical outcome of ischemic stroke.
Collapse
Affiliation(s)
- Hideto Nakajima
- Department of Internal Medicine, Seikeikai Hospital, Sakai 590-0024, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Sampath H, McCullough AK, Lloyd RS. Regulation of DNA glycosylases and their role in limiting disease. Free Radic Res 2012; 46:460-78. [PMID: 22300253 DOI: 10.3109/10715762.2012.655730] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This review will present a current understanding of mechanisms for the initiation of base excision repair (BER) of oxidatively-induced DNA damage and the biological consequences of deficiencies in these enzymes in mouse model systems and human populations.
Collapse
Affiliation(s)
- Harini Sampath
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, Oregon 97239 - 3098, USA
| | | | | |
Collapse
|
28
|
da Silva TA, Fontes FL, Coutinho LG, de Souza FRS, de Melo JTA, de Souto JT, Leib SL, Agnez-Lima LF. SNPs in DNA repair genes associated to meningitis and host immune response. Mutat Res 2011; 713:39-47. [PMID: 21651918 DOI: 10.1016/j.mrfmmm.2011.05.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 05/11/2011] [Accepted: 05/20/2011] [Indexed: 05/30/2023]
Abstract
In vitro and in animal models, APE1, OGG1, and PARP-1 have been proposed as being involved with inflammatory response. In this work, we have investigated if the SNPs APE1 Asn148Glu, OGG1 Ser326Cys, and PARP-1 Val762Ala are associated to meningitis. The patient genotypes were investigated by PIRA-PCR or PCR-RFLP. DNA damages were detected in genomic DNA by Fpg treatment. IgG and IgA were measured from plasma and the cytokines and chemokines were measured from cerebrospinal fluid samples using Bio-Plex assays. A higher frequency (P<0.05) of APE1 Glu allele in bacterial meningitis (BM) and aseptic meningitis (AM) patients was observed. The genotypes Asn/Asn in control group and Asn/Glu in BM group was also higher. For the SNP OGG1 Ser326Cys, the genotype Cys/Cys was more frequent (P<0.05) in BM group. The frequency of PARP-1 Val/Val genotype was higher in control group (P<0.05). The occurrence of combined SNPs is significantly higher in BM patients, indicating that these SNPs may be associated to the disease. Increasing in sensitive sites to Fpg was observed in carriers of APE1 Glu allele or OGG1 Cys allele, suggesting that SNPs affect DNA repair activity. Alterations in IgG production were observed in the presence of SNPs APE1 Asn148Glu, OGG1 Ser326Cys or PARP-1 Val762Ala. Moreover, reduction in the levels of IL-6, IL-1Ra, MCP-1/CCL2 and IL-8/CXCL8 was observed in the presence of APE1 Glu allele in BM patients. In conclusion, we obtained indications of an effect of SNPs in DNA repair genes on the regulation of immune response in meningitis.
Collapse
Affiliation(s)
- Thayse Azevedo da Silva
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Av. Salgado Filho s/n, 59072-970 Natal, RN, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Li P, Hu X, Gan Y, Gao Y, Liang W, Chen J. Mechanistic insight into DNA damage and repair in ischemic stroke: exploiting the base excision repair pathway as a model of neuroprotection. Antioxid Redox Signal 2011; 14:1905-18. [PMID: 20677909 PMCID: PMC3078503 DOI: 10.1089/ars.2010.3451] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Stroke is a common cause of death and serious long-term adult disability. Oxidative DNA damage is a severe consequence of oxidative stress associated with ischemic stroke. The accumulation of DNA lesions, including oxidative base modifications and strand breaks, triggers cell death in neurons and other vulnerable cell populations in the ischemic brain. DNA repair systems, particularly base excision repair, are endogenous defense mechanisms that combat oxidative DNA damage. The capacity for DNA repair may affect the susceptibility of neurons to ischemic stress and influence the pathological outcome of stroke. This article reviews the accumulated understanding of molecular pathways by which oxidative DNA damage is triggered and repaired in ischemic cells, and the potential impact of these pathways on ischemic neuronal cell death/survival. Genetic or pharmacological strategies that target the signaling molecules in DNA repair responses are promising for potential clinically effective treatment. Further understanding of mechanisms for oxidative DNA damage and its repair processes may lead to new avenues for stroke management.
