1
|
Pinyomahakul J, Ise M, Kawamura M, Yamada T, Okuyama K, Shibata S, Takizawa J, Abe M, Sakimura K, Takebayashi H. Analysis of Brain, Blood, and Testis Phenotypes Lacking the Vps13a Gene in C57BL/6N Mice. Int J Mol Sci 2024; 25:7776. [PMID: 39063018 PMCID: PMC11277237 DOI: 10.3390/ijms25147776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The Vps13a gene encodes a lipid transfer protein called VPS13A, or chorein, associated with mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs), mitochondria-endosomes, and lipid droplets. This protein plays a crucial role in inter-organelle communication and lipid transport. Mutations in the VPS13A gene are implicated in the pathogenesis of chorea-acanthocytosis (ChAc), a rare autosomal recessive neurodegenerative disorder characterized by chorea, orofacial dyskinesias, hyperkinetic movements, seizures, cognitive impairment, and acanthocytosis. Previous mouse models of ChAc have shown variable disease phenotypes depending on the genetic background. In this study, we report the generation of a Vps13a flox allele in a pure C57BL/6N mouse background and the subsequent creation of Vps13a knockout (KO) mice via Cre-recombination. Our Vps13a KO mice exhibited increased reticulocytes but not acanthocytes in peripheral blood smears. Additionally, there were no significant differences in the GFAP- and Iba1-positive cells in the striatum, the basal ganglia of the central nervous system. Interestingly, we observed abnormal spermatogenesis leading to male infertility. These findings indicate that Vps13a KO mice are valuable models for studying male infertility and some hematological aspects of ChAc.
Collapse
Affiliation(s)
- Jitrapa Pinyomahakul
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (J.P.)
| | - Masataka Ise
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (J.P.)
| | - Meiko Kawamura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; (M.K.); (M.A.); (K.S.)
| | - Takashi Yamada
- Department of Hematology, Endocrinology and Metabolism, Faculty of Medicine, Niigata University, Niigata 951-8510, Japan; (T.Y.); (J.T.)
| | - Kentaro Okuyama
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (K.O.); (S.S.)
| | - Shinsuke Shibata
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (K.O.); (S.S.)
| | - Jun Takizawa
- Department of Hematology, Endocrinology and Metabolism, Faculty of Medicine, Niigata University, Niigata 951-8510, Japan; (T.Y.); (J.T.)
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; (M.K.); (M.A.); (K.S.)
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; (M.K.); (M.A.); (K.S.)
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (J.P.)
- Center for Coordination of Research Facilities, Niigata University, Niigata 951-8510, Japan
| |
Collapse
|
2
|
Krause A, Anderson DG, Ferreira-Correia A, Dawson J, Baine-Savanhu F, Li PP, Margolis RL. Huntington disease-like 2: insight into neurodegeneration from an African disease. Nat Rev Neurol 2024; 20:36-49. [PMID: 38114648 DOI: 10.1038/s41582-023-00906-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 12/21/2023]
Abstract
Huntington disease (HD)-like 2 (HDL2) is a rare genetic disease caused by an expanded trinucleotide repeat in the JPH3 gene (encoding junctophilin 3) that shows remarkable clinical similarity to HD. To date, HDL2 has been reported only in patients with definite or probable African ancestry. A single haplotype background is shared by patients with HDL2 from different populations, supporting a common African origin for the expansion mutation. Nevertheless, outside South Africa, reports of patients with HDL2 in Africa are scarce, probably owing to limited clinical services across the continent. Systematic comparisons of HDL2 and HD have revealed closely overlapping motor, cognitive and psychiatric features and similar patterns of cerebral and striatal atrophy. The pathogenesis of HDL2 remains unclear but it is proposed to occur through several mechanisms, including loss of protein function and RNA and/or protein toxicity. This Review summarizes our current knowledge of this African-specific HD phenocopy and highlights key areas of overlap between HDL2 and HD. Given the aforementioned similarities in clinical phenotype and pathology, an improved understanding of HDL2 could provide novel insights into HD and other neurodegenerative and/or trinucleotide repeat expansion disorders.
Collapse
Affiliation(s)
- Amanda Krause
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - David G Anderson
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- University of Glasgow, Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | - Aline Ferreira-Correia
- Department of Psychology, School of Human and Community Development, Faculty of Humanities, University of the Witwatersrand, Johannesburg, South Africa
| | - Jessica Dawson
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fiona Baine-Savanhu
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Pan P Li
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Russell L Margolis
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Taneva SG, Todinova S, Andreeva T. Morphometric and Nanomechanical Screening of Peripheral Blood Cells with Atomic Force Microscopy for Label-Free Assessment of Alzheimer's Disease, Parkinson's Disease, and Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:14296. [PMID: 37762599 PMCID: PMC10531602 DOI: 10.3390/ijms241814296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/09/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Neurodegenerative disorders (NDDs) are complex, multifactorial disorders with significant social and economic impact in today's society. NDDs are predicted to become the second-most common cause of death in the next few decades due to an increase in life expectancy but also to a lack of early diagnosis and mainly symptomatic treatment. Despite recent advances in diagnostic and therapeutic methods, there are yet no reliable biomarkers identifying the complex pathways contributing to these pathologies. The development of new approaches for early diagnosis and new therapies, together with the identification of non-invasive and more cost-effective diagnostic biomarkers, is one of the main trends in NDD biomedical research. Here we summarize data on peripheral biomarkers, biofluids (cerebrospinal fluid and blood plasma), and peripheral blood cells (platelets (PLTs) and red blood cells (RBCs)), reported so far for the three most common NDDs-Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). PLTs and RBCs, beyond their primary physiological functions, are increasingly recognized as valuable sources of biomarkers for NDDs. Special attention is given to the morphological and nanomechanical signatures of PLTs and RBCs as biophysical markers for the three pathologies. Modifications of the surface nanostructure and morphometric and nanomechanical signatures of PLTs and RBCs from patients with AD, PD, and ALS have been revealed by atomic force microscopy (AFM). AFM is currently experiencing rapid and widespread adoption in biomedicine and clinical medicine, in particular for early diagnostics of various medical conditions. AFM is a unique instrument without an analog, allowing the generation of three-dimensional cell images with extremely high spatial resolution at near-atomic scale, which are complemented by insights into the mechanical properties of cells and subcellular structures. Data demonstrate that AFM can distinguish between the three pathologies and the normal, healthy state. The specific PLT and RBC signatures can serve as biomarkers in combination with the currently used diagnostic tools. We highlight the strong correlation of the morphological and nanomechanical signatures between RBCs and PLTs in PD, ALS, and AD.
Collapse
Affiliation(s)
- Stefka G. Taneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 21, 1113 Sofia, Bulgaria; (S.T.); (T.A.)
| | - Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 21, 1113 Sofia, Bulgaria; (S.T.); (T.A.)
| | - Tonya Andreeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 21, 1113 Sofia, Bulgaria; (S.T.); (T.A.)
- Faculty of Life Sciences, Reutlingen University, Alteburgstraße 150, D-72762 Reutlingen, Germany
| |
Collapse
|
4
|
Li Z, Wang D, Liao H, Zhang S, Guo W, Chen L, Lu L, Huang T, Cai YD. Exploring the Genomic Patterns in Human and Mouse Cerebellums Via Single-Cell Sequencing and Machine Learning Method. Front Genet 2022; 13:857851. [PMID: 35309141 PMCID: PMC8930846 DOI: 10.3389/fgene.2022.857851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/09/2022] [Indexed: 12/29/2022] Open
Abstract
In mammals, the cerebellum plays an important role in movement control. Cellular research reveals that the cerebellum involves a variety of sub-cell types, including Golgi, granule, interneuron, and unipolar brush cells. The functional characteristics of cerebellar cells exhibit considerable differences among diverse mammalian species, reflecting a potential development and evolution of nervous system. In this study, we aimed to recognize the transcriptional differences between human and mouse cerebellum in four cerebellar sub-cell types by using single-cell sequencing data and machine learning methods. A total of 321,387 single-cell sequencing data were used. The 321,387 cells included 4 cell types, i.e., Golgi (5,048, 1.57%), granule (250,307, 77.88%), interneuron (60,526, 18.83%), and unipolar brush (5,506, 1.72%) cells. Our results showed that by using gene expression profiles as features, the optimal classification model could achieve very high even perfect performance for Golgi, granule, interneuron, and unipolar brush cells, respectively, suggesting a remarkable difference between the genomic profiles of human and mouse. Furthermore, a group of related genes and rules contributing to the classification was identified, which might provide helpful information for deepening the understanding of cerebellar cell heterogeneity and evolution.