Collapse
Affiliation(s)
- Peiying Li
- Anesthesiology Department of Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
30
|
Evidence that OGG1 glycosylase protects neurons against oxidative DNA damage and cell death under ischemic conditions. J Cereb Blood Flow Metab 2011; 31:680-92. [PMID: 20736962 PMCID: PMC3049522 DOI: 10.1038/jcbfm.2010.147] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
7,8-Dihydro-8-oxoguanine DNA glycosylase (OGG1) is a major DNA glycosylase involved in base-excision repair (BER) of oxidative DNA damage to nuclear and mitochondrial DNA (mtDNA). We used OGG1-deficient (OGG1(-/-)) mice to examine the possible roles of OGG1 in the vulnerability of neurons to ischemic and oxidative stress. After exposure of cultured neurons to oxidative and metabolic stress levels of OGG1 in the nucleus were elevated and mitochondria exhibited fragmentation and increased levels of the mitochondrial fission protein dynamin-related protein 1 (Drp1) and reduced membrane potential. Cortical neurons isolated from OGG1(-/-) mice were more vulnerable to oxidative insults than were OGG1(+/+) neurons, and OGG1(-/-) mice developed larger cortical infarcts and behavioral deficits after permanent middle cerebral artery occlusion compared with OGG1(+/+) mice. Accumulations of oxidative DNA base lesions (8-oxoG, FapyAde, and FapyGua) were elevated in response to ischemia in both the ipsilateral and contralateral hemispheres, and to a greater extent in the contralateral cortex of OGG1(-/-) mice compared with OGG1(+/+) mice. Ischemia-induced elevation of 8-oxoG incision activity involved increased levels of a nuclear isoform OGG1, suggesting an adaptive response to oxidative nuclear DNA damage. Thus, OGG1 has a pivotal role in repairing oxidative damage to nuclear DNA under ischemic conditions, thereby reducing brain damage and improving functional outcome.
Collapse
|
31
|
Nakamura T, Tanaka S, Hirooka K, Toyoshima T, Kawai N, Tamiya T, Shiraga F, Tokuda M, Keep RF, Itano T, Miyamoto O. Anti-oxidative effects of d-allose, a rare sugar, on ischemia-reperfusion damage following focal cerebral ischemia in rat. Neurosci Lett 2011; 487:103-6. [DOI: 10.1016/j.neulet.2010.10.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 09/30/2010] [Accepted: 10/01/2010] [Indexed: 11/16/2022]
|
32
|
van Loon B, Markkanen E, Hübscher U. Oxygen as a friend and enemy: How to combat the mutational potential of 8-oxo-guanine. DNA Repair (Amst) 2010; 9:604-16. [PMID: 20399712 DOI: 10.1016/j.dnarep.2010.03.004] [Citation(s) in RCA: 243] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 03/17/2010] [Indexed: 12/20/2022]
Abstract
The maintenance of genetic stability is of crucial importance for any form of life. Prior to cell division in each mammalian cell, the process of DNA replication must faithfully duplicate the three billion bases with an absolute minimum of mistakes. Various environmental and endogenous agents, such as reactive oxygen species (ROS), can modify the structural properties of DNA bases and thus damage the DNA. Upon exposure of cells to oxidative stress, an often generated and highly mutagenic DNA damage is 7,8-dihydro-8-oxo-guanine (8-oxo-G). The estimated steady-state level of 8-oxo-G lesions is about 10(3) per cell/per day in normal tissues and up to 10(5) lesions per cell/per day in cancer tissues. The presence of 8-oxo-G on the replicating strand leads to frequent (10-75%) misincorporations of adenine opposite the lesion (formation of A:8-oxo-G mispairs), subsequently resulting in C:G to A:T transversion mutations. These mutations are among the most predominant somatic mutations in lung, breast, ovarian, gastric and colorectal cancers. Thus, in order to reduce the mutational burden of ROS, human cells have evolved base excision repair (BER) pathways ensuring (i) the correct and efficient repair of A:8-oxo-G mispairs and (ii) the removal of 8-oxo-G lesions from the genome. Very recently it was shown that MutY glycosylase homologue (MUTYH) and DNA polymerase lambda play a crucial role in the accurate repair of A:8-oxo-G mispairs. Here we review the importance of accurate BER of 8-oxo-G damage and its regulation in prevention of cancer.