Collapse
Affiliation(s)
- ZhanDong Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Deling Wang
- Department of Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - HuiPing Liao
- Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - ShiQi Zhang
- Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Lin Lu
- Department of Radiology, Columbia University Medical Center, New York, NY, United States
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
5
|
Huang S, Zhang J, Tao M, Lv Y, Xu L, Liang Z. Two case reports of chorea-acanthocytosis and review of literature. Eur J Med Res 2022; 27:22. [PMID: 35130982 PMCID: PMC8822714 DOI: 10.1186/s40001-022-00646-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chorea-acanthocytosis (ChAc), as the most common subtype of neuroacanthocytosis syndrome, is characterized by the presence of acanthocytes and neurological symptoms. It is thought to be caused by the VPS13A (vacuolar protein sorting-associated protein 13A) mutations. This article reports two confirmed cases of ChAc and summarizes some suggestive features, which provide direction for the diagnosis and treatment of acanthocytosis in the future. CASE PRESENTATION Here, we present two cases of ChAc diagnosed based on typical clinical symptoms, neuroimaging features, genetic findings of VPS13A, and response to the symptomatic treatment. CONCLUSIONS Chorea-acanthocytosis is a rare neurodegenerative disease with various early clinical manifestations. The final diagnosis of the ChAc can be established by either genetic analysis or protein expression by Western blotting. Supportive treatments and nursing are helpful to improve the quality of the patient's life. Nevertheless, it is imperative to investigate the impact of neuroimaging and neuropathological diagnosis in a larger group of ChAc in future studies.
Collapse
Affiliation(s)
- Shuangfeng Huang
- Second Clinical Medical College, Binzhou Medical University, Yantai, Shandong, China.,Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Junliang Zhang
- Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Manli Tao
- Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Yaodong Lv
- Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Luyao Xu
- Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Zhigang Liang
- Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China.
| |
Collapse
|
6
|
Morphometry and Stiffness of Red Blood Cells—Signatures of Neurodegenerative Diseases and Aging. Int J Mol Sci 2021; 23:ijms23010227. [PMID: 35008653 PMCID: PMC8745649 DOI: 10.3390/ijms23010227] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
Human red blood cells (RBCs) are unique cells with the remarkable ability to deform, which is crucial for their oxygen transport function, and which can be significantly altered under pathophysiological conditions. Here we performed ultrastructural analysis of RBCs as a peripheral cell model, looking for specific signatures of the neurodegenerative pathologies (NDDs)—Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease (AD), utilizing atomic force (AFM) and conventional optical (OM) microscopy. We found significant differences in the morphology and stiffness of RBCs isolated from patients with the selected NDDs and those from healthy individuals. Neurodegenerative pathologies’ RBCs are characterized by a reduced abundance of biconcave discoid shape, lower surface roughness and a higher Young’s modulus, compared to healthy cells. Although reduced, the biconcave is still the predominant shape in ALS and AD cells, while the morphology of PD is dominated by crenate cells. The features of RBCs underwent a marked aging-induced transformation, which followed different aging pathways for NDDs and normal healthy states. It was found that the diameter, height and volume of the different cell shape types have different values for NDDs and healthy cells. Common and specific morphological signatures of the NDDs were identified.
Collapse
|
7
|
McIntosh P, Scott B. Clinical Reasoning: A 55-Year-Old Man With Odd Behavior and Abnormal Movements. Neurology 2021; 97:1090-1093. [PMID: 34400586 DOI: 10.1212/wnl.0000000000012663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Paul McIntosh
- From the Duke University Medical Center, Durham, NC.
| | - Burton Scott
- From the Duke University Medical Center, Durham, NC
| |
Collapse
|
8
|
Unraveling the Spatiotemporal Distribution of VPS13A in the Mouse Brain. Int J Mol Sci 2021; 22:ijms222313018. [PMID: 34884823 PMCID: PMC8657609 DOI: 10.3390/ijms222313018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/27/2022] Open
Abstract
Loss-of-function mutations in the human vacuolar protein sorting the 13 homolog A (VPS13A) gene cause Chorea-acanthocytosis (ChAc), with selective degeneration of the striatum as the main neuropathologic feature. Very little is known about the VPS13A expression in the brain. The main objective of this work was to assess, for the first time, the spatiotemporal distribution of VPS13A in the mouse brain. We found VPS13A expression present in neurons already in the embryonic stage, with stable levels until adulthood. VPS13A mRNA and protein distributions were similar in the adult mouse brain. We found a widespread VPS13A distribution, with the strongest expression profiles in the pons, hippocampus, and cerebellum. Interestingly, expression was weak in the basal ganglia. VPS13A staining was positive in glutamatergic, GABAergic, and cholinergic neurons, but rarely in glial cells. At the cellular level, VPS13A was mainly located in the soma and neurites, co-localizing with both the endoplasmic reticulum and mitochondria. However, it was not enriched in dendritic spines or the synaptosomal fraction of cortical neurons. In vivo pharmacological modulation of the glutamatergic, dopaminergic or cholinergic systems did not modulate VPS13A concentration in the hippocampus, cerebral cortex, or striatum. These results indicate that VPS13A has remarkable stability in neuronal cells. Understanding the distinct expression pattern of VPS13A can provide relevant information to unravel pathophysiological hallmarks of ChAc.
Collapse
|
9
|
Urs AB, Augustine J, Khan AA. Chorea-acanthocytosis: A Case Report with Review of Oral Manifestations. Contemp Clin Dent 2021; 12:73-75. [PMID: 33967542 PMCID: PMC8092098 DOI: 10.4103/ccd.ccd_207_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/21/2020] [Accepted: 06/25/2020] [Indexed: 11/04/2022] Open
Abstract
Chorea-acanthocytosis (ChAc) is an autosomal recessive, progressive neurological disorder due to mutation in VPS13A gene causing defects in sorting of protein making the cell membrane unstable, leading to star-shaped erythrocytes. This neurological disorder includes features such as elevated creatinine kinase, atrophy of basal ganglia, and oral manifestations such as frequent cheek and tongue biting. It is a rare neurological condition with an estimate of <1000 cases worldwide. A case of 47-year-old male patient with a history of seizures and neurological problems presenting with oral ulceration has been discussed. The diagnosis of ChAc was confirmed by molecular investigations showing VPS13A gene mutation. The physical appearance includes chorea and dystonia with impaired gait. We attempt to highlight the oral features of ChAc. The oral manifestations include frequent tongue and cheek biting occurring due to dystonia affecting the muscles of head and neck region.
Collapse
Affiliation(s)
- Aadithya B Urs
- Department of Oral and Maxillofacial Pathology, Maulana Azad Institute of Dental Sciences, New Delhi, India
| | - Jeyaseelan Augustine
- Department of Oral and Maxillofacial Pathology, Maulana Azad Institute of Dental Sciences, New Delhi, India
| | - Azhar Ahmed Khan
- Department of Oral and Maxillofacial Pathology, Maulana Azad Institute of Dental Sciences, New Delhi, India
| |
Collapse
|
10
|
Faber AIE, van der Zwaag M, Schepers H, Eggens-Meijer E, Kanon B, IJsebaart C, Kuipers J, Giepmans BNG, Freire R, Grzeschik NA, Rabouille C, Sibon OCM. Vps13 is required for timely removal of nurse cell corpses. Development 2020; 147:dev.191759. [PMID: 32994170 DOI: 10.1242/dev.191759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/15/2020] [Indexed: 12/25/2022]
Abstract
Programmed cell death and consecutive removal of cellular remnants is essential for development. During late stages of Drosophila melanogaster oogenesis, the small somatic follicle cells that surround the large nurse cells promote non-apoptotic nurse cell death, subsequently engulf them, and contribute to the timely removal of nurse cell corpses. Here, we identify a role for Vps13 in the timely removal of nurse cell corpses downstream of developmental programmed cell death. Vps13 is an evolutionarily conserved peripheral membrane protein associated with membrane contact sites and lipid transfer. It is expressed in late nurse cells, and persistent nurse cell remnants are observed when Vps13 is depleted from nurse cells but not from follicle cells. Microscopic analysis revealed enrichment of Vps13 in close proximity to the plasma membrane and the endoplasmic reticulum in nurse cells undergoing degradation. Ultrastructural analysis uncovered the presence of an underlying Vps13-dependent membranous structure in close association with the plasma membrane. The newly identified structure and function suggests the presence of a Vps13-dependent process required for complete degradation of bulky remnants of dying cells.