Collapse
Affiliation(s)
- Barbara van Loon
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | |
Collapse
|
33
|
Dalen ML, Alme TN, Bjørås M, Munkeby BH, Rootwelt T, Saugstad OD. Reduced expression of DNA glycosylases in post-hypoxic newborn pigs undergoing therapeutic hypothermia. Brain Res 2010; 1363:198-205. [PMID: 20883672 DOI: 10.1016/j.brainres.2010.09.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 09/19/2010] [Accepted: 09/21/2010] [Indexed: 10/19/2022]
Abstract
Supplementary oxygen during resuscitation of the asphyxiated newborn is associated with increased generation of reactive oxygen species and oxidative stress. It is suspected that hyperoxic reoxygenation may cause increased damage to DNA, resulting in replication errors, and cell death or potential fixation of mutations if unrepaired. Therapeutic hypothermia may attenuate the development of brain damage after asphyxia, but it is not known how post-hypoxic hyperoxia and hypothermia affect accumulation of DNA-damage and DNA repair. Anaesthetised newborn pigs were randomised to control (n=6) or severe global hypoxia (n=46). After 20min of reoxygenation with either room air or 100% O(2), followed by 6.5h of normothermia (deep rectal temperature 39°C) or total body cooling (35°C), oxidative DNA damage (8-hydroxy-2'-deoxyguanosine) in brain, liver and urine, and transcription of DNA repair glycosylases (NEIL1, NEIL3, and OGG1) in brain and liver were measured. Hypoxic pigs displayed increased urinary 8-oxodG levels: mean (SD) 8-oxodG/creatinine was 3.55 (1.46) vs. control 2.02 (0.53), p<0.05, but levels were not affected by hyperoxia or hypothermia. Accumulation of 8-oxodG in the brain and liver did not differ across groups. Post-hypoxic transcription of DNA glycosylases was down-regulated by hypothermia: OGG1 in hippocampus and liver (p<0.01); NEIL1 in hippocampus (p<0.01), cortex and striatum (p<0.05) and liver (p<0.001); and NEIL3 in hippocampus (p<0.01) and cerebellum (p<0.001). Hyperoxia did not affect transcription of glycosylases in the brain. We confirm increased oxidative stress after hypoxia. DNA repair glycosylases were down-regulated by hypothermia but with no effect on accumulation of oxidative damage in genomic DNA.
Collapse
Affiliation(s)
- Marit Lunde Dalen
- Department of Paediatric Research, University of Oslo, Oslo University Hospital, N-0027 Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
34
|
Apurinic/apyrimidinic endonuclease APE1 is required for PACAP-induced neuroprotection against global cerebral ischemia. Proc Natl Acad Sci U S A 2010; 107:3204-9. [PMID: 20133634 DOI: 10.1073/pnas.1000030107] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inducible DNA repair via the base-excision repair pathway is an important prosurvival mechanism activated in response to oxidative DNA damage. Elevated levels of the essential base-excision repair enzyme apurinic/apyrimidinic endonuclease 1 (APE1)/redox effector factor-1 correlate closely with neuronal survival against ischemic insults, depending on the CNS region, protective treatments, and degree of insult. However, the precise mechanisms by which this multifunctional protein affords protection and is activated by upstream signaling pathways in postischemic neurons are not well delineated. Here we show that intracerebral administration of pituitary adenylate cyclase-activating polypeptide (PACAP), an endogenously occurring small neuropeptide, induces expression of APE1 in hippocampal neurons. Induction of APE1 expression requires PKA- and p38-dependent phosphorylation of cAMP response-element binding and activating transcription factor 2, which leads to transactivation of the APE1 promoter. We further show that PACAP markedly reduces oxidative DNA stress and hippocampal CA1 neuronal death following transient global ischemia. These effects occurred, at least in part, via enhanced APE1 expression. Furthermore, the DNA repair function of APE1 was required for PACAP-mediated neuroprotection. Thus, induction of DNA repair enzymes may be a unique strategy for neuroprotection against hippocampal injury.
Collapse
|
35
|
Yang Y, Candelario-Jalil E, Thompson JF, Cuadrado E, Estrada EY, Rosell A, Montaner J, Rosenberg GA. Increased intranuclear matrix metalloproteinase activity in neurons interferes with oxidative DNA repair in focal cerebral ischemia. J Neurochem 2009; 112:134-49. [PMID: 19840223 DOI: 10.1111/j.1471-4159.2009.06433.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Increased matrix metalloproteinase (MMP) activity is implicated in proteolysis of extracellular matrix in ischemic stroke. We recently observed intranuclear MMP activity in ischemic brain neurons at early reperfusion, suggesting a possible role in nuclear matrix proteolysis. Nuclear proteins, poly-ADP-ribose polymerase-1 (PARP-1) and X-ray cross-complementary factor 1 (XRCC1), as well as DNA repair enzymes, are important in DNA fragmentation and cell apoptosis. We hypothesized that intranuclear MMP activity facilitates oxidative injury in neurons during early ischemic insult by cleaving PARP-1 and XRCC1, interfering with DNA repair. We induced a 90-min middle cerebral artery occlusion in rats. Increase activity of MMP-2 and -9, detected in the ischemic neuronal nuclei at 3 h, was associated with DNA fragmentation at 24 and 48 h reperfusion. The intranuclear MMPs cleaved PARP-1. Treatment of the rats with a broad-spectrum MMP inhibitor, BB1101, significantly attenuated ischemia-induced PARP-1 cleavage, increasing its activity. Degradation of XRCC1 caused by ischemic insult in rat brain was also significantly attenuated by BB1101. We found elevation of oxidized DNA, apurinic/apyrimidinic sites, and 8-hydroxy-2'-deoxyguanosine, in ischemic brain cells at 3 h reperfusion. BB1101 markedly attenuated the early increase of oxidized DNA. Using tissue from stroke patients, we found increased intranuclear MMP expression. Our data suggest that intranuclear MMP activity cleaves PARP-1 and XRCC1, interfering with oxidative DNA repair. This novel role for MMPs could contribute to neuronal apoptosis in ischemic injuries.
Collapse
Affiliation(s)
- Yi Yang
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
He KY, Yang SZ, Shen DH, Zhang LM, Lu SD, Sun FY. Excision repair cross-complementing 1 expression protects against ischemic injury following middle cerebral artery occlusion in the rat brain. Gene Ther 2009; 16:840-8. [PMID: 19440222 DOI: 10.1038/gt.2009.48] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
To study the effects of excision repair cross-complementing 1 (ERCC1) on the pathophysiological process of brain ischemia, we examined the changes in ERCC1 expression, as well as the functional significance of ERCC1 in the rat brain following middle cerebral artery occlusion (MCAO). The results were as follows: (1) ERCC1 immunopositive cells were widely distributed in various brain regions. ERCC1 expression was localized to the nuclei of neurons and astrocytes. (2) ERCC1 expression, as determined by western blot, increased at 3 days, remaining until 14 days, in the ipsilateral cortex and striatum following MCAO. Immunohistochemical analysis demonstrated that ischemia induced increased ERCC1 expression within the periinfarct core, with increasingly less expression toward the core. (3) Knockdown of ERCC1 expression by intraventricular injection of antisense plasmids increased DNA damage and infarct volume in the ischemic brain. (4) ERCC1 overproduction, by injection of expression plasmids, significantly reduced infarct volume and the accumulation of DNA-damaged neurons. Taken together, these results indicate that both endogenous ERCC1 and exogenous ERCC1 have an important neuroprotective function in the brain. In addition, administration of ERCC1 to the brain could prove to be a successful strategy for neuronal protection against ischemic injury.
Collapse
Affiliation(s)
- K-Y He
- Department of Neurobiology, Institute of Biomedical Sciences, State Key Laboratory of Medical Neurobiology, Shanghai Medical College of Fudan University, Shanghai, PR China
| | | | | | | | | | | |
Collapse
|
37
|
Kim HW, Cho KJ, Park SC, Kim HJ, Kim GW. The adenoviral vector-mediated increase in apurinic/apyrimidinic endonuclease inhibits the induction of neuronal cell death after transient ischemic stroke in mice. Brain Res 2009; 1274:1-10. [PMID: 19374886 DOI: 10.1016/j.brainres.2009.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 04/03/2009] [Accepted: 04/07/2009] [Indexed: 12/31/2022]
Abstract
Despite the correlation between changes in the levels of apurinic/apyrimidinic endonuclease and ischemic neuronal damage, no studies have addressed the question of whether increased APE/Ref-1 can prevent ischemic neuronal cell death in vivo. Using an adenoviral vector, we investigated whether increased APE/Ref-1 can inhibit the loss of APE/Ref-1 and thereby prevent oxidative DNA damage after transient focal cerebral ischemia. Mice were subjected to intraluminal suture occlusion of the middle cerebral artery for 1 h, followed by reperfusion. Pre-ischemic treatment of the adenoviral vector was introduced intracerebrally. An adenoviral vector harboring the entire APE/Ref-1 gene sequence or a control virus without the APE/Ref-1 sequence was introduced 3 days before ischemia/reperfusion (I/R). The reduction of APE/Ref-1 occurred before DNA fragmentation, which was shown by temporal and spatial analysis. Increased APE/Ref-1 significantly decreased DNA damage and infarct volume after I/R. In conclusion, increased APE/Ref-1 enhanced DNA repair and inhibited the induction of ischemic oxidative DNA damage and cerebral infarction after I/R.