Collapse
Affiliation(s)
- Anita I E Faber
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, The University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Marianne van der Zwaag
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, The University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Hein Schepers
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, The University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Ellie Eggens-Meijer
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, The University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Bart Kanon
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, The University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Carmen IJsebaart
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, The University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Jeroen Kuipers
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, The University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Ben N G Giepmans
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, The University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Raimundo Freire
- Unidad de Investigación/FIISC, Hospital Universitario de Canarias, Ofra s/n, La Cuesta, 38320 San Cristóbal de La Laguna, Tenerife, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Spain.,Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
| | - Nicola A Grzeschik
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, The University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Catherine Rabouille
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, The University of Groningen, 9713 AV, Groningen, The Netherlands.,Hubrecht Institute, University of Utrecht, 3584 CT, Utrecht, The Netherlands
| | - Ody C M Sibon
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, The University of Groningen, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
11
|
Bonomo R, Latorre A, Bhatia KP. Self-Injurious Behaviour in SCA17: A New Clinical Observation. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2019; 9:tre-09-672. [PMID: 31565537 PMCID: PMC6744813 DOI: 10.7916/tohm.v0.672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 08/06/2019] [Indexed: 12/01/2022]
Abstract
Background Self-injurious behaviour has historically been associated with borderline personality disorder. Nevertheless, over recent years, it has been reported in numerous neurological syndromes, especially hyperkinesias. Case report Two cases of SCA17 manifested self-injurious behaviour, namely repetitive scratching of the skin resulting in severe excoriations. In one of them, the abnormal behaviour was associated with the inability to resist the impulse to commit the act along with relief following the damage. Discussion This is the first report describing self-injurious behaviour in SCA17, but the mechanisms underlying it are still not clear. Further studies are needed to clarify the pathophysiology of such manifestation in hyperkinetic syndromes.
Collapse
Affiliation(s)
- Roberta Bonomo
- Department of Clinical and Movement Neurosciences, University College London (UCL) Institute of Neurology, London, UK.,Department "G.F. Ingrassia", Section of Neurosciences, University of Catania, Catania, IT
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences, University College London (UCL) Institute of Neurology, London, UK.,Department of Human Neurosciences, Sapienza University of Rome, Rome, IT
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, University College London (UCL) Institute of Neurology, London, UK
| |
Collapse
|
12
|
Menozzi E, Latorre A, Balint B, Bhatia KP. Dystonia in Handcuffs: A Picture Typical of Lesch-Nyhan Syndrome. Mov Disord Clin Pract 2019; 6:612-613. [PMID: 33999975 DOI: 10.1002/mdc3.12776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/09/2019] [Accepted: 04/13/2019] [Indexed: 11/10/2022] Open
Affiliation(s)
- Elisa Menozzi
- Department of Clinical and Movement Neurosciences UCL Queen Square Institute of Neurology London UK.,Department of Biomedical, Metabolic and Neural Sciences University-Hospital of Modena and Reggio Emilia Modena Italy
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences UCL Queen Square Institute of Neurology London UK.,Department of Human Neurosciences Sapienza University of Rome Italy
| | - Bettina Balint
- Department of Clinical and Movement Neurosciences UCL Queen Square Institute of Neurology London UK.,Department of Neurology University Hospital Heidelberg Heidelberg Germany
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences UCL Queen Square Institute of Neurology London UK
| |
Collapse
|
13
|
Defective mitochondrial and lysosomal trafficking in chorea-acanthocytosis is independent of Src-kinase signaling. Mol Cell Neurosci 2018; 92:137-148. [PMID: 30081151 DOI: 10.1016/j.mcn.2018.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/27/2018] [Accepted: 08/01/2018] [Indexed: 12/31/2022] Open
Abstract
Mutations in the VPS13A gene leading to depletion of chorein protein are causative for Chorea Acanthocytosis (ChAc), a rare devastating disease, which is characterized by neurodegeneration mainly affecting the basal ganglia as well as deformation of erythrocytes. Studies on patient blood samples highlighted a dysregulation of Actin cytoskeleton caused by downregulation of the PI3K pathway and hyper-activation of Lyn-kinase, but to what extent these mechanisms are present and relevant in the affected neurons remains elusive. We studied the effects of the absence of chorein protein on the morphology and trafficking of lysosomal and mitochondrial compartments in ChAc patient-specific induced pluripotent stem cell-derived medium spiny neurons (MSNs). Numbers of both organelle types were reduced in ChAc MSNs. Mitochondrial length was shortened and their membrane potential showed significant hyperpolarization. In contrast to previous studies, showing Lyn kinase dependency of ChAc-associated pathological events in erythrocytes, pharmacological studies demonstrate that the impairment of mitochondria and lysosomes are independent of Lyn kinase activity. These data suggest that impairment in mitochondrial and lysosomal morphologies in MSNs is not mediated by a dysregulation of Lyn kinase and thus the pathological pathways in ChAc might be - at least in part - cell-type specific.
Collapse
|
14
|
Yi F, Li W, Xie N, Zhou Y, Xu H, Sun Q, Zhou L. Chorea-Acanthocytosis in a Chinese Family With a Pseudo-Dominant Inheritance Mode. Front Neurol 2018; 9:594. [PMID: 30140251 PMCID: PMC6094996 DOI: 10.3389/fneur.2018.00594] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 07/03/2018] [Indexed: 11/22/2022] Open
Abstract
Chorea-acanthocytosis (ChAc) is a rare neurodegenerative movement disorder with variable clinical features, including movement disorders, cognitive decline, myopathy, neuropathy, behavioral changes, seizures and acanthocytosis. The majority of ChAc patients display an autosomal recessive mode of inheritance. A pseudodominant way of transmission represents only a rare condition. Few studies have reported the clinical status of the obligate carriers of ChAc. Here, we describe a Chinese ChAc family with a novel mutation in the VPS13A gene, presenting a pseudo-dominant inheritance mode. Our report further expanded the knowledge of phenotypes of ChAc.
Collapse
Affiliation(s)
| | | | | | | | | | - Qiying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Zhou
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Shook D, Brouwer R, de Zeeuw P, Oranje B, Durston S. XKR4 Gene Effects on Cerebellar Development Are Not Specific to ADHD. Front Cell Neurosci 2018; 11:396. [PMID: 29311829 PMCID: PMC5732973 DOI: 10.3389/fncel.2017.00396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/28/2017] [Indexed: 11/17/2022] Open
Abstract
A single-nucleotide polymorphism (SNP) of the XKR4 gene has been linked to Attention-Deficit/Hyperactivity Disorder (ADHD). This gene is preferentially expressed in cerebellum, a brain structure implicated in this disorder. This study investigated the effects of this SNP on cerebellar development in children with and without ADHD. We collected 279 longitudinal T1-weighted structural images and DNA from 58 children with ADHD and 64 typically developing (TD) children matched for age, IQ, and gender. Groups were divided by the XKR4 rs2939678 SNP into A-allele carriers versus subjects homozygous for the G-allele. Cerebellar lobular volumes were segmented into 35 regions of interest using MAGeTBrain, an automated multi-atlas segmentation pipeline for anatomical MRI, and statistically analyzed using linear mixed models. We found decreased gray matter (GM) volumes in ADHD compared to TD children in bilateral lobules VIIIA, left VIIIB, right VIIB, and vermis VI. Furthermore, we found a linear age by gene interaction in left lobule VIIB where subjects homozygous for the G-allele showed a decrease in volume over time compared to A-allele carriers. We further found quadratic age × gene and age × diagnosis interactions in left lobule IV. Subjects homozygous for the G-allele (the genotype overtransmitted in ADHD) showed more suppressed, almost flat quadratic growth curves compared to A-allele carriers, similar to individuals with ADHD compared to controls. However, there was no interaction between genotype and diagnosis, suggesting that any effects of this SNP on cerebellar development are not specific to the disorder.
Collapse
Affiliation(s)
- Devon Shook
- NICHE Laboratory, Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| | - Rachel Brouwer
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| | - Patrick de Zeeuw
- NICHE Laboratory, Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| | - Bob Oranje
- NICHE Laboratory, Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| | - Sarah Durston
- NICHE Laboratory, Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
16
|
Temprano-Fernández M, Asensi-Álvarez J, Álvarez-Martínez M, Buesa-García C. Neuroacanthocytosis: A new mutation. NEUROLOGÍA (ENGLISH EDITION) 2017. [DOI: 10.1016/j.nrleng.2015.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
17
|
De M, Oleskie AN, Ayyash M, Dutta S, Mancour L, Abazeed ME, Brace EJ, Skiniotis G, Fuller RS. The Vps13p-Cdc31p complex is directly required for TGN late endosome transport and TGN homotypic fusion. J Cell Biol 2017; 216:425-439. [PMID: 28122955 PMCID: PMC5294781 DOI: 10.1083/jcb.201606078] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/04/2016] [Accepted: 01/11/2017] [Indexed: 01/09/2023] Open
Abstract
VPS13 proteins are widely conserved in eukaryotes and associated with human neurodegenerative and neurodevelopmental diseases. De et al. describe the lipid specificity and structure of yeast Vps13p, providing insight into its role in both TGN late endosome transport and TGN homotypic fusion. Yeast VPS13 is the founding member of a eukaryotic gene family of growing interest in cell biology and medicine. Mutations in three of four human VPS13 genes cause autosomal recessive neurodegenerative or neurodevelopmental disease, making yeast Vps13p an important structural and functional model. Using cell-free reconstitution with purified Vps13p, we show that Vps13p is directly required both for transport from the trans-Golgi network (TGN) to the late endosome/prevacuolar compartment (PVC) and for TGN homotypic fusion. Vps13p must be in complex with the small calcium-binding protein Cdc31p to be active. Single-particle electron microscopic analysis of negatively stained Vps13p indicates that this 358-kD protein is folded into a compact rod-shaped density (20 × 4 nm) with a loop structure at one end with a circular opening ∼6 nm in diameter. Vps13p exhibits ATP-stimulated binding to yeast membranes and specific interactions with phosphatidic acid and phosphorylated forms of phosphatidyl inositol at least in part through the binding affinities of conserved N- and C-terminal domains.