Collapse
Affiliation(s)
- Hyun-Woo Kim
- Department of Neurology and Brain Korea 21 Project for Medical Science, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
38
|
Meng S, Lin L, Lama S, Qiao M, Tuor UI. Cerebral expression of DNA repair protein, Ku70, and its association with cell proliferation following cerebral hypoxia-ischemia in neonatal rats. Int J Dev Neurosci 2008; 27:129-34. [PMID: 19121380 DOI: 10.1016/j.ijdevneu.2008.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 10/29/2008] [Accepted: 12/04/2008] [Indexed: 01/17/2023] Open
Abstract
We hypothesized that increased Ku70 expression could be involved in recovery following cerebral hypoxia-ischemia. We investigated the progression of cerebral alterations in Ku70 expression at different time points (24 h, 72 h, 1 week, 4 weeks and 8 weeks) after hypoxia-ischemia (right carotid artery occlusion plus 1.5h of hypoxia) in neonatal rats. To determine whether in addition to its known role of DNA repair, Ku70 was associated with cell death or cell proliferation we performed double staining for Ku70 and DNA fragmentation or bromodeoxyuridine, respectively. The results show that Ku70 expression was increased in the infarct core and peri-infarct regions at 24h following hypoxia-ischemia. The increased Ku70 expression was transient in the infarct core with a loss of Ku70 positive cells over days. In contrast, in the peri-infarct region the expression of Ku70 remained increased at chronic times 8 weeks following the insult. Cells positive for DNA fragmentation were not co-localized with cells positive for Ku70 after an insult. However, most of the cells positive for bromodeoxyuridine indicative of cell proliferation were positive for Ku70 in the peri-infarct region at 8 weeks after the insult. Considering the roles of Ku70 in DNA repair or inhibiting apoptosis and its co-localization within cells that had undergone proliferation, Ku70 may be considered a potential novel target to enhance recovery following hypoxia-ischemia.
Collapse
Affiliation(s)
- Shuzhen Meng
- MR Technology, Institute for Biodiagnostics (West), Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
39
|
Kassam SN, Rainbow AJ. UV-inducible base excision repair of oxidative damaged DNA in human cells. Mutagenesis 2008; 24:75-83. [DOI: 10.1093/mutage/gen054] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
40
|
Wang S, Xing Z, Vosler PS, Yin H, Li W, Zhang F, Signore AP, Stetler RA, Gao Y, Chen J. Cellular NAD replenishment confers marked neuroprotection against ischemic cell death: role of enhanced DNA repair. Stroke 2008; 39:2587-95. [PMID: 18617666 DOI: 10.1161/strokeaha.107.509158] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE NAD(+) is an essential cofactor for cellular energy production and participates in various signaling pathways that have an impact on cell survival. After cerebral ischemia, oxidative DNA lesions accumulate in neurons because of increased attacks by ROS and diminished DNA repair activity, leading to PARP-1 activation, NAD(+) depletion, and cell death. The objective of this study was to determine the neuroprotective effects of NAD(+) repletion against ischemic injury and the underlying mechanism. METHODS In vitro ischemic injury was induced in rat primary neuronal cultures by oxygen-glucose deprivation (OGD) for 1 to 2 hours. NAD(+) was replenished by adding NAD(+) directly to the culture medium before or after OGD. Cell viability, oxidative DNA damage, and DNA base-excision repair (BER) activity were measured quantitatively up to 72 hours after OGD with or without NAD(+) repletion. Knockdown of BER enzymes was achieved in cultures using AAV-mediated transfection of shRNA. RESULTS Direct NAD(+) repletion in neurons either before or after OGD markedly reduced cell death and OGD-induced accumulation of DNA damage (AP sites, single and double strand breaks) in a concentration- and time-dependent manner. NAD(+) repletion restored nDNA repair activity by inhibiting serine-specific phosphorylation of the essential BER enzymes AP endonuclease and DNA polymerase-beta. Knocking down AP endonuclease expression significantly reduced the prosurvival effect of NAD(+) repletion. CONCLUSIONS Cellular NAD(+) replenishment is a novel and potent approach to reduce ischemic injury in neuronal cultures. Restoration of DNA repair activity via the BER pathway is a key signaling event mediating the neuroprotective effect of NAD(+) replenishment.
Collapse
Affiliation(s)
- Suping Wang
- Department of Neurology, S-507 BST, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Xu G, Herzig M, Rotrekl V, Walter CA. Base excision repair, aging and health span. Mech Ageing Dev 2008; 129:366-82. [PMID: 18423806 PMCID: PMC2526234 DOI: 10.1016/j.mad.2008.03.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 02/28/2008] [Accepted: 03/05/2008] [Indexed: 12/18/2022]
Abstract
DNA damage and mutagenesis are suggested to contribute to aging through their ability to mediate cellular dysfunction. The base excision repair (BER) pathway ameliorates a large number of DNA lesions that arise spontaneously. Many of these lesions are reported to increase with age. Oxidized guanine, repaired largely via base excision repair, is particularly well studied and shown to increase with age. Spontaneous mutant frequencies also increase with age which suggests that mutagenesis may contribute to aging. It is widely accepted that genetic instability contributes to age-related occurrences of cancer and potentially other age-related pathologies. BER activity decreases with age in multiple tissues. The specific BER protein that appears to limit activity varies among tissues. DNA polymerase-beta is reduced in brain from aged mice and rats while AP endonuclease is reduced in spermatogenic cells obtained from old mice. The differences in proteins that appear to limit BER activity among tissues may represent true tissue-specific differences in activity or may be due to differences in techniques, environmental conditions or other unidentified differences among the experimental approaches. Much remains to be addressed concerning the potential role of BER in aging and age-related health span.