Collapse
Affiliation(s)
- Mithu De
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Austin N Oleskie
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Mariam Ayyash
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Somnath Dutta
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Liliya Mancour
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Mohamed E Abazeed
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109.,Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Eddy J Brace
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Georgios Skiniotis
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Robert S Fuller
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
18
|
Malek N, Newman EJ. Hereditary chorea - what else to consider when the Huntington's disease genetics test is negative? Acta Neurol Scand 2017; 135:25-33. [PMID: 27150574 DOI: 10.1111/ane.12609] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2016] [Indexed: 11/28/2022]
Abstract
Chorea, cognitive, behavioural and psychiatric disturbance occur in varying combinations in Huntington's disease (HD). This is often easy to recognise particularly in the presence of an autosomal dominant history. Whilst HD may be the most common aetiology of such a presentation, several HD phenocopies should be considered if genetic testing for HD is negative. We searched PubMed and the Cochrane Database from January 1, 1946 up to January 1, 2016, combining the search terms: 'chorea', 'Huntington's disease', 'HDL' and 'phenocopies'. HD phenocopies frequently display additional movement disorders such as myoclonus, dystonia, parkinsonism and tics. Here, we discuss the phenotypes, and investigations of HD-like disorders where the combination of progressive chorea and cognitive impairment is obvious, but HD gene test result is negative. Conditions presenting with sudden onset chorea such as vascular, infectious and autoimmune causes are not the primary focus of our discussion, but we will make a passing reference to these as some of these conditions are potentially treatable. Hereditary forms of chorea are a heterogeneous group of conditions and this number is increasing. While most of these conditions are not curable, molecular genetic testing has enabled many of these disorders to be distinguished from HD. Getting a precise diagnosis may enable patients and their families to better understand the nature of their condition.
Collapse
Affiliation(s)
- N. Malek
- Department of Neurology; Institute of Neurosciences; Queen Elizabeth University Hospital; Glasgow UK
| | - E. J. Newman
- Department of Neurology; Institute of Neurosciences; Queen Elizabeth University Hospital; Glasgow UK
| |
Collapse
|
19
|
Anderson DG, Walker RH, Connor M, Carr J, Margolis RL, Krause A. A Systematic Review of the Huntington Disease-Like 2 Phenotype. J Huntingtons Dis 2017; 6:37-46. [PMID: 28339400 DOI: 10.3233/jhd-160232] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Huntington Disease-like 2 (HDL2) is a neurodegenerative disorder similar to Huntington Disease (HD) in its clinical phenotype, genetic characteristics, neuropathology and longitudinal progression. Proposed specific differences include an exclusive African ancestry, lack of eye movement abnormalities, increased Parkinsonism, and acanthocytes in HDL2. OBJECTIVE The objective was to determine the similarities and differences between HD and HDL2 by establishing the clinical phenotype of HDL2 with the published cases. METHODS A literature review of all clinically described cases of HDL2 until the end of 2016 was performed and a descriptive analysis was carried out. RESULTS Sixty-nine new cases were described between 2001 and 2016. All cases had likely African ancestry, and most were found in South Africa and the USA. Many features were found to be similar to HD, including a strong negative correlation between repeat length and age of onset. Chorea was noted in 48/57 cases (84%). Dementia was reported in 74% patients, and Parkinsonism in 37%. Psychiatric features were reported in 44 out of 47 cases. Patients with chorea had lower expanded repeat lengths compared to patients without chorea. Eye movements were described in 19 cases, 8 were abnormal. Acanthocytes were detected in 4 of the 13 patients tested. Nineteen out of 20 MRIs were reported as abnormal with findings similar to HD. CONCLUSION This review clarifies some aspects of the HDL2 phenotype and highlights others which require further investigation. Features that are unique to HDL2 have been documented in a minority of subjects and require prospective validation.
Collapse
Affiliation(s)
- David G Anderson
- The University of the Witwatersrand Donald Gordon Medical Centre, Neurology, Johannesburg, South Africa
- Division of Human Genetics, National Health Laboratory Service & School of Pathology, The University of the Witwatersrand, Johannesburg, South Africa
| | - Ruth H Walker
- Department of Neurology, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
- Department of Neurology, Mount Sinai School of Medicine, New York City, NY, USA
| | - Myles Connor
- NHS Borders, United Kingdom; Centre for Clinical Brain Sciences, University of Edinburgh, UK
- School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Jonathan Carr
- Department of Neurology, University of Stellenbosch, Cape Town, South Africa
| | - Russell L Margolis
- Department of Psychiatry, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amanda Krause
- Division of Human Genetics, National Health Laboratory Service & School of Pathology, The University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
20
|
Benninger F, Afawi Z, Korczyn AD, Oliver KL, Pendziwiat M, Nakamura M, Sano A, Helbig I, Berkovic SF, Blatt I. Seizures as presenting and prominent symptom in chorea-acanthocytosis with c.2343delVPS13Agene mutation. Epilepsia 2016; 57:549-56. [DOI: 10.1111/epi.13318] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Felix Benninger
- Department of Neurology; Rabin Medical Center; Beilinson Hospital; Petach Tikva Israel
| | - Zaid Afawi
- Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
| | - Amos D. Korczyn
- Department of Neurology; Tel Aviv University; Tel Aviv Israel
| | - Karen L. Oliver
- Department of Medicine; Epilepsy Research Centre; University of Melbourne; Austin Health; Melbourne Victoria Australia
| | - Manuela Pendziwiat
- Department of Neuropediatrics; University Medical Center Schleswig-Holstein; Christian Albrechts University; Kiel Germany
| | - Masayuki Nakamura
- Department of Psychiatry; Kagoshima University Graduate School of Medical and Dental Sciences; Sakuragaoka Kagoshima Japan
| | - Akira Sano
- Department of Psychiatry; Kagoshima University Graduate School of Medical and Dental Sciences; Sakuragaoka Kagoshima Japan
| | - Ingo Helbig
- Department of Neuropediatrics; University Medical Center Schleswig-Holstein; Christian Albrechts University; Kiel Germany
- Division of Neurology; The Children's Hospital of Philadelphia; Philadephia Pennsylvania U.S.A
| | - Samuel F. Berkovic
- Epilepsy Research Centre; Department of Medicine; Austin Health; The University of Melbourne; Heidelberg Victoria Australia
| | - Ilan Blatt
- Department of Neurology; Sheba Medical Center; Tel Hashomer Israel
| |
Collapse
|
21
|
Temprano-Fernández MT, Asensi-Álvarez JM, Álvarez-Martínez MV, Buesa-García C. Neuroacanthocytosis: A new mutation. Neurologia 2015; 32:197-199. [PMID: 26307126 DOI: 10.1016/j.nrl.2015.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 05/21/2015] [Accepted: 06/08/2015] [Indexed: 10/23/2022] Open
Affiliation(s)
| | | | - M V Álvarez-Martínez
- Servicio de Genética Molecular, Hospital Universitario Central de Asturias, Oviedo, Asturias, España
| | - C Buesa-García
- Servicio de Hematología, Hospital Universitario Central de Asturias, Oviedo, Asturias, España
| |
Collapse
|
22
|
Neurodegeneration in the elderly – When the blood type matters: An overview of the McLeod syndrome with focus on hematological features. Transfus Apher Sci 2015; 52:277-84. [DOI: 10.1016/j.transci.2015.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Abnormal red cell features associated with hereditary neurodegenerative disorders: the neuroacanthocytosis syndromes. Curr Opin Hematol 2015; 21:201-9. [PMID: 24626044 DOI: 10.1097/moh.0000000000000035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW This review discusses the mechanisms involved in the generation of thorny red blood cells (RBCs), known as acanthocytes, in patients with neuroacanthocytosis, a heterogenous group of neurodegenerative hereditary disorders that include chorea-acanthocytosis (ChAc) and McLeod syndrome (MLS). RECENT FINDINGS Although molecular defects associated with neuroacanthocytosis have been identified recently, their pathophysiology and the related RBC abnormalities are largely unknown. Studies in ChAc RBCs have shown an altered association between the cytoskeleton and the integral membrane protein compartment in the absence of major changes in RBC membrane composition. In ChAc RBCs, abnormal Lyn kinase activation in a Syk-independent fashion has been reported recently, resulting in increased band 3 tyrosine phosphorylation and perturbation of the stability of the multiprotein band 3-based complexes bridging the membrane to the spectrin-based membrane skeleton. Similarly, in MLS, the absence of XK-protein, which is associated with the spectrin-actin-4.1 junctional complex, is associated with an abnormal membrane protein phosphorylation state, with destabilization of the membrane skeletal network resulting in generation of acanthocytes. SUMMARY A novel mechanism in generation of acanthocytes involving abnormal Lyn activation, identified in ChAc, expands the acanthocytosis phenomenon toward protein-protein interactions, controlled by phosphorylation-related abnormal signaling.
Collapse
|
24
|
Samia Y, Yosra C, Foued B, Mouna A, Olfa B, Jihed S, Hammadi B, Mahbouba FA, Amel L, Habib SM. Facial cellulitis revealing choreo-acanthocytosis: a case report. Pan Afr Med J 2014; 17:322. [PMID: 25332750 PMCID: PMC4198278 DOI: 10.11604/pamj.2014.17.322.4085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 04/10/2014] [Indexed: 11/24/2022] Open
Abstract
We report a 62 year-old-man with facial cellulitis revealing choreo-acanthocytosis (ChAc). He showed chorea that started 20 years ago. The orofacial dyskinisia with tongue and cheek biting resulted in facial cellulitis. The peripheral blood smear revealed acanthocytosis of 25%. The overall of chorea, orofacial dyskinetic disorder, peripheral neuropathy, disturbed behavior, acanthocytosis and the atrophy of caudate nuclei was suggestive of a diagnosis of ChAc. To our knowledge no similar cases of facial cellulitis revealing choreo-acanthocytosis (ChAc) were found in a review of the literature.
Collapse
Affiliation(s)
- Younes Samia
- Department of Endocrinology and Internal Medicine, Laboratory of Hematology, Tahar Sfar University Hospital of Mahdia, Mahdia, Tunisia
| | - Cherif Yosra
- Department of Endocrinology and Internal Medicine, Laboratory of Hematology, Tahar Sfar University Hospital of Mahdia, Mahdia, Tunisia
| | - Bellazreg Foued
- Department of Infectious Diseases, Farhat Hached University Hospital of Sousse, Sousse, Tunisia
| | - Aissi Mouna
- Department of Neurology, Fattouma Bourguiba's University Hospital of Monastir, Monastir, Tunisia
| | - Berriche Olfa
- Department of Endocrinology and Internal Medicine, Laboratory of Hematology, Tahar Sfar University Hospital of Mahdia, Mahdia, Tunisia
| | - Souissi Jihed
- Department of Infectious Diseases, Farhat Hached University Hospital of Sousse, Sousse, Tunisia
| | - Braham Hammadi
- Department of Endocrinology and Internal Medicine, Laboratory of Hematology, Tahar Sfar University Hospital of Mahdia, Mahdia, Tunisia
| | - Frih-Ayed Mahbouba
- Department of Neurology, Fattouma Bourguiba's University Hospital of Monastir, Monastir, Tunisia
| | - Letaief Amel
- Department of Infectious Diseases, Farhat Hached University Hospital of Sousse, Sousse, Tunisia
| | - Sfar Mohamed Habib
- Department of Endocrinology and Internal Medicine, Laboratory of Hematology, Tahar Sfar University Hospital of Mahdia, Mahdia, Tunisia
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW The differential diagnosis of chorea syndromes may be complex and includes various genetic disorders such as Huntington's disease and mimicking disorders called Huntington's disease-like (HDL) phenotypes. To familiarize clinicians with these (in some cases very rare) conditions we will summarize the main characteristics. RECENT FINDINGS HDL disorders are rare and account for about 1% of cases presenting with a Huntington's disease phenotype. They share overlapping clinical features, so making the diagnosis purely on clinical grounds may be challenging, however presence of certain characteristics may be a clue (e.g. prominent orofacial involvement in neuroferritinopathy etc.), Information of ethnic descent will also guide genetic work-up [HDL2 in Black Africans; dentatorubral-pallidoluysian atrophy (DRPLA) in Japanese etc.], Huntington's disease, the classical HDL disorders (except HDL3) and DRPLA are repeat disorders with anticipation effect and age-dependent phenotype in some, but genetic underpinnings may be more complicated in the other chorea syndromes. SUMMARY With advances in genetics more and more rare diseases are disentangled, allowing molecular diagnoses in a growing number of choreic patients. Hopefully, with better understanding of their pathophysiology we are moving towards mechanistic therapies.
Collapse
|
26
|
Lim TT, Fernandez HH, Cooper S, Wilson KMK, Machado AG. Successful deep brain stimulation surgery with intraoperative magnetic resonance imaging on a difficult neuroacanthocytosis case: case report. Neurosurgery 2014; 73:E184-7; discussion E188. [PMID: 23615095 DOI: 10.1227/01.neu.0000429852.45073.73] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND IMPORTANCE Chorea acanthocytosis is a progressive hereditary neurodegenerative disorder characterized by hyperkinetic movements, seizures, and acanthocytosis in the absence of any lipid abnormality. Medical treatment is typically limited and disappointing. CLINICAL PRESENTATION We report on a 32-year-old patient with chorea acanthocytosis with a failed attempt at awake deep brain stimulation (DBS) surgery due to intraoperative seizures and postoperative intracranial hematoma. He then underwent a second DBS operation, but under general anesthesia and with intraoperative magnetic resonance imaging guidance. Marked improvement in his dystonia, chorea, and overall quality of life was noted 2 and 8 months postoperatively. CONCLUSION DBS surgery of the bilateral globus pallidus pars interna may be useful in controlling the hyperkinetic movements in neuroacanthocytosis. Because of the high propensity for seizures in this disorder, DBS performed under general anesthesia, with intraoperative magnetic resonance imaging guidance, may allow successful implantation while maintaining accurate target localization.
Collapse
Affiliation(s)
- Thien Thien Lim
- Center of Neurological Restoration, Neurological Institute, Cleveland Clinic, Ohio, USA.
| | | | | | | | | |
Collapse
|
27
|
Zhu X, Cho ES, Sha Q, Peng J, Oksov Y, Kam SY, Ho M, Walker RH, Lee S. Giant axon formation in mice lacking Kell, XK, or Kell and XK: animal models of McLeod neuroacanthocytosis syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:800-7. [PMID: 24405768 DOI: 10.1016/j.ajpath.2013.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 10/21/2013] [Accepted: 11/13/2013] [Indexed: 01/07/2023]
Abstract
McLeod neuroacanthocytosis syndrome (MLS) is a rare X-linked multisystem disease caused by XK gene mutations and characterized by hematological and neurological abnormalities. XK, a putative membrane transporter, is expressed ubiquitously and is covalently linked to Kell, an endothelin-3-converting enzyme (ECE-3). Absence of XK results in reduction of Kell at sites where both proteins are coexpressed. To elucidate the functional roles of XK, Kell, and the XK-Kell complex associated with pathogenesis in MLS, we studied the pathology of the spinal cord, anterior roots, sciatic nerve, and skeletal muscle from knockout mouse models, using Kel(-/-), Xk(-/-), Kel(-/-)Xk(-/-), and wild-type mice aged 6 to 18 months. A striking finding was that giant axons were frequently associated with paranodal demyelination. The pathology suggests probable anterograde progression from the spinal cord to the sciatic nerve. The neuropathological abnormalities were found in all three genotypes, but were more marked in the double-knockout Kel(-/-)Xk(-/-) mice than in either Kel(-/-) or Xk(-/-) mice. Skeletal muscles from Xk(-/-) and Kel(-/-)Xk(-/-) mice showed mild abnormalities, but those from Kel(-/-) mice were similar to the wild type. The more marked neuropathological abnormalities in Kel(-/-)Xk(-/-) mice suggest a possible functional association between XK and Kell in nonerythroid tissues.
Collapse
Affiliation(s)
- Xiang Zhu
- Department of Pathology, Peking University Health Science Center, Beijing, China; New York Blood Center, New York, New York.
| | - Eun-Sook Cho
- Department of Pathology and Laboratory Medicine (Neuropathology), Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Quan Sha
- New York Blood Center, New York, New York; Department of Cell Line Development, Immunomedics, Morris Plains, New Jersey
| | | | | | - Siok Yuen Kam
- Division of Medical Sciences, National Cancer Center, Singapore
| | - Mengfatt Ho
- Division of Medical Sciences, National Cancer Center, Singapore
| | - Ruth H Walker
- Department of Neurology, James J. Peters VAMC, Bronx, New York; Department of Neurology, Mount Sinai School of Medicine, New York, New York
| | - Soohee Lee
- New York Blood Center, New York, New York
| |
Collapse
|
28
|
Zhang L, Wang S, Lin J. Clinical and molecular research of neuroacanthocytosis. Neural Regen Res 2013; 8:833-42. [PMID: 25206731 PMCID: PMC4146083 DOI: 10.3969/j.issn.1673-5374.2013.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 12/23/2012] [Indexed: 11/18/2022] Open
Abstract
Neuroacanthocytosis is an autosomal recessive or dominant inherited disease characterized by widespread, non-specific nervous system symptoms, or spiculated "acanthocytic" red blood cells. The clinical manifestations typically involve chorea and dystonia, or a range of other movement disorders. Psychiatric and cognitive symptoms may also be present. The two core neuroacanthocytosis syndromes, in which acanthocytosis is atypical, are autosomal recessive chorea-acanthocytosis and X-linked McLeod syndrome. Acanthocytes are found in a smaller proportion of patients with Huntington's disease-like 2 and pantothenate kinase-associated neurodegeneration. Because the clinical manifestations are diverse and complicated, in this review we present features of inheritance, age of onset, neuroimaging and laboratory findings, as well as the spectrum of central and peripheral neurological abnormalities and extraneuronal involvement to help distinguish the four specific syndromes.