Collapse
Affiliation(s)
- Guogang Xu
- Department of Cellular & Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900
| | - Maryanne Herzig
- Department of Cellular & Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900
| | - Vladimir Rotrekl
- Institute of Experimental Medicine, Department of Molecular Embryology, Masaryk University, Faculty of Medicine, Department of Biology, Kamenice 5, Building A6, 62500 Brno, Czech Republic
| | - Christi A. Walter
- Department of Cellular & Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900
- South Texas Veteran’s Health Care System, 7400 Merton Minter Blvd, San Antonio, TX 78229
| |
Collapse
|
42
|
Rolseth V, Rundén-Pran E, Neurauter CG, Yndestad A, Luna L, Aukrust P, Ottersen OP, Bjørås M. Base excision repair activities in organotypic hippocampal slice cultures exposed to oxygen and glucose deprivation. DNA Repair (Amst) 2008; 7:869-78. [PMID: 18406215 DOI: 10.1016/j.dnarep.2008.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 02/07/2008] [Accepted: 02/12/2008] [Indexed: 01/22/2023]
Abstract
The capacity for DNA repair is likely to be one of the factors that determine the vulnerability of neurons to ischemic stress and may influence the pathological outcome of stroke. In this report, initiation of base excision repair (BER) was assessed by analysis of enzyme activity and gene expression level of DNA glycosylases and AP-endonucleases in rat organotypic hippocampal slice cultures exposed to oxygen and glucose deprivation (OGD) - an in vitro model of stroke. Under basal conditions, AP-endonuclease activity and base removal of ethenoadenine and 8-oxoguanine (8-oxoG) were higher (by approximately 20-35 %) in CA3/fascia dentata (FD) than in CA1. Base removal of uracil did not differ between the two hippocampal regions, while removal of 5-hydroxyuracil (5-OHU) was slightly less efficient in CA3/FD than in CA1. Analyses performed immediately after 30 min of OGD revealed a decreased AP-endonuclease activity (by approximately 20%) in CA1 as well as CA3/FD, and an increased ethenoadenine activity (by approximately 25%) in CA1. Activities for 8-oxoG, 5-OHU and uracil showed no significant changes at this time point. At 8h after OGD, none of the enzyme activities differed from control values. Real-time RT-PCR showed that transcription of DNA glycosylases, including Ogg1, Nth1, Ung, Aag, Neil1 and Neil2 were not changed in response to OGD treatment (t=0 h). The hippocampal expression of Neil2 was low compared with the other DNA glycosylases. These data indicate that CA1 has a lower capacity than CA3/FD for removal of base lesions under basal conditions. The relatively low capacity for BER in basal conditions and the apparent failure to upregulate repair of oxidative damage after OGD might contribute to the high vulnerability of CA1 to ischemic injury.
Collapse
Affiliation(s)
- Veslemøy Rolseth
- Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, University of Oslo, Rikshospitalet, N-0027 Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Obrenovitch TP. Molecular physiology of preconditioning-induced brain tolerance to ischemia. Physiol Rev 2008; 88:211-47. [PMID: 18195087 DOI: 10.1152/physrev.00039.2006] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ischemic tolerance describes the adaptive biological response of cells and organs that is initiated by preconditioning (i.e., exposure to stressor of mild severity) and the associated period during which their resistance to ischemia is markedly increased. This topic is attracting much attention because preconditioning-induced ischemic tolerance is an effective experimental probe to understand how the brain protects itself. This review is focused on the molecular and related functional changes that are associated with, and may contribute to, brain ischemic tolerance. When the tolerant brain is subjected to ischemia, the resulting insult severity (i.e., residual blood flow, disruption of cellular transmembrane gradients) appears to be the same as in the naive brain, but the ensuing lesion is substantially reduced. This suggests that the adaptive changes in the tolerant brain may be primarily directed against postischemic and delayed processes that contribute to ischemic damage, but adaptive changes that are beneficial during the subsequent test insult cannot be ruled out. It has become clear that multiple effectors contribute to ischemic tolerance, including: 1) activation of fundamental cellular defense mechanisms such as antioxidant systems, heat shock proteins, and cell death/survival determinants; 2) responses at tissue level, especially reduced inflammatory responsiveness; and 3) a shift of the neuronal excitatory/inhibitory balance toward inhibition. Accordingly, an improved knowledge of preconditioning/ischemic tolerance should help us to identify neuroprotective strategies that are similar in nature to combination therapy, hence potentially capable of suppressing the multiple, parallel pathophysiological events that cause ischemic brain damage.