Collapse
Affiliation(s)
- Lihong Zhang
- Department of Neurology, Dalian Municipal Central Hospital, Affiliated Hospital of Dalian Medical University, Dalian 116033, Liaoning Province, China
| | - Suping Wang
- Department of Neurology, Dalian Municipal Central Hospital, Affiliated Hospital of Dalian Medical University, Dalian 116033, Liaoning Province, China
| | - Jianwen Lin
- Department of Neurology, Dalian Municipal Central Hospital, Affiliated Hospital of Dalian Medical University, Dalian 116033, Liaoning Province, China
| |
Collapse
|
29
|
Imaging gene and environmental effects on cerebellum in Attention-Deficit/Hyperactivity Disorder and typical development. NEUROIMAGE-CLINICAL 2012; 2:103-10. [PMID: 24179763 PMCID: PMC3777835 DOI: 10.1016/j.nicl.2012.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 10/31/2012] [Accepted: 11/20/2012] [Indexed: 11/21/2022]
Abstract
This study investigates the effects of XKR4, a recently identified candidate gene for Attention-Deficit/Hyperactivity Disorder (ADHD), birth weight, and their interaction on brain volume in ADHD. XKR4 is expressed in cerebellum and low birth weight has been associated both with changes in cerebellum and with ADHD, probably due to its relation with prenatal adversity. Anatomical MRI scans were acquired in 58 children with ADHD and 64 typically developing controls and processed to obtain volumes of cerebrum, cerebellum and gray and white matter in each structure. DNA was collected from saliva. Analyses including data on birth weight were conducted in a subset of 37 children with ADHD and 51 controls where these data were retrospectively collected using questionnaires. There was an interaction between genotype and birth weight for cerebellum gray matter volume (p = .020). The combination of homozygosity for the G-allele (the allele previously found to be overtransmitted in ADHD) and higher birth weight was associated with smaller volume. Furthermore, birth weight was positively associated with cerebellar white matter volume in controls, but not ADHD (interaction: p = .021). The interaction of genotype with birth weight affecting cerebellum gray matter is consistent with models that emphasize increased influence of genetic risk-factors in an otherwise favorable prenatal environment. The absence of an association between birth weight and cerebellum white matter volume in ADHD suggests that other genetic or environmental effects may be at play, unrelated to XKR4. These results underscore the importance of considering environmental effects in imaging genetics studies.
Collapse
|
30
|
Shin H, Ki CS, Cho AR, Lee JI, Ahn JY, Lee JH, Cho JW. Globus Pallidus Interna Deep Brain Stimulation Improves Chorea and Functional Status in a Patient with Chorea-Acanthocytosis. Stereotact Funct Neurosurg 2012; 90:273-7. [DOI: 10.1159/000338216] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 02/28/2012] [Indexed: 11/19/2022]
|
31
|
Bawazir WM, Gevers EF, Flatt JF, Ang AL, Jacobs B, Oren C, Grunewald S, Dattani M, Bruce LJ, Stewart GW. An infant with pseudohyperkalemia, hemolysis, and seizures: cation-leaky GLUT1-deficiency syndrome due to a SLC2A1 mutation. J Clin Endocrinol Metab 2012; 97:E987-93. [PMID: 22492876 DOI: 10.1210/jc.2012-1399] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT GLUT1 (glucose transporter 1) deficiency syndrome is a well-known presentation in pediatric practice. Very rare mutations not only disable carbohydrate transport but also cause the red cell membrane to be constitutively permeant to monovalent cations, namely sodium and potassium. OBJECTIVE The aim of this study was to describe the pediatric presentation of a patient with GLUT1 deficiency with such a cation-leaky state. SUBJECT AND METHODS The infant presented with erratic hyperkalemia, neonatal hyperbilirubinemia, anemia, hepatic dysfunction, and microcephaly. Later, seizures occurred and developmental milestones were delayed. Magnetic resonance imaging and computerized tomography scans of the brain showed multiple abnormalities including periventricular calcification. Visual impairment was present due to the presence of both cataracts and retinal dysfunction. RESULTS Measurements of red cell cation content showed extremely leaky red cells (causing the hemolysis) and temperature-dependent loss of potassium from red cells (explaining the hyperkalemia as pseudohyperkalemia). A trinucleotide deletion in SLC2A1, coding for the deletion of isoleucine 435 or 436 in GLUT1, was identified in the proband. CONCLUSION This is the fourth pedigree to be described with this most unusual syndrome. The multisystem pathology probably reflects a combination of glucose transport deficiency at the blood-brain barrier (as in typical GLUT1 deficiency) and the deleterious osmotic effects of a cation-leaky membrane protein in the cells where GLUT1 is expressed, notably the red cell. We hope that this detailed description will facilitate rapid diagnosis of this disease entity.
Collapse
Affiliation(s)
- Waleed M Bawazir
- Division of Medicine, University College London, Rayne Building, University Street, London WC1E 6JF, United Kingsom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bertram KL, Williams DR. Diagnosis of dystonic syndromes—a new eight-question approach. Nat Rev Neurol 2012; 8:275-83. [DOI: 10.1038/nrneurol.2012.39] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Computational identification of phospho-tyrosine sub-networks related to acanthocyte generation in neuroacanthocytosis. PLoS One 2012; 7:e31015. [PMID: 22355334 PMCID: PMC3280254 DOI: 10.1371/journal.pone.0031015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 12/30/2011] [Indexed: 01/08/2023] Open
Abstract
Acanthocytes, abnormal thorny red blood cells (RBC), are one of the biological hallmarks of neuroacanthocytosis syndromes (NA), a group of rare hereditary neurodegenerative disorders. Since RBCs are easily accessible, the study of acanthocytes in NA may provide insights into potential mechanisms of neurodegeneration. Previous studies have shown that changes in RBC membrane protein phosphorylation state affect RBC membrane mechanical stability and morphology. Here, we coupled tyrosine-phosphoproteomic analysis to topological network analysis. We aimed to predict signaling sub-networks possibly involved in the generation of acanthocytes in patients affected by the two core NA disorders, namely McLeod syndrome (MLS, XK-related, Xk protein) and chorea-acanthocytosis (ChAc, VPS13A-related, chorein protein). The experimentally determined phosphoproteomic data-sets allowed us to relate the subsequent network analysis to the pathogenetic background. To reduce the network complexity, we combined several algorithms of topological network analysis including cluster determination by shortest path analysis, protein categorization based on centrality indexes, along with annotation-based node filtering. We first identified XK- and VPS13A-related protein-protein interaction networks by identifying all the interactomic shortest paths linking Xk and chorein to the corresponding set of proteins whose tyrosine phosphorylation was altered in patients. These networks include the most likely paths of functional influence of Xk and chorein on phosphorylated proteins. We further refined the analysis by extracting restricted sets of highly interacting signaling proteins representing a common molecular background bridging the generation of acanthocytes in MLS and ChAc. The final analysis pointed to a novel, very restricted, signaling module of 14 highly interconnected kinases, whose alteration is possibly involved in generation of acanthocytes in MLS and ChAc.
Collapse
|
34
|
|
35
|
Erythrocyte membrane changes of chorea-acanthocytosis are the result of altered Lyn kinase activity. Blood 2011; 118:5652-63. [PMID: 21951684 DOI: 10.1182/blood-2011-05-355339] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Acanthocytic RBCs are a peculiar diagnostic feature of chorea-acanthocytosis (ChAc), a rare autosomal recessive neurodegenerative disorder. Although recent years have witnessed some progress in the molecular characterization of ChAc, the mechanism(s) responsible for generation of acanthocytes in ChAc is largely unknown. As the membrane protein composition of ChAc RBCs is similar to that of normal RBCs, we evaluated the tyrosine (Tyr)-phosphorylation profile of RBCs using comparative proteomics. Increased Tyr phosphorylation state of several membrane proteins, including band 3, β-spectrin, and adducin, was noted in ChAc RBCs. In particular, band 3 was highly phosphorylated on the Tyr-904 residue, a functional target of Lyn, but not on Tyr-8, a functional target of Syk. In ChAc RBCs, band 3 Tyr phosphorylation by Lyn was independent of the canonical Syk-mediated pathway. The ChAc-associated alterations in RBC membrane protein organization appear to be the result of increased Tyr phosphorylation leading to altered linkage of band 3 to the junctional complexes involved in anchoring the membrane to the cytoskeleton as supported by coimmunoprecipitation of β-adducin with band 3 only in ChAc RBC-membrane treated with the Lyn-inhibitor PP2. We propose this altered association between membrane skeleton and membrane proteins as novel mechanism in the generation of acanthocytes in ChAc.