Collapse
Affiliation(s)
- Tihomir Paul Obrenovitch
- Division of Pharmacology, School of Life Sciences, University of Bradford, Bradford, United Kingdom.
| |
Collapse
|
44
|
Ischemic tolerance as an active and intrinsic neuroprotective mechanism. HANDBOOK OF CLINICAL NEUROLOGY 2008; 92:171-95. [PMID: 18790275 DOI: 10.1016/s0072-9752(08)01909-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
45
|
Ebselen attenuates oxidative DNA damage and enhances its repair activity in the thalamus after focal cortical infarction in hypertensive rats. Brain Res 2007; 1181:83-92. [DOI: 10.1016/j.brainres.2007.08.072] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 08/17/2007] [Accepted: 08/25/2007] [Indexed: 12/20/2022]
|
46
|
Sokhansanj BA, Wilson DM. Estimating the effect of human base excision repair protein variants on the repair of oxidative DNA base damage. Cancer Epidemiol Biomarkers Prev 2006; 15:1000-8. [PMID: 16702383 DOI: 10.1158/1055-9965.epi-05-0817] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Epidemiologic studies have revealed a complex association between human genetic variance and cancer risk. Quantitative biological modeling based on experimental data can play a critical role in interpreting the effect of genetic variation on biochemical pathways relevant to cancer development and progression. Defects in human DNA base excision repair (BER) proteins can reduce cellular tolerance to oxidative DNA base damage caused by endogenous and exogenous sources, such as exposure to toxins and ionizing radiation. If not repaired, DNA base damage leads to cell dysfunction and mutagenesis, consequently leading to cancer, disease, and aging. Population screens have identified numerous single-nucleotide polymorphism variants in many BER proteins and some have been purified and found to exhibit mild kinetic defects. Epidemiologic studies have led to conflicting conclusions on the association between single-nucleotide polymorphism variants in BER proteins and cancer risk. Using experimental data for cellular concentration and the kinetics of normal and variant BER proteins, we apply a previously developed and tested human BER pathway model to (i) estimate the effect of mild variants on BER of abasic sites and 8-oxoguanine, a prominent oxidative DNA base modification, (ii) identify ranges of variation associated with substantial BER capacity loss, and (iii) reveal nonintuitive consequences of multiple simultaneous variants. Our findings support previous work suggesting that mild BER variants have a minimal effect on pathway capacity whereas more severe defects and simultaneous variation in several BER proteins can lead to inefficient repair and potentially deleterious consequences of cellular damage.
Collapse
Affiliation(s)
- Bahrad A Sokhansanj
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
47
|
Luo Y, Yin W, Signore AP, Zhang F, Hong Z, Wang S, Graham SH, Chen J. Neuroprotection against focal ischemic brain injury by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. J Neurochem 2006; 97:435-48. [PMID: 16539667 DOI: 10.1111/j.1471-4159.2006.03758.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPAR-gamma) is a nuclear membrane-associated transcription factor that governs the expression of various inflammatory genes. PPAR-gamma agonists protect peripheral organs from ischemic injury. In the present study, we investigated whether the PPAR-gamma agonist rosiglitazone is neuroprotective against focal ischemic brain injury. C57/B6 mice underwent 1.5-h middle cerebral artery occlusion, and received either vehicle or rosiglitazone treatment of 0.75, 1.5, 3, 6 or 12 mg/kg (n = 9 per group). Cerebral infarct volume, neurological function, expression of pro-inflammatory proteins and neutrophil accumulation were assessed after ischemia and reperfusion. At 48 h after ischemia, infarct volume was significantly decreased with 3-12 mg/kg of rosiglitazone, with a time window of efficacy of 2 h after ischemia at the optimal dose (6 mg/kg). Neutrophil accumulation was significantly decreased in the brain parenchyma of rosiglitazone-treated mice. Ischemia-induced expression of several inflammatory cytokines and chemokines was markedly reduced in rosiglitazone-treated brains, as determined using proteomic-array analysis. Rosiglitazone treatment improved neurological function at 7 days after ischemia. Moreover, in cultured cortical primary microglia, rosiglitazone attenuated inflammatory responses by decreasing lipopolysaccharide-induced release of tumor necrosis factor-alpha, interleukin (IL)-1beta and IL-6. These results suggest that the PPAR-gamma agonist rosiglitazone has neuroprotective properties that are at least partially mediated via anti-inflammatory actions, and is thus a potential novel therapeutic agent for stroke.