Collapse
|
36
|
Abstract
Dystonias can be classified as primary or secondary, as dystonia-plus syndromes, and as heredodegenerative dystonias. Their prevalence is difficult to determine. In our experience 80-90% of all dystonias are primary. About 20-30% of those have a genetic background; 10-20% are secondary, with tardive dystonia and dystonia in cerebral palsy being the most common forms. If dystonia in spastic conditions is accepted as secondary dystonia, this is the most common form of all dystonia. In primary dystonias, the dystonic movements are the only symptoms. In secondary dystonias, dystonic movements result from exogenous processes directly or indirectly affecting brain parenchyma. They may be caused by focal and diffuse brain damage, drugs, chemical agents, physical interactions with the central nervous system, and indirect central nervous system effects. Dystonia-plus syndromes describe brain parenchyma processes producing predominantly dystonia together with other movement disorders. They include dopa-responsive dystonia and myoclonus-dystonia. Heredodegenerative dystonias are dystonic movements occurring in the context of other heredodegenerative disorders. They may be caused by impaired energy metabolism, impaired systemic metabolism, storage of noxious substances, oligonucleotid repeats and other processes. Pseudodystonias mimic dystonia and include psychogenic dystonia and various orthopedic, ophthalmologic, vestibular, and traumatic conditions. Unusual manifestations, unusual age of onset, suspect family history, suspect medical history, and additional signs may indicate nonprimary dystonia. If they are suspected, etiological clarification becomes necessary. Unfortunately, potential etiologies are legion. Diagnostic algorithms can be helpful. Treatment of nonprimary dystonias, with few exceptions, does not differ from treatment of primary dystonias. The most effective treatment for focal and segmental dystonias is local botulinum toxin injections. Deep brain stimulation of the globus pallidus internus is effective for generalized dystonia. Antidystonic drugs, including anticholinergics, tetrabenazine, clozapine, and gamma-aminobutyric acid receptor agonists, are less effective and often produce adverse effects. Dopamine is extremely effective in dopa-responsive dystonia. The Bertrand procedure can be effective in cervical dystonia. Other peripheral surgery, including myotomy, myectomy, neurotomy, rhizotomy, ramizectomy, and accessory nerve neurolysis, has largely been abandoned. Central surgery other than deep brain stimulation is obsolete. Adjuvant therapies, including orthoses, physiotherapy, ergotherapy, behavioral therapy, social support, and support groups, may be helpful. Analgesics should also be considered where appropriate.
Collapse
Affiliation(s)
- Dirk Dressler
- Movement Disorders Section, Department of Neurology, Hanover Medical School, Hanover, Germany.
| |
Collapse
|
37
|
|
38
|
Garcia Ruiz PJ, Ayerbe J, Bader B, Danek A, Sainz MJ, Cabo I, Frech FA. Deep brain stimulation in chorea acanthocytosis. Mov Disord 2009; 24:1546-7. [DOI: 10.1002/mds.22592] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
39
|
Singer C, Papapetropoulos S. A case of seizures, orofacial dyskinesias and peripheral neuropathy. Mov Disord 2008. [DOI: 10.3109/9780203008454-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
40
|
Katsube T, Shimono T, Ashikaga R, Hosono M, Kitagaki H, Murakami T. Demonstration of cerebellar atrophy in neuroacanthocytosis of 2 siblings. AJNR Am J Neuroradiol 2008; 30:386-8. [PMID: 18945802 DOI: 10.3174/ajnr.a1282] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARY Neuroacanthocytosis is a rare hereditary disorder characterized by involuntary choreiform movements and erythrocytic acanthocytosis in the peripheral blood. Clinical manifestations of this disorder resemble those of Huntington disease (HD). Neuroimaging features of neuroacanthocytosis are atrophy and signal intensity change of the striata on MR imaging, as in HD. We report herein the cases of 2 siblings with neuroacanthocytosis showing cerebellar atrophy as well as atrophy and signal intensity changes of striata.
Collapse
Affiliation(s)
- T Katsube
- Department of Radiology, Kinki University School of Medicine, Osaka-Sayama, Japan.
| | | | | | | | | | | |
Collapse
|
41
|
Weber YG, Storch A, Wuttke TV, Brockmann K, Kempfle J, Maljevic S, Margari L, Kamm C, Schneider SA, Huber SM, Pekrun A, Roebling R, Seebohm G, Koka S, Lang C, Kraft E, Blazevic D, Salvo-Vargas A, Fauler M, Mottaghy FM, Münchau A, Edwards MJ, Presicci A, Margari F, Gasser T, Lang F, Bhatia KP, Lehmann-Horn F, Lerche H. GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak. J Clin Invest 2008; 118:2157-68. [PMID: 18451999 DOI: 10.1172/jci34438] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 03/19/2008] [Indexed: 11/17/2022] Open
Abstract
Paroxysmal dyskinesias are episodic movement disorders that can be inherited or are sporadic in nature. The pathophysiology underlying these disorders remains largely unknown but may involve disrupted ion homeostasis due to defects in cell-surface channels or nutrient transporters. In this study, we describe a family with paroxysmal exertion-induced dyskinesia (PED) over 3 generations. Their PED was accompanied by epilepsy, mild developmental delay, reduced CSF glucose levels, hemolytic anemia with echinocytosis, and altered erythrocyte ion concentrations. Using a candidate gene approach, we identified a causative deletion of 4 highly conserved amino acids (Q282_S285del) in the pore region of the glucose transporter 1 (GLUT1). Functional studies in Xenopus oocytes and human erythrocytes revealed that this mutation decreased glucose transport and caused a cation leak that alters intracellular concentrations of sodium, potassium, and calcium. We screened 4 additional families, in which PED is combined with epilepsy, developmental delay, or migraine, but not with hemolysis or echinocytosis, and identified 2 additional GLUT1 mutations (A275T, G314S) that decreased glucose transport but did not affect cation permeability. Combining these data with brain imaging studies, we propose that the dyskinesias result from an exertion-induced energy deficit that may cause episodic dysfunction of the basal ganglia, and that the hemolysis with echinocytosis may result from alterations in intracellular electrolytes caused by a cation leak through mutant GLUT1.
Collapse
Affiliation(s)
- Yvonne G Weber
- Neurologische Klinik and Institut für Anatomie und Zellbiologie, Universität Ulm, Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Epilepsy, progressive movement disorder and cognitive decline. J Clin Neurosci 2008. [DOI: 10.1016/j.jocn.2007.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Bosveld F, Rana A, van der Wouden PE, Lemstra W, Ritsema M, Kampinga HH, Sibon OCM. De novo CoA biosynthesis is required to maintain DNA integrity during development of the Drosophila nervous system. Hum Mol Genet 2008; 17:2058-69. [PMID: 18407920 DOI: 10.1093/hmg/ddn105] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In a forward genetic screen in Drosophila melanogaster, aimed to identify genes required for normal locomotor function, we isolated dPPCS (the second enzyme of the Coenzyme A biosynthesis pathway). The entire Drosophila CoA synthesis route was dissected, annotated and additional CoA mutants were obtained (dPANK/fumble) or generated (dPPAT-DPCK). Drosophila CoA mutants suffer from neurodegeneration, altered lipid homeostasis and the larval brains display increased apoptosis. Also, de novo CoA biosynthesis is required to maintain DNA integrity during the development of the central nervous system. In humans, mutations in the PANK2 gene, the first enzyme in the CoA synthesis route, are associated with pantothenate kinase-associated neurodegeneration. Currently, the pathogenesis of this neurodegenerative disease is poorly understood. We provide the first comprehensive analysis of the physiological implications of mutations in the entire CoA biosynthesis route in an animal model system. Surprisingly, our findings reveal a major role of this conserved pathway in maintaining DNA and cellular integrity, explaining how impaired CoA synthesis during CNS development can elicit a neurodegenerative phenotype.