Collapse
Affiliation(s)
- Yumin Luo
- Department of Neurology, University of Pittsburgh School of Medicine, PA 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Li W, Luo Y, Zhang F, Signore AP, Gobbel GT, Simon RP, Chen J. Ischemic preconditioning in the rat brain enhances the repair of endogenous oxidative DNA damage by activating the base-excision repair pathway. J Cereb Blood Flow Metab 2006; 26:181-98. [PMID: 16001017 DOI: 10.1038/sj.jcbfm.9600180] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The development of ischemic tolerance in the brain, whereby a brief period of sublethal 'preconditioning' ischemia attenuates injury from subsequent severe ischemia, may involve the activation of multiple intracellular signaling events that promote neuronal survival. In this study, the potential role of inducible DNA base-excision repair (BER), an endogenous adaptive response that prevents the detrimental effect of oxidative DNA damage, has been studied in the rat model of ischemic tolerance produced by three episodes of ischemic preconditioning (IP). This paradigm of IP, when applied 2 and 5 days before 2-h middle cerebral artery occlusion (MCAO), significantly decreased infarct volume in the frontal-parietal cortex 72 h later. Correlated with this protective effect, IP markedly attenuated the nuclear accumulations of several oxidative DNA lesions, including 8-oxodG, AP sites, and DNA strand breaks, after 2-h MCAO. Consequently, harmful DNA damage-responsive events, including NAD depletion and p53 activation, were reduced during postischemic reperfusion in preconditioned brains. The mechanism underlying the decreased DNA damage in preconditioned brain was then investigated by measuring BER activities in nuclear extracts. Beta-polymerase-mediated BER activity was markedly increased after IP, and this activation occurred before (24 h) and during the course of ischemic tolerance (48 to 72 h). In similar patterns, the activities for AP site and 8-oxodG incisions were also upregulated after IP. The upregulation of BER activities after IP was likely because of increased expression of repair enzymes beta-polymerase, AP endonuclease, and OGG1. These results suggest that the activation of the BER pathway may contribute to IP-induced neuroprotection by enhancing the repair of endogenous oxidative DNA damage after ischemic injury.
Collapse
Affiliation(s)
- Wenjin Li
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Arnett SD, Osbourn DM, Moore KD, Vandaveer SS, Lunte CE. Determination of 8-oxoguanine and 8-hydroxy-2'-deoxyguanosine in the rat cerebral cortex using microdialysis sampling and capillary electrophoresis with electrochemical detection. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 827:16-25. [PMID: 15994136 PMCID: PMC2440692 DOI: 10.1016/j.jchromb.2005.05.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 05/09/2005] [Accepted: 05/13/2005] [Indexed: 11/26/2022]
Abstract
A rapid and sensitive method to determine 8-oxoguanine (8oxoG) and 8-hydroxydeoxyguanosine (8OHdG), biomarkers for oxidative DNA damage, in cerebral cortex microdialysate samples using capillary electrophoresis (CE) with electrochemical detection (CEEC) was developed. Samples were concentrated on-column using pH-mediated stacking for anions. On-column anodic detection was performed with a carbon fiber working electrode and laser-etched decoupler. The method is linear over the expected extracellular concentration range for 8oxoG and 8-OHdG during induced ischemia-reperfusion, with R.S.D. values
Collapse
Affiliation(s)
- Stacy D. Arnett
- Department of Chemistry, University of Kansas, Lawrence, KS 66045
| | - Damon M. Osbourn
- Department of Chemistry, University of Kansas, Lawrence, KS 66045
| | | | | | - Craig E. Lunte
- Department of Chemistry, University of Kansas, Lawrence, KS 66045
| |
Collapse
|
50
|
Abstract
The tumor suppressor and transcription factor p53 is a key modulator of cellular stress responses, and activation of p53 can trigger apoptosis in many cell types including neurons. Apoptosis is a form of programmed cell death that occurs in neurons during development of the nervous system and may also be responsible for neuronal deaths that occur in neurological disorders such as stroke, and Alzheimer's and Parkinson's diseases. p53 production is rapidly increased in neurons in response to a range of insults including DNA damage, oxidative stress, metabolic compromise, and cellular calcium overload. Target genes induced by p53 in neurons include those encoding the pro-apoptotic proteins Bax and the BH3-only proteins PUMA and Noxa. In addition to such transcriptional control of the cell death machinery, p53 may more directly trigger apoptosis by acting at the level of mitochondria, a process that can occur in synapses (synaptic apoptosis). Preclinical data suggest that agents that inhibit p53 may be effective therapeutics for several neurodegenerative conditions.
Collapse
Affiliation(s)
- Carsten Culmsee
- Department Pharmazie, Pharmazeutische Biologie-Biotechnologie, Ludwig-Maximilians-Universität, München, Germany.
| | | |
Collapse
|