Collapse
Affiliation(s)
- Floris Bosveld
- Department of Cell Biology, Section of Radiation and Stress Cell Biology, University Medical Centre Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
44
|
Wild EJ, Mudanohwo EE, Sweeney MG, Schneider SA, Beck J, Bhatia KP, Rossor MN, Davis MB, Tabrizi SJ. Huntington's disease phenocopies are clinically and genetically heterogeneous. Mov Disord 2008; 23:716-20. [DOI: 10.1002/mds.21915] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Edward J. Wild
- Department of Neurodegenerative Disease, UCL Institute of Neurology/National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
| | - Ese E. Mudanohwo
- Neurogenetics Unit, UCL Institute of Neurology/National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
| | - Mary G. Sweeney
- Neurogenetics Unit, UCL Institute of Neurology/National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
| | - Susanne A. Schneider
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology/National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
| | - Jon Beck
- Department of Neurodegenerative Disease, UCL Institute of Neurology/National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
| | - Kailash P. Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology/National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
| | - Martin N. Rossor
- Neurogenetics Unit, UCL Institute of Neurology/National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
| | - Mary B. Davis
- Neurogenetics Unit, UCL Institute of Neurology/National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
| | - Sarah J. Tabrizi
- Department of Neurodegenerative Disease, UCL Institute of Neurology/National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
| |
Collapse
|
45
|
|
46
|
Müller N. Tourette's syndrome: clinical features, pathophysiology, and therapeutic approaches. DIALOGUES IN CLINICAL NEUROSCIENCE 2007. [PMID: 17726915 PMCID: PMC3181853 DOI: 10.31887/dcns.2007.9.2/nmueller] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tourette's syndrome (TS) is a disorder characterized by simple and complex motor tics, vocal tics, and frequently obsessive-compulsive symptoms, its onset occurs before the age of 21. Typically, TS shows a waxing and waning course, but a chronification of the tics, even during later life, is often observed, TS mainly occurs in boys, and shows genetic heritability with differing penetrance. The pathological mechanism is still unclear. Neuroanatomical and neuroimaging studies, as well as effective treatment using antipsychotics, suggest that a disturbance of the dopaminergic system in the basal ganglia plays an important role in the pathogenesis of TS, Several possibly causative mechanisms of the disturbed dopaminergic neurotransmission are discussed, with the main emphasis on the-infection-triggered- inflammatory immune process, Extrapyramidal movement disorders are known to occur as a symptom of poststreptococcal disease, such as in Sydenham's chorea. Cases of childhood TS are proposed to be caused by such a post-streptococcal mechanism, being part of a spectrum of childhood neurobehavioral disorders termed pediatric autoimmune neuropsychiatric disorder associated with streptococcal infection (PANDAS), The overlap between TS and PANDAS is discussed, and a critical view of the PANDAS concept is presenter], The therapeutic implications of the different pathological mechanisms are described, taking into consideration not only the acute or chronic natures of different infections, but also an autoimmune process, Moreover, therapeutic strategies using typical and atypical antipsychotics, and also experimental therapies such as repetitive transcranial magnetic stimulation and deep brain stimulation, are critically discussed.
Collapse
Affiliation(s)
- Norbert Müller
- Hospital for Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany.
| |
Collapse
|
47
|
Saiki S, Sakai K, Murata KY, Saiki M, Nakanishi M, Kitagawa Y, Kaito M, Gondo Y, Kumamoto T, Matsui M, Hattori N, Hirose G. Primary skeletal muscle involvement in chorea-acanthocytosis. Mov Disord 2007; 22:848-52. [PMID: 17345646 DOI: 10.1002/mds.21437] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Chorea-acanthocytosis (ChAc) is a hereditary disease characterized by involuntary movements and amyotrophy with elevation of serum creatine kinase. Although skeletal muscle involvement in ChAc has been suggested, the mechanism remains unclear. To investigate chorein abnormalities of the skeletal muscles of ChAc patients with an apparently heterozygous VPS13A mutation compared with those of other hereditary choreic diseases, we performed histological and immunohistochemical studies of the skeletal muscles from 3 ChAc, 1 Huntington's disease (HD), 1 McLeod syndrome (MLS), and 1 normal control (NC) with 2 originally generated anti-chorein antibodies. Chorein immunoreactivities in HD, MLS, and NC were found linearly along the sarcolemma and appeared as speckles in the sarcoplasma, but those in ChAc were uneven and discontinuous along the sarcolemmas and increased in the sarcoplasma especially in type I fibers. This histological observation suggests chorein abnormalities of skeletal muscles might be associated with primary involvement of skeletal muscles in this disorder.
Collapse
Affiliation(s)
- Shinji Saiki
- Department of Neurology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa 920-0293, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Clapéron A, Hattab C, Armand V, Trottier S, Bertrand O, Ouimet T. The Kell and XK proteins of the Kell blood group are not co-expressed in the central nervous system. Brain Res 2007; 1147:12-24. [PMID: 17379193 DOI: 10.1016/j.brainres.2007.01.106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 12/29/2006] [Accepted: 01/15/2007] [Indexed: 11/16/2022]
Abstract
The Kell blood group is constituted by two covalently linked antigens at the surface of red blood cells, Kell and Kx. Whereas Kell is a metalloprotease with demonstrated in vitro enzymatic activity, the role of Kx thereon, and/or alone, remains unknown, although its absence is linked to the McLeod syndrome, a neuroacanthocytosis. In the central nervous system, the expression of Kell and XK has been suggested, but their expression patterns remain uncharacterized, as are the post-translational pathogenic mechanisms involved in the development of the McLeod syndrome. The distributions of Kell and XK were thus studied by in situ hybridization as well as immunohistochemistry in rodent and human brain. The results reveal an independent localization of the two constituents of the Kell blood group, XK (Kx) being expressed throughout this tissue, whereas Kell expression is restricted to red blood cells in cerebral vessels. The XK protein is shown to be neuronal, located mainly in intracellular compartments, suggesting a cell specific trafficking pattern, possibly associated with specific physiological functions.
Collapse
Affiliation(s)
- Audrey Clapéron
- INSERM U573, Centre Paul Broca, 2ter rue d'Alésia, 75014 Paris, France
| | | | | | | | | | | |
Collapse
|
49
|
Walker RH, Jung HH, Tison F, Lee S, Danek A. Phenotypic variation among brothers with the McLeod neuroacanthocytosis syndrome. Mov Disord 2007; 22:244-8. [PMID: 17133513 DOI: 10.1002/mds.21224] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
McLeod syndrome is an X-linked multisystem disorder affecting red blood cells, the peripheral and central nervous systems, and skeletal and cardiac muscle. No clear correlations of the clinical findings with the genotype of XK mutations have yet been uncovered. Here, we report the clinical features and progression in 10 affected brothers from 4 families with McLeod syndrome. There is significant variation in clinical presentation within families, including in causes of morbidity and mortality. This phenotypic variation, despite shared mutations, suggests the action of disease-modifying factors that may explain some of the difficulties with genotype-phenotype correlation in McLeod syndrome.
Collapse
Affiliation(s)
- Ruth H Walker
- Departments of Neurology, Veterans Affairs Medical Center, New York, New York 10468, USA.
| | | | | | | | | |
Collapse
|
50
|
Müller-Vahl KR, Berding G, Emrich HM, Peschel T. Chorea-acanthocytosis in monozygotic twins: clinical findings and neuropathological changes as detected by diffusion tensor imaging, FDG-PET and 123I-β-CIT-SPECT. J Neurol 2007; 254:1081-8. [PMID: 17294064 DOI: 10.1007/s00415-006-0492-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 10/30/2006] [Accepted: 11/16/2006] [Indexed: 10/23/2022]
Abstract
We report on two 33 years old monozygotic twins with chorea-acanthocytosis (ChAc) misdiagnosed as schizophrenia and Tourette syndrome, respectively. Although the patients shared several clinical similarities, there were also some clear differences: twin 1 presented initially with an acute episode of a paranoid schizophrenia, while twin 2 suffered from generalized epileptic seizures. In both twins, MRI demonstrated caudate nucleus atrophy and an increased apparent diffusion coefficient (ADC) in the striatum bilaterally with right sided predominance. (18)F-FDG PET showed bilaterally reduced glucose utilization in the striatum with clearly pronounced reduction on the right side compared to the left and in twin 1 compared to twin 2. Ratios of binding to striatal dopamine transporters (DAT) and serotonin transporters in the hypothalamus midbrain area as determined using (123)I-beta-CIT-SPECT fell within the normal ranges. However, in twin 1 a significant difference in binding to presynaptic DAT with marked reduction on the right hemisphere was observed. Right hemispheric accentuated changes measured by MRI, FDG-PET, and (123)I-beta-CITSPECT correspond to more severe hyperkinetic movements on the left part of the body in both twins. Different neuro-psychiatric features in this monocygotic twin pair suggest that not only genetic but also environmental factors contribute to the clinical symptomatology. Our findings suggest that the main neuropathological process in ChAc is located in the striatum, involving microstructural alterations, and disturbance of metabolism and dopaminergic neurotransmission.
Collapse
Affiliation(s)
- Kirsten R Müller-Vahl
- Department of Clinical Psychiatry and Psychotherapy, Medical School Hannover, Carl-Neuberg-Str 1, D-30625, Hannover, Germany.
| | | | | | | |
Collapse
|